A Chomsky-Schützenberger Theorem for Weighted Automata with Storage

Luisa Herrmann and Heiko $\operatorname{Vogler}^{(\boxtimes)}$

Department of Computer Science, Technische Universität Dresden, D-01062 Dresden, Germany {Luisa.Herrmann,Heiko.Vogler}@tu-dresden.de

Abstract. We enrich the concept of automata with storage by weights taken from any unital valuation monoid. We prove a Chomsky-Schützenberger theorem for the class of weighted languages recognizable by such weighted automata with storage.

1 Introduction

The classical Chomsky-Schützenberger theorem [3, Prop. 2] (for short: CS theorem) states that each context-free language is the homomorphic image of the intersection of a Dyck-language and a regular language. In [28] it was shown under which conditions the homomorphism can be non-erasing. In [23] the CS theorem was employed to specify a parser for context-free languages. The CS theorem has been extended to string languages generated by tree-adjoining grammars [32], multiple context-free languages [33], indexed languages [17]¹, and yield images of simple context-free tree languages [25].

Already in [3] the CS theorem for context-free languages was proved in a special weight setting: each word in the language is associated with the number of its derivations. In [29] the CS theorem was shown for algebraic (formal) power series over commutative semirings. In [9] this result was generalized to algebraic power series over unital valuation monoids, called quantitative context-free languages; (unital) valuation monoids allow to describe, e.g., average consumption of energy. Also in [9] quantitative context-free languages were characterized by weighted pushdown automata over unital valuation monoids. Recently, the CS theorem has been proved for weighted multiple context-free languages over complete commutative strong bimonoids [6].

In the classical CS theorem, the set Y of letters occurring in the Dycklanguage depends on the given context-free grammar or pushdown automaton. An alternative is to code Y by a homomorphism g over a two-letter alphabet and to obtain the following CS theorem [22, Thm. 10.4.3]: each context-free language L can be represented in the form $L = h(g^{-1}(D_2) \cap R)$ for some homomorphisms h and g and a regular language R; D_2 denotes the Dyck-language over a two letter alphabet. In the sequel we call this alternative the CS theorem.

¹ We are grateful to one of the reviewers for pointing out this reference to us.

[©] Springer International Publishing Switzerland 2015

A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 115–127, 2015.

DOI: 10.1007/978-3-319-23021-4_11

In this paper we prove a CS theorem for the class of weighted languages recognizable by weighted iterated pushdown automata over unital valuation monoids. A weighted language² is a mapping from Σ^* to some weight algebra. Intuitively, an iterated pushdown is a pushdown in which each square contains a pushdown in which each square contains a pushdown ... (and so on). The idea of iterated pushdowns goes back to [21,26,27]. It was proved in [11, Thm. 6] that the classes of languages accepted by iterated pushdown automata form a strict, infinite hierarchy with increasing nesting of pushdowns. In [5] it was proved that *n*-iterated pushdown automata characterize the *n*-th level of the OI-string language hierarchy [4,13,31] which starts at its first three levels with the regular, context-free, and indexed languages [1] (equivalently, OI-macro languages [16]).

We obtain the CS theorem for weighted iterated pushdown automata as application of the even more general, main result of our paper: the CS theorem for K-weighted automata with storage where K is an arbitrary unital valuation monoid. An automaton with storage S [30,19,12]³ is a one-way nondeterministic finite-state automaton with an additional storage of type S; a successful computation starts with the initial state and an initial configuration of S; in each transition the automaton can test the current storage configuration and apply an instruction to it. For instance, pushdown automata, *n*-iterated pushdown automata, stack automata [20], and nested stack automata [2] can be formulated as automata with storage. For a number of examples of storages we refer to [12] where these automata were called REG(S) r-acceptors. The concept of automata with storage is quite flexible: for instance, we can also express Mautomata [24] where M is a (multiplicative) monoid, in a straightforward way as such automata with storage (cf. Ex. 4).

We extend the concept of automata with storage to that of K-weighted automata with storage where K is a unital valuation monoid; this extension is done in the same way as pushdown automata have been extended in [9] to weighted pushdown automata over unital valuation monoids. Then our main result states the following (cf. Thm. 11). Let $r: \Sigma^* \to K$ be recognizable by some K-weighted automaton over storage type S. Then there are a regular language R, a finite set Ω of pairs (each consisting of a predicate and an instruction), a configuration c of S, a letter-to-letter morphism g, and a (weighted) alphabetic morphism h such that $r = h(g^{-1}(B(\Omega, c)) \cap R)$ where $B(\Omega, c)$ is the set of all Ω -behaviours of c.

2 Preliminaries

Notations and Notions. The set of non-negative integers (including 0) is denoted by N. Let $n \in \mathbb{N}$. Then [n] denotes the set $\{i \in \mathbb{N} \mid 1 \leq i \leq n\}$. Thus $[0] = \emptyset$. Let A and B be sets. The set of all subsets (finite subsets) of A is denoted by $\mathcal{P}(A)$ $(\mathcal{P}_{\text{fin}}(A), \text{resp.})$. We denote the identity mapping on A by id_A . Let $f: A \to B$ be a mapping. We denote by im(f) the set $\{b \in B \mid \exists a \in A : f(a) = b\}$.

² or, equivalently, formal power series

 $^{^{3}}$ If we cite notions or definitions from [12], then we always refer to the version of 2014.

We fix a countably infinite set Λ and call its elements symbols. We call each finite subset Σ of Λ an alphabet. In the rest of this paper, we let Σ and Δ denote alphabets unless specified otherwise.

Unital Valuation Monoids. The concept of valuation monoid was introduced in [7,8] and extended in [9] to unital valuation monoid. A unital valuation monoid is a tuple $(K, +, \operatorname{val}, 0, 1)$ such that (K, +, 0) is a commutative monoid and val: $K^* \to K$ is a mapping such that (i) $\operatorname{val}(a) = a$ for each $a \in K$, (ii) $\operatorname{val}(a_1, \ldots, a_n) = 0$ whenever $a_i = 0$ for some $i \in [n]$, (iii) $\operatorname{val}(a_1, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_n) = \operatorname{val}(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n)$ for any $i \in [n]$, and (iv) $\operatorname{val}(\varepsilon) = 1$.

