A Chomsky-Schiitzenberger Theorem
for Weighted Automata with Storage

Luisa Herrmann and Heiko Vogler™)

Department of Computer Science,
Technische Universitat Dresden, D-01062 Dresden, Germany
{Luisa.Herrmann,Heiko.Vogler}@tu-dresden.de

Abstract. We enrich the concept of automata with storage by weights
taken from any unital valuation monoid. We prove a Chomsky-
Schiitzenberger theorem for the class of weighted languages recognizable
by such weighted automata with storage.

1 Introduction

The classical Chomsky-Schiitzenberger theorem [3, Prop. 2] (for short: CS the-
orem) states that each context-free language is the homomorphic image of the
intersection of a Dyck-language and a regular language. In [28] it was shown
under which conditions the homomorphism can be non-erasing. In [23] the CS
theorem was employed to specify a parser for context-free languages. The CS
theorem has been extended to string languages generated by tree-adjoining gram-
mars [32], multiple context-free languages [33], indexed languages [17]!, and yield
images of simple context-free tree languages [25].

Already in [3] the CS theorem for context-free languages was proved in a
special weight setting: each word in the language is associated with the number
of its derivations. In [29] the CS theorem was shown for algebraic (formal) power
series over commutative semirings. In [9] this result was generalized to algebraic
power series over unital valuation monoids, called quantitative context-free lan-
guages; (unital) valuation monoids allow to describe, e.g., average consumption
of energy. Also in [9] quantitative context-free languages were characterized by
weighted pushdown automata over unital valuation monoids. Recently, the CS
theorem has been proved for weighted multiple context-free languages over com-
plete commutative strong bimonoids [6].

In the classical CS theorem, the set Y of letters occurring in the Dyck-
language depends on the given context-free grammar or pushdown automaton.
An alternative is to code Y by a homomorphism g over a two-letter alphabet and
to obtain the following CS theorem [22, Thm. 10.4.3]: each context-free language
L can be represented in the form L = h(g~!(D2) N R) for some homomorphisms
h and g and a regular language R; D- denotes the Dyck-language over a two
letter alphabet. In the sequel we call this alternative the CS theorem.

1 'We are grateful to one of the reviewers for pointing out this reference to us.

© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 115-127, 2015.
DOI: 10.1007/978-3-319-23021-4_11

116 L. Herrmann and H. Vogler

In this paper we prove a CS theorem for the class of weighted languages recog-
nizable by weighted iterated pushdown automata over unital valuation monoids.
A weighted language? is a mapping from X* to some weight algebra. Intuitively,
an iterated pushdown is a pushdown in which each square contains a pushdown
in which each square contains a pushdown ... (and so on). The idea of iterated
pushdowns goes back to [21,26,27]. It was proved in [11, Thm. 6] that the classes
of languages accepted by iterated pushdown automata form a strict, infinite hier-
archy with increasing nesting of pushdowns. In [5] it was proved that n-iterated
pushdown automata characterize the n-th level of the OlI-string language hierar-
chy [4,13,31] which starts at its first three levels with the regular, context-free,
and indexed languages [1] (equivalently, OI-macro languages [16]).

We obtain the CS theorem for weighted iterated pushdown automata as
application of the even more general, main result of our paper: the CS theorem
for K-weighted automata with storage where K is an arbitrary unital valuation
monoid. An automaton with storage S [30,19,12]% is a one-way nondeterministic
finite-state automaton with an additional storage of type .S; a successful com-
putation starts with the initial state and an initial configuration of S; in each
transition the automaton can test the current storage configuration and apply
an instruction to it. For instance, pushdown automata, n-iterated pushdown
automata, stack automata [20], and nested stack automata [2] can be formu-
lated as automata with storage. For a number of examples of storages we refer

o [12] where these automata were called REG(S) r-acceptors. The concept of
automata with storage is quite flexible: for instance, we can also express M-
automata [24] where M is a (multiplicative) monoid, in a straightforward way
as such automata with storage (cf. Ex. 4).

We extend the concept of automata with storage to that of K-weighted
automata with storage where K is a unital valuation monoid; this extension
is done in the same way as pushdown automata have been extended in [9] to
weighted pushdown automata over unital valuation monoids. Then our main
result states the following (cf. Thm. 11). Let r: ¥* — K be recognizable by
some K-weighted automaton over storage type S. Then there are a regular lan-
guage R, a finite set {2 of pairs (each consisting of a predicate and an instruction),
a configuration ¢ of S, a letter-to-letter morphism g, and a (weighted) alphabetic
morphism A such that r = h(g=}(B(£2,¢)) N R) where B(£2,¢) is the set of all
{2-behaviours of c.

2 Preliminaries

Notations and Notions. The set of non-negative integers (including 0) is denoted
by N. Let n € N. Then [n] denotes the set {i € N |1 <4 < n}. Thus [0] = 0. Let
A and B be sets. The set of all subsets (finite subsets) of A is denoted by P(A)
(Psin(A), resp.). We denote the identity mapping on A by id4. Let f: A — B be
a mapping. We denote by im(f) the set {b € B |3a € A: f(a) = b}.

