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Abstract. In this paper, we extend the method of Scott and Barreto
and present an explicit and simple algorithm to generate families of gener-
alized MNT elliptic curves. Our algorithm allows us to obtain all families
of generalized MNT curves with any given cofactor. Then, we analyze the
complex multiplication equations of these families of curves and trans-
form them into generalized Pell equations. As an example, we describe
a way to generate Edwards curves with embedding degree 6, that is,
elliptic curves having cofactor h = 4.
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1 Introduction

Pairings used in cryptology are efficiently computable bilinear maps on torsion
subgroups of points on an elliptic curve that map into the multiplicative group
of a finite field. We call such a map a cryptographic pairing. The first notable
application of pairings to cryptology was the work of Menezes, Okamato and
Vanstone [15]. They showed that the discrete logarithm problem on a supersin-
gular elliptic curve can be reduced to the discrete logarithm problem in a finite
field through the Weil pairing. Then, Frey and Ruck [8] also consider this through
the Tate pairing. Pairings were thus used as a means of attacking cryptosystems.

However, pairings on elliptic curves only become a great interest since their
first application in constructing cryptographic protocols in [12]. Joux describes
an one-round 3-party Diffie-Hellman key exchange protocol in 2000. Since then,
the use of cryptographic protocols based on pairings has had a huge success with
some notable breakthroughs such as practical Identity-based Encryption (IBE)
schemes [5]. Unlike standard elliptic curve cryptosystems, pairing-based cryp-
tosystems require elliptic curves with special properties, namely, the embedding
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degree k is small enough1. Balasubramanian and Koblitz [2] showed that ordi-
nary elliptic curves with such a property are very rare. An elliptic curve with
such nice properties is called a pairing-friendly elliptic curve.

Miyaji, Nakabayashi and Takano introduced the concept of “family of pairing-
friendly elliptic curves” in [16]. They provided families of prime-order elliptic
curves with embedding degrees k = 3, 4 and 6, such that the number of points
on these curves E(Fq) are prime. As analyzed in [17], these families of curves,
so-called MNT curves, are more efficient than supersingular elliptic curves when
implementing pairing-based cryptosystems. Later, Scott and Barreto [18], and
Galbraith et al. [9] extended and introduced more MNT curves. These curves
are of near prime-order. The number of points on these curves is #E(Fq) = h ·r,
where r is a big prime number and the cofactor h ≥ 2 is small. While Galbraith et
al.’s method allows generating explicit families of curves, Scott-Barreto’s method
only generates particular elliptic curves.

In this paper we extend the method of Scott and Barreto in [18] and present
an explicit, simple algorithm to generate families of ordinary elliptic curves
of prime order (or near prime order with any cofactor) with small embedding
degrees. Given an embedding degree k and a cofactor h, we demonstrate that our
algorithm will output all possible families. We then point out a one-to-one corre-
spondence between families of MNT curves having the same embedding degree
and the same cofactor (Theorems 2, 3, and 4). We also analyze the complex
multiplication equations of these families of curves and show how to transform
these complex multiplication equations into generalized Pell equations that allow
us to find particular curves. We illustrate our analysis for constructing Edwards
curves with embedding degree 6.

The paper is organized as follows: Section 2 briefly recalls MNT curves, as
well as methods to generate MNT curves with small cofactors. Section 3 presents
our alternative method to generate such curves. We give our results in Section 4.
We also discuss the Pell equation for some particular cases of MNT curves in
this section. Finally, we conclude in Section 5.

2 Backgrounds

2.1 MNT Curves

An elliptic curve generated randomly would have a large embedding degree.
As a consequence, a random elliptic curve would not be suitable for efficient
computation of a pairing based protocol. Supersingular elliptic curves have small
embedding degree. However, such curves are limited to embedding degree k = 2
for prime fields and k ≤ 6 in general [15]. If we want to vary the embedding degree
to achieve a high security level, we must construct pairing-friendly ordinary
elliptic curves. However, a study by Balasubramanian and Koblitz in [2] showed

1 Let q be a prime number or a power of a prime, let E be an elliptic curve defined
over Fq with a subgroup of prime order r. Then the embedding degree is the smallest
integer such that r divides (qk − 1).
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that ordinary elliptic curves with such a small embedding degree are very rare
and thus require specific constructions.