A monoid (K, +, 0) is *complete* if it has an infinitary sum operation $\sum_{I} : K^{I} \to K$ for each enumerable set I (for the axioms cf. [10]). We call a unital valuation monoid (K, +, val, 0, 1) complete if (K, +, 0) has this property. We write $\sum_{i \in I} a_i$ instead of $\sum_{I} (a_i \mid i \in I)$.

We refer the reader to [9, Ex. 1 and 2] for a number of examples of unital valuation monoids. For instance, each complete semiring (in particular, the *Boolean* semiring $\mathbb{B} = (\{0, 1\}, \lor, \land, 0, 1)$) and each complete lattice is a complete unital valuation monoid. In the rest of this paper, we let K denote an arbitrary unital valuation monoid (K, +, val, 0, 1) unless specified otherwise.

Weighted Languages. A K-weighted language over Σ is a mapping of the form $r: \Sigma^* \to K$. We denote the set of all such mappings by $K\langle\!\langle \Sigma^* \rangle\!\rangle$. For every $r \in K\langle\!\langle \Sigma^* \rangle\!\rangle$, we denote the set $\{w \in \Sigma^* \mid r(w) \neq 0\}$ by $\supp(r)$.

A family $(r_i \mid i \in I)$ of K-weighted languages $r_i \in K\langle\!\langle \Sigma^* \rangle\!\rangle$ is *locally finite* if for each $w \in \Sigma^*$ the set $I_w = \{i \in I \mid r_i(w) \neq 0\}$ is finite. In this case or if K is complete, we define $\sum_{i \in I} s_i \in K\langle\!\langle \Sigma^* \rangle\!\rangle$ by $(\sum_{i \in I} s_i)(w) = \sum_{i \in I_w} s_i(w)$ for each $w \in \Sigma^*$.

Each $L \in \mathbb{B}\langle\!\langle \Sigma^* \rangle\!\rangle$ determines the set $\operatorname{supp}(L) \subseteq \Sigma^*$. Vice versa, each set $L \subseteq \Sigma^*$ determines the \mathbb{B} -weighted language $\chi_L \in \mathbb{B}\langle\!\langle \Sigma^* \rangle\!\rangle$ with $\chi_L(w) = 1$ if and only if $w \in L$. Thus, for every $L \subseteq \Sigma^*$, we have $\operatorname{supp}(\chi_L) = L$; and for every $L \in \mathbb{B}\langle\!\langle \Sigma^* \rangle\!\rangle$ we have $\chi_{\operatorname{supp}(L)} = L$. In the sequel we will not distinguish between these two points of view.

3 Weighted Automata with Storage

We take up the concept of automata with storage [30] and present it in the style of [12] (cf. [14,15] for further investigations). Moreover, we add weights to the transitions of the automaton where the weights are taken from some unital valuation monoid.

Storage Types: We recall the definition of storage type from [12,30] with a slight modification. A storage type S is a tuple (C, P, F, C_0) where C is a set (configurations), P is a set of total functions each having the type $p: C \to \{\text{true}, \text{false}\}$ (predicates), F is a set of partial functions each having the type $f: C \to C$ (instructions), and $C_0 \subseteq C$ (initial configurations).

Example 1. Let c be an arbitrary but fixed symbol. The *trivial storage type* is the storage type $TRIV = (\{c\}, \{p_{true}\}, \{f_{id}\}, \{c\})$ where $p_{true}(c) = true$ and $f_{id}(c) = c$.

Next we recall the pushdown operator P from [12, Def. 5.1] and [14, Def. 3.28]: if S is a storage type, then P(S) is a storage type of which the configurations have the form of a pushdown; each cell contains a pushdown symbol and a configuration of S. Formally, let Γ be a fixed infinite set (*pushdown symbols*). Also, let $S = (C, P, F, C_0)$ be a storage type. The *pushdown of* S is the storage type $P(S) = (C', P', F', C'_0)$ where

- $C' = (\Gamma \times C)^+ \text{ and } C'_0 = \{ (\gamma_0, c_0) \mid \gamma_0 \in \Gamma, c_0 \in C_0 \},\$
- $\begin{array}{l} \ P' = \{ \text{bottom} \} \cup \{ (\text{top} = \gamma) \mid \gamma \in \Gamma \} \cup \{ \text{test}(p) \mid p \in P \} \text{ such that for every} \\ (\delta, c) \in \Gamma \times C \text{ and } \alpha \in (\Gamma \times C)^* \text{ we have} \end{array}$

bottom
$$((\delta, c)\alpha)$$
 = true if and only if $\alpha = \varepsilon$
(top = γ) $((\delta, c)\alpha)$ = true if and only if $\gamma = \delta$
test(p) $((\delta, c)\alpha)$ = p(c)

 $-F' = \{pop\} \cup \{stay(\gamma) \mid \gamma \in \Gamma\} \cup \{push(\gamma, f) \mid \gamma \in \Gamma, f \in F\} \text{ such that for every } (\delta, c) \in \Gamma \times C \text{ and } \alpha \in (\Gamma \times C)^* \text{ we have}$

$$pop((\delta, c)\alpha) = \alpha \text{ if } \alpha \neq \varepsilon$$

$$stay(\gamma)((\delta, c)\alpha) = (\gamma, c)\alpha$$

$$push(\gamma, f)((\delta, c)\alpha) = (\gamma, f(c))(\delta, c)\alpha \text{ if } f(c) \text{ is defined}$$

and undefined in all other situations.

For each $n \ge 0$ we define $P^n(S)$ inductively as follows: $P^0(S) = S$ and $P^n(S) = P(P^{n-1}(S))$ for each $n \ge 1$.

Example 2. Intuitively, P(TRIV) corresponds to the usual pushdown storage except that there is no empty pushdown. For $n \ge 0$, we abbreviate $P^n(TRIV)$ by P^n and call it the *n*-iterated pushdown storage.

Throughout this paper we let S denote an arbitrary storage type (C, P, F, C_0) unless specified otherwise.

Automata with Storage: An (S, Σ) -automaton is a tuple $\mathcal{A} = (Q, \Sigma, c_0, q_0, Q_f, T)$ where Q is a finite set (states), Σ is an alphabet (terminal symbols), $c_0 \in C_0$ (initial configuration), $q_0 \in Q$ (initial state), $Q_f \subseteq Q$ (final states), and $T \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times P \times Q \times F$ is a finite set (transitions). If $T \subseteq Q \times \Sigma \times P \times Q \times F$, then we call $\mathcal{A} \in$ -free.

