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1 Introduction

Weighted finite automata (WFA) are finite automata whose transitions and
states are augmented with some weights, elements of a semiring. A WFA induces
a function over strings. The value it assigns to an input string is the semiring sum
of the weights of all paths labeled with that string, where the weight of a path is
obtained by taking the semiring product of the weights of its constituent tran-
sitions, as well as those of its origin and destination states. The mathematical
theory behind WFAs, that of rational power series, has been extensively studied
in the past [26,52,40,16] and has been more recently the topic of a dedicated
handbook [23]. WFAs are widely used in modern applications, perhaps most
prominently in image processing and speech recognition where the terminology
of weighted automata seems to have been first introduced and made popular
[34,43,49,41,44], in several other speech processing applications such as speech
synthesis [55,1], in phonological and morphological rule compilation [35,36,47], in
parsing [45], bioinformatics [25,2], sequence modeling and prediction [22], formal
verification [3], in optical character recognition [18], and in many other areas.

These applications, as well as a number of theoretical questions, have strongly
motivated the problem of learning WFAs, that is that of finding a WFA closely
estimating a semiring-valued target function, using for training a finite sample of
strings labeled with their target values. This problem has a rich history since its
simpler instances date back to the origins of computer science. We will therefore
discuss only briefly some of the key results of the literature.

A special instance of this problem is that of learning (unweighted) finite
automata, which coincide with WFAs defined over the Boolean semiring. A
series of negative results are known for this problem when the target itself is
a finite automaton and when the complexity criterion used is the size of the
automaton learned. In particular, the problem of finding a consistent determin-
istic finite automaton (DFA) of minimum size was shown to be NP-hard by Gold
[29]. This result was later extended by Angluin [4]. Pitt and Warmuth [50] fur-
ther strengthened these results by showing that even an approximation within a
polynomial function of the size of the smallest consistent automaton is NP-hard.
Their hardness results apply also to the case where prediction is made using
non-deterministic finite automata (NFA) (see also [21]). Kearns and Valiant [37]
presented for the same problem hardness results of a different nature relying on
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cryptographic assumptions. Their results imply that no polynomial-time algo-
rithm can learn consistent NFAs polynomial in the size of the smallest DFA from
a finite sample of accepted and rejected strings if any of the generally accepted
cryptographic assumptions holds, for example if RSA public key cryptosystem
is secure.

These results imply the computational intractability of the general prob-
lem of passively learning finite automata for several learning models, including
the mistake bound model of Haussler et al. [31] or the PAC-learning model of
Valiant [56]. In contrast, an active model of learning automata was introduced by
Angluin [4,5], where the learner can make membership and equivalence queries.
For this model, it was shown that finite automata can be learned in time poly-
nomial in the size of the minimal automaton and that of the longest counter-
example [4] (see also [38] and [46]).

Fewer results have been reported in the literature for the general case of
learning WFAs over a non-Boolean semiring. Bergadano et al. [15] extended the
positive result of [4] in the scenario where membership and equivalence queries
can be made, to the problem of learning WFAs defined over any field. Using
the relationship between the size of a minimal weighted automaton over a field
and the rank of the corresponding Hankel matrix, the learnability of many other
concepts classes such as disjoint DNF can be shown [13]. In the passive set-
ting, the problem of learning a probabilistic WFA using a finite sample drawn
according to the same distribution has been the subject of a series of publica-
tions in recent years using a spectral method, starting with the work of Hsu et al.
[32] for learning hidden Markov models (HMMs). The main technique used in
these publications consists of a singular value decomposition (SVD) of a Hankel
matrix. Balle and Mohri [11] further showed that spectral methods combined
with a constrained matrix completion algorithm can be used to learn arbitrary
WFAs (not necessarily probabilistic) from finite samples drawn according to a
distribution unrelated to the target WFA.

This paper surveys a number of key theoretical results and algorithms for
learning WFAs. In Section 2, we introduce the main definitions and notation
used throughout the paper. The notion of Hankel matrix turns out to play a
key role in the definition of several learning algorithms for WFAs. In Section 3,
we discuss several important properties of Hankel matrices and their use in the
reconstruction of WFAs. In Section 4, we use these results to describe three
algorithms for learning WFAs, as well as their theoretical guarantees.

2 Definitions and Properties

In this section, we briefly introduce some basic notions and notation related
to semirings and weighted automata needed for the discussion in the following
sections.
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2.1 Semirings

A weighted finite automaton (WFA) A is a finite automaton whose transitions
and states carry some weights. For various operations to be well defined, the
weights must belong to a semiring, that is a ring that may lack negation. More
formally, (S,⊕,⊗, 0, 1) is a semiring if (S,⊕, 0) is a commutative monoid with
identity element 0, (S,⊗, 1) is a monoid with identity element 1, ⊗ distributes
over ⊕, and 0 is an annihilator for ⊗, that is a ⊗ 0 = 0 ⊗ a = 0 for all a ∈ S.

As an example, (R+ ∪ {+∞},+,×, 0, 1) is a semiring called the probability
semiring. The semiring isomorphic to the probability semiring via the nega-
tive log is the system (R ∪ {−∞,+∞},⊕log,+,+∞, 0), where ⊕log is defined
by x ⊕log y = − log(e−x + e−y); it is called the log semiring. The semiring
derived from the log semiring via the Viterbi approximation is the system
(R ∪ {−∞,+∞},min,+,+∞, 0) and is called the tropical semiring. It is the
familiar semiring of shortest-paths algorithms.

A semiring is said to be commutative when the multiplicative operation ⊗ is
commutative. It is said to be idempotent if x ⊕ x = x for all x ∈ S. The Boolean
semiring and the tropical semiring are idempotent.

2.2 Weighted Automata

Given an alphabet Σ, we will denote by |x| the length of a string x ∈ Σ∗ and
by ε the empty string for which |ε| = 0.

The second operation of a semiring is used to compute the weight of a path
by taking the ⊗-product of the weights of its constituent transitions. The first
operation is used to compute the weight of any string x, by taking the ⊕-sum
of the weights of all paths labeled with x.

For a WFA A defined over a semiring (S,⊕,⊗, 0, 1), we denote by QA its
finite set of states and by EA its finite set of transitions, which are elements
of QA × Σ × S × QA.1 We will also denote by αA ∈ S

QA the vector of initial
weights, by βA ∈ S

QA the vector of final weights, and by wA[e] ∈ S the weight
of a transition e ∈ EA. More generally, we denote by wA[π] the weight of a path
π = e1 · · · en of A which is defined by the ⊗-product of the transitions weights:
wA[π] = wA[e1] ⊗ · · · ⊗ wA[en]. For any path π, we also denote by orig[π] its
origin state and by dest[π] its destination state.

