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Abstract. We examine languages of unranked forests definable using
the temporal operators EF and EX. We characterize the languages defin-
able in this logic, and various fragments thereof, using the syntactic forest
algebras introduced by Bojanczyk and Walukiewicz. Our algebraic char-
acterizations yield efficient algorithms for deciding when a given language
of forests is definable in this logic. The proofs are based on understand-
ing the wreath product closures of a few small algebras, for which we
introduce a general ideal theory for forest algebras. This combines ideas
from the work of Bojanczyk and Walukiewicz for the analogous logics on
binary trees and from early work of Stiffler on wreath product of finite
semigroups.

1 Overview

Understanding the expressive power of temporal and first-order logic on trees is
important in several areas of computer science, for example in formal verification.
Using algebraic methods, in particular, finite monoids, to understand the power
of subclasses of the regular languages of finite words has proven to be extremely
successful, especially in the characterization of regular languages definable in var-
ious fragments of first-order and temporal logics ([CPP93,TW96,Str94]). Here
we are interested in sets of of finite trees (or, more precisely, sets of finite forests),
where the analogous algebraic structures are forest algebras.

Bojanczyk et. al. [BW08,BSW12] introduced forest algebras, and under-
scored the importance of the wreath product decomposition theory of these
algebras in the study of the expressive power of temporal and first-order log-
ics on finite unranked trees. For languages inside of CTL the associated forest
algebras can be built completely via the wreath product of copies of the forest
algebra U2 = ({0,∞}, {1, 0, c0}), where the vertical element 0 is the constant
map to ∞, and the vertical element c0 is the constant map to 0 ([BSW12]). The
problem of effectively characterizing the wreath product closure of U2 is thus an
important open problem, equivalent to characterization of CTL. Note that if one
strips away the additive structure of U2, the wreath product closure is the family
of all finite aperiodic semigroups (the Krohn-Rhodes Theorem). Forest algebras
have been successfully applied to the obtain characterization of other logics on
trees; see, for example [BSS12,BS09].
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Here we study in detail the wreath product closures of proper subalgebras of
U2. In one sense, this generalizes early work of Stiffler [Sti73], who carried out an
analogous program for wreath products of semigroups. Along the way, we develop
the outlines of a general ideal theory for forest algebras, which we believe will
be useful in subsequent work. After developing the underlying algebraic theory,
we give an application to logic, obtaining a characterization of the languages of
unranked forests definable with the temporal operators EF and EX.

Bojanczyk and Walukiewicz [BW06] obtained similar results for binary trees,
using methods quite different from ours. Esik [Ési05] considered the analogous
logics for ranked trees, and proved similar decidability results with techniques
very much in the same spirit as ours, relying on a version of the wreath product
tree automata acting on ranked trees.

Much of our goal in presenting these results in the context of unranked forest
algebras is to develop the outlines of a general ideal theory for these algebras,
and to show its connection with wreath product decompositions. We believe this
approach will prove useful in subsequent work.

2 Forest Algebras

2.1 Preliminaries

We refer the reader to [BW08,BSW12] for the definitions of abstract forest
algebra, free forest algebra, and syntactic forest algebra. We denote the free
forest algebra over a finite alphabet A by AΔ = (HA, VA), where HA denotes the
monoid of forests over A, with concatenation as the operation, and VA denotes
the monoid of contexts over A, with composition as the operation. A subset L
of HA is called a forest language over A. We denote its syntactic forest algebra
by (HL, VL), and its syntactic morphism by μL : AΔ → (HL, VL).

For the most part, our principal objects of study are not the forest alge-
bras themselves, but homomorphisms α : AΔ → (H,V ). It is important to bear
in mind that each such homomorphism is actually a pair of monoid homomor-
phisms, one mapping HA to H and the other mapping VA to V. It should usually
be clear from the context which of the two component homomorphisms we mean,
and thus we denote them both by α. The ‘freeness’ of AΔ is the fact that a homo-
morphism α into (H,V ) is completely determined by giving its value, in V, at
each a ∈ A.

A homomorphism α as above recognizes a language L ⊆ HA if there exists
X ⊆ H such that α−1(X) = L.

If α : AΔ → (H,V ) and β : AΔ → (H ′, V ′), are homomorphisms, we say
that β factors through α if for all s, s′ ∈ HA, α(s) = α(s′) implies β(s) = β(s′).
This is equivalent to the existence of a homomorphism ρ from the image of α
into (H ′, V ′) such that β = ρα. A homomorphism α recognizes L ⊆ HA if and
only if μL factors through α.( [BW08]).