The computation relation of \mathcal{A} is the binary relation on the set $Q \times \Sigma^* \times C$ of \mathcal{A} -configurations defined as follows. For every transition $\tau = (q, x, p, q', f)$ in T we define the binary relation \vdash^{τ} on the set of \mathcal{A} -configurations: for every $w \in \Sigma^*$ and $c \in C$, we let $(q, xw, c) \vdash^{\tau} (q', w, f(c))$ if p(c) is true and f(c) is defined. The computation relation of \mathcal{A} is the binary relation $\vdash = \bigcup_{\tau \in T} \vdash^{\tau}$. The language recognized by \mathcal{A} is the set $L(\mathcal{A}) = \{w \in \Sigma^* \mid (q_0, w, c_0) \vdash^* (q_f, \varepsilon, c) \text{ for some } q_f \in Q_f, c \in C\}$.

A computation is a sequence $\theta = \tau_1 \dots \tau_n$ of transitions τ_i $(i \in [n])$ such that there are \mathcal{A} -configurations c_0, \dots, c_n with $c_{i-1} \vdash^{\tau_i} c_i$. We abbreviate this

computation by $c_0 \vdash^{\theta} c_n$. Let $q \in Q$, $w \in \Sigma^*$, and $c \in C$. A *q*-computation on wand c is a computation θ such that $(q, w, c) \vdash^{\theta} (q_f, \varepsilon, c')$ for some $q_f \in Q_f, c' \in C$. We denote the set of all *q*-computations on w and c by $\Theta_{\mathcal{A}}(q, w, c)$. Furthermore, we denote the set of all q_0 -computations on w and c_0 by $\Theta_{\mathcal{A}}(w)$. Thus we have $L(\mathcal{A}) = \{w \in \Sigma^* \mid \Theta_{\mathcal{A}}(w) \neq \emptyset\}$.

We say that \mathcal{A} is *ambiguous* if there is a $w \in \Sigma^*$ such that $|\Theta_{\mathcal{A}}(w)| \geq 2$. Otherwise \mathcal{A} is *unambiguous*. A language $L \subseteq \Sigma^*$ is (S, Σ) -recognizable if there is an (S, Σ) -automaton \mathcal{A} with $L(\mathcal{A}) = L$.

Example 3. (1) The TRIV-automata are (usual) finite-state automata, and P¹automata are essentially pushdown automata. (2) For each $n \ge 1$, Pⁿ-automata correspond to *n*-iterated pushdown automata of [26,27,11,5]. (3) Nested stack automata [2] correspond to NS(TRIV)-automata where NS is an operator on storage types (cf. [14, Def. 7.1]). In [14, Thm. 7.4] it was proved that, for every S, the storage types P²(S) and NS(S) are equivalent (cf. [14, Def. 4.6] for the definition of equivalence), which implies that the acceptance power of automata using these storage types is the same (cf. [14, Thm. 4.18] for this implication).

Example 4. We indicate how to embed the concept of M-automata [24] where $(M, \cdot, 1)$ is a multiplicative monoid, into the setting of automata with storage. For this we define the storage type monoid M, denoted by MON(M), by (C, P, F, C_0) where C = M and $C_0 = \{1\}$, $P = \{\text{true}\} \cup \{1\}$ with true?(m) = true, and 1?(m) = true if and only if m = 1, $F = \{[m] \mid m \in M\}$ and $[m]: M \to M$ is defined by $[m](m') = m' \cdot m$.

For a given *M*-automaton \mathcal{A} , we construct an equivalent MON(*M*)automaton \mathcal{B} as follows. If (q, x, q', m) is a transition of \mathcal{A} (with states q, q', input symbol x, and $m \in M$), then (q, x, true?, q', [m]) is a transition of \mathcal{B} . Moreover, for each final state q of \mathcal{A} , the transition $(q, \varepsilon, 1?, q_f, [1])$ is in \mathcal{B} where q_f is the only final state of \mathcal{B} .

Weighted Automata with Storage: Next we define the weighted version of (S, Σ) -automata. The line of our definitions follows the definition of weighted pushdown automata in [9].

An (S, Σ) -automaton with weights in K is a tuple $\mathcal{A} = (Q, \Sigma, c_0, q_0, Q_f, T, wt)$ where $(Q, \Sigma, c_0, q_0, Q_f, T)$ is an (S, Σ) -automaton (underlying (S, Σ) -automaton) and wt: $T \to K$ (weight assignment). If the underlying (S, Σ) -automaton is ε free, then we call $\mathcal{A} \varepsilon$ -free. Let $\theta = \tau_1 \dots \tau_n$ be a computation of \mathcal{A} . The weight of θ is the element in K defined by wt $(\theta) = val(wt(\tau_1), \dots, wt(\tau_n))$.

An (S, Σ, K) -automaton is an (S, Σ) -automaton \mathcal{A} with weights in K such that (i) $\mathcal{O}_{\mathcal{A}}(w)$ is finite for every $w \in \Sigma^*$ or (ii) K is complete. In this case the weighted language recognized by \mathcal{A} is the K-weighted language $\|\mathcal{A}\| \colon \Sigma^* \to K$ defined for every $w \in \Sigma^*$ by $\|\mathcal{A}\|(w) = \sum_{\theta \in \mathcal{O}_{\mathcal{A}}(w)} \operatorname{wt}(\theta)$.

A weighted language $r: \Sigma^* \to K$ is (S, Σ, K) -recognizable if there is an (S, Σ, K) -automaton \mathcal{A} such that $r = ||\mathcal{A}||$.

Example 5. (1) Each (S, Σ, \mathbb{B}) -automaton \mathcal{A} can be considered as an (S, Σ) automaton which recognizes $\operatorname{supp}(||\mathcal{A}||)$. (2) Apart from ε -moves, (TRIV, Σ, K)automata are the same as weighted finite automata over Σ and the valuation monoid K [9]. (3) The (P¹, Σ, K)-automata are essentially the same as weighted pushdown automata over Σ and K [9] where acceptance with empty pushdown can be simulated in the usual way. Thus, for every $r: \Sigma^* \to K$ we have: r is the quantitative behaviour of a WPDA as defined in [9] if and only if r is (P¹, Σ, K)recognizable. \Box

For $n \geq 0$, a weighted n-iterated pushdown language over Σ and K is a $(\mathbf{P}^n, \Sigma, K)$ -recognizable weighted language.

