
Andreas Maletti (Ed.)

 123

LN
CS

 9
27

0

6th International Conference, CAI 2015
Stuttgart, Germany, September 1–4, 2015
Proceedings

Algebraic Informatics

Lecture Notes in Computer Science 9270

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Andreas Maletti (Ed.)

Algebraic Informatics
6th International Conference, CAI 2015
Stuttgart, Germany, September 1–4, 2015
Proceedings

123

Editor
Andreas Maletti
Institut für Maschinelle Sprachverarbeitung
University of Stuttgart
Stuttgart
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-23020-7 ISBN 978-3-319-23021-4 (eBook)
DOI 10.1007/978-3-319-23021-4

Library of Congress Control Number: 2015947117

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at the 6th International Conference on
Algebraic Informatics (CAI 2015), which was held September 1–4, 2015, in Stuttgart,
Germany.

The conference covers a wide range of algebraic topics relevant to computer science
ranging from weighted logics and automata to cryptography. This volume contains the
15 regular papers that the Program Committee decided to accept together with the
contributions from four keynote speakers. In total, 25 submissions were reviewed by at
least three Program Committee members, i.e., 60% of the submissions. The Program
Committee consisted of 18 leading international researchers covering the wide spec-
trum of topics represented by the conference.

CAI 2015 was the sixth conference in the series, which was started by Symeon
Bozapalidis (Greece) in 2005. Besides CAI 2005, the second and third conferences
(2007 and 2009) were held in Thessaloniki (Greece) under the auspices of Symeon
Bozapalidis and George Rahonis. Franz Winkler organized the fourth conference in
Linz (Austria) and CAI 2013 was held on Porquerolles Island (France) organized by
Traian Muntean, Dimitrios Poulakis, and Robert Rolland. The sixth entry in the series
was graciously awarded to Stuttgart by the international Steering Committee.

First and foremost, I would like to thank the Steering Committee for awarding CAI
2015 to Stuttgart. The Program Committee assisted by the external reviewers worked
hard to assess the quality of the submitted papers. My wholehearted thanks to them,
and I fully appreciate their commitment to the conference. In addition, I want to express
my deepest gratitude to the keynote speakers Volker Diekert, Jarkko Kari, Werner
Kuich, and Mehryar Mohri for sharing their insights and presenting their contributions
at CAI 2015. The local organization team consisting of Fabienne Braune, Sybille
Laderer, Daniel Quernheim, and Nina Seemann worked tirelessly to create an enjoy-
able meeting experience, and I could not have organized the conference without them.
I applaud their efforts. EasyChair, true to their name, made the paper collection,
reviewing, and publication process as easy as possible and the team at Springer made
sure that you can hold these proceedings in your hands today. Last, but not least, I want
to thank the German Research Foundation grant MA 4959/1-1, which provided
financial assistance to the conference.

June 2015 Andreas Maletti

Organization

Program Committee

Symeon Bozapalidis Aristotle University of Thessaloniki, Greece
Fabienne Braune University of Stuttgart, Germany
Bruno Courcelle University of Bordeaux, France
Frank Drewes Umeå University, Sweden
Manfred Droste Universität Leipzig, Germany
Tero Harju University of Turku, Finland
Gregory Kucherov University of Paris-Est, Marne-la-Vallée, France
Sybille Laderer University of Stuttgart, Germany
Andreas Maletti University of Stuttgart, Germany
Traian Muntean Aix-Marseille Université, France
Alexander Okhotin University of Turku, Finland
Friedrich Otto Universität Kassel, Germany
Jean Eric Pin CNRS and Université Paris 7, France
Daniel Quernheim University of Stuttgart, Germany
George Rahonis Aristotle University of Thessaloniki, Greece
Robert Rolland Aix-Marseille Université, France
Kai Salomaa Queen’s University, Kingston, ON, Canada
Nina Seemann University of Stuttgart, Germany
Heiko Vogler Technische Universität Dresden, Germany
Mikhail Volkov Ural Federal University, Yekaterinburg, Russia
Franz Winkler J. Kepler Universität, Linz, Austria
Zoltán Ésik University of Szeged, Hungary

Additional Reviewers

Ananichev, Dmitry
Augot, Daniel
Carayol, Arnaud
Cho, Dajung
Choudhury, Salimur
Heller, Pavel
Ionica, Sorina
Iván, Szabolcs
Kuske, Dietrich
Lugiez, Denis
Mandrali, Eleni
Messerschmidt, Hartmut

Naehrig, Michael
Noll, Thomas
Paperman, Charles
Poulakis, Dimitrios
Rück, Hans-Georg
Schneider, Martin
Schröder, Lutz
Staton, Sam
Strüngmann, Lutz
Tarannikov, Yuriy
Van Der Merwe, Brink
Verma, Rakesh

Contents

Learning Weighted Automata . 1
Borja Balle and Mehryar Mohri

More Than 1700 Years of Word Equations . 22
Volker Diekert

An Algebraic Geometric Approach to Multidimensional Words 29
Jarkko Kari and Michal Szabados

Why We Need Semirings in Automata Theory (Extended Abstract). 43
Werner Kuich

Unbordered Pictures: Properties and Construction . 45
Marcella Anselmo, Dora Giammarresi, and Maria Madonia

Effective Invariant Theory of Permutation Groups
Using Representation Theory . 58

Nicolas Borie

On Differential Uniformity of Maps that May Hide an Algebraic Trapdoor 70
Marco Calderini and Massimiliano Sala

On the Lower Block Triangular Nature of the Incidence Matrices
to Compute the Algebraic Immunity of Boolean Functions. 79

Deepak Kumar Dalai

Weighted Unranked Tree Automata over Tree Valuation Monoids
and Their Characterization by Weighted Logics . 90

Manfred Droste, Doreen Heusel, and Heiko Vogler

A New Partial Key Exposure Attack on Multi-power RSA. 103
Muhammed F. Esgin, Mehmet S. Kiraz, and Osmanbey Uzunkol

A Chomsky-Schützenberger Theorem for Weighted Automata with Storage . . . 115
Luisa Herrmann and Heiko Vogler

EF?EX Forest Algebras . 128
Andreas Krebs and Howard Straubing

On Near Prime-Order Elliptic Curves with Small Embedding Degrees 140
Duc-Phong Le, Nadia El Mrabet, and Chik How Tan

http://dx.doi.org/10.1007/978-3-319-23021-4_1
http://dx.doi.org/10.1007/978-3-319-23021-4_2
http://dx.doi.org/10.1007/978-3-319-23021-4_3
http://dx.doi.org/10.1007/978-3-319-23021-4_4
http://dx.doi.org/10.1007/978-3-319-23021-4_5
http://dx.doi.org/10.1007/978-3-319-23021-4_6
http://dx.doi.org/10.1007/978-3-319-23021-4_6
http://dx.doi.org/10.1007/978-3-319-23021-4_7
http://dx.doi.org/10.1007/978-3-319-23021-4_8
http://dx.doi.org/10.1007/978-3-319-23021-4_8
http://dx.doi.org/10.1007/978-3-319-23021-4_9
http://dx.doi.org/10.1007/978-3-319-23021-4_9
http://dx.doi.org/10.1007/978-3-319-23021-4_10
http://dx.doi.org/10.1007/978-3-319-23021-4_11
http://dx.doi.org/10.1007/978-3-319-23021-4_12
http://dx.doi.org/10.1007/978-3-319-23021-4_13

Key-Policy Multi-authority Attribute-Based Encryption 152
Riccardo Longo, Chiara Marcolla, and Massimiliano Sala

Extended Explicit Relations Between Trace, Definition Field,
and Embedding Degree . 165

Atsuko Miyaji, Xiaonan Shi, and Satoru Tanaka

Complexity of Uniform Membership of Context-Free Tree Grammars 176
Johannes Osterholzer

Attacking BEAR and LION Schemes in a Realistic Scenario 189
Matteo Piva, Marco Pizzato, and Massimiliano Sala

Weighted Restarting Automata and Pushdown Relations 196
Qichao Wang, Norbert Hundeshagen, and Friedrich Otto

Equivalence Checking Problem for Finite State Transducers
Over Semigroups . 208

Vladimir A. Zakharov

Author Index . 223

VIII Contents

http://dx.doi.org/10.1007/978-3-319-23021-4_14
http://dx.doi.org/10.1007/978-3-319-23021-4_15
http://dx.doi.org/10.1007/978-3-319-23021-4_15
http://dx.doi.org/10.1007/978-3-319-23021-4_16
http://dx.doi.org/10.1007/978-3-319-23021-4_17
http://dx.doi.org/10.1007/978-3-319-23021-4_18
http://dx.doi.org/10.1007/978-3-319-23021-4_19
http://dx.doi.org/10.1007/978-3-319-23021-4_19

Learning Weighted Automata

Borja Balle1 and Mehryar Mohri2,3(B)

1 School of Computer Science, McGill University, Montréal, Canada
2 Courant Institute of Mathematical Sciences, New York, NY, USA

mohri@cs.nyu.edu
3 Google Research, New York, NY, USA

1 Introduction

Weighted finite automata (WFA) are finite automata whose transitions and
states are augmented with some weights, elements of a semiring. A WFA induces
a function over strings. The value it assigns to an input string is the semiring sum
of the weights of all paths labeled with that string, where the weight of a path is
obtained by taking the semiring product of the weights of its constituent tran-
sitions, as well as those of its origin and destination states. The mathematical
theory behind WFAs, that of rational power series, has been extensively studied
in the past [26,52,40,16] and has been more recently the topic of a dedicated
handbook [23]. WFAs are widely used in modern applications, perhaps most
prominently in image processing and speech recognition where the terminology
of weighted automata seems to have been first introduced and made popular
[34,43,49,41,44], in several other speech processing applications such as speech
synthesis [55,1], in phonological and morphological rule compilation [35,36,47], in
parsing [45], bioinformatics [25,2], sequence modeling and prediction [22], formal
verification [3], in optical character recognition [18], and in many other areas.

These applications, as well as a number of theoretical questions, have strongly
motivated the problem of learning WFAs, that is that of finding a WFA closely
estimating a semiring-valued target function, using for training a finite sample of
strings labeled with their target values. This problem has a rich history since its
simpler instances date back to the origins of computer science. We will therefore
discuss only briefly some of the key results of the literature.

A special instance of this problem is that of learning (unweighted) finite
automata, which coincide with WFAs defined over the Boolean semiring. A
series of negative results are known for this problem when the target itself is
a finite automaton and when the complexity criterion used is the size of the
automaton learned. In particular, the problem of finding a consistent determin-
istic finite automaton (DFA) of minimum size was shown to be NP-hard by Gold
[29]. This result was later extended by Angluin [4]. Pitt and Warmuth [50] fur-
ther strengthened these results by showing that even an approximation within a
polynomial function of the size of the smallest consistent automaton is NP-hard.
Their hardness results apply also to the case where prediction is made using
non-deterministic finite automata (NFA) (see also [21]). Kearns and Valiant [37]
presented for the same problem hardness results of a different nature relying on
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 1–21, 2015.
DOI: 10.1007/978-3-319-23021-4 1

2 B. Balle and M. Mohri

cryptographic assumptions. Their results imply that no polynomial-time algo-
rithm can learn consistent NFAs polynomial in the size of the smallest DFA from
a finite sample of accepted and rejected strings if any of the generally accepted
cryptographic assumptions holds, for example if RSA public key cryptosystem
is secure.

These results imply the computational intractability of the general prob-
lem of passively learning finite automata for several learning models, including
the mistake bound model of Haussler et al. [31] or the PAC-learning model of
Valiant [56]. In contrast, an active model of learning automata was introduced by
Angluin [4,5], where the learner can make membership and equivalence queries.
For this model, it was shown that finite automata can be learned in time poly-
nomial in the size of the minimal automaton and that of the longest counter-
example [4] (see also [38] and [46]).

Fewer results have been reported in the literature for the general case of
learning WFAs over a non-Boolean semiring. Bergadano et al. [15] extended the
positive result of [4] in the scenario where membership and equivalence queries
can be made, to the problem of learning WFAs defined over any field. Using
the relationship between the size of a minimal weighted automaton over a field
and the rank of the corresponding Hankel matrix, the learnability of many other
concepts classes such as disjoint DNF can be shown [13]. In the passive set-
ting, the problem of learning a probabilistic WFA using a finite sample drawn
according to the same distribution has been the subject of a series of publica-
tions in recent years using a spectral method, starting with the work of Hsu et al.
[32] for learning hidden Markov models (HMMs). The main technique used in
these publications consists of a singular value decomposition (SVD) of a Hankel
matrix. Balle and Mohri [11] further showed that spectral methods combined
with a constrained matrix completion algorithm can be used to learn arbitrary
WFAs (not necessarily probabilistic) from finite samples drawn according to a
distribution unrelated to the target WFA.

This paper surveys a number of key theoretical results and algorithms for
learning WFAs. In Section 2, we introduce the main definitions and notation
used throughout the paper. The notion of Hankel matrix turns out to play a
key role in the definition of several learning algorithms for WFAs. In Section 3,
we discuss several important properties of Hankel matrices and their use in the
reconstruction of WFAs. In Section 4, we use these results to describe three
algorithms for learning WFAs, as well as their theoretical guarantees.

2 Definitions and Properties

In this section, we briefly introduce some basic notions and notation related
to semirings and weighted automata needed for the discussion in the following
sections.

Learning Weighted Automata 3

2.1 Semirings

A weighted finite automaton (WFA) A is a finite automaton whose transitions
and states carry some weights. For various operations to be well defined, the
weights must belong to a semiring, that is a ring that may lack negation. More
formally, (S,⊕,⊗, 0, 1) is a semiring if (S,⊕, 0) is a commutative monoid with
identity element 0, (S,⊗, 1) is a monoid with identity element 1, ⊗ distributes
over ⊕, and 0 is an annihilator for ⊗, that is a ⊗ 0 = 0 ⊗ a = 0 for all a ∈ S.

As an example, (R+ ∪ {+∞},+,×, 0, 1) is a semiring called the probability
semiring. The semiring isomorphic to the probability semiring via the nega-
tive log is the system (R ∪ {−∞,+∞},⊕log,+,+∞, 0), where ⊕log is defined
by x ⊕log y = − log(e−x + e−y); it is called the log semiring. The semiring
derived from the log semiring via the Viterbi approximation is the system
(R ∪ {−∞,+∞},min,+,+∞, 0) and is called the tropical semiring. It is the
familiar semiring of shortest-paths algorithms.

A semiring is said to be commutative when the multiplicative operation ⊗ is
commutative. It is said to be idempotent if x ⊕ x = x for all x ∈ S. The Boolean
semiring and the tropical semiring are idempotent.

2.2 Weighted Automata

Given an alphabet Σ, we will denote by |x| the length of a string x ∈ Σ∗ and
by ε the empty string for which |ε| = 0.

The second operation of a semiring is used to compute the weight of a path
by taking the ⊗-product of the weights of its constituent transitions. The first
operation is used to compute the weight of any string x, by taking the ⊕-sum
of the weights of all paths labeled with x.

For a WFA A defined over a semiring (S,⊕,⊗, 0, 1), we denote by QA its
finite set of states and by EA its finite set of transitions, which are elements
of QA × Σ × S × QA.1 We will also denote by αA ∈ S

QA the vector of initial
weights, by βA ∈ S

QA the vector of final weights, and by wA[e] ∈ S the weight
of a transition e ∈ EA. More generally, we denote by wA[π] the weight of a path
π = e1 · · · en of A which is defined by the ⊗-product of the transitions weights:
wA[π] = wA[e1] ⊗ · · · ⊗ wA[en]. For any path π, we also denote by orig[π] its
origin state and by dest[π] its destination state.

It is sometimes convenient to define the set of initial states IA = {q ∈
QA : αA[q] �= 0} and similarly the set of final states FA = {q ∈ QA : βA[q] �= 0}.
A path from IA to FA is then said to be an accepting path.

A WFA A over an alphabet Σ defines a function mapping the set of strings
Σ∗ to S that is abusively also denoted by A and defined as follows:

∀x ∈ Σ∗, A(x) =
⊕

π∈PA(x)

(
αA[orig[π]] ⊗ wA[π] ⊗ βA[dest[π]]

)
,

1 All of our results can be straightforwardly extended to the case where EA is a
multiset, thereby allowing multiple transitions between the same two states with the
same labels and weights.

4 B. Balle and M. Mohri

Fig. 1. (a) Example of WFA A. Within each circle, the first number indicates the
state number, the second after the slash separator the initial weight and the third the
final weight. In particular, A(ab) = 1 × 3 × 4 × 1 + 3 × 3 × 4 × 1 + 4 × 1 × 1 × 1. (b)
Corresponding initial vector αA, final vector βA, and transition matrices Aa and Ab.

where PA(x) denotes the (finite) set of paths in A labeled with x. By convention,
A(x) = 0 when P (x) = ∅.

For any a ∈ Σ, let Aa ∈ S
QA×QA be the matrix [Aa]pq = ⊕e∈PA(p,a,q)wA[e],

where PA(p, a, q) is the set of transitions labeled with a from p to q. Then, (2.2)
can be equivalently written as follows in terms of matrices with entries in S:

∀x = x1 · · · xk ∈ Σ∗, A(x) = α�
AAx1 · · ·Axk

βA.

This is similar to the linear representation of recognizable formal power series
[52,40,16]. Figure 1 illustrates these definitions with a specific example of WFA.
The size of a WFA is denoted by |A| and defined as the sum of the number of
states and the number of transitions of A: |A| = |QA| + |EA|. In the absence of
any ambiguity, we will drop all A-subscripts in the definitions just presented.

3 Hankel Matrices and WFA Reconstruction Algorithms

A key algebraic tool used in the design of the learning algorithms we will present
is the notion of Hankel matrix. Thus, in this section, we present an extensive
analysis of Hankel matrices and their properties. We will show how sufficiently
informative finite sub-blocks of the Hankel matrix of a WFA can be used to
reconstruct a WFA.

From here on, we will assume that the semiring S is in fact a field. This
enables us to define the rank of a matrix with entries in S and devise effective
algorithms for solving linear systems with unknowns and coefficients in S. We
note, however, that some of the results stated in this section can be extended to
rings.

3.1 Definitions

Let H ∈ S
Σ∗×Σ∗

be an infinite matrix with rows and columns indexed by strings
in Σ∗. We denote by H(u, v) its entry with row index u ∈ Σ∗ and column index
v ∈ Σ∗. The following definitions are essential for the rest of the paper.

Learning Weighted Automata 5

Definition 1 (Hankel matrix). We will say that H is a Hankel matrix if
H(u, v) = H(u′, v′) for all u, u, v, v′ ∈ Σ∗ such that uv = u′v′ and will denote
by rank(H) the rank of H.

Definition 2 (Hankel matrix of a function). The Hankel matrix Hf of a
function f : Σ∗ → S (or formal series over S) is the matrix defined by Hf (u, v) =
f(uv), for all u, v ∈ Σ∗. Conversely, any Hankel matrix H defines a function
f : Σ∗ → S by setting f(u) = H(u, ε) for all u ∈ Σ∗ and thus H = Hf .

3.2 Hankel Matrices of Rational Functions

A function f : Σ∗ → S is said to be rational when it can be represented by
a WFA A, that is when f(x) = A(x) for all x ∈ Σ∗ [52,40,16]. The following
theorem of Fliess [28] (see also [20]) provides an important characterization of
rational functions in terms of the finiteness of rank(Hf).

Theorem 1 (Fliess [28]). Let S be a field. Then, the rank of the Hankel matrix
Hf associated to a function f : Σ∗ → S is finite if and only if f is rational. In
that case, there exists a WFA A representing f with rank(Hf) states and no
WFA representing f admits fewer states.

Thus, when rank(Hf) < +∞, a WFA representing f with rank(Hf) states
(|QA| = rank(HA)) is minimal. Note that this minimality is defined only in
terms of the number of states, unlike the notion of minimal deterministic WFA
[41,42]. In fact, such minimal WFAs often have a large number of transitions.

Proof. Suppose first that there exists a WFA A representing f . Then, for any
u, v ∈ Σ∗, we can write

f(uv) = A(uv) = (α�
AAu)(AvβA) . (1)

Observe that α�
AAu is a row vector in S

1×QA and AvβA a column vector in
S

QA×1. Let P be the matrix in S
Σ∗×QA defined by PA(u, ·) = α�

AAu for all
u ∈ Σ∗ and SA ∈ S

Σ∗×QA the matrix defined by SA(v, ·) = (AvβA)� for all
v ∈ Σ∗. Then, in view of (1), for all u, v ∈ Σ∗,

f(uv) = (α�
AAu)(AvβA) = (PAS�

A)(u, v) .

This proves that Hf = PAS�
A. Since PA and SA are in S

Σ∗×QA , the rank of Hf

is upper bounded by |QA|, the number of states of A, and is therefore finite.
Assume now that rank(Hf) = n < +∞. For any v ∈ Σ∗, we denote

by Hf (·, v) the column of Hf indexed by v. Let (Hf (·, v1), . . . ,Hf (·, vn)) be
a basis for all columns. Then, there exist β1, . . . , βn ∈ S such that the col-
umn Hf (·, ε) can be expressed as Hf (·, ε) =

∑n
i=1 βiHf (·, vi). Since for all

w ∈ Σ∗, f(w) = H(ε, w) = H(w, ε) =
∑n

i=1 βiHf (w, vi), this implies that
f =

∑n
i=1 βiHf (·, vi). Now, for all i ∈ [1, n] and a ∈ Σ, the column Hf (·, avi)

can also be expressed in terms of the basis: there exist (γa
ji) such that Hf (·, avi) =∑n

j=1 γa
jiHf (·, vj). Let Aa be the matrix defined by (Aa)ji = (γa

ji). Then, we

6 B. Balle and M. Mohri

Fig. 2. Illustration of standardization. (a) WFA A defined over the field (R,+,×, 0, 1).
(b) WFA B obtained by standardization of A. In this instance, the first stage of
standardization leaves the WFA unchanged. In the second stage, state 3 is eliminated
since it is a linear combination of states 1 and 2 in the following sense: let f3 be the
function defined by setting state 3 to be the only initial state with initial weight 1, and
similarly with states 2 and 3, then, f3 = f1 − f2.

can show by induction on the length of w that for all w = a1 · · · ak ∈ Σ∗,
Hf (·, wvi) =

∑n
j=1(Aw)jiHf (·, vj), where Aw = Aa1 · · ·Aak

. Indeed, if the
equality holds for w1 and w2, then for w = w1w2 and for all u ∈ Σ∗ we have
Hf (u,wvi) = Hf (uw1, w2vi) and:

Hf (uw1, w2vi) =

n∑

j=1

(Aw2)jiHf (uw1, vj) =

n∑

j=1

(Aw2)jiHf (u,w1vj)

=

n∑

j=1

(Aw2)ji

n∑

k=1

(Aw1)kjHf (u, vk) =

n∑

k=1

(Aw1Aw2)kiHf (u, vk) .

Thus, for any w = a1 · · · ak ∈ Σ∗,

f(w) =
n∑

i=1

βiHf (ε, wvi) =
n∑

i=1

βi

n∑

j=1

(Aw)jiHf (ε, vj) = α�Aa1 · · ·Aak
β ,

where αj = Hf (ε, vj) and βj = βj for all j ∈ [1, n]. This proves that f can be
represented by a WFA with n = rank(Hf) states. ��

3.3 Standardization of WFAs

Theorem 1 proves the existence of a minimal WFA for the representation of a
rational function f . In this section, we briefly describe an algorithm for comput-
ing a minimal WFA B from an input WFA A representing f . The first algorithm
for this problem is due to Schützenberger [54] (see also [53]) and is known as a
standardization of the representation of the linear representation of a rational
power series. A more efficient version of this algorithm was later given by Cardon
and Crochemore [19]. Here, we give a brief description of that algorithm.

The algorithm consists of first finding a basis (v1, . . . ,vm) of row vectors
in S

1×QA for the vector space generated by {α�
AAw : w ∈ Σ∗} such that for

Learning Weighted Automata 7

any j ∈ [1,m] and a ∈ Σ, vjAa is in span(v1, . . . ,vm). The basis can be
constructed incrementally by starting with v1 = α�

A and by augmenting the
current sequence of vectors (v1, . . . ,vt) as follows. For any j ∈ [1, t] and a ∈ Σ,
the vector w is chosen in span(v1, . . . ,vm,vjAa) such that if vjAa is linearly
dependent of (v1, . . . ,vt), then w = 0; otherwise, such that (v1, . . . ,vt,w) is
triangular modulo the order of components and vt+1 is set to w. Additionally,
the components of vjAa are computed with respect to (v1, . . . ,vt,w) when
w �= 0, with respect to (v1, . . . ,vt) otherwise. Testing the dependency of vjAa

with respect to (v1, . . . ,vt) and determining w such that (v1, . . . ,vt,w) be
triangular in the independent case can be done as in Gaussian elimination.
This helps define a WFA B′ equivalent to A and whose number of states is
dim(span({α�

AAw : w ∈ Σ∗})) = dim(span({α�
B′B

′
w : w ∈ Σ∗})). The compo-

nents of vjAa computed by the algorithm help define the transitions of B′. The
time complexity of the algorithm is in O(|Σ||QA|3) semiring operations since at
each iteration, the complexity of determining w is in O(|Σ||QA|2).

The second stage of the algorithm is symmetric. It consists of starting with B′

and constructing a WFA B whose number of states is dim(span({B′
wβB′ : w ∈

Σ∗})) = dim(span({BwβB : w ∈ Σ∗})). The second stage therefore coincides
with the first stage if we first reverse the WFA B′ and permute αB′ and
βB′ . Since |QAB

′| ≤ |QA|, the overall time complexity of the algorithm is in
O(|Σ||QA|3).

The two consecutive stages guarantee that the resulting WFA B is minimal.

3.4 Hankel Masks and Bases

A Hankel basis for an infinite Hankel matrix with finite rank essentially identifies
a finite sub-block of that matrix which contains as much information as the
infinite matrix itself. The existence of such bases is paramount for the design of
learning algorithms for WFAs. Here, we will prove the existence of Hankel bases,
provide bounds on their sizes, and briefly discuss the problem of finding one in
practice. We start by giving several definitions.

Definition 3 (Hankel Mask). Let P, S ⊆ Σ∗ be two subsets of the set of all
strings. Then, the pair B = (P, S) is called a Hankel mask. The elements of P
are called the prefixes and those of S the suffixes of the mask.

Definition 4 (Hankel sub-block). Let H ∈ S
Σ∗×Σ∗

be a Hankel matrix.
Given a Hankel mask B = (P, S), we write HB ∈ S

P×S to denote the Han-
kel sub-block of H with rows indexed by elements of P and suffixes indexed by
those of S. Thus, for all u ∈ P and v ∈ S we have HB(u, v) = H(u, v).

Observe that HB inherits from H the Hankel property. Furthermore, since HB

is a sub-block of H, we always have rank(HB) ≤ rank(H). This motivates our
next definition.

Definition 5 (Hankel basis). We say that the Hankel mask B = (P, S) is a
Hankel basis for H if rank(HB) = rank(H).

8 B. Balle and M. Mohri

Since the rank of a matrix is upper bounded by its dimensions, all Hankel masks
satisfy rank(HB) ≤ min{|P|, |S|}. The next result is an immediate consequence
of the definition of the rank of a Hankel matrix indicating that this bound is
attainable.

Proposition 1. Let H be a Hankel matrix with rank(H) = n. Then there exists
a Hankel basis B = (P, S) for H with |P| = |S| = n.

Definition 6 (Prefix-closed and suffix-closed sets). A subset W ⊆ Σ∗ is
prefix-closed if w = uv ∈ W implies u ∈ W. Similarly, W ⊆ Σ∗ is suffix-closed if
w = uv ∈ W implies v ∈ W. Note that if W is either prefix-closed or suffix-closed,
then it must contain ε.

The standardization procedure for WFA described in Section 3.3 provides
further information about the structure of minimal Hankel bases.

Proposition 2. Let H be a Hankel matrix with rank(H) = n. Then, there exists
a Hankel basis B = (P, S) for H with |P| = |S| = n, where P is prefix-closed and
S is suffix-closed.

Note that, given a string x ∈ Σ∗, there are exactly |x| + 1 decompositions
x = uv with u, v ∈ Σ∗. A direct consequence of this fact is that if W ⊆ Σ∗

is prefix-closed and has |W| = n, then |w| < n for every w ∈ W. The same
holds for suffix-closed sets. When combined with the previous proposition, this
observation yields a bound on how far in Σ∗ one needs to look in order to find
a Hankel basis for a Hankel matrix H with rank n.

Corollary 1. Let H be Hankel with rank(H) = n. Then B = (Σ<n, Σ<n) is a
Hankel basis for H.

3.5 WFA Reconstruction from Complete Minimal Masks

In this section, we describe the class of complete minimal Hankel masks, which
can be used to specify the information needed to solve a WFA reconstruction
problem via the Gaussian elimination algorithm in an arbitrary field. We describe
the reconstruction algorithm and show that if the given mask is a Hankel basis
for some Hankel matrix Hf , then the algorithm will reconstruct a minimal WFA
computing f .

Definition 7 (Hankel sub-blocks Ha and HΣ). Let B = (P, S) be a Hankel
mask in Σ∗. For every symbol a ∈ Σ, we define the Hankel mask Ba = (Pa, S),
where Pa = {ua : u ∈ P}. Given a Hankel matrix H, we will use the shorthand
Ha = HBa

∈ S
P×S. Note the entries of Ha satisfy Ha(u, v) = H(ua, v) for every

u ∈ P and v ∈ S. We denote by HΣ the block-matrix obtained by stacking together
the matrices Ha for all a ∈ Σ, that is H�

Σ = [H�
a1

· · · H�
ar

] if Σ = {a1, . . . , ar}.
Definition 8 (Complete and minimal Hankel masks). A Hankel mask
B = (P, S) is said to be complete for a Hankel matrix H if ε ∈ P ∩ S and
rank([H�

B | H�
Σ]) = rank(H�

B). A complete Hankel mask B is minimal if
rank(HB) = |P|. Note this last condition implies |P| ≤ |S|.

Learning Weighted Automata 9

We now proceed to describe a WFA reconstruction algorithm that takes as
input a complete minimal Hankel mask B = (P, S) for a Hankel matrix H and
the corresponding Hankel sub-blocks HB and HΣ , and returns a WFA A with
k = |P| states. Let us write P = {u1, . . . , uk} and S = {v1, . . . , vk′} with u1 =
v1 = ε. First, let α�

A = [1, 0, . . . , 0] ∈ S
k and β�

A = [HB(u1, ε), . . . ,HB(uk, ε)] =
(HB(·, ε))�. Second, note that since B is complete and minimal we have
rank([H�

B | H�
a]) = rank(H�

B) = k for every a ∈ Σ. Thus, by the Rouché–
Capelli theorem, for every a ∈ Σ there exists a unique Aa ∈ S

k×k such that
AaHB = Ha. Using the Gaussian elimination algorithm, each of these systems
of equations can be solved in O(k2(k′ + k)) arithmetic operations in S. Thus,
the arithmetic complexity of reconstructing a WFA A with |P| states from a
complete minimal basis B = (P, S) is in O(|Σ||P|2|S|) [30]. If, in addition to
being complete and minimal, the mask B is a Hankel basis for Hf , the above
procedure recovers a minimal WFA computing f .

Theorem 2. If B is a complete minimal Hankel basis for Hf , then the recon-
structed WFA A computes f and is minimal.

Proof. Let A′ be a minimal WFA computing f . Recall that A′ induces a rank
factorization Hf = PA′S�

A′ , which, when restricted to the Hankel basis B yields
a rank factorization HB = P′S′� and associated factorizations Ha = P′A′

aS
′�

for all a ∈ Σ. From these, using the fact that the transition weights of A satisfy
AaHB = Ha we get AaP′S′� = P′A′

aS
′�. Since P′ is invertible and S′ has full

column rank, this last equation implies Aa = P′A′
aP

′−1. A similar argument
with the initial and final weights shows that α = P′−1

α and β = P′β. Therefore,
we see that A and A′ compute the same function, and in particular A computes f .
Minimality is immediate by observing that A has |QA| = rank(HB) = rank(Hf)
states. ��

If the Hankel mask B = (P, S) is complete and minimal but not necessarily a
Hankel basis, then the function computed by A will not agree with f everywhere.
However, the next result shows that if P is prefix-free and S is suffix-free, then
A will agree with f on all strings in P({ε} ∪ Σ)S.

Theorem 3. Let B = (P, S) be a complete minimal Hankel mask for Hf . Sup-
pose that P is prefix-closed and S is suffix-closed. Then, the WFA A reconstructed
from HB and HΣ satisfies f(uv) = A(uv) and f(uav) = A(uav) for every u ∈ P,
v ∈ S, and a ∈ Σ.

Proof. Let k = rank(HB) = |P| and P = {u1, . . . , uk} with u1 = ε and |ui| ≤
|ui+1| for all i. Let HA = PAS�

A be the factorization induced by A. Let us write
PP ∈ S

P×k for the sub-block of PA containing the rows indexed by prefixes in
P. We claim that PP = I is the identity matrix. To see this, we will show that
for 1 ≤ i ≤ k we have PP(ui, ·) = e�

i , where ei is the ith indicator vector.
By construction of A, the case i = 1 holds since PP(ui, ·) = PA(ε, ·) = α� =

e�
1 . Now, suppose the claim is true for all 1 ≤ j ≤ i. Since |ui+1| ≥ |uj | for

all 1 ≤ j ≤ i and P is prefix-closed, we must have ui+1 = uja for some a ∈ Σ

10 B. Balle and M. Mohri

and 1 ≤ j ≤ i. Therefore, we have PP(ui+1, ·) = PA(uja, ·) = PA(uj , ·)Aa =
e�

j Aa = Aa(j, ·). Finally, we observe that because AaHB = Ha and Ha(uj , ·) =
HB(uja, ·) = HB(ui+1, ·), when solving the system of equations for Aa we will
obtain Aa(j, ·) = e�

i+1.
Now, let SS ∈ S

S×k denote the sub-block of SA corresponding to the suffixes
in S. By the previous claim, to show that A(uv) = f(uv) for all u ∈ P and all
v ∈ S it suffices to show that S�

S = HB. Let k′ = |S| and assume without loss of
generality that S = {v1, . . . , vk′} with v1 = ε and |vi+1|? ≥ |vi| for all i. Then for
i = 1 we immediately have SS(v1, ·) = SA(ε, ·) = β� = HB(·, ε)� = HB(·, v1)�

by the way β is constructed. Now, suppose we have SS(vj , ·) = HB(·, vj)� for
all 1 ≤ j ≤ i. Note we must have vi+1 = avj for some a ∈ Σ and some 1 ≤ j ≤ i.
Thus, we see that SS(vi+1, ·) = SA(avj , ·) = SA(vj , ·)A�

a = HB(·, vj)�A�
a =

Ha(·, vj)� = HB(·, avj)� = HB(·, vi+1)�.
To complete the proof it just remains to show that A(uav) = f(uav) =

Ha(u, v) for all u ∈ P, v ∈ S, and a ∈ Σ. This follows from the previous claims by
noting that A(uiav) = PP(ui, ·)AaSS(v, ·)� = e�

i AaHB(·, v) = e�
i Ha(·, v) =

Ha(ui, v). ��

3.6 WFA Reconstruction via Rank Factorizations

In this section, we show how a rank factorization of HB for a non-minimal
complete Hankel mask B can be used to reconstruct a WFA. The main difference
with the procedure presented in the previous sections is that here the number
of states of the resulting WFA is not tied to the number of prefixes |P| in the
mask, but to the rank of HB, which can be small, even if |P| is large.

Let B = (P, S) be a Hankel mask in Σ∗ with ε ∈ P∩S. Given a Hankel matrix
H, in addition to the matrices Ha = HBa

∈ S
Pa×S for a ∈ Σ introduced in the

previous section, we define vectors hP ∈ S
P and hS ∈ S

S with entries given by
hP(u) = H(u, ε) and hS(v) = H(ε, v). Note that the condition ε ∈ P ∩ S implies
that hP (resp. h�

S) can be found as a column (resp. a row) in HB.
Suppose B is a complete Hankel mask and let k be the rank of HB,

rank(HB) = k. Then, HB admits a rank factorization HB = PBS�
B with

PB ∈ S
P×k and SB ∈ S

S×k. Such a rank factorization can be obtained using a
Gaussian elimination algorithm [30]. Next, we show how to use this rank factor-
ization in order to reconstruct a WFA A with k = |QA| states.

The algorithm proceeds by solving a series of systems of linear equations.
For the initial and final weights we find the unique solutions to SBαA = hP and
PBβA = hS. Note that αA exists and is unique since SB contains a basis of
linearly independent vectors for the column-span of HB and hP is a column of
HB. A similar argument holds for βA. For the transition weights associated with
a symbol a ∈ Σ, we use the unique solution to the system of linear equations
Ha = PBAaS�

B.
One way to solve this last system of equations — and to see that indeed it

admits a unique solution — is to recall that the equation for Aa is equivalent
to vec(Ha) = (SB ⊗K PB) vec(Aa), where ⊗K denotes the Kronecker product

Learning Weighted Automata 11

between matrices, and vec(M) the result of stacking the columns of M into a
single vector. Observe that the new system of equations admits k2 unknowns.
Its coefficients satisfy rank(SB ⊗K PB) = rank(SB) rank(PB) = k2 by a basic
property of Kronecker products, and rank([SB ⊗K PB| vec(Ha)]) = rank(SB ⊗K

PB) since the columns of Ha are linear combinations of the columns of PB

because the mask B is complete. Thus, by the Rouché–Capelli theorem, there
exists a unique solution for Aa. Furthermore, the solution can be found using
Gaussian elimination in O(|P||S|k2) arithmetic operations.

Overall, the cost of reconstructing the WFA A starting from a complete Han-
kel mask takes O(|Σ||P||S|k2) arithmetic operations. As in the previous section,
if, in addition to being complete, the mask B is a Hankel basis for some Hankel
matrix Hf , then the WFA recovered is a minimal automaton for f . The proof
of this result is almost identical to that of Theorem 2 and is omitted.

Theorem 4. If B is a complete Hankel basis for Hf , then the reconstructed
WFA A computes f and is minimal.

3.7 WFA Reconstruction from Noisy Hankel Matrices

In the two WFA reconstruction algorithms described in the previous sections,
we assumed that the Hankel sub-blocks used in the reconstruction procedure are
known exactly. However, that assumption is not realistic in practice, especially
when we are concerned with learning problems. We now describe a variation
of the WFA reconstruction algorithm from rank factorizations that works in
situations where the only available information are approximations to the Hankel
sub-blocks specified by a Hankel mask.

This procedure relies in a crucial manner on the computation of a singular
value decomposition (SVD), which is only possible for the real case S = R, the
complex case S = C, and, in general, in the case where S is a field obtained as the
intersection of real closed fields [48]. Since S = R is the case which occurs more
frequently in applications, and is also a case for which efficient SVD algorithms
are widely available, we will present the algorithm in this section only for this
case. The ideas can be straightforwardly generalized to other fields admitting an
SVD.