In the course of the paper we will see several congruences defined on free forest
algebras. Such a congruence is determined by an equivalence relation ∼ on HA
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such that for any p ∈ VA, s ∼ s′ implies ps ∼ ps′. This gives a well-defined
action of VA on the set of ∼-classes of HA. We define an equivalence relation
(also denoted ∼) on VA by setting p ∼ p′ if for all s ∈ HA, ps ∼ p′s. The result is
a quotient forest algebra (HA/∼, VA/∼). In order to prove that an equivalence
relation ∼ on HA is a congruence, it is sufficient to verify that s ∼ s′ and t ∼ t′

implies s + t ∼ s′ + t′ and as ∼ as′ for all s, s′, t, t′ ∈ HA and a ∈ A.

2.2 Horizontally Idempotent and Commutative Algebras

We now introduce an important restriction. Throughout the rest of the paper,
we will assume that all of our finite forest algebras (H,V ) have H idempotent
and commutative; that is h + h′ = h′ + h and h + h = h for all h, h′ ∈ H. This
is a natural restriction when talking about classes of forest algebras arising in
temporal logics, which is the principal application motivating this study.

When H is horizontally idempotent and commutative, the sum of all its
elements is an absorbing element for the monoid. While an absorbing element
in a monoid is ordinarily written 0, since we use additive notation for H, its
identity is denoted 0, and accordingly we denote the absorbing element, which
is necessarily unique, by ∞.

We say that two forests s1, s2 ∈ HA are idempotent-and-commutative equiv-
alent if s can be transformed into t by a sequence of operations of the follow-
ing three types: (i) interchange the order of two adjacent subtrees (that is, if
s = p(t1+t2) for some context p and trees t1, t2, then we transform s to p(t2+t1));
(ii) replace a subtree t by two adjacent copies (that is, transform pt to p(t + t));
(iii) replace two identical adjacent subtrees by a single copy (transform p(t + t)
to pt). Since operations (ii) and (iii) are inverses of one another, and operation
(i) is its own inverse, this is indeed an equivalence relation.

We have the following obvious lemma:

Lemma 1. Let α : AΔ → (H,V ) be a homomorphism, where H is horizon-
tally idempotent and commutative. If s, t ∈ HA are idempotent-and-commutative
equivalent, then α(s) = α(t).

There is a smallest nontrivial idempotent and commutative forest algebra, U1 =
({0,∞}, {1, 0}). The horizontal and vertical monoids of U1 are isomorphic, but
we use different names for the elements because of the additive notation for the
operation in one of these monoids, and multiplicative notation in the other. We
have not completely specified how the vertical monoid acts on the horizontal
monoid—this is done by setting 0 · x = ∞ for x ∈ {0,∞}.

2.3 1-Definiteness

In Section 5 we will discuss in detail the notion of definiteness in forest algebras;
for this preliminary section, we will only need to consider a special case. A forest
algebra homomorphism α : AΔ → (H,V ) is said to be 1-definite if for s ∈ HA,
the value of α(s) depends only on the set of labels of the root nodes of s.
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We define an equivalence relation ∼1 on HA by setting s ∼1 s′ if and only if
the sets of labels of root nodes of s and s′ are equal. This defines a congruence
on AΔ. We denote the homomorphism from AΔ onto the quotient under ∼1 by
αA,1. It is easy to show that a homomorphism α : AΔ → (H,V ) is 1-definite if
and only if it factors through αA,1.

2.4 Wreath Products

We summarize the discussion of wreath products given in [BSW12]. The wreath
product of two forest algebras (H1, V1), (H2, V2) is (H1, V1) ◦ (H2, V2) = (H1 ×
H2, V1 × V H1

2 ), where the monoid structure of H1 × H2 is the ordinary direct
product, and the action is given by (v1, f)(h1, h2) = (v1h1, f(h1)h2), for all
h1 ∈ H1, h2 ∈ H2, v1 ∈ V1, and f : H1 → V2. It is straightforward to verify that
the resulting structure satisfies the axioms for a forest algebra. Note that if one
forgets about the monoid structure on H1 and H2, this is just the ordinary wreath
product of left transformation monoids. Because we use left actions rather than
the right actions that are traditional in the study of monoid decompositions,
we reverse the usual order of the factors. The projection maps π : (h1, h2) �→
h1, (v, f) �→ v, define a homomorphism from the wreath product onto the left-
hand factor.

