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Abstract. We enrich the concept of automata with storage by weights
taken from any unital valuation monoid. We prove a Chomsky-
Schützenberger theorem for the class of weighted languages recognizable
by such weighted automata with storage.

1 Introduction

The classical Chomsky-Schützenberger theorem [3, Prop. 2] (for short: CS the-
orem) states that each context-free language is the homomorphic image of the
intersection of a Dyck-language and a regular language. In [28] it was shown
under which conditions the homomorphism can be non-erasing. In [23] the CS
theorem was employed to specify a parser for context-free languages. The CS
theorem has been extended to string languages generated by tree-adjoining gram-
mars [32], multiple context-free languages [33], indexed languages [17]1, and yield
images of simple context-free tree languages [25].

Already in [3] the CS theorem for context-free languages was proved in a
special weight setting: each word in the language is associated with the number
of its derivations. In [29] the CS theorem was shown for algebraic (formal) power
series over commutative semirings. In [9] this result was generalized to algebraic
power series over unital valuation monoids, called quantitative context-free lan-
guages; (unital) valuation monoids allow to describe, e.g., average consumption
of energy. Also in [9] quantitative context-free languages were characterized by
weighted pushdown automata over unital valuation monoids. Recently, the CS
theorem has been proved for weighted multiple context-free languages over com-
plete commutative strong bimonoids [6].

In the classical CS theorem, the set Y of letters occurring in the Dyck-
language depends on the given context-free grammar or pushdown automaton.
An alternative is to code Y by a homomorphism g over a two-letter alphabet and
to obtain the following CS theorem [22, Thm. 10.4.3]: each context-free language
L can be represented in the form L = h(g−1(D2)∩R) for some homomorphisms
h and g and a regular language R; D2 denotes the Dyck-language over a two
letter alphabet. In the sequel we call this alternative the CS theorem.

1 We are grateful to one of the reviewers for pointing out this reference to us.
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In this paper we prove a CS theorem for the class of weighted languages recog-
nizable by weighted iterated pushdown automata over unital valuation monoids.
A weighted language2 is a mapping from Σ∗ to some weight algebra. Intuitively,
an iterated pushdown is a pushdown in which each square contains a pushdown
in which each square contains a pushdown ... (and so on). The idea of iterated
pushdowns goes back to [21,26,27]. It was proved in [11, Thm. 6] that the classes
of languages accepted by iterated pushdown automata form a strict, infinite hier-
archy with increasing nesting of pushdowns. In [5] it was proved that n-iterated
pushdown automata characterize the n-th level of the OI-string language hierar-
chy [4,13,31] which starts at its first three levels with the regular, context-free,
and indexed languages [1] (equivalently, OI-macro languages [16]).

We obtain the CS theorem for weighted iterated pushdown automata as
application of the even more general, main result of our paper: the CS theorem
for K-weighted automata with storage where K is an arbitrary unital valuation
monoid. An automaton with storage S [30,19,12]3 is a one-way nondeterministic
finite-state automaton with an additional storage of type S; a successful com-
putation starts with the initial state and an initial configuration of S; in each
transition the automaton can test the current storage configuration and apply
an instruction to it. For instance, pushdown automata, n-iterated pushdown
automata, stack automata [20], and nested stack automata [2] can be formu-
lated as automata with storage. For a number of examples of storages we refer
to [12] where these automata were called REG(S) r-acceptors. The concept of
automata with storage is quite flexible: for instance, we can also express M -
automata [24] where M is a (multiplicative) monoid, in a straightforward way
as such automata with storage (cf. Ex. 4).

We extend the concept of automata with storage to that of K-weighted
automata with storage where K is a unital valuation monoid; this extension
is done in the same way as pushdown automata have been extended in [9] to
weighted pushdown automata over unital valuation monoids. Then our main
result states the following (cf. Thm. 11). Let r : Σ∗ → K be recognizable by
some K-weighted automaton over storage type S. Then there are a regular lan-
guage R, a finite set Ω of pairs (each consisting of a predicate and an instruction),
a configuration c of S, a letter-to-letter morphism g, and a (weighted) alphabetic
morphism h such that r = h(g−1(B(Ω, c)) ∩ R) where B(Ω, c) is the set of all
Ω-behaviours of c.