2 or, equivalently, formal power series

3 If we cite notions or definitions from [12], then we always refer to the version of 2014.

A Chomsky-Schiitzenberger Theorem for Weighted Automata with Storage 117

We fix a countably infinite set A and call its elements symbols. We call each
finite subset X' of A an alphabet. In the rest of this paper, we let X and A denote
alphabets unless specified otherwise.

Unital Valuation Monoids. The concept of valuation monoid was introduced
in [7,8] and extended in [9] to unital valuation monoid. A wunital valua-
tion monoid is a tuple (K,4+,val,0,1) such that (K,+,0) is a commuta-

tive monoid and val: K* — K is a mapping such that (i) val(a) = a for
each ¢ € K, (ii) val(ai,...,a,) = 0 whenever a; = 0 for some i € [n],
(iii) val(ay,...,a;-1,1,ai41,...,a,) = val(ai,...,a;—1,8i41,...,a,) for any

i € [n], and (iv) val(e) = 1.

A monoid (K,4+,0) is complete if it has an infinitary sum operation
>+ KT — K for each enumerable set I (for the axioms cf. [10]). We call a
unital valuation monoid (K, +,val,0,1) complete if (K, +,0) has this property.
We write), ; a; instead of) (a; | i € 1).

We refer the reader to [9, Ex. 1 and 2] for a number of examples of unital val-
uation monoids. For instance, each complete semiring (in particular, the Boolean
semiring B = ({0,1},V,A,0,1)) and each complete lattice is a complete unital
valuation monoid. In the rest of this paper, we let K denote an arbitrary unital
valuation monoid (K, 4+, val,0,1) unless specified otherwise.

Weighted Languages. A K-weighted language over X is a mapping of the form
r: X* — K. We denote the set of all such mappings by K{X*)). For every
r € K{X*)), we denote the set {w € X* | r(w) # 0} by supp(r).

A family (r; | i € I) of K-weighted languages r; € K{X*)) is locally finite if
for each w € X* the set I, = {i € I | r;(w) # 0} is finite. In this case or if K is
complete, we define Y, s; € K(X*) by (X;c; 8i)(w) = ;). si(w) for each
we X

Each L € B({X*)) determines the set supp(L) C X*. Vice versa, each set
L C ¥* determines the B-weighted language xr € B{X*)) with xp(w) = 1 if
and only if w € L. Thus, for every L C X*, we have supp(xz) = L; and for every
L € B{(X™*)) we have Xgupp(z) = L. In the sequel we will not distinguish between
these two points of view.

3 Weighted Automata with Storage

We take up the concept of automata with storage [30] and present it in the
style of [12] (cf. [14,15] for further investigations). Moreover, we add weights to
the transitions of the automaton where the weights are taken from some unital
valuation monoid.

Storage Types: We recall the definition of storage type from [12,30] with a slight
modification. A storage type S is a tuple (C, P, F, Cy) where C' is a set (configu-
rations), P is a set of total functions each having the type p: C' — {true, false}
(predicates), F is a set of partial functions each having the type f: C — C
(instructions), and Cy C C (initial configurations).

118 L. Herrmann and H. Vogler

Example 1. Let ¢ be an arbitrary but fixed symbol. The trivial storage type
is the storage type TRIV = ({c}, {Dtrue}, {fia}, {c}) where pirue(c) = true and
fid (C) = C. O

Next we recall the pushdown operator P from [12, Def. 5.1] and [14, Def. 3.28]:
if S is a storage type, then P(S) is a storage type of which the configurations
have the form of a pushdown; each cell contains a pushdown symbol and a
configuration of S. Formally, let I" be a fixed infinite set (pushdown symbols).
Also, let S = (C, P, F,Cp) be a storage type. The pushdown of S is the storage
type P(S) = (C', P, F',C{;) where

- C"'=(I'x C)" and C = {(70,c0) | 70 € I'.co € Co},
— P’ = {bottom} U {(top =) | v € I'} U {test(p) | p € P} such that for every

(0,¢) e I' x C and a € (I x C)* we have

bottom ((d,c)a) = true if and only if o« = &
(top = 7)((d, ¢)ar) = true if and only if v = §
test(p) ((0,c)a) = p(c)

— F' = {pop} U {stay(v) | v € '} U{push(y, f) | v € I, f € F} such that for
every (0,¢) € I' x C and a € (I" x C')* we have
pop((4, ¢)a) =a ifa#e
stay(7)((d,c)a) = (v,0)a
push(y,) (5, o) = (7. F(e))(5,) if f(c) is defined
and undefined in all other situations.
For each n > 0 we define P™(S) inductively as follows: P°(S) = S and P™(S) =
P(P""!(S)) for each n > 1.