Using the Complex Multiplication method (CM for short) to construct ellip-
tic curves, the ρ value satisfies that 1 ≤ ρ ≤ 2, where the value ρ is defined
as ρ = log(q)

log(r) . In order to save bandwidth during the calculation we are looking
for ρ as small as possible. The most interesting construction of pairing-friendly
elliptic curves is the one such that the result is a parameterization of a fam-
ily of elliptic curves. Miyaji, Nakabayashi, and Takano [16] presented the first
parameterized families that yield ordinary elliptic curves with embedding degree
k ∈ {3, 4, 6}. These curves have a ρ-value equal to 1. The families are given by
parameterization for q and t as polynomials in Z[x] with #E(Fq) = n(x). Let
Φk(x) be the k-th cyclotomic polynomial. Recall that n(x) = q(x) + 1 − t(x),
n(x) | Φk(q(x)), and n(x) represents primes in the MNT construction. Their
results are summarized in Table 1.

Table 1. Parameters for MNT curves [16]

k q(x) t(x)

3 12x2 − 1 −1 ± 6x

4 x2 + x + 1 −x or x + 1

6 4x2 + 1 1 ± 2x

The construction of MNT curves is based on the Complex Multiplication method.
That is, we have to find solutions (x0, V0) of the following CM equation:

DV 2 = 4q(x) − t2(x)

for small values of D. The right-hand side of this equation is of quadratic form
and can be transformed into a generalized Pell equation. Since the construction
depends on solving a Pell-like equation, MNT curves of prime order are sparse [7].
It means that the equation admits only a few solutions.

2.2 MNT Curves with Small Cofactors

Let E(Fq) be a parameterized elliptic curve with cardinality #E(Fq) = n(x). We
call the cofactor of E(Fq), the integer h such that n(x) = h × r(x), where r(x)
is a polynomial representing primes. The original construction of MNT curves
gives families of elliptic curves with cofactor h = 1. Scott-Barreto [18], and
Galbraith-McKee-Valença [9] extended the MNT idea by allowing small values
of the cofactor h > 1. This allows to find many more suitable curves with ρ ≈ 1
than the original MNT construction. We recall the following proposition.

Proposition 1. [7, Proposition2.4] Let k be a positive integer, E(Fq) be an
elliptic curve defined over Fq with #E(Fq) = q + 1 − t = hr, where r is prime,
and let t be the trace of E(Fq). Assume that r � kq. Then E(Fq) has embedding
degree k with respect to r if and only if Φk(q) ≡ 0 (mod r), or equivalently, if
and only if Φk(t − 1) ≡ 0 (mod r).
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Scott-Barreto’s Method. Let Φk(x) = d × r for some x. Scott-Barreto’s
method [18] first fixes small integers h and d and then substitutes r = Φk(t−1)/d,
where t = x + 1 to obtain the following CM equation:

DV 2 = 4h
Φk(x)

d
− (x − 1)2. (1)

Actually, Scott and Barreto used the fact that Φk(t−1) ≡ 0 (mod r). As above,
the right-hand side of Equation (1) is quadratic, hence it can be transformed
into a generalized Pell equation by a linear substitution (see [18, §2] for more
details). Then, Scott-Barreto found integer solutions to this equation for small
D and arbitrary V with the constraint 4h > d. The Scott-Barreto method [18]
presented generalized MNT elliptic curves with particular parameters. However
it failed to give explicit families of generalized MNT elliptic curves.