2.5 Reachability

Let (H,V ) be a finite forest algebra. For h, h′ ∈ H we write h ≤ h′ if h = vh′

for some v ∈ V, and say that h is reachable from h′. This gives a preorder on H.
We set h ∼= h′ if both h ≤ h′ and h′ ≤ h. An equivalence class of ∼= is called a
reachability class. The preorder consequently results in a partial order on the set
of reachability classes of H. We always have h+h′ ≤ h, because h+h′ = (1+h′)h.
If h ∈ H and Γ is a reachability class of H then we write, for example, h ≥ Γ
to mean that Γ ≤ Γ ′, where Γ ′ is the class of h.

A reachability ideal in (H,V ) is a subset I of H such that h ∈ I and h′ ≤ h
implies h′ ∈ I. If we have a homomorphism α : AΔ → (H,V ) and a reachability
ideal I ⊆ H, we define an equivalence relation ∼I on HA by setting s ∼I s′

if α(s) = α(s′) /∈ I, or if α(s), α(s′) ∈ I. Easily s ∼I s′ implies ps ∼I ps′

for any p ∈ VA. We thus obtain a homomorphism onto the quotient algebra
αI : AΔ → (H/∼I , V/∼I) which factors through α. Note that I is, in particular,
a two-sided ideal in the monoid H, and H/∼I is identical to the usual quotient
monoid H/I = (H − I) ∪ {∞}. We will thus use the notation (H/I, V/I) for
the quotient algebra, instead of (H/∼I , V/∼I). If Γ ⊆ H is a reachability class,
then both IΓ = {h ∈ H : h �> Γ} and I≥Γ = {h ∈ H : h �≥ Γ} are reachability
ideals. We denote the associated quotients and projection homomorphisms by
(HΓ , VΓ ), αΓ , (H≥Γ , V≥Γ ), α≥Γ .

Given the restriction that H is idempotent and commutative, the absorb-
ing element ∞ is reachable from every element. The reachability class of ∞ is
accordingly the unique minimal class, which we denote Γmin. A reachability class
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Γ is subminimal if Γmin < Γ, but there is no class Λ with Γmin < Λ < Γ. The
following lemma will be used several times.

Lemma 2. Let α : AΔ → (H,V ), and let Γ1, . . . , Γr be the subminimal reacha-
bility classes of (H,V ). Then

αΓmin : AΔ → (HΓmin , VΓmin)

factors through the direct product
( r∏

j=1

α≥Γj

)
: AΔ →

r∏
j=1

(H≥Γj
, V≥Γj

).

Further each of the algebras (H≥Γj
, V≥Γj

) has a unique subminimal reachability
class.

We will also need the following lemma, which concerns the behavior of reach-
ability classes under homomorphisms.

Lemma 3. Let β : (H1, V1) → (H2, V2) be a homomorphism of finite forest
algebras. Let Λ ⊆ H1 be a reachability class. There is a reachability class Γ
of (H2, V2) such that β(Λ) ⊆ Γ. If Λ is a minimal class of (H1, V1) satisfying
β(Λ) ⊆ Γ, and β is onto, then β(Λ) = Γ. If, further, H2 is idempotent and
commutative, then there is only one such minimal class Λ.

3 Connections to Logic

For the definition of temporal logic and especially the temporal operators EF
and EX we refer to [BSW12] as our approach closely follows the one given there.

Intuitively, when we interpret formulas in trees, EFφ means ‘at some time in
the future φ’ and EXφ means ‘at some next time φ’. When we interpret such
formulas in forests, we are in a sense treating the forest as though it were a
tree with a phantom root node. Observe that if a ∈ A, we do not interpret the
formula a in forests at all. Thus a formula can have different interpretations
depending on whether we view it as a tree or a forest formula. For example, as a
forest formula EXa means ‘there is a root node labeled a’ while as a tree formula
it means ‘some child of the root is labeled a’. If φ is a forest formula, then we
denote by Lφ the set of all s ∈ HA such that s |= φ. Lφ is the language defined
by φ.