As before, we will assume that the algorithm is given as input an arbitrary
Hankel mask B = (P, S). The difference is that here, instead of the exact versions
of the matrices and vectors HB, Ha, hP, and hS that represent sub-blocks of
some Hankel matrix H, the algorithm will only have access to approximate
versions of these objects. For example, we are given a matrix ĤB ∈ R

P×S such
that ĤB = HB + EB, where EB ∈ R

P×S is a noise matrix. Likewise, where are
given Ĥa = Ha + Ea for every a ∈ Σ, ĥP = hP + eP, and ĥS = hS + eS.

The important point to note here is that even if HB has small rank, say
rank(HB) = k ≤ rank(H) = n, its approximation ĤB may have a much larger
rank, and thus, in this case, the straightforward rank factorization approach
will yield a large WFA which does not necessarily resemble the one we would
recover had we had access to the exact versions of HB and the other matrices.

12 B. Balle and M. Mohri

For example, if the error matrix EB is in generic position, or random, then HB

will have full rank.
Thus, the question is now how to use these matrices to reconstruct a WFA

with less states than rank(ĤB), and that ideally resembles the one we would
obtain in the exact case if the amount of noise is small. The key to the solution
consists of using an SVD and replace the rank factorization in the previous WFA
reconstruction algorithm by a low rank approximation of ĤB.

Now we proceed to describe the first steps of the algorithm. As input it
receives the Hankel mask B, the number of states k′ that the output WFA must
have, and the approximated Hankel sub-blocks described above. We start by
computing the SVD of ĤB and using it to obtain the best rank k′ approximation
ĤB ≈ ÛD̂V̂�, where D̂ = diag(ŝ1, . . . , ŝk′) is a diagonal matrix containing the
top k′ singular values of ĤB, and Û ∈ R

P×k′
and V̂ ∈ R

S×k′
contain the

associated left and right singular vectors respectively. With this notation, one
can see that now P̂B = ÛD̂ and ŜB = V̂ provide a rank factorization P̂BŜB of
the best rank k′ approximation to ĤB.

The next natural step in the algorithms would be to solve the following
systems of linear equations in order to reconstruct a WFA: ŜBα̂ = ĥP, P̂Bβ̂ =
ĥS, and (ŜB ⊗K P̂B) vec(Âa) = vec(Ĥa) for every a ∈ Σ. There is, however, an
obstruction to the direct application of this strategy in this case: these equations
are no longer guaranteed to admit a unique solution. Due to the errors in the
Hankel sub-blocks introduced by the approximation, these equations might now
be unsatisfiable or not admit a unique solution. Thus, we will follow a least-
squares approach and look for a solution to these equations that minimizes the
norm of the residual. A way to express these solutions in closed-form is via
the Moore–Penrose pseudo-inverse M+ ∈ R

d2×d1 of a matrix M ∈ R
d1×d2 . In

particular, given a linear system of equations Mx = b the pseudo-inverse yields
a solution x = M+b that satisfies the equation if it is satisfiable, and that
minimizes the error ‖Mx − b‖ otherwise.

Now we proceed to describe the rest of the algorithm, which essentially
applies this strategy to solve the linear systems given above. For the initial and
final weights this yields α̂ = Ŝ+

BĥP and β̂ = P̂+
BĥS. In our case, these are easy to

compute because by properties of the pseudo-inverse it can be shown that P̂+
B =

(ÛD̂)+ = D̂−1Û� and Ŝ+
B = V̂+ = V̂�. For the transition weights, a short alge-

braic calculation shows that (ŜB ⊗K P̂B)+ = (Ŝ+
B ⊗K P̂+

B) = (V̂� ⊗K D̂−1Û�).
Substituting into vec(Âa) = (ŜB⊗KP̂B)+ vec(Ĥa) and applying the equivalence
between vectorized and unvectorized systems of linear equations, we obtain the
expression Âa = D̂−1Û�ĤaV̂.

Overall, the complexity of this process is dominated by the low-rank
SVD computation, which takes O(|P||S|k′) arithmetic operations. Hence, the
arithmetic complexity of computing the WFA Â with k′ states given by α̂, β̂,
and Âa for a ∈ Σ, is in O(|Σ||P||S|k′).

The main result of this section is a bound on the sensitivity of this algorithm
to the magnitude of the noise. To make this more precise, we need two ingre-
dients. The first is a precise way to quantify the error in the approximations.

Learning Weighted Automata 13

Different choices lead to slightly different results, but in order to illustrate the
point we will simply use the Euclidean norm for vectors and the Frobenius
norm for matrices. Thus, we will define εB = ‖EB‖F , εa = ‖Ea‖F for every
a ∈ Σ, εP = ‖eP‖2, and εS = ‖eS‖2. For convenience we will also write
ε = max{εB, εa1 , . . . , εar

, εP, εS}. The second ingredient is to determine what
would the output of the algorithm be if the input had no noise. For that pur-
pose, let us assume that k′ = rank(HB) = k and ε = 0. In that case, we
have ĤB = HB and the SVD of rank k yields an exact rank factorization
HB = PS� = (UD)(V)�. Thus, the algorithm returns a WFA with k states
given by α = V�hP, β = D−1U�hS, and Aa = D−1U�HaV, where we
dropped the hat notation to indicate that we are in the case ε = 0. For this
automaton, a direct application of Theorem 4 yields the following result, which
shows that this is essentially a generalization of the WFA reconstruction algo-
rithm based on rank factorizations.

Corollary 2. Suppose k′ = rank(HB) and ε = 0. If B is a complete basis for
Hf , then the reconstructed WFA A computes f and is minimal.

The most important result about the WFA reconstructions algorithm based
on SVD is the following, which bounds the error between the noisy and the
noiseless cases.

Theorem 5. Suppose k′ = rank(HB). Let A denote the WFA obtained in the
case ε = 0 and Â the WFA obtained in the noisy case. Then, the following
approximation guarantee holds as ε → 0:

Δ = max{‖α − α̂‖2, ‖β − β̂‖2, ‖Aa1 − Âa1‖F , . . . , ‖Aar
− Âar

‖F } = O(ε).

The proof of this results is technical and goes beyond the scope of the present
survey. Essentially, it involves a detailed analysis using perturbation theory for
singular values and vectors (see [9, Chapter 5] for details).

4 Algorithms for Learning WFAs

In this section, we show how the reconstruction techniques described in the pre-
vious section can be used in the design of algorithms for learning WFAs. We
describe three WFA learning algorithms, each designed for a different learning
scenario. The scenarios mainly differ by the way the data about the target func-
tion f : Σ∗ → S is gathered: exact learning from membership and equivalence
queries (Section 4.1), PAC learning (Probably approximately correct learning) of
a probability distribution represented by a WFA from i.i.d. samples (Section 4.2),
and statistical learning of WFA from general string–label pairs (Section 4.3).

We also present learning guarantees in each case, thereby showcasing an
important trade-off between degree of fidelity of the information collected versus
quality of the learned WFA with respect to a target automaton or distribution.
Of the three scenarios, only the first one can learn WFA over an arbitrary field
S; in the other two scenarios we restrict ourselves only to the case S = R.

14 B. Balle and M. Mohri

4.1 Learning WFAs From Queries

In this section, we describe an algorithm for learning WFAs defined over an
arbitrary field S. The algorithm was first presented in [14] for the special case
S = Q and later generalized to arbitrary fields in [15]. It can be interpreted as
a direct generalization of Angluin’s classical algorithm for learning DFAs from
membership and equivalence queries [5] and can be further applied to other
learning problems (see [12,13]).

The learning scenario for this algorithm coincides with the active learning
scenario defined and adopted by Angluin [5] for learning (unweighted) automata.
In this scenario, given a target rational function f : Σ∗ → S the learner can make
the following two types of queries to which an oracle responds:

– membership queries MQf : the learner requests the target value f(w) of a
string w ∈ Σ∗ and receives that value;

– equivalence queries EQf : the learner conjectures a WFA A; he receives the
response yes if f can be computed by A, a counter-example w ∈ Σ∗ with
f(w) �= A(w) otherwise.

The objective of the learner is to determine exactly a WFA A representing f . We
will denote by n the unknown rank of the Hankel matrix of f , n = rank(Hf).

The main idea behind the algorithm is to build a complete minimal Hankel
basis B for Hf , fill the associated Hankel sub-blocks HB and HΣ by making a
series of calls to MQf , and then reconstruct the corresponding WFA using the
Gaussian elimination algorithm described in Section 3.5. In order to find such
a basis B several intermediate complete minimal Hankel masks are considered.
For each, the corresponding WFA is reconstructed using information collected
from membership queries, and the counter-examples supplied by the equivalence
queries used to extend the current Hankel mask.

Given two bases B = (P, S) and B′ = (P′, S′), we will write in short B ⊆ B′

for P ⊆ P′ and S ⊆ S′. The algorithm constructs a sequence of complete minimal
Hankel masks B0 ⊆ B1 ⊆ · · · ⊆ Bd, where the last mask Bd is a Hankel basis
for Hf . At each step, the inequality rank(HBi+1) > rank(HBi

) holds, which
guarantees that the total number of iterations is at most d ≤ n. The starting
mask is B0 = ({ε}, {ε}), which is clearly a complete and minimal mask.

The main inductive step is given by the following procedure. First, given
Bi = (Pi, Si) with i ≥ 0, the algorithm reconstructs a WFA Ai by filling
the corresponding Hankel sub-blocks using calls to MQf and then applying the
reconstruction algorithm of Section 3.5. Second, it makes an equivalence query
EQf (Ai). If the answer is yes, the algorithm terminates. Otherwise, it receives a
counter-example w ∈ Σ∗ such that Ai(w) �= f(w). This is used to build the new
Hankel mask Bi+1 = (Pi+1, Si+1) as follows:

1. find a decomposition w = uav where u is the longest prefix of w in Pi;
2. let Si+1 = Si ∪ suffs(v), where suffs(v) is the set of all suffixes of v;
3. starting from Pi+1 = Pi, and while rank([H�

Bi+1
| H�

Σ]) > s rank(HBi+1),
keep adding to Pi+1 prefixes ua ∈ Pi+1Σ such that rank([H�

Bi+1
| Ha(u, :

)�]) = rank(HBi+1) + 1.

Learning Weighted Automata 15

Note the resulting mask Bi+1 is complete by construction and minimal because
only prefixes that increase the rank of HBi+1 are added to Pi+1. Also note
that the algorithm maintains the property that Pi is prefix-closed and Si suffix-
closed. It is clear that if the algorithm terminates, it returns the correct answer.
To prove that the algorithm terminates it suffices to show that at each iteration
the inequality |Pi+1| > |Pi| holds since this will guarantee that at each iteration
the rank of HBi

increases. Since this rank can be at most n = rank(Hf), and
since whenever rank(HBi

) = rank(Hf) Bi is a complete minimal Hankel basis,
Theorem 2 then shows that the WFA Ai computes f . The termination of the
algorithm is guaranteed by the following result.

Lemma 1. Let B′
i = (Pi, Si+1), where Si+1 is the set of suffixes obtained after

processing the counter-example w received from the (i + 1)th call to EQf . Then,
the following inequality holds: rank([H�

B′
i
| H�

Σ]) > rank(H�
B′

i
).

Proof. Suppose that rank([H�
B′

i
| H�

Σ]) = rank(H�
B′

i
) and let A′

i be the WFA
reconstructed from B′

i by the algorithm in Section 3.5. Since Bi and B′
i share

the same prefixes, both are minimal and complete, and Si ⊆ Si+1, then Ai and
A′

i must compute the same function. Thus, we have f(w) �= Ai(w) = A′
i(w).

On the other hand, w = uav with u ∈ Pi and v ∈ Si+1. Thus, in the matrix
Ha used to reconstruct A′

i we have Ha(u, v) = f(w), and by Theorem 3 it
holds that A′

i(w) = f(w). We conclude by contradiction that rank([H�
B′

i
|H�

Σ]) >

rank(H�
B′

i
). ��

We can now bound the number of queries made by the algorithm. First
observe that the number of calls to EQf is O(n) since one such call is made for
each of the d+1 Hankel masks. To bound the number of calls to MQf , note that
since we have Bi ⊆ Bi+1 for each i, at each stage most of the queries needed
to fill HBi+1 have already been asked in previous iterations. Thus, it suffices to
count the number of MQf queries needed to fill the matrices corresponding to
the last Hankel mask Bd = (Pd, Sd). This number is clearly (|Σ| + 1)|Pd||Sd|.

Let L denote the length of the longest counter-example returned by the suc-
cessive calls to EQf , we have |Sd| ≤ 1 + dL. This, combined with |Pd| = n, shows
that the total number of calls to MQf is in O(|Σ|n2L). Note that this complexity
is not optimal: [17] give an improved technique for processing counter-examples
that yields an algorithm making only O(|Σ|n2 log(L)) calls to MQf .

4.2 Learning Stochastic WFAs from I.I.D. Samples

A stochastic WFA is a WFA computing a probability distribution. In this section,
we consider the problem of learning a stochastic WFA and therefore assume that
S = R. The learning scenario commonly adopted for stochastic WFAs is one
where the learner receives a finite set of strings sampled i.i.d. from the target
stochastic WFA. The objective of the learner is to use this training sample to
learn a WFA computing a function close the target distribution with respect to
some measure of accuracy.

16 B. Balle and M. Mohri

In this section, we present an algorithm for this problem which consists of
first using the training sample to estimate a sub-block of the Hankel matrix of
the target WFA, and next of using the algorithm described in Section 3.7 to
reconstruct a WFA based on those estimates. Several variants of this algorithm
can be found in the literature, including [33,7] for the first such algorithms
based on SVD, [10] for variants using prefix and substring statistics, and [6,9]
for detailed analyses and further references.

A stochastic WFA over Σ is one that computes a probability distribution
over Σ∗, that is, a WFA A with A(w) ≥ 0 for all w ∈ Σ∗ and

∑
w∈Σ∗ A(w) =

1. Probabilistic automata with stopping probabilities or absorbing states are
typical examples of stochastic WFAs in this class (see [57,24] for a discussion
of the relations between different finite-state machines computing probability
distributions).

Let A be a fixed unknown target stochastic WFA A. We assume that the
learning algorithm receives a sample S = (w1, . . . , wm) ∈ (Σ∗)m of m strings
sampled i.i.d. from the distribution computed by A. In addition to S, the algo-
rithm receives the alphabet Σ, a number of states n that the output automaton
should have, and a finite Hankel mask B = (P, S) with n ≤ min{|P|, |S|}.

The first step of the algorithm is to compute empirical estimates of the matri-
ces and vectors required by the SVD-based WFA reconstruction algorithm of
Section 3.7: ĤB, Ĥa for a ∈ Σ, ĥP, and ĥS. This is done by assigning to each
entry in these matrices and vectors the relative frequency of the corresponding
string in the sample S = (w1, . . . , wm). For example, for u ∈ P and v ∈ S the
algorithm sets

ĤB(u, v) =
1
m

m∑

i=1

I[wi = uv] .

The same is done for Ĥa, ĥP, and ĥS. These approximations are then used by
the WFA reconstruction algorithm to obtain an automaton Â with n states.

The empirical probabilities used in the estimations of the Hankel sub-blocks
converge to the true probabilities as m → ∞. One can also expect that the differ-
ence between the unknown probability distribution f and the function computed
by Â decreases as m increases. The next theorem gives a stronger guarantee
which holds for finite samples, as opposed to a result holding in the limit. It is
a probably approximately correct (PAC) learning guarantee: for a sample size m
polynomial in the size of the 1/ε where ε is the precision sought, log(1/δ) where
δ is the confidence parameter and several other parameters including 1/sn(HB)
where sn(HB) is the singular value of HB and the string length L, the WFA Â

returned by the algorithm is ε-close to f for the norm-1 over the set of strings
of length at most L.

Theorem 6. Let ε > 0. Then, for any δ ∈ (0, 1), with proba-
bility at least 1 − δ over the draw of a sample S of size m ≥
p(|Σ|, n, |P|, |S|, 1/sn(HB), L, 1/ε, log(1/δ)) from the (target) probability distri-
bution f , where p is a polynomial, the WFA Â returned by the algorithm after

Learning Weighted Automata 17

receiving S, a complete Hankel basis B = (P, S) for Hf and n = rank(Hf)
verifies the following inequality:

∑

w∈Σ≤L

|f(w) − Â(w)| ≤ ε .

The proof of this result admits three components: Theorem 5, a concentration
bound for the estimates ĤB, and a bound relating accuracy in transition weights
between A and Â to accuracy in the function they compute (see [33,6,9] for
detailed proofs).

4.3 Learning WFAs from String–Value Pairs

In this section, we present an algorithm for learning WFAs in a more general
scenario than the previous ones. This scenario was first introduced in [11]. The
learning algorithm for WFAs described here is also due to [11].

Here, as in the standard supervised learning, the learner receives a labeled
sample S = ((w1, y1), . . . , (wm, ym)) ∈ (Σ∗ × S)m containing m string–value
pairs (wi, yi) ∈ Σ∗ × S, drawn i.i.d. according to some unknown distribution
D. The learning problem consists of finding a WFA A with small expected loss,
that is with small E(w,y)∼D[
(A(w), y)], where
 is a loss function defined over
semiring pairs. We will consider again here the case S = R. The problem is then
an instance of a regression learning problem. The loss function
 : R×R → R+ is
used to measure the closeness of the labels. Some common choices for
 are the
quadratic loss defined for all y, y′ ∈ R by
2(y, y′) = (y − y′)2 and the absolute
loss defined by
1(y, y′) = |y − y′|.

Note that in this formulation we did not assume that the labels y in pairs
(x, y) drawn from D are computed by some WFA. Thus, in learning-theoretic
terms, we consider an agnostic setting.

Note also that one could find a WFA A consistent with the labeled sample,
that is such that A(wi) = yi for all i ∈ [1,m]. But, such a WFA could be large and
might not benefit from a favorable expected loss. Furthermore, it was recently
shown in [39] that the problem of finding the smallest WFA A consistent with
the labeled sample is computationally hard.

A WFA minimizing the empirical loss 1
m

∑m
i=1
(A(wi), yi) could overfit the

training sample and typically would not benefit from favorable learning guaran-
tees unless it is selected out of a less complex sub-family of WFAs. The algorithm
we describe here avoids overfitting by constraining the choice of a WFA in two
ways: by restricting the number of states, and by controlling the norm of a
certain Hankel matrix.

The algorithm works in two stages. In the first stage, the sample S is used
to find a sub-block of a Hankel matrix on a given mask. The second stage uses
this Hankel block to reconstruct a WFA with a given number of states using the
SVD-based method from Section 3.7. The algorithm receives as input the sample
S, the alphabet Σ, a Hankel mask B = (P, S) with ε ∈ P∩ S, a number of states
k ≤ min{|P|, |S|}, a convex loss function
 : R × R → R+, and a regularization
parameter λ > 0.

18 B. Balle and M. Mohri

The first stage builds a basis B′ = (P′, S) with P′ = P ∪ PΣ and a modified
sample S′ containing only those (wi, yi) ∈ S such that wi ∈ P′S. Then, the
algorithm solves the convex optimization problem

ĤB′ ∈ argmin
H∈HB′

1
|S′|

∑

(w,y)∈S′

(H(w), y) + λ‖H‖∗ ,

where HB′ denotes the set of all Hankel matrices H ∈ R
P′×S, H(w) denotes

H(u, v) for some arbitrary decomposition w = uv with u ∈ P and v ∈ S, and
where ‖H‖∗ denotes the nuclear norm of H defined as the sum of the singular
values of H.

The second stage of the algorithm starts by extracting from ĤB′ the Hankel
sub-blocks associated with the Hankel mask B: ĤB, Ĥa for a ∈ Σ, hP, and hS.
Then, it uses the SVD-based WFA reconstruction algorithm of Section 3.7 to
obtain a WFA Â with k states.

The design of the algorithm, and in particular the choice of the nuclear
norm as a regularization term for finding the Hankel matrix ĤB′ is supported
by several properties. First, the nuclear norm is a convex surrogate for the rank
function commonly used in machine learning algorithms [27]. By Theorem 1, low-
rank Hankel matrices correspond to WFAs with small numbers of states, thus
it favors the selection of smaller WFAs by the algorithm. A second justification
is given by the following theorem, which provides a guarantee for learning with
WFAs in terms of the nuclear norm of the associated Hankel matrix.

Let M > 0 and define τM : R → R as the function defined by τM (y) =
sign(y)M if |y| > M , τM (y) = y otherwise. Let S = ((w1, y1), . . . , (wm, ym)) ∈
(Σ∗ × R)m. Given a decomposition wi = uivi, for any 1 ≤ i ≤ m, we define
US = maxu∈Σ∗ |{i : ui = u}| and VS = maxv∈Σ∗?|{i : vi = v}|. A measure of the
complexity of S that will appear in the next theorem is WS = min max{US , VS},
where the minimum is taken over all possible decompositions of the strings wi

in S. For any R > 0, let FR denote the following class of functions

FR = {f(w) = τM (A(w)) : A WFA, ‖Hf‖∗ ≤ R} .

The following gives a learning bound for the algorithm just discussed.

Theorem 7. Let
1 denote the absolute loss. Assume that there exists M > 0
such that P(w,y)∼D[|y| ≤ M] = 1. Then, for any δ > 0, with probability at least
1−δ over the draw of an i.i.d. sample S of size m from D, the following inequality
holds simultaneously for all f ∈ FR:

E
(w,y)∼D

[
1(f(w), y)] ≤ 1
m

m∑

i=1

1(f(wi), yi) + 3M

√
log(2δ)

2m

+ O

(
R

(
log(m + 1) +

√
WS log(m + 1)

)

m

)
.

Learning Weighted Automata 19

A similar result was first proven in [11] using a Frobenius norm regularizer
instead of a nuclear norm. The analysis in [11] was based on a stability argument,
and it is not clear how to extend it to the nuclear norm case, which is known to
perform better than the Frobenius norm in some applications [51]. Theorem 7 is
proven using a Rademacher complexity analysis of WFAs recently given by [8].

5 Conclusion

We presented a detailed survey of modern algorithms for learning WFAs. We
highlighted the key role played by the notion of Hankel matrix and its proper-
ties in the design of these learning algorithms which are designed for different
scenarios. These properties and the algorithms we described could inspire other
variants of these algorithms as well as other algorithms.

Acknowledgments. This work was partly funded by the NSF award IIS-1117591 and
NSERC.

References

1. Allauzen, C., Mohri, M., Riley, M.: Statistical modeling for unit selection in speech
synthesis. In: Proceedings of ACL (2004)

2. Allauzen, C., Mohri, M., Talwalkar, A.: Sequence kernels for predicting protein
essentiality. In: Proceedings of ICML (2008)

3. Aminof, B., Kupferman, O., Lampert, R.: Formal analysis of online algorithms.
In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 213–227.
Springer, Heidelberg (2011)

4. Angluin, D.: On the complexity of minimum inference of regular sets. Information
and Control 3(39) (1978)

5. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987)

6. Bailly, R.: Méthodes spectrales pour l’inférence grammaticale probabiliste de lan-
gages stochastiques rationnels. Ph.D. thesis, Aix-Marseille Université (2011)

7. Bailly, R., Denis, F., Ralaivola, L.: Grammatical inference as a principal component
analysis problem. In: Proceedings of ICML (2009)

8. Balle, B., Mohri, M.: On the Rademacher complexity of weighted automata. In:
Proceedings of ALT (2015)

9. Balle, B.: Learning Finite-State Machines: Statistical and Algorithmic Aspects.
Ph.D. thesis, Universitat Politecnica de Catalunya (2013)

10. Balle, B., Carreras, X., Luque, F.M., Quattoni, A.: Spectral learning of weighted
automata. Machine Learning 96(1–2) (2014)

11. Balle, B., Mohri, M.: Spectral learning of general weighted automata via con-
strained matrix completion. In: Proceedings of NIPS (2012)

12. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: On the
applications of multiplicity automata in learning. In: Proceeding FOCS (1996)

13. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning
functions represented as multiplicity automata. Journal of the ACM 47(3) (2000)

20 B. Balle and M. Mohri

14. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity
and equivalence queries. In: Bonuccelli, M.A., Crescenzi, P., Petreschi, R. (eds.)
CIAC 1994. LNCS, vol. 778, pp. 54–62. Springer, Heidelberg (1994)

15. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity
and equivalence queries. SIAM Journal on Computing 25(6) (1996)

16. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer (1988)
17. Bisht, L., Bshouty, N.H., Mazzawi, H.: On optimal learning algorithms for multi-

plicity automata. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI),
vol. 4005, pp. 184–198. Springer, Heidelberg (2006)

18. Breuel, T.M.: The OCRopus open source OCR system. In: Proceedings of
IS&T/SPIE (2008)

19. Cardon, A., Crochemore, M.: Détermination de la représentation standard d’une
série reconnaissable. ITA 14(4), 371–379 (1980)

20. Carlyle, J.W., Paz, A.: Realizations by stochastic finite automata. J. Comput. Syst.
Sci. 5(1) (1971)

21. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Pre-reduction graph products:
Hardnesses of properly learning dfas and approximating edp on dags. In: Proceed-
ings of FOCS (2014)

22. Cortes, C., Haffner, P., Mohri, M.: Rational kernels: Theory and algorithms. Jour-
nal of Machine Learning Research 5 (2004)

23. Droste, M., Kuich, W. (eds.): Handbook of weighted automata. EATCS Mono-
graphs on Theoretical Computer Science. Springer (2009)

24. Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and
hidden markov models: probability distributions, learning models and induction
algorithms. Pattern Recognition (2005)

25. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press
(1998)

26. Eilenberg, S.: Automata, Languages and Machines. Academic Press (1974)
27. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford Uni-

versity (2002)
28. Fliess, M.: Matrices de Hankel. Journal de Mathématiques Pures et Appliquées 53

(1974)
29. Gold, E.M.: Complexity of automaton identification from given data. Information

and Control 3(37) (1978)
30. Golub, G., Loan, C.V.: Matrix Computations. Johns Hopkins University Press

(1983)
31. Haussler, D., Littlestone, N., Warmuth, M.K.: Predicting {0, 1}-functions on ran-

domly drawn points. In: Proceedings of COLT (1988)
32. Hsu, D., Kakade, S.M., Zhang, T.: A spectral algorithm for learning hidden markov

models. In: Proceedings of COLT (2009)
33. Hsu, D., Kakade, S.M., Zhang, T.: A spectral algorithm for learning hidden markov

models. Journal of Computer and System Sciences 78(5) (2012)
34. II, K.C., Kari, J.: Image compression using weighted finite automata. Computers

& Graphics 17(3) (1993)
35. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computa-

tional Linguistics 20(3) (1994)
36. Karttunen, L.: The replace operator. In: Proceedings of ACL (1995)
37. Kearns, M.J., Valiant, L.G.: Cryptographic limitations on learning boolean formu-

lae and finite automata. Journal of ACM 41(1) (1994)

Learning Weighted Automata 21

38. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press (1994)

39. Kiefer, S., Marusic, I., Worrell, J.: Minimisation of multiplicity tree automata. In:
Pitts, A. (ed.) FOSSACS 2015. LNCS, vol. 9034, pp. 297–311. Springer, Heidelberg
(2015)

40. Kuich, W., Salomaa, A.: Semirings, Automata. Springer, Languages (1986)
41. Mohri, M.: Finite-state transducers in language and speech processing. Computa-

tional Linguistics 23(2) (1997)
42. Mohri, M.: Weighted automata algorithms. In: Handbook of Weighted Automata.

Springer (2009)
43. Mohri, M., Pereira, F., Riley, M.: Weighted automata in text and speech process-

ing. In: Proceedings of ECAI 1996 Workshop on Extended finite state models of
language (1996)

44. Mohri, M., Pereira, F., Riley, M.: Speech recognition with weighted finite-state
transducers. In: Handbook on Speech Processing and Speech Comm. Springer
(2008)

45. Mohri, M., Pereira, F.C.N.: Dynamic compilation of weighted context-free gram-
mars. In: Proceedings of COLING-ACL (1998)

46. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
MIT Press (2012)

47. Mohri, M., Sproat, R.: An efficient compiler for weighted rewrite rules. In: Pro-
ceedings of ACL (1996)

48. Mornhinweg, D., Shapiro, D.B., Valente, K.: The principal axis theorem over arbi-
trary fields. American Mathematical Monthly (1993)

49. Pereira, F., Riley, M.: Speech recognition by composition of weighted finite
automata. In: Finite-State Language Processing. MIT Press (1997)

50. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approx-
imated within any polynomial. J. ACM 40(1) (1993)

51. Quattoni, A., Balle, B., Carreras, X., Globerson, A.: Spectral regularization for
max-margin sequence tagging. In: Proceedings of ICML (2014)

52. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Springer (1978)

53. Schützenberger, M.P.: On a special class of recurrent events. The Annals of Math-
ematical Statistics 32(4) (1961)

54. Schützenberger, M.P.: On the definition of a family of automata. Information and
Control 4 (1961)

55. Sproat, R.: A finite-state architecture for tokenization and grapheme-to-phoneme
conversion in multilingual text analysis. In: Proceedings of the ACL SIGDAT Work-
shop. ACL (1995)

56. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11) (1984)
57. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Prob-

abilistic finite-state machines - part I. PAMI (2005)

More Than 1700 Years of Word Equations

Volker Diekert(B)

Institut Für Formale Methoden der Informatik,
Universität Stuttgart, Stuttgart, Germany

diekert@fmi.uni-stuttgart.de

Abstract. Geometry and Diophantine equations have been ever-present
in mathematics. According to the existing literature the work of Dio-
phantus of Alexandria was mentioned before 364 AD, but a systematic
mathematical study of word equations began only in the 20th century.
So, the title of the present article does not seem to be justified at all.
However, a Diophantine equation can be viewed as a special case of
a system of word equations over a unary alphabet, and, more impor-
tantly, a word equation can be viewed as a special case of a Diophantine
equation. Hence, the problem WordEquations: “Is a given word equa-
tion solvable?”, is intimately related to Hilbert’s 10th problem on the
solvability of Diophantine equations. This became clear to the Russian
school of mathematics at the latest in the mid 1960s, after which a sys-
tematic study of that relation began.

Here, we review some recent developments which led to an amazingly
simple decision procedure for WordEquations, and to the description of
the set of all solutions as an EDT0L language.

Word Equations

A word equation is easy to describe: it is a pair (U, V) where U and V are
strings over finite sets of constants A and variables Ω. A solution is mapping
σ : Ω → A∗ which is extended to homomorphism σ : (A ∪ Ω)∗ → A∗ such
that σ(U) = σ(V). Word equations are studied in other algebraic structures and
frequently one is not interested only in satisfiability. For example, one may be
interested in all solutions, or only in solutions satisfying additional criteria like
rational constraints for free groups [6]. Here, we focus on the simplest case of
word equations over free monoids; and by WordEquations we understand the
formal language of all word equations (over a given finite alphabet A) which are
satisfiable, that is, for which there exists a solution.

History

The problem WordEquations is closely related to the theory of Diophantine equa-
tions. The publication of Hilbert’s 1900 address at the International Congress of
Mathematicians listed 23 problems. The tenth problem (Hilbert 10) is:

c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 22–28, 2015.
DOI: 10.1007/978-3-319-23021-4 2

More Than 1700 Years of Word Equations 23

“Given a Diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: To devise a process
according to which it can be determined in a finite number of operations
whether the equation is solvable in rational integers.”

There is a natural encoding of a word equation as a Diophantine problem. It
is based on the fact that two 2×2 integer matrices (1 0

1 1) and (1 1
0 1) generate a free

monoid. Moreover, these matrices generate exactly those matrices on SL(2,Z)
where all coefficients are natural numbers. This is actually easy to show, and also
used in fast the “fingerprint” algorithm by Karp and Rabin [12]. A reduction
from WordEquations to Hilbert 10 is now straightforward. For example, the
equation abX = Y ba is solvable if and only if the following Diophantine system
in unknowns X1, . . . , Y4 is solvable over integers:

(1 0
1 1) · (1 1

0 1) · (
X1 X2
X3 X4

)
=

(
Y1 Y2
Y3 Y4

) · (1 1
0 1) · (1 0

1 1)

X1X4 − X2X3 = 1
Y1Y4 − Y2Y3 = 1

Xi ≥ 0 & Yi ≥ 0 for 1 ≤ i ≤ 4

The reduction of a Diophantine system to a single Diophantine equation is clas-
sic. It is based on the fact that every natural number can be written as a sum of
four squares. In the mid 1960s the following mathematical project was launched:
show that Hilbert 10 is undecidable by showing that WordEquations is unde-
cidable. The hope was to encode the computations of a Turing machine into
a word equation. The project failed greatly, producing two great mathematical
achievements. In 1970 Matiyasevich showed that Hilbert 10 is undecidable, based
on number theory and previous work by Davis, Putnam, and Robinson, see the
textbook [17]. A few years later, in 1977 Makanin showed that WordEquations
is decidable [15].

In the 1980s, Makanin showed that the existential and positive theories of free
groups are decidable [16]. In 1987 Razborov gave a description of all solutions for
an equation in a free group via “Makanin-Razborov” diagrams [21,22]. Finally, in
a series of papers ending in [13] Kharlampovich and Myasnikov proved Tarski’s
conjectures dating back to the 1940s:

1. The elementary theory of free groups is decidable.
2. Free non-abelian groups are elementary equivalent.

The second result has also been shown independently by Sela [24].
It is not difficult to see (by encoding linear Diophantine systems over the

naturals) that WordEquations is NP-hard, but the first estimations of Makanin’s
algorithm was something like

DTIME

(
22

22
2poly(n)

)
.

24 V. Diekert

Over the years Makanin’s algorithm was modified to bring the complexity down
to EXPSPACE [9], see also the survey in [5]. For equations in free groups the com-
plexity seemed to be much worse. Kościelski and Pacholski published a result
that the scheme of Makanin’s algorithm for free groups is not primitive recur-
sive [14]. However, a few years later Plandowski and Rytter showed in [20] that
solutions of word equations can be compressed by Lempel-Ziv encodings (actu-
ally by straight-line programs); and the conjecture was born that WordEquations
is in NP; and, moreover, the same should be true for word equations over free
groups. The conjecture has not yet been proved, but in 1999 Plandowski showed
that WordEquations is in PSPACE [18,19]. The same is true for equations in free
groups and allowing rational constraints we obtain a PSPACE-complete problem
[6,10].

In 2013 Jeż applied recompression to WordEquations and simplified all (!)
known proofs for decidability [11]. Actually, using his method he could describe
all solutions of a word equation by a finite graph where the labels are of two
types. Either the label is a compression c �→ ab where a, b, c where letters or
the label is a linear Diophantine system. His method copes with free groups and
with rational constraints: this was done in [7].

Moreover, the method of Jeż led Ciobanu, Elder, and the present author to an
even simpler description for the set of all solutions: it is an EDT0L language [3].
Such a simple structural description of solution sets was known before only for
quadratic word equations by [8].

The notion of an EDT0L system refers to Extended, Deterministic, Table,
0 interaction, and Lindenmayer. There is a vast literature on Lindenmayer sys-
tems, see [23], but actually we need very little from the “Book of L”.

Rational Sets of Endomorphisms

The starting point is a word equation (U, V) of length n over a set of constants
A and set of variables X1, . . . , Xk (without restriction, |A| + k ≤ n). There is
an nondeterministic algorithm which takes (U, V) as input and which works in
space NSPACE(n log n). The output is an extended alphabet C ⊇ A of linear
size in n and a finite trim nondeterministic automaton A where the arc labels
are endomorphisms over C∗. The automaton A accepts therefore a rational set
R = L(A) ⊆ End(C∗), and enjoys various properties which are explained next.
The arc labels are restricted. An endomorphism used for an arc label is defined
by mapping c �→ u where c ∈ C is a letter and u is some word of length at most
2. The monoid End(C∗) is neither free nor finitely generated, but R lives inside
a finitely generated submonoid H∗ ⊆ End(C∗) where H is finite. Thus, we can
think of R as a rational (or regular) expression over a finite set of endomorphisms
H as we are used to in standard formal language theory. For technical reasons it
is convenient to assume that C contains a special symbol # whose main purpose
is serve as a marker. The algorithm is designed in such a way that it yields an
automaton A accepting a rational set R such that

{h(#) | h ∈ R} ⊆ A∗# · · · #A∗
︸ ︷︷ ︸
k−1 symbols #

.

More Than 1700 Years of Word Equations 25

Thus, applying the set of endomorphisms to the special symbol # we obtain
a formal language in (A∗ {#})k−1A∗. The set {h(#) | h ∈ R} encodes a set of
k-tuples over A∗. Due to Asfeld [1] we can take a description like {h(#) | h ∈ R}
as the very definition for EDT0L. Now, the result by Ciobanu et al. in [3] is the
following equality:

{h(#) | h ∈ R} = {σ(X1)# · · · #σ(Xk) | σ(U) = σ(V)} .

Here, σ runs over all solutions of the equation (U, V). Hence, the set of all
solutions for a given word equation is an EDT0L language.

The results stated in [3] are more general.1 They cope with the existential
theory of equations with rational constraints in finitely generated free products
of free groups, finite groups, free monoids, and free monoids with involution. For
example, they cover the existential theory of equations with rational constraints
in the modular group PSL(2,Z).

The NSPACE(n log n) algorithm produces some A whether or not (U, V) has
a solution. (If there is no solution then the trimmed automaton A has no states
accepting the empty set.) This shifts the viewpoint on how to solve equations.
The idea is that A answers basic questions about the solution set of (U, V).
Indeed, the construction in [3] is such that the following assertions hold.

– The equation (U, V) is solvable if and only if L(A)
= ∅.
– The equation (U, V) has infinitely many solutions if and only if L(A) is

infinite.

In particular, decision problems like “Is (U, V) satisfyable?” or “Does (U, V)
have infinitely many solutions” can be answered in NSPACE(n log n) for finitely
generated free products over free groups, finite groups, free monoids, and free
monoids with involution. Actually, we conjecture that NSPACE(n log n) is the
best complexity bound for WordEquations with respect to space. This conjecture
might hold even if the problem WordEquations was in NP.

How to Solve a Linear Diophantine System

Many of the aspects of our method of solving word equations are present in the
special case of solving a system of word equations over a unary alphabet. In
this particular case Jeż’s recompression is closely related to [2]. There are many
other places where the following is explained, so in some sense we can view the
rest of this section as folklore.

Assume that Alice wants to explain to somebody, say Bob, in a very short
time, say 15 minutes, that the set of solvable linear Diophantine systems over
integers is decidable. Assume that this fundamental insight is entirely new to
Bob. Alice might start to explain something with Cramer’s rule, determinants
or Gaussian elimination, but Bob does not know any of these terms, so better
not to start with a course on linear algebra within a time slot of 15 minutes.

1 Full proofs are in [4].

26 V. Diekert

What Bob knows is basic matrix operations and the notion of a linear Dio-
phantine system:

AX = c, where A ∈ Z
n×n, X = (X1, . . . , Xn)T and c ∈ Z

n×1.