Galbraith McKee and Valença’s Method. Unlike Scott-Barreto’s method,
the mathematical analyses in [9] could lead to explicit families of generalized
MNT curves. Galbraith et al. [9] extended the MNT method [16] and gave a
complete characterization of MNT curves with small cofactors h. Actually, they
used the fact that Φk(q) ≡ 0 (mod r). Similarly to the method in [16], Galbraith
et al. defined λ by the equation Φk(q) = λr. For example, in the case k = 6, they
required λr = Φk(q) = q2 − q + 1. By using Hasse’s bound, |t| ≤ 2

√
q, they then

analyzed and derived possible polynomials q, t from the equation Φk(q) = λr.
Readers are referred to [9, Section3] for a particular analysis in the case, in which
the embedding degree is k = 6 and the cofactor is h = 2.

3 An Alternative Approach to Galbraith et al.’s Method

In this section, we present an alternative approach to generate explicit families
of ordinary elliptic curves with embedding degree 3, 4, or 6 and small cofactors.
Different fromthe analytic approach in [9], we obtain families of curves by pre-
senting a very simple and explicit algorithm. Our analyses also show that this
algorithm can find all families of generalized MNT elliptic curves with any given
cofactor.

3.1 Preliminary Observations and Facts

Some well-known facts and observations that can be used to find families of
curves are noted in this section. Similar to Scott-Barreto’s method, we use the
fact that Φk(t − 1) ≡ 0 mod r. Consider cyclotomic polynomials corresponding
to embedding degrees k = 3, 4, 6:

Φ3(t(x) − 1) = t(x)2 − t(x) + 1,

Φ4(t(x) − 1) = t(x)2 − 2t(x) + 2,

Φ6(t(x) − 1) = t(x)2 − 3t(x) + 3.
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By setting t(x) = ax + b, we have the following equations:

Φ3(t(x) − 1) = a2x2 + a(2b − 1)x + Φ3(b − 1), (2)

Φ4(t(x) − 1) = a2x2 + 2a(b − 1)x + Φ4(b − 1), (3)

Φ6(t(x) − 1) = a2x2 + a(2b − 3)x + Φ6(b − 1). (4)

Theorem 1. The quadratic polynomials Φ3(t(x)−1), Φ4(t(x)−1) and Φ6(t(x)−
1) are irreducible over the rational field.

Proof. We start with the following lemma.

Lemma 1. Let f(x) be a quadratic irreducible polynomial in Q[x]. If we perform
any Z-linear change of variables x �→ ax+ b for any a ∈ Q\{0} and b ∈ Q, f(x)
will still be a quadratic irreducible polynomial in Q[x].

Proof. If we assume that f(ax + b) is not irreducible in Q[X], then as f(x) is
a quadratic polynomial it means that f(ax + b) admits a decomposition of the
form f(ax + b) = c(x − c1)(x − c2), for c, c1, c2 ∈ Q. The values c1 and c2 are
rational roots of f(ax + b) = 0. It is easy to see that ac1 + b and ac2 + b would
then be rational roots of f(x) = 0. 
�

We now prove Theorem 1. As the polynomial Φ3(x) = x2−x+1 is irreducible
in Q[x], according to Lemma 1 the polynomial Φ3(t(x) − 1) is also irreducible
in Q[x]. The same argument ensures that Φ4(t(x) − 1) and Φ6(t(x) − 1) are
irreducible in Q[x]. 
�

Let a triple (t, r, q) parameterize a family of generalized MNT curves, and
let h be a small cofactor. Let n(x) be a polynomial representing the cardinality
of elliptic curves in the family (t, r, q). That is, n(x) = h · r(x) = q(x) − t(x) + 1.
By [7, Definition2.7], we have:

Φk(t(x) − 1) = d × r(x), (5)

where d ∈ Z, and r(x) is a quadratic irreducible polynomial. By Hasse’s bound,
4q(x) ≥ t2(x), we get the inequality:

4h ≥ d (6)

From equations (2)–(4), we can see that d is the greatest common divisor of
the coefficients appearing in these equations. For instance, when k = 3, d is the
GCD of Φ3(b−1), a2, and a(2b−1). We recall the following well-known Lemma,
which can be found in [10, ChapterV,§6]:

Lemma 2. Let d be prime and k, n > 0. If d divides Φk(n), then d does not
divide n, and either d divides k or d ≡ 1 (mod k).