It is sometimes convenient to define the set of initial states IA = {q ∈
QA : αA[q] �= 0} and similarly the set of final states FA = {q ∈ QA : βA[q] �= 0}.
A path from IA to FA is then said to be an accepting path.

A WFA A over an alphabet Σ defines a function mapping the set of strings
Σ∗ to S that is abusively also denoted by A and defined as follows:

∀x ∈ Σ∗, A(x) =
⊕

π∈PA(x)

(
αA[orig[π]] ⊗ wA[π] ⊗ βA[dest[π]]

)
,

1 All of our results can be straightforwardly extended to the case where EA is a
multiset, thereby allowing multiple transitions between the same two states with the
same labels and weights.
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Fig. 1. (a) Example of WFA A. Within each circle, the first number indicates the
state number, the second after the slash separator the initial weight and the third the
final weight. In particular, A(ab) = 1 × 3 × 4 × 1 + 3 × 3 × 4 × 1 + 4 × 1 × 1 × 1. (b)
Corresponding initial vector αA, final vector βA, and transition matrices Aa and Ab.

where PA(x) denotes the (finite) set of paths in A labeled with x. By convention,
A(x) = 0 when P (x) = ∅.

For any a ∈ Σ, let Aa ∈ S
QA×QA be the matrix [Aa]pq = ⊕e∈PA(p,a,q)wA[e],

where PA(p, a, q) is the set of transitions labeled with a from p to q. Then, (2.2)
can be equivalently written as follows in terms of matrices with entries in S:

∀x = x1 · · · xk ∈ Σ∗, A(x) = α�
AAx1 · · ·Axk

βA.

This is similar to the linear representation of recognizable formal power series
[52,40,16]. Figure 1 illustrates these definitions with a specific example of WFA.
The size of a WFA is denoted by |A| and defined as the sum of the number of
states and the number of transitions of A: |A| = |QA| + |EA|. In the absence of
any ambiguity, we will drop all A-subscripts in the definitions just presented.

3 Hankel Matrices and WFA Reconstruction Algorithms

A key algebraic tool used in the design of the learning algorithms we will present
is the notion of Hankel matrix. Thus, in this section, we present an extensive
analysis of Hankel matrices and their properties. We will show how sufficiently
informative finite sub-blocks of the Hankel matrix of a WFA can be used to
reconstruct a WFA.

From here on, we will assume that the semiring S is in fact a field. This
enables us to define the rank of a matrix with entries in S and devise effective
algorithms for solving linear systems with unknowns and coefficients in S. We
note, however, that some of the results stated in this section can be extended to
rings.

3.1 Definitions

Let H ∈ S
Σ∗×Σ∗

be an infinite matrix with rows and columns indexed by strings
in Σ∗. We denote by H(u, v) its entry with row index u ∈ Σ∗ and column index
v ∈ Σ∗. The following definitions are essential for the rest of the paper.
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Definition 1 (Hankel matrix). We will say that H is a Hankel matrix if
H(u, v) = H(u′, v′) for all u, u, v, v′ ∈ Σ∗ such that uv = u′v′ and will denote
by rank(H) the rank of H.

Definition 2 (Hankel matrix of a function). The Hankel matrix Hf of a
function f : Σ∗ → S (or formal series over S) is the matrix defined by Hf (u, v) =
f(uv), for all u, v ∈ Σ∗. Conversely, any Hankel matrix H defines a function
f : Σ∗ → S by setting f(u) = H(u, ε) for all u ∈ Σ∗ and thus H = Hf .

3.2 Hankel Matrices of Rational Functions

A function f : Σ∗ → S is said to be rational when it can be represented by
a WFA A, that is when f(x) = A(x) for all x ∈ Σ∗ [52,40,16]. The following
theorem of Fliess [28] (see also [20]) provides an important characterization of
rational functions in terms of the finiteness of rank(Hf ).

Theorem 1 (Fliess [28]). Let S be a field. Then, the rank of the Hankel matrix
Hf associated to a function f : Σ∗ → S is finite if and only if f is rational. In
that case, there exists a WFA A representing f with rank(Hf ) states and no
WFA representing f admits fewer states.

Thus, when rank(Hf ) < +∞, a WFA representing f with rank(Hf ) states
(|QA| = rank(HA)) is minimal. Note that this minimality is defined only in
terms of the number of states, unlike the notion of minimal deterministic WFA
[41,42]. In fact, such minimal WFAs often have a large number of transitions.

Proof. Suppose first that there exists a WFA A representing f . Then, for any
u, v ∈ Σ∗, we can write

f(uv) = A(uv) = (α�
AAu)(AvβA) . (1)

Observe that α�
AAu is a row vector in S

1×QA and AvβA a column vector in
S

QA×1. Let P be the matrix in S
Σ∗×QA defined by PA(u, ·) = α�

AAu for all
u ∈ Σ∗ and SA ∈ S

Σ∗×QA the matrix defined by SA(v, ·) = (AvβA)� for all
v ∈ Σ∗. Then, in view of (1), for all u, v ∈ Σ∗,

f(uv) = (α�
AAu)(AvβA) = (PAS�

A)(u, v) .

This proves that Hf = PAS�
A. Since PA and SA are in S

Σ∗×QA , the rank of Hf

is upper bounded by |QA|, the number of states of A, and is therefore finite.
Assume now that rank(Hf ) = n < +∞. For any v ∈ Σ∗, we denote

by Hf (·, v) the column of Hf indexed by v. Let (Hf (·, v1), . . . ,Hf (·, vn)) be
a basis for all columns. Then, there exist β1, . . . , βn ∈ S such that the col-
umn Hf (·, ε) can be expressed as Hf (·, ε) =

∑n
i=1 βiHf (·, vi). Since for all

w ∈ Σ∗, f(w) = H(ε, w) = H(w, ε) =
∑n

i=1 βiHf (w, vi), this implies that
f =

∑n
i=1 βiHf (·, vi). Now, for all i ∈ [1, n] and a ∈ Σ, the column Hf (·, avi)

can also be expressed in terms of the basis: there exist (γa
ji) such that Hf (·, avi) =∑n

j=1 γa
jiHf (·, vj). Let Aa be the matrix defined by (Aa)ji = (γa

ji). Then, we
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Fig. 2. Illustration of standardization. (a) WFA A defined over the field (R,+,×, 0, 1).
(b) WFA B obtained by standardization of A. In this instance, the first stage of
standardization leaves the WFA unchanged. In the second stage, state 3 is eliminated
since it is a linear combination of states 1 and 2 in the following sense: let f3 be the
function defined by setting state 3 to be the only initial state with initial weight 1, and
similarly with states 2 and 3, then, f3 = f1 − f2.

can show by induction on the length of w that for all w = a1 · · · ak ∈ Σ∗,
Hf (·, wvi) =

∑n
j=1(Aw)jiHf (·, vj), where Aw = Aa1 · · ·Aak

. Indeed, if the
equality holds for w1 and w2, then for w = w1w2 and for all u ∈ Σ∗ we have
Hf (u,wvi) = Hf (uw1, w2vi) and:

Hf (uw1, w2vi) =

n∑

j=1

(Aw2)jiHf (uw1, vj) =

n∑

j=1

(Aw2)jiHf (u,w1vj)

=

n∑

j=1

(Aw2)ji

n∑

k=1

(Aw1)kjHf (u, vk) =

n∑

k=1

(Aw1Aw2)kiHf (u, vk) .