2 Preliminaries

Notations and Notions. The set of non-negative integers (including 0) is denoted
by N. Let n ∈ N. Then [n] denotes the set {i ∈ N | 1 ≤ i ≤ n}. Thus [0] = ∅. Let
A and B be sets. The set of all subsets (finite subsets) of A is denoted by P(A)
(Pfin(A), resp.). We denote the identity mapping on A by idA. Let f : A → B be
a mapping. We denote by im(f) the set {b ∈ B | ∃a ∈ A : f(a) = b}.
2 or, equivalently, formal power series
3 If we cite notions or definitions from [12], then we always refer to the version of 2014.
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We fix a countably infinite set Λ and call its elements symbols. We call each
finite subset Σ of Λ an alphabet. In the rest of this paper, we let Σ and Δ denote
alphabets unless specified otherwise.

Unital Valuation Monoids. The concept of valuation monoid was introduced
in [7,8] and extended in [9] to unital valuation monoid. A unital valua-
tion monoid is a tuple (K,+, val, 0, 1) such that (K,+, 0) is a commuta-
tive monoid and val : K∗ → K is a mapping such that (i) val(a) = a for
each a ∈ K, (ii) val(a1, . . . , an) = 0 whenever ai = 0 for some i ∈ [n],
(iii) val(a1, . . . , ai−1, 1, ai+1, . . . , an) = val(a1, . . . , ai−1, ai+1, . . . , an) for any
i ∈ [n], and (iv) val(ε) = 1.

A monoid (K,+, 0) is complete if it has an infinitary sum operation∑
I : KI → K for each enumerable set I (for the axioms cf. [10]). We call a

unital valuation monoid (K,+, val, 0, 1) complete if (K,+, 0) has this property.
We write

∑
i∈I ai instead of

∑
I(ai | i ∈ I).

We refer the reader to [9, Ex. 1 and 2] for a number of examples of unital val-
uation monoids. For instance, each complete semiring (in particular, the Boolean
semiring B = ({0, 1},∨,∧, 0, 1)) and each complete lattice is a complete unital
valuation monoid. In the rest of this paper, we let K denote an arbitrary unital
valuation monoid (K,+, val, 0, 1) unless specified otherwise.

Weighted Languages. A K-weighted language over Σ is a mapping of the form
r : Σ∗ → K. We denote the set of all such mappings by K〈〈Σ∗〉〉. For every
r ∈ K〈〈Σ∗〉〉, we denote the set {w ∈ Σ∗ | r(w) �= 0} by supp(r).

A family (ri | i ∈ I) of K-weighted languages ri ∈ K〈〈Σ∗〉〉 is locally finite if
for each w ∈ Σ∗ the set Iw = {i ∈ I | ri(w) �= 0} is finite. In this case or if K is
complete, we define

∑
i∈I si ∈ K〈〈Σ∗〉〉 by ( ∑

i∈I si

)
(w) =

∑
i∈Iw

si(w) for each
w ∈ Σ∗.

Each L ∈ B〈〈Σ∗〉〉 determines the set supp(L) ⊆ Σ∗. Vice versa, each set
L ⊆ Σ∗ determines the B-weighted language χL ∈ B〈〈Σ∗〉〉 with χL(w) = 1 if
and only if w ∈ L. Thus, for every L ⊆ Σ∗, we have supp(χL) = L; and for every
L ∈ B〈〈Σ∗〉〉 we have χsupp(L) = L. In the sequel we will not distinguish between
these two points of view.

3 Weighted Automata with Storage

We take up the concept of automata with storage [30] and present it in the
style of [12] (cf. [14,15] for further investigations). Moreover, we add weights to
the transitions of the automaton where the weights are taken from some unital
valuation monoid.

Storage Types: We recall the definition of storage type from [12,30] with a slight
modification. A storage type S is a tuple (C,P, F,C0) where C is a set (configu-
rations), P is a set of total functions each having the type p : C → {true, false}
(predicates), F is a set of partial functions each having the type f : C → C
(instructions), and C0 ⊆ C (initial configurations).



118 L. Herrmann and H. Vogler

Example 1. Let c be an arbitrary but fixed symbol. The trivial storage type
is the storage type TRIV = ({c}, {ptrue}, {fid}, {c}) where ptrue(c) = true and
fid(c) = c. ��

Next we recall the pushdown operator P from [12, Def. 5.1] and [14, Def. 3.28]:
if S is a storage type, then P(S) is a storage type of which the configurations
have the form of a pushdown; each cell contains a pushdown symbol and a
configuration of S. Formally, let Γ be a fixed infinite set (pushdown symbols).
Also, let S = (C,P, F,C0) be a storage type. The pushdown of S is the storage
type P(S) = (C ′, P ′, F ′, C ′

0) where
– C ′ = (Γ × C)+ and C ′

0 = {(γ0, c0) | γ0 ∈ Γ, c0 ∈ C0},
– P ′ = {bottom} ∪ {(top = γ) | γ ∈ Γ} ∪ {test(p) | p ∈ P} such that for every
(δ, c) ∈ Γ × C and α ∈ (Γ × C)∗ we have

bottom
(
(δ, c)α

)
= true if and only if α = ε

(top = γ)
(
(δ, c)α

)
= true if and only if γ = δ

test(p)
(
(δ, c)α

)
= p(c)