4 Separating the Weights from an (S, Σ, K) -Automaton

In this section we will represent an (S, Σ, K) -recognizable weighted language as the homomorphic image of an (S, Δ) -recognizable language.

We recall from [9] the concept of (weighted) alphabetic morphism. First, we introduce monomes and alphabetic morphisms. A mapping $r: \Sigma^* \to K$ is called a *monome* if $\operatorname{supp}(r)$ is empty or a singleton. If $\operatorname{supp}(r) = \{w\}$, then we also write r(w).w instead of r. We let $K[\Sigma \cup \{\varepsilon\}]$ denote the set of all monomes with support in $\Sigma \cup \{\varepsilon\}$.

Let Δ be an alphabet and $h: \Delta \to K[\Sigma \cup \{\varepsilon\}]$ be a mapping. The *alphabetic morphism induced by* h is the mapping $h': \Delta^* \to K\langle\!\langle \Sigma^* \rangle\!\rangle$ such that for every $n \geq 0, \ \delta_1, \ldots, \delta_n \in \Delta$ with $h(\delta_i) = a_i.y_i$ we have $h'(\delta_1 \ldots \delta_n) = val(a_1, \ldots, a_n).y_1 \ldots y_n$. Note that h'(v) is a monome for every $v \in \Delta^*$, and $h'(\varepsilon) = 1.\varepsilon$. If $L \subseteq \Delta^*$ such that the family $(h'(v) \mid v \in L)$ is locally finite or if K is complete, we let $h'(L) = \sum_{v \in L} h'(v)$. In the sequel we will use the following convention. If we write "alphabetic morphism $h: \Delta \to K[\Sigma \cup \{\varepsilon\}]$ ", then we mean the alphabetic morphism induced by h.

We define a special case of alphabetic morphisms in which $K = \mathbb{B}$. If for every $\delta \in \Delta$ the support of $h(\delta)$ is $\{\sigma\}$ for some $\sigma \in \Sigma$, then we call h' a *letter-to-letter* morphism. Note that in this case the alphabetic morphism induced by h has the property that for every $v \in \Delta^*$, $\operatorname{supp}(h'(v))$ contains at most one element and if $\operatorname{supp}(h'(v)) = \{w\}$ for some $w \in \Sigma^*$, then the lengths of w and v are equal.

Theorem 6. For every $r \in K\langle\!\langle \Sigma^* \rangle\!\rangle$ the following two statements are equivalent: (1) r is (S, Σ, K) -recognizable.

(2) There are an alphabet Δ , an unambiguous ε -free (S, Δ) -automaton \mathcal{A} , and an alphabetic morphism $h: \Delta \to K[\Sigma \cup \{\varepsilon\}]$ such that $r = h(L(\mathcal{A}))$.

Proof. (1) \Rightarrow (2): This generalizes [9, Lm. 3] in a straightforward way. Let $\mathcal{B} = (Q, \Sigma, c_0, q_0, Q_f, T, \mathrm{wt})$ be an (S, Σ, K) -automaton. We construct the (S, T)-automaton $\mathcal{A} = (Q, T, c_0, q_0, Q_f, T')$ and the mapping $h: T \to K[\Sigma \cup \{\varepsilon\}]$ such that, if $\tau = (q, x, p, q', f)$ is in T, then (q, τ, p, q', f) is in T' and we define $h(\tau) = \mathrm{wt}(\tau).x$. Obviously, \mathcal{A} is unambiguous and ε -free.

Let $w \in \Sigma^*$ and $\theta = \tau_1 \dots \tau_n \in \Theta_{\mathcal{B}}(w)$. By definition of h, we have that $h(\theta) = \operatorname{val}(\operatorname{wt}(\tau_1), \dots, \operatorname{wt}(\tau_n)).w$. Hence $\operatorname{wt}(\theta) = (h(\theta))(w)$. Also, by definition of (S, Σ, K) -automata, the set $\Theta_{\mathcal{B}}(w)$ is finite if K is not complete. Thus the family $(h(\theta) \mid \theta \in L(\mathcal{A}))$ is locally finite if K is not complete. Then, for every $w \in \Sigma^*$, we have $\|\mathcal{B}\|(w) = \sum_{\theta \in \Theta_{\mathcal{B}}(w)} \operatorname{wt}(\theta) = \sum_{\theta \in \Theta_{\mathcal{B}}(w)} (h(\theta))(w) \stackrel{(*)}{=} \sum_{\theta \in L(\mathcal{A})} (h(\theta))(w) = (\sum_{\theta \in L(\mathcal{A})} h(\theta))(w) = (h(L(\mathcal{A})))(w)$ where (*) holds because for every $\theta \in L(\mathcal{A})$ with $\theta \notin \Theta_{\mathcal{B}}(w)$, we have $(h(\theta))(w) = 0$ and due to the fact that $\sum_{\theta \in L(\mathcal{A}), \ \theta \notin \Theta_{\mathcal{B}}(w)} 0 = 0$. Thus $\|\mathcal{B}\| = h(L(\mathcal{A}))$.

(2) \Rightarrow (1): Let $\mathcal{A} = (Q, \Delta, c_0, q_0, Q_f, T)$ be an unambiguous ε -free (S, Δ) automaton and $h: \Delta \to K[\Sigma \cup \{\varepsilon\}]$ an alphabetic morphism. Moreover, we assume that the family $(h(v) \mid v \in L(\mathcal{A}))$ is locally finite if K is not complete. We will construct an (S, Σ, K) -automaton \mathcal{B} such that $\|\mathcal{B}\| = h(L(\mathcal{A}))$.

Our construction employs a similar technique of coding the preimage of h into the set of states as in [9, Lm. 4] in order to handle non-injectivity of h appropriately. However, we have to modify the construction slightly, because the straightforward generalization would require that S has an identity instruction (needed in the first step of the computation), which in general we do not assume. In our constructed automaton, the target state (and not, as in [9, Lm. 4], the source state) of each transition encodes a preimage of the symbol which is read by this transition.