Example 4. Consider the following property of forests over {a, b}: There is a tree
component containing only as, and another tree component that contains at least
one b. Now consider the set L of forests s that either have this property, or in
which for some node x, the forest of strict descendants of x has the property.
The property itself is defined by the forest formula

ψ : EX(a ∧ ¬EFb) ∧ EX(b ∨ EFb)

and L is defined by ψ∨EFψ. In Example 9, we discuss the syntactic forest algebra
of L.
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3.1 Correspondence of Operators with Wreath Products

The principal result of this paper is the algebraic characterization of the forest
languages using the operators EF and EX, either separately or in combination.
It will require some algebraic preparation, in Sections 4, 5 and 6 before we can
give the precise statement of this theorem. The bridge between the logic and the
algebra is provided by the next two propositions.

Let φ be a tree formula. Then φ can be written as a disjunction
∨

a∈A(a∧ψa),
where each ψa is a forest formula. Let Ψ = {ψa : a ∈ A}. We’ll call Ψ the set of
forest formulas of φ. We say that a homomorphism β : AΔ → (H,V ) recognizes
Ψ if the value of β(s) determines exactly which formulas of Ψ are satisfied by
s. To construct such a homomorphism, we can take the direct product of the
syntactic algebras of Lψ for ψ ∈ Ψ, and set β to be the product of the syntactic
morphisms.

The following theorem, adapted from [BSW12], gives the connection between
the EF operator and wreath products with U1:

Proposition 5. (a) Suppose that φ is a tree formula, Ψ is the set of forest
formulas of φ, and that Ψ is recognized by α : AΔ → (H,V ). Then EFφ is
recognized by a homomorphism β : AΔ → (H,V ) ◦ U1, where πβ = α.
(b) Suppose that L ⊆ HA is recognized by a homomorphism β : AΔ → (H,V )◦U1.
Then L is a boolean combination of languages of the form EF(a ∧ φ), where Lφ

is recognized by πβ.

Here we prove an analogous result for the temporal operator EX.

Proposition 6. (a) Suppose that φ is a tree formula, Ψ is the set of forest
formulas of φ, and that Ψ is recognized by α : AΔ → (H,V ). Then EXφ is
recognized by a homomorphism α ⊗ β : AΔ → (H,V ) ◦ (H ′, V ′), where β :
(A × H)Δ → (H ′, V ′) is 1-definite.
(b) Suppose that L ⊆ HA is recognized by a homomorphism α ⊗ β : AΔ →
(H,V ) ◦ (H ′, V ′), Suppose further that every language recognized by α is defined
by a formula in some set Ψ of formulas. If β : (A×H)Δ → (H ′, V ′) is 1-definite,
then L is a boolean combination of languages of the form Lψ and EX(a∧ψ), where
ψ ∈ Ψ.

4 EF-algebras

Following [BSW12], we define:

Definition 7. A finite forest algebra (H,V ) is an EF-algebra if it satisfies the
identities h + h′ = h′ + h, vh + h = vh for all h, h′ ∈ H and v ∈ V. The
second identity with v = 1 gives h+h = h. Thus every EF-algebra is horizontally
idempotent and commutative.

The following result is proved in [BSW12], and is the key element in the
characterization of languages definable in one of the temporal logics we consider
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in Section 3. We will give a new proof, as it provides a good first illustration
of how we use the reachability ideal theory introduced above in decomposition
arguments.

Theorem 8. Let α : AΔ → (H,V ) be a homomorphism onto a forest algebra.
(H,V ) is an EF-algebra if and only if α factors through a homomorphism β :
AΔ → U1 ◦ · · · ◦ U1.

A classic result of Stiffler [Sti73] shows that a right transformation monoid
(Q,M) divides an iterated wreath product of copies of the transformation
monoid U1 = ({0, 1}, {0, 1}) if and only if M is R-trivial. In terms of trans-
formation monoids this means there is no pair of distinct states q �= q′ ∈ Q
such that qm = q′, q′m′ = q for some m,m′ ∈ M. Since forest algebras are left
transformation monoids, the analogous result would suggest that a forest alge-
bra (H,V ) divides an iterated wreath product of copies of U1 if and only if V is
L-trivial—that is, if and only if (H,V ) has trivial reachability classes. We have
already seen that this condition is necessary.

However, the following example shows that it is not sufficient.

