A Chomsky-Sch¨utzenberger Theorem for Weighted Automata with Storage

Luisa Herrmann and Heiko Vogler^(\boxtimes)

Department of Computer Science, Technische Universität Dresden, D-01062 Dresden, Germany {Luisa.Herrmann,Heiko.Vogler}@tu-dresden.de

Abstract. We enrich the concept of automata with storage by weights taken from any unital valuation monoid. We prove a Chomsky-Schützenberger theorem for the class of weighted languages recognizable by such weighted automata with storage.

1 Introduction

The classical Chomsky-Schützenberger theorem [\[3,](#page-10-0) Prop. 2] (for short: CS theorem) states that each context-free language is the homomorphic image of the intersection of a Dyck-language and a regular language. In [\[28\]](#page-11-0) it was shown under which conditions the homomorphism can be non-erasing. In [\[23\]](#page-11-1) the CS theorem was employed to specify a parser for context-free languages. The CS theorem has been extended to string languages generated by tree-adjoining grammars $[32]$, multiple context-free languages $[33]$, indexed languages $[17]^1$ $[17]^1$ $[17]^1$, and yield images of simple context-free tree languages [\[25\]](#page-11-3).

Already in [\[3\]](#page-10-0) the CS theorem for context-free languages was proved in a special weight setting: each word in the language is associated with the number of its derivations. In [\[29\]](#page-11-4) the CS theorem was shown for algebraic (formal) power series over commutative semirings. In [\[9\]](#page-11-5) this result was generalized to algebraic power series over unital valuation monoids, called quantitative context-free languages; (unital) valuation monoids allow to describe, e.g., average consumption of energy. Also in [\[9\]](#page-11-5) quantitative context-free languages were characterized by weighted pushdown automata over unital valuation monoids. Recently, the CS theorem has been proved for weighted multiple context-free languages over complete commutative strong bimonoids [\[6\]](#page-10-1).

In the classical CS theorem, the set Y of letters occurring in the Dycklanguage depends on the given context-free grammar or pushdown automaton. An alternative is to code Y by a homomorphism q over a two-letter alphabet and to obtain the following CS theorem [\[22,](#page-11-6) Thm. 10.4.3]: each context-free language L can be represented in the form $L = h(g^{-1}(D_2) \cap R)$ for some homomorphisms h and g and a regular language R ; D_2 denotes the Dyck-language over a two letter alphabet. In the sequel we call this alternative the CS theorem.

 1 We are grateful to one of the reviewers for pointing out this reference to us.

⁻c Springer International Publishing Switzerland 2015

A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 115–127, 2015.

DOI: 10.1007/978-3-319-23021-4 11

In this paper we prove a CS theorem for the class of weighted languages recognizable by weighted iterated pushdown automata over unital valuation monoids. A weighted language^{[2](#page-1-0)} is a mapping from Σ^* to some weight algebra. Intuitively, an iterated pushdown is a pushdown in which each square contains a pushdown in which each square contains a pushdown ... (and so on). The idea of iterated pushdowns goes back to $[21,26,27]$ $[21,26,27]$ $[21,26,27]$. It was proved in $[11, Thm. 6]$ $[11, Thm. 6]$ that the classes of languages accepted by iterated pushdown automata form a strict, infinite hierarchy with increasing nesting of pushdowns. In $[5]$ it was proved that *n*-iterated pushdown automata characterize the n-th level of the OI-string language hierarchy [\[4,](#page-10-3)[13](#page-11-11)[,31\]](#page-12-2) which starts at its first three levels with the regular, context-free, and indexed languages [\[1\]](#page-10-4) (equivalently, OI-macro languages [\[16\]](#page-11-12)).

We obtain the CS theorem for weighted iterated pushdown automata as application of the even more general, main result of our paper: the CS theorem for K-weighted automata with storage where K is an arbitrary unital valuation monoid. An automaton with storage S [\[30,](#page-11-13)[19](#page-11-14)[,12\]](#page-11-15)^{[3](#page-1-1)} is a one-way nondeterministic
finite-state automaton with an additional storage of type S ; a successful comfinite-state automaton with an additional storage of type S ; a successful computation starts with the initial state and an initial configuration of S ; in each transition the automaton can test the current storage configuration and apply an instruction to it. For instance, pushdown automata, n-iterated pushdown automata, stack automata [\[20\]](#page-11-16), and nested stack automata [\[2\]](#page-10-5) can be formulated as automata with storage. For a number of examples of storages we refer to [\[12\]](#page-11-15) where these automata were called $REG(S)$ r-acceptors. The concept of automata with storage is quite flexible: for instance, we can also express Mautomata $[24]$ where M is a (multiplicative) monoid, in a straightforward way as such automata with storage (cf. Ex. [4\)](#page-4-0).

We extend the concept of automata with storage to that of K-weighted automata with storage where K is a unital valuation monoid; this extension is done in the same way as pushdown automata have been extended in [\[9\]](#page-11-5) to weighted pushdown automata over unital valuation monoids. Then our main result states the following (cf. Thm. [11\)](#page-9-0). Let $r: \Sigma^* \to K$ be recognizable by some K-weighted automaton over storage type S. Then there are a regular language R, a finite set Ω of pairs (each consisting of a predicate and an instruction), a configuration c of S , a letter-to-letter morphism g , and a (weighted) alphabetic morphism h such that $r = h(q^{-1}(B(\Omega, c)) \cap R)$ where $B(\Omega, c)$ is the set of all Ω -behaviours of c .

2 Preliminaries

Notations and Notions. The set of non-negative integers (including 0) is denoted by N. Let $n \in \mathbb{N}$. Then $[n]$ denotes the set $\{i \in \mathbb{N} \mid 1 \le i \le n\}$. Thus $[0] = \emptyset$. Let A and B be sets. The set of all subsets (finite subsets) of A is denoted by $\mathcal{P}(A)$ $(\mathcal{P}_{fin}(A), \text{resp.}).$ We denote the identity mapping on A by id_A . Let $f: A \to B$ be a mapping. We denote by $\text{im}(f)$ the set $\{b \in B \mid \exists a \in A : f(a) = b\}.$
² or, equivalently, formal power series

² or, equivalently, formal power series

 3 If we cite notions or definitions from [\[12\]](#page-11-15), then we always refer to the version of 2014.

We fix a countably infinite set Λ and call its elements symbols. We call each finite subset Σ of Λ an *alphabet. In the rest of this paper, we let* Σ *and* Δ *denote alphabets unless specified otherwise.*

Unital Valuation Monoids. The concept of valuation monoid was introduced in [\[7](#page-11-18)[,8\]](#page-11-19) and extended in [\[9\]](#page-11-5) to unital valuation monoid. A *unital valuation monoid* is a tuple $(K, +, val, 0, 1)$ such that $(K, +, 0)$ is a commutative monoid and val: $K^* \to K$ is a mapping such that (i) val(a) = a for each $a \in K$, (ii) val $(a_1, \ldots, a_n) = 0$ whenever $a_i = 0$ for some $i \in [n]$, (iii) val $(a_1, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_n) = \text{val}(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$ for any $i \in [n]$, and (iv) val $(\varepsilon) = 1$.