The above lemma points out that if Φk(n) can be factorized by prime factors
di, i.e. Φk(n) =

∏
di, then, either di | k or di ≡ 1 (mod k).
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Lemma 3. Given t(x) = ax + b, if d in Eq. (5) does not divide a, then d is
square free.

Proof. We know that d ∈ Z, and d is the greatest common divisor of factors of
Φk(t(x)− 1), i.e. d divides a2, 2a(2b− 1) or 2a(b− 1) or 2a(2b− 3) and Φk(b− 1)
(Equations (2)–(4)). Suppose that d is not square free, that is d = p2 × d′ with
p a prime number greater or equal to 2. By Lemma 2, p does not divide (b − 1)
and either p divides k or p ≡ 1 (mod k). We also assume that d divides a2, but
does not divide a, and hence p2 � a, and p is a prime factor of a.

– k = 3: As p divides Φ3(b − 1) = b2 − b + 1 and p divides 2b − 1 we have that
p divides (2b − 1) + Φ3(b − 1), i.e. p divides b(b − 1). We know that p does
not divide (b − 1), thus p must divide b.
We have p | 2b − 1 = (b − 1) + b, and p | b, hence p must divide b − 1. This
is contradictory with Lemma 2. Thus, d is square free.

– k = 4: We have that p divides 2(b − 1), recall from Lemma 3 that p does
not divide (b − 1), then p | 2. However, we can show that Φ4(b − 1) ≡ {1, 2}
(mod 4). It is thus impossible to have d = 22 × d′ and d | Φ4(b − 1).

– k = 6: Likewise, as p divides Φ6(b− 1) = b2 − 3b+3 and 2b− 3 we have that
p divides (2b − 3) + Φ3(b − 1) = b(b − 1). We know that p does not divide
(b − 1), then we have p divides b.
We have p divides 2b − 3, and p divides b. Then p must divides 2b − 3 + b =
3(b−1), hence p divides 3. That is, d = 32 ×d′. But, by [11, Proposition2.4],
this cannot occur. Thus, d must be square free. 
�

3.2 The Proposed Algorithm

We start this section by presenting the following definition:

Definition 1. Let r(x), r′(x), t(x) and t′(x) be polynomials. We say that a pair
(t(x), r(x)) is equivalent to (t′(x), r′(x)) if we can transform the first into the
second by performing a Z-linear change of variables x �→ cx + d.

In principle, given an embedding degree k and a cofactor h, our method works
as follows:

1. We first fix the Frobenius trace to be t(x) = ax + b, for a ∈ Z \ {0} and
b ∈ Z. The possible values of a, b for a given cofactor h are determined by
Lemma 4.

2. Then, we determine d and r(x) thanks to Equation (5).
3. For given d and r(x), we determine n(x) and q(x).

Algorithm 1 explicitly describes our method. Given an embedding degree k
and a cofactor hmax, we demonstrate that Algorithm 1 will output a list of all
possible families of generalized MNT curves (t(x), r(x), q(x)) with the cofactors
h ≤ hmax. Lemma 4 gives the boundary for the values amax, bmax in order to
find all the possible families of curves.
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Algorithm 1. Generate families of generalized MNT curves
Input: An embedding degree k, a cofactor hmax.
Output: A list of polynomials (t(x), r(x), q(x)).

L ← {}; T ← {} ;

for a = −amax to amax do
for b = −bmax to bmax do

t(x) ← ax + b ;
f(x) ← Φk(t(x) − 1) ;
Let f(x) = d · r(x), where d ∈ Z and r(x) is an irreducible quadratic
polynomial;
if pair (t(x), r(x)) is not equivalent with any (t′(x), r′(x)) in T then

T ← T + {(d, t(x), r(x))} ;
for h = �d/4� to hmax do

q(x) ← h · r(x) + t(x) − 1 ;
if q(x) is irreducible and gcd(q(x), r(x) : x ∈ Z) = 1 then

L ← L + {(t(x), r(x), q(x), h)} ;
end

end

end

end

end
return L

Lemma 4. Given an embedding k, and a cofactor hmax, we have amax = 4hmax,
and bmax < amax.