Thus, for any w = a1 · · · ak ∈ Σ∗,

f(w) =
n∑

i=1

βiHf (ε, wvi) =
n∑

i=1

βi

n∑

j=1

(Aw)jiHf (ε, vj) = α�Aa1 · · ·Aak
β ,

where αj = Hf (ε, vj) and βj = βj for all j ∈ [1, n]. This proves that f can be
represented by a WFA with n = rank(Hf ) states. ��

3.3 Standardization of WFAs

Theorem 1 proves the existence of a minimal WFA for the representation of a
rational function f . In this section, we briefly describe an algorithm for comput-
ing a minimal WFA B from an input WFA A representing f . The first algorithm
for this problem is due to Schützenberger [54] (see also [53]) and is known as a
standardization of the representation of the linear representation of a rational
power series. A more efficient version of this algorithm was later given by Cardon
and Crochemore [19]. Here, we give a brief description of that algorithm.

The algorithm consists of first finding a basis (v1, . . . ,vm) of row vectors
in S

1×QA for the vector space generated by {α�
AAw : w ∈ Σ∗} such that for
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any j ∈ [1,m] and a ∈ Σ, vjAa is in span(v1, . . . ,vm). The basis can be
constructed incrementally by starting with v1 = α�

A and by augmenting the
current sequence of vectors (v1, . . . ,vt) as follows. For any j ∈ [1, t] and a ∈ Σ,
the vector w is chosen in span(v1, . . . ,vm,vjAa) such that if vjAa is linearly
dependent of (v1, . . . ,vt), then w = 0; otherwise, such that (v1, . . . ,vt,w) is
triangular modulo the order of components and vt+1 is set to w. Additionally,
the components of vjAa are computed with respect to (v1, . . . ,vt,w) when
w �= 0, with respect to (v1, . . . ,vt) otherwise. Testing the dependency of vjAa

with respect to (v1, . . . ,vt) and determining w such that (v1, . . . ,vt,w) be
triangular in the independent case can be done as in Gaussian elimination.
This helps define a WFA B′ equivalent to A and whose number of states is
dim(span({α�

AAw : w ∈ Σ∗})) = dim(span({α�
B′B

′
w : w ∈ Σ∗})). The compo-

nents of vjAa computed by the algorithm help define the transitions of B′. The
time complexity of the algorithm is in O(|Σ||QA|3) semiring operations since at
each iteration, the complexity of determining w is in O(|Σ||QA|2).

The second stage of the algorithm is symmetric. It consists of starting with B′

and constructing a WFA B whose number of states is dim(span({B′
wβB′ : w ∈

Σ∗})) = dim(span({BwβB : w ∈ Σ∗})). The second stage therefore coincides
with the first stage if we first reverse the WFA B′ and permute αB′ and
βB′ . Since |QAB

′| ≤ |QA|, the overall time complexity of the algorithm is in
O(|Σ||QA|3).

The two consecutive stages guarantee that the resulting WFA B is minimal.

3.4 Hankel Masks and Bases

A Hankel basis for an infinite Hankel matrix with finite rank essentially identifies
a finite sub-block of that matrix which contains as much information as the
infinite matrix itself. The existence of such bases is paramount for the design of
learning algorithms for WFAs. Here, we will prove the existence of Hankel bases,
provide bounds on their sizes, and briefly discuss the problem of finding one in
practice. We start by giving several definitions.

Definition 3 (Hankel Mask). Let P, S ⊆ Σ∗ be two subsets of the set of all
strings. Then, the pair B = (P, S) is called a Hankel mask. The elements of P
are called the prefixes and those of S the suffixes of the mask.

Definition 4 (Hankel sub-block). Let H ∈ S
Σ∗×Σ∗

be a Hankel matrix.
Given a Hankel mask B = (P, S), we write HB ∈ S

P×S to denote the Han-
kel sub-block of H with rows indexed by elements of P and suffixes indexed by
those of S. Thus, for all u ∈ P and v ∈ S we have HB(u, v) = H(u, v).

Observe that HB inherits from H the Hankel property. Furthermore, since HB

is a sub-block of H, we always have rank(HB) ≤ rank(H). This motivates our
next definition.

Definition 5 (Hankel basis). We say that the Hankel mask B = (P, S) is a
Hankel basis for H if rank(HB) = rank(H).
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Since the rank of a matrix is upper bounded by its dimensions, all Hankel masks
satisfy rank(HB) ≤ min{|P|, |S|}. The next result is an immediate consequence
of the definition of the rank of a Hankel matrix indicating that this bound is
attainable.

Proposition 1. Let H be a Hankel matrix with rank(H) = n. Then there exists
a Hankel basis B = (P, S) for H with |P| = |S| = n.

Definition 6 (Prefix-closed and suffix-closed sets). A subset W ⊆ Σ∗ is
prefix-closed if w = uv ∈ W implies u ∈ W. Similarly, W ⊆ Σ∗ is suffix-closed if
w = uv ∈ W implies v ∈ W. Note that if W is either prefix-closed or suffix-closed,
then it must contain ε.

The standardization procedure for WFA described in Section 3.3 provides
further information about the structure of minimal Hankel bases.

Proposition 2. Let H be a Hankel matrix with rank(H) = n. Then, there exists
a Hankel basis B = (P, S) for H with |P| = |S| = n, where P is prefix-closed and
S is suffix-closed.

Note that, given a string x ∈ Σ∗, there are exactly |x| + 1 decompositions
x = uv with u, v ∈ Σ∗. A direct consequence of this fact is that if W ⊆ Σ∗

is prefix-closed and has |W| = n, then |w| < n for every w ∈ W. The same
holds for suffix-closed sets. When combined with the previous proposition, this
observation yields a bound on how far in Σ∗ one needs to look in order to find
a Hankel basis for a Hankel matrix H with rank n.

Corollary 1. Let H be Hankel with rank(H) = n. Then B = (Σ<n, Σ<n) is a
Hankel basis for H.