Here, the Xi are variables over natural numbers. (This is not essential, and actu-
ally makes the problem more difficult than looking for a solution over integers.)

The complexity of the problem depends on the or values n, ‖c‖1 =
∑

i |ci|
and ‖A‖1 =

∑
i,j |aij |. Without restriction (by adding dummies) we have

‖c‖1 ≤ ‖A‖1 . (1)

Alice explains the compression algorithm with respect to a given solution
x ∈ N

n. Of course, the algorithm does not know the solution, so the algorithm
uses nondeterministic guesses. This is allowed provided two properties are sat-
isfied: soundness and completeness. Soundness means that a guess can never
transform a unsolvable system into a solvable one. Completeness means that for
every solution x, there is some choice of correct guesses such that the procedure
terminates with a system which has a trivial solution.

So we begin by guessing a solution x ∈ N
n. First, we can check whether x = 0

is a solution by looking at c. Indeed, x = 0 is a solution if and only if c = 0.
Hence, let us assume x
= 0 (this might be possible even if c = 0.) We define

a vector b = c. The vector b (and the solution x) will be modified during the
procedure. Perform the following while-loop.

while x
= 0

1. For all i define x′
i = xi − 1 if xi is odd and x′

i = xi otherwise. Thus, all x′
i

are even. Rewrite the system with a new vector b′ such that Ax′ = b′. Note
that

‖b′‖1 ≤ ‖b‖1 + ‖A‖1 . (2)

2. Now, all b′
i must be even. Otherwise we made a mistake and x was not a

solution.
3. Define b′′

i = b′
i/2 and x′′

i = x′
i/2. We obtain a new system AX = b′′ with

solution Ax′′ = b′′.
4. Rename b′′ and x′′ as b and x.

end while.

The clue is that, since ‖b‖1 ≤ ‖A‖1 by Equation (1), we obtain by Equa-
tion (2) and the third step an invariant:

‖b′′‖1 = ‖b′‖1 /2 ≤ ‖b‖1 /2 + ‖A‖1 /2 ≤ ‖A‖1 .

The procedure is obviously sound. It is complete because in each round ‖x‖1
decreases and therefore termination is guaranteed for every solution as long as
we make correct guesses. The final observation is that the procedure defines a

More Than 1700 Years of Word Equations 27

finite graph. The vertices are the vectors b ∈ Z
n with ‖b‖1 ≤ ‖A‖1 . There are

at most ‖A‖2n+1
1 such vectors. We are done! It is reported that the explanation

of Alice took less than 15 minutes. It is not reported whether Bob understood.
Alice explanation has a bonus: there is more information. We can label the

arcs according to our guesses with affine mappings of two types: either x �→ x+1
or x �→ 2x. Thus, we have a finite graph of at most exponential size where the
arc labels are affine mappings of x �→ λx + ε with λ ∈ {1, 2} and ε ∈ {0, 1}n.
Letting b = 0 be the initial state and the initial vector c the final state, we have
a nondeterministic finite automaton which accepts a rational set R of affine
mappings from N

n to itself. By construction, we obtain

{x ∈ N
n | Ax = c} = {h(0) | h ∈ R} .

References

1. Asveld, P.R.: Controlled iteration grammars and full hyper-AFL’s. Information
and Control 34(3), 248–269 (1977)

2. Boudet, A., Comon, H.: Diophantine equations, Presburger arithmetic and finite
automata. In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 30–43. Springer,
Heidelberg (1996)

3. Ciobanu, L., Diekert, V., Elder, M.: Solution Sets for equations over free
groups are EDT0L languages. In: Halldórsson, M.M., Iwama, K., Kobayashi, N.,
Speckmann, B. (eds.) ICALP 2015, Part II. LNCS, vol. 9135, pp. 134–145. Springer,
Heidelberg (2015)

4. Ciobanu, L., Diekert, V., Elder, M.: Solution sets for equations over free groups
are EDT0L languages. ArXiv e-prints, abs/1502.03426 (2015)

5. Diekert, V.: Makanin’s algorithm. In: Lothaire, M., (eds.) Algebraic Combinatorics
on Words. Encyclopedia of Mathematics and its Applications, vol. 90, chapter 12,
pp. 387–442. Cambridge University Press (2002)

6. Diekert, V., Gutiérrez, C., Hagenah, Ch.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Information and Com-
putation 202, 105–40 (2005). Conference version in STACS 2001. LNCS 2010,
pp. 170–182. Springer, Heidelberg (2001)

7. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. In: Hirsch, E.A., Kuznetsov, S.O., Pin,
J.É., Vereshchagin, N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 1–15. Springer,
Heidelberg (2014)

8. Ferté, J., Marin, N., Sénizergues, G.: Word-mappings of level 2. Theory Comput.
Syst. 54, 111–148 (2014)

9. Gutiérrez, C.: Satisfiability of word equations with constants is in exponential
space. In: Proc. 39th Ann. Symp. on Foundations of Computer Science (FOCS
1998), pp. 112–119. IEEE Computer Society Press, Los Alamitos (1998)

10. Gutiérrez, C.: Satisfiability of equations in free groups is in PSPACE. In: Pro-
ceedings 32nd Annual ACM Symposium on Theory of Computing, STOC 2000,
pp. 21–27. ACM Press (2000)

11. Jeż, A.: Recompression: a simple and powerful technique for word equations. In:
Portier, N., Wilke, T. (eds.) STACS. LIPIcs, vol. 20, pp. 233–244. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik. To appear in JACM, Dagstuhl, Germany (2013)

28 V. Diekert

12. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development 31, 249–260 (1987)

13. Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups.
J. of Algebra 302, 451–552 (2006)

14. Kościelski, A., Pacholski, L.: Complexity of Makanin’s algorithm. Journal of the
Association for Computing Machinery 43(4), 670–684 (1996)

15. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math.
Sbornik 103, 147–236 (1977). English transl. in Math. USSR Sbornik 32 (1977)

16. Makanin, G.S.: Decidability of the universal and positive theories of a free group.
Izv. Akad. Nauk SSSR, Ser. Mat. 48 735–749 (1984) (in Russian). nglish transla-
tion. In: Math. USSR Izvestija 25(75–88) (1985)

17. Matiyasevich, Yu.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
18. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE.

In: Proc. 40th Ann. Symp. on Foundations of Computer Science, FOCS 1999,
pp. 495–500. IEEE Computer Society Press (1999)

19. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE.
Journal of the Association for Computing Machinery 51, 483–496 (2004)

20. Plandowski, W., Rytter, W.: Application of lempel-ziv encodings to the solution
of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731–742. Springer, Heidelberg (1998)

21. Razborov, A.A.: On Systems of Equations in Free Groups. PhD thesis, Steklov
Institute of Mathematics (1987) (in Russian)

22. Razborov, A.A.: On systems of equations in free groups. In: Combinatorial and
Geometric Group Theory, pp. 269–283. Cambridge University Press (1994)

23. Rozenberg, G., Salomaa, A.: The Book of L. Springer (1986)
24. Sela, Z.: Diophantine geometry over groups VIII: Stability. Annals of Math. 177,

787–868 (2013)

An Algebraic Geometric Approach
to Multidimensional Words

Jarkko Kari(B) and Michal Szabados

Department of Mathematics and Statistics,
University of Turku, 20014 Turku, Finland

jkari@utu.fi

Abstract. We apply linear algebra and algebraic geometry to study
infinite multidimensional words of low pattern complexity. By low com-
plexity we mean that for some finite shape, the number of distinct sub-
patterns of that shape that occur in the word is not more than the size of
the shape. We are interested in discovering global regularities and struc-
tures that are enforced by such low complexity assumption. We express
the word as a multivariate formal power series over integers. We first
observe that the low pattern complexity assumption implies that there
is a non-zero polynomial whose formal product with the power series is
zero. We call such polynomials the annihilators of the word. The annihi-
lators form an ideal, and using Hilbert’s Nullstellensatz we construct
annihilators of simple form. In particular, we prove a decomposition
of the word as a sum of finitely many periodic power series. We con-
sider in more details a particular interesting example of a low complex-
ity word whose periodic decomposition contains necessarily components
with infinitely many distinct coefficients. We briefly discuss applications
of our technique in the Nivat’s conjecture and the periodic tiling prob-
lem. The results reported here have been first discussed in a paper that
we presented at ICALP 2015.

1 Introduction

A multidimensional infinite word, or simply a configuration, c ∈ AZ
d

is a d-
dimensional infinite array filled with symbols from a (usually finite) alphabet A.
For each cell v ∈ Z

d, we denote by cv ∈ A the symbol in position v. Suppose
that for some finite observation window D ⊆ Z

d, the number of distinct pat-
terns of shape D that exist in c is small, at most the cardinality |D| of D. We
investigate global regularities and structures in c that are enforced by such low
local complexity assumption.

Suppose that the alphabet A is a subset of Z. This can be established by
renaming the symbols if A is finite. It is then possible to perform arithmetics
on configurations; for example the sum of two configurations is defined cell wise.
The main result that we report (Theorem 3) is that c can be expressed as a finite
sum c = c1 + · · · + cm of periodic c1, . . . , cm ∈ Z

(Zd). Recall that a configuration
e is called periodic if it is invariant under some translation, so that there is
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 29–42, 2015.
DOI: 10.1007/978-3-319-23021-4 3

30 J. Kari and M. Szabados

a vector u ∈ Z
d \ {0} such that ∀v ∈ Z

d : ev = ev+u. Note that the periodic
components ci in the decomposition c = c1+· · ·+cm are not necessarily over any
finite alphabet, but they are allowed to contain infinitely many distinct integer
values. After the main result we present and analyze an example of a low local
complexity configuration c over two letters, whose periodic decomposition uses
necessarily an infinite alphabet. Finally, we briefly discuss applications of our
results on two open problems: Nivat’s conjecture [Niv97] and the periodic tiling
problem [LW96].

To prove our main Theorem 3 we proceed in two steps.

(1) We show how the low complexity assumption on c implies that there is a
non-trivial filter that annihilates c to the zero configuration. The filtering
operation is the usual convolution of c with a finite mask, which we conve-
niently express in terms of multiplication by a multivariate polynomial. This
step is based on basic linear algebra.

(2) We analyze configurations annihilated by non-trivial filtering, that is, by
multiplying them with some non-zero polynomial. The set of annihilating
polynomials is an ideal of the polynomial ring. Using Hilbert’s Nullstellensatz
we show that the annihilator ideal contains polynomials of simple form. In
particular, we show that the configuration can be annihilated by a product
of difference filters (Xv −1) that subtract from a configuration its translated
copy. This in turn implies a decomposition of the configuration into a sum
of periodic components.

The result reported here have been presented in [KS15], except for the proofs
related to the example in Section 5.

2 Preliminaries

Classically, configurations are just assignments c : Z
d −→ A of symbols of a

(finite or infinite) alphabet A on an infinite grid. We use the subscript notation cv
for the symbol assigned in cell v ∈ Z

d. In order to apply algebra it is convenient
to let the symbols in A be numbers, and to represent c as a formal power series
over d variables x1, . . . , xd and with coefficients in A:

c(x1, . . . , xd) =
∞∑

v1=−∞
· · ·

∞∑

vd=−∞
cv1,...,vd

xv1
1 . . . xvd

d .

As usual, we abbreviate the vector (x1, . . . , xd) of variables as X, and write
monomial xv1

1 . . . xvd

d as Xv for v = (v1, . . . , vd) ∈ Z
d. Configuration c can now

be expressed compactly as

c(X) =
∑

v∈Zd

cvXv. (1)

Usually we let A ⊆ Z so that configurations are power series with integer coef-
ficients, but to use Nullstellensatz we need an algebraically closed field, so that

An Algebraic Geometric Approach to Multidimensional Words 31

frequently we consider multivariate power series and polynomials over C. Any-
way, for R = Z or R = C, we denote by R[[X±1]] the set of formal power series as
in (1) with coefficients cv in domain R. Note that we include negative exponents
in the series. We call power series (1) integral if all coefficients cv are integers,
and it is finitary if there are only finitely many distinct coefficients cv. In our
usual setup A ⊆ Z is finite so that the corresponding power series is finitary and
integral.

A polynomial over R is a formal sum a(X) =
∑

avXv where av ∈ R and
the sum is over a finite set of d-tuples v = (v1, . . . , vd) with non-negative coor-
dinates vi ≥ 0. If the coordinates are also allowed be negative we get a Laurent
polynomial over R. We denote by R[X] and R[X±1] the sets of polynomials
and Laurent polynomials over R. We sometimes use the term proper polynomial
when we want to emphasize that a(X) is a polynomial and not only a Laurent
polynomial.

Here are some notational remarks: We use both notations a(X) and a to
denote (Laurent) polynomials and power series, that is, we may or may not
explicitly write the formal variable in the notation. For any formal polynomial,
Laurent polynomial or power series a we denote by av the value in cell v, that is,
the coefficient of monomial Xv. Sometimes we may wish to write the coefficients
explicitly differently, e.g., we may write f(X) =

∑
avXv.

The support of a polynomial or a Laurent polynomial a(X) is the set

supp(a) = {v ∈ Z
d | av �= 0} (2)

of cells with non-zero value.
The formal product between a power series and a (Laurent) polynomial is

defined the usual way, as a convolution. This is a filtering operation, and the
result is again a power series. Note that multiplying a power series with monomial
Xv is equivalent to translating it by the vector v. It follows that power series
c(X) is periodic with period v if and only if (Xv −1)c = 0. We say that (Xv −1)
annihilates c(X).

3 Step 1: From Low Local Complexity to an Annihilating
Filter

We are studying configurations in which the number of distinct patterns of some
finite shape D is at most the size |D| of the shape. More precisely, for any finite
D ⊆ Z

d we denote by πD the projection operator on R[[X±1]] defined by

πD(c) =
∑

v∈D

cvXv,

and define the D-patterns of c to be the elements of

PattD(c) = {πD(Xuc) | u ∈ Z
d }.

32 J. Kari and M. Szabados

Configuration c has low complexity with respect to a finite D ⊆ Z
d if

|PattD(c)| ≤ |D|, (3)

and we say that c has low complexity if (3) is satisfied for some finite D.
We say that a Laurent polynomial f(X) annihilates configuration c(X) if

f(X)c(X) = 0. The following lemma guarantees that each low complexity con-
figuration is annihilated by some non-zero Laurent polynomial, and hence also
by a non-zero proper polynomial.

Lemma 1. Let R be a field or R = Z. Let c(X) ∈ R[[X±1]] be a configuration
and D ⊂ Z

d a finite set such that |PattD(c)| ≤ |D|. Then there exists a non-zero
polynomial f(X) ∈ R[X] such that f(X)c(X) = 0.

Proof. Let R be a field. We use elementary linear algebra. Let D = {u1, . . . ,un}.
By the low complexity assumption, the set

{(1, cu1+v, . . . , cun+v) | v ∈ Z
d}

of vectors in Rn+1 contains at most n = |D| elements. There exists hence a non-
zero vector (a0, a1, . . . , an) orthogonal to the set. Consider the product of c(X)
and the Laurent polynomial g(X) = a1X

−u1 + · · · + anX−un . In any position
v, the coefficient in the product g(X)c(X) is

a1cu1+v + · · · + ancun+v = −a0.

Hence the product is a constant configuration, so that (Xv−1)g(X)c(X) = 0 for
any v. We conclude that c(X) is annihilated by all non-zero Laurent polynomials
h(X) = (Xv − 1)g(X).

To obtain a non-zero proper polynomial that annihilates c, notice that if
h(X) is an annihilator of c(X), so is a(X)h(X) for any Laurent polynomial
a(X). In particular, by choosing a(X) = Xu for u ∈ Z

d with sufficiently large
coordinates, we have that f(X) = Xuh(X) ∈ R[X] is a polynomial.

Consider then the case R = Z. By the proof above (for R = Q) we see that
there exists a non-zero polynomial f(X) ∈ Q[X] such that f(X)c(X) = 0. There
is a positive integer m such that m · f(X) ∈ Z[X], so that m · f(X) satisfies the
claim.
�

As a first application of this simple observation we infer the classical Morse-
Hedlund theorem [MH38]. Consider the case d = 1, and hence a one-variable
configuration c(x) ∈ C[[x±1]] that satisfies the low complexity assumption. By
Lemma 1, there is a (one variable) polynomial f(x) that annihilates c(x). Mul-
tiplying by a suitable monomial, we can take an annihilating f(x) with the
constant term one:

f(x) = 1 + a1x + a2x
2 + . . . anxn.

An Algebraic Geometric Approach to Multidimensional Words 33

Now f(x)c(x) = 0 means that, for all i ∈ Z,

ci = a1ci−1 + a2ci−2 + · · · + anci−n,

so that the symbol in position i is determined by the n symbols on its left. A
deterministic process on a finite set is necessarily periodic, so clearly c has to be
a periodic configuration. We have established

Theorem 1 (Morse, Hedlund 1938). If a one-dimensional bi-infinite word
contains at most n distinct subwords of length n then the word is periodic.

4 Step 2: From an Annihilating Filter to a Periodic
Decomposition

Let c be a configuration. We define

Ann(c) =
{

f ∈ C[X]
∣∣ fc = 0

}

to be the set of polynomials that annihilate it. Note that Ann(c) contains proper
polynomials only. Note also that we take complex polynomials so that we can
apply Hilbert’s Nullstellensatz that requires an algebraically closed field.

It is easy to see that Ann(c) is an ideal of the polynomial ring C[X], the
annihilator ideal of configuration c. We always have 0 ∈ Ann(c) where 0 is the
zero polynomial with zero coefficients. If Ann(c) = {0} then the annihilator ideal
is trivial ; if Ann(c) contains also some non-zero polynomial then it is non-trivial.
By Lemma 1, the annihilator ideal of a low complexity configuration is always
non-trivial. It is also easy to see that if c is integral and Ann(c) is non-trivial
then Ann(c) contains a non-zero polynomial from Z[X], that is, a polynomial
with integer coefficients.

More generally, if C is a set of configurations (e.g., a subshift), we let

Ann(C) =
{

f ∈ C[X]
∣∣ fc = 0 for all c ∈ C }

be the set of common annihilators. Again, Ann(C) is an ideal of the polynomial
ring.

If Z = (z1, . . . , zd) ∈ C
d is a complex vector then it can be plugged into a

polynomial, producing a complex value. In particular, plugging into a monomial
Xv results in Zv = zv1

1 · · · zvd

d .
In this section we use Hilbert’s Nullstellensatz as a tool to infer other elements

of the ideal Ann(c). Recall the statement of the Nullstellensatz: Suppose g(X)
is a polynomial such that g(Z) = 0 for all common roots Z of Ann(c), that is,
for all Z ∈ C

d such that f(Z) = 0 for all f ∈ Ann(c). Then gn(X) ∈ Ann(c) for
some n.

First we show that annihilating integral polynomials can be spatially
“blown-up”:

34 J. Kari and M. Szabados

Lemma 2. Let c(X) be a finitary integral configuration and f(X) ∈ Ann(c) a
non-zero integral polynomial, that is, f(X) ∈ Ann(c) ∩ Z[X]. Then there exists
an integer r such that for every positive integer n relatively prime to r we have
f(Xn) ∈ Ann(c).

Proof. Denote f(X) =
∑

avXv. First we prove the claim for the case when n is
a large enough prime.

Let p be a prime, then we have fp(X) ≡ f(Xp) (mod p). Because f annihi-
lates c, multiplying both sides by c(X) results in

0 ≡ f(Xp)c(X) (mod p).

The coefficients in f(Xp)c(X) are bounded in absolute value by

s = cmax

∑
|av|,

where cmax is the maximum absolute value of coefficients in c. Therefore if p > s
we have f(Xp)c(X) = 0.

For the general case, set r = s!. Now every n relatively prime to r is of the
form p1 · · · pk where each pi is a prime greater than s. Note that we can repeat
the argument with the same bound s also for polynomials f(Xm) for arbitrary
m – the bound s depends only on c and the (multi)set of coefficients av, which
is the same for all f(Xm). Thus we have f(Xp1···pk) ∈ Ann(c).
�
The next lemma establishes a polynomial g(X) of simple form that becomes zero
at all common roots of Ann(c):

Lemma 3. Let c be a finitary integral configuration and f(X) =
∑

avXv a
non-trivial integral polynomial annihilator. Let S = supp(f) be the support of
f(X). Define

g(X) = x1 · · · xd

∏

v∈S
v �=v0

(Xrv − Xrv0)

where r is the integer from Lemma 2 and v0 ∈ S arbitrary. Then g(Z) = 0 for
any common root Z ∈ C

d of Ann(c).

Proof. Fix Z such that h(Z) = 0 for all h ∈ Ann(c). If any of its complex
coordinates is zero then clearly g(Z) = 0. For this reason we included x1 · · · xd

as a factor of g(X).
Assume then that all coordinates of Z are non-zero. Let us define for α ∈ C

Sα =
{
v ∈ S

∣∣ Zrv = α
}
,

fα(X) =
∑

v∈Sα

avXv.

Because S is finite, there are only finitely many non-empty sets Sα1 , . . . , Sαm

and they form a partitioning of S. In particular we have f = fα1 + · · · + fαm
.

An Algebraic Geometric Approach to Multidimensional Words 35

Numbers of the form 1 + ir are relatively prime to r for all non-negative
integers i, therefore by Lemma 2, f(X1+ir) ∈ Ann(c). Plugging in Z we obtain
f(Z1+ir) = 0. Now compute:

fα(Z1+ir) =
∑

v∈Sα

avZ(1+ir)v =
∑

v∈Sα

avZvαi = fα(Z)αi

Summing over α = α1, . . . , αm gives

0 = f(Z1+ir) = fα1(Z)αi
1 + · · · + fαm

(Z)αi
m.

Let us rewrite the last equation as a statement about orthogonality of two vectors
in C

m:

(fα1(Z), . . . , fαm
(Z)) ⊥ (αi

1, . . . , α
i
m)

By Vandermode determinant, for i ∈ {0, . . . , m − 1} the vectors on the right
side span the whole C

m. Therefore the left side must be the zero vector, and
especially for α such that v0 ∈ Sα we have

0 = fα(Z) =
∑

v∈Sα

avZv.

Because Z does not have zero coordinates, each term on the right hand side is
non-zero. But the sum is zero, therefore there are at least two vectors v0,v ∈ Sα.
From the definition of Sα we have Zrv = Zrv0 = α, so Z is a root of Xrv−Xrv0 .

�
Now we are ready to apply the Nullstellensatz to obtain a simple annihilator:

Theorem 2. Let c be a finitary integral configuration with a non-trivial annihi-
lator. Then there are non-zero v1, . . . ,vm ∈ Z

d such that the Laurent polynomial

(Xv1 − 1) · · · (Xvm − 1)

annihilates c.

Proof. This is an easy corollary of Lemma 3. First notice that the non-trivial
annihilator can be taken so that it has integer coefficients. The polynomial g(X)
provided by Lemma 3 vanishes on all common roots of Ann(c), therefore by
Hilbert’s Nullstellensatz there is n such that gn(X) ∈ Ann(c). Note that any
monomial multiple of an annihilator is again an annihilator. Therefore also

gn(X)
xn
1 · · · xn

dXnrv0(|S|−1)

is, and it is a Laurent polynomial of the desired form.
�
Multiplying a configuration by (Xv−1) is a “difference operator” on the con-

figuration. Theorem 2 then says that there is a sequence of difference operators
which annihilates the configuration. We can reverse the process: let us start by
the zero configuration and step by step “integrate” until we obtain the original
configuration. This idea gives the Decomposition theorem:

36 J. Kari and M. Szabados

Theorem 3 (Decomposition theorem [KS15]). Let c be a finitary integral
configuration with a non-trivial annihilator. Then there exist periodic integral
configurations c1, . . . , cm such that c = c1 + · · · + cm.

5 An Example

In this section we illustrate how the theory applies to a concrete example. Its
properties were briefly mentioned in [KS15], without proofs. Recall that con-
figurations are not assumed to be finitary or integral unless explicitly stated
so.

Fix α ∈ R irrational and define two-dimensional configurations c(1), c(2), c(3)

and s by

c
(1)
ij = −�iα�, c

(2)
ij = −�jα�, c

(3)
ij = �(i + j)α�,

s = c(1) + c(2) + c(3).

Then s is a finitary integral configuration over the alphabet {0, 1}. Obviously,
c(1), c(2), c(3) are periodic in directions (0, 1), (1, 0), (−1, 1) respectively, but they
are not finitary. In the following we prove that s cannot be expressed as a finite
sum of finitary periodic configurations.

There is a certain symmetry in s which becomes apparent when the configu-
ration is affinely transformed such that these three directions become symmetric.
In that case, it is natural to show the coefficients in a hexagonal grid, see Figure 1.

Fig. 1. The configuration s from Section 5 when α is the golden ratio is shown on the
left. On the right the configuration is skewed such that the three directions (0, 1), (1, 0)
and (1,−1) became symmetrical, the bottom left corner is preserved.

For any Laurent polynomials f1, . . . , fn ∈ C[X±1], we let

〈f1, . . . , fn〉 = {g1f1 + · · · + gnfn | g1, . . . , gn ∈ C[X±1]}

An Algebraic Geometric Approach to Multidimensional Words 37

be the Laurent polynomial ideal they generate. Note that in this notation we let
all involved polynomials be Laurent so that this is not a polynomial ideal. For
Laurent polynomials f(X) and g(X), we denote f ≡ g mod 〈f1, . . . , fn〉 if and
only if f(X) − g(X) ∈ 〈f1, . . . , fn〉.

A (Laurent) polynomial a(X) is called a line (Laurent) polynomial if the
support supp(a) defined by (2) contains at least two points and all the points
of the support lie on a single line. If u,v ∈ Z

d are such that {u + tv | t ∈ R}
contains the support of a line (Laurent) polynomial a(X) then we say that v is
a direction of a(X). By rational directions we mean elements of Zd \{0}. We say
that two line (Laurent) polynomials are parallel if they have the same directions.

Let configuration c ∈ C[[X±1]] be such that Ann(c) contains a line poly-
nomial. We call such c directed. This terminology applies to both finitary and
non-finitary configurations. Notice that for any line Laurent polynomial that
annihilates c there is a parallel line polynomial in Ann(c), obtained by multi-
plying it with a monomial. If all line polynomials in Ann(c) are parallel to each
other, we say that c is one-directed, and if c has non-parallel annihilating line
polynomials we say that c is multi-directed. Non-finitary configurations can be
directed without being periodic, but if c is finitary then it is one-directed if and
only if it is periodic in one direction only, and it is multi-directed if and only
if it has several directions of periodicity. In the two-dimensional setting d = 2,
such configurations are sometimes called singly periodic and doubly periodic,
respectively.

It is well known that a doubly periodic configuration is periodic in all rational
directions. An analogous statement holds more generally for two-dimensional
directed configurations:

Lemma 4. If a(X) and b(X) are non-parallel two-dimensional line Laurent
polynomials then 〈a, b〉 contains line Laurent polynomials in all rational direc-
tions. In particular, in two dimensions, if Ann(c) contains two non-parallel line
polynomials then it contains a line polynomial in every rational direction.

Proof. The proof is easy using simple algebraic geometry and zero dimensionality
of 〈a, b〉. Here we give it as an elementary linear algebraic reasoning. It is easy
to see that there is a finite domain D ⊆ Z

2 (a parallelogram determined by the
supports of a and b) such that for any Laurent polynomial f there is a Laurent
polynomial f ′ ≡ f mod 〈a, b〉 with support supp(f ′) ⊆ D.

Let u ∈ Z
2 \ {(0, 0)} be any rational direction. Consider the monomials

X0,Xu,X2u, . . . and, for each k = 0, 1, 2 . . . , let fk(X) ≡ Xku mod 〈a, b〉 be
the representative with supp(fk) ⊆ D. It follows from the finiteness of the sup-
port that f1, f2, . . . are linearly dependant, and hence there is a non-zero vector
(a0, a1, . . . , an) of coefficients such that a0f0(X) + · · · + anfn(X) = 0. But then
f(X) = a0X

0 + a1X
u + · · · + anXnu is in 〈a, b〉. If f(X) is a monomial then

1 ∈ 〈a, b〉 and hence 〈a, b〉 contains all Laurent polynomials. Otherwise f(X)
has at least two non-zero coefficients and it is then a line Laurent polynomial in
direction u.
�

38 J. Kari and M. Szabados

The next lemma states that one-directed configurations in different directions
are linearly independent.

Lemma 5. Let c1(X), . . . , cn(X) be two-dimensional configurations that are
one-directed and pairwise non-parallel. Then a1, . . . , an ∈ C satisfy a1c1(X) +
· · · + ancn(X) = 0 if and only if a1 = · · · = an = 0.

Proof. We prove the claim by induction on n. Case n = 1: since c1(X) is one-
directed, it is not the zero power series. Hence a1c1(X) = 0 if and only if a1 = 0.

Suppose then the claim has been proved for n− 1, and let a1, . . . , an be such
that

a1c1(X) + · · · + ancn(X) = 0. (4)

Because cn(X) is one-directed it is annihilated by some line Laurent polynomial
a(X). We multiply (4) by a(X).

Let 1 ≤ i ≤ n − 1 and consider a(X)ci(X). It is annihilated by the same
line Laurent polynomial that annihilates ci(X) so it is directed. If it were multi-
directed then, by Lemma 4, it would be annihilated by some line Laurent polyno-
mial b(X) that is parallel to a(X). Then ci(X) would be annihilated by the line
Laurent polynomial a(X)b(X) that is parallel to a(X), a contradiction with the
fact that ci(X) and cn(X) are one-directed in different directions. We conclude
that a(X)ci(X) is one-directed in the same direction as ci(X).

Multiplying (4) by a(X) implies that

a1a(X)c1(X) + · · · + an−1a(X)cn−1(X) = 0.

By the inductive hypothesis, a1 = · · · = an−1 = 0. Case n = 1 applied to
ancn(X) = 0 shows that also an = 0.
�

Now we are ready to analyze the configuration s = c(1) + c(2) + c(3) defined
at the beginning of this section. We want to show that it is not a sum of finitely
many periodic finitary configurations. Suppose the contrary: c(1) + c(2) + c(3) =
f1 + · · ·+ fn for some periodic finitary fi(X). By moving the terms on the same
side, and combining terms that are directed in the same direction, we obtain
that

(c(1) + p1) + (c(2) + p2) + (c(3) + p3) + p4 + · · · + pm = 0, (5)

for some directed finitary pi(X) with the following properties:

– Configurations p1(X), p2(X) and p3(X) have line Laurent polynomial annihi-
lators in the same directions (0, 1), (1, 0) and (−1, 1) as c(1)(X), c(2)(X) and
c(3)(X), respectively. They may have line annihilators also in other direc-
tions so that any doubly periodic fi(X) in the original bounded periodic
decomposition may be added in them.

– Configurations p4(X), . . . , pm(X) are one-directed in pairwise non-parallel
directions. These directions are also not parallel to the directions (0, 1), (1, 0)
and (−1, 1) of the line annihilators of c(1)(X), c(2)(X) and c(3)(X).

An Algebraic Geometric Approach to Multidimensional Words 39

Lemma 6. In (5), configurations c(k) + pk are one-directed, for k = 1, 2, 3.

Proof. It is clear that c(k) + pk is directed in the same direction as c(k), so it is
enough to show that it is not multi-directed. For k = 1 or k = 3 let us read the
coefficients of c(k) + pk horizontally along cells . . . , (−1, 0), (0, 0), (1, 0), . . . , and
in the case k = 2 along the vertical line . . . , (0,−1), (0, 0), (0, 1), In each case
we obtain a one-dimensional configuration d(x) = c(x) + p(x) with ci = �iα� for
all i ∈ Z, and with p(x) finitary. (Note that in the cases k = 1 and k = 2 we
negate the coefficients to get from −�iα� to �iα�.)

If c(k) + pk is multi-directed then by Lemma 4 it has an annihilating line
Laurent polynomial in every direction and then, in particular, in the horizontal
and vertical directions. This means that the one-dimensional configuration d(x)
has a non-trivial annihilator b(x). Then also

(1 − x)d(x) = c′(x) + p′(x)

is annihilated by b(x), where c′(x) = (1 − x)c(x) has coefficient c′
i = �iα� −

�(i − 1)α� ∈ {0, 1} in cell i, and also p′(x) = (1 − x)p(x) is finitary. A one-
dimensional finitary configuration with a non-trivial annihilator is periodic by
the determinism argument we used in the proof of Theorem 1, so that d′(x) =
(1 − x)d(x) is n-periodic for some n > 0. Let h = d′

1 + · · · + d′
n be the sum over

one period. Notice that di −d0 = d′
1 + · · ·+d′

i for all i > 0, so that djn = d0 + jh
for all j > 0. As d(x) = c(x) + p(x) we have

pjn = djn − cjn = d0 + jh − �jnα�. (6)

Because p(x) is finitary, there are j1 < j2 such that pj1n = pj2n. By (6) this
means (j2 − j1)h = �j2nα� − �j1nα�, so that h is a rational number and cannot
hence be equal to irrational nα. But then, using (6) again, limj→∞ pjn = ±∞
so that p(x) cannot be finitary, a contradiction.
�

Now it is clear that (5) is a non-trivial linear dependency among one-directed
configurations in pairwise non-parallel directions. This is impossible by Lemma 5
so (5) cannot hold. We have proved the following result:

Theorem 4. Let α > 0 be irrational. The two-dimensional configuration s over
the binary alphabet {0, 1} defined by

sij = �(i + j)α� − �iα� − �jα�
is a sum of three periodic integral configurations but not a sum of finitely many
finitary periodic configurations.

6 Conclusions and Applications

We have proved that multidimensional configurations of low local complexity
can be expressed as a sum of periodic configurations. We have also demonstrated
that sometimes the periodic components are necessarily non-finitary. We believe
that the periodic decomposition will be useful in tackling a number of questions
in multidimensional symbolic dynamics and combinatorics of words. Here we
present two open problems whose setup is amenable to our approach.

40 J. Kari and M. Szabados

Nivat’s Conjecture

Nivat’s conjecture (proposed by M. Nivat in his keynote address in ICALP
1997 [Niv97]) claims that in the two-dimensional case d = 2, the low complexity
assumption (3) for a rectangle D implies that c is periodic. The conjecture is a
natural generalization of the one-dimensional Morse-Hedlund theorem that we
presented as Theorem 1. In the two-dimensional setting, for m,n ∈ N, let us
denote by Pattm×n(c) the set of m × n rectangles in configuration c.

Conjecture 1 (Nivat’s conjecture). If for some m,n we have |Pattm×n(c)| ≤ mn
then c is periodic.

The conjecture has recently raised wide interest, but it remains unsolved.
In [EKM03] it was shown Pc(m,n) ≤ mn/144 is enough to guarantee the peri-
odicity of c. This bound was improved to Pc(m,n) ≤ mn/16 in [QZ04], and
recently to Pc(m,n) ≤ mn/2 in [CK13b]. Also the cases of narrow rectangles
have been investigated: it was shown in [ST02] and recently in [CK13a] that
Pc(2, n) ≤ 2n and Pc(3, n) ≤ 3n, respectively, imply that c is periodic.

The analogous conjecture in the higher dimensional setups is false [ST00].
The following example recalls a simple counter example for d = 3.

n

Fig. 2. A non-periodic three-dimensional configuration where two infinite stripes in
orthogonal orientations are at distance n of each other. The number of distinct n×n×n
patterns in the configuration is 2n2 + 1.

Example 1. Fix n ≥ 3, and consider the following c ∈ {0, 1}Z3
consisting of two

perpendicular lines of 1’s on a 0-background, at distance n from each other:
c(i, 0, 0) = c(0, i, n) = 1 for all i ∈ Z, and c(i, j, k) = 0 otherwise. See Figure 2
for a picture of the configuration. For D equal to the n × n × n cube we have
|PattD(c)| = 2n2 + 1 since the D-patterns in c have at most a single 1-line
piercing a face of the cube. Clearly c is not periodic although 2n2+1 < n3 = |D|.
Notice that c is the sum of two periodic configurations. Our results imply that
any counter example must decompose into a sum of periodic components.
�

In [KS15] we reported the following asymptotic result, using the approach
discussed in the present paper. The detailed proof of the result will be published
elsewhere.

An Algebraic Geometric Approach to Multidimensional Words 41

Theorem 5 ([KS15]). Let c be a two-dimensional non-periodic configuration.
Then |Pattm×n(c)| > mn for all but finitely many pairs m,n.

Periodic tiling problem

Another related open problem is the periodic (cluster) tiling problem by Lagarias
and Wang [LW96]. A (cluster) tile is a finite D ⊂ Z

d. Its co-tiler is any subset
C ⊆ Z

d such that
D ⊕ C = Z

d. (7)

The co-tiler can be interpreted as the set of positions where copies of D are
placed so that they together cover the entire Z

d without overlaps. Note that the
tile D does not need to be connected – hence the term “cluster tile” is sometimes
used. The tiling is by translations of D only: the tiles may not be rotated.

It is natural to interpret any C ⊆ Z
d as the binary configuration c ∈ {0, 1}Zd

with cv = 1 if and only if v ∈ C. Then the tiling condition (7) states that C is a
co-tiler for D if and only if the (−D)-patterns in the corresponding configuration
c contain exactly a single 1 in the background of 0’s. In fact, as co-tilers of D
and −D coincide [Sze98], this is equivalent to all D-patterns having a single 1.

We see that the set C of all co-tiler configurations for D is a subshift of
finite type [LM95]. We also see that the low local complexity assumption (3) is
satisfied, even for the entire subshift of valid tilings so that |PattD(C)| ≤ |D|.
Conjecture 2 (Periodic Tiling Problem). If tile D has a co-tiler then it has a
periodic co-tiler.

This conjecture was first formulated in [LW96]. In the one-dimensional case
it is easily seen true, but already for d = 2 it is open. Interestingly, it is known
that if |D| is a prime number then every co-tiler of D is periodic [Sze98]. (See
also [KS15] for an alternative proof that uses power series and polynomials.).
The same is true if D is connected, that is, a polyomino [BN91].

References

[BN91] Beauquier, D., Nivat, M.: On Translating One Polyomino to Tile the Plane.
Discrete & Computational Geometry 6 (1991)

[CK13a] Cyr, V., Kra, B.: Complexity of short rectangles and periodicity (2013)
(submitted). arXiv: 1307.0098 [math.DS]

[CK13b] Cyr, V., Kra, B.: Nonexpansive Z
2-subdynamics and Nivat’s conjecture.

Trans. Amer. Math. Soc. (2013) (to appear)
[EKM03] Epifanio, C., Koskas, M., Mignosi, F.: On a conjecture on bidimensional

words. Theor. Comput. Sci. (1–3), 299 (2003)
[KS15] Kari, Jarkko, Szabados, Michal: An algebraic geometric approach to nivat’s

conjecture. In: Halldórsson, Magnús M., Iwama, Kazuo, Kobayashi, Naoki,
Speckmann, Bettina (eds.) ICALP 2015. LNCS, vol. 9135, pp. 273–285.
Springer, Heidelberg (2015)

[LW96] Lagarias, J.C., Wang, Y.: Tiling the Line with Translates of One Tile. Inven-
tiones Mathematicae 124, 341–365 (1996)

http://arxiv.org/abs/1307.0098

42 J. Kari and M. Szabados

[LM95] Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press (1995)

[MH38] Morse, M., Hedlund, G.A.: Symbolic Dynamics. American Journal of Math-
ematics 60(4), 815–866 (1938)

[Niv97] Nivat, M.: Invited talk at ICALP, Bologna (1997)
[QZ04] Quas, A., Zamboni, L.Q.: Periodicity and local complexity. Theor. Comput.