Example 9. Figure 1 below defines the syntactic forest algebra of the language L
of Example 4. The nodes in the diagram represent the elements of the horizontal
monoid, and the arrows give the action of a generating set of letters A = {a, b}
on the horizontal monoid. The letter transitions, together with the conventions
about idempotence and commutativity, and the meaning of 0 and ∞, completely
determine the addition and the action. Since ∞ = a + b = a + ba �= ba = b, this
is not an EF-algebra, but the reachability classes are singletons.

0 a b a+b
a

a

b

a, b

b

a, b

Fig. 1. An algebra with trivial reachability classes that is not an EF-algebra

5 Definiteness

5.1 Definite Homomorphisms

Let k > 0. A finite semigroup S is said to be reverse k-definite if it satisfies the
identity x1x2 · · · xky = x1 · · · xk. The reason for the word ‘reverse’ is that defi-
niteness of semigroups was originally formulated in terms of right transformation
monoids, so the natural analogue of definiteness in the setting of forest algebras
corresponds to reverse definiteness in semigroups. Observe that the notions of
definiteness and reverse definiteness in semigroups do not really make sense for
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monoids, since only the trivial monoid can satisfy the underlying identities. For
much the same reason, we define definiteness for forest algebras not as a property
of the algebras themselves, but of homomorphisms α : AΔ → (H,V ).

The depth of a context p ∈ VA is defined to be the depth of its hole; so for
instance a context with its hole at a root node has depth 0. We say that the
homomorphism α is k-definite, where k > 0, if for every p ∈ VA of depth at
least k, and for all s, s′ ∈ HA, α(ps) = α(ps′). Easily, if α1, α2 are k-definite
homomorphisms, then so are α1 × α2 and ψα1, where ψ : (H,V ) → (H ′, V ′) is
a homomorphism of forest algebras.

A context is guarded if it has depth at least 1, that is, if the hole is not at
the root. We denote by V gu

A the subsemigroup of VA consisting of the guarded
contexts.

Lemma 10. Let k > 0. A homomorphism α : AΔ → (H,V ) is k-definite if and
only if α(V gu

A ) is a reverse k-definite semigroup.

Definition 11. An EX-homomorphism is a homomorphism that is k-definite for
some k ∈ N.

5.2 Free k-definite Algebra

We construct what we will call free k-definite algebra over an alphabet A. This is
a slight abuse of terminology, since as we noted above, it is the homomorphism
into this algebra, and not the algebra itself, that is k-definite. We do this by
recursively defining a sequence of congruences ∼k on AΔ. If k = 0, then ∼0 is
just the trivial congruence that identifies all forests. If k ≥ 0 and ∼k ha been
defined then we associate to each forest s = a1s1 + · · · arsr, where each ai ∈ A,
si ∈ HA, the set

T k+1
s = {(ai, [si]∼k

) : 1 ≤ i ≤ r},

where []∼k
denotes the ∼k-class of a forest. We then define s ∼k+1 s′ if and only

if T k+1
s = T k+1

s′ .

Proposition 12. Let k ≥ 0. Then ∼k+1 refines ∼k . ∼k is a congruence of
finite index on AΔ, with a horizontally idempotent and commutative quotient.

Intuitively, s ∼k s′ means that the forests s and s′ are identical at the k levels
closest to the root, up to idempotent and commutative equivalence. In fact, this
intuition provides an equivalent characterization of ∼k, which we give below. We
omit the simple proof.

Lemma 13. Let s, s′ ∈ HA and k > 0. Let s̄, s̄′, denote, respectively, the forests
obtained from s and s′ by removing all the nodes at depth k or more. Then
s ∼k s′ if and only if s̄ and s̄′ are idempotent-and-commutative equivalent.

Let us denote by αA,k the homomorphism from AΔ onto its quotient by ∼k .
In the case where k = 1, we will identify HA/∼1 with the monoid (P(A),∪),
and the horizontal component of αA,1 with the map that sends each forest to
the set of its root nodes.
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The following theorem gives both the precise sense in which this is the ‘free
k-definite forest algebra’, as well as the wreath product decomposition of k-
definite homomorphisms into 1-definite homomorphisms into a forest algebra
with horizontal monoid {0,∞}.

Theorem 14. Let α : AΔ → (H,V ) be a homomorphism onto a finite forest
algebra. Let k > 0. The following are equivalent.

(a) α is k-definite.
(b) α factors through αA,k.
(c) α factors through

β1 ⊗ · · · ⊗ βk : AΔ → (H1, V1) ◦ · · · ◦ (Hk, Vk),

where each βi : (A × H1 × · · · × Hi−1)Δ → (Hi, Vi) is 1-definite.
(d) α factors through an iterated wreath product of k 1-definite homomorphisms

into U2.