3.5 WFA Reconstruction from Complete Minimal Masks

In this section, we describe the class of complete minimal Hankel masks, which
can be used to specify the information needed to solve a WFA reconstruction
problem via the Gaussian elimination algorithm in an arbitrary field. We describe
the reconstruction algorithm and show that if the given mask is a Hankel basis
for some Hankel matrix Hf , then the algorithm will reconstruct a minimal WFA
computing f .

Definition 7 (Hankel sub-blocks Ha and HΣ). Let B = (P, S) be a Hankel
mask in Σ∗. For every symbol a ∈ Σ, we define the Hankel mask Ba = (Pa, S),
where Pa = {ua : u ∈ P}. Given a Hankel matrix H, we will use the shorthand
Ha = HBa

∈ S
P×S. Note the entries of Ha satisfy Ha(u, v) = H(ua, v) for every

u ∈ P and v ∈ S. We denote by HΣ the block-matrix obtained by stacking together
the matrices Ha for all a ∈ Σ, that is H�

Σ = [H�
a1

· · · H�
ar

] if Σ = {a1, . . . , ar}.
Definition 8 (Complete and minimal Hankel masks). A Hankel mask
B = (P, S) is said to be complete for a Hankel matrix H if ε ∈ P ∩ S and
rank([H�

B | H�
Σ ]) = rank(H�

B). A complete Hankel mask B is minimal if
rank(HB) = |P|. Note this last condition implies |P| ≤ |S|.
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We now proceed to describe a WFA reconstruction algorithm that takes as
input a complete minimal Hankel mask B = (P, S) for a Hankel matrix H and
the corresponding Hankel sub-blocks HB and HΣ , and returns a WFA A with
k = |P| states. Let us write P = {u1, . . . , uk} and S = {v1, . . . , vk′} with u1 =
v1 = ε. First, let α�

A = [1, 0, . . . , 0] ∈ S
k and β�

A = [HB(u1, ε), . . . ,HB(uk, ε)] =
(HB(·, ε))�. Second, note that since B is complete and minimal we have
rank([H�

B | H�
a ]) = rank(H�

B) = k for every a ∈ Σ. Thus, by the Rouché–
Capelli theorem, for every a ∈ Σ there exists a unique Aa ∈ S

k×k such that
AaHB = Ha. Using the Gaussian elimination algorithm, each of these systems
of equations can be solved in O(k2(k′ + k)) arithmetic operations in S. Thus,
the arithmetic complexity of reconstructing a WFA A with |P| states from a
complete minimal basis B = (P, S) is in O(|Σ||P|2|S|) [30]. If, in addition to
being complete and minimal, the mask B is a Hankel basis for Hf , the above
procedure recovers a minimal WFA computing f .

Theorem 2. If B is a complete minimal Hankel basis for Hf , then the recon-
structed WFA A computes f and is minimal.

Proof. Let A′ be a minimal WFA computing f . Recall that A′ induces a rank
factorization Hf = PA′S�

A′ , which, when restricted to the Hankel basis B yields
a rank factorization HB = P′S′� and associated factorizations Ha = P′A′

aS
′�

for all a ∈ Σ. From these, using the fact that the transition weights of A satisfy
AaHB = Ha we get AaP′S′� = P′A′

aS
′�. Since P′ is invertible and S′ has full

column rank, this last equation implies Aa = P′A′
aP

′−1. A similar argument
with the initial and final weights shows that α = P′−1

α and β = P′β. Therefore,
we see that A and A′ compute the same function, and in particular A computes f .
Minimality is immediate by observing that A has |QA| = rank(HB) = rank(Hf )
states. ��

If the Hankel mask B = (P, S) is complete and minimal but not necessarily a
Hankel basis, then the function computed by A will not agree with f everywhere.
However, the next result shows that if P is prefix-free and S is suffix-free, then
A will agree with f on all strings in P({ε} ∪ Σ)S.

Theorem 3. Let B = (P, S) be a complete minimal Hankel mask for Hf . Sup-
pose that P is prefix-closed and S is suffix-closed. Then, the WFA A reconstructed
from HB and HΣ satisfies f(uv) = A(uv) and f(uav) = A(uav) for every u ∈ P,
v ∈ S, and a ∈ Σ.

Proof. Let k = rank(HB) = |P| and P = {u1, . . . , uk} with u1 = ε and |ui| ≤
|ui+1| for all i. Let HA = PAS�

A be the factorization induced by A. Let us write
PP ∈ S

P×k for the sub-block of PA containing the rows indexed by prefixes in
P. We claim that PP = I is the identity matrix. To see this, we will show that
for 1 ≤ i ≤ k we have PP(ui, ·) = e�

i , where ei is the ith indicator vector.
By construction of A, the case i = 1 holds since PP(ui, ·) = PA(ε, ·) = α� =

e�
1 . Now, suppose the claim is true for all 1 ≤ j ≤ i. Since |ui+1| ≥ |uj | for

all 1 ≤ j ≤ i and P is prefix-closed, we must have ui+1 = uja for some a ∈ Σ
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and 1 ≤ j ≤ i. Therefore, we have PP(ui+1, ·) = PA(uja, ·) = PA(uj , ·)Aa =
e�

j Aa = Aa(j, ·). Finally, we observe that because AaHB = Ha and Ha(uj , ·) =
HB(uja, ·) = HB(ui+1, ·), when solving the system of equations for Aa we will
obtain Aa(j, ·) = e�

i+1.
Now, let SS ∈ S

S×k denote the sub-block of SA corresponding to the suffixes
in S. By the previous claim, to show that A(uv) = f(uv) for all u ∈ P and all
v ∈ S it suffices to show that S�

S = HB. Let k′ = |S| and assume without loss of
generality that S = {v1, . . . , vk′} with v1 = ε and |vi+1|? ≥ |vi| for all i. Then for
i = 1 we immediately have SS(v1, ·) = SA(ε, ·) = β� = HB(·, ε)� = HB(·, v1)�

by the way β is constructed. Now, suppose we have SS(vj , ·) = HB(·, vj)� for
all 1 ≤ j ≤ i. Note we must have vi+1 = avj for some a ∈ Σ and some 1 ≤ j ≤ i.
Thus, we see that SS(vi+1, ·) = SA(avj , ·) = SA(vj , ·)A�

a = HB(·, vj)�A�
a =

Ha(·, vj)� = HB(·, avj)� = HB(·, vi+1)�.
To complete the proof it just remains to show that A(uav) = f(uav) =

Ha(u, v) for all u ∈ P, v ∈ S, and a ∈ Σ. This follows from the previous claims by
noting that A(uiav) = PP(ui, ·)AaSS(v, ·)� = e�

i AaHB(·, v) = e�
i Ha(·, v) =

Ha(ui, v). ��

3.6 WFA Reconstruction via Rank Factorizations

In this section, we show how a rank factorization of HB for a non-minimal
complete Hankel mask B can be used to reconstruct a WFA. The main difference
with the procedure presented in the previous sections is that here the number
of states of the resulting WFA is not tied to the number of prefixes |P| in the
mask, but to the rank of HB, which can be small, even if |P| is large.