– F ′ = {pop} ∪ {stay(γ) | γ ∈ Γ} ∪ {push(γ, f) | γ ∈ Γ, f ∈ F} such that for
every (δ, c) ∈ Γ × C and α ∈ (Γ × C)∗ we have

pop
(
(δ, c)α

)
= α if α �= ε

stay(γ)
(
(δ, c)α

)
= (γ, c)α

push(γ, f)
(
(δ, c)α

)
= (γ, f(c))(δ, c)α if f(c) is defined

and undefined in all other situations.
For each n ≥ 0 we define Pn(S) inductively as follows: P0(S) = S and Pn(S) =
P(Pn−1(S)) for each n ≥ 1.

Example 2. Intuitively, P(TRIV) corresponds to the usual pushdown storage
except that there is no empty pushdown. For n ≥ 0, we abbreviate Pn(TRIV)
by Pn and call it the n-iterated pushdown storage. ��

Throughout this paper we let S denote an arbitrary storage type
(C,P, F,C0) unless specified otherwise.

Automata with Storage: An (S,Σ)-automaton is a tuple A = (Q,Σ, c0, q0, Qf , T )
where Q is a finite set (states), Σ is an alphabet (terminal symbols), c0 ∈ C0

(initial configuration), q0 ∈ Q (initial state), Qf ⊆ Q (final states), and T ⊆
Q× (Σ ∪{ε})×P ×Q×F is a finite set (transitions). If T ⊆ Q×Σ ×P ×Q×F ,
then we call A ε-free.

The computation relation of A is the binary relation on the set Q×Σ∗ ×C of
A-configurations defined as follows. For every transition τ = (q, x, p, q′, f) in T
we define the binary relation �τ on the set of A-configurations: for every w ∈ Σ∗

and c ∈ C, we let (q, xw, c) �τ (q′, w, f(c)) if p(c) is true and f(c) is defined.
The computation relation of A is the binary relation �= ⋃

τ∈T �τ . The language
recognized by A is the set L(A) = {w ∈ Σ∗ | (q0, w, c0) �∗ (qf , ε, c) for some qf ∈
Qf , c ∈ C}.

A computation is a sequence θ = τ1 . . . τn of transitions τi (i ∈ [n]) such
that there are A-configurations c0, . . . , cn with ci−1 �τi ci. We abbreviate this
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computation by c0 �θ cn. Let q ∈ Q, w ∈ Σ∗, and c ∈ C. A q-computation on w
and c is a computation θ such that (q, w, c) �θ (qf , ε, c′) for some qf ∈ Qf , c′ ∈ C.
We denote the set of all q-computations on w and c by ΘA(q, w, c). Furthermore,
we denote the set of all q0-computations on w and c0 by ΘA(w). Thus we have
L(A) = {w ∈ Σ∗ | ΘA(w) �= ∅} .

We say that A is ambiguous if there is a w ∈ Σ∗ such that |ΘA(w)| ≥ 2.
Otherwise A is unambiguous. A language L ⊆ Σ∗ is (S,Σ)-recognizable if there
is an (S,Σ)-automaton A with L(A) = L.

Example 3. (1) The TRIV-automata are (usual) finite-state automata, and P1-
automata are essentially pushdown automata. (2) For each n ≥ 1, Pn-automata
correspond to n-iterated pushdown automata of [26,27,11,5]. (3) Nested stack
automata [2] correspond to NS(TRIV)-automata where NS is an operator on
storage types (cf. [14, Def. 7.1]). In [14, Thm. 7.4] it was proved that, for every
S, the storage types P2(S) and NS(S) are equivalent (cf. [14, Def. 4.6] for the
definition of equivalence), which implies that the acceptance power of automata
using these storage types is the same (cf. [14, Thm. 4.18] for this implication).

��
Example 4. We indicate how to embed the concept of M -automata [24] where
(M, ·, 1) is a multiplicative monoid, into the setting of automata with storage. For
this we define the storage type monoid M , denoted by MON(M), by (C,P, F,C0)
where C = M and C0 = {1}, P = {true?} ∪ {1?} with true?(m) = true, and
1?(m) = true if and only if m = 1, F = {[m] | m ∈ M} and [m] : M → M is
defined by [m](m′) = m′ · m.