Proof. We first demonstrate that amax = 4hmax. Suppose that d | a2, but d � a,
then by Lemma 3, d must be square free. This is a contradiction, thus we have
d | a.

Suppose that the algorithm outputs a family of curves with t(x) = ax + b,
and a is a multiple of d, that is, a = m × d. By a Z-linear transformation, we
know that this family is equivalent to a family of curves with t(x) = dx + b. For
the simplest form, the value of the coefficient a of polynomial t(x) should be
equal to d. Due to the inequality (6), the maximum value of a, amax = 4hmax.

Likewise, if b > a, we can make a transformation x �→ x + �b/a, and b′ =
b mod a. The value of bmax thus should be chosen less than amax. 
�

4 More Near Prime-Order Elliptic Curves

The families of elliptic curves obtained from Algorithm 1 for k = 3, 4 and 6
are presented in Tables 2, 3, and 4, respectively. Our algorithms execute an
exhaustive search based on the given parameters, they can thus generate all
families of elliptic curves of small embedding degrees 3, 4 and 6. In these tables,
we present only families of curves with cofactors 1 ≤ h ≤ 6, but it is worth to
note that a family of curves with any cofactor can be easily found by adjusting
the parameters of the algorithms.
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4.1 k = 3

For the case of k = 3, our results are summarized curves in Table 2. We don’t
claim new explicit families in comparison to results in [9]. Our families of curves
in the Table 2 can be obtained due to a linear transform of variables from Table
3 in [9] when k = 3. For example, for h = 2, our family q(x) = 2x2 + x + 1, and
t(x) = −x is equivalent to the family q(x) = 8x2 + 2x + 1, and t(x) = −2x in [9,
Table3]. Our algorithm just gives the polynomials r(x) and q(x) with the least
value of coefficients.

Theorem 2. Table 2 gives all families of elliptic curves of the embedding degree
k = 3 with different cofactors 1 ≤ h ≤ 6.

Table 2. Valid q, r, t corresponding to k = 3

h q r t

1 3x2 − 1 3x2 + 3x + 1 −3x − 1

2
2x2 + x + 1 x2 + x + 1 −x

14x2 + 3x − 1 7x2 + 5x + 1 −7x − 2
14x2 + 17x + 4 7x2 + 5x + 1 7x + 3

3 3x2 + 2x + 2 x2 + x + 1 −x

4

4x2 + 3x + 3 x2 + x + 1 −x
12x2 + 9x + 2 3x2 + 3x + 1 −3x − 1
28x2 + 13x + 1 7x2 + 5x + 1 −7x − 2
28x2 + 27x + 6 7x2 + 5x + 1 7x + 3

5
5x2 + 4x + 4 x2 + x + 1 −x

35x2 + 18x + 2 7x2 + 5x + 1 −7x − 2
35x2 + 32x + 7 7x2 + 5x + 1 7x + 3

h q r t

5

65x2 + 22x + 1 13x2 + 7x + 1 −13x − 3
65x2 + 48x + 8 13x2 + 7x + 1 13x + 4
95x2 + 56x + 7 19x2 + 15x + 3 −19x − 7
95x2 + 94x + 22 19x2 + 15x + 3 19x + 8

6

6x2 + 5x + 5 x2 + x + 1 −x
18x2 + 15 + 4 3x2 + 3x + 1 −3x − 1
78x2 + 29x + 2 13x2 + 7x + 1 −13x − 3
78x2 + 55x + 9 13x2 + 7x + 1 13x + 4

114x2 + 71x + 10 19x2 + 15x + 3 −19x − 7
114x2 + 109x + 25 19x2 + 15x + 3 19x + 8
126x2 + 33x + 1 21x2 + 9x + 1 −21x − 4
126x2 + 75x + 10 21x2 + 9x + 1 21x + 5

Proposition 2. Let q(x), r(x) and t(x) be non-zero polynomials that parame-
terize a family of curves with embedding degree k = 3 and small cofactor h ≥ 1.
Then q′(x) = q(x) − 2t(x) + 1, r(x), and t′(x) = 1 − t(x) represent a family of
curves with the same group order r(x) and the same cofactor h.