Sci. 319(1–3), 229–240 (2004)
[ST00] Sander, J.W., Tijdeman, R.: The complexity of functions on lattices. Theor.

Comput. Sci. 246(1–2), 195–225 (2000)
[ST02] Sander, J.W., Tijdeman, R.: The rectangle complexity of functions on two-

dimensional lattices. Theor. Comput. Sci. 270(1–2), 857–863 (2002)
[Sze98] Szegedy, M.: Algorithms to tile the infnite grid with finite clusters. In: FOCS,

pp. 137–147. IEEE Computer Society (1998)

Why We Need Semirings in Automata Theory
(Extended Abstract)

Werner Kuich(B)

Technische Universität Wien, Vienna, Austria
kuich@tuwien.ac.at

In this lecture we will report on generalizations of some classical results on
formal languages. These generalizations are achieved by an algebraic treatment
using semirings, formal power series, fixed point theory and matrices. By the
use of these mathematical constructs, definitions, constructions, and proofs are
obtained that are very satisfactory from a mathematical point of view. The use
of these mathematical constructs yields the following advantages:

(i) The constructions needed in the proofs are mainly the usual ones.
(ii) The descriptions of the constructions by formal series and matrices do not

need as much indexing as the usual descriptions.
(iii) The proofs are separated from the constructions and do not need the intu-

itive contents of the constructions. Often they are shorter than the usual
proofs.

(iv) The results are more general than the usual ones. Depending on the semir-
ing used, the results are valid for classical grammars and automata, clas-
sical grammars and automata with ambiguity considerations, probabilistic
grammars or automata, etc.

(v) The use of semirings, formal power series and matrices in formal language
and automata theory gives insight into the mathematical structure of prob-
lems and yields new results and solutions to unsolved problems that are
difficult, if not impossible to obtain by other means.

In our lecture we will concentrate on item (v) and show the validity of this
statement by presenting several of these problems.

We first discuss the formal power series S〈〈M〉〉 over a graded monoid M
according to Sakarovitch [9] and show some decidability questions for these power
series. One of them is a weak version of the famous decidability result of Harju
and Karhumäki [5] on the equivalence of deterministic finite multitape automata.
(See Esik, Kuich [3].)

Then we discuss the following problem: It is well known that, given a context-
free grammar G and a regular language R, the problem L(G) = R is undecidable.
But if G is unambiguous this problem becomes decidable. The known proofs of
this result all use formal power series. The given outline of the proof follows
Kuich, Salomaa [8].
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 43–44, 2015.
DOI: 10.1007/978-3-319-23021-4 4

44 W. Kuich

Next we show how formal power series can be used to show that certain
context-free languages are inherently ambiguous. (See Baron, Kuich [1] and
Flajolet [4].)

Then we give a condition on a context-free language L which implies that L
can not be generated by an unambiguous nonexpansive context-free grammar.
(See Kuich [6].)

The last part of the lecture gives an answer to a problem raised by Jean
Berstel [2]: We give the characterization of Kuich [7] of the families of context-
free grammars that generate the languages of a cone.

References

1. Baron, G., Kuich, W.: The characterization of nonexpansive grammars by rational
power series. Inf. Control 48, 109–118 (1981)

2. Berstel, J.: Transductions and Context-Free Languages. Teubner (1979)
3. Ésik, Z., Kuich, W.: On power series over a graded monoid. In: Calude, C.S.,

Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol. 8808, pp. 49–55.
Springer, Heidelberg (2014)

4. Flajolet, P.: Ambiguity and transcendence. In: Brauer, W. (ed.) Automata,
Languages and Programming. LNCS, pp. 179–188. Springer, Heidelberg (1985)

5. Harju, T., Karhumäki, J.: The equivalence problem of multitape finite automata.
Theoretical Computer Science 78, 347–355 (1991)

6. Kuich, W.: On the entropy of context-free languages. Inf. Control 16, 173–200 (1970)
7. Kuich, W.: Forty years of formal power series in automata theory. In: Salomaa,

A., Wood, D., Yu, S. (eds.) Half Century of Automata Theory, pp. 49–71. World
Scientific (2001)

8. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Springer (1986)
9. Sakarovitch, J.: Rational and recognisable power series. In: Droste, M., Kuich, W.,

Vogler, H. (eds.) Handbook of Weighted Automata, Chapter 4, pp. 105–174.
Springer (2009)

Unbordered Pictures: Properties
and Construction

Marcella Anselmo1, Dora Giammarresi2, and Maria Madonia3(B)

1 Dipartimento di Informatica, Università di Salerno,
Via Giovanni Paolo II, 132-84084 Fisciano, SA, Italy

anselmo@dia.unisa.it
2 Dipartimento di Matematica, Università Roma “Tor Vergata”,

via Della Ricerca Scientifica, 00133 Roma, Italy
giammarr@mat.uniroma2.it

3 Dipartimento di Matematica e Informatica,
Università di Catania, Viale Andrea Doria 6/a, 95125 Catania, Italy

madonia@dmi.unict.it

Abstract. The notion of unbordered picture generalizes to two dimen-
sions the notion of unbordered (or bifix-free) string. We extend to
two dimensions Nielsen’s construction of unbordered strings ([23]) and
describe an algorithm to construct the set U(m,n) of unbordered pic-
tures of fixed size (m,n). The algorithm recursively computes the set of
quasi-unbordered pictures Q(m,n), i.e. pictures that can possibly have
some “large” borders.

Keywords: Bifix-free strings · Unbordered pictures

1 Introduction

The study of the structure and special patterns of the strings plays an important
role in combinatorics of strings, both from theoretical and applicative side. Given
a string s, a bifix or a border of s is a substring x that is both prefix and suffix
of s. A string s is bifix-free or unbordered if it has no other bifixes besides the
empty string and s itself.

Bifix-free strings are connected with the theory of codes [9] and are involved
in the data structures for pattern matching algorithms [15,19]. From a more
applicative point of view, bifix-free strings are suitable as synchronization pat-
terns in digital communications and similar communications protocols [23]. The
combinatorial structure of bifix-free strings over a given alphabet was studied
by P.T. Nielsen in [23]: he provided an algorithm to enumerate recursively all
bifix-free strings of the same length n over a given alphabet. A set of strings
X in which no prefix of any string is the suffix of any other string in X is

Partially supported by MIUR Projects “Formal Languages and Automata: Mathe-
matical Structures and Applicative Directions” and “PRISMA PON04a2 A/F”, and
by FARB Projects of University of Catania, Roma “Tor Vergata”, Salerno.

c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 45–57, 2015.
DOI: 10.1007/978-3-319-23021-4 5

46 M. Anselmo et al.

called a cross-bifix-free code. Constructive methods for cross-bifix-free codes are
investigated in [7,10,13].

The increasing interest for pattern recognition and image processing has
motivated the research on two-dimensional languages of pictures. A two dimen-
sional string is called picture and it is given by a rectangular array of sym-
bols taken from a finite alphabet Σ. The set of all pictures over Σ is usually
denoted by Σ∗∗. Extending results from the formal (string) languages theory
to two dimensions is a very challenging task. The two-dimensional structure in
fact imposes some intrinsic difficulties even in the basic concepts. For example,
between two pictures we can define two concatenation operations (horizontal and
vertical concatenations) but they are only partial operations and do not induce
a monoid structure to the set Σ∗∗. The definition of “prefix” can be extended
to a picture by considering its rectangular portion in the top-left corner: never-
theless, if one deletes a prefix from a picture, the remaining part is not a picture
anymore.

Several results from string language theory can be worthy extended to pic-
tures. Many researchers have investigated how the notion of recognizability by
finite state automata can be transferred to two dimensions to accept picture
languages ([2,4–6,11,17,18,20,24,25]). Two dimensional codes were studied in
different contexts ([1,8,12,21] and recently two-dimensional prefix codes were
introduced as the two-dimensional counterpart of prefix string codes ([3,6]).
Matrix periodicity plays a fundamental role in two-dimensional pattern match-
ing (see e.g. [15,22]), while two-dimensional quasi-periodicity was very recently
studied in [16].

In this paper we investigate the notion of unbordered picture that is some-
how connected both to picture codes and to two-dimensional pattern matching.
Observe that the notion of border extends very naturally from strings to pictures
since it is not related to any scanning direction. Informally we can say that a
picture p is bordered if a copy p′ of p can be overlapped on p by putting a corner
of p′ somewhere on some position in p. The border of p will be the subpicture
corresponding to the portion where p and p′ match. The two dimensions of the
structure allow several possibilities to specialize this notion. The simplest one
is when the matching is checked only by sliding the two picture copies with a
horizontal or a vertical move: in this case we allow only borders with the same
number of columns or rows of the picture p itself. Notice that this case is not
really interesting, since pictures can be handled as they were thick strings on
the alphabet either of the columns or of the rows: then the string algorithm
by Nielsen can be directly applied to calculate all unbordered pictures. A more
intriguing case is taking square pictures and allow only overlaps that put a cor-
ner of p′ on positions of the diagonals of p. This corresponds to consider only
square borders as defined in ([14]). Also in this special case some properties of
string borders still hold for pictures.

We consider the more general situation when the overlaps can be made on
any position in p and therefore the borders can be of any size. This leads to a
different scenario with respect to the string case. It can be proved that if a string

Unbordered Pictures: Properties and Construction 47

s of lenght n has a border, then it can be written in the form s = xvx, i.e. s
admits also a “small” border of length less than or equals to n

2 . Unfortunately
this property does not hold in general in two dimensions. Borders of a picture
p of size (m,n), can be of three types: borders with dimensions both greater or
both smaller than the half of the corresponding dimensions of p (say “large” or
“small” borders) and borders with only one dimension greater than the half of
the corresponding dimension of p (say a “medium” border). We can only prove
that the presence of a “large” border implies also a medium or a small border.
For this reason it is not possible to directly generalize Nielsen’s construction for
unbordered strings to pictures. In this paper we use quasi-unbordered pictures as
intermediate concept: they can have only certain types of borders that become
unlikely when the size of the pictures grows. We describe a recursive procedure
to calculate all quasi-unbordered pictures of a given size: the (pure) unbordered
pictures can then be easily extracted from this set.

The paper is organized as follows: Section 2 reports the recursive construction
of bifix-free strings given by Nielsen in [23], together with all the needed nota-
tions and definitions on pictures. In Section 3 the notion of unbordered picture
is introduced as two-dimensional extension from the string case. Some related
properties are stated together with some examples. Section 4 contains the recur-
sive construction for the set of all unbordered pictures of a given size. Some
conclusions together with a table of experimental results are given in Section 5.

2 Preliminaries

In this section we first report the formal definition of unbordered strings together
with their recursive construction given by Nielsen. Then, we recall all definitions
on pictures needed for the main results of the paper.

2.1 Unbordered Strings and Nielsen’s Construction

A string is a sequence of zero or more symbols from an alphabet Σ. A string w
of length h is a substring of s if s = uwv for u, v ∈ Σ∗. Moreover we say that
a string w occurs at position j of s if and only if w = sj . . . sj+h. A string x of
length m < n is a prefix of s if x is a substring that occurs in s at position 1; a
string y is a suffix of s if it is a substrings that occurs in s at position n−m+1.
A string x that is both prefix and suffix of s is called a border or a bifix of s.
The empty string and s itself are trivial borders of s. A string s is unbordered
or bifix-free if it has no borders unless the trivial ones.

Unbordered strings have received very much attention since they occur in
many applications as message synchronization or string matching. In [23] P. T.
Nielsen proposed a recursive procedure to generate all bifix-free strings of a given
length that is based on a property of string borders. We report briefly the main
steps that will be used as base for the results of this paper.

The bifix indicator hi of a string s of length n, 1 ≤ i < n, is equal to 1 if s
has a border of size i, and hi = 0 otherwise. Then the following results hold.

48 M. Anselmo et al.

Lemma 1. A string s ∈ Σ∗ is unbordered if and only if hi = 0 for 1 ≤ i ≤
�n/2�.

Saying differently, the previous lemma states that if a string is not unbor-
dered, then it must have a “short” border, i.e. of length less than the half of the
length of the string. Let s = s1s2 . . . sn ∈ Σ∗ be a unbordered string of even
length n, sL = s1s2 . . . sn/2 and sR = sn/2+1 . . . sn. Consider now the strings
s′ = sLasR and s′′ = sLabsR, with a, b ∈ Σ. Then Lemma 1 is used to prove the
following one.

Lemma 2. The string s is unbordered if and only if s′ is unbordered. If s′′ is
unbordered then s is unbordered. If s is unbordered, then s′′ has a border if and
only if the following conditions are satisfied: a = sn, b = s1 and s2 . . . sn/2 =
sn/2+1 . . . sn−1 for n ≥ 4.

Lemma 2 is then exploited to construct all bifix-free strings of length n from
bifix-free strings of shorter length, by inserting extra symbols in the central
positions. The starting set of bifix-free strings of length 2 is simply the set of
all strings ab with a, b ∈ Σ and a �= b. Remark that Lemmas 1 and 2 and the
deriving construction hold for alphabets of any cardinality.

2.2 Basic Notations on Pictures

We recall some definitions about pictures (see [18]). A picture over a finite alpha-
bet Σ is a two-dimensional rectangular array of elements of Σ. Given a picture
p, |p|row and |p|col denote the number of rows and columns, respectively while
size(p) = (|p|row, |p|col) denotes the picture size. The pictures of size (m, 0) or
(0, n) for all m,n ≥ 0, called empty pictures, will be never considered in this
paper. The set of all pictures over Σ of fixed size (m,n) is denoted by Σm,n,
while the set of all pictures over Σ is denoted by Σ∗∗.

Let p be a picture of size (m,n). The set of coordinates dom(p) =
{1, 2, . . . ,m} × {1, 2, . . . , n} is referred to as the domain of a picture p. We let
p(i, j) denote the symbol in p at coordinates (i, j). We assume the top-left corner
of the picture to be at position (1, 1). Moreover, to easily detect border positions
of pictures, we use initials of words “top”, “bottom”, “left” and “right”: then,
for example, the tl-corner of p refers to position (1, 1) while the br-corner refers
to position (m,n).

A subdomain of dom(p) is a set d of the form {i, i+1, . . . , i′}×{j, j+1, . . . , j′},
where 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n, also specified by the pair [(i, j), (i′, j′)].
The portion of p corresponding to positions in subdomain [(i, j), (i′, j′)] is
denoted by p[(i, j), (i′, j′)]. Then a non-empty picture x is subpicture of p if
x = p[(i, j), (i′, j′)], for some 1 ≤ i ≤ i′ ≤ m, 1 ≤ j ≤ j′ ≤ n; we say that x
occurs at position (i, j) (its tl-corner).

Several operations can be defined on pictures (cf. [18]). Let p, q ∈ Σ∗∗ be
pictures of size (m,n) and (m′, n′), respectively, the column concatenation of p
and q (p q) and the row concatenation of p and q (p�q) are partial operations,
defined only if m = m′ and if n = n′, respectively, as:

Unbordered Pictures: Properties and Construction 49

p q = p q p � q =
p
q

The reverse operation on strings can be generalized to pictures and give
rise to two different mirror operations (called row - and col -mirror) obtained by
reflecting with respect to a vertical and a horizontal axis, respectively. Another
operation that has no counterpart in one dimension is the rotation. The rotation
of a picture p of size (m,n), is the clockwise rotation of p by 90◦, denoted by
p90

◦
. Note that p90

◦
has size (n,m). All the operations defined on pictures can

be extended in the usual way to sets of pictures.
We conclude by remarking that any string s = y1y2 · · · yn can be identified

either with a single-row or with a single-column picture, i.e. a picture of size (1, n)
or (n, 1). In the sequel it will be used the notation [y1y2 · · · yn] to indicate a single-
row picture, while a single-column picture will be denoted by [y1y2 · · · yn]90

◦
.

3 Bordered and Unbordered Pictures

We first generalize the notion of border from strings to pictures. Note that the
notions of prefix and suffix of a string implicitly assume the left-to-right reading
direction. On the other hand the notion of border is completely independent
from any preferred direction. A string has a border when we can find the same
substring at the two ends of the string. We extend these concepts to two dimen-
sions.

Informally we say that a picture p is bordered when we can find the same
rectangular portion at two opposite corners. Remark that there are two different
kinds of borders depending on the pair of opposite corners that hold the border.

More formally we state the following definition.

Definition 3. Given pictures p ∈ Σm,n and x ∈ Σm′,n′
, with 1 ≤ m′ ≤ m and

1 ≤ n′ ≤ n, the picture x is a tl-border of p, if x is a subpicture of p occurring
at position (1, 1) and at position (m−m′ +1, n−n′ +1); picture x is a bl-border
of p, if x is a subpicture of p occurring at position (m−m′ +1, 1) and at position
(1, n − n′ + 1) Moreover x is a border of p if it is either a tl- or a bl-border.

As special cases, p is a trivial border of itself, and x is a proper border of p
if it is not trivial. A tl-border is called a diagonal border in [14]. Notice that
a tl-border x of a picture p of size (m,n) can be univocally detected either by
giving the position where it occurs in p (besides position (1, 1)) or by giving its
size. The same holds for bl-borders. Examples of pictures together with their
borders are given below.

p =

0 1 0 0 0 0
1 1 0 1 1 1
0 0 1 1 1 0
0 1 1 0 1 0
1 1 1 1 1 0

q =

1 0 0 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 1 0
1 1 1 1 0
0 0 0 1 0

r =
0 0 1
1 1 1
0 1 1

s =

0 1 0 0
1 1 1 1
0 0 1 1
0 1 0 0
1 1 1 1

50 M. Anselmo et al.

Note that if a picture p has a tl-border x, then the rotation p90
◦

has a bl-
border (that coincides with x90◦

). In the figure above q = p90
◦
.

Definition 4. A picture p ∈ Σm,n is bordered if there exists a picture x that
is a proper border of p. Picture p is unbordered (or border-free) if it is not
bordered.

The set of all unbordered pictures of size (m,n) over an alphabet Σ is denoted
by UΣ(m,n), or simply U(m,n), when the alphabet can be omitted.

Few simple results can be immediately listed.

Proposition 5. Let Σ be an alphabet. For any m,n ≥ 1, the set UΣ(m,n)
is closed with respect to the rotation, col- and row-mirror operations, and with
respect to permutation or renaming of symbols in Σ. Moreover, UΣ(m,n)90

◦
=

UΣ(n,m).

Remark 6. The opposite corners of an unbordered picture p of size (m,n) must
contain different symbols otherwise p would have a border of size (1, 1). Moreover
the first row (column, resp.) must be different from the last one: otherwise p
would have a border of size (1, n) ((m, 1), respectively).

The aim of the rest of the paper will be to construct all the unbordered
pictures of a fixed size (m,n). The unbordered pictures of size (1, n) or (m, 1)
coincide with the unbordered strings and therefore can be calculate using tech-
niques described in Section 2.1. Before studying the general case let us consider
the case of the binary alphabet Σ = {0, 1} and of pictures of “small” size. It
is immediate to see that there are no unbordered pictures of size (2, 2): there
is no way to have different opposite corners and different first and last row
(see Remark 6). For similar reasons there are no unbordered pictures of sizes
(2, 3), (3, 2) and (3, 3). The “smallest” unbordered pictures are of size (4, 2) and
are all listed below:

0 0
1 0
0 1
1 1

,

0 0
0 1
1 0
1 1

,

1 1
0 1
1 0
0 0

,

1 1
1 0
0 1
0 0

.

Notice that they can be obtained from the first one by applying mirror oper-
ations.

Then the 40 unbordered pictures of size (4, 3) can be obtained by somehow
generalizing Nielsen’s construction of unbordered strings: it is possible to con-
struct them by inserting a suitable middle column in the unbordered pictures
of size (4, 2) listed above. Unfortunately this procedure does not work anymore
when the size of pictures grows, as shown by the following example.

Example 7. The picture of size (5, 4) below is unbordered. Nevertheless all the
pictures obtained by deleting some columns in the “middle” of the picture (the
second column or the third one or both) are all bordered ones. Note that also
by deleting the middle (the third) row, one obtains a bordered picture.

Unbordered Pictures: Properties and Construction 51

0 1 0 1
0 1 0 0
0 1 1 1
0 0 0 0
0 0 1 1

The main reason why Nielsen’s construction of unbordered strings can not be
directly generalized to pictures (as in Example 7), is that it is based on Lemma 1,
that does not hold in two dimensions. For pictures we have the following weaker
result.

Lemma 8. Let p ∈ Σm,n. If p has a border of size (i, j) with i ≥ �m/2�+1 and
j ≥ �n/2� + 1 then p has a border of size (h, k) with h ≤ �m/2� or k ≤ �n/2�.
Proof. Let b be a border of size (i, j) with i ≥ �m/2� + 1 and j ≥ �n/2� + 1.
Then p has a border x of size (h, k) = (2i − m, 2j − n). The border x is given
by the “intersection” of the two occurrences of the border b in p. More formally,
if b is a tl-border then x = p[(r, s), (r′, s′)] where [(r, s), (r′, s′)] = [(1, 1), (i, j)] ∩
[(m − i + 1, n − j + 1), (m,n)]. The case of bl-border is analogous.

Note that h < i and k < j. Now, if x is still “large” (i.e. h ≥ �m/2� + 1 and
k ≥ �n/2� + 1) one can iterate the reasoning until a border, with at least one of
the dimension that satisfies the desired inequality, is obtained.
�

Informally Lemma 8 claims that if a picture has a “large” border then it
necessarily has a “small” or a “middle” border. Indeed, according to its size,
a border of a picture p can be of three types: a border with both dimensions
greater (smaller, resp.) than the half of the corresponding dimensions of p, say a
“large” (“small”, resp.) border; or a border with only one dimension greater than
the half of the corresponding dimension of p, say a “medium” border. It is the
presence of these medium borders that does not allow a simple generalization.

4 Construction of Unbordered Pictures

In this section we present a construction of the class U(m,n) of all unbordered
pictures of given size (m,n), that takes inspiration from Nielsen’s construction
of unbordered strings given in [23] (see Section 2.1). With this aim we introduce
the class of quasi-unbordered pictures and present its recursive construction. The
set U(m,n) will be extracted from the set of quasi-unbordered pictures.

Informally a picture is quasi-unbordered if it has no border occurring in its
right side.

Definition 9. A picture p ∈ Σm,n is quasi-unbordered if p has no border at
position (i, j) with 1 ≤ i ≤ m and �n/2 + 1 ≤ j ≤ n.

52 M. Anselmo et al.

The set of all quasi-unbordered pictures of size (m,n) over an alphabet Σ
is denoted by QΣ(m,n), or simply Q(m,n), when the alphabet can be omitted.
Examples of quasi-unbordered pictures can be found in Example 13. Observe
that U(m,n) ⊆ Q(m,n).

In the following the set Q(m,n) is constructed in a recursive way by the
insertion of one column in the middle of pictures in Q(m,n − 1). We introduce
first some formal notations. For any picture p ∈ Σm,n, the left side of p is the
subpicture pL = p[(1, 1), (m, �n/2)], containing the first �n/2 columns of p,
and the right side of p is the subpicture pR = p[(1, �n/2+1), (m,n)] containing
the remaining columns. Hence p = pL pR.

The picture obtained by inserting in the “middle” of p a column c ∈ Σm,1

is denoted p‖c = pL c pR. We also define the inverse operation of removing
the central column in a picture. More exactly, if n is odd, then p∦ denotes the
picture obtained by removing the �n/2-th column; if n is even, then p∦ denotes
the picture obtained by removing the (n/2 + 1)-th column.

Let us now focus on quasi-unbordered pictures and show the properties used
for their recursive construction.

Proposition 10. Let p ∈ Σm,n. If p is quasi-unbordered then p∦ is quasi-
unbordered.

Proof. Suppose by contradiction that p∦ has a tl-border x that occurs at position
(i, j) in its right side. It is easy to see that the same tl-border x occurs at position
(i, j +1) of p, contradicting the hypothesis that p is quasi-unbordered (note that
�n/2 + 1 ≤ j + 1 ≤ n). The case of bl-borders is analogous.
�
Proposition 11. Let p be a quasi-unbordered picture, p ∈ Q(m,n), and c be a
column, c ∈ Σm,1.

1. If n is even then p‖c ∈ Q(m,n + 1)
2. If n is odd then p‖c has a border in its right side if and only if the border

occurs at a position in c.

Proof. 1. Arguing by contradiction, suppose that there exist i and j, with 1 ≤
i ≤ m and �(n+1)/2+1 ≤ j ≤ n+1, such that p‖c has a tl-border x that occurs
at the position (i, j). It is easy to see that the same tl-border border x occurs at
the position (i, j−1) of p contradicting the hypothesis that p is quasi-unbordered
(note that �n/2 + 1 ≤ j − 1 ≤ n). The case of bl-borders is analogous.

2. Suppose first that p‖c has a border x in its right side, and suppose w.l.o.g.
that x is a tl-border. If x occurs at a position (i, j) not in c, then we can find
the same tl-border x at position (i, j − 1) of p, that is a position in the right
side of p, and this contradicts the assumption p quasi-unbordered. Suppose now
that p‖c has a border that occurs at a position in c. Since n is odd, then all the
positions of c belong to the right side of p‖c and this concludes the proof.
�

Consider now the basis case of the recursion, that is quasi-unbordered pic-
tures with one or two columns. Quasi-unbordered pictures with one column are
indeed unbordered strings. Quasi-unbordered pictures with two columns can be

Unbordered Pictures: Properties and Construction 53

characterized in terms of special unbordered strings, that we call heart-free. An
unbordered string of even length w ∈ Σ2m is heart-free if w = w1w2, with
|w1| = |w2| = m and there exists no x ∈ Σ∗ that is a suffix of w1 and a prefix of
w2. In other words both w1w2 and w2w1 are unbordered.

Proposition 12. Let p ∈ Σm,2 for some m ≥ 2, p = c1 c2 with c1, c2 ∈ Σm,1.
Then p is quasi-unbordered if and only if (c1 � c2)90

◦
is a heart-free unbordered

string.

Proof. By definition p is quasi-unbordered if p has no border in its right side, i.e.
c2. Then p has a tl-border of size (i, 1) iff (c1 � c2)90

◦
is a string with a border

of length i; and p has a bl-border of size (i, 1) iff (c2 � c1)90
◦

has a border of
length i.
�

Thanks to Proposition 12, all quasi-unbordered pictures in Σm,2, for any
m ≥ 2, can be constructed as follows. Use Nielsen’s construction to obtain all
unbordered strings over Σ of length 2m−2. For any unbordered string w = w1w2,
with w1, w2 ∈ Σm−1, insert in the middle only pairs of symbols (a, b) with a �= b,
that satisfy the heart-free and unbordered requirements. Then w1a and bw2 are
the columns of the pictures.

We are now ready to sketch the algorithm that provides the set Q(m,n) of
quasi-unbordered pictures of a given size (m,n). It consists in the following two
steps.

1. Construct Q(m, 2) (following Proposition 12).
2. Recursively construct Q(m,n) from Q(m,n − 1) as follows.
If n is odd then define Q(m,n) as the set of all pictures p‖c for all p ∈

Q(m,n − 1), c ∈ Σm,1.
If n is even then define Q(m,n) as the set of all pictures p‖c for all p ∈

Q(m,n − 1), c ∈ Σm,1, such that p‖c has no border occurring at a position in c.
Let us roughly estimate the complexity of the algorithm. Observe that Step 2

when n is odd requires no comparisons. On the other hand, for k = 2, · · · �m/2�,
the pictures in Q(m, 2k) are obtained by inserting in any p ∈ Q(m, 2k − 1) a
column c = [cmcm−1 . . . c1]90

◦
; symbols in c must be taken so that no border

occurs at c. First consider tl-borders. To avoid a tl-border of size (i, k), for
i = 1, · · · ,m, the algorithm does ik comparisons at most. The same number
of comparisons is then necessary to avoid also bl- borders at positions in c.
Hence the algorithm does 2

∑
i=1,··· ,m ik ≤ 2km2 comparisons for any picture in

Q(m, 2k−2). The construction of Q(m,n) from Q(m, 2), needs in total a number
of comparisons C(m,n) ≤ ∑

k=1,··· ,n/2 |Q(m, 2k − 2)|2km2.

A simple bound on |Q(m,n)| is |Q(m,n)| ≤ 1/4|Σm,n|, for any m,n ≥
2, since opposite corners in quasi-unbordered pictures must be different (in
an analogous way as for unbordered ones, Remark 6). Applying this bound
and some mathematical formulas on summations, one can obtain C(m,n) ≤

1
2|Σ2m|m

2
∑

k=1,··· ,n/2 |Σ2m|kk and finally C(m,n) = O(m2n|Σ|mn).

54 M. Anselmo et al.

Example 13. As an example of the algorithm sketched above, let us show how
to obtain some pictures in Q(3, 4) for Σ = {0, 1}. Note that |Q(3, 4)| = 196 (see
Section 5).

The basis case is the construction of Q(3, 2). Applying Proposition 12, take
the 20 unbordered binary strings, extract the 6 heart-free unbordered strings
and obtain:

Q(3, 2) =

⎧
⎨

⎩

0 1
0 0
0 1

,
0 1
0 1
0 1

,
0 1
1 1
0 1

,
1 0
1 1
1 0

,
1 0
1 1
1 0

,
1 0
0 0
1 0

⎫
⎬

⎭.

Then, using Proposition 11 (case 1) we have:

Q(3, 3) =

⎧
⎨

⎩ pL c pR with p = pL pR ∈ Q(3, 2) and c ∈ Σ3,1

⎫
⎬

⎭ .

Let us give now the construction of some pictures in Q(3, 4) from pictures in

Q(3, 3). Consider for example pictures p =
0 0 1
0 0 0
0 0 1

and q =
0 0 1
0 0 0
0 1 1

in Q(3, 3)

that show a different behavior. From Proposition 11 (case 2), we know that, for
any c ∈ Σ3,1, p‖c has a border in its right side if and only if the border occurs at
a position in c. Observing the picture p‖c, one notes that no border can occur at

a position in c. Hence, p‖c ∈ Q(3, 4), for any c ∈ Σ3,1, i.e.
0 0 x 1
0 0 y 0
0 0 z 1

∈ Q(3, 4),

for any x, y, z ∈ Σ.

Consider now q and q‖c =
0 0 x 1
0 0 y 0
0 1 z 1

with c =
x
y
z

∈ Σ3,1. No tl-border of

size (1, 2), (2, 2), and (3, 2) can occur in q‖c, for any choice of z, y, x. On the
other hand, in order to have no bl-border of size (1, 2), necessarily x = 1, while
y, z can be chosen arbitrarily.

Let us now come back to unbordered pictures. The unbordered pictures of
a given size can be obtained from the quasi-unbordered ones of the same size.
All pictures in Q(m,n) have no border in their right side. Then the bordered
pictures in Q(m,n) to be removed are the ones with a border in their left side.
From Lemma 8, it can be argued that it is sufficient to remove pictures with
borders of size (i, j), with i ≤ �m/2 and j > �n/2�. So only a limited number
of comparisons are needed on pictures in the set Q(m,n).

Example 14. (continued) Unbordered pictures in U(3, 4) are obtained from pic-
tures in Q(3, 4). Consider again pictures p and q in Example 13. We noted that

Unbordered Pictures: Properties and Construction 55

p‖c ∈ Q(3, 4), for any c ∈ Σ3,1, i.e.
0 0 x 1
0 0 y 0
0 0 z 1

∈ Q(3, 4), for any x, y, z ∈ Σ.

For x �= z, these pictures in Q(3, 4) are unbordered pictures. Moreover, the

pictures
0 0 1 1
0 0 y 0
0 1 z 1

obtained from q belong to U(3, 4) if and only if z = 0.

We conclude the section with a simple result that in fact can be obtained as
corollary of Proposition 10, but it sheds light on the original motivation to intro-
duce the class of quasi-unbordered pictures, when interested in the construction
of unbordered pictures.

Proposition 15. Let p ∈ Σm,n. If p is unbordered then p∦ is quasi-unbordered.

Moreover it is worthwhile to remark that in the special case of one-
row pictures, that are strings, Q(1, n) = U(1, n) for any n ≥ 1, thanks to
Lemma 1. Hence the construction presented here coincides with Nielsen’s con-
struction when applied to strings.

5 Final Remarks

We presented general definitions for unbordered pictures by imposing that all
possible overlaps between two copies of such pictures are forbidden. This exploits
the “bi-dimensionality” of the structures. As a result, the definition imposes
many constrains to the pictures. Below we present a table reporting the cardi-
nality of the sets of unbordered and quasi-unbordered pictures over a 2-letters
alphabet. The rate with respect to the whole set of pictures of corresponding
size is also shown.

Few considerations can be done. First of all, notice that unbordered pictures
of size (m,n) are very few with respect to the whole set Σm,n (remember that
we had only a rough estimation of 1/4 given by Remark 6). Regarding the basic
step of our recursive construction, Proposition 12 states an interesting bijection
between quasi-unbordered pictures with two columns and heart-free unbordered
strings. In particular it allows to estimate |Q(m, 2)| as the cardinality of heart-
free unbordered strings of length 2m. By some clever considerations on Nielsen’s
construction it can be observed that the heart-free unbordered strings of given
length are at most 1/2 than the unbordered strings of same size. Moreover denote
vn = |U(1,n)|

|Σ1,n| and recall that vn is a not increasing sequence with v4 = 3
8 ([23]).

Hence |Q(m,2)|
|Σm,2| ≤ 1

2 · v2m ≤ 1
2 · 3

8 = 3
16 . This bound is completely reflected in the

table.
Finally, observe that the table reports also the rate |U(m,n)|

|Q(m,n)| : this is important
to estimate the overhead complexity of calculating set Q(m,n) as intermediate
step for U(m,n). Notice that, already for those small values of n, the two sets
are not so different in size. This can be easily understood if we think that the
probability that a picture has a border with more than n/2 columns sensibly
decreases when n grows.

56 M. Anselmo et al.

m n |U(m,n)| |Q(m,n)| |Σm,n| |U(m,n)|
|Σm,n|

|Q(m,n)|
|Σm,n|

|U(m,n)|
|Q(m,n)|

2 2 0 2 16 0,00% 12,50% 0,00%
2 3 0 8 64 0,00% 12,50% 0,00%
2 4 4 18 256 1,56% 7,03% 22,2%
2 5 24 72 1024 2,34% 7,03% 33,3%
2 6 120 200 4096 2,93% 4,88% 60,0%
2 7 528 800 16384 3,22% 4,88% 66,0%
2 8 2220 2734 65536 3,39% 4,17% 81,2%
...

...
...

...
...

...
...

...
3 2 0 6 64 0,00% 9,38% 0,00%
3 3 0 48 512 0,00% 9,38% 0,00%
3 4 40 196 4096 0,98% 4,79% 20,4%
3 5 512 1568 32768 1,56% 4,79% 32,7%
3 6 5048 8542 262144 1,93% 3,26% 59,1%
3 7 44880 68336 2097152 2,14% 3,26% 65,7%
3 8 376768 465266 16777216 2,25% 2,77% 81,0%
...

...
...

...
...

...
...

...
4 2 4 22 256 1,56% 8,59% 18,2%
4 3 40 352 4096 0,98% 8,59% 11,4%
4 4 864 2720 65536 1,32% 4,15% 31,8%
4 5 16712 42920 1048576 1,59% 4,09% 38,9%
4 6 303976 472990 16777216 1,81% 2,82% 64,3%
4 7 5164176 7567840 268435456 1,92% 2,82% 68,2%
4 8 85346944 103001874 4294967296 1,99% 2,40% 82,9%
...

...
...

...
...

...
...

...
5 2 24 80 1024 2,34% 7,81% 30,0%
5 3 512 2560 32768 1,56% 7,81% 20,0%
5 4 16712 39646 1048576 1,59% 3,78% 42,2%
5 5 563584 1268672 33554432 1,68% 3,78% 44,4%
5 6 19057664 27609768 1073741824 1,77% 2,57% 69,0%

References

1. Aigrain, P., Beauquier, D.: Polyomino tilings, cellular automata and codicity.
Theoretical Computer Science 147, 165–180 (1995)

2. Anselmo, M., Giammarresi, D., Madonia, M.: Deterministic and unambiguous
families within recognizable two-dimensional languages. Fund. Inform. 98(2–3),
143–166 (2010)

3. Anselmo, M., Giammarresi, D., Madonia, M.: Strong prefix codes of pictures.
In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080,
pp. 47–59. Springer, Heidelberg (2013)

Unbordered Pictures: Properties and Construction 57

4. Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous recog-
nizable two-dimensional languages. RAIRO -ITA 40(2), 227–294 (2006)

5. Anselmo, M., Giammarresi, D., Madonia, M.: A computational model for tiling
recognizable two-dimensional languages. Theor. Comput. Sci. 410(37), 3520–3529
(2009)

6. Anselmo, M., Giammarresi, D., Madonia, M.: Prefix picture codes: a decidable
class of two-dimensional codes. Int. J. Found. Comput. Sci. 25(8), 1017–1032
(2014)

7. Bajic, D., Loncar-Turukalo, T.: A simple suboptimal construction of cross-bifix-
free codes. Cryptography and Communications 6(1), 27–37 (2014)

8. Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theoret.
Comp. Sci 303, 417–430 (2003)

9. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge Univer-
sity Press (2009)

10. Bilotta, S., Pergola, E., Pinzani, R.: A new approach to cross-bifix-free sets. IEEE
Transactions on Information Theory 58(6), 4058–4063 (2012)

11. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT (FOCS),
pp. 155–160 (1967)

12. Bozapalidis, S., Grammatikopoulou, A.: Picture codes. RAIRO - ITA 40(4),
537–550 (2006)

13. Chee, Y.M., Kiah, H.M., Purkayastha, P., Wang, C.: Cross-bifix-free codes within
a constant factor of optimality. IEEE Transactions on Information Theory 59(7),
4668–4674 (2013)

14. Crochemore, M., Iliopoulos, C.S., Korda, M.: Two-dimensional prefix string
matching and covering on square matrices. Algorithmica 20(4), 353–373 (1998)

15. Crochemore, M., Rytter, W.: Jewels of stringology. World Scientific (2002).
http://www-igm.univ-mlv.fr/mac/JOS/JOS.html

16. Gamard, G., Richomme, G.: Coverability in two dimensions. In: Dediu, A.-H.,
Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977,
pp. 402–413. Springer, Heidelberg (2015)

17. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. Journal.
Pattern Recognition and Artificial Intelligence 6(2–3), 241–256 (1992)

18. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G.(ed.)
Handbook of Formal Languages, vol. III, pp. 215–268. Springer Verlag (1997)

19. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science
and Computational Biology. Cambridge University Press (1997)

20. Kari, J., Salo, V.: A survey on picture-walking automata. In: Kuich, W.,
Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020,
pp. 183–213. Springer, Heidelberg (2011)

21. Kolarz, M., Moczurad, W.: Multiset, set and numerically decipherable codes over
directed figures. In: Smyth, B. (ed.) IWOCA 2012. LNCS, vol. 7643, pp. 224–235.
Springer, Heidelberg (2012)

22. Na, J.C., Ferragina, P., Giancarlo, R., Park, K.: Indexed two-dimensional string
matching. In: Encyclopedia of Algorithms (2015)

23. Nielsen, P.T.: A note on bifix-free sequences (corresp.). IEEE Transactions on
Information Theory 19(5), 704–706 (1973)

24. Otto, F., Mráz, F.: Extended two-way ordered restarting automata for picture
languages. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B.
(eds.) LATA 2014. LNCS, vol. 8370, pp. 541–552. Springer, Heidelberg (2014)

25. Pradella, M., Cherubini, A., Crespi-Reghizzi, S.: A unifying approach to picture
grammars. Inf. Comput. 209(9), 1246–1267 (2011)

http://www-igm.univ-mlv.fr/ mac/JOS/JOS.html

Effective Invariant Theory of Permutation
Groups Using Representation Theory

Nicolas Borie(B)

Laboratoire d’Informatique Gaspard Monge,
Université Paris Est á Marne-La-Vallée, Champs-sur-marne, France

nicolas.borie@u-pem.fr

Abstract. Using the representation theory of the symmetric group, we
propose an algorithm to compute the invariant ring of a permutation
group in the non modular case. Our approach has the advantage of
reducing the amount of linear algebra computations and exploits a finer
combinatorial description of the invariant ring. We build explicit gener-
ators for invariant rings by means of the higher Specht polynomials of
the symmetric group.