6 (EF,EX)-algebras

6.1 The Principal Result

Definition 15. An (EF,EX)-homomorphism α : AΔ → (H,V ) is one that fac-
tors through an iterated wreath product

β1 ⊗ · · · ⊗ βk,

where each βi either maps into U1 or is 1-definite. By Theorem 14 we can suppose
that each 1-definite βi maps into U2.

The principal result of this paper is an effective necessary and sufficient
condition for a homomorphism to be a (EF,EX)-homomorphism.

Definition 16. Suppose α : AΔ → (H,V ). Let s1, s2 ∈ HA, k > 0, and Γ ⊆ H
a reachability class for (H,V ). We say that s1, s2 are (α, k, Γ )-confused, and
write s1 ≡α,k,Γ s2, if

(s1)αΓ ∼k (s2)αΓ , α(s1), α(s2) ∈ Γ.

Observe that the equivalence relation ∼k in the first item is over the extended
alphabet A×HΓ . It is worth emphasizing what (s)αΓ is when α(s) ∈ Γ : We are
tagging each node of x of s with the value α(t) ∈ H if the tree rooted at x is
at and α(t) > Γ, but we are tagging the node by ∞–effectively leaving the node
untagged–if α(t) ∈ Γ. Since α(s) ∈ Γ, every node is of one of these two types.

Definition 17. A homomorphism α is nonconfusing if and only if there exists
k > 0 such that ≡α,k,Γ is equality for reachability classes Γ.
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In the full version of the paper [KS14] we show that it can be effectively deter-
mined if a forest algebra morphism is nonconfusing.

It follows from Proposition 12 that ≡α,k+1,Γ refines ≡α,k,Γ , so that if α is
nonconfusing with associated parameter k, then it is nonconfusing for all m > k.

Our main result is:

Theorem 18. Let α : AΔ → (H,V ) be a homomorphism into a finite forest
algebra. Then α is a (EF,EX) homomorphism if and only if it is nonconfusing.

The proof of Theorem 18 will be given in the next two subsections.

Example 19. Consider once again the algebra of Examples 4 and 9 and the asso-
ciated homomorphism α from {a, b}Δ. Since the algebra has trivial reachability
classes, α is nonconfusing for all k, so Theorem 18 implies that α is an (EF,EX)-
homomorphism. We will see in the course of the proof of the main theorem how
the wreath product decomposition is obtained.

Example 20. Consider again the forest algebra U2 = ({0,∞}, {1, c∞, c0}), and
the homomorphism α from {a, b, c}Δ onto U2 that maps a to 1, b to c0 and c to
c∞. There is a unique reachability class Γ, so for any forest s, sαΓ is identical to
s. Now observe that akb ∼k akc, but that these are mapped to different elements
under α. So by our main theorem, α is not an (EF,EX)-homomorphism.

6.2 Sufficiency of the Condition

We will use the ideal theory developed earlier to prove that every nonconfusing
homomorphism factors through a wreath product decomposition of the required
kind. The structure of our proof resembles the one given for Theorem 8. Once
again, we proceed by induction on |H|. The base of the induction is the trivial
case |H| = 1. Let us suppose that α : AΔ → (H,V ) is nonconfusing with
parameter k, that |H| > 1, and that every nonconfusing homomorphism into a
forest algebra with a smaller horizontal monoid factors through a wreath product
of the required kind.

Let Γ = Γmin. Suppose first that |Γ | > 1. We claim that α factors through

β = αΓ ⊗ αB,k : AΔ → (HΓ , VΓ ) ◦ BΔ/∼k

where B = A×HΓ . Since |HΓ | < |H| and αΓ is also nonconfusing, the induction
hypothesis gives the desired decomposition of α. To establish the claim, let s ∈
HA. Then

β(s) = (αΓ (s), [sαΓ ]∼k
).

If s /∈ Γ, then the value of the left-hand coordinate determines α(s). If s ∈ Γ, then
by the nonconfusion condition, the value of the right-hand coordinate determines
α(s). Thus α factors through β as required.