Proof. Let q(x), r(x) and t(x) parameterize a family of curves with embedding
degree k = 3, the small cofactor h ≥ 1, and let n(x) = h · r(x) represent the
number of points on this family of curves. We have Φ3(t(x)−1) = t(x)2−t(x)+1
and Φ3(t′(x) − 1) = Φ3(−t(x)) = t(x)2 − t(x) + 1 = Φ3(t(x) − 1). Since r(x) |
Φ3(t(x) − 1), we have that r(x)|Φ3(t′(x) − 1) and q(x) = n(x) + t(x) − 1. Thus,
q′(x) = q(x) − 2t(x) + 1 = n(x) − t(x) = n(x) + t′(x) − 1. It is easy to verify
that q′(x) is the image of q(x) by a Z-linear transformation of t(x) �→ 1 − t(x).
According to Lemma 1, since q(x) is irreducible then q′(x) is irreducible. Let
n′(x) = n(x), then q′(x) represent the characteristic of the family of curves.

Now we need to prove that q′(x) and t′(x) satisfies Hasse’s theorem, i.e.
t′(x)2 ≤ 4q′(x). Suppose that t(x) = ax + b, then t′(x) = −ax − b + 1. It is clear
that the leading coefficient of q′(x) is equal to that of q(x). Since h > m/4, 4q(x)
would be greater than t2(x) for some value of x. Thus, q′(x) and t′(x) satisfies
Hasse’s theorem whenever q(x), t(x) do with some big enough values of x. 
�
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4.2 k = 4

For the case of k = 4, our results are summarized curves in Table 3. It seems
that [9, Table3] gives more families than ours, but in fact several families of
curves with a given cofactor in [9, Table3] are curves with a higher cofactor.
Besides, some families of curves are equivalent by Definition 1, e.g., two families
(t, q) = ((−10l−1), (60l2+14l+1)) and ((10l+4), (60l2+46l+9)) are equivalent.
Thus, the number of their families obtained is not as much as they claimed.

Theorem 3. Table 3 gives families of elliptic curves of the embedding degree
k = 4 with small cofactors 1 ≤ h ≤ 6.

Table 3. Valid q, r, t corresponding to k = 4

h q r t

1 x2 + x + 1 x2 + 2x + 2 −x

2 4x2 + 2x + 1 2x2 + 2x + 1 −2x

3
3x2 + 5x + 5 x2 + 2x + 2 −x
15x2 + 7x + 1 5x2 + 4x + 1 −5x − 1
15x2 + 13x + 3 5x2 + 6x + 2 −5x − 2

4 8x2 + 6x + 3 2x2 + 2x + 1 −2x

5
5x2 + 9x + 9 x2 + 2x + 2 −x

25x2 + 15x + 3 5x2 + 4x + 1 −5x − 1
25x2 + 25x + 7 5x2 + 6x + 2 −5x − 2

h q r t

5

65x2 + 37x + 5 13x2 + 10x + 2 −13x − 4
65x2 + 63x + 15 13x2 + 10x + 2 13x + 6
85x2 + 23x + 1 17x2 + 8x + 1 −17x − 3
85x2 + 57x + 9 17x2 + 8x + 1 17x + 5

6

12x2 + 10x + 5 2x2 + 2x + 1 −2x
60x2 + 26x + 3 10x2 + 6x + 1 −10x − 2
60x2 + 46x + 9 10x2 + 6x + 1 10x + 4
102x2 + 31x + 2 17x2 + 8x + 1 −17x − 3
102x2 + 65x + 10 17x2 + 8x + 1 17x + 5

Proposition 3. Let non-zero polynomials q(x), r(x) and t(x) parameterize a
family of curves with embedding degree k = 4 and the small cofactor h. Then
q′(x) = q(x) − 2t(x) + 2, r(x), and t′(x) = 2 − t(x) represent a family of curves
with the same embedding degree and the same cofactor.