Keywords: Computational invariant theory · Representation theory ·
Permutation group · Specht polynomials

1 Introduction

The purpose of invariant theory is exploiting symmetries. Problems admitting a
large number of symmetries can be reduced to a problem dealing with a smaller
domain. When a real function of a real variable is even, we only study its graph
on the positive side as we can deduce the look of its graph on the negative side by
symmetry. The goal of algebraic invariant theory is to establish general results
when we consider abstract groups of symmetries acting on some formal variables.
From this general algebraic approach, abstract variables can be specialized to
solve practical applications [7, § 5] as the resolution of polynomial systems with
symmetries [4], [11], [19, § 2.6] and [8]), in effective Galois theory [1], [5], [12],
or in discrete mathematics [16].

The literature contains deep and explicit results for special classes of groups,
like complex reflection groups or classical reductive groups, as well as general
results applicable to any group. Given the level of generality, one cannot hope for
such results to be simultaneously explicit and tight in general. Thus the subject
was effective early on: given a group, one wants to calculate the properties of its
invariant ring. Under the impulsion of modern computer algebra, computational
methods, and their implementations, have largely expanded in the last twenty
years [7,13,14,19,21]. However, much progress is still needed to go beyond toy
examples and enlarge the spectrum of applications.

In this study, we will focus on groups of symmetries permuting a finite number
of formal variables, thus subgroups of a symmetric group, and in the non modular
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 58–69, 2015.
DOI: 10.1007/978-3-319-23021-4 6

Effective Invariant Theory 59

case (our invariants will be invariant polynomials whose coefficients lie in a field
K of characteristic zero.)

Given a finite permutation group G, subgroup of the symmetric group Sn,
acting by permutation on a finite number of variables x = x1, x2, . . . , xn, an
invariant polynomial P under the action of G is a multivariate polynomial in
K[x] such that P = σ · P for all σ ∈ G. As the sum and the product of invariant
polynomials are still stabilized under the action of G, the set of all invariant
polynomials form a ring called the ring of invariants under the action of G and
denoted K[x]G. It is known since Hilbert and Noether that the ring of invariants
K[x]G is finitely generated for any finite group G of matrices with an explicit
bound for the degree of the generators (|G|, the cardinality of the group G).
However the proofs of these results didn’t tell how to build explicitly a set of
generators.

For any permutation group G, subgroup of the symmetric group Sn, it is
know that the ring K[x]G has for Krull dimension n. A set of n homogeneous
polynomials θ1, . . . , θn invariant under the action of G, algebraically independent
is called a homogeneous set of parameters. Such a family forms the primary
invariants which constitutes a first key element for building generators of the
invariant ring. In the non modular case, the ring K[x]G has the Cohen-Macaulay
property, this means that for any family of primary invariants, one can build a
second family of invariant polynomials S called secondary invariants such that:

K[x]G =
⊕

η∈S

ηK[θ1, . . . , θn]. (1)

A couple of families, primary invariants and secondary invariants give a thin
description of the structure of the invariant ring, in particular, their union gen-
erates the ring of invariants.

Classical approaches computing generators of invariant rings use elimination
techniques (like (SAGBI-)Gröbner basis) in vector spaces of very high dimen-
sions. Current approaches work degree by degree and end up with a Gauss
reduction over some polynomials of degree d over n variables. As the cost linear
reduction is conditioned by the cube the dimension and that there are

(
n+d−1

d

)

monomials of degree d over n variables, all current approaches and their practical
implementation are limited to groups acting on 8, 9 or 10 variables with mod-
ern computers. The evaluation approach proposed by the author in [3] localizes
the Gauss reduction in an abstract vector space whose basis is indexed by the
right cosets of the symmetric group Sn of order n by a permutation group G,
thus with the cube of the ambient dimension, this approach is still limited to
permutation groups whose index |Sn|/|G| in the symmetric group is relatively
controlled (around 1000 for modern computers).

We propose in this article an approach following the idea that adding more
combinatorics in invariant theory would help to produce more efficient algo-
rithms. Moreover, such algorithms outputs could also reveal some combinatorics;
the long time goal being having a combinatorial description of invariant rings
(generators or pairs of primary-secondary invariant families). Since Hilbert, this

60 N. Borie

problem has been solved only in very restrictive and special cases (for example,
in [10], the authors give secondary invariants for Young subgroups of symmetric
groups).

We focus on the problem of computing secondary invariants of finite per-
mutation groups in the non modular case. In this context, we will show how to
localize computations inside selected irreducible representations of the symmet-
ric group. These spaces are smaller than the ones used in classical approaches
and we can largely take advantage of combinatorial results coming from the
theory of representations of the symmetric group. Once these computations are
done, we will use the higher Specht polynomials [20] as basis of the coinvariants
of the symmetric group to rebuild explicit generators of invariant rings.

2 Invariant Ring and Representations of the Symmetric
Group

2.1 Invariant Ring of Permutation Group and Application to
Combinatorics

Our approach starts from a result in a key article of invariant theory [17, Propo-
sition 4.9] mixing invariants of finite group and combinatorics. We recall this
general result:

Proposition 1. Let θ1, . . . , θn be an homogeneous set of parameters for K[x]G,
where G is any finite subgroup of GL(Kn) of order |G|. Set di = deg(θi) and
t = d1 · · · dn/|G|. Then the action of G on the quotient ring K[x]/(θ1, . . . , θn) is
isomorphic to t times the regular representation of G.

Applying this result to Sn, the symmetric group of degree n, with θi = ei

(elementary symmetric polynomial) we recover the well-known result that the
ring K[x]/(e1, . . . , en) is isomorphic to the regular representation RR(Sn) of the
symmetric group (here t = n!

n! = 1). This well-known quotient K[x]/(e1, . . . , en)
is called the coinvariant ring of the symmetric group in the algebraic combina-
torics world and several bases of this ring have been explicitly built (Harmonic
polynomials [2], Schubert Polynomials [15], Descent monomials [10] and more).

Let G be a group of permutations, subgroup of Sn. We now reapply the
result of Stanley to G with the same homogeneous set of parameters formed
with the elementary symmetric polynomials. Then, the ring of coinvariants of
the symmetric group is now also isomorphic to t = n!/|G| times the regular
representation of the group G:

K[x]/(e1, . . . , en) ∼G

n!/|G|⊕

i=1

RR(G). (2)

We know that for any permutation group G, in the non modular case, the ring
of invariants under the action of G is a Cohen-Macaulay algebra. This implies

Effective Invariant Theory 61

that there exists a family of generators ηi making the ring of invariants under the
action of G a free module of rank n!/|G| over the ring of symmetric polynomials:

K[x]G =
n!/|G|⊕

i=1

ηiK[e1, . . . , en]. (3)

Taking the quotient on both sides by the ideal (e1, . . . , en) and keeping ηi as
representative of its equivalent class inside the quotient, we have

K[x]G/(e1, . . . , en) =
n!/|G|⊕

i=1

K · ηi. (4)

As K[x]G is, by definition, the subspace of K[x] on which the action of G is
trivial, the result of Stanley implies in particular that the polynomials ηi span
the subspace of the coinvariants of the symmetric group on which the action of
G is trivial. A way to construct the ηi is thus to search them as G-fixed point
inside the ring of coinvariants of the symmetric group and that could be done
irreducible representation by irreducible representation.

Representation theory of the symmetric group has been largely studied, and
allows us to formulate the following problem:

Problem 1. Let n be a positive integer and G be a permutation group, subgroup
of Sn. Construct an explicit basis of the trivial representations of G appearing
in each irreducible representation of Sn inside the quotient K[x]/(e1, . . . , en).

A first step to solve this problem consists in having a basis of the coinvariants
for the symmetric group respecting the action of Sn such that this basis can be
partitioned by irreducible representations. We present such a basis in Section 3.

2.2 Representations of the Symmetric Group

We recall in this section some results describing the irreducible representations
of the symmetric group.

For a positive integer n, we will call λ a partition of n (denoted by λ � n) if
λ is a non increasing sequence of positive integers λ = (λ1, . . . , λr) whose entries
sum up to n.

For a positive integer n, irreducible representations of the symmetric group
Sn are indexed by the partitions of n. Since we have a finite group, the multi-
plicity of an irreducible representation inside the regular representation is equal
to its dimension. This information can be collected counting standard tableaux
of a given shape.

Let n be a positive integer and λ = (λ1, . . . , λr) a partition of n. A tableau
of shape λ is a diagram of square boxes disposed in rows such that the first row
contains λ1 boxes, on top of it, a second row contains λ2 boxes and so on. A
standard tableau of shape λ is a filling of a tableau of shape λ with integers from

62 N. Borie

1 to n such that the integers are increasing in row and column. We will denote
by STab(λ) the set of standard tableaux of shape λ. For example,

STab([2, 2, 1]) = { 3
2 5
1 4

,
4
2 5
1 3

,
4
3 5
1 2

,
5
2 4
1 3

,
5
3 4
1 2

}. (5)

The number fλ of standard tableaux of a given shape λ can be easily com-
puted using the hook-length formula. As standard tableaux of shape λ can index
the basis of the vector space associated with the irreducible representation of the
symmetric group indexed by λ, and since this same representation must have for
multiplicity its dimension inside the regular representation of Sn, we have:

∑

λ�n

(fλ)2 = |Sn| = n!. (6)

3 Higher Specht Polynomials for the Symmetric Group

Algorithms in invariant theory must, at some point, construct invariant polyno-
mials. Most of actual approaches use the Reynolds operator or an orbit sum of
some special monomials. When the group becomes large, such invariants become
very large, and even when they are stored in a sparse manner inside a computer,
the number of terms can easily fit with n! when G is a permutation group with
a small index in Sn.

Our approach focuses on the combinatorics of the quotient K[x]/(e1, . . . , en),
and the higher Specht polynomials [20] constitute the perfect family to get an
explicit answer to Problem 1.

The quotient K[x]/(e1, . . . , en) is isomorphic to the regular representation of
Sn in which we have several copies of irreducible representations following their
dimension. The Specht polynomials, which are associated with standard tableaux,
allow to construct an explicit subspace of K[x] isomorphic to an irreducible
representation of the symmetric group.

Now, we will see that the higher Specht polynomials take care of the multi-
plicities of an irreducible representation inside the coinvariant. They are indexed
by pair of standard tableaux of the same shape and they constitute a basis of
the Sn-module K[x]/(e1, . . . , en).

Let λ be a partition of n and S, T be two standard tableaux of shape λ. We
define the word w(S) by reading the tableau S from top to bottom in consecutive
columns, starting from the left. The number 1 in the word w(S) has for index
0. Now, recursively, if the number k in the word has index p, then k + 1 has
index p + 1 if it lies to the left of k in the word, and it has index p otherwise.
For example, with the two tableaux

Effective Invariant Theory 63

S = 3 5
1 2 4

T = 2 4
1 3 5

.

The reading of the Tableau S gives 31524, now placing step by step the indices,
we get

3 105 2 4 initialization
3 105 204 right : 0 → 0
31105 204 left : 0 → 1
31105 2041 right : 1 → 1

w(S) = 3110522041 left : 1 → 2

Filling the indices in corresponding cells of the tableau S, we obtain i(S), the
index tableau of S.

i(S) = 1 2
0 0 1

Now, using the tableaux T and i(S), where cells of T are giving variable indices
and the corresponding cells of i(S) are giving exponents, we build a monomial
xi(S)

T as follows

T = 2 4
1 3 5

i(S) = 1 2
0 0 1

xi(S)
T = x0

1x
1
2x

0
3x

2
4x

1
5.

For T a standard tableau of shape λ, let R(T) and C(T) denote respec-
tively the row stabilizer and the column stabilizer of T and consider the Young
symmetrizer

εT :=
fλ

n!

∑

σ∈R(T)

∑

τ∈C(T)

sign(τ)τσ (7)

which is an idempotent of the group algebra Q[Sn]. We now define the polyno-
mial FS

T by
FS

T (x1, . . . , xn) := εT (xi(S)
T). (8)

Theorem 1. [20] Let n be a positive integer, the family of n! polynomials FS
T ,

for S, T running over standard tableaux of the same shape, forms a basis of the
Sym(x)-module K[x].

Terasoma and Yamada proved it using the usual bilinear form in this context:
the divided difference associated to the longest element of the symmetric group.

In three variables, here is the basis of K[x1, x2, x3] as a Sym(x1, x2, x3)-
module,

64 N. Borie

S T x
i(S)
T F S

T

1 2 3 1 2 3 1 1

3
1 2

3
1 2

x3 x3 − x1

3
1 2

2
1 3

x2 x2 − x1

2
1 3

3
1 2

x2x3 x2(x3 − x1)

2
1 3

2
1 3

x2x3 x3(x2 − x1)

3
2
1

3
2
1

x2x
2
3 (x3 − x1)(x3 − x2)(x2 − x1)

We will now try to solve Problem 1 by searching linear combinations of higher
Specht polynomials stabilized by the action of a permutation group.

4 Combinatorial Description of the Invariant Ring

In this section, we show how to slice invariant rings finer than degree by degree.
As irreducible representations of the symmetric group are homogeneous, we will
build series mixing degree statistic and partitions.

4.1 A Refinement of the Moliens Series

Let G ⊂ Sn be a permutation group. Any Sn-stable module is also G-stable,
thus any representation of Sn is also a representation of G. We will denote by
C(G) the set of conjugacy classes of G.

Proposition 2. Let λ � n be a partition of the positive integer n. Let G ⊂ Sn

be a permutation group. The multiplicity of the trivial representation of G inside
the irreducible representation of Sn indexed by λ is given by mλ(G,Sn) with

mλ(G,Sn) :=
1

|G|
∑

C∈C(G)

|C|χλ(σ), (σ chosen arbitrary in C) (9)

where χλ(σ) is the evaluation at σ of the character of Sn associated with the
irreducible representation indexed by the partition λ.

Definition 1. Let G ⊂ Sn be a permutation group. Using a formal set of vari-
ables s = (sλ)λ�n indexed by partitions of n, we define the trivial multiplicities
enumerator S(G, s) as follow

S(G, s) :=
∑

λ�n

mλ(G,Sn)sλ. (10)

Effective Invariant Theory 65

For T a standard tableau, we denote by cocharge(T) the sum of the entries
of i(T) the index tableau of T .

Definition 2. Let λ � n be a partition of a positive integer n and z a formal
variable. We will denote by φ(λ, z) the representation appearance polynomial
defined as follow

φ(λ, z) :=
∑

T∈STab(λ)

zcocharge(T) (11)

where the sum run over all standard tableaux T of shape λ.

φ(λ, z) makes the link between the degree and the irreducible representations
of Sn isomorphic to the abstract one indexed by λ appearing inside the quotient
K[x]/Sym+(x).

If φ(λ, z) has for coefficient the integer k for a term in zd, this means that
the isotypical component, associated with the irreducible representation of Sn

indexed by λ, inside the graded quotient K[x]/Sym+(x) at degree d has multi-
plicity k at this degree. The higher Specht Polynomials realize explicitly these
representations because the cocharge is exactly the sum of the entries of tableau
i(S) (or the degree of the corresponding polynomial).

Proposition 3. Let G ⊂ Sn be a permutation group. The trivial multiplicities
enumerator S(G, t) and the Hilbert series H(G, z) are related by the following
alphabet specialization:

H(G, z) =
S(G, sλ → φ(λ, z))

(1 − z)(1 − z2) · · · (1 − zn)
. (12)

4.2 Secondary Invariants Built from Higher Specht Polynomials

Let G ⊂ Sn be a permutation group and λ � n be a partition of n. Let us
suppose that we have calculated mλ(G,Sn). We are at a stage in which we have
an homogeneous G-stable space inside which we want to construct a finite and
known number of independent invariant polynomials under the action of G.

The usual way to deal with this problem is to build an explicit family span-
ning the ambient space, to apply the Reynolds operator and to use some linear
algebra to get a free family of the wanted dimension. Knowing this dimension
gives a stopping criteria often very important since computations are extremely
heavy even for a small number of variables.

In our context, even this usual approach would work, as permutation groups
are often given by a list of generators, we can even forget the Reynolds operator.

Proposition 4. Let G ∈ Sn be a permutation group given by some generators:
G = 〈σ1, . . . , σr〉. Let λ � n be a partition. The G-trivial abstract space inside
the abstract representation of Sn indexed by λ is given by the intersection of
the eigenspaces of the representation matrices of σ1, . . . , σr associated to the
eigenvalue 1 (i.e. the common point-wise stabilized space of these matrices).

66 N. Borie

5 Algorithm Building Secondary Invariants

We now present an effective algorithm exploiting the approach using the repre-
sentation of the symmetric group.

Algorithm 1. Compute secondary invariants using representations of the symet-
ric group
Input : σ1, σ2, . . . σr a set of permutations of size n generating a group G.

1 def SecondaryInvariants(σ1, σ2, . . . σr) :
2 G ← PermutationGroup(σ1, σ2, . . . σr)
4 Sec inv ← {}
5 for λ ∈ Partitions(size = n) :
6 if mλ(G,Sn) �= 0 :

7 V ← V ectorSpace(field = Q, dimension = fλ)
8 for i ∈ {1, 2, . . . , r} :
9 V ← V ∩ kernel(Mλ(σi) − Id)
10 for S ∈ StandardTableaux(shape = λ) :
11 for P ∈ basis(V) :
12 new sec = 0
13 for (coef, T) ∈ P :
14 new sec = new sec + coef ∗ F S

T

15 Sec inv ← Sec inv ∪ {new sec}
16 return Sec inv

The returned set is composed by linear combinations of higher Specht poly-
nomials. These polynomials can be easily evaluated but, as they contains a lot
of Vandermonde type factors, there expansion on a set of n formal variables as
a huge sum of monomials is an heavy computation.

The loop line(5) iterates over all irreducible representations of Sn, it is fol-
lowed by a test selecting only these which contains G-trivial elements. line(7)
initializes a full vector space whose basis vectors should be seen as standard
tableaux of shape λ. Mλ(σi) is the matrix of the permutation σi inside the irre-
ducible representation of Sn indexed by λ. After the lines(8 and 9), V contains
abstract combinations of standard tableaux of shape λ which correspond to G-
trivial elements inside the irreducible representation indexed by λ, a basis of V
is an explicit solution of problem 1. The rest of the algorithm rebuilds secondary
invariants from abstract G-trivial elements using the higher Specht polynomials
FS

T .
Let G be the group generated by permutations (1, 2)(3, 4) and (1, 4)(2, 3)

(notation as product of disjoints cycles). G is of cardinality 4, its contains
3 elements of cycle type (2, 2) and the identity. Using Formula (9), we get
m(4)(G,S4) = 1, m(2,2)(G,S4) = 2 and m(1,1,1,1)(G,S4) = 1. There is only
a single standard tableau of shape (4) which is associated with the trivial rep-
resentation of S4 and the higher Specht polynomial 1 (which is a secondary

Effective Invariant Theory 67

invariant for any permutation group). The dimension associated to (1, 1, 1, 1) is
also 1. The only standard tableau of the associated shape corresponds to the
Vandermonde in four variables Δ(x1, x2, x3, x4).

Finally, we have m(2,2)(G,S4) = 2. As there are two standard tableaux of
this shape, the whole irreducible representation indexed by (2, 2) and its other
realization in the coinvariants of S4 are invariant under the action of G. We thus
obtain the following higher Specht polynomials for T = 3 4

1 2
and S = 2 4

1 3
:

FT
T = (x3 − x1)(x4 − x2)

FT
S = (x2 − x1)(x4 − x3)

FS
T = (x3 − x1)(x4 − x2)(x1x3 + x2x4)

FS
S = (x2 − x1)(x4 − x3)(x1x2 + x3x4)

(13)

Hence, the family 1, FT
T , FT

S , FS
T , FS

S ,Δ(x1, x2, x3, x4) forms a set of secondary
invariants associated with the symmetric polynomials in 4 variables.

5.1 A Large Trace of the Algorithm

A never done before computational challenge consists in computing a generating
family of the ring of invariants of the group acting on the edges of graphs over 5
nodes. This group is a subgroup of the symmetric group of degree 10 =

(
5
2

)
and

has for cardinality 5! = 120. We tried our approach on this group and we got
the following verbose.

The trace have should be read has the following pattern:

[partition] ambient dimension --> (number of standard tableaux)

rank in S_n repr : (dimension of the G-trivial space)

sage: load("invariants.py")

sage: G = TransitiveGroup(10,12)

sage: Specht_basis_of_trivial_representations(G, verbose=True)

[3, 2, 2, 1, 1, 1] ambient dimension --> 315

rank in S_n repr : 2

[6, 1, 1, 1, 1] ambient dimension --> 126

rank in S_n repr : 3

[6, 4] ambient dimension --> 90

rank in S_n repr : 3

...

[4, 3, 2, 1] ambient dimension --> 768

rank in S_n repr : 6

...

total : 30240

n! / |G| : 30240

TOTAL CPU TIME : 414.837207

Our algorithm took 415 seconds to generate the 30240 secondary invariants
as linear combinations of higher Specht polynomials. We still believe that the
computation of a pair of primary and secondary invariants for this group is
unreachable for Magma, Singular and the evaluation approach of Sage in less
than 24 hours.

68 N. Borie

5.2 Complexity

The rich literature about effective invariant theory does not provide a lot a sharp
complexity bounds for algorithms. Gröbner bases admit very general complexity
bounds (in worst case 22

O(n)
for n variables) which appears to be overestimated

compared to their practical behavior. The thesis [3] of the author present an
evaluation approach to compute the invariants inside a quotient of a reduced
dimension. The algorithm computing secondary with this technique has a com-
plexity in O((n!)2 + (n!)3

|G|2). Using the representation of the symmetric group, it
is still very hard to establish a sharp bound. However, we can produce better
bounds.

Theorem 2. Let G be a permutation group, subgroup of Sn, given by r gener-
ators. The complexity of the linear algebra reduction in algorithm 1 computing
the secondary invariants of G is bounded by

r · (
∑

λ�n

mλ(|G|,Sn)(fλ)2) (14)

where fλ is the number of standard tableaux of shape λ.
Sketch of proof : This bound is a straightforward counting of the reduction
costs the r matrices of permutation for each irreducible representation of the
symmetric group.

Corollary 1. Let G be a permutation group, subgroup of Sn, given by r gener-
ators. The complexity of Algorithm 1 computing the secondary invariants is in
O(r · (n!)

3
2).

Sketch of proof : We apply Formula (6) and a rough bound of the maximum
of the fλ.

Acknowledgments. This research was driven by computer exploration using the
open-source mathematical software Sage [18]. In particular, we perused its algebraic
combinatorics features developed by the Sage-Combinat community [6], as well as its
group theoretical features provided by GAP [9].

References

1. Abdeljaouad, I.: Théorie des Invariants et Applications à la Théorie de Galois
effective. Ph.D. thesis, Université Paris 6 (2000)

2. Bergeron, F.: Algebraic combinatorics and coinvariant spaces. CMS Treatises in
Mathematics (2009)

3. Borie, N.: Calcul des invariants des groupes de permutations par transformée de
Fourier. Ph.D. thesis, Laboratoire de Mathématiques, Université Paris Sud (2011)

4. Colin, A.: Solving a system of algebraic equations with symmetries. J. Pure Appl.
Algebra 117/118, 195–215 (1997). algorithms for algebra (Eindhoven, 1996)

5. Colin, A.: Théorie des invariants effective; Applications à la théorie de Galois et
à la résolution de systèmes algébriques; Implantation en AXIOM. Ph.D. thesis,
École polytechnique (1997)

Effective Invariant Theory 69

6. Sage-Combinat community, T.: Sage-Combinat: enhancing Sage as a toolbox for
computer exploration in algebraic combinatorics (2008)

7. Derksen, H., Kemper, G.: Computational invariant theory. Springer-Verlag, Berlin
(2002)

8. Faugère, J., Rahmany, S.: Solving systems of polynomial equations with symmetries
using SAGBI-Gröbner bases. In: Proceedings of the 2009 international symposium
on Symbolic and algebraic computation, pp. 151–158 (2009)

9. The GAP Group: Lehrstuhl D für Mathematik, RWTH Aachen, Germany and
SMCS, U. St. Andrews, Scotland: GAP - Groups, Algorithms, and Programming
(1997)

10. Garsia, A., Stanton, D.: Group actions on stanley-reisner rings and invariants of
permutation groups. Advances in Mathematics 51(2), 107–201 (1984)

11. Gatermann, K.: Symbolic solution of polynomial equation systems with symmetry.
Konrad-Zuse-Zentrum für Informationstechnik, Berlin (1990)

12. Geissler, K., Klüners, J.: Galois group computation for rational polynomials.
J. Symbolic Comput. 30(6), 653–674 (2000). algorithmic methods in Galois theory

13. Kemper, G.: The invar package for calculating rings of invariants. IWR Preprint
93–94, University of Heidelberg (1993)

14. King, S.: Fast Computation of Secondary Invariants (2007). Arxiv preprint
math/0701270

15. Lascoux, A., Schützenberger, M.P.: Polynômes de Schubert. C. R. Acad. Sci. Paris
Sér. I Math. 294(13), 447–450 (1982)

16. Pouzet, M., Thiéry, N.M.: Invariants algébriques de graphes et reconstruction.
C. R. Acad. Sci. Paris Sér. I Math. 333(9), 821–826 (2001)

17. Stanley, R.P.: Invariants of finite groups and their applications to combinatorics.
Bull. Amer. Math. Soc. (N.S.) 1(3), 475–511 (1979)

18. Stein, W., et al.: Sage Mathematics Software (Version 3.3). The Sage Development
Team (2009). http://www.sagemath.org

19. Sturmfels, B.: Algorithms in invariant theory. Springer-Verlag, Vienna (1993)
20. Terasoma, T., Yamada, H.: Higher Specht polynomials for the symmetric group.

Proc. Japan Acad. Ser. A Math. Sci. 69(2), 41–44 (1993)
21. Thiéry, N.M.: Computing minimal generating sets of invariant rings of permutation

groups with SAGBI-Gröbner basis. In: Discrete models (Paris, 2001), pp. 315–328
(electronic) (2001)

http://arxiv.org/abs/math/0701270
http://www.sagemath.org

On Differential Uniformity of Maps
that May Hide an Algebraic Trapdoor

Marco Calderini(B) and Massimiliano Sala

Department of Mathematics, University of Trento, Trento, Italy
marco.calderini@unitn.it, maxsalacodes@gmail.com

Abstract. We investigate some differential properties for permutations
in the affine group, of a vector space V over the binary field, with respect
to a new group operation ◦, inducing an alternative vector space struc-
ture on V .

Keywords: Trapdoors · Differential uniformity · Block ciphers ·
Boolean functions

1 Introduction

Most modern block ciphers are built using components whose cryptographic
strength is evaluated in terms of the resistance offered to attacks on the whole
cipher. For example, differential properties of Boolean functions are studied for
the S-Boxes to thwart differential cryptanalysis ([3,10]).

Little is known on similar properties to avoid trapdoors in the design of
the block cipher. In [7] the authors investigate the minimal properties for the S-
Boxes (and the mixing layer) of an AES-like cipher (more precisely, a translation-
based cipher, or tb cipher) to thwart the trapdoor coming from the imprimitivity
action, first noted in [11] .

In [9], Li observed that if V is a finite vector space over a finite field Fp, the
symmetric group Sym(V) will contain many isomorphic copies of the affine group
AGL(V), which are its conjugates in Sym(V). So there are several structures
(V, ◦) of a Fp-vector space on the set V , where (V, ◦) is the abelian additive
group of the vector space. Each of these structure will yield in general a different
copy AGL(V, ◦) of the affine group within Sym(V). So, a trapdoor coming from
an alternative vector space structure, which we call hidden sum, can be embedded
in a cipher, whenever the permutation group generated by the round functions
of the cipher is contained in a conjugate of AGL(V). In [6] the authors provide
conditions on the S-Boxes of a tb cipher that avoid attacks coming from hidden
sums. This result has been generalized to tb ciphers over any field in [2]. Also,
in [1], the authors studied such trapdoors, characterizing a new class of vectorial
Boolean functions, which they call anti-crooked, able to avoid any hidden sum.

In the yet unpublished Ph.D thesis [4] the author investigated some proper-
ties of affine groups, of a vector space over the binary field, with respect to a

c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 70–78, 2015.
DOI: 10.1007/978-3-319-23021-4 7

On Differential Uniformity of Maps that May Hide an Algebraic Trapdoor 71

hidden sum ◦. In particular, he focused on affine groups which contain the trans-
lation group with respect to the usual sum +, and affine groups whom translation
group is contained in AGL(V). In this paper we study the differential proper-
ties of maps which are affine w.r.t. a hidden sum. Our results are presented in
Section 3, while in Section 2 we provide some preliminaries from previous works.
Our main result, Theorem 3, concludes Section 3. Section 4 concludes this paper
with the sketch of an actual attack to a cipher in which a hidden sum trapdoor
is embedded.

2 Preliminaries

Here we give some notation and some known results that we are going to use
along the paper. In the following, if not specified, V will be an n-dimensional
vector space over F2.

With the symbol + we refer to the usual sum over the vector space V , and
we denote by T+, AGL(V,+) and GL(V,+), respectively, the translation, affine
and linear groups w.r.t. +.

We recall that a p-elementary group G acting on a set Ω is a group of
permutations on Ω such that for all g in G we have gp = IdΩ .
A group G is called regular if for all a and b in Ω there exists a unique g in G
such that g(a) = b.

Remark 1. An elementary group acting on a vector space V = F
n
p is obviously a

p-elementary group. The translation group of V is an elementary abelian regular
group. Vice versa, we claim that if T is an elementary abelian regular group,
there exists a vector space structure (V, ◦) such that T is the related translation
group. In fact, from the regularity of T we have T = {τa | a ∈ V } where τa is
the unique map in T such that 0 �→ a. Then, defining the sum x ◦ a := τa(x), it
is easy to check that (V, ◦) is a commutative group, and so we can consider the
group operation as a sum, making it an additive group without loss of generality.
Moreover, let the multiplication of a vector by an element of Fp defined by

sv := v ◦ · · · ◦ v︸ ︷︷ ︸
s

, for all s ∈ Fp,

then it is easy to check that for all s, t ∈ Fp, and v, w ∈ V

s(v ◦ w) = sv ◦ sw,

(s + t)v = sv ◦ tv,

(st)v = s(tv)

and being T p-elementary pv = 0. Thus (V, ◦) is a vector space over Fp. Observe
that (V, ◦) and (V,+) are isomorphic vector space (since |V | < ∞).

72 M. Calderini and M. Sala

For abelian regular subgroups of the affine group in [5] the authors give a
description of these in terms of commutative associative algebras that one can
impose on the vector space (V,+) or, in other words, of products that can be
defined on V and distribute the sum +. We report the principal result shown
in [5]. Recall that a (Jacobson) radical ring is a ring (V,+, ·) in which every
element is invertible with respect to the circle operation x ◦ y = x + y + x · y, so
that (V, ◦) is a group. The circle operation may induce a vector space structure
on V or not.

Theorem 1. Let F be an arbitrary field, and (V,+) a vector space of arbitrary
dimension over F.

There is a one-to-one correspondence between

1) abelian regular subgroups T of AGL(V,+), and
2) commutative, associative F-algebra structures (V,+, ·) that one can impose

on the vector space structure (V,+), such that the resulting ring is radical.

In this correspondence, isomorphism classes of F-algebras correspond to con-
jugacy classes under the action of GL(V,+) of abelian regular subgroups of
AGL(V,+).

We recall that an exterior algebra over an F-vector space V is the F-algebra
whose product is the wedge product ∧ having the following properties:

1) x ∧ x = 0 for all x ∈ V ,
2) x ∧ y = −y ∧ x.

The elements of the exterior algebra over V are linear combinations of monomials
such as u, v ∧ w, x ∧ y ∧ z, etc., where u, v, w, x, y, and z are vectors of V .

Remark 2. From the theorem above we can note that in characteristic 2, algebras
corresponding to elementary abelian regular subgroups of AGL(V,+) are exterior
algebras or a quotient thereof.

We will denote by σa the translation in T+ such that x �→ x + a. We will use
T◦ and AGL(V, ◦) to denote the translation and affine group corresponding to
a hidden sum ◦, that is when (V, ◦) is a vector space and so T◦ is elementary
abelian and regular.
As noted in the remark above, since T◦ is regular, for each a ∈ V there is a
unique map τa ∈ T◦ such that 0 �→ a. Thus

T◦ = {τa | a ∈ V }.

The relation between T◦ and AGL(V, ◦) is that AGL(V, ◦) is the normalizer of
T◦ in Sym(V), that is AGL(V, ◦) is the largest subgroup of Sym(V) contaning
T◦ such that T◦ is normal in it. Indeed, AGL(V,+) is the normalizer of T+ and
they are, respectively, the isomorphic images of AGL(V, ◦) and T◦. With 1V we
will denote the identity map of V .

On Differential Uniformity of Maps that May Hide an Algebraic Trapdoor 73

Remark 3. If T◦ ⊆ AGL(V,+), then τa = σaκ for some κ ∈ GL(V,+), since
AGL(V,+) = GL(V,+) � T+. We will denote by κa the linear map κ corre-
sponding to τa.

Let T ⊆ AGL(V,+) and define the set

U(T) = {a | τ = σa, τ ∈ T}.

It is easy to check that U(T) is a subspace of V , whenever T is a subgroup. If
T = T◦ for some operation ◦, then U(T◦) is not empty for the following lemma.

Lemma 1 ([5]). Let T+ be the group of translation in AGL(V,+) and let T ⊆
AGL(V,+) be a regular subgroup. Then, if V is finite T+ ∩ T is nontrivial.

U(T◦) is important in the context of our theory and its dimension gives
fundamental information on the corresponding hidden sum.

3 On the Differential Uniformity of a ◦-affine Map

Any round function of a translation-based block cipher (Definition 3.1 [7]) is
composed by a parallel s-Box γ, a mixing layer λ and a translation σk by the
round key. The map γ must be as non-linear as possible to create confusion in
the message. An important notion of ”non-linearity” of Boolean functions is the
differential uniformity.

In this section we establish a lower bound on the differential uniformity of
the maps lying in some AGL(V, ◦). We will consider the two cases of affine group
AGL(V, ◦) such that T◦ ⊆ AGL(V,+) and/or T+ ⊆ AGL(V, ◦). In both cases
in the following proofs we can consider w.l.o.g. maps f such that f(0) = 0. In
fact in the first case we can compose f with τf(0) that maps f(0) to 0 and in
the second case we compose with σf(0), in both cases we compose with an affine
map.

We recall the definition of differential uniformity.

Definition 1. Let m,n ≥ 1. Let f : F
m
2 → F

n
2 , for any a ∈ F

m
2 and b ∈ F

n
2 we

define
δf (a, b) = |{x ∈ F

m
2 | f(x + a) + f(x) = b}|.

The differential uniformity of f is

δ(f) = max
a∈F

m
2 , b∈F

n
2

a�=0

δf (a, b).

f is said δ-differential uniform if δ = δ(f).

We are ready for our first result.

74 M. Calderini and M. Sala

Lemma 2. Let T◦ ⊆ AGL(V,+) and dim(U(T◦)) = k. Then f ∈ AGL(V, ◦) is
at least 2k differentially uniform.

Proof. Let a ∈ U(T◦), then

f(x + a) + f(x) = f(x ◦ a) + f(x) = (f(x) ◦ f(a)) + f(x).

So, for all f(x) ∈ U(T◦) we have

(f(x) ◦ f(a)) + f(x) = (f(x) + f(a)) + f(x) = f(a),

that implies |{x | f(x + a) + f(x) = f(a)}| ≥ 2k.

When T+ ⊆ AGL(V, ◦), we can define U◦(T+) = {a | σa ∈ T+ ∩ T◦} and it is
a vector subspace of (V, ◦). Then we obtain, analogously, the following lemma.

Lemma 3. Let T+ ⊆ AGL(V, ◦) and dim(U◦(T+)) = k, as a subspace of (V, ◦).
Then f ∈ AGL(V, ◦) is at least 2k differentially uniform.

Recalling that given a ring R, r ∈ R is called nilpotent if there exists an
integer n such that rn = 0, while r ∈ R is called unipotent if and only if r − 1
is nilpotent, we have the following:

Lemma 4. Let T◦ ⊆ AGL(V,+). Then for each a ∈ V , κa has order 2 and it is
unipotent.

Proof. We know that τa has order 2, because T◦ is elementary. Then, τ2
a = 1V

implies τa(a) = 0, and in particular κa(a) = a. So

x = τ2
a (x) = κa(κa(x) + a) + a = κ2

a(x) + a + a = κ2
a(x) for all x ∈ V.

That implies (κa − 1V)2 = κ2
a − 1V = 0.

Remark 4. The lemma above can be easily generalized to any characteristic p,
in this case the order of κa would be p.

Remark 5. It is well known that a square matrix is unipotent if and only if its
characteristic polynomial P (t) is a power of t − 1, i.e. it has a unique eigenvalue
equals to 1.

We recall the following definition.

Definition 2. Let A be an n × n matrix over a field F, with λ ∈ F along the
main diagonal and 1 along the diagonal above it, that is

A =

⎡

⎢⎢⎢⎣

λ 1 . . . 0
0 λ 1 . . . 0
...

...
0 . . . λ

⎤

⎥⎥⎥⎦ .