Formally, we construct the (S, Σ, K) -automaton $\mathcal{B} = (Q', \Sigma, c_0, q'_0, Q'_f, T', \text{wt})$ where $Q' = \{q'_0\} \cup \Delta \times Q$ with some element q'_0 with $q'_0 \notin \Delta \times Q$, $Q'_f = \Delta \times Q_f$, and T' and wt are defined as follows. Let $\delta \in \Delta$ and $h(\delta) = a.y$.

- If (q_0, δ, p, q, f) is in T, then $(q'_0, y, p, (\delta, q), f)$ is in T', and its weight is a.
- If (q, δ, p, q', f) is in T, then $((\delta', q), y, p, (\delta, q'), f)$ is in T' for each $\delta' \in \Delta$, and its weight is a.

Let $w \in \Sigma^*$. First, let $v \in \Delta^*$ with h(v) = z.w for some $z \in K$. We write $v = \delta_1 \dots \delta_n \in \Delta^*$ with $n \ge 0$ and $\delta_i \in \Delta$. Let $h(\delta_i) = a_i.y_i$ for every $1 \le i \le n$. Thus $h(v) = \operatorname{val}(a_1, \dots, a_n).y_1 \dots y_n$ and $w = y_1 \dots y_n$ and $z = \operatorname{val}(a_1, \dots, a_n)$.

Let $\theta = \tau_1 \dots \tau_n$ be a q_0 -computation in $\Theta_{\mathcal{A}}(v)$. Clearly, for each $i \in [n]$, the second component of τ_i is δ_i . Then we construct the q'_0 -computation $\theta' = \tau'_1 \dots \tau'_n$ in $\Theta_{\mathcal{B}}(y_1 \dots y_n)$ inductively as follows:

- If $\tau_1 = (q_0, \delta_1, p_1, q_1, f_1)$, then we let $\tau'_1 = (q'_0, y_1, p_1, (\delta_1, q_1), f_1)$.
- If $1 < i \le n$ and $\tau_i = (q_{i-1}, \delta_i, p_i, q_i, f_i)$, then we let
- $\tau'_i = ((\delta_{i-1}, q_{i-1}), y_i, p_i, (\delta_i, q_i), f_i).$

Note that $(h(v))(w) = \operatorname{val}(a_1, \ldots, a_n) = \operatorname{val}(\operatorname{wt}(\tau'_1), \ldots, \operatorname{wt}(\tau'_n)) = \operatorname{wt}(\theta').$

Conversely, for every q'_0 -computation $\theta' = \tau'_1 \dots \tau'_n$ in $\Theta_{\mathcal{B}}(w)$ by definition of T' there are a uniquely determined $v \in \Delta^*$ and a uniquely determined q_0 computation $\theta = \tau_1 \dots \tau_n$ in $\Theta_{\mathcal{A}}(v)$ such that θ' is the computation constructed above. Hence, for every $v \in \Delta^*$ and $w \in \Sigma^*$, if h(v) = z.w for some $z \in K$, then $\Theta_{\mathcal{A}}(v)$ and $\Theta_{\mathcal{B}}(w)$ are in a one-to-one correspondence.

Thus, for every $w \in \Sigma^*$, we obtain $(h(L(\mathcal{A})))(w) = \sum_{v \in L(\mathcal{A})} (h(v))(w) = \sum_{\substack{v \in L(\mathcal{A}): \\ (h(v))(w) \neq 0}} (h(v))(w)$. Since \mathcal{A} is unambiguous this is equal to

 $\sum_{\substack{(h(v))(w)\neq 0\\ \mathcal{O}_{\mathcal{A}}(v) \text{ and } \mathcal{O}_{\mathcal{B}}(w), \text{ this is equal to } \sum_{\theta'\in\mathcal{O}_{\mathcal{B}}(w)} \operatorname{wt}(\theta') = \|\mathcal{B}\|(w). \text{ Thus } h(L(\mathcal{A})) = \|\mathcal{B}\|.$

We could strengthen Theorem 6 by proving $(2') \Rightarrow (1)$ where (2') is obtained from (2) by dropping the ε -freeness of \mathcal{A} .

5 Separating the Storage from an (S, Δ) -Automaton

In this section we will characterize the language recognized by an ε -free (S, Δ) automaton \mathcal{A} as the image of the set of behaviours of the initial configuration of \mathcal{A} under a simple transducer mapping. Note that \mathcal{A} need not be unambiguous. Our proof follows closely the technique in the proof of [14, Thm. 3.26].

Let c_0 be the initial configuration of \mathcal{A} and θ a computation of \mathcal{A} , i.e., $\theta \in \mathcal{O}_{\mathcal{A}}(q_0, w, c_0)$ for some w. By dropping from θ all references to states and to the input, a sequence of pairs remains where each pair consists of a predicate and an instruction. This sequence might be called a behaviour of c_0 . Formally, let Ω be a finite subset of $P \times F$, $c \in C$, and $v = (p_1, f_1) \dots (p_n, f_n) \in \Omega^*$. We say that v is an Ω -behaviour of c if for every i with $i \in [n]$ we have (i) $p_i(c') =$ true and (ii) $f_i(c')$ is defined where $c' = f_{i-1}(\dots f_1(c) \dots)$ (note that c' = c for i = 1). We denote the set of all Ω -behaviours of c by $B(\Omega, c)$. Note that each behaviour of c is a path in the approximation of c according to [14, Def. 3.23].

An a-transducer [19] is a machine $\mathcal{M} = (Q, \Omega, \Delta, \delta, q_0, Q_f)$ where Q, Ω , and Δ are alphabets (states, input/output symbols, resp.), $q_0 \in Q$ (initial state), $Q_f \subseteq Q$ (final states), and δ is a finite subset of $Q \times \Omega^* \times Q \times \Delta^*$. We say that \mathcal{M} is a simple transducer (from Ω to Δ) if $\delta \subseteq Q \times \Omega \times Q \times \Delta$. The binary relation $\vdash_{\mathcal{M}}$ on $Q \times \Omega^* \times \Delta^*$ is defined as follows: let $(q, ww', v) \vdash_{\mathcal{M}} (q', w', vv')$ if $(q, w, q', v') \in \delta$. The mapping induced by \mathcal{M} , also denoted by \mathcal{M} , is the mapping $\mathcal{M}: \Omega^* \to \mathcal{P}(\Delta^*)$ defined by $\mathcal{M}(w) = \{v \in \Delta^* \mid (q_0, w, \varepsilon) \vdash_{\mathcal{M}}^* (q, \varepsilon, v), q \in Q_f\}$. If \mathcal{M} is a simple transducer, then $\mathcal{M}(w)$ is finite for every w. For every $L \subseteq \Omega^*$ we define $\mathcal{M}(L) = \bigcup_{v \in L} \mathcal{M}(v)$.