Proof. The proof of the Proposition 3 is similar to that of Proposition 2. Assume
that t(x) = ax + b and t′(x) = 2 − t(x), we have Φ4(t(x) − 1) = Φ4(t′(x) − 1) =
t(x)2 −2t(x)+2. Likewise, we can get q′(x) = q(x)−2t(x)+2 = n(x)+ t′(x)−1.
Polynomials t′(x), q′(x) satisfy Hasse’s theorem. 
�

4.3 k = 6

Table 4 gives more explicit families than Table 3 of [9] for k = 6. For instance,
when h = 3, we have one more family of pairing-friendly elliptic curves with
t(x) = −3x, q(x) = 9x2 + 6x + 2, and r(x) = 3x2 + 3x + 1 .

Theorem 4. Table 4 gives families of elliptic curves of the embedding degree
k = 6 with different cofactors 1 ≤ k ≤ 6.

Proposition 4. Let non-zero polynomials q(x), r(x) and t(x) parameterize a
family of curves with embedding degree k = 6 and the small cofactor h ≥ 2.
Then q′(x) = q(x) − 2t(x) + 3, r(x), and t′(x) = 3 − t(x) represent a family of
curves with the same embedding degree and the same cofactor.
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Table 4. Valid q, r, t corresponding to k = 6

h q r t

1 x2 + 1 x2 + x + 1 −x + 1

2
2x2 + x + 2 x2 + x + 1 −x + 1
6x2 + 3x + 1 3x2 + 3x + 1 −3x

3
3x2 + 2x + 3 x2 + x + 1 −x + 1
9x2 + 6x + 2 3x2 + 3x + 1 −3x
21x2 + 8x + 1 7x2 + 5x + 1 −7x − 1
21x2 + 22x + 6 7x2 + 5x + 1 7x + 4

4

4x2 + 3x + 4 x2 + x + 1 −x + 1
28x2 + 13x + 2 7x2 + 5x + 1 −7x − 1
28x2 + 27x + 7 7x2 + 5x + 1 7x + 4
52x2 + 15x + 1 13x2 + 7x + 1 −13x − 2
52x2 + 41x + 8 13x2 + 7x + 1 13x + 5

5 5x2 + 4x + 5 x2 + x + 1 −x + 1

h q r t

5

15x2 + 12x + 4 3x2 + 3x + 1 −3x
35x2 + 18x + 3 7x2 + 5x + 1 −7x − 1
35x2 + 32x + 8 7x2 + 5x + 1 7x + 4
65x2 + 22x + 2 13x2 + 7x + 1 −13x − 2
65x2 + 48x + 9 13x2 + 7x + 1 13x + 5
95x2 + 56x + 8 19x2 + 5x + 3 −19x − 6
95x2 + 94x + 23 19x2 + 5x + 3 19x + 9

6

6x2 + 5x + 6 x2 + x + 1 −x + 1
18x2 + 15x + 5 3x2 + 3x + 1 −3x
42x2 + 23x + 4 7x2 + 5x + 1 −7x − 1
42x2 + 37x + 9 7x2 + 5x + 1 7x + 4
78x2 + 29x + 3 13x2 + 7x + 1 −13x − 2
78x2 + 55x + 10 13x2 + 7x + 1 13x + 5

Proof. The proof of the Proposition 4 is also similar to that of Proposition 2.
Assume that t(x) = ax+b and t′(x) = 3−t(x), we have Φ6(t(x)−1) = Φ6(t′(x)−
1) = t(x)2 − 3t(x) + 3. Similarly, we can get q′(x) = q(x) − 2t(x) + 3 = n(x) +
t′(x) − 1. Polynomials t′(x), q′(x) satisfy Hasse’s theorem. 
�

4.4 Solving the Pell Equations

For elliptic curves with embedding degrees k = 3, 4, 6 it is clear that the CM
equation DV 2 = 4q(x)−t2(x) is quadratic. Such an equation can be transformed
into a generalized Pell equation of the form y2 + DV 2 = f . In [18], Scott and
Barreto showed how to remove the linear term in the CM equation to get a
generalized Pell equation. In this section, we generalize their idea to get Pell
equations for families of elliptic curves presented in Tables 2, 3, and 4.