For a given M -automaton A, we construct an equivalent MON(M)-
automaton B as follows. If (q, x, q′,m) is a transition of A (with states q, q′,
input symbol x, and m ∈ M), then (q, x, true?, q′, [m]) is a transition of B. More-
over, for each final state q of A, the transition (q, ε, 1?, qf , [1]) is in B where qf

is the only final state of B. ��

Weighted Automata with Storage: Next we define the weighted version of (S,Σ)-
automata. The line of our definitions follows the definition of weighted pushdown
automata in [9].

An (S,Σ)-automaton with weights in K is a tuple A = (Q,Σ, c0, q0, Qf , T,wt)
where (Q,Σ, c0, q0, Qf , T ) is an (S,Σ)-automaton (underlying (S,Σ)-automaton)
and wt: T → K (weight assignment). If the underlying (S,Σ)-automaton is ε-
free, then we call A ε-free. Let θ = τ1 . . . τn be a computation of A. The weight
of θ is the element in K defined by wt(θ) = val(wt(τ1), . . . ,wt(τn)) .

An (S,Σ,K)-automaton is an (S,Σ)-automaton A with weights in K such
that (i) ΘA(w) is finite for every w ∈ Σ∗ or (ii) K is complete. In this case the
weighted language recognized by A is the K-weighted language ||A|| : Σ∗ → K
defined for every w ∈ Σ∗ by ||A||(w) =

∑
θ∈ΘA(w) wt(θ) .

A weighted language r : Σ∗ → K is (S,Σ,K)-recognizable if there is an
(S,Σ,K)-automaton A such that r = ||A||.
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Example 5. (1) Each (S,Σ,B)-automaton A can be considered as an (S,Σ)-
automaton which recognizes supp(||A||). (2) Apart from ε-moves, (TRIV, Σ,K)-
automata are the same as weighted finite automata over Σ and the valuation
monoid K [9]. (3) The (P1, Σ,K)-automata are essentially the same as weighted
pushdown automata over Σ and K [9] where acceptance with empty pushdown
can be simulated in the usual way. Thus, for every r : Σ∗ → K we have: r is the
quantitative behaviour of a WPDA as defined in [9] if and only if r is (P1, Σ,K)-
recognizable. ��

For n ≥ 0, a weighted n-iterated pushdown language over Σ and K is a
(Pn, Σ,K)-recognizable weighted language.

4 Separating the Weights from an (S, Σ, K)-Automaton

In this section we will represent an (S,Σ,K)-recognizable weighted language as
the homomorphic image of an (S,Δ)-recognizable language.

We recall from [9] the concept of (weighted) alphabetic morphism. First, we
introduce monomes and alphabetic morphisms. A mapping r : Σ∗ → K is called
a monome if supp(r) is empty or a singleton. If supp(r) = {w}, then we also
write r(w).w instead of r. We let K[Σ ∪{ε}] denote the set of all monomes with
support in Σ ∪ {ε}.

Let Δ be an alphabet and h : Δ → K[Σ ∪ {ε}] be a mapping. The alpha-
betic morphism induced by h is the mapping h′ : Δ∗ → K〈〈Σ∗〉〉 such that
for every n ≥ 0, δ1, . . . , δn ∈ Δ with h(δi) = ai.yi we have h′(δ1 . . . δn) =
val(a1, . . . , an).y1 . . . yn . Note that h′(v) is a monome for every v ∈ Δ∗, and
h′(ε) = 1.ε. If L ⊆ Δ∗ such that the family (h′(v) | v ∈ L) is locally finite
or if K is complete, we let h′(L) =

∑
v∈L h′(v). In the sequel we will use the

following convention. If we write “alphabetic morphism h : Δ → K[Σ ∪ {ε}]”,
then we mean the alphabetic morphism induced by h.

We define a special case of alphabetic morphisms in which K = B. If for every
δ ∈ Δ the support of h(δ) is {σ} for some σ ∈ Σ, then we call h′ a letter-to-letter
morphism. Note that in this case the alphabetic morphism induced by h has the
property that for every v ∈ Δ∗, supp(h′(v)) contains at most one element and
if supp(h′(v)) = {w} for some w ∈ Σ∗, then the lengths of w and v are equal.

Theorem 6. For every r ∈ K〈〈Σ∗〉〉 the following two statements are equivalent:
(1) r is (S,Σ,K)-recognizable.
(2) There are an alphabet Δ, an unambiguous ε-free (S,Δ)-automaton A, and

an alphabetic morphism h : Δ → K[Σ ∪ {ε}] such that r = h(L(A)).