Example 2. Intuitively, P(TRIV) corresponds to the usual pushdown storage
except that there is no empty pushdown. For n > 0, we abbreviate P"(TRIV)
by P™ and call it the n-iterated pushdown storage. a

Throughout this paper we let S denote an arbitrary storage type
(C, P, F,Cy) unless specified otherwise.

Automata with Storage: An (S, X)-automatonis a tuple A = (Q, X, co, g0, Q5,T)
where @ is a finite set (states), X is an alphabet (terminal symbols), co € Cy
(initial configuration), qo € Q (initial state), Q; C Q (final states), and T C
Qx (XU{e}) x PxQ x F is a finite set (transitions). T CQx X xPxQXxF,
then we call A e-free.

The computation relation of A is the binary relation on the set @ x X* x C of
A-configurations defined as follows. For every transition 7 = (¢, 2,p,¢’, f) in T
we define the binary relation -7 on the set of A-configurations: for every w € X*
and ¢ € C, we let (¢,zw,c) 7 (¢',w, f(c)) if p(c) is true and f(c¢) is defined.
The computation relation of A is the binary relation = J, ., 7. The language
recognized by A is the set L(A) = {w € Z* | (go,w, co) F* (¢y, ¢, ¢) for some ¢y €
Q fCE C }

A computation is a sequence § = 71 ...7, of transitions 7; (¢ € [n]) such
that there are A-configurations cy, ..., ¢, with ¢;_1 F™ ¢;. We abbreviate this

A Chomsky-Schiitzenberger Theorem for Weighted Automata with Storage 119

computation by co F? ¢,,. Let ¢ € Q, w € ¥*, and ¢ € C. A g-computation on w
and c is a computation 6 such that (g, w,c) F¥ (qy,e,¢’) for some g € Qy, ¢’ € C.
We denote the set of all g-computations on w and ¢ by © 4(q, w, ¢). Furthermore,
we denote the set of all gp-computations on w and ¢y by © 4(w). Thus we have
L(A) ={w € Z* [Oa(w) # 0} .

We say that A is ambiguous if there is a w € X* such that |©4(w)| > 2.
Otherwise A is unambiguous. A language L C X* is (S, X)-recognizable if there
is an (5, X)-automaton A with L(A) = L.

Example 3. (1) The TRIV-automata are (usual) finite-state automata, and P'-
automata are essentially pushdown automata. (2) For each n > 1, P"-automata
correspond to n-iterated pushdown automata of [26,27,11,5]. (3) Nested stack
automata [2] correspond to NS(TRIV)-automata where NS is an operator on
storage types (cf. [14, Def. 7.1]). In [14, Thm. 7.4] it was proved that, for every
S, the storage types P?(S) and NS(S) are equivalent (cf. [14, Def. 4.6] for the
definition of equivalence), which implies that the acceptance power of automata
using these storage types is the same (cf. [14, Thm. 4.18] for this implication).
O

Example 4. We indicate how to embed the concept of M-automata [24] where
(M, -, 1) is a multiplicative monoid, into the setting of automata with storage. For
this we define the storage type monoid M, denoted by MON(M), by (C, P, F, C))
where C' = M and Cy = {1}, P = {true?} U {1?} with true?(m) = true, and
1?7(m) = true if and only if m =1, F = {[m] | m € M} and [m]: M — M is
defined by m =m' - m.

For a given M-automaton A, we construct an equivalent MON(M)-
automaton B as follows. If (¢, z,q’,m) is a transition of A (with states ¢, ¢,
input symbol z, and m € M), then (g, x, true?, ¢’, [m]) is a transition of 5. More-
over, for each final state ¢ of A, the transition (g,¢,1?,qy,[1]) is in B where ¢
is the only final state of B. a

Weighted Automata with Storage: Next we define the weighted version of (S, X)-
automata. The line of our definitions follows the definition of weighted pushdown
automata in [9].

An (S, X)-automaton with weights in K is a tuple A = (Q, X, co, g0, Qf, T, wt)
where (Q, X, co, g0, Qf,T) is an (S, X)-automaton (underlying (S, X')-automaton)
and wt: T' — K (weight assignment). If the underlying (5, X')-automaton is e-
free, then we call A e-free. Let 6 = 7y ... 7, be a computation of A. The weight
of 0 is the element in K defined by wt(0) = val(wt(ry), ..., wt(r,)) .

An (S8,X K)-automaton is an (S, X)-automaton A with weights in K such
that (i) ©4(w) is finite for every w € X* or (ii) K is complete. In this case the
weighted language recognized by A is the K-weighted language |A|: X* — K
defined for every w € X by |A|(w) = 3 gpco , () WH(O) -

A weighted language r: X* — K is (S, X, K)-recognizable if there is an
(S, X, K)-automaton A such that r = || A|.