Let t(x) = ax + b, Φk(t(x) − 1) = d · r(x), where k = 3, 4, 6 and #E(Fq) =
h ·r(x). Similarly to the analysis of Scott-Barreto in [18], we make a substitution
x = (y−ak)/n to transform the CM equations to the generalized Pell equations,
where a3 = 2h(2b−1)−(b−2)d, a4 = 4h(b−1)−(b−2)d, a6 = 2h(2b−3)−(b−2)d
and n = a(4h − d). We set n′ = n/a, g = dn′D and

f3 = a2
3 − (n′b)2 + 4n′(b − 1)(h − d),

f4 = a2
4 − (n′b)2 + 4n′(b − 1)(2h − d),

f6 = a2
6 − (n′b)2 + 4n′(b − 1)(3h − d).

The CM equation is transformed to its Pell equation y2 − gV 2 = fk, where
k = 3, 4, or 62. The works in [13],[6] investigated the problem on how solve Pell
equations of MNT curves. We illustrate our method for k = 6 and h = 4.

2 Note that we fix the typo in the value of fk in [18, §2]. Indeed, fk must be set to
a2
k − b2 instead of a2

k + b2.
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Case k = 6 and h = 4. Elliptic curves having cofactor h = 4 may be put in
form x2+y2 = 1+dx2y2 with d a non-square integer. Such curves called Edwards
curves were introduced to cryptography by Bernstein and Lange [4]. They showed
that the addition law on Edwards curves is faster than all previously known
formulas. Edwards curves were later extended to the twisted Edwards curves
in [3]. Readers also can see [1],[14] for efficient algorithms to compute pairings
on Edwards curves. In this section, we give some facts to solve Pell equation for
Edwards curves with embedding degree k = 6. We have:

y2
1 − D′

1V
2 = −176, (7)

y2
2 − D′

2V
2 = −80, (8)

y2
3 − D′

3V
2 = −80, (9)

y2
4 − D′

4V
2 = 16, (10)

y2
5 − D′

5V
2 = 16, (11)

where yi = (x − ai)/bi, D′
i = biD, for i ∈ [1, 5], and a1 = −7, a2 = −19,

a3 = −26, a4 = −4, a5 = −17, b1 = 15, b2 = 63, b3 = 63, b4 = 39, b5 = 39.
Karabina and Teske [13, Lemma1] showed that if 4 | fk then the set of solutions
to y2 − D′V 2 = fk does not contain any ambiguous class, i.e., there exists no
primitive solution α = y+v

√
D′ such that α and its conjugate α′ = y−v

√
D′ are

in the same class. Equations (7)–(11) thus won’t have any solution that contains
an ambiguous class. If equations (7)–(11) have solutions with yi ≡ −ai mod bi,
and a fixed positive square-free integer D′

i relatively prime to bi, for 1 ≤ i ≤ 5,
then t, r, q in Table 4 with h = 4 represent a family of pairing-friendly Edwards
curves with embedding degree 6.

5 Conclusion

In this paper we extended Scott-Barreto’s method and presented efficient and
simple algorithms to obtain MNT curves with small cofactors. Our algorithm
allows to find all possible families of generalized MNT curves. In the Proposi-
tions 2, 3 and 4 we point out a one-to-one correspondence between families of
MNT curves having the same embedding degree and the same cofactor. If given a
parameterization of a MNT curves, we can construct another MNT curve using a
Z-linear transformation. We also analyze the Complex Multiplication equations
of MNT curves and point out how to transform these Complex Multiplication
equations into generalized Pell equations. In addition, we give a method to gen-
erate Edwards curves with embedding degree 6.

Acknowledgments. The authors thank the anonymous referees for their detailed and
valuable comments on the manuscript.
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