Let B = (P, S) be a Hankel mask in Σ∗ with ε ∈ P∩S. Given a Hankel matrix
H, in addition to the matrices Ha = HBa

∈ S
Pa×S for a ∈ Σ introduced in the

previous section, we define vectors hP ∈ S
P and hS ∈ S

S with entries given by
hP(u) = H(u, ε) and hS(v) = H(ε, v). Note that the condition ε ∈ P ∩ S implies
that hP (resp. h�

S ) can be found as a column (resp. a row) in HB.
Suppose B is a complete Hankel mask and let k be the rank of HB,

rank(HB) = k. Then, HB admits a rank factorization HB = PBS�
B with

PB ∈ S
P×k and SB ∈ S

S×k. Such a rank factorization can be obtained using a
Gaussian elimination algorithm [30]. Next, we show how to use this rank factor-
ization in order to reconstruct a WFA A with k = |QA| states.

The algorithm proceeds by solving a series of systems of linear equations.
For the initial and final weights we find the unique solutions to SBαA = hP and
PBβA = hS. Note that αA exists and is unique since SB contains a basis of
linearly independent vectors for the column-span of HB and hP is a column of
HB. A similar argument holds for βA. For the transition weights associated with
a symbol a ∈ Σ, we use the unique solution to the system of linear equations
Ha = PBAaS�

B.
One way to solve this last system of equations — and to see that indeed it

admits a unique solution — is to recall that the equation for Aa is equivalent
to vec(Ha) = (SB ⊗K PB) vec(Aa), where ⊗K denotes the Kronecker product
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between matrices, and vec(M) the result of stacking the columns of M into a
single vector. Observe that the new system of equations admits k2 unknowns.
Its coefficients satisfy rank(SB ⊗K PB) = rank(SB) rank(PB) = k2 by a basic
property of Kronecker products, and rank([SB ⊗K PB| vec(Ha)]) = rank(SB ⊗K

PB) since the columns of Ha are linear combinations of the columns of PB

because the mask B is complete. Thus, by the Rouché–Capelli theorem, there
exists a unique solution for Aa. Furthermore, the solution can be found using
Gaussian elimination in O(|P||S|k2) arithmetic operations.

Overall, the cost of reconstructing the WFA A starting from a complete Han-
kel mask takes O(|Σ||P||S|k2) arithmetic operations. As in the previous section,
if, in addition to being complete, the mask B is a Hankel basis for some Hankel
matrix Hf , then the WFA recovered is a minimal automaton for f . The proof
of this result is almost identical to that of Theorem 2 and is omitted.

Theorem 4. If B is a complete Hankel basis for Hf , then the reconstructed
WFA A computes f and is minimal.

3.7 WFA Reconstruction from Noisy Hankel Matrices

In the two WFA reconstruction algorithms described in the previous sections,
we assumed that the Hankel sub-blocks used in the reconstruction procedure are
known exactly. However, that assumption is not realistic in practice, especially
when we are concerned with learning problems. We now describe a variation
of the WFA reconstruction algorithm from rank factorizations that works in
situations where the only available information are approximations to the Hankel
sub-blocks specified by a Hankel mask.

This procedure relies in a crucial manner on the computation of a singular
value decomposition (SVD), which is only possible for the real case S = R, the
complex case S = C, and, in general, in the case where S is a field obtained as the
intersection of real closed fields [48]. Since S = R is the case which occurs more
frequently in applications, and is also a case for which efficient SVD algorithms
are widely available, we will present the algorithm in this section only for this
case. The ideas can be straightforwardly generalized to other fields admitting an
SVD.

As before, we will assume that the algorithm is given as input an arbitrary
Hankel mask B = (P, S). The difference is that here, instead of the exact versions
of the matrices and vectors HB, Ha, hP, and hS that represent sub-blocks of
some Hankel matrix H, the algorithm will only have access to approximate
versions of these objects. For example, we are given a matrix ĤB ∈ R

P×S such
that ĤB = HB + EB, where EB ∈ R

P×S is a noise matrix. Likewise, where are
given Ĥa = Ha + Ea for every a ∈ Σ, ĥP = hP + eP, and ĥS = hS + eS.

The important point to note here is that even if HB has small rank, say
rank(HB) = k ≤ rank(H) = n, its approximation ĤB may have a much larger
rank, and thus, in this case, the straightforward rank factorization approach
will yield a large WFA which does not necessarily resemble the one we would
recover had we had access to the exact versions of HB and the other matrices.



12 B. Balle and M. Mohri

For example, if the error matrix EB is in generic position, or random, then HB

will have full rank.
Thus, the question is now how to use these matrices to reconstruct a WFA

with less states than rank(ĤB), and that ideally resembles the one we would
obtain in the exact case if the amount of noise is small. The key to the solution
consists of using an SVD and replace the rank factorization in the previous WFA
reconstruction algorithm by a low rank approximation of ĤB.

Now we proceed to describe the first steps of the algorithm. As input it
receives the Hankel mask B, the number of states k′ that the output WFA must
have, and the approximated Hankel sub-blocks described above. We start by
computing the SVD of ĤB and using it to obtain the best rank k′ approximation
ĤB ≈ ÛD̂V̂�, where D̂ = diag(ŝ1, . . . , ŝk′) is a diagonal matrix containing the
top k′ singular values of ĤB, and Û ∈ R

P×k′
and V̂ ∈ R

S×k′
contain the

associated left and right singular vectors respectively. With this notation, one
can see that now P̂B = ÛD̂ and ŜB = V̂ provide a rank factorization P̂BŜB of
the best rank k′ approximation to ĤB.

The next natural step in the algorithms would be to solve the following
systems of linear equations in order to reconstruct a WFA: ŜBα̂ = ĥP, P̂Bβ̂ =
ĥS, and (ŜB ⊗K P̂B) vec(Âa) = vec(Ĥa) for every a ∈ Σ. There is, however, an
obstruction to the direct application of this strategy in this case: these equations
are no longer guaranteed to admit a unique solution. Due to the errors in the
Hankel sub-blocks introduced by the approximation, these equations might now
be unsatisfiable or not admit a unique solution. Thus, we will follow a least-
squares approach and look for a solution to these equations that minimizes the
norm of the residual. A way to express these solutions in closed-form is via
the Moore–Penrose pseudo-inverse M+ ∈ R

d2×d1 of a matrix M ∈ R
d1×d2 . In

particular, given a linear system of equations Mx = b the pseudo-inverse yields
a solution x = M+b that satisfies the equation if it is satisfiable, and that
minimizes the error ‖Mx − b‖ otherwise.