 $\sum_I: K^I \to K$ for each enumerable set I (for the axioms cf. [\[10\]](#page-11-20)). We call a
unital valuation monoid $(K + \text{ val } 0, 1)$ complete if $(K + 0)$ has this property A monoid $(K, +, 0)$ is *complete* if it has an infinitary sum operation unital valuation monoid $(K, +, val, 0, 1)$ complete if $(K, +, 0)$ has this property. We write $\sum_{i \in I} a_i$ instead of $\sum_{I} (a_i \mid i \in I)$.
We refer the reader to [9 Ex 1 and 2] form

We refer the reader to [\[9,](#page-11-5) Ex. 1 and 2] for a number of examples of unital valuation monoids. For instance, each complete semiring (in particular, the *Boolean semiring* $\mathbb{B} = (\{0,1\}, \vee, \wedge, 0, 1))$ and each complete lattice is a complete unital valuation monoid. *In the rest of this paper, we let* K *denote an arbitrary unital valuation monoid* $(K, +, val, 0, 1)$ *unless specified otherwise.*

Weighted Languages. A K-weighted language over Σ is a mapping of the form $r: \Sigma^* \to K$. We denote the set of all such mappings by $K \langle \Sigma^* \rangle$. For every $r \in K \langle \Sigma^* \rangle$ we denote the set $\{w \in \Sigma^* \mid r(w) \neq 0\}$ by supp (r) $r \in K \langle \langle \Sigma^* \rangle \rangle$, we denote the set $\{ w \in \Sigma^* \mid r(w) \neq 0 \}$ by supp(r).
A family $(r, \bot i \in I)$ of K-weighted languages $r \in K \langle \langle \Sigma^* \rangle \rangle$ is

A family $(r_i | i \in I)$ of K-weighted languages $r_i \in K \langle\!\langle \Sigma^* \rangle\!\rangle$ is *locally finite* if each $w \in \Sigma^*$ the set $I = \{i \in I | r_i(w) \neq 0\}$ is finite. In this case or if K is for each $w \in \Sigma^*$ the set $I_w = \{i \in I \mid r_i(w) \neq 0\}$ is finite. In this case or if K is complete, we define $\sum_{i\in I} s_i \in K \langle\!\langle \Sigma^* \rangle\!\rangle$ by $\left(\sum_{i\in I} s_i\right)(w) = \sum_{i\in I_w} s_i(w)$ for each $w \in \Sigma^*$ $w \in \Sigma^*$.

Each $L \in \mathbb{B}\langle\langle\Sigma^*\rangle\rangle$ determines the set supp $(L) \subseteq \Sigma^*$. Vice versa, each set Σ^* determines the R-weighted language $\chi_L \in \mathbb{B}\langle\langle\Sigma^*\rangle\rangle$ with $\chi_L(w) = 1$ if $L \subseteq \Sigma^*$ determines the B-weighted language $\chi_L \in \mathbb{B} \langle \langle \Sigma^* \rangle \rangle$ with $\chi_L(w) = 1$ if and only if $w \in L$. Thus for every $L \subseteq \Sigma^*$ we have supp $(\chi_L) = L$; and for every and only if $w \in L$. Thus, for every $L \subseteq \Sigma^*$, we have $supp(\chi_L) = L$; and for every $L \in \mathbb{B}\langle\langle \Sigma^*\rangle\rangle$ we have $\chi_{\text{supp}(L)} = L$. In the sequel we will not distinguish between these two points of view these two points of view.

3 Weighted Automata with Storage

We take up the concept of automata with storage [\[30\]](#page-11-13) and present it in the style of [\[12\]](#page-11-15) (cf. [\[14](#page-11-21)[,15\]](#page-11-22) for further investigations). Moreover, we add weights to the transitions of the automaton where the weights are taken from some unital valuation monoid.

Storage Types: We recall the definition of storage type from [\[12](#page-11-15)[,30\]](#page-11-13) with a slight modification. A *storage type* S is a tuple (C, P, F, C_0) where C is a set (*configurations*), P is a set of total functions each having the type $p: C \to \{true, false\}$ (*predicates*), F is a set of partial functions each having the type $f: C \to C$ (*instructions*), and $C_0 \subseteq C$ (*initial configurations*).

Example 1. Let c be an arbitrary but fixed symbol. The *trivial storage type* is the storage type TRIV = $({c}, {p}_{true}, {f}_{id}, {c})$ where $p_{true}(c) = true$ and $f_{id}(c) = c$. $f_{id}(c) = c.$

Next we recall the pushdown operator P from [\[12,](#page-11-15) Def. 5.1] and [\[14,](#page-11-21) Def. 3.28]: if S is a storage type, then $P(S)$ is a storage type of which the configurations have the form of a pushdown; each cell contains a pushdown symbol and a configuration of S. Formally, let Γ be a fixed infinite set (*pushdown symbols*). Also, let $S = (C, P, F, C_0)$ be a storage type. The *pushdown of* S is the storage type $P(S) = (C', P', F', C_0')$ where
 $-C' = (F \times C)^+$ and $C'_s = f(\infty)$

- $C' = (I \times C)^+$ and $C'_0 = \{(\gamma_0, c_0) \mid \gamma_0 \in \Gamma, c_0 \in C_0\},$

 $P' =$ {bottom}||{(top = γ)| $\gamma \in \Gamma$ }||{test(n)|n \in
- $-P' = \{ \text{bottom} \} \cup \{ (\text{top} = \gamma) | \gamma \in \Gamma \} \cup \{ \text{test}(p) | p \in P \}$ such that for every $(\delta, c) \in \Gamma \times C$ and $\alpha \in (\Gamma \times C)^*$ we have

bottom
$$
((\delta, c)\alpha)
$$
 = true if and only if $\alpha = \varepsilon$
\n $(\text{top} = \gamma)((\delta, c)\alpha) = \text{true}$ if and only if $\gamma = \delta$
\ntest $(p)((\delta, c)\alpha) = p(c)$

 $-F' = \{ \text{pop} \} \cup \{ \text{stay}(\gamma) \mid \gamma \in \Gamma \} \cup \{ \text{push}(\gamma, f) \mid \gamma \in \Gamma, f \in \mathbb{F} \}$ such that for every $(\delta, c) \in \Gamma \times C$ and $\alpha \in (\Gamma \times C)^*$ we have

$$
pop((\delta, c)\alpha) = \alpha \text{ if } \alpha \neq \varepsilon
$$

stay(γ)($(\delta, c)\alpha$) = (γ , c) α
push(γ , f)($(\delta, c)\alpha$) = (γ , $f(c)$)(δ , c) α if $f(c)$ is defined

and undefined in all other situations.

For each $n \geq 0$ we define $P^{n}(S)$ inductively as follows: $P^{0}(S) = S$ and $P^{n}(S) =$ $P(P^{n-1}(S))$ for each $n \geq 1$.

Example 2. Intuitively, P(TRIV) corresponds to the usual pushdown storage except that there is no empty pushdown. For $n \geq 0$, we abbreviate $P^n(\text{TRIV})$
by P^n and call it the *n-iterated pushdown storage*. by P^n and call it the *n*-iterated pushdown storage.