Then A is called the n × n elementary Jordan matrix or Jordan block of size n.

On Differential Uniformity of Maps that May Hide an Algebraic Trapdoor 75

Definition 3. A matrix A defined over a field F is said to be in Jordan canonical
form if A is block-diagonal where each block is a Jordan block defined over F.

The following theorem is well-known (see for instance [8]).

Theorem 2. Let A be an n × n matrix over a field F such that any eigenvalue
of A is contained in F, then there exists a matrix J defined over F, which is in
Jordan canonical form and similar to A.

Lemma 5. Let T◦ ⊆ AGL(V,+). Then for each a ∈ V , κa fixes at least 2�n−1
2 �+1

elements of V .

Proof. From Lemma 4, κa has a unique eigenvalue equals to 1 ∈ F2, then from
Theorem 2 there exists a matrix over F2 in the Jordan form similar to κa. Thus,
κa = AJA−1, for some A, J ∈ GL(V,+) with

J =

⎡

⎢⎢⎢⎢⎢⎣

1 α1 . . . 0
0 1 α2 . . . 0
...

...
0 . . . 1 αn−1

0 . . . 1

⎤

⎥⎥⎥⎥⎥⎦
and J2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 α1α2 . . . 0
0 1 0 α2α3 . . . 0
...

...
0 . . . 1 0 αn−2αn−1

0 . . . 1 0
0 . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

where αi ∈ F2 for 1 ≤ i ≤ n − 1.
From the fact that J is conjugated to κa we have J2 = 1V , and that implies
αiαi+1 = 0 for all 1 ≤ i ≤ n − 2.

Note that if αi = 1 then αi−1 and αi+1 have to be equal to 0. Thus we have
that when n is even at most n

2 αi’s can be equal to 1. Then at least n
2 elements

of the canonical basis are fixed by J . When n is odd we have at most n−1
2 αi’s

equal to 1 and then at least n−1
2 + 1 elements of the canonical basis are fixed

by J . Our claim follows from the fact that κa is conjugated to J .

In terms of algebras we have the following corollary.

Corollary 1. Let T◦ ⊆ AGL(V,+), and let (V,+, ·) be the associated algebra of
Theorem 1. Then for each a ∈ V , a ·x is equal to 0 for at least 2�n−1

2 �+1 elements
x of V .

Remark 6. The bound on the number of elements fixed by κa given in
Lemma 5 is tight. In fact let (V,+, ·) be the exterior algebra over a vector space
of dimension three, spanned by e1, e2, e3. That is, V has basis

e1, e2, e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3, e1 ∧ e2 ∧ e3.

We have that e1 · x = 0 for all x ∈ E = 〈e1, e1 ∧ e2, e1 ∧ e3, e1 ∧ e2 ∧ e3〉. So, for
all x ∈ E

x ◦ e1 = x + e1 + x · e1 = x + e1.

Vice versa if x ◦ e1 = x + e1 then x ∈ E. The size of E is 24.

76 M. Calderini and M. Sala

Lemma 6. Let T◦ ⊆ AGL(V,+). Then f ∈ AGL(V, ◦) is at least 2�n−1
2 �+1

differentially uniform.

Proof. From Lemma 1 there exists a ∈ U(T◦) different from zero. So

f(x + a) + f(x) = f(x ◦ a) + f(x) = (f(x) ◦ f(a)) + f(x) =

(f(x) + f(a) + f(a) · f(x)) + f(x)

Now, from Corollary 1 we have that f(a)·f(x) = 0 for at least 2�n−1
2 �+1 elements

of V .
This implies |{x | f(x + a) + f(x) = f(a)}| ≥ 2�n−1

2 �+1.

Lemma 7. Let T+ ⊆ AGL(V, ◦). Then f ∈ AGL(V, ◦) is at least 2�n−1
2 �+1

differentially uniform.

Proof. Note that Theorem 1, Lemma 1 and Corollary 1 hold also inverting the
operation ◦ and +. Then, there exists a ∈ V different from zero such that x+a =
x ◦ a for all x ∈ V . Considering the algebra (V, ◦, ·) such that x + y = x ◦ y ◦ x · y
for all x, y ∈ V , we have

f(x + a) + f(x) = f(x ◦ a) + f(x) = (f(x) ◦ f(a)) + f(x) =

(f(x) ◦ f(a)) ◦ f(x) ◦ f(x) · (f(x) ◦ f(a)) =

f(x) ◦ f(a) ◦ f(x) ◦ f(x) · f(x) ◦ f(x) · f(a).

From Remark 2, we have y2 = 0 for all y ∈ V , and from Corollary 1 f(x)·f(a) = 0
for at least 2�n−1

2 �+1 elements. Thus

|{x | f(x + a) + f(x) = f(a)}| ≥ 2�n−1
2 �+1.

Summarizing our results in this section, especially Lemma 2, 3, 6, 7, we
obtain our theorem on the claimed differentiability.

Theorem 3. Let T◦ ⊆ AGL(V,+) (T+ ⊆ AGL(V, ◦), respectively). Let f ∈
AGL(V, ◦). Then δ(f) ≥ 2m, where

– m = max{�n−1
2 � + 1,dim(U(T◦))}

– (m = max{�n−1
2 � + 1,dim(U◦(T+))}, respectively).

By a computer check we obtain the following fact.

Fact 1. Let V = F
n
2 with n = 3, 4, 5. If T+ ⊆ AGL(V, ◦), let f ∈ AGL(V, ◦).

Then δ(f) ≥ 2n−1.

Remark 7. For n = 7, 8 there exist examples of functions that are affine w.r.t.
a hidden sum ◦ satisfying T+ ⊆ AGL(V, ◦) and δ(f) = 2n−2. The existence of
these permutations and Fact 1 suggest that probably there may exist bounds
which are sharper than those in Theorem 3.

Remark 8. Note that if we consider f ∈ Sym(F4
2) with δ(f) = 4 then the par-

allel map (f, f) acting on F
8
2 is 26 differentially uniform. Thus the differential

uniformity may not guarantee, alone, security from a hidden sum trapdoor!

On Differential Uniformity of Maps that May Hide an Algebraic Trapdoor 77

4 A Block Cipher With a Hidden Sum

In [4] (but see also [1]) the author constructs a toy block cipher with messages
in V = (F2)6 that involves two 3-bit invertible S-Boxes which are 4-differentially
uniform. That cipher is such that the group generated by the parallel S-Box γ,
the mixing layer λ and the translation group T+ is contained in an affine group
AGL(V, ◦) for an operation ◦, i.e.

〈λγ, T+〉 ⊆ AGL(V, ◦).

Moreover the authors report an algorithm that, in linear time, for all vector
v ∈ V , it returns the vector [v] = [α1, . . . , α6] such that v = α1v1 ◦ · · · ◦ α6v6,
where v1, . . . , v6 is a fixed basis of (V, ◦).

Let ϕ = ϕk be the encryption function, with a given unknown session key k.
Assuming that an attacker can call the encryption oracle then the attack based
on the hidden sum is the following:

1) compute [ϕ(0)], [ϕ(v1)], . . . , [ϕ(v6)],
2) construct the affinity M + t given by the matrix M with rows Mi = [ϕ(vi)]+

[ϕ(0)] and translation vector t = [ϕ(0)].

We will have

[ϕ(v)] = [v] · M + [t], [ϕ−1(v)] = ([v] + [t]) · M−1,

for all v ∈ V , where the product row by column is the standard scalar product.
The knowledge of M , t and M−1 provides a global deduction (reconstruction),
since it becomes trivial to encrypt and decrypt. The attacks requires only 7
encryption that is much faster than brute-force searching in the key-space, con-
sidering that the key-space is (F2)6.

Acknowledgments. Most of these results are present in the first author’s Ph.D.
thesis [4] and so he would like to thank his supervisor, the second author. The authors
would like to thank Riccardo Aragona and the anonymous reviewers for their helpful
comments.

References

1. Aragona, R., Calderini, M., Sala, M.: The role of Boolean functions in hiding sums
as trapdoors for some block ciphers (2014). arXiv preprint arXiv:1411.7681

2. Aragona, R., Caranti, A., Dalla Volta, F., Sala, M.: On the group generated by
the round functions of translation based ciphers over arbitrary finite fields. Finite
Fields and Their Applications 25, 293–305 (2014)

3. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J.
Cryptol. 4(1), 3–72 (1991)

4. Calderini, M.: On Boolean functions, symmetric cryptography and algebraic coding
theory, Ph.D. thesis, University of Trento (2015)

http://arxiv.org/abs/1411.7681

78 M. Calderini and M. Sala

5. Caranti, A., Dalla Volta, F., Sala, M.: Abelian regular subgroups of the affine group
and radical rings. Publ. Math. Debrecen 69(3), 297–308 (2006)

6. Caranti, A., Dalla Volta, F., Sala, M.: An application of the ONan-Scott theorem
to the group generated by the round functions of an AES-like cipher. Designs,
Codes and Cryptography 52(3), 293–301 (2009)

7. Caranti, A., Dalla Volta, F., Sala, M.: On some block ciphers and imprimitive
groups. AAECC 20(5–6), 229–350 (2009)

8. Lang, S.: Linear Algebra. Springer Undergraduate Texts in Mathematics and Tech-
nology. Springer (1987)

9. Li, C.H.: The finite primitive permutation groups containing an abelian regular
subgroup. Proceedings of the London Mathematical Society 87(03), 725–747 (2003)

10. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

11. Paterson, K.G.: Imprimitive permutation groups and trapdoors in iterated block
ciphers. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 201–214. Springer,
Heidelberg (1999)

On the Lower Block Triangular Nature
of the Incidence Matrices to Compute

the Algebraic Immunity of Boolean Functions

Deepak Kumar Dalai(B)

School of Mathematical Sciences, NISER, Bhubaneswar 751005, India
deepak@niser.ac.in

Abstract. The incidence matrix between two sets of vectors in F2 has
a great importance in different areas of mathematics and sciences. The
rank of these matrices are very useful while computing the algebraic
immunity(AI) of Boolean functions in cryptography literature [3,7]. With
a proper ordering of monomial (exponent) vectors and support vectors,
some interesting algebraic structures in the incidence matrices can be
observed. We have exploited the lower-block triangular structure of these
matrices to find their rank. This structure is used for faster computation
of the AI and the low degree annihilators of an n-variable Boolean func-
tions than the known algorithms. On the basis of experiments on at least
20 variable Boolean functions, we conjecture about the characterization
of power functions of algebraic immunity 1, could verify the result on
the AI of n-variable inverse S-box presented in [6](i.e., �2√

n� − 2), and
presented some results on the AI of some important power S-boxes.

Keywords: Cryptography · Boolean function · Power function ·
Algebraic immunity

1 Notation

In this section, we introduce the basic notations and definitions which are
required to read the later part of the article.

Vn: The n dimensional vector space over the two element field F2 = {0, 1}.
wt(v): The weight of a vector v = (v1, v2, . . . , vn) ∈ Vn is wt(v) = |{vi : vi = 1}|.
Vn,d: The set of vectors in Vn of weight d or less i.e., Vn,d = {v ∈ Vn : wt(v) ≤ d}.
u ⊆ v: For u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Vn, we denote u ⊆ v if

ui = 1 implies vi = 1 for 1 ≤ i ≤ n.
+,

∑
: The addition operators on F2 or, on reals R, which is context based.

int(u): The integer value of the binary string representation of the vector u ∈ Vn.

Ordering of vectors: If u, v ∈ Vn, then
1. Lexicographic ordering: u < v if int(u) < int(v).
2. Weighted ordering: u <w v if (wt(u) < wt(v)) or, (wt(u) = wt(v) and

int(u) < int(v)).
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 79–89, 2015.
DOI: 10.1007/978-3-319-23021-4 8

80 D.K. Dalai

Incidence matrix (MX
V): For v, x ∈ Vn, x is incident on v if x ⊆ v. We denote

vx = 1 if x ⊆ v and 0 otherwise. For given two ordered sets of vectors V,X,
the incidence matrix MX

V of V on X is defined as MX
V [i, j] = v

xj

i , where vi and
xj are i-th and j-th element in V and X respectively. We call X as exponent
vector set and V as support vector set.

Incidence matrix (Md
V): If the exponent vector set X = Vn,d, then the inci-

dence matrix MX
V is denoted as Md

V .
Boolean function: A function f : Vn �→ F2 is called n variable Boolean func-

tion. The set of all Boolean functions on n-variable is denoted as Bn. The
polynomial form of a Boolean function can be represented as an element of
binary quotient ring on n-variables F2[x1, . . . , xn]/ 〈x2

1 − x1, . . . , x
2
n − xn〉 and

this form is called the algebraic normal form (ANF) of the Boolean function.
The degree of f ∈ Bn (i.e., deg(f)) is the algebraic degree. We also denote
Bn,d = {f ∈ Bn : deg(f) ≤ d} and mn,d is the set of all monomials of degree
d or less. The evaluations of f at each vector in Vn with an order is known as
the truth table representation of f and the representation can be viewed as a
2n-tuple binary vector. The support set and the weight of f ∈ Bn is defined
as S(f) = {v ∈ Vn : f(v) = 1} and wt(f) = |S(f)| respectively.

Algebraic immunity (AI): Given f ∈ Bn, a nonzero g ∈ Bn is called an
annihilator of f if f.g = 0, i.e., f(v)g(v) = 0 for all v ∈ Vn. The set of all
annihilators of f ∈ Bn is denoted by An(f). The algebraic immunity of f ∈ Bn

is defined as AI(f) = min{deg(g) : g ∈ An(f) ∪ An(1 + f)}.
wt(M), den(M): The weight and density of an m×n binary matrix M are defined

as wt(M) = |{M [i, j] : M [i, j] = 1}| and den(M) = wt(M)
mn respectively.

2 Introduction

The incidence matrix MX
V is an interesting tool in the study of several branches

in mathematics and computer sciences like combinatorics, coding theory, cryp-
tography and polynomial interpolation. The incidence matrix Md

V has an impor-
tant role in the study of algebraic cryptanalysis. The problem to find the rank
of this matrix is equivalent to compute the AI of a Boolean function [7]. Some
algorithms are available in [4,5,7] to find the rank of Md

V and the solution of the
system of equations Md

V γ = 0 to find the annihilators of degree d of the Boolean
function of support set V .

From the point of view of algebraic cryptanalysis, f ∈ Bn should not be used
to design a cryptosystem if AI(f) is low [1,7]. It is known that for any f ∈ Bn,
AI(f) ≤
n

2 �. Thus, the target of a good design is to use a f ∈ Bn such that
neither f nor 1 + f has an annihilator of degree much less than
n

2 �.
If g ∈ Bn is an annihilator of f ∈ Bn then g(v) = 0 for v ∈ S(f). To find

a d or lesser degree annihilator g ∈ Bn,d, one has to solve the system of linear
equations

On the Lower Block Triangular Nature of the Incidence 81

∑

α∈Vn,wt(α)≤d

aαvα = 0 for v ∈ S(f) i.e.,
∑

α∈Vn,wt(α)≤d,α⊆v

aα = 0 for v ∈ S(f).

That is, Md
S(f)γ = 0. (1)

where the transpose of γ is the unknown row vector (aα). If rank(Md
S(f)) <

|mn,d| =
∑d

i=0

(
n
i

)
then f has a d or lesser degree annihilator.

For f ∈ Bn, the incidence matrix Md
S(f) is a particular case of MX

V , whose
rank tells about the AI(f). In this article, we study the rank of MX

V , with special
attention on Md

S(f). Some structures of MX
V , which are not seen in a random

binary matrix are addressed in [2]. Thus, the system of equations in Equation 1
can be solved faster as compared to solving an arbitrary system of equations
of same order if the algebraic structures in MX

V are carefully exploited. For
example, in [4], some structures have been exploited to make it constant time
faster in average case.

In Section 3, we have proposed a technique on the ordering of vectors in
X and V which makes the matrix MX

V and Md
S(f) a lower block triangular.

The Section 3.2 and 3.3 contain the main results of this article to reduce the
computation time. Experimental results of some important exponent S-boxes
are presented in Section 4. On the basis of experiments, we conjecture about
the complete characterization of power functions of algebraic immunity 1. We
too verified the result on the AI of inverse power function in [6] till 20 variable
Boolean functions which was conjectured in [6]. Some experimental results on
some important power functions are too presented in this section.

3 Lower-Block Triangular Nature of MX
V

An n × m matrix M is a lower-block triangular if its form is as

M =

⎛

⎜⎜⎜⎝

M11 M12 . . . M1l

M21 M22 . . . M2l

.
.

Ml1 Ml2 . . . Mll

⎞

⎟⎟⎟⎠ (2)

where Mij are ni × mj sub-matrices for 1 ≤ i, j ≤ l with
∑l

i=0 ni = n and∑l
j=0 mj = m and Mi,j are zero sub-matrices for j > i.

3.1 Using the Ordering <w

Consider two ordered sets of vectors V,X ⊆ Vn with the ordering <w. Let
V 0, V 1, . . . , V n and X0,X1, . . . , Xn be the disjoint partitions of V and X such
that V i = {v ∈ V : wt(v) = i} and Xi = {x ∈ X : wt(x) = i}, 0 ≤ i ≤ n
respectively. If v ∈ V i, x ∈ Xj and i < j, it is clear that v <w x and x � v.
Hence, from the definition of incidence, we have the following theorem.

82 D.K. Dalai

Theorem 1. The incidence matrix MX
V is a lower block triangular matrix with

Mij = MXj

V i on the ordering <w of elements of V and X.

Since MX
V is lower block triangular, block wise Gaussian row elimination can be

performed to find its rank. Consider that V and X are chosen randomly such
that |V | = |X| = 2n−1. Here, |Xi| and |V i| are approximately 1

2

(
n
i

)
for 0 ≤ i ≤ n.

The time complexity for ith block wise row elimination is O(2n
(
n
i

)2). Hence, the
time complexity for finding the rank of MX

V is O(2n
∑n

i=0

(
n
i

)2) = O(2n
(
2n
n

)
).

For the case of Md
S(f), X = Vn,d and V = S(f). So, |Xi| =

(
n
i

)
for 0 ≤ i ≤ d

and |Xi| = 0 for d + 1 ≤ i ≤ n. If f ∈ Bn is a randomly chosen Boolean
function, then |V i| ≈ 1

2

(
n
i

)
, for 0 ≤ i ≤ n. During each block wise row operation

of matrix Md
S(f) from down to top, all columns in the block should be eliminated

to have the rank equal to the number of columns. So, the same number of rows
are eliminated and rest of the rows augmented to the next block of rows. For
0 ≤ j < n − d, no computation is needed for the jth block wise row elimination
as |Xn−j | = 0. For n − d ≤ j ≤ n, the number of rows in jth block operation is

rj = |V n−j | + (
j−1∑

i=0

|V n−i| −
j−1∑

i=n−d

|Xn−i|)

=
j∑

i=0

|V n−i| −
j−1∑

i=n−d

|Xn−i| ≈ 1
2

j∑

i=0

(
n

i

)
−

j−1∑

i=n−d

(
n

i

)
.

For d < n
2 ,

rj ≈ 1
2
(
(

n

j

)
+

j−1∑

i=n−d

(
n

i

)
+

n−(d+1)∑

i=d+1

(
n

i

)
+

d∑

i=n−(j−1)

(
n

i

)
+

n−j∑

i=0

(
n

i

)
)−

j−1∑

i=n−d

(
n

i

)

=
1
2
(
(

n

j

)
+

n−(d+1)∑

i=d+1

(
n

i

)
+

n−j∑

i=0

(
n

i

)
) = O(2n).

During the jth block wise operation, the sub matrix has rj many rows and∑n−j
i=0

(
n
i

)
many columns and from there

(
n

n−j

)
many columns (and as many

rows) to be eliminated. The time complexity in the jth block wise row elim-
ination is O(rj

(
n

n−j

)
(
∑n−j

i=0

(
n
i

)
)) = O(rj

(
n
j

)2) and hence, the time complexity

for finding the rank of Md
S(f) is O(

∑n
j=n−d(rj

(
n
j

)2)) = O(2n
∑n

j=n−d

(
n
j

)2) =

O(2n
∑d

j=0

(
n
j

)2).
Moreover, as discussed in [2, Section3.2], each sub-matrix is sparser by O(2d)

than a random matrix, which can further be exploited to speed up the process by
O(2d). Moreover, there is advantage in space complexity as only the sub-matrix
of size rj × (

n
j

)
= O(2n

(
n
j

)
) is needed during the jth block operation in stead of

the whole 2n−1 × 2n−1 matrix.

On the Lower Block Triangular Nature of the Incidence 83

3.2 Using the Ordering <

Consider two ordered subsets V,X of Vn with the ordering <. Here onwards,
we mean the notation K = 2k − 1 and N = 2n − 1. Let V 0, V 1, . . . , V K , and
X0,X1, . . . , XK , k ≤ n, be disjoint subsets of V and X, partitioned on the value
of left most k coordinates of the vectors in V and X respectively. The superscript
i of V i and Xi denotes the integer value of left most k-coordinates of vectors in
V and X. If v ∈ V i, x ∈ Xj and i < j, then v < x and that implies x � v. Let
denote vect(i) is the vector form of binary representation of i. Hence, we have
the following lemma.

Lemma 1. The incidence matrix MXj

V i is a zero matrix if vect(j) � vect(i) for
0 ≤ i, j ≤ K.

Since vect(j) � vect(i) for j > i, MXj

V i is zero matrix for j > i and we have the
following theorem.

Theorem 2. The incidence matrix MX
V is a lower block triangular matrix with

Mij = MXj

V i on the ordering < of elements of V and X.

Since MX
V is lower block triangular, block wise Gaussian row elimination from

down to top can be implemented for reducing the computation time. Hence we
have the following results on the rank of MX

V .

Corollary 1. rank(MX
V) < |X| iff rank(MX

V
) < |X| where V = ∪p

i=0V
K−i and

X = ∪p
i=0X

K−i for some 0 ≤ p ≤ K.

Corollary 2. If
∑p

i=0 |V K−i| <
∑p

i=0 |XK−i| for some 0 ≤ p ≤ K, then
rank(MX

V) < |X|. Therefore, if |V | = |X| and
∑p

i=0 |V i| >
∑p

i=0 |Xi| for some
0 ≤ p ≤ K, then rank(MX

V) < |X|.
Corollary 2 classifies some Boolean functions of having low AI. It can be used
in better way by finding a possible permutation on the variables x1, x2, . . . , xn,
such that

∑p
i=0 |V K−i| <

∑p
i=0 |XK−i| for a some p.

Corollary 3. If rank(MX
V) = |X| then for every permutation on variables

x1, x2, . . . , xn and k, p, 0 ≤ k ≤ n, 0 ≤ p < 2k,
∑p

i=0 |V K−i| ≥ ∑p
i=0 |XK−i|.

Example 1. Let X = {1, 2, 3, 4, 8, 9, 10, 14} and V = {0, 3, 4, 5, 7, 9, 12, 15} be
two subsets of V4. Here, the vectors are shown in their integer form. If we
fix the left most two coordinates, then X0 = {1, 2, 3},X1 = {4},X2 =
{8, 9, 10},X3 = {14} and V 0 = {0, 3}, V 1 = {4, 5, 7}, V 2 = {9}, V 3 = {12, 15}.
Here, |V 0| + |V 1| = 5 and |X0| + |X1| = 4. Hence, following the corollary 2, we
have rank(MX

V) < |X|. To find the exact value of rank(MX
V) the block wise row

reduction of MX
V can be done as following. The block of rows enclosed by double

lines are to be reduced.

84 D.K. Dalai

MX
V =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here rank(MX
V) = 6 i.e., there are two free monomials corresponding to the

vectors 2 and 10 in X i.e., x2 and x2x4. So, there are 2 linearly independent anni-
hilators on the monomials of exponent vectors from X of the Boolean function
having support set V .

Now consider that V and X are chosen randomly such that |V | = |X| = η.
Fixing k variables, there are 2k blocks of rows of size approximately η

2k
. The time

complexity for row elimination of each block is O(η×(η
2k

)2) = O(η32−2k). Hence,
the time complexity for finding the rank of MX

V is O(2k×η32−2k) = O(η32−k). If
|V | = |X| = 2n−1, the time complexity for finding the rank of MX

V is O(23n−k).
If one fixes all n variables, the theoretical time complexity becomes O(22n),
i.e., quadratic time complexity on number of monomials. Moreover, the space
complexity for the computation is O(2n) (i.e., linear) as only one block of rows
is needed during the computation. Hence, we have the following theorem.

Theorem 3. For a randomly chosen subsets V and X of Vn such that |V | =
|X| = 2n−1, the expected time complexity and space complexity to compute the
rank of the 2n−1 × 2n−1 matrix MX

V is O(22n) and O(2n) i.e., quadratic time
complexity and linear space complexity on the |X| respectively.

Now we shall discuss about the rank of Md
S(f), which is needed to compute AI(f)

for f ∈ Bn. In this case, X = Vn,d and V = S(f). Since the exponent set X is
not a random set, the time and space complexity is not expected as the described
one in Theorem 3. For 0 ≤ k ≤ n, we have |Xi| = |V i

n,d| = bi =
∑d−wt(i)

j=0

(
n−k

j

)
,

0 ≤ i < 2k. If f ∈ Bn is randomly chosen, then we have |V i| ≈ 2n−k−1,
0 ≤ i < 2k. In each block wise row operation (from down to top) of matrix
Md

S(f), every time all columns in the block need to be eliminated. So, the same
number of rows are also eliminated and rest of the rows are augmented to the next
block of rows. Hence, during the j-th block wise row operation, for 0 ≤ j ≤ K,
the number of rows is

rj = |V K−j | +
j−1∑

i=0

(|V K−i| − bK−i)

=
j∑

i=0

|V K−i| −
j−1∑

i=0

bK−i ≈ (j + 1)2n−k−1 −
j−1∑

i=0

bK−i.

At the j-th block operation, the sub-matrix contains rj rows, cj =
∑K−j

i=0 bi

columns and bK−j columns from these cj columns to be eliminated. So, the time

On the Lower Block Triangular Nature of the Incidence 85

complexity for the jth block row elimination is O(rjcjbK−j) and hence, time
complexity to find the rank of Md

S(f) is O(
∑K

j=0 rjcjbK−j).
If k = n, then the time to compute the rank of Md

S(f) is

O(
∑N

j=0 rjcjbN−j). In this case bi =
d−wt(i)∑

i=0

(
0
i

)
=

{
1 if wt(i) ≤ d

0 if wt(i) > d,
i.e.,

bN−j =

{
1 if wt(j) ≥ n − d

0 if wt(i) < n − d.

So,

cj =
N−j∑

i=0

bi =
∑

0≤i≤N−j

wt(i)≤d

1 =
d∑

i=0

(
n

i

)
−

∑

0≤i≤j−1
wt(i)≥n−d

1

and

rj ≈ j + 1
2

−
j−1∑

i=0

bN−i =
j + 1

2
−

∑

0≤i≤j−1
wt(i)≥n−d

1.

When wt(j) < n − d i.e., bN−j = 0, there is no column to eliminate and
hence no operation is done. When wt(j) ≥ n−d, i.e., bN−j = 1, there is only one
column to eliminate. So, the time complexity for j-th block operation is O(rjcj).
Therefore, the time complexity to find the rank of Md

S(f) is O(
∑

0≤j≤N

wt(j)≥n−d
rjcj).

Simplifying it, we have
∑

0≤j≤N

wt(j)≥n−d

rjcj =
∑

0≤j≤N

wt(j)≥n−d

(
j + 1

2
−

∑

0≤i≤j−1
wt(i)≥n−d

1)(
d∑

i=0

(
n

i

)
−

∑

0≤i≤j−1
wt(i)≥n−d

1)

≤
∑

0≤j≤N

wt(j)≥n−d

(
j + 1

2
−

∑

0≤i≤j−1
wt(i)≥n−d

1)(
d∑

i=0

(
n

i

)
).

Now, we will find the value of the summation
∑

0≤j≤N

wt(j)≥n−d
j. If j is in the

summation, then j has wt(j) many non-zero positions in the binary expansion of
j and each non-zero position k contributes the value 2k to the summation. In the
summation, each position occurs 1

n

∑n
i=n−d i

(
n
i

)
=

∑n
i=n−d

(
n−1
i−1

)
many times.

So, for 0 ≤ k < n, k-th position contributes the value 2k
∑n

i=n−d

(
n−1
i−1

)
to the

summation. Hence,
∑

0≤j≤N

wt(j)≥n−d
j =

∑n
i=n−d

(
n−1
i−1

)∑n−1
k=0 2k =

∑n
i=n−d

(
n−1
i−1

)
N .

So,
∑

0≤j≤N

wt(j)≥n−d

j + 1

2
=

1

2
(
∑

0≤j≤N

wt(j)≥n−d

j +

n∑

i=n−d

(
n

i

)
) =

1

2
(

n∑

i=n−d

(
n − 1

i − 1

)
N +

n∑

i=n−d

(
n

i

)
)

Now, in the summation
∑

0≤j≤N

wt(j)≥n−d

∑
0≤i≤j−1

wt(i)≥n−d
1, an integer i with wt(i) ≥

n − d, is counted l times, where l = |{j : i < j ≤ N,wt(j) ≥ n − d}|. Let
i1 < i2 < · · · < N are integers with weight at least n − d, then i1 is counted

86 D.K. Dalai

∑n
i=n−d

(
n
i

) − 1 times, i2 is counted
∑n

i=n−d

(
n
i

) − 2 times and so on.
So,

∑
0≤j≤N

wt(j)≥n−d

∑
0≤i≤j−1

wt(i)≥n−d
1 = (

∑n
i=n−d

(
n
i

) − 1) + (
∑n

i=n−d

(
n
i

) − 2) + · · · + 0

= 1
2

∑n
i=n−d

(
n
i

)
(
∑n

i=n−d

(
n
i

) − 1).
Hence,

∑
0≤j≤N

wt(j)≥n−d
rjcj ≤ (2n

∑n
i=n−d

(
n
i

) − (
∑n

i=n−d

(
n
i

)
)2)

∑d
i=0

(
n
i

)

= (
∑d

i=0

(
n
i

)
)2

∑n
i=d+1

(
n
i

)
.

Theorem 4. For a randomly chosen Boolean function f ∈ Bn, the expected
time complexity and space complexity to compute the rank of the matrix Md

S(f)

is O((
d∑

i=0

(
n

i

)
)2

n∑

i=d+1

(
n

i

)
) and O(max

0≤j≤N
rjcj) respectively.

Since the simplification of the above expression is not very easy, the time com-
plexity bound given in the Theorem 4 is not a tight upper bound. Hence the
theoretical time complexity mentioned in Theorem 4 is not a significant improve-
ment over other algorithms. However, in practice, it is very fast and can be used
to compute for n = 20. Moreover, exploiting the sparseness of the sub-matrices,
the computation speed can further be improved.

3.3 Ordering < and Dalai-Maitra Algorithm [4]

As we discussed in above, to find AI of f ∈ Bn, one needs to compute the rank
of Md

S(f). The involutory property of M
Vn,d

Vn,d
(i.e., (MVn,d

Vn,d
)2 = I) is exploited to

reduce the size of incidence matrix Md
S(f) to compute its rank in Dalai-Maitra

algorithm [4]. Instead of computing the rank of Md
S(f) of order |Vn,d| × |S(f)|, it

is proposed to compute the rank of a smaller matrix Id
f of order |S(f) \ Vn,d| ×

|Vn,d \ S(f)|. Given a f ∈ Bn and d ≤ n the matrix Id
f is defined as

Id
f [v, x] =

{∑d−wt(x)
i=0

(
wt(v)−wt(x)

i

)
mod 2 if x ⊆ v

0 if x � v,

where v ∈ Y = S(f) \ Vn,d and x ∈ Z = Vn,d \ S(f).

Theorem 5. [4] The matrix Md
S(f) is of full rank (i.e., |Vn,d|) iff the matrix

Id
f is of full rank (i.e., |Z|).

We can see that the order of matrix Id
f is reduced by half in average in both the

number of rows and columns. To find AI(f), finding rank of Md
S(f) can speed

up the process approximately by 8 times. We further speed up the process by
observing the lower block triangular nature of Md

S(f) by proper ordering of the
vectors in Y and Z.

Let the vectors in Y and Z be ordered by <. For 0 ≤ k ≤ n, let Y 0, . . . , Y 2k−1

and Z0, . . . , Z2k−1 be the partitions of Y and Z on their left most k coordinates
of vectors in Y and Z respectively. Let denote Id

f [Y i, Zj] be the sub-matrix in
Id
f corresponding to the vector subsets Y i and Zj .

On the Lower Block Triangular Nature of the Incidence 87

Lemma 2. The sub-matrix Id
f [Y i, Zj] is a zero matrix if vect(j) � vect(i) for

0 ≤ i, j ≤ K.

Since vect(j) � vect(i) for j > i, Id
f [Y i, Zj] is zero matrix for j > i and we have

the following theorem.

Theorem 6. The matrix Id
f is a lower block triangular matrix with submatrices

Id
f ij

= Id
f [Y i, Zj], 0 ≤ i, j ≤ 2k − 1 on the ordering < of elements of Y and Z.

Comparing the partitions in matrix Md
S(f) in subsection 3.2, here we have

|Y i| ≈ |V i|
2 and |Zi| ≈ |Xi|

2 . Therefore, the computation in this technique is
expected to be 8 times faster than the technique described in the earlier sub-
section. Therefore, the technique presented here is so far the best technique to
evaluate AI of a Boolean function. It is possible to find AI of a Boolean function
of 20 variables or, a few more variables with less memory.

4 Experiments on the AI of Power Functions

Since the vector space characteristic of finite field F2n can be viewed as Vn = F
n
2 ,

every function F : F2n �→ F2n can be viewed as an ordered collection of n Boolean
function. That is, F (x) = (F1(x), F2(x), · · · , Fn(x)), where the Boolean func-
tions Fis are called the co-ordinate Boolean functions of F . The nonzero linear
combination of the co-ordinate functions, (i.e.,

∑n
i=1 aiFi, ai ∈ F2 but not all ai

are zero) are called component Boolean functions of F . The component func-
tions of F can too be algebraically represented as Tr(λF) for non-zero constants
λ ∈ F

∗
2n .

Definition 1. Let F : F2n �→ F2n be a function. The algebraic immunity of F
is AI(F) = min(a1,...,an)∈Vn\{(0,...,0)}{AI(

∑n
i=1 aiFi)} i.e., the minimum of AI of

the component functions of F .

A function F : F2n �→ F2n is called a power function if F is of the form F (x) = xd

for x ∈ F2n and d is an integer. The degree of power function xd is defined as the
weight of the vect(d), which is the degree of each component function of xd. In
this section, we present some experimental results on the AI of power functions.

During the experiments, we observed a nice result for power functions of
having algebraic immunity 1. It is known that AI(xd1) = AI(xd2) if d1 and d2 are
in same 2-cyclotomic coset modulo 2n − 1 i.e., d2 = 2id1 mod 2n − 1 for some
integer i. The size of each 2-cyclotomic coset is a divisor of n. It is very clear
that the AI of linear power functions, i.e., AI(x2i mod 2n−1), is 1. We present a
conjecture on the nonlinear power functions of algebraic immunity 1.

Conjecture 1. Let n ≥ 4 and xd be a power function from F2n to F2n . Then
AI(xd) = 1 iff one of the followings happens for d.

i. d ∈ {1, 2, . . . , 2n−1} i.e., xd is a linear power function.
ii. The size of 2-cyclotomic coset modulo 2n − 1 of d is a proper divisor of n.

88 D.K. Dalai

Based on this conjecture, we have the following example and corollary.

Example 2. Let take n = 6. Here AI(xd) = 1 iff

1. d ∈ {1, 2, 4, 8, 16, 32} (when xd is linear) or,
2. d ∈ {9, 18, 36} ∪ {21, 42} ∪ {27, 54, 45} (when xd is not linear).

Corollary 4. If n is prime , then there is no non-linear power functions of
algebraic immunity 1.

Further, using the proposed technique, we computed AI of some cryptographic
important power functions like inverse functions, Kasami exponents and Niho
exponents up to 21 variables. The AI of n-variable inverse function, x−1, is
upper bounded by
2√

n� − 2, Kasami and Niho exponents are upper bounded
by
2√

n� [8]. Experimentally, we checked that the AI of the inverse function is
exactly
2√

n� − 2 for n ≤ 21 which is proved in [6].
A Kasami exponent K : F2n �→ F2n is of the form x22k−2k+1 for k ≤ n

2
and gcd(n, k) = 1. The degree of Kasami exponent is k + 1. Therefore, AI(K) ≤
min{k+1,
2√

n�}. The following table presents the experimental result of AI(K)
for the largest k ≤ n

2 and gcd(n, k) = 1.

n k deg(K)
2√
n� AI(K) n k deg(K)
2√

n� AI(K)
10 3 4 7 4 14 5 6 8 6
11 5 6 7 5 15 7 8 8 7
12 5 6 7 5 16 7 8 8 7
13 6 7 8 6 17 8 9 9 8

For odd n = 2s + 1, a Niho exponent N : F2n �→ F2n is of the form x2s+2
s
2 −1

if s is even and x2
3s+1

2 +2s−1 if s is odd. The degree of Niho exponent is d = n+3
4 if

n ≡ 1 mod 4 and d = n+1
2 if n ≡ 3 mod 4. Therefore, AI(N) ≤ min{d,
2√

n�}.
The following table presents the experimental results of AI(N).

n deg(N)
√n� AI(N) n deg(N)
√n� AI(N)
9 3 7 3 15 8 8 7
11 6 7 5 17 5 9 5
13 4 8 4 19 10 9 9

Then we do experiments to find power functions of optimal AI (i.e.,
n
2 �) and

we found that there are power functions of optimal AI but it becomes rarer as n
increases. The experiment is tabulated below.

n m = |{xd : AI(xd) =
n
2 �, 0 ≤ d ≤ 2n − 2}| m

2n−1 n m m
2n−1

3 3 ≈ 0.4286 4 4 ≈ 0.2667
5 15 ≈ 0.4839 6 12 ≈ 0.1905
7 21 ≈ 0.1654 8 48 ≈ 0.1882
9 45 ≈ 0.0881 10 260 ≈ 0.2542
11 154 ≈ 0.0752 12 1236 ≈ 0.3018

On the Lower Block Triangular Nature of the Incidence 89

References

1. Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer,
Heidelberg (2003)

2. Dalai, D.K.: Computing the rank of incidence matrix and algebraic immunity of
boolean functions. IACR Cryptology ePrint Archive, p. 273 (2013)

3. Dalai, D.K., Gupta, K.C., Maitra, S.: Results on algebraic immunity for crypto-
graphically significant boolean functions. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)

4. Dalai, D.K., Maitra, S.: Reducing the number of homogeneous linear equations
in finding annihilators. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.)
SETA 2006. LNCS, vol. 4086, pp. 376–390. Springer, Heidelberg (2006)

5. Didier, F.: Using Wiedemann’s algorithm to compute the immunity against alge-
braic and fast algebraic attacks. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 236–250. Springer, Heidelberg (2006)

6. Feng, X., Gong, G.: On algebraic immunity of trace inverse functions over finite
fields with characteristic two. Cryptology ePrint Archive, Report 2013/585 (2013).
http://eprint.iacr.org/

7. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 474–491. Springer, Heidelberg (2004)

8. Nawaz, Y., Gong, G., Gupta, K.C.: Upper bounds on algebraic immunity of boolean
power functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 375–389.
Springer, Heidelberg (2006)

http://eprint.iacr.org/

Weighted Unranked Tree Automata over
Tree Valuation Monoids and

Their Characterization by Weighted Logics

Manfred Droste1, Doreen Heusel1, and Heiko Vogler2(B)

1 Institut für Informatik, Universität Leipzig, D-04109 Leipzig, Germany
{droste,dheusel}@informatik.uni-leipzig.de

2 Institut für Theoretische Informatik,
Technische Universität Dresden, D-01062 Dresden, Germany

Heiko.Vogler@tu-dresden.de

Abstract. We introduce a new behavior of weighted unranked tree
automata. We prove a characterization of this behavior by two fragments
of weighted MSO logic and thereby provide a solution of an open equiv-
alence problem of Droste and Vogler. The characterization works for
valuation monoids as weight structures; they include all semirings and,
in addition, enable us to cope with average.