120 L. Herrmann and H. Vogler

Example 5. (1) Each (S, X B)-automaton A can be considered as an (S, X)-
automaton which recognizes supp(||.A]). (2) Apart from e-moves, (TRIV, X, K)-
automata are the same as weighted finite automata over X' and the valuation
monoid K [9]. (3) The (P!, ¥, K)-automata are essentially the same as weighted
pushdown automata over X' and K [9] where acceptance with empty pushdown
can be simulated in the usual way. Thus, for every r: X* — K we have: r is the
quantitative behaviour of a WPDA as defined in [9] if and only if 7 is (P', X, K)-
recognizable. a

For n > 0, a weighted n-iterated pushdown language over X and K is a
(P™, X, K)-recognizable weighted language.

4 Separating the Weights from an (S, ¥, K)-Automaton

In this section we will represent an (S, ¥, K)-recognizable weighted language as
the homomorphic image of an (5, A)-recognizable language.

We recall from [9] the concept of (weighted) alphabetic morphism. First, we
introduce monomes and alphabetic morphisms. A mapping r: X* — K is called
a monome if supp(r) is empty or a singleton. If supp(r) = {w}, then we also
write r(w).w instead of r. We let K[X U {e}] denote the set of all monomes with
support in X U {e}.

Let A be an alphabet and h: A — K[X U {e}] be a mapping. The alpha-
betic morphism induced by h is the mapping h': A* — K{(X*) such that
for every n > 0, 01,...,0, € A with h(5;) = a;.y; we have W/ (61...0,) =
val(ai,...,an).y1...yn . Note that h'(v) is a monome for every v € A*, and
W(e) = l.e. If L C A* such that the family (h'(v) | v € L) is locally finite
or if K is complete, we let h'(L) = > ., h'(v). In the sequel we will use the
following convention. If we write “alphabetic morphism h: A — K[X U {e}]”,
then we mean the alphabetic morphism induced by h.

We define a special case of alphabetic morphisms in which K = B. If for every
d € A the support of h(d) is {o} for some o € X, then we call b’ a letter-to-letter
morphism. Note that in this case the alphabetic morphism induced by h has the
property that for every v € A*, supp(h/(v)) contains at most one element and
if supp(h/(v)) = {w} for some w € X*, then the lengths of w and v are equal.

Theorem 6. For everyr € K{X*)) the following two statements are equivalent:

(1) ris (S, X, K)-recognizable.

(2) There are an alphabet A, an unambiguous e-free (S, A)-automaton A, and
an alphabetic morphism h: A — K[X U {e}] such that r = h(L(A)).

Proof. (1) = (2): This generalizes [9, Lm. 3] in a straightforward way. Let
B=(Q,X, co,q,Q¢,T,wt) bean (S, X, K)-automaton. We construct the (S, T')-
automaton A = (Q, T, ¢, g0, Qf,T") and the mapping h: T'— K[X U {e}] such
that, if 7 = (q,2,p,q¢', f) is in T, then (q,7,p,¢, f) is in T’ and we define
h(r) = wt(7).2. Obviously, A is unambiguous and e-free.

A Chomsky-Schiitzenberger Theorem for Weighted Automata with Storage 121

Let w € X* and 0 = 71...7, € Og(w). By definition of h, we have that
h(6) = val(wt(ry),...,wt(r,)).w. Hence wt(d) = (h(f))(w). Also, by defini-
tion of (S, ¥, K)-automata, the set Og(w) is finite if K is not complete. Thus
the family (h(0) | @ € L(A)) is locally finite if K is not complete. Then, for

* ()
every w € X%, we have |B|(w) = X pcouw) WHO) = Xpcos(w) (h(8))(w) =

ZeeL(A) (h(8))(w) = (EGGL(A) h(8))(w) = (h(L(A)))(w) where (x) holds
because for every 0 € L(A) with 6 ¢ Oz(w), we have (h(6))(w) = 0 and due to
the fact that > 57 4), og@u(w) 0 = 0- Thus [B| = h(L(A)).

(2) = (1): Let A = (Q, A, c0,q0,Qs,T) be an unambiguous e-free (S, A)-
automaton and h: A — K[¥ U {e}] an alphabetic morphism. Moreover, we
assume that the family (h(v) | v € L(A)) is locally finite if K is not complete.
We will construct an (S, X, K)-automaton B such that |B| = h(L(.A)).

Our construction employs a similar technique of coding the preimage of h
into the set of states as in [9, Lm. 4] in order to handle non-injectivity of h
appropriately. However, we have to modify the construction slightly, because the
straightforward generalization would require that S has an identity instruction
(needed in the first step of the computation), which in general we do not assume.
In our constructed automaton, the target state (and not, as in [9, Lm. 4], the
source state) of each transition encodes a preimage of the symbol which is read
by this transition.

Formally, =~ we construct the (S,X, K)-automaton B =
(Q, X, co,qp, @, T", wt) where @ = {gj} U A x Q with some element g
with ¢) ¢ AxQ, Q" = Ax Qy, and T” and wt are defined as follows. Let § € A
and h(d) = a.y.