Throughout this paper we let S *denote an arbitrary storage type* (C, P, F, C_0) *unless specified otherwise.*

Automata with Storage: An (S, Σ) -*automaton* is a tuple $\mathcal{A} = (Q, \Sigma, c_0, q_0, Q_f, T)$ where Q is a finite set (*states*), Σ is an alphabet (*terminal symbols*), $c_0 \in C_0$ (*initial configuration*), $q_0 \in Q$ (*initial state*), $Q_f \subseteq Q$ (*final states*), and $T \subseteq$ $Q \times (\Sigma \cup \{\varepsilon\}) \times P \times Q \times F$ is a finite set (*transitions*). If $T \subseteq Q \times \Sigma \times P \times Q \times F$, then we call $A \varepsilon$ -free.

The computation relation of A is the binary relation on the set $Q \times \mathbb{Z}^* \times C$ of *A*-configurations defined as follows. For every transition $\tau = (q, x, p, q', f)$ in T
we define the binary relation \vdash^{τ} on the set of *A*-configurations; for every $w \in \Sigma^*$ we define the binary relation \vdash^{τ} on the set of A-configurations: for every $w \in \Sigma^*$ and $c \in C$, we let $(q, xw, c) \vdash^{\tau} (q', w, f(c))$ if $p(c)$ is true and $f(c)$ is defined.
The computation relation of A is the binary relation \models $\bot \vdash^{\tau}$. The language The *computation relation of* A is the binary relation $\vdash = \bigcup_{\tau \in T} \vdash^{\tau}$. The *language recognized by* A is the set $L(\mathcal{A}) = \{w \in \Sigma^* \mid (q_0, w, c_0) \vdash^* (q_f, \varepsilon, c) \text{ for some } q_f \in$ $Q_f, c \in C$.

A *computation* is a sequence $\theta = \tau_1 \dots \tau_n$ of transitions τ_i ($i \in [n]$) such that there are A-configurations c_0, \ldots, c_n with $c_{i-1} \vdash^{\tau_i} c_i$. We abbreviate this

computation by $c_0 \vdash^{\theta} c_n$. Let $q \in Q$, $w \in \Sigma^*$, and $c \in C$. A q-computation on w *and* c is a computation θ such that $(q, w, c) \vdash^{\theta} (q_f, \varepsilon, c')$ for some $q_f \in Q_f$, $c' \in C$.
We denote the set of all *a*-computations on *w* and *c* by $\Theta_A(q, w, c)$. Furthermore We denote the set of all q-computations on w and c by $\Theta_{\mathcal{A}}(q, w, c)$. Furthermore, we denote the set of all q_0 -computations on w and c_0 by $\Theta_{\mathcal{A}}(w)$. Thus we have $L(\mathcal{A}) = \{w \in \Sigma^* \mid \Theta_{\mathcal{A}}(w) \neq \emptyset\}$.
We say that \mathcal{A} is ambiguous if there is a $w \in \Sigma^*$ such that $|\Theta_{\mathcal{A}}(w)| \geq 2$.

We say that A is *ambiguous* if there is a $w \in \Sigma^*$ such that $|\Theta_{\mathcal{A}}(w)| \geq 2$.

Details a *unambiguous* A language $L \subset \Sigma^*$ is (S, Σ) -recognizable if there Otherwise A is *unambiguous*. A language $L \subseteq \Sigma^*$ is (S, Σ) -recognizable if there is an (S, Σ) -automaton A with $L(A) = L$ is an (S, Σ) -automaton A with $L(\mathcal{A}) = L$.

Example 3. (1) The TRIV-automata are (usual) finite-state automata, and P^1 automata are essentially pushdown automata. (2) For each $n > 1$, Pⁿ-automata correspond to *n*-iterated pushdown automata of $[26,27,11,5]$ $[26,27,11,5]$ $[26,27,11,5]$ $[26,27,11,5]$. (3) Nested stack automata [\[2\]](#page-10-5) correspond to NS(TRIV)-automata where NS is an operator on storage types (cf. [\[14,](#page-11-21) Def. 7.1]). In [\[14,](#page-11-21) Thm. 7.4] it was proved that, for every S, the storage types $P^2(S)$ and $NS(S)$ are equivalent (cf. [\[14,](#page-11-21) Def. 4.6] for the definition of equivalence), which implies that the acceptance power of automata using these storage types is the same (cf. [\[14,](#page-11-21) Thm. 4.18] for this implication). \Box

Example 4. We indicate how to embed the concept of M-automata [\[24\]](#page-11-17) where $(M, \cdot, 1)$ is a multiplicative monoid, into the setting of automata with storage. For this we define the storage type *monoid* M, denoted by $MON(M)$, by (C, P, F, C_0) where $C = M$ and $C_0 = \{1\}$, $P = \{\text{true}\}\cup\{1\}$ with true?(m) = true, and $1?(\text{m}) = \text{true}$ if and only if $\text{m} = 1$, $F = \{[\text{m}] \mid \text{m} \in M\}$ and $[\text{m}] : M \to M$ is defined by $[m](m') = m' \cdot m$.
For a given *M*-automa

For a given M-automaton A , we construct an equivalent MON (M) automaton B as follows. If (q, x, q', m) is a transition of A (with states $q, q',$
input symbol x and $m \in M$) then $(a, x, true, a'$ [m]) is a transition of B Moreinput symbol x, and $m \in M$), then $(q, x, true, q', [m])$ is a transition of B. More-
over for each final state a of A the transition $(a \in \mathbb{1} \, ? \, a \in \mathbb{1})$ is in B where as over, for each final state q of A, the transition $(q, \varepsilon, 1?, q_f, [1])$ is in B where q_f is the only final state of B. is the only final state of β .

Weighted Automata with Storage: Next we define the weighted version of (S, Σ) automata. The line of our definitions follows the definition of weighted pushdown automata in [\[9\]](#page-11-5).

An (S, Σ) -automaton with weights in K is a tuple $\mathcal{A} = (Q, \Sigma, c_0, q_0, Q_f, T, wt)$ where $(Q, \Sigma, c_0, q_0, Q_f, T)$ is an (S, Σ) -automaton (*underlying* (S, Σ) -*automaton*) and wt: $T \to K$ (*weight assignment*). If the underlying (S, Σ) -automaton is ε free, then we call $\mathcal{A} \varepsilon$ -free. Let $\theta = \tau_1 \dots \tau_n$ be a computation of \mathcal{A} . The *weight of* θ is the element in K defined by $wt(\theta) = val(wt(\tau_1), \ldots, wt(\tau_n))$.

An (S, Σ, K) -automaton is an (S, Σ) -automaton A with weights in K such that (i) $\Theta_{\mathcal{A}}(w)$ is finite for every $w \in \Sigma^*$ or (ii) K is complete. In this case the *weighted language recognized by* A is the K-weighted language $||A||: \Sigma^* \to K$ defined for every $w \in \Sigma^*$ by $||A||(w) = \sum_{\theta \in \Theta_A(w)} \text{wt}(\theta)$.
A weighted language $x \in \Sigma^*$ of K is (S, Σ, K) gas

A weighted language $r: \Sigma^* \to K$ is (S, Σ, K) -recognizable if there is an (S, Σ, K) -automaton A such that $r = ||A||$.

Example 5. (1) Each (S, Σ, \mathbb{B}) -automaton A can be considered as an (S, Σ) automaton which recognizes supp (\mathcal{A}) . (2) Apart from ε -moves, (TRIV, Σ , K)automata are the same as weighted finite automata over Σ and the valuation monoid K [\[9\]](#page-11-5). (3) The (P^1, Σ, K) -automata are essentially the same as weighted pushdown automata over Σ and K [\[9\]](#page-11-5) where acceptance with empty pushdown can be simulated in the usual way. Thus, for every $r: \Sigma^* \to K$ we have: r is the quantitative behaviour of a WPDA as defined in [\[9\]](#page-11-5) if and only if r is (P^1, Σ, K) -
recognizable. recognizable.