So let |Γ | = 1. Then Γ = {∞} and (HΓ , VΓ ) = (H,V ). Lemma 2 implies
that we can suppose (H,V ) has a single subminimal reachability class, because
each of the component homomorphisms in the direct product is nonconfusing,
and the direct product factors through the wreath product.
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Thus we have a unique minimal element ∞, and a unique subminimal ideal
Γ ′. We claim that α factors through

β = α1 ⊗ α2 ⊗ α3 : AΔ → (HΓ ′ , VΓ ′) ◦ BΔ/∼k ◦ U1,

where α1 = αΓ ′ and α2 = αB,k, where B = A × HΓ ′ , and α3 : (B × 2B)Δ → U1

will be defined below. To see how α3 should be defined, let us consider what this
homomorphism needs to tell us. If α(s) > Γ ′, then the first coordinate of β(s)
determines α(s). If α(s) ∈ Γ ′, then the first two components of β(s) determine
α(s), by nonconfusion. So we will use the third component to distinguish between
α(s) ∈ Γ ′ and α(s) = ∞. The value of the first component already determines
whether or not α(s) ∈ Γ ′ ∪ {∞}, so we really just need to be able to tell when
α(s) = ∞. There are several cases to consider, depending on whether or not
s contains a tree t such that α(t) = ∞. If not, then s = t1 + · · · + tr, where
α(ti) ≥ Γ ′ for all i. Observe that if this is the case, then the set of values
{α(t1), · · · , α(tr)} is determined by the second component {[tα1

1 ]∼k
, . . . , [tα1

r ]∼k
}

of β(s). If s contains a tree t such that α(t) = ∞, pick such a tree at maximal
depth. Then t = a(t1 + · · · + tr), where once again α(ti) ≥ Γ ′ for all i, and the
set of values {α(t1), · · · , α(tr)} is determined by the second component of β(s).
We now specify the value of α3(a, h,Q). As remarked above, Q determines a set
of values all in Γ ′ or strictly higher. Let hQ ∈ HA be the sum of these values. If
either hQ = ∞, or ahQ = ∞, set α3(a, h,Q) = 0. Otherwise, α3(a, h, q) = 1.

The third component of β(s) will be ∞ if and only if there is some subtree
a(t1 + · · · + tr) such that

α3(a, α1(t1 + · · · + tr), {[tα1
1 ]∼k

, . . . , [tα1
r ]∼k

}) = 0.

If we pick the subtree of maximal depth at which this occurs, then as argued
above, α(s) = ∞. The only other way we can have α(s) = ∞ is if there is no
such subtree, but s = t1 + · · · + tr where each α(ti) ≥ Γ ′ and the sum of these
values is ∞. In this case, the fact that no such subtree exists is determined by
the third coordinate of β(s) being 1, and the set of α(ti) ≥ Γ ′ is determined by
the second coordinate of β(s). So in all cases β(s) determines α(s).

6.3 Necessity of the Condition

To prove the converse, we have to show preservation of nonconfusion under
quotients and wreath products with the allowable factors. This is carried out
in the following three lemmas. Preservation under quotients (Lemma 21) is the
most difficult of the three to show.

Lemma 21. Let α : AΔ → (H1, V1), β : AΔ → (H2, V2), be homomorphisms
onto finite forest algebras such that β factors through α. If α is nonconfusing
then so is β.

Lemma 22. Suppose that α : AΔ → (H,V ) ◦ U1 is a homomorphism, and that
β = πα, where π is the projection morphism onto (H,V ), is nonconfusing. Then
α is nonconfusing.
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Lemma 23. Suppose that α = β ⊗ γ : AΔ → (H,V ) ◦ (H ′, V ′) is a homomor-
phism, that β is nonconfusing, and that γ : (A × H)Δ → (H ′, V ′) is 1-definite.
Then α is nonconfusing.

7 Results

Using the wreath product characterizations of EF-algebras, EX-homomorphisms,
and (EF,EX)-homomorphisms of the previous three sections, we get:

Theorem 24. Let A be a finite alphabet, and let L ⊆ HA.

(a) L is defined by an EF-formula if and only if (HL, VL) is an EF-algebra.
(b) L is defined by an EX-formula if and only if μL is an EX-homomorphism.
(c) L is defined by an EF + EX-formula if and only if

μL is an (EF,EX)-homomorphism.
(d) There are effective procedures for determining, given a finite tree automaton

recognizing L, whether L is definable by an EF-, EX-, or EF + EX-formula,
and for producing a defining formula in case one exists.
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Birkhäuser, Boston (1994)
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