1 Introduction

In 1967, Thatcher investigated the theory of pseudoterms (nowadays known
as unranked trees) and pseudoautomata (or unranked tree automata), see [30].
Since then, this theory has been further developed, cf. e.g. [2,3,22,26,27] and
Chapter 8 of [8], due to the development of the modern document language
XML and the fact that (fully structured) XML-documents can be formalized
as unranked trees. An automaton model for unranked trees with ordered data
values was investigated in [29], and important closure properties of symbolic
unranked tree transducers were given in [32,19]. In [15,21], weighted automata
on unranked trees over semirings were investigated in order to be able to deal
with quantitative queries. For further background on weighted tree automata we
refer to [11,18].

Weighted logics over semirings represent another approach for the inves-
tigation of quantitative aspects. For words, a weighted MSO logic which is
expressively equivalent to weighted word automata was developed in [9]. Several
analogous formalisms followed for infinite words [13], ranked trees [14], infinite
trees [28], trace languages [25], picture languages [17], texts [23], and nested
words [24].

In [15] a logic counterpart for weighted unranked tree automata over semi-
rings was established. More precisely, each unranked tree series which is defin-
able in syntactically restricted MSO logic is recognizable [15, Thm.6.5], and

D. Heusel—Partially supported by DFG Graduiertenkolleg 1763 (QuantLA).

c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 90–102, 2015.
DOI: 10.1007/978-3-319-23021-4 9

Weighted Unranked Tree Automata over TV-Monoids 91

every recognizable unranked tree series is MSO-definable [15, Thm.5.9] and, if
the semiring is commutative, even syntactically restricted MSO-definable. But
surprisingly, there is a recognizable unranked tree series over a non-commutative
semiring which is not definable in syntactically restricted MSO logic. In [15] it
is stated as an open problem to determine a weighted automata model expres-
sively equivalent to syntactically restricted MSO logic. One goal of our paper is
to solve this problem.

For this, we present a new class of weighted unranked tree automata. Syntac-
tically they do not differ from the ones of [15]. They still consist of a state set and
a family of weighted word automata. The latter are used to calculate the local
weight at a position of a tree by letting the weighted word automaton run on
the states at the children of the position. However, we will define the semantics
(or: behavior) of weighted unranked tree automata in a different way. We do not
use runs anymore, but we choose the technically more involved extended runs,
which were already introduced in [15]. Additionally to the information of classi-
cal runs, extended runs also include runs of the weighted word automata called
at positions of the input tree. In addition we change the way how the weight of
such an extended run is calculated. In [15], the local weight of a position was
defined by the weight of the run chosen for the word emerged of its children’s
labels. Here the local weight of a position equals the weight of the transition
taken for this position in the run of the position’s parent.

In this paper we consider tree valuation monoids as weight structures which
were defined in [10] (cf. [4,5,6,7,12]). Tree valuation monoids are additive monoids
equipped with a valuation function that assigns a value of this monoid to any
tree with labels from the additive monoid. We will use the valuation function
to calculate the weights of an extended run in a global way, i.e. given a run
we apply the valuation function to all local weights which appear along the
extended run. Tree valuation monoids are very general: each semiring, and each
bounded (possibly non-distributive) lattice [20] is a tree valuation monoid. In
addition, these structures enable us to cope with non-binary valuation functions
like average or discounting. Thus our weighted unranked tree automata subsume
the weighted unranked tree automata over commutative semirings of [15] and
the weighted ranked tree automata over tree valuation monoids [10].

The main results of this paper are the following. We define a weighted MSO
logic for unranked trees over product tree valuation monoids analogously to
[12] and characterize the behavior of our weighted unranked tree automata by
two different fragments of the logic, see Theorem 5.1. Thereby we solve the open
equivalence problem of [15] in Corollary 5.7, and generalize the respective results
of [15] about weighted unranked tree automata over commutative semirings and
the respective results of [10].

2 Unranked Trees and (Product) Tree Valuation Monoids

Let N = {1, 2, . . .} be the set of all natural numbers and N0 = N ∪ {0}. For a
set X, the set X∗ comprises all finite words over X. If X1, . . . , Xn are sets and
x ∈ X1 × . . . × Xn, then xi equals the i-th component of x.

92 M. Droste et al.

We will base unranked trees on tree domains. A tree domain B is a finite,
non-empty subset of N∗ such that for all u ∈ N∗ and i ∈ N, u.i ∈ B implies
u, u.1, . . . , u.(i−1) ∈ B. An unranked tree over a set X (of labels) is a mapping
t : B → X such that dom(t) = B is a tree domain. The elements of dom(t) are
called positions of t and t(u) is called label of t at u ∈ dom(t). We call u ∈ dom(t)
a leaf of t if there is no i such that u.i ∈ dom(t). The set of all leaves of t is
denoted by domleaf(t). With rkt(u) = max{i ∈ N | u.i ∈ dom(t)} we denote the
rank of position u. The image of t is im(t) = {t(u) | u ∈ dom(t)}. We denote the
set of all unranked trees over X by UX . A tree language is a subset of UX . We
view each d ∈ X as unranked tree in UX , also denoted by d, whose tree domain
only consists of the position ε which is labeled by d.

Now we recall the notion of tree valuation monoids and product tree valuation
monoids as defined in [10,12]. A tree valuation monoid (tv-monoid for short) is a
quadruple D = (D,+,Val, 0) such that (D,+,0) is a commutative monoid and
Val : UD → D is a function, called (tree) valuation function, with Val(d) = d for
every tree d ∈ D and Val(t) = 0 whenever 0 ∈ im(t) for t ∈ UD. A product tree
valuation monoid (ptv-monoid for short) is a sextuple D = (D,+,Val, �,0,1)
which consists of a tv-monoid (D,+,Val,0), a constant 1 ∈ D with Val(t) = 1
whenever im(t) = {1} for t ∈ UD, and an operation � : D2 → D with 0 � d =
d � 0 = 0 and 1 � d = d � 1 = d for all d ∈ D.

Example 2.1. Qmax = (Q ∪ {−∞},max, avg,−∞) with avg(t) =
∑

u∈dom(t) t(u)

| dom(t)|
for all t ∈ UQ∪{−∞} is a tv-monoid. The valuation function of this tv-monoid
calculates the average of all weights of a tree. The idea for the average calculation
was already suggested in [4,12] for words and in [10] for trees. From Qmax we can
obtain a ptv-monoid Qp

max by adding ∞ to the carrier set and setting � = min.
We refer to [10] for further examples of (p)tv-monoids.

For the rest of this paper, let Σ be an alphabet, i.e., a finite, non-empty set, and
D be a ptv-monoid.

3 Weighted Unranked Tree Automata

Here we introduce a new class of recognizable tree series. A tree series is recog-
nizable if it can be recognized by a (classical) weighted unranked tree automaton
over some tree valuation monoid using extended runs [15] for the definition of
behavior. In the case of semirings, the semantics of a weighted unranked tree
automaton based on runs and the semantics of this automaton based on extended
runs are equivalent, cf. [15, Obs.6.8]. But for non-distributive structures, which
are also considered here, this is not necessarily true. Besides, we define the weight
of an extended run in a new way which is different from [15]. This will enable
us to describe the behavior of weighted unranked tree automata by restricted
weighted MSO formulas (see proof of Theorem 5.1).

A weighted string automaton (WSA for short) over Σ and D is a quadru-
ple A = (P, I, μ, F) where P is a non-empty, finite set of states, I, F ⊆ P
are the sets of initial and final states, respectively, and μ : P × Σ × P → D.

Weighted Unranked Tree Automata over TV-Monoids 93

A run of A on w = w1 . . . wn with w1, . . . , wn ∈ Σ and n ≥ 0 is a sequence
π = (pi−1, wi, pi)1≤i≤n if n > 0, and a state π = p0 if n = 0 where p0, . . . , pn ∈ P .
The run π is successful if p0 ∈ I and pn ∈ F . In order to define the weight
wt(π) of π using a tree valuation function Val, we define a tree tπ by letting
dom(tπ) = {1i | 0 ≤ i < n} and tπ(1i) = μ(pi−1, wi, pi) (0 ≤ i < n) if n > 0, and
tπ(ε) = 0 if n = 0. Then let wt(π) = Val(tπ). The behavior of A is the function
‖A‖ : Σ∗ → D with ‖A‖(w) =

∑
π successful run on w wt(π) for w ∈ Σ∗. We call

any mapping from Σ∗ to D a string series. A string series S is called recognizable
over D if there is a WSA A over Σ and D with ‖A‖ = S.

A weighted unranked tree automaton (WUTA for short) over Σ and D is a
triple M = (Q,A, γ) where Q is a non-empty, finite set of states, A = (Aq,a |
q ∈ Q, a ∈ Σ) is a family of WSA over Q as alphabet and D, and γ : Q → D
is a root weight function. Let Aq,a = (Pq,a, Iq,a, μq,a, Fq,a) for all q ∈ Q, a ∈ Σ.
We assume the sets Pq,a to be pairwise disjoint and let PA =

⋃
q∈Q,a∈Σ Pq,a.

Moreover, let μA be the union of the transition functions μq,a.
Intuitively, an extended run assigns a state q ∈ Q to each position u of a

given tree t ∈ UΣ and then consists of one run of Aq,t(u) on q1 . . . qrkt(u) where
qi is the state assigned to the i-th child of u. Formally, an extended run of M
on a tree t is a triple (q, s, l) such that

– q ∈ Q is the root state;
– s : dom(t) \ {ε} → PA × Q × PA is a function such that s(1) . . . s(rkt(ε))

is a run of Aq,t(ε) and s(u.1) . . . s(u. rkt(u)) is a run of As(u)2,t(u) for every
u ∈ dom(t) \ (domleaf(t) ∪ {ε});

– l : domleaf(t) → PA is a function satisfying l(ε) ∈ Pq,t(ε) if t only consists of
the root, and if u �= ε is a leaf, then l(u) ∈ Ps(u)2,t(u).

An extended run is successful if s(u.1) . . . s(u. rkt(u)) is successful for all
u ∈ dom(t) \ domleaf(t) and if l(u) is successful for all u ∈ domleaf(t) (i.e., l(u)
is an initial and final state of As(u)2,t(u) if u �= ε respectively of Aq,t(ε) if u = ε).
We let succ(M, t) denote the set of all successful extended runs of M on t.

To define the weight of an extended run we proceed differently from [15] where
the local weight of a position u was defined by the weight of the run chosen for the
labels of the children of u. Here, we will define the local weight of u by the weight
of the transition taken for u in the run of the parent of u. Each extended run
(q, s, l) on t defines a tree μ(t, (q, s, l)) ∈ UD where dom(μ(t, (q, s, l))) = dom(t)
and

μ(t, (q, s, l))(u) =

{
γ(q) if u = ε,

μA(s(u)) otherwise

for all u ∈ dom(t). We call μ(t, (q, s, l))(u) the local weight of u and
Val(μ(t, (q, s, l))) the weight of (q, s, l) on t. The behavior of a WUTA M is
the function ‖M‖ : UΣ → D defined by

‖M‖(t) =
∑

(q,s,l)∈succ(M,t)

Val(μ(t, (q, s, l)))

for all t ∈ UΣ . Thus, if no successful extended run on t exists, we put ‖M‖(t) = 0.

94 M. Droste et al.

Any mapping from UΣ to D is called a tree series. A tree series S : UΣ → D is
called recognizable over D if there is a WUTA M over Σ and D with ‖M‖ = S.

Example 3.1. Let Qmax be the tv-monoid from Example 2.1. We will consider a
WUTA M which calculates the leaves-to-size ratio of a given input tree, where
the size of a tree is the number of all positions of the tree. Let M = ({c, n},A, γ)
over an arbitrary, but fixed alphabet Σ with γ(c) = 1, γ(n) = 0, and

– An,a = ({i, f}, {i}, μn,a, {f}) where μn,a(i, n, f) = μn,a(f, n, f) = 0,
μn,a(i, c, f) = μn,a(f, c, f) = 1 and μn,a(f, q, i) = μn,a(i, q, i) = −∞

– Ac,a = ({p}, {p}, μc,a, {p}) where μc,a(p, q, p) = −∞
for all q ∈ {c, n} and a ∈ Σ; for notational convenience, here we have dropped
the condition on pairwise disjointness of the state sets.

First, let us consider an example tree. For this, we choose Σ = {α, β} and
tree tex = α

α β

β

. Then (n, s, l) with s =

(i, c, f) (f, n, f)

(i, c, f)

and l =

p

p

is an extended run on tex. Here an unlabeled position means that it is not in
the domain of the represented function. Obviously (n, s, l) is successful, since the
runs s(1)s(2) = (i, c, f)(f, n, f) and s(2.1) = (i, c, f) are successful in An,α and
An,β , respectively, and the run p is successful in Ac,α as well as in Ac,β . The
local weights of (n, s, l) are

μ(tex, (n, s, l)) = γ(n)

μA(i, c, f)μA(f, n, f)

μA(i, c, f)

= 0

1 0

1

and thus the weight of (n, s, l) equals 1
2 .

Now let t be an arbitrary, but fixed tree. It is easy to see that for every
successful extended run (q, s, l) on t, l(u) = p for every leaf u of t. Assume that
in addition (q, s, l) assigns the state n to each inner position of t. Let πu be the
unique run of An,t(u) for which tπu

has no label equal to −∞, thus, πu leads
directly from i to f and finally loops in f . If (q, s, l) consists for every inner
position u �= ε of πu, then (q, s, l) is the only successful extended run such that
μ(t, (q, s, l)) does not contain −∞. Let π denote this unique extended run. For
leaves u of t, μ(t, π)(u) = 1 and for inner positions u′, μ(t, π)(u′) = 0. Thus,

‖M‖(t) = avg(μ(t, π)) =

∑
u∈dom(t) μ(t, π)(u)

|dom(t)| =
“number of leaves of t”

“size of t”
.

Remark 3.2. The WUTA subsume the weighted ranked tree automata over tv-
monoids of [10] as well as the weighted unranked tree automata over commutative
semirings [15]. But there are tree series over non-commutative semirings which

Weighted Unranked Tree Automata over TV-Monoids 95

are recognizable by the weighted unranked tree automata of [15] but not by our
WUTA. An example was given in the proof of [15, Thm.6.10].

Furthermore, it is easy to show that unranked tree automata over Σ
[30,2,22,27] are equivalent to WUTA over Σ and the boolean semiring B. Thus,
for each WUTA over B there is an equivalent deterministic WUTA [30, Thm.1].
A WUTA over B is deterministic if for every a ∈ Σ and q1, q2 ∈ Q, if q1 �= q2,
then there is no w ∈ Q∗ such that ‖Aq1,a‖(w) = ‖Aq2,a‖(w) = 1.

Next we will derive some properties of recognizable tree series. Let S1, S2 be
two tree series and d ∈ D. The scalar product d � S1, the sum S1 + S2 and
the (Hadamard) product S1 � S2 are defined pointwise by (d � S1)(t) = d � S1(t),
(S1 + S2)(t) = S1(t) + S2(t) and (S1 � S2)(t) = S1(t) � S2(t) for all t ∈ UΣ . For
a tree language L ⊆ UΣ , the characteristic function of L, called 1L, equals 1 for
all t ∈ L and 0 for all t ∈ UΣ \L. A tree series S is a recognizable step function if
there are recognizable tree languages L1, . . . , Lk forming a partition of UΣ and
values d1, . . . , dk ∈ D such that S =

∑k
i=1 di � 1Li

.

Lemma 3.3. ([10], Lemma 5.9) The class of recognizable step functions over
Σ and D is closed under the operations + and the Hadamard product �.
The next theorem can be proved by applying standard automata constructions
(assuming, in (2), the unranked tree automaton for L to be deterministic).

Theorem 3.4. Let D be a ptv-monoid.
1. The class of recognizable tree series is closed under sum.
2. Let L be a recognizable tree language and S a recognizable tree series. Then

1L � S (which equals S � 1L) is also recognizable.

A ptv-monoid D is regular if for all d ∈ D and all alphabets Σ a WUTA Md

exists with ‖Md‖(t) = d for each t ∈ UΣ . Using Theorem 3.4 one can easily
show the following lemma.

Lemma 3.5. Let D be a regular ptv-monoid. Each recognizable step function S
over D is a recognizable tree series.

Now we consider the closure under relabeling, similarly to [14,12]. Let Σ and
Γ be two alphabets and h : Σ → 2Γ be a mapping. Then h can be extended to a
mapping h′ : UΣ → 2UΓ by letting h′(t) be the set of all trees t′ over Γ such that
dom(t′) = dom(t) and t′(u) ∈ h(t(u)) for each position u ∈ dom(t). For every
tree series S over D and Σ the tree series h′′(S) over D and Γ is defined by

h′′(S)(t′) =
∑

t∈UΣ ∧ t′∈h′(t)

S(t)

for all t′ ∈ UΓ . Clearly, the index set of the summation is finite. We denote h′

and h′′ also by h which we call a relabeling. The proof for the following lemma
works by an automaton construction already applied in a similar way in [16,12].
Lemma 3.6. Recognizable tree series are closed under relabeling.

96 M. Droste et al.

We will show that under suitable conditions the Hadamard product � pre-
serves the recognizability of arbitrary tree series. For this, we recall some prop-
erties of ptv-monoids already defined in [10]. We call D left-multiplicative if
d�Val(t) = Val(t′) for all d ∈ D, t, t′ ∈ UD with dom(t) = dom(t′), t′(ε) = d�t(ε),
and t′(u) = t(u) for every u ∈ dom(t)\{ε}. Furthermore, D is left-Val-distributive
if d � Val(t) = Val(t′) for all d ∈ D, t, t′ ∈ UD with dom(t) = dom(t′) and
t′(u) = d � t(u) for every u ∈ dom(t). Two subsets D1,D2 ⊆ D commute if
d1 �d2 = d2 �d1 for all d1 ∈ D1, d2 ∈ D2. We call D conditionally commutative if
Val(t1) � Val(t2) = Val(t) for all t1, t2, t ∈ UD with dom(t1) = dom(t2) = dom(t),
im(t1) and im(t2) commute and t(u) = t1(u) � t2(u) for all u ∈ dom(t). A ptv-
monoid D is a conditionally commutative tree valuation semiring (cctv-semiring)
if (D,+, �,0,1) is a semiring and if D is conditionally commutative and, more-
over, left-multiplicative or left-Val-distributive. For examples, we refer to [10].

Let WM comprises all the weights of automaton M, i.e., all transition weights
of any automaton Aq,a of M and all root weights of M.

Theorem 3.7. Let D be a cctv-semiring.
1. Let S1 be a recognizable step function and S2 a recognizable tree series. Then

S1 � S2 is also recognizable.
2. Let Mi = (Qi,Ai, γi) be a WUTA (i ∈ {1, 2}) such that WM1 and WM2

commute. Then ‖M1‖ � ‖M2‖ is recognizable.

4 Weighted MSO Logic for Unranked Trees

We introduce a weighted MSO logic and its semantics for unranked trees over
tv-monoids. As in [10], we follow [9] incorporating an idea of [1]. Let V1 and V2

be countable, infinite sets of first order and second order variables, respectively.
The syntax of the weighted MSO logic over D is defined by the EBNF:

β ::= labela(x) | desc(x, y) | x ≤ y | x � y | x ∈ X | ¬β | β ∧ β | ∀x.β | ∀X.β

ϕ ::= d | β | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∀x.ϕ | ∃X.ϕ

where d ∈ D, a ∈ Σ, x, y ∈ V1, and X ∈ V2. We call the formulas β boolean
formulas and the formulas ϕ weighted MSO formulas (or wMSO formulas).

To define the semantics of the wMSO formulas, we follow the common
approach for MSO logics using assignments and extended alphabets to deal with
free variables, cf. [31]. The set free(ϕ) of free variables occurring in ϕ is defined as
usual. A sentence is a formula without free variables. Let ϕ be a wMSO formula,
V a finite set of variables with free(ϕ) ⊆ V, and t ∈ UΣ . A (V, t)-assignment
is a mapping σ : V → dom(t) ∪ 2dom(t) with σ(x) ∈ dom(t) for x ∈ V1 and
σ(X) ⊆ dom(t) for X ∈ V2. As usual, we encode each (V, t)-assignment by a
tree over the extended alphabet ΣV = Σ×{0, 1}V ; we call a tree over ΣV valid if
it arises in this way. For details we refer to [9,15,10]. From now on we identify a
pair (t, σ) and its encoding s ∈ UΣV . For x ∈ V1, the update s[x → u] ∈ UΣV∪{x}
for u ∈ dom(t) is defined by s[x → u] = (t, σ[x → u]) = (t, σ′) where

Weighted Unranked Tree Automata over TV-Monoids 97

Table 1. The semantics of wMSO formulas

[[labela(x)]]V (s) =

{
1 if t(σ(x)) = a,

0 otherwise
[[desc(x, y)]]V (s) =

{
1 if ∃i ∈ N : σ(y) = σ(x).i,

0 otherwise

[[x ≤ y]]V (s) =

⎧⎪⎨
⎪⎩
1 if σ(x) = σ(y) = ε ∨ ∃u ∈ dom(s) : ∃i, j ∈ N, i ≤ j :

σ(x) = u.i, σ(y) = u.j,

0 otherwise

[[x � y]]V (s) =

{
1 if σ(x) �s σ(y),

0 otherwise
[[x ∈ X]]V (s) =

{
1 if σ(x) ∈ σ(X),

0 otherwise

[[¬β]]V (s) =

{
1 if [[β]]V (s) = 0,

0 otherwise
[[d]]V (s) = d

[[ϕ ∨ ψ]]V (s) = [[ϕ]]V (s) + [[ψ]]V (s) [[ϕ ∧ ψ]]V (s) = [[ϕ]]V (s) � [[ψ]]V (s)

[[∃x.ϕ]]V (s) =
∑

u∈dom(s)

[[ϕ]]V∪{x}(s[x→ u]) [[∃X.ϕ]]V (s) =
∑

I⊆dom(s)

[[ϕ]]V∪{X}(s[X → I])

[[∀X.β]]V (s) =

{
1 if [[β]]V∪{X}(s[X → I]) = 1 for all I ⊆ dom(s),

0 otherwise

[[∀x.ϕ]]V (s) = Val(sD) for sD ∈ UD given by dom(sD) = dom(s) and

sD(u) = [[ϕ]]V∪{x}(s[x → u]) for all u ∈ dom(s)

σ′|V\{x} = σ|V\{x} and σ′(x) = u. The update s[X → I] ∈ UΣV∪{X} for X ∈ V2

and I ⊆ dom(t) is defined similarly.
The semantics of a wMSO formula ϕ over a ptv-monoid D and an alphabet

Σ is the tree series [[ϕ]]V : UΣV → D which equals 0 for non-valid trees and which
is defined inductively for each valid tree s = (t, σ) as shown in Table 1. Here �s

is a linear ordering on the positions of s. For the rest of this paper this linear
ordering will be the depth-first left-to-right traversal. Then the formula x ≤ y can
be expressed with the help of x � y. Subsequently, we write [[ϕ]] for [[ϕ]]free(ϕ). Any
boolean wMSO formula β can be viewed as a classical MSO formula which defines
the recognizable tree language LV(β) and we can easily show that [[β]]V = 1LV(β).
Furthermore, we can prove by induction that [[ϕ]]V(t, σ) = [[ϕ]](t, σ|free(ϕ)) for
every wMSO formula ϕ, (t, σ) ∈ UΣV , and set of variables V with free(ϕ) ⊆ V.

Example 4.1. Let Qp
max be the ptv-monoid from Example 2.1. The boolean for-

mula leaf(x) = ∀y.¬desc(x, y) maps every t ∈ UΣ and assignment σ to ∞ if σ(x)
is a leaf and to −∞ if σ(x) is not a leaf. Analogously to [10], we can show that
the formula ϕ = ∀x.((leaf(x)∧ 1)∨ (¬leaf(x)∧ 0)) defines the leaves-to-size ratio
for trees which was previously computed by the WUTA of Example 3.1.

Next we introduce some fragments of the weighted MSO logic which will be
essential for our main result. A wMSO formula is an almost boolean formula if it
consists only of conjunctions and disjunctions of boolean formulas and elements
of D. We call a wMSO formula ∀-restricted if all its subformulas ∀x.ϕ satisfy that

98 M. Droste et al.

ϕ is almost boolean. Let const(ϕ) be the set of all d ∈ D occurring in a formula
ϕ. Similarly to [12,10] we call ϕ strongly ∧-restricted if whenever ϕ contains a
subformula ϕ1 ∧ ϕ2, then both ϕ1 and ϕ2 are almost boolean or ϕ1 or ϕ2 is
boolean; and commutatively ∧-restricted if whenever ϕ contains a subformula
ϕ1 ∧ ϕ2, then ϕ1 is almost boolean or const(ϕ1) and const(ϕ2) commute. Note
that each strongly ∧-restricted wMSO formula is commutatively ∧-restricted. For
examples of weighted logic formulas and a discussion on the above restrictions,
we refer the reader to [9,14,15,12].

5 Weighted Tree Automata and Weighted MSO Logic

Here we characterize the class of behaviors of WUTA by the fragments of the
weighted MSO logic.

Theorem 5.1. Let S : UΣ → D be a tree series.
1. If D is regular, then S is recognizable iff S = [[ϕ]] for some ∀-restricted and

strongly ∧-restricted wMSO sentence ϕ.
2. If D is a cctv-semiring, then S is recognizable iff S = [[ϕ]] for some ∀-

restricted and commutatively ∧-restricted wMSO sentence ϕ.

For ranked trees, examples were given in [10] showing that it is not possible
to drop the constraints on D in statements (1) or (2). These examples could be
easily extended to the unranked tree setting. It remains to prove Theorem 5.1.
For this, the following proposition will be very useful; it can be proved as the
corresponding result in [14] by using Theorem 3.4(2).

Proposition 5.2. Let ϕ be a wMSO formula and V a finite set of variables
with free(ϕ) ⊆ V. Then [[ϕ]] is recognizable iff [[ϕ]]V is recognizable, and [[ϕ]] is a
recognizable step function iff [[ϕ]]V is a recognizable step function.

Analogously to [10] one can show:

Lemma 5.3. If ϕ is an almost boolean formula, then [[ϕ]] is a recognizable step
function. Conversely, if S : UΣ → D is a recognizable step function, then S = [[ϕ]]
for some almost boolean sentence ϕ.

Now we can show that our logic operators preserve the recognizability of the
semantics of wMSO formulas by adapting the proofs for the corresponding Propo-
sitions 5.15-5.17 of [10].

Proposition 5.4. Let ϕ and ψ be wMSO formulas over Σ and D. If [[ϕ]] and [[ψ]]
are recognizable, then [[ϕ∨ψ]], [[∃x.ϕ]], and [[∃X.ϕ]] are recognizable. Furthermore,
[[ϕ ∧ ψ]] and [[ψ ∧ ϕ]] are recognizable if [[ϕ]] is recognizable and ψ is boolean.

Proposition 5.5. Let ϕ be an almost boolean formula over D and Σ. Then
[[∀x.ϕ]] is recognizable.

Weighted Unranked Tree Automata over TV-Monoids 99

Proof. Let W = free(ϕ) ∪ {x} and V = free(∀x.ϕ) = W \ {x}. Since ϕ is
almost boolean and by Lemma 5.3, [[ϕ]]W =

∑n
i=1 di � 1Li

for some partition
L1, . . . , Ln of all valid trees over ΣW (for invalid trees s, [[ϕ]]W(s) = 0). Let
Σ̃ = Σ × {1, . . . , n}. We extend every valid tree (t, σ) ∈ UΣW to a tree (t, ν, σ)
over Σ̃V by the unique mapping ν : dom(t) → {1, . . . , n} that encodes to which
Li the update of (t, σ) and x belongs. Hence, ν(u) = i iff (t, σ[x → u]) ∈ Li for
all u ∈ dom(t). Let L̃ ⊆ UΣ̃V be the tree language of all such trees (t, ν, σ). In
[15] it was already shown that L̃ is recognizable. Let M = (Q,B, F) over Σ̃V
be a deterministic unranked tree automaton that recognizes L̃. We may assume
that every subautomaton Bq,ã = (Qq,ã, Iq,ã, Tq,ã, Fq,ã) (for q ∈ Q, ã ∈ Σ̃V) of
M is deterministic. Thus for every tree t̃ ∈ UΣ̃V there is exactly one extended
run π of M on t̃, and in addition there is exactly one run πu of Bπ(u),t̃(u) on
π(u.1) . . . π(u. rkt̃(u)) for each u ∈ dom(t̃).

We wish to transform M into a WUTA M′ over Σ̃V such that for every tree
t̃ the unique runs π and πu (u ∈ dom(t̃)) form an extended run π̃ = (q, s, l) with

μ(t̃, π̃)(u) = di ⇔ ‖Bs(u)2,t̃(u)‖(s(u.1)2 . . . s(u. rkt̃(u))2) = 1 and t̃(u)2 = i

for all u ∈ dom(t̃). Then μ(t̃, π̃)(u) = [[ϕ]]W(t, σ[x → u]) and Val(μ(t̃, π̃)) =
[[∀xϕ]]V(t, σ) where (t, ν, σ) = t̃. All other extended runs on t̃ shall get the weight
0. For this, we extend the states of M by values from {1, . . . , n}. The value in
the state assigned to a position u encodes t̃(u)2. We let A(q,j),(a,i,f) be a WUTA
with an empty set of final states whenever j �= i to ensure that for a successful
extended run a state with value i is assigned to a position with label (a, i, f).
The automaton A(q,i),(a,i,f) will be a modified version of Bq,(a,i,f); it is defined
over the alphabet Q × {1, . . . , n} such that there is a transition (p1, (q, i′), p2)
with weight di′ for every i′ ∈ {1, . . . , n} iff Tq,(a,i,f)(p1, q, p2) = 1. Formally,
M′ = (Q′,A, γ) such that Q′ = Q × {1, . . . , n}, γ(q, i) = di if F (q) = 1 and
γ(q, i) = 0 if F (q) = 0, and A = (Aq,a | q ∈ Q′, a ∈ Σ̃V) where for ã = (a, i, f)
we have A(q,i),ã = (Qq,ã, Iq,ã, μ(q,i),ã, Fq,ã) with

μ(q,i),ã(p1, (q′, i′), p2) =

{
di′ if Tq,ã(p1, q′, p2) = 1 ,

0 otherwise

for p1, p2 ∈ Qq,a, and (q′, i′) ∈ Q′; and A(q,j),(a,i,f) has an empty set of final
states if i �= j.

Obviously, ‖M′‖(t̃) = Val(μ(t̃, π̃)) = [[∀x.ϕ]]((t, σ)) for all trees t̃ = (t, ν, σ) ∈
UΣ̃V where π̃ is the extended run arisen from π and the πus. Let the relabeling
h : Σ̃V → ΣV be defined by h((a, i, f)) = (a, f). One can show that h(‖M‖)(s) =
[[∀x.ϕ]](s) for all s ∈ UΣV . Hence, [[∀x.ϕ]] is recognizable by Lemma 3.6. ��
Now we will prove our main result, Theorem 5.1.

Proof of Theorem 5.1. By Lemma 5.3 and Lemma 3.5, the semantics of almost
boolean formulas over a regular ptv-monoid D is recognizable. For (1) the recog-
nizability of the tree series [[ϕ]] for a formula ϕ is guaranteed by Propositions 5.4

100 M. Droste et al.

and 5.5. For (2) we can proceed as in [10] and show by induction on the structure
of ϕ that there is a WUTA recognizing [[ϕ]] whose weights are in the subsemiring
generated by 〈const(ϕ) ∪ {0,1},+, �〉.

For the converse, let M be a WUTA recognizing S. In [15, Thm.6.9] the
behavior of M was described with a formula using two universal quantifiers
which occur nested. Due to the current definition of the behavior, ‖M‖ can be
expressed by a ∀-restricted and strongly ∧-restricted wMSO sentence ϕ. ��
Remark 5.6. We can show that Theorem 5.1 generalizes the respective main
theorem of [10] for ranked trees. For this, we use Remark 3.2, the transforma-
tion from the weighted MSO logic over ranked trees to the weighted MSO logic
over unranked trees [15, Lemma7.3], and a reverse transformation for wMSO
sentences without subformula of the form x � y.

Theorems 6.5 and 6.10 of [15] show that weighted unranked tree automata over
non-commutative semirings are more expressive than the restricted weighted
MSO logic. Our slightly changed definition of the behavior of WUTA enables
us to prove an equivalence result as follows. Let K = (K,+, ·,0,1) be a semi-
ring. We associate K with the cctv-semiring (K,+,Val, ·,0,1) with Val(t) =∏

u∈dom(t) t(u) where we multiply according to a depth-first left-to-right traver-
sal, i.e. for a position u we first collect the weights of its subtrees one by one from
left to right and then we multiply with the weight of u itself. Now we obtain:

Corollary 5.7. Let Σ be an alphabet, (K,+, ·,0,1) a semiring, and S a tree
series over Σ and K. Then S is recognizable over K iff S = [[ϕ]] for a ∀-restricted
and commutatively ∧-restricted wMSO sentence ϕ.

Hence, for commutative semirings, by Remark 3.2 and Corollary 5.7 we obtain
the main equivalence results Theorem 6.5 and Theorem 6.9 of [15] as a conse-
quence.

References

1. Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V., Nowotka,
D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 18–38. Springer, Heidelberg (2009)

2. Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and regular hedge
languages over unranked alphabets: version 1. Technical Report HKUST-TCSC-
2001-0, The Honkong University of Sience and Technologie (2001)

3. Brüggemann-Klein, A., Wood, D.: Regular tree languages over non-ranked alpha-
bets (1998). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.5397

4. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski,
M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg
(2008)

5. Chatterjee, K., Doyen, L., Henzinger, T.A.: Alternating weighted automata. In:
Kuty�lowski, M., Charatonik, W., G ↪ebala, M. (eds.) FCT 2009. LNCS, vol. 5699,
pp. 3–13. Springer, Heidelberg (2009)

6. Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In:
Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258.
Springer, Heidelberg (2009)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.5397

Weighted Unranked Tree Automata over TV-Monoids 101

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure proper-
ties for quantitative languages. In: Proceedings of LICS 2009, pp. 199–208. IEEE
Computer Society (2009)

8. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://
www.grappa.univ-lille3.fr/tata

9. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical
Computer Science 380, 69–86 (2007)

10. Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over
valuation monoids and their characterization by weighted logics. In: Kuich, W.,
Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020,
pp. 30–55. Springer, Heidelberg (2011)

11. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
EATCS Monographs on Theoretical Computer Science, Springer (2009)

12. Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average-
and longtime-behaviors. Information and Computation 220–221, 44–59 (2012)

13. Droste, M., Rahonis, G.: Weighted automata and weighted logics with discounting.
Theory of Computing Systems 410(37), 3481–3494 (2009)

14. Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theoretical
Computer Science 366, 228–247 (2006)

15. Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theory of
Computing Systems 48, 23–47 (2011)

16. Droste, M., Vogler, H.: Kleene and Büchi theorems for weighted automata and
multi-valued logics over arbitrary bounded lattices. Theoretical Computer Science
418, 14–36 (2012)

17. Fichtner, I.: Weighted picture automata and weighted logics. Theory of Computing
Systems 48(1), 48–78 (2011)

18. Fülöp, Z., Vogler, H.: Weighted tree automata and tree transducers, chap. 9. In:
Droste et al. [11] (2009)

19. Fülöp, Z., Vogler, H.: Forward and backward application of symbolic tree
transducers. Acta Informatica 51, 297–325 (2014)

20. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser Verlag (January 2003)
21. Högberg, J., Maletti, A., Vogler, H.: Bisimulation minimisation of weighted

automata on unranked trees. Fundamenta Informaticae 92, 103–130 (2009)
22. Libkin, L.: Logics for unranked trees: an overview. In: Caires, L., Italiano, G.F.,

Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 35–50. Springer, Heidelberg (2005)

23. Mathissen, C.: Definable transductions and weighted logics for texts. Theoretical
Computer Science 411, 631–659 (2010)

24. Mathissen, C.: Weighted logics for nested words and algebraic formal power series.
Logical Methods in Computer Science 6 (2010)

25. Meinecke, I.: Weighted logics for traces. In: Grigoriev, D., Harrison, J., Hirsch, E.A.
(eds.) CSR 2006. LNCS, vol. 3967, pp. 235–246. Springer, Heidelberg (2006)

26. Murata, M.: Forest-regular languages and tree-regular languages (1995). (unpub-
lished manuscript)

27. Neven, F.: Automata, logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and
EACSL 2002. LNCS, vol. 2471, p. 2. Springer, Heidelberg (2002)

28. Rahonis, G.: Weighted Muller tree automata and weighted logics. Journal of
Automata, Languages and Combinatorics 12, 455–483 (2007)

29. Tan, T.: Extending two-variable logic on data trees with order on data values and
its automata. ACM Transactions on Computational Logic 15, 8:1–8:39 (2014)

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

102 M. Droste et al.

30. Thatcher, J.W.: Characterizing derivation trees of context-free grammars through a
generalization of finite automata theory. Journal of Computer and System Sciences
1, 317–322 (1967)

31. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. A, pp. 389–455. Springer (1997)

32. Veanes, M., Bjørner, N.: Symbolic tree transducers. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 377–393. Springer, Heidelberg
(2012)

A New Partial Key Exposure Attack
on Multi-power RSA

Muhammed F. Esgin1,2(B), Mehmet S. Kiraz1, and Osmanbey Uzunkol1

1 TÜBİTAK BİLGEM UEKAE, Kocaeli, Turkey
{muhammed.esgin,mehmet.kiraz,osmanbey.uzunkol}@tubitak.gov.tr

2 Graduate School of Natural and Applied Sciences,
İstanbul Şehir University, Istanbul, Turkey

Abstract. An important attack on multi-power RSA (N = prq) was
introduced by Sarkar in 2014, by extending the small private exponent
attack of Boneh and Durfee on classical RSA. In particular, he showed
that N can be factored efficiently for r = 2 with private exponent d sat-
isfying d < N0.395. In this paper, we generalize this work by introducing
a new partial key exposure attack for finding small roots of polynomi-
als using Coppersmith’s algorithm and Gröbner basis computation. Our
attack works for all multi-power RSA exponents e (resp. d) when the
exponent d (resp. e) has full size bit length. The attack requires prior
knowledge of least significant bits (LSBs), and has the property that the
required known part of LSB becomes smaller in the size of e. For prac-
tical validation of our attack, we demonstrate several computer algebra
experiments.