For $n > 0$, a *weighted* n-iterated pushdown language over Σ and K is a (P^n, Σ, K) -recognizable weighted language.

4 Separating the Weights from an (*S, Σ, K***)-Automaton**

In this section we will represent an (S, Σ, K) -recognizable weighted language as the homomorphic image of an (S, Δ) -recognizable language.

We recall from [\[9\]](#page-11-5) the concept of (weighted) alphabetic morphism. First, we introduce monomes and alphabetic morphisms. A mapping $r: \Sigma^* \to K$ is called a *monome* if supp(r) is empty or a singleton. If supp(r) = $\{w\}$, then we also write $r(w)$.w instead of r. We let $K[\Sigma \cup {\varepsilon}]$ denote the set of all monomes with support in $\Sigma \cup {\varepsilon}$.

Let Δ be an alphabet and $h: \Delta \to K[\Sigma \cup {\varepsilon}]$ be a mapping. The *alphabetic morphism induced by* h is the mapping $h' : \Delta^* \to K \langle \langle \Sigma^* \rangle \rangle$ such that for every $n > 0$, $\delta_1 = \Delta$ with $h(\delta_1) = a_1 \cdot u_2$ we have $h'(\delta_2 = \delta_1) =$ for every $n \geq 0$, $\delta_1, \ldots, \delta_n \in \Delta$ with $h(\delta_i) = a_i y_i$ we have $h'(\delta_1 \ldots \delta_n) =$
val($a_i \in \mathbb{R}^n$, $h(i)$) is a monome for every $v \in \Delta^*$ and $val(a_1,..., a_n).y_1...y_n$. Note that $h'(v)$ is a monome for every $v \in \Delta^*$, and $h'(s) = 1 \in \mathbb{F}$ $L \subset \Delta^*$ such that the family $(h'(v) \mid v \in L)$ is locally finite $h'(\varepsilon) = 1.\varepsilon$. If $L \subseteq \Delta^*$ such that the family $(h'(v) \mid v \in L)$ is locally finite
or if K is complete, we let $h'(L) - \sum_{k}(h'(v))$. In the sequel we will use the or if K is complete, we let $h'(L) = \sum_{v \in L} h'(v)$. In the sequel we will use the following convention. If we write "alphabetic morphism $h: A \to K[\Sigma \cup \{s\}]$ " following convention. If we write "alphabetic morphism $h: \Delta \to K[\Sigma \cup {\epsilon}]$ ", then we mean the alphabetic morphism induced by h .

We define a special case of alphabetic morphisms in which $K = \mathbb{B}$. If for every $\delta \in \Delta$ the support of $h(\delta)$ is $\{\sigma\}$ for some $\sigma \in \Sigma$, then we call h' a *letter-to-letter morphism*. Note that in this case the alphabetic morphism induced by h has the property that for every $v \in \Delta^*$, supp $(h'(v))$ contains at most one element and
if supp $(h'(v)) = \{w\}$ for some $w \in \Sigma^*$ then the lengths of w and y are equal if supp $(h'(v)) = \{w\}$ for some $w \in \Sigma^*$, then the lengths of w and v are equal.

Theorem 6. *For every* $r \in K \langle\langle \Sigma^* \rangle\rangle$ *the following two statements are equivalent:*
(1) r *is* (S, ∇ *K*) *reasonizable* (1) r *is* (S, Σ, K) -recognizable.

(2) There are an alphabet Δ*, an unambiguous* ε*-free* (S, Δ)*-automaton* ^A*, and an alphabetic morphism* $h: \Delta \to K[\Sigma \cup {\epsilon}]$ *such that* $r = h(L(\mathcal{A}))$ *.*

Proof. (1) \Rightarrow (2): This generalizes [\[9,](#page-11-5) Lm. 3] in a straightforward way. Let $\mathcal{B} = (Q, \Sigma, c_0, q_0, Q_f, T, \text{wt})$ be an (S, Σ, K) -automaton. We construct the (S, T) automaton $\mathcal{A} = (Q, T, c_0, q_0, Q_f, T')$ and the mapping $h: T \to K[\Sigma \cup \{\varepsilon\}]$ such that if $\tau = (a, r, a', f)$ is in T then (a, τ, a', f) is in T' and we define that, if $\tau = (q, x, p, q', f)$ is in T, then (q, τ, p, q', f) is in T' and we define $h(\tau) = \text{wt}(\tau) x$. Obviously A is unambiguous and selfree $h(\tau) = \text{wt}(\tau) \cdot x$. Obviously, A is unambiguous and ε -free.

Let $w \in \Sigma^*$ and $\theta = \tau_1 \dots \tau_n \in \Theta_B(w)$. By definition of h, we have that $h(\theta) = \text{val}(\text{wt}(\tau_1), \dots, \text{wt}(\tau_n)).$ W. Hence $\text{wt}(\theta) = (h(\theta))(w)$. Also, by definition of (S, Σ, K) -automata the set $\Theta_R(w)$ is finite if K is not complete. Thus tion of (S, Σ, K) -automata, the set $\Theta_B(w)$ is finite if K is not complete. Thus the family $(h(\theta) | \theta \in L(\mathcal{A}))$ is locally finite if K is not complete. Then, for every $w \in \Sigma^*$, we have $\|\mathcal{B}\|(w) = \sum_{\theta \in \Theta_B(w)} \text{wt}(\theta) = \sum_{\theta \in \Theta_B(w)} (h(\theta))(w) =$ $\sum_{\theta \in L(\mathcal{A})} (h(\theta))(w) = (\sum_{\theta \in L(\mathcal{A})} h(\theta))(w) = (h(L(\mathcal{A}))) (w)$ where (*) holds because for every $\theta \in L(\mathcal{A})$ with $\theta \notin \Theta_B(w)$, we have $(h(\theta))(w) = 0$ and due to the fact that $\sum_{x \in \mathcal{A}} f(x, y) = 0$ Thus $\mathbb{R} \| \theta = h(L(\mathcal{A}))$ the fact that $\sum_{\theta \in L(\mathcal{A})} \theta \notin \Theta_B(w)$ $0 = 0$. Thus $\|\mathcal{B}\| = h(L(\mathcal{A}))$.
(2) \Rightarrow (1): Let $A = (OA \land \theta, \mathcal{B})$ or T) be an unamb

 $(2) \Rightarrow (1)$: Let $\mathcal{A} = (Q, \Delta, c_0, q_0, Q_f, T)$ be an unambiguous ε -free (S, Δ) automaton and $h: \Delta \to K[\Sigma \cup {\varepsilon}]$ an alphabetic morphism. Moreover, we assume that the family $(h(v) | v \in L(\mathcal{A}))$ is locally finite if K is not complete. We will construct an (S, Σ, K) -automaton B such that $||\mathcal{B}|| = h(L(\mathcal{A}))$.