— If (go,9,p,q, f) is in T, then (¢}, y,p, (9,9q), f) is in T”, and its weight is a.
- If (¢,9,p,¢, f) is in T, then ((¢',q),y,p,(8,¢'), f) is in T” for each ¢’ € A,

and its weight is a.

Let w € X*. First, let v € A* with h(v) = z.w for some z € K. We write
v=201...0, € A" with n > 0 and §; € A. Let h(d;) = a;.y; for every 1 <1i < n.
Thus h(v) =val(ai,...,an)Y1 ... yn and w = y; ...y, and z = val(aq, ..., a,).

Let 0 = 71 ...7, be a go-computation in © 4(v). Clearly, for each i € [n], the
second component of 7; is ;. Then we construct the gy-computation 8 = 71 ... 7},
in Op(y1 ...yn) inductively as follows:

= If 71 = (qo,01,p1,q1, f1), then we let 7] = (qq, y1,p1, (01, q1), f1)-
- If1 <i<nand 7=/ (q-1,0,pi, ¢, fi), then we let
7 = ((6i-1,9i-1), Y, i (6i, 4i), fi)-
Note that (h(v))(w) = val(as,...,a,) = val(wt(7]), ..., wt(7})) = wt(0).
Conversely, for every gj-computation 8" = 7{...7), in ©p(w) by definition
of T there are a uniquely determined v € A* and a uniquely determined go-
computation § = 7y ... 7, in O 4(v) such that 8" is the computation constructed
above. Hence, for every v € A* and w € X*, if h(v) = z.w for some z € K, then
O4(v) and Op(w) are in a one-to-one correspondence.
Thus, for every w € £*, we obtain (h(L(A)))(w) = 2 veL(A) (h(v))(w) =
> ver(a) (h(v))(w). Since A is unambiguous this is equal to
(h(v))(w)#0

122 L. Herrmann and H. Vogler

Y veL(A),0€6.4(v): WE(0'). Since there is a one-to-one correspondence between

(h(v))(w)#0
Oa(v) and Op(w), this is equal to > pcg,) Wt(#') = |B|(w). Thus
h(L(A)) = |B]. O

We could strengthen Theorem 6 by proving (2') = (1) where (2) is obtained
from (2) by dropping the e-freeness of A.

5 Separating the Storage from an (S, A)-Automaton

In this section we will characterize the language recognized by an e-free (S, A)-
automaton A as the image of the set of behaviours of the initial configuration of
A under a simple transducer mapping. Note that A need not be unambiguous.
Our proof follows closely the technique in the proof of [14, Thm. 3.26].

Let ¢g be the initial configuration of A4 and 6 a computation of A, i.e., § €
O 4(qo, w, cp) for some w. By dropping from 6 all references to states and to the
input, a sequence of pairs remains where each pair consists of a predicate and
an instruction. This sequence might be called a behaviour of ¢y. Formally, let {2
be a finite subset of P x F* ¢ € C, and v = (py, f1) ... (Pn, fn) € 2%. We say
that v is an £2-behaviour of ¢ if for every ¢ with ¢ € [n] we have (i) p;(¢) = true
and (ii) f;(c¢') is defined where ¢ = f;_1(... fi(c)...) (note that ¢/ = ¢ for i = 1).
We denote the set of all 2-behaviours of ¢ by B(£2, ¢). Note that each behaviour
of ¢ is a path in the approximation of ¢ according to [14, Def. 3.23].

An a-transducer [19] is a machine M = (Q, 2, A, §, g0, Q) where @, {2, and
A are alphabets (states, input/output symbols, resp.), qo € @ (initial state),
Q5 C Q (final states), and § is a finite subset of @ x £2* x @ x A*. We say that
M is a simple transducer (from 2 to A) if 6§ C Q x £2 x @ x A. The binary
relation Faq on @ x 2% x A* is defined as follows: let (g, ww',v) Faq (¢, w', v0") if
(¢, w,q',v") € §. The mapping induced by M, also denoted by M, is the mapping
M: 2F — P(A*) defined by M(w) = {v € A* | (qo,w,€) Fiq (¢,6,v),q € Qf}.
If M is a simple transducer, then M(w) is finite for every w. For every L C 2*
we define M(L) = J,c; M(v).

Our goal is to prove the following theorem.

Theorem 7. Let S = (C, P, F,Cy) be a storage type. Moreover, let L C A*.

Then the following are equivalent:

(1) L is recognizable by some e-free (S, A)-automaton.

(2) There are ¢ € C, a finite set 2 C P x F, and a simple transducer M from
2 to A such that L = M(B(£2,¢)).

We note that (1)=-(2) of Theorem 7 is similar to [19, Lm. 2.3] (after decomposing
the simple transducer M from (2 to A according to Theorem 9).