Proof. (1) ⇒ (2): This generalizes [9, Lm. 3] in a straightforward way. Let
B = (Q,Σ, c0, q0, Qf , T,wt) be an (S,Σ,K)-automaton. We construct the (S, T )-
automaton A = (Q,T, c0, q0, Qf , T ′) and the mapping h : T → K[Σ ∪ {ε}] such
that, if τ = (q, x, p, q′, f) is in T , then (q, τ, p, q′, f) is in T ′ and we define
h(τ) = wt(τ).x. Obviously, A is unambiguous and ε-free.
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Let w ∈ Σ∗ and θ = τ1 . . . τn ∈ ΘB(w). By definition of h, we have that
h(θ) = val(wt(τ1), . . . ,wt(τn)).w. Hence wt(θ) =

(
h(θ)

)
(w). Also, by defini-

tion of (S,Σ,K)-automata, the set ΘB(w) is finite if K is not complete. Thus
the family (h(θ) | θ ∈ L(A)) is locally finite if K is not complete. Then, for

every w ∈ Σ∗, we have ||B||(w) =
∑

θ∈ΘB(w) wt(θ) =
∑

θ∈ΘB(w)

(
h(θ)

)
(w)

(∗)
=

∑
θ∈L(A)

(
h(θ)

)
(w) =

(∑
θ∈L(A) h(θ)

)
(w) =

(
h(L(A))

)
(w) where (∗) holds

because for every θ ∈ L(A) with θ /∈ ΘB(w), we have
(
h(θ)

)
(w) = 0 and due to

the fact that
∑

θ∈L(A), θ/∈ΘB(w) 0 = 0. Thus ||B|| = h(L(A)).
(2) ⇒ (1): Let A = (Q,Δ, c0, q0, Qf , T ) be an unambiguous ε-free (S,Δ)-

automaton and h : Δ → K[Σ ∪ {ε}] an alphabetic morphism. Moreover, we
assume that the family (h(v) | v ∈ L(A)) is locally finite if K is not complete.
We will construct an (S,Σ,K)-automaton B such that ||B|| = h(L(A)).

Our construction employs a similar technique of coding the preimage of h
into the set of states as in [9, Lm. 4] in order to handle non-injectivity of h
appropriately. However, we have to modify the construction slightly, because the
straightforward generalization would require that S has an identity instruction
(needed in the first step of the computation), which in general we do not assume.
In our constructed automaton, the target state (and not, as in [9, Lm. 4], the
source state) of each transition encodes a preimage of the symbol which is read
by this transition.

Formally, we construct the (S,Σ,K)-automaton B =
(Q′, Σ, c0, q

′
0, Q

′
f , T ′,wt) where Q′ = {q′

0} ∪ Δ × Q with some element q′
0

with q′
0 /∈ Δ×Q, Q′

f = Δ×Qf , and T ′ and wt are defined as follows. Let δ ∈ Δ
and h(δ) = a.y.
– If (q0, δ, p, q, f) is in T , then (q′

0, y, p, (δ, q), f) is in T ′, and its weight is a.
– If (q, δ, p, q′, f) is in T , then ((δ′, q), y, p, (δ, q′), f) is in T ′ for each δ′ ∈ Δ,

and its weight is a.
Let w ∈ Σ∗. First, let v ∈ Δ∗ with h(v) = z.w for some z ∈ K. We write

v = δ1 . . . δn ∈ Δ∗ with n ≥ 0 and δi ∈ Δ. Let h(δi) = ai.yi for every 1 ≤ i ≤ n.
Thus h(v) = val(a1, . . . , an).y1 . . . yn and w = y1 . . . yn and z = val(a1, . . . , an).

Let θ = τ1 . . . τn be a q0-computation in ΘA(v). Clearly, for each i ∈ [n], the
second component of τi is δi. Then we construct the q′

0-computation θ′ = τ ′
1 . . . τ ′

n

in ΘB(y1 . . . yn) inductively as follows:
– If τ1 = (q0, δ1, p1, q1, f1), then we let τ ′

1 = (q′
0, y1, p1, (δ1, q1), f1).

– If 1 < i ≤ n and τi = (qi−1, δi, pi, qi, fi), then we let
τ ′
i = ((δi−1, qi−1), yi, pi, (δi, qi), fi).

Note that
(
h(v)

)
(w) = val(a1, . . . , an) = val(wt(τ ′

1), . . . ,wt(τ
′
n)) = wt(θ′).

Conversely, for every q′
0-computation θ′ = τ ′

1 . . . τ ′
n in ΘB(w) by definition

of T ′ there are a uniquely determined v ∈ Δ∗ and a uniquely determined q0-
computation θ = τ1 . . . τn in ΘA(v) such that θ′ is the computation constructed
above. Hence, for every v ∈ Δ∗ and w ∈ Σ∗, if h(v) = z.w for some z ∈ K, then
ΘA(v) and ΘB(w) are in a one-to-one correspondence.