Our construction employs a similar technique of coding the preimage of h into the set of states as in $[9, \text{ Lm. } 4]$ $[9, \text{ Lm. } 4]$ in order to handle non-injectivity of h appropriately. However, we have to modify the construction slightly, because the straightforward generalization would require that S has an identity instruction (needed in the first step of the computation), which in general we do not assume. In our constructed automaton, the target state (and not, as in [\[9,](#page-11-5) Lm. 4], the source state) of each transition encodes a preimage of the symbol which is read by this transition.

Formally, we construct the (S, Σ, K) -automaton $\mathcal{B} =$
 $\sum c_0 a'_i O'_i T'$ wt) where $O' = \{a'_i\} + \lambda \times O$ with some element a'_i $(Q', \Sigma, c_0, q'_0, Q'_f, T', \text{wt})$ where $Q' = \{q'_0\} \cup \Delta \times Q$ with some element q'_0
with $q' \notin \Delta \times Q$ $Q' = \Delta \times Q$, and T' and wt are defined as follows. Let $\delta \in \Delta$ with $q'_0 \notin \Delta \times Q$, $Q'_f = \Delta \times Q_f$, and T' and wt are defined as follows. Let $\delta \in \Delta$
and $h(\delta) = g, u$ and $h(\delta) = a.y$.
= If (a_0, δ, n, a)

- If (q_0, δ, p, q, f) is in T, then $(q'_0, y, p, (\delta, q), f)$ is in T', and its weight is a.
– If (a, δ, p, q' , f) is in T then $((\delta', q), y, p, (\delta, q') , f)$ is in T' for each $\delta' \in$
- If (q, δ, p, q', f) is in T, then $((\delta', q), y, p, (\delta, q'), f)$ is in T' for each $\delta' \in \Delta$, and its weight is a.

Let $w \in \Sigma^*$. First, let $v \in \Delta^*$ with $h(v) = z.w$ for some $z \in K$. We write $v = \delta_1 \dots \delta_n \in \Delta^*$ with $n \geq 0$ and $\delta_i \in \Delta$. Let $h(\delta_i) = a_i \cdot y_i$ for every $1 \leq i \leq n$. Thus $h(v) = val(a_1, ..., a_n) \cdot y_1 ... y_n$ and $w = y_1 ... y_n$ and $z = val(a_1, ..., a_n)$.

Let $\theta = \tau_1 \dots \tau_n$ be a q_0 -computation in $\Theta_{\mathcal{A}}(v)$. Clearly, for each $i \in [n]$, the second component of τ_i is δ_i . Then we construct the q'_0 -computation $\theta' = \tau'_1 \dots \tau'_n$
in $\Theta_R(u_1, \ldots, u_n)$ inductively as follows: in $\Theta_{\mathcal{B}}(y_1 \ldots y_n)$ inductively as follows:

- If $\tau_1 = (q_0, \delta_1, p_1, q_1, f_1)$, then we let $\tau_1' = (q'_0, y_1, p_1, (\delta_1, q_1), f_1)$.

If $1 \le i \le n$ and $\tau_1 = (q_0, \delta_1, q_1, f_1)$ then we let

– If $1 < i \leq n$ and $τ_i = (q_{i-1}, δ_i, p_i, q_i, f_i)$, then we let

$$
\tau'_{i} = ((\delta_{i-1}, q_{i-1}), y_i, p_i, (\delta_i, q_i), f_i).
$$

 $\tau'_i = ((\delta_{i-1}, q_{i-1}), y_i, p_i, (\delta_i, q_i), f_i).$
Note that $(h(v))(w) = \text{val}(a_1, \ldots, a_n) = \text{val}(\text{wt}(\tau'_1), \ldots, \text{wt}(\tau'_n)) = \text{wt}(\theta').$
Conversely for every *d*'-computation $\theta' = \tau' - \tau'$ in $\Theta_{\mathcal{P}}(w)$ by def

Conversely, for every q'_0 -computation $\theta' = \tau'_1 \dots \tau'_n$ in $\Theta_B(w)$ by definition Γ' there are a uniquely determined $v \in \Lambda^*$ and a uniquely determined q_0 of T' there are a uniquely determined $v \in \Delta^*$ and a uniquely determined q_0 computation $\theta = \tau_1 \dots \tau_n$ in $\Theta_{\mathcal{A}}(v)$ such that θ' is the computation constructed above. Hence, for every $v \in \Delta^*$ and $w \in \Sigma^*$, if $h(v) = z.w$ for some $z \in K$, then $\Theta_A(v)$ and $\Theta_B(w)$ are in a one-to-one correspondence.

Thus, for every $w \in \Sigma^*$, we obtain $(h(L(\mathcal{A}))) (w) = \sum_{v \in L(\mathcal{A})} (h(v)) (w) =$
 $\sum_{\substack{v \in L(\mathcal{A}) : \\ (h(v)) (w) \neq 0}} (h(v)) (w)$. Since A is unambiguous this is equal to $\sum_{v \in L(A)} (h(v))$ $(h(v))(w)$. Since A is unambiguous this is equal to $\sum_{v\in L(\mathcal{A}),\theta\in\Theta_{\mathcal{A}}(v)} \text{wt}(\theta')$. Since there is a one-to-one correspondence between $(h(v))(w) \neq 0$ $\Theta_{\mathcal{A}}(v)$ and $\Theta_{\mathcal{B}}(w)$, this is equal to $\sum_{\theta' \in \Theta_{\mathcal{B}}(w)} \text{wt}(\theta')$ $\|\mathcal{B}\|(w)$. Thus $h(L(\mathcal{A})) = \|\mathcal{B}\|.$

We could strengthen Theorem [6](#page-5-0) by proving $(2') \Rightarrow (1)$ where $(2')$ is obtained from (2) by dropping the ε -freeness of A.

5 Separating the Storage from an (*S, Δ***)-Automaton**

In this section we will characterize the language recognized by an ε -free (S, Δ) automaton A as the image of the set of behaviours of the initial configuration of A under a simple transducer mapping. Note that A need not be unambiguous. Our proof follows closely the technique in the proof of [\[14,](#page-11-21) Thm. 3.26].

Let c_0 be the initial configuration of A and θ a computation of A, i.e., $\theta \in$ $\Theta_A(q_0, w, c_0)$ for some w. By dropping from θ all references to states and to the input, a sequence of pairs remains where each pair consists of a predicate and an instruction. This sequence might be called a behaviour of c_0 . Formally, let Ω be a finite subset of $P \times F$, $f \in C$, and $v = (p_1, f_1) \dots (p_n, f_n) \in \Omega^*$. We say that v is an Ω -behaviour of c if for every i with $i \in [n]$ we have (i) $p_i(c') = \text{true}$
and (ii) $f_i(c')$ is defined where $c' = f_{i-1}(f_i(c))$ (note that $c' = c$ for $i = 1$) and (ii) $f_i(c')$ is defined where $c' = f_{i-1}(\ldots f_1(c) \ldots)$ (note that $c' = c$ for $i = 1$).
We denote the set of all *O*-behaviours of c by B(*O*_c). Note that each behaviour We denote the set of all Ω -behaviours of c by $B(\Omega, c)$. Note that each behaviour of c is a path in the approximation of c according to $[14,$ Def. 3.23].