For the proof of this theorem, we define the concept of relatedness between
an e-free (59, A)-automaton A and a simple transducer M with the following
intention:

4 We recall that S = (C, P, F, Cy) is an arbitrary storage type.

A Chomsky-Schiitzenberger Theorem for Weighted Automata with Storage 123

A allows a computation

(qo,™1,p1,q1, f1)(q1, T2, P2, G2, f2) - - - (@n—1, Ty Prs @ f)
for some states ¢, ..., q,_1 if and only if

(qu (ph fl) cee (pna fn)vg) '_j\/l (qnvg’ Ly .. xn) .
That is, while reading a behaviour of the initial configuration of A, the simple
transducer M produces a string which is recognized by A. Formally, let A =
(Q,A4,¢,q0,Qf,T) be an e-free (S, A)-automaton and M = (@', 2, A, 4, g, Q})
be a simple transducer. Then A is related to M if
- Q:Q/7 q0:q67 Qf:Q/fa
- A=A and (2 is the set of all pairs (p, f) such that T contains a transition
of the form (q,z,p,q’, f) for some ¢,q’, and x, and
— forevery ¢, € Q,x € A, p € P,and f € F we have: (¢,z,p,q¢, f) € T if and
only if (¢, (p, f), ¢, x) € 0.

Lemma 8. Let A be an e-free (5, A)-automaton with initial configuration ¢
and let M be a simple transducer from 2 to A. If A is related to M, then
L(A) = M(B(£2,¢)).

Proof. Let A= (Q,A,¢,q,Q5,T) and M = (Q, 12, A,0,qo, Q). First we prove
that L(A) C M(B(£2,c¢)). Let v € L(A). Then v = x;...x,, for some n > 0 and
x; € A for every 1 < ¢ < n. Moreover, there is a go-computation 6 in © 4(v) with
0 = 11...Tn, such that 7; € T where 71 = (qo,x1,p1,q1, f1), for every 2 < i <mn
we have 7; = (gi—1, s, i) Gi» fi), and ¢, € Q. Since A is related to M, we have
(gi—1, (pi> fi)s @i, ;) € 6 for every 1 < i < n. Hence (qo, w,€) Fiyy (qn,&,21...2y)
with w = (p1, f1) ... (Pn, fn)- Since w € B(£2, ¢) is a behaviour ofc V=1T1...Tn,
and ¢, € Q, we obtain that v € M(B(£2,¢)).

Next we prove that M(B(£2,¢)) C L(A). Let v € M(B(£2,¢)) with v =
r1...T, for some n > 0 and z; € A for every 1 < i < n. Then there is a
behaviour w € B(§2, ¢) of ¢ such that v € M(w). Then there are (p;, f;) € 2 with
1 <i < n such that w = (p1, f1) ... (Pn, fn). Moreover, there are qo,...,q, € Q
such that (qo, (p1, f1),q1,21) € 9, for every 2 <i < n: (gi—1,(pi, fi): i, i) € 0,
and ¢, € Qy. Since A is related to M, we have 7, = (¢;—1, 2,0, ¢, fi) € T
Since w € B(f2,¢), qo is the initial state of A, and ¢, € Qf, we have that
T1...Tn € O4(v) and thus v € L(A). O

Proof (of Theorem 7). (1) = (2): Let L be recognizable by some e-free (S, A)-
automaton A = (Q, A, ¢, qo,Q¢,T). Let 2 be the set of all pairs (p, f) such that T
contains a transition of the form (¢, z,p, ¢, f) for some ¢,¢’, and x. We construct
the simple transducer M = (Q, 2, A, 0, qo, Q) by defining (g, (p, f),¢',x) € § if
and only if (¢,z,p,q', f) € T for every q,¢' € Q, x € A, and (p, f) € {2. Clearly,
A is related to M and thus, by Lemma 8, we have that L(A) = M(B(2,¢)).

(2) = (1): Let ¢ € C, 2 a finite subset of P x F, and M =
(Q,2,A,0,q0,Q¢) a simple transducer. First we reduce M to the simple trans-
ducer /\/l' (Q, 2, A6, qo, Qf) where (2’ is the set of all pairs (p, f) such that
(¢, (p, /), q',) 65forsomeq ¢ €Qandx e A Obviously, s CQ x 2" xQ x A
o (0 o) = M (B,

124 L. Herrmann and H. Vogler

Next we construct the e-free (S, A)-automaton A = (Q, A, ¢, q0,Qr,T) by
defining T = {(q,z,p, ¢, f) | (¢, (p, f),q’,z) € 6}. Since A is related to M’, we
have that L(A) = M'(B(£2',¢)) = M(B(£2,¢)) by Lemma 8. O

6 The Main Result and Its Applications

For the proof of our CS theorem for weighted automata with storage, we first
recall a result for simple transducers [18, proof of Thm. 2.1].