Thus, for every w ∈ Σ∗, we obtain
(
h(L(A))

)
(w) =

∑
v∈L(A)

(
h(v)

)
(w) =

∑
v∈L(A):

(h(v))(w) �=0

(
h(v)

)
(w). Since A is unambiguous this is equal to
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∑
v∈L(A),θ∈ΘA(v):

(h(v))(w) �=0

wt(θ′). Since there is a one-to-one correspondence between

ΘA(v) and ΘB(w), this is equal to
∑

θ′∈ΘB(w) wt(θ
′) = ||B||(w). Thus

h(L(A)) = ||B||. ��
We could strengthen Theorem 6 by proving (2′) ⇒ (1) where (2′) is obtained

from (2) by dropping the ε-freeness of A.

5 Separating the Storage from an (S, Δ)-Automaton

In this section we will characterize the language recognized by an ε-free (S,Δ)-
automaton A as the image of the set of behaviours of the initial configuration of
A under a simple transducer mapping. Note that A need not be unambiguous.
Our proof follows closely the technique in the proof of [14, Thm. 3.26].

Let c0 be the initial configuration of A and θ a computation of A, i.e., θ ∈
ΘA(q0, w, c0) for some w. By dropping from θ all references to states and to the
input, a sequence of pairs remains where each pair consists of a predicate and
an instruction. This sequence might be called a behaviour of c0. Formally, let Ω
be a finite subset of P × F ,4 c ∈ C, and v = (p1, f1) . . . (pn, fn) ∈ Ω∗. We say
that v is an Ω-behaviour of c if for every i with i ∈ [n] we have (i) pi(c′) = true
and (ii) fi(c′) is defined where c′ = fi−1(. . . f1(c) . . .) (note that c′ = c for i = 1).
We denote the set of all Ω-behaviours of c by B(Ω, c). Note that each behaviour
of c is a path in the approximation of c according to [14, Def. 3.23].

An a-transducer [19] is a machine M = (Q,Ω,Δ, δ, q0, Qf ) where Q, Ω, and
Δ are alphabets (states, input/output symbols, resp.), q0 ∈ Q (initial state),
Qf ⊆ Q (final states), and δ is a finite subset of Q × Ω∗ × Q × Δ∗. We say that
M is a simple transducer (from Ω to Δ) if δ ⊆ Q × Ω × Q × Δ. The binary
relation �M on Q×Ω∗×Δ∗ is defined as follows: let (q, ww′, v) �M (q′, w′, vv′) if
(q, w, q′, v′) ∈ δ. The mapping induced by M, also denoted by M, is the mapping
M : Ω∗ → P(Δ∗) defined by M(w) = {v ∈ Δ∗ | (q0, w, ε) �∗

M (q, ε, v), q ∈ Qf}.
If M is a simple transducer, then M(w) is finite for every w. For every L ⊆ Ω∗

we define M(L) =
⋃

v∈L M(v).
Our goal is to prove the following theorem.

Theorem 7. Let S = (C,P, F,C0) be a storage type. Moreover, let L ⊆ Δ∗.
Then the following are equivalent:
(1) L is recognizable by some ε-free (S,Δ)-automaton.
(2) There are c ∈ C, a finite set Ω ⊆ P × F , and a simple transducer M from

Ω to Δ such that L = M(B(Ω, c)).

We note that (1)⇒(2) of Theorem 7 is similar to [19, Lm. 2.3] (after decomposing
the simple transducer M from Ω to Δ according to Theorem 9).

For the proof of this theorem, we define the concept of relatedness between
an ε-free (S,Δ)-automaton A and a simple transducer M with the following
intention:
4 We recall that S = (C, P, F, C0) is an arbitrary storage type.
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A allows a computation
(q0, x1, p1, q1, f1)(q1, x2, p2, q2, f2) . . . (qn−1, xn, pn, qn, fn) ,

for some states q1, . . . , qn−1 if and only if
(q0, (p1, f1) . . . (pn, fn), ε) �∗

M (qn, ε, x1 . . . xn) .
That is, while reading a behaviour of the initial configuration of A, the simple
transducer M produces a string which is recognized by A. Formally, let A =
(Q,Δ, c, q0, Qf , T ) be an ε-free (S,Δ)-automaton and M = (Q′, Ω,Δ′, δ, q′

0, Q
′
f )

be a simple transducer. Then A is related to M if
– Q = Q′, q0 = q′

0, Qf = Q′
f ,

– Δ = Δ′ and Ω is the set of all pairs (p, f) such that T contains a transition
of the form (q, x, p, q′, f) for some q,q′, and x, and

– for every q, q′ ∈ Q, x ∈ Δ, p ∈ P , and f ∈ F we have: (q, x, p, q′, f) ∈ T if and
only if (q, (p, f), q′, x) ∈ δ.