Now we proceed to describe the rest of the algorithm, which essentially
applies this strategy to solve the linear systems given above. For the initial and
final weights this yields α̂ = Ŝ+

BĥP and β̂ = P̂+
BĥS. In our case, these are easy to

compute because by properties of the pseudo-inverse it can be shown that P̂+
B =

(ÛD̂)+ = D̂−1Û� and Ŝ+
B = V̂+ = V̂�. For the transition weights, a short alge-

braic calculation shows that (ŜB ⊗K P̂B)+ = (Ŝ+
B ⊗K P̂+

B) = (V̂� ⊗K D̂−1Û�).
Substituting into vec(Âa) = (ŜB⊗KP̂B)+ vec(Ĥa) and applying the equivalence
between vectorized and unvectorized systems of linear equations, we obtain the
expression Âa = D̂−1Û�ĤaV̂.

Overall, the complexity of this process is dominated by the low-rank
SVD computation, which takes O(|P||S|k′) arithmetic operations. Hence, the
arithmetic complexity of computing the WFA Â with k′ states given by α̂, β̂,
and Âa for a ∈ Σ, is in O(|Σ||P||S|k′).

The main result of this section is a bound on the sensitivity of this algorithm
to the magnitude of the noise. To make this more precise, we need two ingre-
dients. The first is a precise way to quantify the error in the approximations.
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Different choices lead to slightly different results, but in order to illustrate the
point we will simply use the Euclidean norm for vectors and the Frobenius
norm for matrices. Thus, we will define εB = ‖EB‖F , εa = ‖Ea‖F for every
a ∈ Σ, εP = ‖eP‖2, and εS = ‖eS‖2. For convenience we will also write
ε = max{εB, εa1 , . . . , εar

, εP, εS}. The second ingredient is to determine what
would the output of the algorithm be if the input had no noise. For that pur-
pose, let us assume that k′ = rank(HB) = k and ε = 0. In that case, we
have ĤB = HB and the SVD of rank k yields an exact rank factorization
HB = PS� = (UD)(V)�. Thus, the algorithm returns a WFA with k states
given by α = V�hP, β = D−1U�hS, and Aa = D−1U�HaV, where we
dropped the hat notation to indicate that we are in the case ε = 0. For this
automaton, a direct application of Theorem 4 yields the following result, which
shows that this is essentially a generalization of the WFA reconstruction algo-
rithm based on rank factorizations.

Corollary 2. Suppose k′ = rank(HB) and ε = 0. If B is a complete basis for
Hf , then the reconstructed WFA A computes f and is minimal.

The most important result about the WFA reconstructions algorithm based
on SVD is the following, which bounds the error between the noisy and the
noiseless cases.

Theorem 5. Suppose k′ = rank(HB). Let A denote the WFA obtained in the
case ε = 0 and Â the WFA obtained in the noisy case. Then, the following
approximation guarantee holds as ε → 0:

Δ = max{‖α − α̂‖2, ‖β − β̂‖2, ‖Aa1 − Âa1‖F , . . . , ‖Aar
− Âar

‖F } = O(ε).

The proof of this results is technical and goes beyond the scope of the present
survey. Essentially, it involves a detailed analysis using perturbation theory for
singular values and vectors (see [9, Chapter 5] for details).

4 Algorithms for Learning WFAs

In this section, we show how the reconstruction techniques described in the pre-
vious section can be used in the design of algorithms for learning WFAs. We
describe three WFA learning algorithms, each designed for a different learning
scenario. The scenarios mainly differ by the way the data about the target func-
tion f : Σ∗ → S is gathered: exact learning from membership and equivalence
queries (Section 4.1), PAC learning (Probably approximately correct learning) of
a probability distribution represented by a WFA from i.i.d. samples (Section 4.2),
and statistical learning of WFA from general string–label pairs (Section 4.3).

We also present learning guarantees in each case, thereby showcasing an
important trade-off between degree of fidelity of the information collected versus
quality of the learned WFA with respect to a target automaton or distribution.
Of the three scenarios, only the first one can learn WFA over an arbitrary field
S; in the other two scenarios we restrict ourselves only to the case S = R.
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4.1 Learning WFAs From Queries

In this section, we describe an algorithm for learning WFAs defined over an
arbitrary field S. The algorithm was first presented in [14] for the special case
S = Q and later generalized to arbitrary fields in [15]. It can be interpreted as
a direct generalization of Angluin’s classical algorithm for learning DFAs from
membership and equivalence queries [5] and can be further applied to other
learning problems (see [12,13]).

The learning scenario for this algorithm coincides with the active learning
scenario defined and adopted by Angluin [5] for learning (unweighted) automata.
In this scenario, given a target rational function f : Σ∗ → S the learner can make
the following two types of queries to which an oracle responds:

– membership queries MQf : the learner requests the target value f(w) of a
string w ∈ Σ∗ and receives that value;

– equivalence queries EQf : the learner conjectures a WFA A; he receives the
response yes if f can be computed by A, a counter-example w ∈ Σ∗ with
f(w) �= A(w) otherwise.

The objective of the learner is to determine exactly a WFA A representing f . We
will denote by n the unknown rank of the Hankel matrix of f , n = rank(Hf ).

The main idea behind the algorithm is to build a complete minimal Hankel
basis B for Hf , fill the associated Hankel sub-blocks HB and HΣ by making a
series of calls to MQf , and then reconstruct the corresponding WFA using the
Gaussian elimination algorithm described in Section 3.5. In order to find such
a basis B several intermediate complete minimal Hankel masks are considered.
For each, the corresponding WFA is reconstructed using information collected
from membership queries, and the counter-examples supplied by the equivalence
queries used to extend the current Hankel mask.

Given two bases B = (P, S) and B′ = (P′, S′), we will write in short B ⊆ B′

for P ⊆ P′ and S ⊆ S′. The algorithm constructs a sequence of complete minimal
Hankel masks B0 ⊆ B1 ⊆ · · · ⊆ Bd, where the last mask Bd is a Hankel basis
for Hf . At each step, the inequality rank(HBi+1) > rank(HBi

) holds, which
guarantees that the total number of iterations is at most d ≤ n. The starting
mask is B0 = ({ε}, {ε}), which is clearly a complete and minimal mask.