An *a-transducer* [\[19\]](#page-11-14) is a machine $\mathcal{M} = (Q, \Omega, \Delta, \delta, q_0, Q_f)$ where Q, Ω , and Δ are alphabets (*states*, *input/output symbols*, resp.), $q_0 \in Q$ (*initial state*), $Q_f \subseteq Q$ (*final states*), and δ is a finite subset of $Q \times Q^* \times Q \times \Delta^*$. We say that M is a *simple transducer (from* Ω *to* Δ) if $\delta \subseteq Q \times Q \times Q \times \Delta$. The binary relation $\vdash_{\mathcal{M}}$ on $Q \times \Omega^* \times \Delta^*$ is defined as follows: let $(q, ww', v) \vdash_{\mathcal{M}} (q', w', vv')$ if $(q, w, q', v') \in \delta$. The *mapping induced by* M, also denoted by M, is the mapping $M \colon O^* \to \mathcal{D}(\Lambda^*)$ defined by $M(w) - \{v \in \Lambda^* \mid (g_0, w, \varepsilon) \models^* \{u, (\varepsilon, v), a \in \Omega\} \}$ $\mathcal{M}: \Omega^* \to \mathcal{P}(\Delta^*)$ defined by $\mathcal{M}(w) = \{v \in \Delta^* \mid (q_0, w, \varepsilon) \vdash^*_{\mathcal{M}} (q, \varepsilon, v), q \in Q_f\}.$
If $\mathcal M$ is a simple transducer, then $\mathcal M(w)$ is finite for every w. For every $L \subset \Omega^*$ If M is a simple transducer, then $\mathcal{M}(w)$ is finite for every w. For every $L \subseteq \Omega^*$ we define $\mathcal{M}(L) = \bigcup_{v \in L} \mathcal{M}(v)$.
Our goal is to prove the foll

Our goal is to prove the following theorem.

Theorem 7. Let $S = (C, P, F, C_0)$ be a storage type. Moreover, let $L \subseteq \Delta^*$. *Then the following are equivalent:*

- *(1)* L *is recognizable by some* ε*-free* (S, Δ)*-automaton.*
- *(2)* There are $c \in C$, a finite set $\Omega \subseteq P \times F$, and a simple transducer M from Ω *to* Δ *such that* $L = \mathcal{M}(\text{B}(\Omega, c)).$

We note that $(1) \Rightarrow (2)$ of Theorem [7](#page-7-1) is similar to [\[19,](#page-11-14) Lm. 2.3] (after decomposing the simple transducer M from Ω to Δ according to Theorem [9\)](#page-9-1).

For the proof of this theorem, we define the concept of relatedness between an ε -free (S, Δ) -automaton A and a simple transducer M with the following intention:

⁴ We recall that $S = (C, P, F, C_0)$ is an arbitrary storage type.

A allows a computation

 $(q_0, x_1, p_1, q_1, f_1)(q_1, x_2, p_2, q_2, f_2)\ldots (q_{n-1}, x_n, p_n, q_n, f_n)$, for some states q_1, \ldots, q_{n-1} if and only if

 $(q_0, (p_1, f_1) \dots (p_n, f_n), \varepsilon) \vdash^*_{\mathcal{M}} (q_n, \varepsilon, x_1 \dots x_n)$.
while reading a behaviour of the initial configuration

That is, while reading a behaviour of the initial configuration of A , the simple transducer M produces a string which is recognized by A. Formally, let $A =$ $(Q, \Delta, c, q_0, Q_f, T)$ be an ε -free (S, Δ) -automaton and $\mathcal{M} = (Q', \Omega, \Delta', \delta, q'_0, Q'_f)$
be a simple transducer. Then A is related to M if be a simple transducer. Then A *is related to* M if

- $Q = Q', q_0 = q'_0, Q_f = Q'_f,$
 $Q = A A'$ and Q is the set of
- $-\Delta = \Delta'$ and Ω is the set of all pairs (p, f) such that T contains a transition of the form (q, x, p, q', f) for some $q, q',$ and x, and
for overv $q, q' \in Q, x \in A, y \in P$, and $f \in F$ we ha
- – for every $q, q' \in Q$, $x \in \Delta$, $p \in P$, and $f \in F$ we have: $(q, x, p, q', f) \in T$ if and only if $(q, (p, f), q', r) \in \delta$ only if $(q, (p, f), q', x) \in \delta$.

Lemma 8. Let A be an ε -free (S, Δ) -automaton with initial configuration c and let M be a simple transducer from Ω to Δ . If A is related to M, then $L(\mathcal{A}) = \mathcal{M}(\mathcal{B}(\Omega, c)).$

Proof. Let $\mathcal{A} = (Q, \Delta, c, q_0, Q_f, T)$ and $\mathcal{M} = (Q, \Omega, \Delta, \delta, q_0, Q_f)$. First we prove that $L(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{B}(\Omega, c))$. Let $v \in L(\mathcal{A})$. Then $v = x_1...x_n$ for some $n \geq 0$ and $x_i \in \Delta$ for every $1 \leq i \leq n$. Moreover, there is a q_0 -computation θ in $\Theta_{\mathcal{A}}(v)$ with $\theta = \tau_1...\tau_n$, such that $\tau_i \in T$ where $\tau_1 = (q_0, x_1, p_1, q_1, f_1)$, for every $2 \leq i \leq n$ we have $\tau_i = (q_{i-1}, x_i, p_i, q_i, f_i)$, and $q_n \in Q_f$. Since A is related to M, we have $(q_{i-1}, (p_i, f_i), q_i, x_i) \in \delta$ for every $1 \leq i \leq n$. Hence $(q_0, w, \varepsilon) \vdash_M^* (q_n, \varepsilon, x_1 \dots x_n)$
with $w = (p_i, f_i)$ $(n - f_i)$. Since $w \in B(O, c)$ is a behaviour of $c, v = x_i$. with $w = (p_1, f_1) \dots (p_n, f_n)$. Since $w \in B(\Omega, c)$ is a behaviour of $c, v = x_1 \dots x_n$, and $q_n \in Q_f$, we obtain that $v \in \mathcal{M}(\mathcal{B}(\Omega, c)).$

Next we prove that $\mathcal{M}(\mathcal{B}(\Omega,c)) \subseteq L(\mathcal{A})$. Let $v \in \mathcal{M}(\mathcal{B}(\Omega,c))$ with $v =$ $x_1...x_n$ for some $n \geq 0$ and $x_i \in \Delta$ for every $1 \leq i \leq n$. Then there is a behaviour $w \in B(\Omega, c)$ of c such that $v \in \mathcal{M}(w)$. Then there are $(p_i, f_i) \in \Omega$ with $1 \leq i \leq n$ such that $w = (p_1, f_1) \dots (p_n, f_n)$. Moreover, there are $q_0, \dots, q_n \in Q$ such that $(q_0,(p_1,f_1), q_1, x_1) \in \delta$, for every $2 \leq i \leq n$: $(q_{i-1}, (p_i,f_i), q_i, x_i) \in \delta$, and $q_n \in Q_f$. Since A is related to M, we have $\tau_i = (q_{i-1}, x_i, p_i, q_i, f_i) \in T$. Since $w \in B(\Omega, c)$, q_0 is the initial state of A, and $q_n \in Q_f$, we have that τ_1 , $\tau_n \in \Theta_A(v)$ and thus $v \in L(A)$ $\tau_1 \ldots \tau_n \in \Theta_{\mathcal{A}}(v)$ and thus $v \in L(\mathcal{A})$.