Our goal is to prove the following theorem.

Theorem 7. Let $S = (C, P, F, C_0)$ be a storage type. Moreover, let $L \subseteq \Delta^*$. Then the following are equivalent:

- (1) L is recognizable by some ε -free (S, Δ) -automaton.
- (2) There are $c \in C$, a finite set $\Omega \subseteq P \times F$, and a simple transducer \mathcal{M} from Ω to Δ such that $L = \mathcal{M}(\mathcal{B}(\Omega, c))$.

We note that $(1) \Rightarrow (2)$ of Theorem 7 is similar to [19, Lm. 2.3] (after decomposing the simple transducer \mathcal{M} from Ω to Δ according to Theorem 9).

For the proof of this theorem, we define the concept of relatedness between an ε -free (S, Δ) -automaton \mathcal{A} and a simple transducer \mathcal{M} with the following intention:

⁴ We recall that $S = (C, P, F, C_0)$ is an arbitrary storage type.

 \mathcal{A} allows a computation

 $(q_0, x_1, p_1, q_1, f_1)(q_1, x_2, p_2, q_2, f_2) \dots (q_{n-1}, x_n, p_n, q_n, f_n)$, for some states q_1, \dots, q_{n-1} if and only if

 $(q_0, (p_1, f_1) \dots (p_n, f_n), \varepsilon) \vdash^*_{\mathcal{M}} (q_n, \varepsilon, x_1 \dots x_n)$.

That is, while reading a behaviour of the initial configuration of \mathcal{A} , the simple transducer \mathcal{M} produces a string which is recognized by \mathcal{A} . Formally, let $\mathcal{A} = (Q, \Delta, c, q_0, Q_f, T)$ be an ε -free (S, Δ) -automaton and $\mathcal{M} = (Q', \Omega, \Delta', \delta, q'_0, Q'_f)$ be a simple transducer. Then \mathcal{A} is related to \mathcal{M} if

- $Q = Q', q_0 = q'_0, Q_f = Q'_f,$
- $-\Delta = \Delta'$ and Ω is the set of all pairs (p, f) such that T contains a transition of the form (q, x, p, q', f) for some q, q', and x, and
- for every $q, q' \in Q, x \in \Delta, p \in P$, and $f \in F$ we have: $(q, x, p, q', f) \in T$ if and only if $(q, (p, f), q', x) \in \delta$.

Lemma 8. Let \mathcal{A} be an ε -free (S, Δ) -automaton with initial configuration c and let \mathcal{M} be a simple transducer from Ω to Δ . If \mathcal{A} is related to \mathcal{M} , then $L(\mathcal{A}) = \mathcal{M}(\mathcal{B}(\Omega, c))$.

Proof. Let $\mathcal{A} = (Q, \Delta, c, q_0, Q_f, T)$ and $\mathcal{M} = (Q, \Omega, \Delta, \delta, q_0, Q_f)$. First we prove that $L(\mathcal{A}) \subseteq \mathcal{M}(\mathcal{B}(\Omega, c))$. Let $v \in L(\mathcal{A})$. Then $v = x_1...x_n$ for some $n \ge 0$ and $x_i \in \Delta$ for every $1 \le i \le n$. Moreover, there is a q_0 -computation θ in $\Theta_{\mathcal{A}}(v)$ with $\theta = \tau_1...\tau_n$, such that $\tau_i \in T$ where $\tau_1 = (q_0, x_1, p_1, q_1, f_1)$, for every $2 \le i \le n$ we have $\tau_i = (q_{i-1}, x_i, p_i, q_i, f_i)$, and $q_n \in Q_f$. Since \mathcal{A} is related to \mathcal{M} , we have $(q_{i-1}, (p_i, f_i), q_i, x_i) \in \delta$ for every $1 \le i \le n$. Hence $(q_0, w, \varepsilon) \vdash_{\mathcal{M}}^* (q_n, \varepsilon, x_1 \ldots x_n)$ with $w = (p_1, f_1) \ldots (p_n, f_n)$. Since $w \in \mathcal{B}(\Omega, c)$ is a behaviour of $c, v = x_1 \ldots x_n$, and $q_n \in Q_f$, we obtain that $v \in \mathcal{M}(\mathcal{B}(\Omega, c))$.

Next we prove that $\mathcal{M}(\mathcal{B}(\Omega,c)) \subseteq L(\mathcal{A})$. Let $v \in \mathcal{M}(\mathcal{B}(\Omega,c))$ with $v = x_1...x_n$ for some $n \geq 0$ and $x_i \in \Delta$ for every $1 \leq i \leq n$. Then there is a behaviour $w \in \mathcal{B}(\Omega,c)$ of c such that $v \in \mathcal{M}(w)$. Then there are $(p_i, f_i) \in \Omega$ with $1 \leq i \leq n$ such that $w = (p_1, f_1) \dots (p_n, f_n)$. Moreover, there are $q_0, \dots, q_n \in Q$ such that $(q_0, (p_1, f_1), q_1, x_1) \in \delta$, for every $2 \leq i \leq n$: $(q_{i-1}, (p_i, f_i), q_i, x_i) \in \delta$, and $q_n \in Q_f$. Since \mathcal{A} is related to \mathcal{M} , we have $\tau_i = (q_{i-1}, x_i, p_i, q_i, f_i) \in T$. Since $w \in \mathcal{B}(\Omega, c), q_0$ is the initial state of \mathcal{A} , and $q_n \in Q_f$, we have that $\tau_1 \dots \tau_n \in \mathcal{O}_{\mathcal{A}}(v)$ and thus $v \in L(\mathcal{A})$.