The main inductive step is given by the following procedure. First, given
Bi = (Pi, Si) with i ≥ 0, the algorithm reconstructs a WFA Ai by filling
the corresponding Hankel sub-blocks using calls to MQf and then applying the
reconstruction algorithm of Section 3.5. Second, it makes an equivalence query
EQf (Ai). If the answer is yes, the algorithm terminates. Otherwise, it receives a
counter-example w ∈ Σ∗ such that Ai(w) �= f(w). This is used to build the new
Hankel mask Bi+1 = (Pi+1, Si+1) as follows:

1. find a decomposition w = uav where u is the longest prefix of w in Pi;
2. let Si+1 = Si ∪ suffs(v), where suffs(v) is the set of all suffixes of v;
3. starting from Pi+1 = Pi, and while rank([H�

Bi+1
| H�

Σ ]) > s rank(HBi+1),
keep adding to Pi+1 prefixes ua ∈ Pi+1Σ such that rank([H�

Bi+1
| Ha(u, :

)�]) = rank(HBi+1) + 1.
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Note the resulting mask Bi+1 is complete by construction and minimal because
only prefixes that increase the rank of HBi+1 are added to Pi+1. Also note
that the algorithm maintains the property that Pi is prefix-closed and Si suffix-
closed. It is clear that if the algorithm terminates, it returns the correct answer.
To prove that the algorithm terminates it suffices to show that at each iteration
the inequality |Pi+1| > |Pi| holds since this will guarantee that at each iteration
the rank of HBi

increases. Since this rank can be at most n = rank(Hf ), and
since whenever rank(HBi

) = rank(Hf ) Bi is a complete minimal Hankel basis,
Theorem 2 then shows that the WFA Ai computes f . The termination of the
algorithm is guaranteed by the following result.

Lemma 1. Let B′
i = (Pi, Si+1), where Si+1 is the set of suffixes obtained after

processing the counter-example w received from the (i + 1)th call to EQf . Then,
the following inequality holds: rank([H�

B′
i
| H�

Σ ]) > rank(H�
B′

i
).

Proof. Suppose that rank([H�
B′

i
| H�

Σ ]) = rank(H�
B′

i
) and let A′

i be the WFA
reconstructed from B′

i by the algorithm in Section 3.5. Since Bi and B′
i share

the same prefixes, both are minimal and complete, and Si ⊆ Si+1, then Ai and
A′

i must compute the same function. Thus, we have f(w) �= Ai(w) = A′
i(w).

On the other hand, w = uav with u ∈ Pi and v ∈ Si+1. Thus, in the matrix
Ha used to reconstruct A′

i we have Ha(u, v) = f(w), and by Theorem 3 it
holds that A′

i(w) = f(w). We conclude by contradiction that rank([H�
B′

i
|H�

Σ ]) >

rank(H�
B′

i
). ��

We can now bound the number of queries made by the algorithm. First
observe that the number of calls to EQf is O(n) since one such call is made for
each of the d+1 Hankel masks. To bound the number of calls to MQf , note that
since we have Bi ⊆ Bi+1 for each i, at each stage most of the queries needed
to fill HBi+1 have already been asked in previous iterations. Thus, it suffices to
count the number of MQf queries needed to fill the matrices corresponding to
the last Hankel mask Bd = (Pd, Sd). This number is clearly (|Σ| + 1)|Pd||Sd|.

Let L denote the length of the longest counter-example returned by the suc-
cessive calls to EQf , we have |Sd| ≤ 1 + dL. This, combined with |Pd| = n, shows
that the total number of calls to MQf is in O(|Σ|n2L). Note that this complexity
is not optimal: [17] give an improved technique for processing counter-examples
that yields an algorithm making only O(|Σ|n2 log(L)) calls to MQf .

4.2 Learning Stochastic WFAs from I.I.D. Samples

A stochastic WFA is a WFA computing a probability distribution. In this section,
we consider the problem of learning a stochastic WFA and therefore assume that
S = R. The learning scenario commonly adopted for stochastic WFAs is one
where the learner receives a finite set of strings sampled i.i.d. from the target
stochastic WFA. The objective of the learner is to use this training sample to
learn a WFA computing a function close the target distribution with respect to
some measure of accuracy.
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In this section, we present an algorithm for this problem which consists of
first using the training sample to estimate a sub-block of the Hankel matrix of
the target WFA, and next of using the algorithm described in Section 3.7 to
reconstruct a WFA based on those estimates. Several variants of this algorithm
can be found in the literature, including [33,7] for the first such algorithms
based on SVD, [10] for variants using prefix and substring statistics, and [6,9]
for detailed analyses and further references.

A stochastic WFA over Σ is one that computes a probability distribution
over Σ∗, that is, a WFA A with A(w) ≥ 0 for all w ∈ Σ∗ and

∑
w∈Σ∗ A(w) =

1. Probabilistic automata with stopping probabilities or absorbing states are
typical examples of stochastic WFAs in this class (see [57,24] for a discussion
of the relations between different finite-state machines computing probability
distributions).

Let A be a fixed unknown target stochastic WFA A. We assume that the
learning algorithm receives a sample S = (w1, . . . , wm) ∈ (Σ∗)m of m strings
sampled i.i.d. from the distribution computed by A. In addition to S, the algo-
rithm receives the alphabet Σ, a number of states n that the output automaton
should have, and a finite Hankel mask B = (P, S) with n ≤ min{|P|, |S|}.

The first step of the algorithm is to compute empirical estimates of the matri-
ces and vectors required by the SVD-based WFA reconstruction algorithm of
Section 3.7: ĤB, Ĥa for a ∈ Σ, ĥP, and ĥS. This is done by assigning to each
entry in these matrices and vectors the relative frequency of the corresponding
string in the sample S = (w1, . . . , wm). For example, for u ∈ P and v ∈ S the
algorithm sets

ĤB(u, v) =
1
m

m∑

i=1

I[wi = uv] .

The same is done for Ĥa, ĥP, and ĥS. These approximations are then used by
the WFA reconstruction algorithm to obtain an automaton Â with n states.

The empirical probabilities used in the estimations of the Hankel sub-blocks
converge to the true probabilities as m → ∞. One can also expect that the differ-
ence between the unknown probability distribution f and the function computed
by Â decreases as m increases. The next theorem gives a stronger guarantee
which holds for finite samples, as opposed to a result holding in the limit. It is
a probably approximately correct (PAC) learning guarantee: for a sample size m
polynomial in the size of the 1/ε where ε is the precision sought, log(1/δ) where
δ is the confidence parameter and several other parameters including 1/sn(HB)
where sn(HB) is the singular value of HB and the string length L, the WFA Â

returned by the algorithm is ε-close to f for the norm-1 over the set of strings
of length at most L.