Lemma 8. Let A be an ε-free (S,Δ)-automaton with initial configuration c
and let M be a simple transducer from Ω to Δ. If A is related to M, then
L(A) = M(B(Ω, c)).

Proof. Let A = (Q,Δ, c, q0, Qf , T ) and M = (Q,Ω,Δ, δ, q0, Qf ). First we prove
that L(A) ⊆ M(B(Ω, c)). Let v ∈ L(A). Then v = x1...xn for some n ≥ 0 and
xi ∈ Δ for every 1 ≤ i ≤ n. Moreover, there is a q0-computation θ in ΘA(v) with
θ = τ1...τn, such that τi ∈ T where τ1 = (q0, x1, p1, q1, f1), for every 2 ≤ i ≤ n
we have τi = (qi−1, xi, pi, qi, fi), and qn ∈ Qf . Since A is related to M, we have
(qi−1, (pi, fi), qi, xi) ∈ δ for every 1 ≤ i ≤ n. Hence (q0, w, ε) �∗

M (qn, ε, x1 . . . xn)
with w = (p1, f1) . . . (pn, fn). Since w ∈ B(Ω, c) is a behaviour of c, v = x1 . . . xn,
and qn ∈ Qf , we obtain that v ∈ M(B(Ω, c)).

Next we prove that M(B(Ω, c)) ⊆ L(A). Let v ∈ M(B(Ω, c)) with v =
x1...xn for some n ≥ 0 and xi ∈ Δ for every 1 ≤ i ≤ n. Then there is a
behaviour w ∈ B(Ω, c) of c such that v ∈ M(w). Then there are (pi, fi) ∈ Ω with
1 ≤ i ≤ n such that w = (p1, f1) . . . (pn, fn). Moreover, there are q0, . . . , qn ∈ Q
such that (q0, (p1, f1), q1, x1) ∈ δ, for every 2 ≤ i ≤ n : (qi−1, (pi, fi), qi, xi) ∈ δ,
and qn ∈ Qf . Since A is related to M, we have τi = (qi−1, xi, pi, qi, fi) ∈ T .
Since w ∈ B(Ω, c), q0 is the initial state of A, and qn ∈ Qf , we have that
τ1 . . . τn ∈ ΘA(v) and thus v ∈ L(A). ��
Proof (of Theorem 7). (1) ⇒ (2): Let L be recognizable by some ε-free (S,Δ)-
automaton A = (Q,Δ, c, q0, Qf , T ). Let Ω be the set of all pairs (p, f) such that T
contains a transition of the form (q, x, p, q′, f) for some q,q′, and x. We construct
the simple transducer M = (Q,Ω,Δ, δ, q0, Qf ) by defining (q, (p, f), q′, x) ∈ δ if
and only if (q, x, p, q′, f) ∈ T for every q, q′ ∈ Q, x ∈ Δ, and (p, f) ∈ Ω. Clearly,
A is related to M and thus, by Lemma 8, we have that L(A) = M(B(Ω, c)).

(2) ⇒ (1): Let c ∈ C, Ω a finite subset of P × F , and M =
(Q,Ω,Δ, δ, q0, Qf ) a simple transducer. First we reduce M to the simple trans-
ducer M′ = (Q,Ω′,Δ, δ, q0, Qf ) where Ω′ is the set of all pairs (p, f) such that
(q, (p, f), q′, x) ∈ δ for some q, q′ ∈ Q and x ∈ Δ. Obviously, δ ⊆ Q × Ω′ × Q × Δ
and M(B(Ω, c)) = M′(B(Ω′, c)).
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Next we construct the ε-free (S,Δ)-automaton A = (Q,Δ, c, q0, Qf , T ) by
defining T = {(q, x, p, q′, f) | (q, (p, f), q′, x) ∈ δ}. Since A is related to M′, we
have that L(A) = M′(B(Ω′, c)) = M(B(Ω, c)) by Lemma 8. ��

6 The Main Result and Its Applications

For the proof of our CS theorem for weighted automata with storage, we first
recall a result for simple transducers [18, proof of Thm. 2.1].

Theorem 9. Let Ω be an alphabet and L ⊆ Ω∗ and let M : Ω∗ → Pfin(Δ∗) be
induced by a simple transducer M. Then there are an alphabet Φ, two letter-
to-letter morphisms h1 : Φ → B[Ω] and h2 : Φ → B[Δ], and a regular language
R ⊆ Φ∗ such that M(L) = h2(h−1

1 (L) ∩ R).