Theorem 9. Let 2 be an alphabet and L C 2% and let M: 2* — Pp,(A*) be
induced by a simple transducer M. Then there are an alphabet @, two letter-
to-letter morphisms hy: @ — B[] and hy: & — B[4], and a regular language
R C &* such that M(L) = ho(hy*(L) N R).

Next we show that a letter-to-letter morphism hg: @ — B[A] and an alpha-
betic morphism h: A — K[X U {e}] can be combined smoothly. We define
the alphabetic morphism (h o hg): @ — K[X U {e}] for every z € & by
(hohg)(xz) = h(d) if ha(x) = 1.9 for some 6 € A (recall that | supp(ha(z))| = 1).

Lemma 10. Let ho: & — B[A] be a letter-to-letter morphism and
h: A — K[X U{e}] an alphabetic morphism. Moreover, let H C &* be a lan-
guage. If (h(v) | v € ho(H)) is locally finite, then ((hohs)(w) | w € H) is locally
finite.

Proof. Let v € X*. By assumption, we have that {v € ho(H) | u € supp(h(v))}
is finite; let us denote this set by C,. Since hy is letter-to-letter, we have that
{y € H | v € ha(y)} is finite for each v € ho(H). Then we have: [{w € H |
u € supp((h o ha)(w)} = > co. Hy € H | v € ha(y)}|. Hence, {w € H | u €
supp((h o ha)(w)} is finite. O

Now we can prove the CS theorem for (S, Y, K)-automata (cf. Fig.1).

Theorem 11. Let S = (C, P, F,Cy) be a storage type, X an alphabet, and K a
ungtal valuation monoid. If r € K{(X*)) is (S, X, K)-recognizable, then there are
— an alphabet @ and a regular language R C @~
— a finite set 2 C P x F and a configuration c € C,
— a letter-to-letter morphism hy: ® — B[f2], and
— an alphabetic morphism h': & — K[X U {e}]
such that r = h'(hy*(B(£2,¢)) N R).

Proof. By Theorem 6 there are an alphabet A, an e-free (S, A)-automaton A,
and an alphabetic morphism h: A — K[XU{e}] such that r = h(L(.A)). Hence, if
K is not complete, then © 4(w) is finite for every w € X*, and (h(v) | v € L(A))
is locally finite. According to Theorem 7, there are ¢ € C, a finite set {2 C
P x F, and a simple transducer M from {2 to A such that L(A) = M(B(2,¢)).
Due to Theorem 9, there are an alphabet @, two letter-to-letter morphisms
hi: @ — B[2] and he: & — B[A], and a regular language R C &* such that

A Chomsky-Schiitzenberger Theorem for Weighted Automata with Storage 125
RC P
N\
* M *
B(2,c) C 2" —— A" D L(A)

In

re K{(X")

Fig.1. An illustration of the proof of Theorem 11

M(B(£2,¢)) = ho(hT (B(£2,¢))NR). Let us denote the language h; *(B(£2,¢))NR
by H. Thus L(A) = ho(H).

Since (h(v) | v € L(A)) is locally finite if K is not complete, we have by
Lemma 10 that also ((h o h2)(w) | w € H) is locally finite if K is not complete.
Thus r = (h o hy)(h; ' (B(£2,¢)) N R) and we can take b’ = (h o hy). O

Finally we instantiate the storage type S in Theorem 11 in several ways
and obtain the CS theorem for the corresponding class of (S, X', K)-recognizable
weighted languages: (1) S = P": K-weighted n-iterated pushdown languages.
(2) S = NS(TRIV) where NS is the nested stack operator defined in [14, Def.
7.1]: K-weighted nested stack automata (cf. Ex. 3). (3) S = SC(TRIV) where
SC is obtained from NS by forbidding instructions for creating and destructing
nested stacks: K-weighted stack automata (weighted version of stack automata
[20]). (4) S = MON(M) for some monoid M (cf. Ex. 4): K-weighted M-automata
(weighted version of M-automata [24]).

In future investigations we will compare formally the CS theorem for quan-
titative context-free languages over X and K [9, Thm. 2(1) < (2)] with our
Theorem 11 for (P!, X, K)-recognizable weighted languages.

References

1. Aho, A.V.: Indexed grammars — an extension of context-free grammars. J. ACM
15, 647671 (1968)

2. Aho, A.V.: Nested stack automata. JACM 16, 383—-406 (1969)

3. Chomsky, N., Schiitzenberger, M.P.: The algebraic theory of context-free languages.
In: Computer Programming and Formal Systems, pp. 118-161. North-Holland,
Amsterdam (1963)

4. Damm, W.: The I0- and Ol-hierarchies. Theoret. Comput. Sci. 20, 95-207 (1982)

5. Damm, W., Goerdt, A.: An automata-theoretical characterization of the OI-
hierarchy. Inform. Control 71, 1-32 (1986)

6. Denkinger, T.: A Chomsky-Schiitzenberger representation for weighted multiple
context-free languages. In: The 12th International Conference on Finite-State Meth-
ods and Natural Language Processing (FSMNLP 2015) (2015). (accepted for pub-
lication)