Proof (of Theorem 7). (1) \Rightarrow (2): Let L be recognizable by some ε -free (S, Δ) automaton $\mathcal{A} = (Q, \Delta, c, q_0, Q_f, T)$. Let Ω be the set of all pairs (p, f) such that Tcontains a transition of the form (q, x, p, q', f) for some q, q', and x. We construct the simple transducer $\mathcal{M} = (Q, \Omega, \Delta, \delta, q_0, Q_f)$ by defining $(q, (p, f), q', x) \in \delta$ if and only if $(q, x, p, q', f) \in T$ for every $q, q' \in Q, x \in \Delta$, and $(p, f) \in \Omega$. Clearly, \mathcal{A} is related to \mathcal{M} and thus, by Lemma 8, we have that $L(\mathcal{A}) = \mathcal{M}(\mathcal{B}(\Omega, c))$.

(2) \Rightarrow (1): Let $c \in C$, Ω a finite subset of $P \times F$, and $\mathcal{M} = (Q, \Omega, \Delta, \delta, q_0, Q_f)$ a simple transducer. First we reduce \mathcal{M} to the simple transducer $\mathcal{M}' = (Q, \Omega', \Delta, \delta, q_0, Q_f)$ where Ω' is the set of all pairs (p, f) such that $(q, (p, f), q', x) \in \delta$ for some $q, q' \in Q$ and $x \in \Delta$. Obviously, $\delta \subseteq Q \times \Omega' \times Q \times \Delta$ and $\mathcal{M}(\mathcal{B}(\Omega, c)) = \mathcal{M}'(\mathcal{B}(\Omega', c))$.

Next we construct the ε -free (S, Δ) -automaton $\mathcal{A} = (Q, \Delta, c, q_0, Q_f, T)$ by defining $T = \{(q, x, p, q', f) \mid (q, (p, f), q', x) \in \delta\}$. Since \mathcal{A} is related to \mathcal{M}' , we have that $L(\mathcal{A}) = \mathcal{M}'(\mathcal{B}(\Omega', c)) = \mathcal{M}(\mathcal{B}(\Omega, c))$ by Lemma 8. \Box

6 The Main Result and Its Applications

For the proof of our CS theorem for weighted automata with storage, we first recall a result for simple transducers [18, proof of Thm. 2.1].

Theorem 9. Let Ω be an alphabet and $L \subseteq \Omega^*$ and let $\mathcal{M}: \Omega^* \to \mathcal{P}_{fin}(\Delta^*)$ be induced by a simple transducer \mathcal{M} . Then there are an alphabet Φ , two letterto-letter morphisms $h_1: \Phi \to \mathbb{B}[\Omega]$ and $h_2: \Phi \to \mathbb{B}[\Delta]$, and a regular language $R \subseteq \Phi^*$ such that $\mathcal{M}(L) = h_2(h_1^{-1}(L) \cap R)$.

Next we show that a letter-to-letter morphism $h_2: \Phi \to \mathbb{B}[\Delta]$ and an alphabetic morphism $h: \Delta \to K[\Sigma \cup \{\varepsilon\}]$ can be combined smoothly. We define the alphabetic morphism $(h \circ h_2): \Phi \to K[\Sigma \cup \{\varepsilon\}]$ for every $x \in \Phi$ by $(h \circ h_2)(x) = h(\delta)$ if $h_2(x) = 1.\delta$ for some $\delta \in \Delta$ (recall that $|\operatorname{supp}(h_2(x))| = 1$).

Lemma 10. Let $h_2: \Phi \to \mathbb{B}[\Delta]$ be a letter-to-letter morphism and $h: \Delta \to K[\Sigma \cup \{\varepsilon\}]$ an alphabetic morphism. Moreover, let $H \subseteq \Phi^*$ be a language. If $(h(v) \mid v \in h_2(H))$ is locally finite, then $((h \circ h_2)(w) \mid w \in H)$ is locally finite.

Proof. Let $u \in \Sigma^*$. By assumption, we have that $\{v \in h_2(H) \mid u \in \operatorname{supp}(h(v))\}$ is finite; let us denote this set by C_u . Since h_2 is letter-to-letter, we have that $\{y \in H \mid v \in h_2(y)\}$ is finite for each $v \in h_2(H)$. Then we have: $|\{w \in H \mid u \in \operatorname{supp}((h \circ h_2)(w)\}| = \sum_{v \in C_u} |\{y \in H \mid v \in h_2(y)\}|$. Hence, $\{w \in H \mid u \in \operatorname{supp}((h \circ h_2)(w)\}$ is finite.

Now we can prove the CS theorem for (S, Σ, K) -automata (cf. Fig.1).

Theorem 11. Let $S = (C, P, F, C_0)$ be a storage type, Σ an alphabet, and K a unital valuation monoid. If $r \in K\langle\!\langle \Sigma^* \rangle\!\rangle$ is (S, Σ, K) -recognizable, then there are an alphabet Φ and a modular language $B \subseteq \Phi^*$

- an alphabet Φ and a regular language $R \subseteq \Phi^*$,
- a finite set $\Omega \subseteq P \times F$ and a configuration $c \in C$,
- a letter-to-letter morphism $h_1: \Phi \to \mathbb{B}[\Omega]$, and
- an alphabetic morphism $h' \colon \Phi \to K[\Sigma \cup \{\varepsilon\}]$

such that $r = h'(h_1^{-1}(\mathcal{B}(\Omega, c)) \cap R)$.

Proof. By Theorem 6 there are an alphabet Δ , an ε -free (S, Δ) -automaton \mathcal{A} , and an alphabetic morphism $h: \Delta \to K[\Sigma \cup \{\varepsilon\}]$ such that $r = h(L(\mathcal{A}))$. Hence, if K is not complete, then $\Theta_{\mathcal{A}}(w)$ is finite for every $w \in \Sigma^*$, and $(h(v) \mid v \in L(\mathcal{A}))$ is locally finite. According to Theorem 7, there are $c \in C$, a finite set $\Omega \subseteq P \times F$, and a simple transducer \mathcal{M} from Ω to Δ such that $L(\mathcal{A}) = \mathcal{M}(\mathcal{B}(\Omega, c))$. Due to Theorem 9, there are an alphabet Φ , two letter-to-letter morphisms $h_1: \Phi \to \mathbb{B}[\Omega]$ and $h_2: \Phi \to \mathbb{B}[\Delta]$, and a regular language $R \subseteq \Phi^*$ such that

Fig. 1. An illustration of the proof of Theorem 11

 $\mathcal{M}(\mathcal{B}(\Omega,c)) = h_2(h_1^{-1}(\mathcal{B}(\Omega,c)) \cap R)$. Let us denote the language $h_1^{-1}(\mathcal{B}(\Omega,c)) \cap R$ by H. Thus $L(\mathcal{A}) = h_2(H)$.