Theorem 6. Let ε > 0. Then, for any δ ∈ (0, 1), with proba-
bility at least 1 − δ over the draw of a sample S of size m ≥
p(|Σ|, n, |P|, |S|, 1/sn(HB), L, 1/ε, log(1/δ)) from the (target) probability distri-
bution f , where p is a polynomial, the WFA Â returned by the algorithm after
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receiving S, a complete Hankel basis B = (P, S) for Hf and n = rank(Hf )
verifies the following inequality:

∑

w∈Σ≤L

|f(w) − Â(w)| ≤ ε .

The proof of this result admits three components: Theorem 5, a concentration
bound for the estimates ĤB, and a bound relating accuracy in transition weights
between A and Â to accuracy in the function they compute (see [33,6,9] for
detailed proofs).

4.3 Learning WFAs from String–Value Pairs

In this section, we present an algorithm for learning WFAs in a more general
scenario than the previous ones. This scenario was first introduced in [11]. The
learning algorithm for WFAs described here is also due to [11].

Here, as in the standard supervised learning, the learner receives a labeled
sample S = ((w1, y1), . . . , (wm, ym)) ∈ (Σ∗ × S)m containing m string–value
pairs (wi, yi) ∈ Σ∗ × S, drawn i.i.d. according to some unknown distribution
D. The learning problem consists of finding a WFA A with small expected loss,
that is with small E(w,y)∼D[
(A(w), y)], where 
 is a loss function defined over
semiring pairs. We will consider again here the case S = R. The problem is then
an instance of a regression learning problem. The loss function 
 : R×R → R+ is
used to measure the closeness of the labels. Some common choices for 
 are the
quadratic loss defined for all y, y′ ∈ R by 
2(y, y′) = (y − y′)2 and the absolute
loss defined by 
1(y, y′) = |y − y′|.

Note that in this formulation we did not assume that the labels y in pairs
(x, y) drawn from D are computed by some WFA. Thus, in learning-theoretic
terms, we consider an agnostic setting.

Note also that one could find a WFA A consistent with the labeled sample,
that is such that A(wi) = yi for all i ∈ [1,m]. But, such a WFA could be large and
might not benefit from a favorable expected loss. Furthermore, it was recently
shown in [39] that the problem of finding the smallest WFA A consistent with
the labeled sample is computationally hard.

A WFA minimizing the empirical loss 1
m

∑m
i=1 
(A(wi), yi) could overfit the

training sample and typically would not benefit from favorable learning guaran-
tees unless it is selected out of a less complex sub-family of WFAs. The algorithm
we describe here avoids overfitting by constraining the choice of a WFA in two
ways: by restricting the number of states, and by controlling the norm of a
certain Hankel matrix.

The algorithm works in two stages. In the first stage, the sample S is used
to find a sub-block of a Hankel matrix on a given mask. The second stage uses
this Hankel block to reconstruct a WFA with a given number of states using the
SVD-based method from Section 3.7. The algorithm receives as input the sample
S, the alphabet Σ, a Hankel mask B = (P, S) with ε ∈ P∩ S, a number of states
k ≤ min{|P|, |S|}, a convex loss function 
 : R × R → R+, and a regularization
parameter λ > 0.
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The first stage builds a basis B′ = (P′, S) with P′ = P ∪ PΣ and a modified
sample S′ containing only those (wi, yi) ∈ S such that wi ∈ P′S. Then, the
algorithm solves the convex optimization problem

ĤB′ ∈ argmin
H∈HB′

1
|S′|

∑

(w,y)∈S′

(H(w), y) + λ‖H‖∗ ,

where HB′ denotes the set of all Hankel matrices H ∈ R
P′×S, H(w) denotes

H(u, v) for some arbitrary decomposition w = uv with u ∈ P and v ∈ S, and
where ‖H‖∗ denotes the nuclear norm of H defined as the sum of the singular
values of H.

The second stage of the algorithm starts by extracting from ĤB′ the Hankel
sub-blocks associated with the Hankel mask B: ĤB, Ĥa for a ∈ Σ, hP, and hS.
Then, it uses the SVD-based WFA reconstruction algorithm of Section 3.7 to
obtain a WFA Â with k states.

The design of the algorithm, and in particular the choice of the nuclear
norm as a regularization term for finding the Hankel matrix ĤB′ is supported
by several properties. First, the nuclear norm is a convex surrogate for the rank
function commonly used in machine learning algorithms [27]. By Theorem 1, low-
rank Hankel matrices correspond to WFAs with small numbers of states, thus
it favors the selection of smaller WFAs by the algorithm. A second justification
is given by the following theorem, which provides a guarantee for learning with
WFAs in terms of the nuclear norm of the associated Hankel matrix.

Let M > 0 and define τM : R → R as the function defined by τM (y) =
sign(y)M if |y| > M , τM (y) = y otherwise. Let S = ((w1, y1), . . . , (wm, ym)) ∈
(Σ∗ × R)m. Given a decomposition wi = uivi, for any 1 ≤ i ≤ m, we define
US = maxu∈Σ∗ |{i : ui = u}| and VS = maxv∈Σ∗?|{i : vi = v}|. A measure of the
complexity of S that will appear in the next theorem is WS = min max{US , VS},
where the minimum is taken over all possible decompositions of the strings wi

in S. For any R > 0, let FR denote the following class of functions

FR = {f(w) = τM (A(w)) : A WFA, ‖Hf‖∗ ≤ R} .

The following gives a learning bound for the algorithm just discussed.

Theorem 7. Let 
1 denote the absolute loss. Assume that there exists M > 0
such that P(w,y)∼D[|y| ≤ M ] = 1. Then, for any δ > 0, with probability at least
1−δ over the draw of an i.i.d. sample S of size m from D, the following inequality
holds simultaneously for all f ∈ FR:

E
(w,y)∼D

[
1(f(w), y)] ≤ 1
m

m∑

i=1


1(f(wi), yi) + 3M

√
log(2δ )

2m

+ O

(
R

(
log(m + 1) +

√
WS log(m + 1)

)

m

)
.
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A similar result was first proven in [11] using a Frobenius norm regularizer
instead of a nuclear norm. The analysis in [11] was based on a stability argument,
and it is not clear how to extend it to the nuclear norm case, which is known to
perform better than the Frobenius norm in some applications [51]. Theorem 7 is
proven using a Rademacher complexity analysis of WFAs recently given by [8].

5 Conclusion

We presented a detailed survey of modern algorithms for learning WFAs. We
highlighted the key role played by the notion of Hankel matrix and its proper-
ties in the design of these learning algorithms which are designed for different
scenarios. These properties and the algorithms we described could inspire other
variants of these algorithms as well as other algorithms.
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