126

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

L. Herrmann and H. Vogler

. Droste, M., Meinecke, I.: Describing average- and longtime-behavior by weighted

MSO logics. In: Hlinény, P., Kucera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 537-548. Springer, Heidelberg (2010)

. Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation

monoids. Intern. J. of Found. of Comp. Science 22(8), 1829-1844 (2011)

. Droste, M., Vogler, H.: The Chomsky-Schiitzenberger theorem for quantitative

context-free languages. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol.
7907, pp. 203-214. Springer, Heidelberg (2013)

Eilenberg, S.: Automata, Languages, and Machines - Volume A. Pure and Applied
Mathematics, vol. 59. Academic Press (1974)

Engelfriet, J.: Iterated pushdown automata and complexity classes. In: Proc. of
STOCS 1983, pp. 365-373. ACM, New York (1983)

Engelfriet, J.: Context-free grammars with storage. Technical Report 86—11, Uni-
versity of Leiden (1986). see also: arXiv:1408.0683 [cs.FL] (2014)

Engelfriet, J., Schmidt, E.M.: IO and OLI J. Comput. System Sci. 15(3), 328-353
1977

EEngel)friet, J., Vogler, H.: Pushdown machines for the macro tree transducer. The-
oret. Comput. Sci. 42(3), 251-368 (1986)

Engelfriet, J., Vogler, H.: High level tree transducers and iterated pushdown tree
transducers. Acta Inform. 26, 131-192 (1988)

Fischer, M.J.: Grammars with macro-like productions. Ph.D. thesis, Harvard Uni-
versity, Massachusetts (1968)

Fratani, S., Voundy, E.M.: Dyck-based characterizations of indexed languages. pub-
lished on arXiv http://arxiv.org/abs/1409.6112 (March 13, 2015)

Ginsburg, S., Greibach, S.A.: Abstract families of languages. Memoirs of the Amer-
ican Math. Soc. 87, 1-32 (1969)

Ginsburg, S., Greibach, S.A.: Principal AFL. J. Comput. Syst. Sci. 4, 308-338
(1970)

Greibach, S.A.: Checking automata and one-way stack languages. J. Comput. Sys-
tem Sci. 3, 196-217 (1969)

Greibach, S.A.: Full AFLs and nested iterated substitution. Inform. Control 16,
7-35 (1970)

Harrison, M.A.: Introduction to Formal Language Theory, 1st edn. Addison-Wesley
Longman Publishing Co., Inc, Boston (1978)

Hulden, M.: Parsing CFGs and PCFGs with a Chomsky-Schiitzenberger represen-
tation. In: Vetulani, Z. (ed.) LTC 2009. LNCS, vol. 6562, pp. 151-160. Springer,
Heidelberg (2011)

Kambites, M.: Formal languages and groups as memory. arXiv:math/0601061v2
[math.GR] (October 19, 2007)

Kanazawa, M.: Multidimensional trees and a Chomsky-Schiitzenberger-Weir rep-
resentation theorem for simple context-free tree grammars. J. Logic Computation
(2014

Masl(zv, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet
Math. Dokl. 15, 1170-1174 (1974)

Maslov, A.N.: Multilevel stack automata. Probl. Inform. Transm. 12, 38-42 (1976)
Okhotin, A.: Non-erasing variants of the Chomsky—Schiitzenberger theorem. In:
Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121-129. Springer,
Heidelberg (2012)

Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer-Verlag (1978)

Scott, D.: Some definitional suggestions for automata theory. J. Comput. System
Sci. 1, 187-212 (1967)

http://arxiv.org/abs/1408.0683
http://arxiv.org/abs/http://arxiv.org/abs/1409.6112
http://arxiv.org/abs/math/0601061v2

A Chomsky-Schiitzenberger Theorem for Weighted Automata with Storage 127

31. Wand, M.: An algebraic formulation of the Chomsky hierarchy. In: Manes, E.G.
(ed.) Category Theory Applied to Computation and Control. LNCS, vol. 25, pp.
209-213. Springer, Heidelberg (1975)

32. Weir, D.J.: Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D.
thesis, University of Pennsylvania (1988)

33. Yoshinaka, R., Kaji, Y., Seki, H.: Chomsky-Schiitzenberger-type characterization
of multiple context-free languages. In: Dediu, A.-H., Fernau, H., Martin-Vide, C.
(eds.) LATA 2010. LNCS, vol. 6031, pp. 596-607. Springer, Heidelberg (2010)

	A Chomsky-Schützenberger Theorem for Weighted Automata with Storage
	1 Introduction
	2 Preliminaries
	3 Weighted Automata with Storage
	4 Separating the Weights from an (S,, K)-Automaton
	5 Separating the Storage from an (S,)-Automaton
	6 The Main Result and Its Applications