Since $(h(v) \mid v \in L(A))$ is locally finite if K is not complete, we have by Lemma 10 that also $((h \circ h_2)(w) \mid w \in H)$ is locally finite if K is not complete. Thus $r = (h \circ h_2)(h_1^{-1}(\mathcal{B}(\Omega, c)) \cap R)$ and we can take $h' = (h \circ h_2)$. \Box

Finally we instantiate the storage type S in Theorem 11 in several ways and obtain the CS theorem for the corresponding class of (S, Σ, K) -recognizable weighted languages: (1) $S = P^n$: K-weighted *n*-iterated pushdown languages. (2) S = NS(TRIV) where NS is the nested stack operator defined in [14, Def. 7.1]: K-weighted nested stack automata (cf. Ex. 3). (3) S = SC(TRIV) where SC is obtained from NS by forbidding instructions for creating and destructing nested stacks: K-weighted stack automata (weighted version of stack automata [20]). (4) S = MON(M) for some monoid M (cf. Ex. 4): K-weighted M-automata (weighted version of M-automata [24]).

In future investigations we will compare formally the CS theorem for quantitative context-free languages over Σ and K [9, Thm. 2(1) \Leftrightarrow (2)] with our Theorem 11 for (P^1, Σ, K) -recognizable weighted languages.

References

- 1. Aho, A.V.: Indexed grammars an extension of context-free grammars. J. ACM 15, 647–671 (1968)
- 2. Aho, A.V.: Nested stack automata. JACM 16, 383-406 (1969)
- Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Computer Programming and Formal Systems, pp. 118–161. North-Holland, Amsterdam (1963)
- 4. Damm, W.: The IO- and OI-hierarchies. Theoret. Comput. Sci. 20, 95–207 (1982)
- Damm, W., Goerdt, A.: An automata-theoretical characterization of the OIhierarchy. Inform. Control 71, 1–32 (1986)
- Denkinger, T.: A Chomsky-Schützenberger representation for weighted multiple context-free languages. In: The 12th International Conference on Finite-State Methods and Natural Language Processing (FSMNLP 2015) (2015). (accepted for publication)

- Droste, M., Meinecke, I.: Describing average- and longtime-behavior by weighted MSO logics. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 537–548. Springer, Heidelberg (2010)
- 8. Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation monoids. Intern. J. of Found. of Comp. Science **22**(8), 1829–1844 (2011)
- Droste, M., Vogler, H.: The Chomsky-Schützenberger theorem for quantitative context-free languages. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 203–214. Springer, Heidelberg (2013)
- Eilenberg, S.: Automata, Languages, and Machines Volume A. Pure and Applied Mathematics, vol. 59. Academic Press (1974)
- Engelfriet, J.: Iterated pushdown automata and complexity classes. In: Proc. of STOCS 1983, pp. 365–373. ACM, New York (1983)
- Engelfriet, J.: Context-free grammars with storage. Technical Report 86–11, University of Leiden (1986). see also: arXiv:1408.0683 [cs.FL] (2014)
- Engelfriet, J., Schmidt, E.M.: IO and OI.I. J. Comput. System Sci. 15(3), 328–353 (1977)
- Engelfriet, J., Vogler, H.: Pushdown machines for the macro tree transducer. Theoret. Comput. Sci. 42(3), 251–368 (1986)
- Engelfriet, J., Vogler, H.: High level tree transducers and iterated pushdown tree transducers. Acta Inform. 26, 131–192 (1988)
- 16. Fischer, M.J.: Grammars with macro-like productions. Ph.D. thesis, Harvard University, Massachusetts (1968)
- Fratani, S., Voundy, E.M.: Dyck-based characterizations of indexed languages. published on arXiv http://arxiv.org/abs/1409.6112 (March 13, 2015)
- Ginsburg, S., Greibach, S.A.: Abstract families of languages. Memoirs of the American Math. Soc. 87, 1–32 (1969)
- Ginsburg, S., Greibach, S.A.: Principal AFL. J. Comput. Syst. Sci. 4, 308–338 (1970)
- Greibach, S.A.: Checking automata and one-way stack languages. J. Comput. System Sci. 3, 196–217 (1969)
- Greibach, S.A.: Full AFLs and nested iterated substitution. Inform. Control 16, 7–35 (1970)
- 22. Harrison, M.A.: Introduction to Formal Language Theory, 1st edn. Addison-Wesley Longman Publishing Co., Inc, Boston (1978)
- Hulden, M.: Parsing CFGs and PCFGs with a Chomsky-Schützenberger representation. In: Vetulani, Z. (ed.) LTC 2009. LNCS, vol. 6562, pp. 151–160. Springer, Heidelberg (2011)
- Kambites, M.: Formal languages and groups as memory. arXiv:math/0601061v2 [math.GR] (October 19, 2007)
- Kanazawa, M.: Multidimensional trees and a Chomsky-Schützenberger-Weir representation theorem for simple context-free tree grammars. J. Logic Computation (2014)
- Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet Math. Dokl. 15, 1170–1174 (1974)
- 27. Maslov, A.N.: Multilevel stack automata. Probl. Inform. Transm. 12, 38–42 (1976)
- Okhotin, A.: Non-erasing variants of the Chomsky–Schützenberger theorem. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer, Heidelberg (2012)
- Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and Monographs in Computer Science. Springer-Verlag (1978)
- Scott, D.: Some definitional suggestions for automata theory. J. Comput. System Sci. 1, 187–212 (1967)

- Wand, M.: An algebraic formulation of the Chomsky hierarchy. In: Manes, E.G. (ed.) Category Theory Applied to Computation and Control. LNCS, vol. 25, pp. 209–213. Springer, Heidelberg (1975)
- 32. Weir, D.J.: Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. thesis, University of Pennsylvania (1988)
- Yoshinaka, R., Kaji, Y., Seki, H.: Chomsky-Schützenberger-type characterization of multiple context-free languages. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 596–607. Springer, Heidelberg (2010)