Next we show that a letter-to-letter morphism h2 : Φ → B[Δ] and an alpha-
betic morphism h : Δ → K[Σ ∪ {ε}] can be combined smoothly. We define
the alphabetic morphism (h ◦ h2) : Φ → K[Σ ∪ {ε}] for every x ∈ Φ by
(h ◦ h2)(x) = h(δ) if h2(x) = 1.δ for some δ ∈ Δ (recall that | supp(h2(x))| = 1).

Lemma 10. Let h2 : Φ → B[Δ] be a letter-to-letter morphism and
h : Δ → K[Σ ∪ {ε}] an alphabetic morphism. Moreover, let H ⊆ Φ∗ be a lan-
guage. If (h(v) | v ∈ h2(H)) is locally finite, then ((h ◦h2)(w) | w ∈ H) is locally
finite.

Proof. Let u ∈ Σ∗. By assumption, we have that {v ∈ h2(H) | u ∈ supp(h(v))}
is finite; let us denote this set by Cu. Since h2 is letter-to-letter, we have that
{y ∈ H | v ∈ h2(y)} is finite for each v ∈ h2(H). Then we have: |{w ∈ H |
u ∈ supp((h ◦ h2)(w)}| = ∑

v∈Cu
|{y ∈ H | v ∈ h2(y)}|. Hence, {w ∈ H | u ∈

supp((h ◦ h2)(w)} is finite. ��
Now we can prove the CS theorem for (S,Σ,K)-automata (cf. Fig.1).

Theorem 11. Let S = (C,P, F,C0) be a storage type, Σ an alphabet, and K a
unital valuation monoid. If r ∈ K〈〈Σ∗〉〉 is (S,Σ,K)-recognizable, then there are
– an alphabet Φ and a regular language R ⊆ Φ∗,
– a finite set Ω ⊆ P × F and a configuration c ∈ C,
– a letter-to-letter morphism h1 : Φ → B[Ω], and
– an alphabetic morphism h′ : Φ → K[Σ ∪ {ε}]

such that r = h′(h−1
1 (B(Ω, c)) ∩ R).

Proof. By Theorem 6 there are an alphabet Δ, an ε-free (S,Δ)-automaton A,
and an alphabetic morphism h : Δ → K[Σ∪{ε}] such that r = h(L(A)). Hence, if
K is not complete, then ΘA(w) is finite for every w ∈ Σ∗, and (h(v) | v ∈ L(A))
is locally finite. According to Theorem 7, there are c ∈ C, a finite set Ω ⊆
P × F , and a simple transducer M from Ω to Δ such that L(A) = M(B(Ω, c)).
Due to Theorem 9, there are an alphabet Φ, two letter-to-letter morphisms
h1 : Φ → B[Ω] and h2 : Φ → B[Δ], and a regular language R ⊆ Φ∗ such that
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r ∈ K〈〈Σ∗〉〉

Δ∗ ⊇ L(A)

h

B(Ω, c) ⊆ Ω∗ M

R ⊆ Φ∗

h1 h2 h′

Fig. 1. An illustration of the proof of Theorem 11

M(B(Ω, c)) = h2(h−1
1 (B(Ω, c))∩R). Let us denote the language h−1

1 (B(Ω, c))∩R
by H. Thus L(A) = h2(H).

Since (h(v) | v ∈ L(A)) is locally finite if K is not complete, we have by
Lemma 10 that also ((h ◦ h2)(w) | w ∈ H) is locally finite if K is not complete.
Thus r = (h ◦ h2)(h−1

1 (B(Ω, c)) ∩ R) and we can take h′ = (h ◦ h2). ��
Finally we instantiate the storage type S in Theorem 11 in several ways

and obtain the CS theorem for the corresponding class of (S,Σ,K)-recognizable
weighted languages: (1) S = Pn: K-weighted n-iterated pushdown languages.
(2) S = NS(TRIV) where NS is the nested stack operator defined in [14, Def.
7.1]: K-weighted nested stack automata (cf. Ex. 3). (3) S = SC(TRIV) where
SC is obtained from NS by forbidding instructions for creating and destructing
nested stacks: K-weighted stack automata (weighted version of stack automata
[20]). (4) S = MON(M) for some monoid M (cf. Ex. 4): K-weighted M -automata
(weighted version of M -automata [24]).

In future investigations we will compare formally the CS theorem for quan-
titative context-free languages over Σ and K [9, Thm. 2(1) ⇔ (2)] with our
Theorem 11 for (P 1, Σ,K)-recognizable weighted languages.
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