Proof (of Theorem [7\)](#page-7-1). (1) \Rightarrow (2): Let L be recognizable by some ε -free (S, Δ) automaton $\mathcal{A} = (Q, \Delta, c, q_0, Q_f, T)$. Let Ω be the set of all pairs (p, f) such that T contains a transition of the form (q, x, p, q', f) for some $q, q',$ and x. We construct
the simple transducer $M = (Q, Q, A, \delta, q_0, Q_0)$ by defining $(q, (p, f), q', r) \in \delta$ if the simple transducer $\mathcal{M} = (Q, \Omega, \Delta, \delta, q_0, Q_f)$ by defining $(q, (p, f), q', x) \in \delta$ if
and only if $(a, x, p, q', f) \in T$ for every $a, a' \in \Omega, x \in \Lambda$ and $(n, f) \in \Omega$ Clearly and only if $(q, x, p, q', f) \in T$ for every $q, q' \in Q$, $x \in \Delta$, and $(p, f) \in \Omega$. Clearly,
A is related to M and thus by Lemma 8, we have that $L(A) = M(R(Q, c))$ A is related to M and thus, by Lemma [8,](#page-8-0) we have that $L(\mathcal{A}) = \mathcal{M}(\mathcal{B}(\Omega, c)).$

(2) \Rightarrow (1): Let $c \in C$, Ω a finite subset of $P \times F$, and $\mathcal{M} =$ $(Q, \Omega, \Delta, \delta, q_0, Q_f)$ a simple transducer. First we reduce M to the simple transducer $\mathcal{M}' = (Q, \Omega', \Delta, \delta, q_0, Q_f)$ where Ω' is the set of all pairs (p, f) such that $(a, (p, f), a', r) \in \delta$ for some $a, a' \in \Omega$ and $x \in \Lambda$ Obviously $\delta \subset \Omega \times \Omega' \times \Omega \times \Lambda$ $(q, (p, f), q', x) \in \delta$ for some $q, q' \in Q$ and $x \in \Delta$. Obviously, $\delta \subseteq Q \times \Omega' \times Q \times \Delta$
and $M(\mathcal{B}(Q, c)) = M'(\mathcal{B}(Q', c))$ and $\mathcal{M}(\mathcal{B}(\Omega,c)) = \mathcal{M}'(\mathcal{B}(\Omega',c)).$

Next we construct the ε -free (S, Δ) -automaton $\mathcal{A} = (Q, \Delta, c, q_0, Q_f, T)$ by defining $T = \{(q, x, p, q', f) \mid (q, (p, f), q', x) \in \delta\}$. Since A is related to M', we have that $L(A) = M'(B(Q', c)) = M(B(Q, c))$ by Lemma 8 have that $L(\mathcal{A}) = \mathcal{M}'(\mathcal{B}(\Omega', c)) = \mathcal{M}(\mathcal{B}(\Omega, c))$ by Lemma [8.](#page-8-0)

6 The Main Result and Its Applications

For the proof of our CS theorem for weighted automata with storage, we first recall a result for simple transducers [\[18,](#page-11-23) proof of Thm. 2.1].

Theorem 9. Let Ω be an alphabet and $L \subseteq \Omega^*$ and let $\mathcal{M} \colon \Omega^* \to \mathcal{P}_{fin}(\Delta^*)$ be *induced by a simple transducer* ^M*. Then there are an alphabet* Φ*, two letterto-letter morphisms* $h_1: \Phi \to \mathbb{B}[\Omega]$ *and* $h_2: \Phi \to \mathbb{B}[\Delta]$ *, and a regular language* $R \subseteq \Phi^*$ such that $\mathcal{M}(L) = h_2(h_1^{-1}(L) \cap R)$.

Next we show that a letter-to-letter morphism $h_2: \Phi \to \mathbb{B}[\Delta]$ and an alphabetic morphism $h: \Delta \to K[\Sigma \cup {\{\varepsilon\}}]$ can be combined smoothly. We define the alphabetic morphism $(h \circ h_2): \Phi \to K[\Sigma \cup {\varepsilon}]$ for every $x \in \Phi$ by $(h \circ h_2)(x) = h(\delta)$ if $h_2(x) = 1.\delta$ for some $\delta \in \Delta$ (recall that $|\text{supp}(h_2(x))| = 1$).

Lemma 10. *Let* h_2 : $\Phi \rightarrow \mathbb{B}[\Delta]$ *be a letter-to-letter morphism and* $h: \Delta \to K[\Sigma \cup {\varepsilon}]$ *an alphabetic morphism. Moreover, let* $H \subseteq \Phi^*$ *be a language.* If $(h(v) | v \in h_2(H))$ *is locally finite, then* $((h \circ h_2)(w) | w \in H)$ *is locally finite.*

Proof. Let $u \in \Sigma^*$. By assumption, we have that $\{v \in h_2(H) \mid u \in \text{supp}(h(v))\}$ is finite; let us denote this set by C_u . Since h_2 is letter-to-letter, we have that $\{y \in H \mid v \in h_2(y)\}\$ is finite for each $v \in h_2(H)$. Then we have: $|\{w \in H\}|$ $u \in \text{supp}((h \circ h_2)(w)) = \sum_{v \in C_u} |\{y \in H \mid v \in h_2(y)\}|.$ Hence, $\{w \in H \mid u \in \text{supp}((h \circ h_2)(w))\}$ is finite $\supp((h \circ h_2)(w))$ is finite.

Now we can prove the CS theorem for (S, Σ, K) -automata (cf. Fig[.1\)](#page-10-6).

Theorem 11. Let $S = (C, P, F, C_0)$ be a storage type, Σ an alphabet, and K a *unital valuation monoid.* If $r \in K \langle \langle \Sigma^* \rangle \rangle$ is (S, Σ, K) -recognizable, then there are
 $\overline{S} = ar$ club about the and a require language $B \subseteq \Phi^*$ *– an alphabet* ^Φ *and a regular language* ^R [⊆] ^Φ[∗]*,*

- $a finite set Ω ⊆ P × F and a configuration c ∈ C,$
- *a letter-to-letter morphism* $h_1: \Phi \to \mathbb{B}[\Omega]$ *, and*
- *an alphabetic morphism* $h' : \Phi \to K[\Sigma \cup {\varepsilon}]$

such that $r = h'(h_1^{-1}(B(\Omega, c)) \cap R)$ *.*

Proof. By Theorem [6](#page-5-0) there are an alphabet Δ , an ε -free (S, Δ) -automaton \mathcal{A} , and an alphabetic morphism $h: \Delta \to K[\Sigma \cup {\varepsilon}]$ such that $r = h(L(\mathcal{A}))$. Hence, if K is not complete, then $\Theta_{\mathcal{A}}(w)$ is finite for every $w \in \Sigma^*$, and $(h(v) | v \in L(\mathcal{A}))$ is locally finite. According to Theorem [7,](#page-7-1) there are $c \in C$, a finite set $\Omega \subseteq$ $P \times F$, and a simple transducer M from Ω to Δ such that $L(\mathcal{A}) = \mathcal{M}(\mathcal{B}(\Omega, c)).$ Due to Theorem [9,](#page-9-1) there are an alphabet Φ , two letter-to-letter morphisms $h_1: \Phi \to \mathbb{B}[\Omega]$ and $h_2: \Phi \to \mathbb{B}[\Delta]$, and a regular language $R \subseteq \Phi^*$ such that

Fig. 1. An illustration of the proof of Theorem [11](#page-9-0)

 $\mathcal{M}(\text{B}(\Omega, c)) = h_2(h_1^{-1}(\text{B}(\Omega, c)) \cap R)$. Let us denote the language $h_1^{-1}(\text{B}(\Omega, c)) \cap R$
by H. Thus $L(A) = h_2(H)$ by H. Thus $L(\mathcal{A}) = h_2(H)$.

Since $(h(v) | v \in L(\mathcal{A}))$ is locally finite if K is not complete, we have by Lemma [10](#page-9-2) that also $((h \circ h_2)(w) \mid w \in H)$ is locally finite if K is not complete.
Thus $r = (h \circ h_2)(h_1^{-1}(B(\Omega, c)) \cap R)$ and we can take $h' = (h \circ h_2)$. Thus $r = (h \circ h_2)(h_1^{-1}(\mathcal{B}(\Omega, c)) \cap R)$ and we can take $h' = (h \circ h_2)$.

Finally we instantiate the storage type S in Theorem [11](#page-9-0) in several ways and obtain the CS theorem for the corresponding class of (S, Σ, K) -recognizable weighted languages: (1) $S = P^n$: K-weighted *n*-iterated pushdown languages. (2) $S = \text{NS}(\text{TRIV})$ where NS is the nested stack operator defined in [\[14,](#page-11-21) Def. 7.1. K-weighted nested stack automata (cf. Ex. [3\)](#page-4-1). (3) $S = SC(TRIV)$ where SC is obtained from NS by forbidding instructions for creating and destructing nested stacks: K-weighted stack automata (weighted version of stack automata [\[20\]](#page-11-16)). ([4\)](#page-4-0) $S = MON(M)$ for some monoid M (cf. Ex. 4): K-weighted M-automata (weighted version of M -automata [\[24\]](#page-11-17)).

In future investigations we will compare formally the CS theorem for quantitative context-free languages over Σ and K [\[9,](#page-11-5) Thm. 2(1) \Leftrightarrow (2)] with our Theorem [11](#page-9-0) for (P^1, Σ, K) -recognizable weighted languages.

References

- 1. Aho, A.V.: Indexed grammars an extension of context-free grammars. J. ACM **15**, 647–671 (1968)
- 2. Aho, A.V.: Nested stack automata. JACM **16**, 383–406 (1969)
- 3. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Computer Programming and Formal Systems, pp. 118–161. North-Holland, Amsterdam (1963)
- 4. Damm, W.: The IO- and OI-hierarchies. Theoret. Comput. Sci. **20**, 95–207 (1982)
- 5. Damm, W., Goerdt, A.: An automata-theoretical characterization of the OIhierarchy. Inform. Control **71**, 1–32 (1986)
- 6. Denkinger, T.: A Chomsky-Schützenberger representation for weighted multiple context-free languages. In: The 12th International Conference on Finite-State Methods and Natural Language Processing (FSMNLP 2015) (2015). (accepted for publication)
- 7. Droste, M., Meinecke, I.: Describing average- and longtime-behavior by weighted MSO logics. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 537–548. Springer, Heidelberg (2010)
- 8. Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation monoids. Intern. J. of Found. of Comp. Science $22(8)$, 1829–1844 (2011)
- monoids. Intern. J. of Found. of Comp. Science **22**(8), 1829–1844 (2011)
9. Droste, M., Vogler, H.: The Chomsky-Schützenberger theorem for quantitative context-free languages. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 203–214. Springer, Heidelberg (2013)
- 10. Eilenberg, S.: Automata, Languages, and Machines - Volume A. Pure and Applied Mathematics, vol. 59. Academic Press (1974)
- 11. Engelfriet, J.: Iterated pushdown automata and complexity classes. In: Proc. of STOCS 1983, pp. 365–373. ACM, New York (1983)
- 12. Engelfriet, J.: Context-free grammars with storage. Technical Report 86–11, University of Leiden (1986). see also: [arXiv:1408.0683](http://arxiv.org/abs/1408.0683) [cs.FL] (2014)
- 13. Engelfriet, J., Schmidt, E.M.: IO and OI.I. J. Comput. System Sci. **15**(3), 328–353 (1977)
- 14. Engelfriet, J., Vogler, H.: Pushdown machines for the macro tree transducer. The-
- oret. Comput. Sci. **42**(3), 251–368 (1986) 15. Engelfriet, J., Vogler, H.: High level tree transducers and iterated pushdown tree transducers. Acta Inform. **26**, 131–192 (1988)
- 16. Fischer, M.J.: Grammars with macro-like productions. Ph.D. thesis, Harvard University, Massachusetts (1968)
- 17. Fratani, S., Voundy, E.M.: Dyck-based characterizations of indexed languages. published on arXiv [http://arxiv.org/abs/1409.6112](http://arxiv.org/abs/http://arxiv.org/abs/1409.6112) (March 13, 2015)
- 18. Ginsburg, S., Greibach, S.A.: Abstract families of languages. Memoirs of the American Math. Soc. **87**, 1–32 (1969)
- 19. Ginsburg, S., Greibach, S.A.: Principal AFL. J. Comput. Syst. Sci. **4**, 308–338 (1970)
- 20. Greibach, S.A.: Checking automata and one-way stack languages. J. Comput. System Sci. **3**, 196–217 (1969)
- 21. Greibach, S.A.: Full AFLs and nested iterated substitution. Inform. Control **16**, 7–35 (1970)
- 22. Harrison, M.A.: Introduction to Formal Language Theory, 1st edn. Addison-Wesley Longman Publishing Co., Inc, Boston (1978)
- 23. Hulden, M.: Parsing CFGs and PCFGs with a Chomsky-Schützenberger representation. In: Vetulani, Z. (ed.) LTC 2009. LNCS, vol. 6562, pp. 151–160. Springer, Heidelberg (2011)
- 24. Kambites, M.: Formal languages and groups as memory. [arXiv:math/0601061v2](http://arxiv.org/abs/math/0601061v2) [math.GR] (October 19, 2007)
- 25. Kanazawa, M.: Multidimensional trees and a Chomsky-Schützenberger-Weir representation theorem for simple context-free tree grammars. J. Logic Computation (2014)
- 26. Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl. **15**, 1170–1174 (1974)
- 27. Maslov, A.N.: Multilevel stack automata. Probl. Inform. Transm. **12**, 38–42 (1976)
- 28. Okhotin, A.: Non-erasing variants of the Chomsky–Schützenberger theorem. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer, Heidelberg (2012)
- 29. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and Monographs in Computer Science. Springer-Verlag (1978)
- 30. Scott, D.: Some definitional suggestions for automata theory. J. Comput. System Sci. **1**, 187–212 (1967)
- 31. Wand, M.: An algebraic formulation of the Chomsky hierarchy. In: Manes, E.G. (ed.) Category Theory Applied to Computation and Control. LNCS, vol. 25, pp. 209–213. Springer, Heidelberg (1975)
- 32. Weir, D.J.: Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. thesis, University of Pennsylvania (1988)
- 33. Yoshinaka, R., Kaji, Y., Seki, H.: Chomsky-Schützenberger-type characterization of multiple context-free languages. In: Dediu, A.-H., Fernau, H., Mart´ın-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 596–607. Springer, Heidelberg (2010)