Keywords: Multi-power RSA · Integer factorization · Partial
key exposure · Coppersmith’s method · Small roots of polynomials

1 Introduction

A natural way of speeding up the decryption/signing procedure of RSA based
cryptographic schemes is to use a small private exponent d. However, Wiener
[22] showed that classical RSA construction becomes insecure when d < 1

3N
1
4 .

Later, this bound was further improved by Boneh and Durfee [2] to N0.292 by
using results of Coppersmith [6].

Kocher [15] initiated a new type of attack that obtains information about
the bits of d using side-channel techniques in 1996. The idea is to exploit certain
weaknesses of the actual implementation (e.g., execution time, power consump-
tion, noise), which in turn reveals some bits of d. In general, the attacker gains
information about either consecutive least significant bits (LSBs) or most signif-
icant bits (MSBs). Therefore, partial key exposure attacks mostly focus on these
two rather specific cases.

Boneh, Durfee and Frankel [3] introduced the first algebraic partial key expo-
sure attack using partial information of d. The attack finds the whole secret

c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 103–114, 2015.
DOI: 10.1007/978-3-319-23021-4 10

104 M.F. Esgin et al.

exponent d when sufficient partial knowledge of d is known. Coppersmith’s algo-
rithm for finding small roots of polynomials is used in such algebraic attacks
[6,5,4]. This algorithm uses lattice reduction techniques to obtain efficient small
roots of certain polynomials (in particular, the LLL algorithm [16]). Later, new
partial key exposure attacks on classical RSA were described by Blömer and
May in [1]. We refer to [9,14] for further partial key exposure attacks on stan-
dard RSA.

Notation: Let log denote the logarithm base 2 unless the base is given con-
cretely. We use the following notation throughout this manuscript.

N Multi-power RSA modulus

n bitsize of N

p, q prime factors of N

r integer satisfying the relation N = prq

e RSA public exponent

d RSA private exponent

d0 known part of d

α logN e (i.e., e ≈ Nα)

β logN d (i.e., d ≈ Nβ)

δ logN d0 (i.e., d0 ≈ Nδ)

In this work, we focus on multi-power RSA (also referred as Takagi’s RSA
or prime power RSA) introduced by Takagi in [21]. One of the motivation of
this variant is to speed up the RSA decryption/signing process. More con-
cretely, N = prq is chosen for two (distinct) primes of same bit length such that
r ≥ 2. Then, there are two different ways of generating public/private exponents.
The first one imposes the condition ed ≡ 1 mod (p − 1)(q − 1) while the other
ed ≡ 1 mod φ(N), where φ(N) = pr−1(p − 1)(q − 1). Decryption of a ciphertext
c is computed more efficiently using simply a combination of Hensel lifting and
Chinese Remainder Theorem modulo pr and q (see [21] for details).

For the multi-power RSA variant when exponents are generated modulo
φ(N), Takagi proved in [21] that if d ≤ N

1
2r+2 , then N can be factored. This was

later improved by May in [18] to d < max{N
r

(r+1)2 , N
(r−1)2

(r+1)2 }. Recently, Sarkar
[20] improved this bound even further for r ≤ 5 and showed in particular that if
d < N0.395 and r = 2, then N can be factored efficiently. Thereafter, Lu et al.
[17] improved Sarkar’s result for r ≥ 4. Their attack works when the unknown

part d̃ of d (it may be all of d or an MSB/LSB part of it) satisfies d̃ < N
r(r−1)
(r+1)2 .

In [13], a small private exponent attack is shown for the case when exponents
are generated modulo (p − 1)(q − 1). This attack shows that N can be factored

if d < N
2−√

2
r+1 . Later, the idea of this work is used in [12] for partial key exposure

attacks. For instance, for r = 2 and e ≈ N
2
3 , it is shown that N can be factored in

any of the following conditions:

A New Partial Key Exposure Attack on Multi-power RSA 105

γ ≤ 7
12 − 1

4

√
16+24β

3 − 39
9 if MSBs or middle bits are known,

or γ ≤ 5
9 − 2

3

√
2+3β

3 − 5
9 if LSBs are known,

where d ≈ Nβ and the unknown part of d is approximately Nγ . Note that their
attacks do not work when d is of full size modulo (p − 1)(q − 1) (i.e., d ≈ N

2
3).

Our Contribution. In this paper, we provide a new partial key exposure attack
on multi-power RSA when the exponents are generated modulo φ(N). The attack
basically uses partial knowledge of LSBs and works for all e (resp. d) when the
exponent d (resp. e) has full size bit length.1 More concretely, we prove the
following theorem which generalizes Sarkar’s result [20].

Theorem 1. Let r ≥ 2 be an integer and N = prq be a multi-power RSA
modulus, where p and q are distinct primes with the same bit size (i.e., p, q ≈
N

1
r+1). Suppose that ed ≡ 1 mod φ(N) with e ≈ Nα and d ≈ Nβ. Suppose

further that an attacker obtains an LSB part d0 of d, where d0 ≥ N δ for some
δ ∈ R

≥0. Then under Assumption 1, there exists an algorithm which finds the
prime factors of N in polynomial time in log N provided that

ρ(r, β, α, δ) < 0,

where ρ is a function of r, β, α and δ.

Fig. 1. The relation between the sizes of e (resp. d) and the fraction of the part of d
required to be known.

1 This rule is induced by the condition that ed ≡ 1 mod φ(N).

106 M.F. Esgin et al.

We show the improvement of our attack over Sarkar’s result in Figure 1 for the
case r = 2. Light grey area (indicated by “Sarkar’14”) shows the attack region
by [20] and darker grey areas are the applicable regions of our attack.

Organization of the Paper. In Section 2, we give preliminaries about lattices.
In Section 3, we prove our main result, Theorem 1, extending the result of [20].
Section 4 demonstrates several experiments justifying our claims for the multi-
power RSA moduli of length 1024 or 2048 bits. We conclude the paper in Section
5 and argue the improbability of using our attack for known MSBs by addressing
an issue in [12].

2 Preliminaries

In this section, we give basic definitions and theorems about lattices. Let v =
(a0, · · · , as) be a vector in R

s+1 for some s ≥ 0. We use the Euclidean norm ||v||
of v

||v|| :=

√√√√
s∑

i=0

(ai)2.

For a multivariate polynomial f , the norm ||f || of f is the Euclidean norm
of its coefficient vector. Let v1, · · · , vw ∈ R

m be a set of R-linearly independent
vectors with w,m ∈ N

>0 and w ≤ m. Then, the lattice L generated by these
vectors is

L := {b1v1 + · · · + bwvw : bi ∈ Z for 1 ≤ i ≤ w} .

We always work on lattice having full rank, i.e. w = m. We denote dim(L) := w
for the dimension of L. Each lattice L can be represented by the following matrix
M ∈ GL(w,R):

M =

⎛

⎜⎜⎜⎜⎝

v1

.

.

.
vw

⎞

⎟⎟⎟⎟⎠
.

We denote det(L) for the determinant of L. We have det(L) = det(M) for a
full rank lattice L.

In this work, the main goal is to find small vectors in such full lattices.
Computational complexity of finding the smallest vector in a lattice increases
exponentially in dim(L). The reduction algorithm LLL introduced by Lenstra,
Lenstra and Lovász [16] is generally used in practice to have an efficient lat-
tice reduction technique for obtaining small enough basis vectors. The following

A New Partial Key Exposure Attack on Multi-power RSA 107

theorem gives an upper bound on the norm of the reduced basis vectors output
by the LLL algorithm.

Theorem 2. Let L be a lattice with dim(L) = w as above. The LLL algorithm
produces a set of reduced basis vectors {R1, · · · , Rw} such that

||Ri|| ≤ 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i .

The computational complexity of the LLL algorithm is polynomial in dim(L)
and in the maximal bitsize of an entry [19].

Coppersmith described methods for finding small roots of univariate and
bivariate polynomials [4,5,6]. The methods can be extended to the polynomials
having more variables, but the results become heuristic. Howgrave-Graham [11]
reformulated these results and proved the following theorem:

Theorem 3 (Howgrave-Graham’s Theorem, [11]). Let f(x1, · · · , xs) ∈
Z[x1, · · · , xs] be a polynomial for s ≥ 1. Assume that the number of monomials
is less than or equal to w. If the following two conditions hold:

1. M ∈ Z
+ and f(x0

1, · · · , x0
s) ≡ 0 mod M for some |x0

1| < X1, · · · , |x0
s| < Xs,

2. ||f(x1X1, · · · , xsXs)|| < M√
w
,

then (x0
1, · · · , x0

s) is a root of f over Z.

After finding multivariate polynomials carrying a common root over integers,
we need to extract this root using Gröbner basis computation.2 Our main result
Theorem 1 is valid under the following assumption:

Assumption 1. Let f1, · · · , fk be the polynomials having the desired root over
Z for k ≥ 3 computed using LLL reduction. Furthermore, let I be the ideal gen-
erated by these polynomials. Then, the algebraic variety of I is zero-dimensional.
In particular, the common root can be extracted by computing a Gröbner basis
on I.

Since our result in Theorem 1 relies on this assumption, it is heuristic. How-
ever, our experiments show that this assumption holds in general (see Section 4).
The computational complexity of a Gröbner basis computation can be bounded
by a polynomial in log N assuming the number of variables and the maximal
degree of input polynomials is fixed [10].

3 An Attack with Known LSBs

In this section, we prove our main Theorem 1.

2 Resultant computation could be another option as well, but it was less efficient for
our experiments.

108 M.F. Esgin et al.

Proof (Theorem 1). Multi-power RSA parameters satisfy the congruence ed ≡
1 mod φ(N) with φ(N) = (pr − pr−1)(q − 1). This implies the equation that
ed − 1 = k(pr − pr−1)(q − 1) for some k ∈ Z. Since we know an LSB part of d,
we can write this as eMd̃ + ed0 − 1 = k(pr − pr−1)(q − 1) where d = d̃M + d0

and M is a power of 2. Hence, we have the following polynomial

feM (x, y, z) = ed0 − 1 − xN − xyr−1 + xyr−1z + xyr

carrying the root (x0, y0, z0) = (k, p, q) modulo eM . It is easy to see that |x0| <

X := Nα+β−1, |y0| < Y := N
1

r+1 and |z0| < Z := N
1

r+1 neglecting small
constants.

Let m, t1, t2 ≥ 0 and define the following shift polynomials:

gi,j,k(x, y, z) = xjykzj+t1f i
eM (x, y, z),

where i = 0, · · · ,m, j = 1, · · · ,m − i and k = j, · · · , j + 2r − 2,

gi,0,k(x, y, z) = ykzt1f i
eM (x, y, z),

where i = 0, · · · ,m and k = 0, · · · , t2.

Recall that yr
0z0 = N . Hence, we replace every occurrence of yrz with N in

the shift polynomials. Denote new polynomials by g′
i,j,k(x, y, z). Observe that

choosing xyr as the leading monomial of feM , the leading monomials in g′
i,j,k’s

are of the form xi+jyk+ri−rlzj+t1−l, where l = min
{�k+ri

r �, j + t1
}
.

Let a� denote the leading coefficient. Assuming gcd(a�, eM) = 1, we can
multiply g′

i,j,k’s with the inverse a′
� of their corresponding leading coefficient in

Z/(eM)m
Z. Finally, the shift polynomials become

hi,j,k(x, y, z) = a′
� · g′

i,j,k(x, y, z) · (eM)m−i

which carry the root (x0, y0, z0) modulo (eM)m.
We let the coefficient vectors of hi,j,k(xX, yY, zZ) represent the basis vectors

of a lattice L. Generation of L is summarized in Algorithm 1.
Note that each polynomial in H generated by Algorithm 1 introduces exactly

one new monomial, which is appended to Ord that defines the monomial order-
ing. Hence, the matrix representing the lattice is lower triangular when each row
is ordered with respect to Ord. As a result, the determinant of L is the product
of the diagonal entries of the representation matrix.

det(L) =

⎛

⎝
m∏

i=0

m−i∏

j=1

j+2r−2∏

k=j

Xi+jY k+ri−rl1Zj+t1−l1(eM)m−i

⎞

⎠

×
(

m∏

i=0

t2∏

k=0

XiY k+ri−rl2Zt1−l2(eM)m−i

)
,

where l1 = min
{�k+ri

r �, j + a
}

and l2 = min
{�k+ri

r �, a}
. Letting sx, sy, sz and

seM be the powers of X, Y , Z and eM in det(L), respectively, and denoting the
dimension of the lattice by w, we obtain

A New Partial Key Exposure Attack on Multi-power RSA 109

Algorithm 1. Generating the Lattice L
Input: r ≥ 2; m, t1, t2 ≥ 0 and feM (x, y, z)

G, H, Ord ← ∅
for i ∈ {0, 1, · · · , m} do

for j ∈ {1, 2, · · · , m − i} do
for k ∈ {j, j + 1, · · · , j + 2r − 2} do

Append (xjykzj+t1fi
eM , i) to G

l ← min
{

	 k+ri
r
, j + t1

}

Append xi+jyk+ri−rlzj+t1−l to Ord
end for

end for
end for
for i ∈ {0, 1, · · · , m} do

for k ∈ {0, 1, · · · , t2} do

Append (ykzj+t1fi
eM , i) to G

l ← min
{

	 k+ri
r
, j + t1

}

Append xi+jyk+ri−rlzj+t1−l to Ord
end for

end for
for each element (g, i) in G do

Replace each occurrence of yrz with N in g
a′

� ← a−1
� mod eM , where a� is the leading coefficient of g

Append (a′
� · g · (eM)m−i) to H

end for
i ← 1
for each polynomial h(x, y, z) in H do

Set i-th row of L to the coefficient vector of h(xX, yY, zZ) ordered w.r.t. Ord
Increment i

end for

w =
m∑

i=0

m−i∑

j=1

j+2r−2∑

k=j

1 +
m∑

i=0

t2∑

k=0

1 =
2r − 1

2
m2 + t2m + o(m2)

sx =
m∑

i=0

m−i∑

j=1

(2r − 1)(i + j) +
m∑

i=0

t2∑

k=0

i =
2r − 1

3
m3 +

t

2
m2 + o(m3)

seM =
m∑

i=0

m−i∑

j=1

(2r − 1)(m − i) +
m∑

i=0

t2∑

k=0

(m − i) =
2r − 1

3
m3 +

t

2
m2 + o(m3)

Assuming t2
r ≤ t1 ≤ m, we get as an asymptotic result

sy =
m∑

i=0

m−i∑

j=1

j+2r−2∑

k=j

(k + ri − rl1) +
m∑

i=0

t2∑

k=0

(k + ri − rl2)

≈ 1
2

(
r2m3

3
− r2m2t1 + r2mt21 − r2t31

3
+ rm2t2

−2rmt1t2 + rt21t2 + mt22 − t1t
2
2 +

t32
3r

)
+ o(m3)

110 M.F. Esgin et al.

sz =
m∑

i=0

m−i∑

j=1

j+2r−2∑

k=j

(j + t1 − l1) +
m∑

i=0

t2∑

k=0

(t1 − l2)

≈ 1
2

(
(r − 1)2m3

3r
+ (r − 1)2m2t1 + rmt21

−rt31
3

+ t21t2 − t1t
2
2

r
+

t32
3r2

)
+ o(m3)

which are approximated as in [20].
Neglecting the low order terms as similarly done in related works, the con-

ditions in Theorem 2 and Theorem 3 can be simplified to det(L) < (eM)wm. In
our case, we need

sx(α + β − 1) + (sy + sz)
(

1
r + 1

)
+ (seM − wm)(α + δ) < 0.

to be satisfied. Plugging in the values for sx, sy, sz and seM , we obtain a polyno-
mial ρ′(r, α, β, δ) with parameters t1, t2 and m. Let t1 = τ1m and t2 = τ2m, and
terms of o(m3) contribute to an error term ε. Next, we take the partial derivative
of ρ′ with respect to τ1 and τ2, and find the values making the derivatives zero to
obtain the maximum value of ρ′. Finally, for γ := β −δ, when τ1 = 1−rγ+r2(1−γ)

2r
and

τ2 =
1 + r3(1 − γ) − r2(1 + 2γ) + r(1 − γ) + 2r

√
r2(1 − γ) + r(1 − 2γ) + 1 − γ

2r + 2

both derivatives become zero. Plugging in these values in ρ′, we get a function
ρ(r, α, β, δ). When the tuple (r, α, β, δ) satisfy ρ(r, α, β, δ) < 0, Howgrave-
Graham’s theorem is satisfied. We can extract the root (k, p, q) under Assump-
tion 1, and thus factor N in time polynomial in log N . 	

Remark 1. We note that our definition of shift polynomials is similar to the one
in [20]. The difference is that we work modulo eM instead of modulo e. Hence,
the constant coefficient of feM changes. Equating M = 1 (i.e., δ = 0), we obtain
the result of Sarkar [20] as a corollary of Theorem 1.

Table 1. Numerical values satisfying ρ < 0 for different r and α values where β = 1

r
smallest δ value satisfying

ρ(r) < 0 for α = 1
smallest δ value satisfying

ρ(r) < 0 for α = 0

2 0.828 0.362

3 0.798 0.344

4 0.750 0.314

5 0.703 0.285

6 0.662 0.259

7 0.625 0.237

A New Partial Key Exposure Attack on Multi-power RSA 111

Unfortunately, the exact expression of ρ is too complicated to be stated here.
Thus, in Table 1, we provide some numerical values for δ which yields ρ < 0
when β is fixed to 1. We remind that for r = 2 new attack regions are given in
Table 1 when either d or e is full-sized.

4 Experimental Results

Table 2. Experimental results for α = β = 1. n = 2048 bits for the last row and
n = 1024 bits for the rest.

r m t1 t2 w δ
LLL time

(secs)
Gröbner Basis

time (secs)

2 6 4 7 119 0.870 1930.21 3.00
2 7 4 8 156 0.860 6517.26 67.99
2 8 4 7 180 0.850 19619.96 1227.18
2 8 5 9 198 0.835 28684.34 358.80
2 9 5 9 235 0.830 63748.97 635.33
2 9 5 10 245 0.823 67480.18 149.56
3 7 4 9 220 0.952 26671.68 7358.66

2 8 5 9 198 0.840 90981.76 2246.77

In this section, we provide various experimental results. In all of our experi-
ments, we fix d to be full-sized (i.e., β = 1) which is mostly the case in real-life
applications. The values for p, q and d are chosen randomly (or d is the inverse
of 216 +1 modulo φ(N)). The experiments are performed on Sage 6.5 running on
Ubuntu 14.04 LTS with Intel Core i7-3770 CPU at 3.40GHz and 16GB RAM.

Our results are given in Tables 2 and 3. In all of our experiments, Gröbner
basis computation yields to a polynomial of the form y−p giving the factorization
of N . For the case when α = β = 1 (which is illustrated in Table 2), we would
like to highlight that our result in a case is better than the theoretical bound
δ ≥ 0.828. However, when e is chosen small (e.g., e = 216 + 1), the modulus eM
becomes very small when compared to the case α = β = 1. Therefore, the low

Table 3. Experimental results for e = 216 + 1, β = 1. n = 2048 bits for the last two
rows and n = 1024 bits for the rest.

r m t1 t2 w δ
LLL time

(secs)
Gröbner Basis

time (secs)

2 8 3 2 135 0.520 21234.57 4114.00
2 8 3 2 135 0.510 19082.57 4280.77
2 9 3 3 175 0.500 48950.79 9134.06
2 10 3 2 198 0.485 84090.70 15927.35
3 9 3 3 265 0.510 148030.34 56230.82

2 10 3 2 198 0.500 203293.58 45573.57
2 10 3 2 198 0.490 185964.22 40817.77

112 M.F. Esgin et al.

order terms ignored to simplify the condition to det(L) < (eM)wm have much
higher effect in this case. Thus, the results are a little bit worse than the best
possible bound of Theorem 1.

5 Conclusion and Discussion

In this paper, we show a new partial key exposure attack on multi-power RSA,
where N = prq. The attack takes advantage of known LSBs. Our result in The-
orem 1 generalizes the work of Sarkar [20]. Moreover, we provide experimental
results justifying our claims. Our attack even works in the case when e, d ≈ N .
In fact, our experimental result is better than the theoretical bound for this case.
This paves the way for a further study: investigating sublattices of the original
lattice to improve the theoretical bound. However, this is a hard task because
in this case the lattice will not be of full rank and calculating the determinant
gets complicated.

One may wonder why our attack is not directly applicable to known MSBs
case. Suppose that we know an MSB part d0 of d. Then, we obtain the equation

ed0 + ed̃ − 1 = k(pr − pr−1)(q − 1),

where d̃ represents the unknown part of d. Considering this equation as a poly-
nomial, we get

F (w, x, y, z) = 1 − ed0 − ew + x(N − yr − yr−1z + yr−1).

Now e, N or ed0 are possible choices of moduli. The case e is studied in [20]
where one cannot benefit from partial knowledge of d as it vanishes. If N is
chosen as the modulus, then the trick of replacing each term yrz with N and
finding its inverse cannot be applied. That leaves us with the option to choose
ed0 as the modulus. This case actually corresponds to finding a small root of
integer equations [4], not modular equations [5].

Observe that reducing F modulo ed0 does not eliminate any variable. In
particular, Fed0 and F have the same monomials. Hence, the polynomials derived
from LLL may just be those of the form F · gi for nonzero polynomials gi not
carrying the desired root. More concretely, the attacker does not obtain any
additional information at all although LLL-reduced polynomials carry the root
since they have the factor F .

For a recent work, one may see Coron’s works [7,8] about methods to ensure
independence between the initial polynomial F and the polynomials derived after
LLL reduction3. Unfortunately, the tricks used in this work cannot be directly
applied with Coron’s method. This issue raises questions about the validity of
known MSBs attack shown in [12]. The authors do not specify any methodology
guaranteeing the independence aforementioned. Their experiments for this case
are very far away from the new attack region described by Theorem 1 in their

3 This independence is also ensured in Coppersmith’s method [4].

A New Partial Key Exposure Attack on Multi-power RSA 113

paper. Moreover, the authors also state that in some experiments, they just
verified that the LLL-reduced polynomials contain the root. As we explained
earlier, this does not have any implication for an attacker to be able to find the
root.

Acknowledgments. Uzunkol’s research is supported by the project (114C027) funded
by EU FP7-The Marie Curie Action and TÜBİTAK (2236-CO-FUNDED Brain Circu-
lation Scheme). His work is also partly supported by a joint research project funded by
Bundesministerium für Bildung und Forschung (BMBF), Germany (01DL12038) and
TÜBİTAK, Turkey (TBAG-112T011).

References

1. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

2. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)

3. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998)

4. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol.
1070, pp. 178–189. Springer, Heidelberg (1996)

5. Coppersmith, D.: Finding a small root of a univariate modular equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996)

6. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

7. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations revis-
ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 492–505. Springer, Heidelberg (2004)

8. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations: a direct
approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–394.
Springer, Heidelberg (2007)

9. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

10. Faugère, J.C.: A new efficient algorithm for computing Gröbner Bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium
on Symbolic and Algebraic Computation, ISSAC 2002, New York, NY, USA,
pp. 75–83. ACM (2002)

11. Howgrave-Graham, N.: Finding small roots of univariate modular equations
revisited. In: Darnell, M. (ed.) Crytography and Coding. Lecture Notes in Com-
puter Science, vol. 1355, pp. 131–142. Springer, Heidelberg (1997)

12. Huang, Z., Hu, L., Xu, J., Peng, L., Xie, Y.: Partial key exposure attacks on
Takagi’s variant of RSA. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS
2014. LNCS, vol. 8479, pp. 134–150. Springer, Heidelberg (2014)

13. Itoh, K., Kunihiro, N., Kurosawa, K.: Small secret key attack on a variant of RSA
(due to Takagi). In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 387–406.
Springer, Heidelberg (2008)

114 M.F. Esgin et al.

14. Joye, M., Lepoint, T.: Partial key exposure on RSA with private exponents larger
than N. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 369–380. Springer, Heidelberg (2012)

15. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

16. Lenstra Jr., A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982)

17. Lu, Y., Zhang, R., Lin, D.: New results on solving linear equations modulo unknown
divisors and its applications. Cryptology ePrint Archive, Report 2014/343 (2014).
http://eprint.iacr.org/

18. May, A.: Secret exponent attacks on RSA-type schemes with moduli N = prq.
In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 218–230.
Springer, Heidelberg (2004)

19. Nguyên, P.Q., Stehlé, D.: Floating-Point LLL revisited. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

20. Sarkar, S.: Small secret exponent attack on RSA variant with modulus N = prq.
Designs, Codes and Cryptography 73(2), 383–392 (2014)

21. Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)
Advances in Cryptology - CRYPTO ’98. Lecture Notes in Computer Science,
vol. 1462, pp. 318–326. Springer, Heidelberg (1998)

22. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36, 553–558 (1990)

http://eprint.iacr.org/

A Chomsky-Schützenberger Theorem
for Weighted Automata with Storage

Luisa Herrmann and Heiko Vogler(B)

Department of Computer Science,
Technische Universität Dresden, D-01062 Dresden, Germany

{Luisa.Herrmann,Heiko.Vogler}@tu-dresden.de

Abstract. We enrich the concept of automata with storage by weights
taken from any unital valuation monoid. We prove a Chomsky-
Schützenberger theorem for the class of weighted languages recognizable
by such weighted automata with storage.

1 Introduction

The classical Chomsky-Schützenberger theorem [3, Prop. 2] (for short: CS the-
orem) states that each context-free language is the homomorphic image of the
intersection of a Dyck-language and a regular language. In [28] it was shown
under which conditions the homomorphism can be non-erasing. In [23] the CS
theorem was employed to specify a parser for context-free languages. The CS
theorem has been extended to string languages generated by tree-adjoining gram-
mars [32], multiple context-free languages [33], indexed languages [17]1, and yield
images of simple context-free tree languages [25].

Already in [3] the CS theorem for context-free languages was proved in a
special weight setting: each word in the language is associated with the number
of its derivations. In [29] the CS theorem was shown for algebraic (formal) power
series over commutative semirings. In [9] this result was generalized to algebraic
power series over unital valuation monoids, called quantitative context-free lan-
guages; (unital) valuation monoids allow to describe, e.g., average consumption
of energy. Also in [9] quantitative context-free languages were characterized by
weighted pushdown automata over unital valuation monoids. Recently, the CS
theorem has been proved for weighted multiple context-free languages over com-
plete commutative strong bimonoids [6].

In the classical CS theorem, the set Y of letters occurring in the Dyck-
language depends on the given context-free grammar or pushdown automaton.
An alternative is to code Y by a homomorphism g over a two-letter alphabet and
to obtain the following CS theorem [22, Thm. 10.4.3]: each context-free language
L can be represented in the form L = h(g−1(D2)∩R) for some homomorphisms
h and g and a regular language R; D2 denotes the Dyck-language over a two
letter alphabet. In the sequel we call this alternative the CS theorem.

1 We are grateful to one of the reviewers for pointing out this reference to us.

c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 115–127, 2015.
DOI: 10.1007/978-3-319-23021-4 11

116 L. Herrmann and H. Vogler

In this paper we prove a CS theorem for the class of weighted languages recog-
nizable by weighted iterated pushdown automata over unital valuation monoids.
A weighted language2 is a mapping from Σ∗ to some weight algebra. Intuitively,
an iterated pushdown is a pushdown in which each square contains a pushdown
in which each square contains a pushdown ... (and so on). The idea of iterated
pushdowns goes back to [21,26,27]. It was proved in [11, Thm. 6] that the classes
of languages accepted by iterated pushdown automata form a strict, infinite hier-
archy with increasing nesting of pushdowns. In [5] it was proved that n-iterated
pushdown automata characterize the n-th level of the OI-string language hierar-
chy [4,13,31] which starts at its first three levels with the regular, context-free,
and indexed languages [1] (equivalently, OI-macro languages [16]).

We obtain the CS theorem for weighted iterated pushdown automata as
application of the even more general, main result of our paper: the CS theorem
for K-weighted automata with storage where K is an arbitrary unital valuation
monoid. An automaton with storage S [30,19,12]3 is a one-way nondeterministic
finite-state automaton with an additional storage of type S; a successful com-
putation starts with the initial state and an initial configuration of S; in each
transition the automaton can test the current storage configuration and apply
an instruction to it. For instance, pushdown automata, n-iterated pushdown
automata, stack automata [20], and nested stack automata [2] can be formu-
lated as automata with storage. For a number of examples of storages we refer
to [12] where these automata were called REG(S) r-acceptors. The concept of
automata with storage is quite flexible: for instance, we can also express M -
automata [24] where M is a (multiplicative) monoid, in a straightforward way
as such automata with storage (cf. Ex. 4).

We extend the concept of automata with storage to that of K-weighted
automata with storage where K is a unital valuation monoid; this extension
is done in the same way as pushdown automata have been extended in [9] to
weighted pushdown automata over unital valuation monoids. Then our main
result states the following (cf. Thm. 11). Let r : Σ∗ → K be recognizable by
some K-weighted automaton over storage type S. Then there are a regular lan-
guage R, a finite set Ω of pairs (each consisting of a predicate and an instruction),
a configuration c of S, a letter-to-letter morphism g, and a (weighted) alphabetic
morphism h such that r = h(g−1(B(Ω, c)) ∩ R) where B(Ω, c) is the set of all
Ω-behaviours of c.

2 Preliminaries

Notations and Notions. The set of non-negative integers (including 0) is denoted
by N. Let n ∈ N. Then [n] denotes the set {i ∈ N | 1 ≤ i ≤ n}. Thus [0] = ∅. Let
A and B be sets. The set of all subsets (finite subsets) of A is denoted by P(A)
(Pfin(A), resp.). We denote the identity mapping on A by idA. Let f : A → B be
a mapping. We denote by im(f) the set {b ∈ B | ∃a ∈ A : f(a) = b}.
2 or, equivalently, formal power series
3 If we cite notions or definitions from [12], then we always refer to the version of 2014.

A Chomsky-Schützenberger Theorem for Weighted Automata with Storage 117

We fix a countably infinite set Λ and call its elements symbols. We call each
finite subset Σ of Λ an alphabet. In the rest of this paper, we let Σ and Δ denote
alphabets unless specified otherwise.

Unital Valuation Monoids. The concept of valuation monoid was introduced
in [7,8] and extended in [9] to unital valuation monoid. A unital valua-
tion monoid is a tuple (K,+, val, 0, 1) such that (K,+, 0) is a commuta-
tive monoid and val : K∗ → K is a mapping such that (i) val(a) = a for
each a ∈ K, (ii) val(a1, . . . , an) = 0 whenever ai = 0 for some i ∈ [n],
(iii) val(a1, . . . , ai−1, 1, ai+1, . . . , an) = val(a1, . . . , ai−1, ai+1, . . . , an) for any
i ∈ [n], and (iv) val(ε) = 1.

A monoid (K,+, 0) is complete if it has an infinitary sum operation∑
I : KI → K for each enumerable set I (for the axioms cf. [10]). We call a

unital valuation monoid (K,+, val, 0, 1) complete if (K,+, 0) has this property.
We write

∑
i∈I ai instead of

∑
I(ai | i ∈ I).

We refer the reader to [9, Ex. 1 and 2] for a number of examples of unital val-
uation monoids. For instance, each complete semiring (in particular, the Boolean
semiring B = ({0, 1},∨,∧, 0, 1)) and each complete lattice is a complete unital
valuation monoid. In the rest of this paper, we let K denote an arbitrary unital
valuation monoid (K,+, val, 0, 1) unless specified otherwise.

Weighted Languages. A K-weighted language over Σ is a mapping of the form
r : Σ∗ → K. We denote the set of all such mappings by K〈〈Σ∗〉〉. For every
r ∈ K〈〈Σ∗〉〉, we denote the set {w ∈ Σ∗ | r(w) �= 0} by supp(r).

A family (ri | i ∈ I) of K-weighted languages ri ∈ K〈〈Σ∗〉〉 is locally finite if
for each w ∈ Σ∗ the set Iw = {i ∈ I | ri(w) �= 0} is finite. In this case or if K is
complete, we define

∑
i∈I si ∈ K〈〈Σ∗〉〉 by (∑

i∈I si

)
(w) =

∑
i∈Iw

si(w) for each
w ∈ Σ∗.

Each L ∈ B〈〈Σ∗〉〉 determines the set supp(L) ⊆ Σ∗. Vice versa, each set
L ⊆ Σ∗ determines the B-weighted language χL ∈ B〈〈Σ∗〉〉 with χL(w) = 1 if
and only if w ∈ L. Thus, for every L ⊆ Σ∗, we have supp(χL) = L; and for every
L ∈ B〈〈Σ∗〉〉 we have χsupp(L) = L. In the sequel we will not distinguish between
these two points of view.

3 Weighted Automata with Storage

We take up the concept of automata with storage [30] and present it in the
style of [12] (cf. [14,15] for further investigations). Moreover, we add weights to
the transitions of the automaton where the weights are taken from some unital
valuation monoid.

Storage Types: We recall the definition of storage type from [12,30] with a slight
modification. A storage type S is a tuple (C,P, F,C0) where C is a set (configu-
rations), P is a set of total functions each having the type p : C → {true, false}
(predicates), F is a set of partial functions each having the type f : C → C
(instructions), and C0 ⊆ C (initial configurations).

118 L. Herrmann and H. Vogler

Example 1. Let c be an arbitrary but fixed symbol. The trivial storage type
is the storage type TRIV = ({c}, {ptrue}, {fid}, {c}) where ptrue(c) = true and
fid(c) = c. ��

Next we recall the pushdown operator P from [12, Def. 5.1] and [14, Def. 3.28]:
if S is a storage type, then P(S) is a storage type of which the configurations
have the form of a pushdown; each cell contains a pushdown symbol and a
configuration of S. Formally, let Γ be a fixed infinite set (pushdown symbols).
Also, let S = (C,P, F,C0) be a storage type. The pushdown of S is the storage
type P(S) = (C ′, P ′, F ′, C ′

0) where
– C ′ = (Γ × C)+ and C ′

0 = {(γ0, c0) | γ0 ∈ Γ, c0 ∈ C0},
– P ′ = {bottom} ∪ {(top = γ) | γ ∈ Γ} ∪ {test(p) | p ∈ P} such that for every
(δ, c) ∈ Γ × C and α ∈ (Γ × C)∗ we have

bottom
(
(δ, c)α

)
= true if and only if α = ε

(top = γ)
(
(δ, c)α

)
= true if and only if γ = δ

test(p)
(
(δ, c)α

)
= p(c)

– F ′ = {pop} ∪ {stay(γ) | γ ∈ Γ} ∪ {push(γ, f) | γ ∈ Γ, f ∈ F} such that for
every (δ, c) ∈ Γ × C and α ∈ (Γ × C)∗ we have

pop
(
(δ, c)α

)
= α if α �= ε

stay(γ)
(
(δ, c)α

)
= (γ, c)α

push(γ, f)
(
(δ, c)α

)
= (γ, f(c))(δ, c)α if f(c) is defined

and undefined in all other situations.
For each n ≥ 0 we define Pn(S) inductively as follows: P0(S) = S and Pn(S) =
P(Pn−1(S)) for each n ≥ 1.

Example 2. Intuitively, P(TRIV) corresponds to the usual pushdown storage
except that there is no empty pushdown. For n ≥ 0, we abbreviate Pn(TRIV)
by Pn and call it the n-iterated pushdown storage. ��

Throughout this paper we let S denote an arbitrary storage type
(C,P, F,C0) unless specified otherwise.

Automata with Storage: An (S,Σ)-automaton is a tuple A = (Q,Σ, c0, q0, Qf , T)
where Q is a finite set (states), Σ is an alphabet (terminal symbols), c0 ∈ C0

(initial configuration), q0 ∈ Q (initial state), Qf ⊆ Q (final states), and T ⊆
Q× (Σ ∪{ε})×P ×Q×F is a finite set (transitions). If T ⊆ Q×Σ ×P ×Q×F ,
then we call A ε-free.

The computation relation of A is the binary relation on the set Q×Σ∗ ×C of
A-configurations defined as follows. For every transition τ = (q, x, p, q′, f) in T
we define the binary relation �τ on the set of A-configurations: for every w ∈ Σ∗

and c ∈ C, we let (q, xw, c) �τ (q′, w, f(c)) if p(c) is true and f(c) is defined.
The computation relation of A is the binary relation �= ⋃

τ∈T �τ . The language
recognized by A is the set L(A) = {w ∈ Σ∗ | (q0, w, c0) �∗ (qf , ε, c) for some qf ∈
Qf , c ∈ C}.

A computation is a sequence θ = τ1 . . . τn of transitions τi (i ∈ [n]) such
that there are A-configurations c0, . . . , cn with ci−1 �τi ci. We abbreviate this

A Chomsky-Schützenberger Theorem for Weighted Automata with Storage 119

computation by c0 �θ cn. Let q ∈ Q, w ∈ Σ∗, and c ∈ C. A q-computation on w
and c is a computation θ such that (q, w, c) �θ (qf , ε, c′) for some qf ∈ Qf , c′ ∈ C.
We denote the set of all q-computations on w and c by ΘA(q, w, c). Furthermore,
we denote the set of all q0-computations on w and c0 by ΘA(w). Thus we have
L(A) = {w ∈ Σ∗ | ΘA(w) �= ∅} .

We say that A is ambiguous if there is a w ∈ Σ∗ such that |ΘA(w)| ≥ 2.
Otherwise A is unambiguous. A language L ⊆ Σ∗ is (S,Σ)-recognizable if there
is an (S,Σ)-automaton A with L(A) = L.

Example 3. (1) The TRIV-automata are (usual) finite-state automata, and P1-
automata are essentially pushdown automata. (2) For each n ≥ 1, Pn-automata
correspond to n-iterated pushdown automata of [26,27,11,5]. (3) Nested stack
automata [2] correspond to NS(TRIV)-automata where NS is an operator on
storage types (cf. [14, Def. 7.1]). In [14, Thm. 7.4] it was proved that, for every
S, the storage types P2(S) and NS(S) are equivalent (cf. [14, Def. 4.6] for the
definition of equivalence), which implies that the acceptance power of automata
using these storage types is the same (cf. [14, Thm. 4.18] for this implication).

��
Example 4. We indicate how to embed the concept of M -automata [24] where
(M, ·, 1) is a multiplicative monoid, into the setting of automata with storage. For
this we define the storage type monoid M , denoted by MON(M), by (C,P, F,C0)
where C = M and C0 = {1}, P = {true?} ∪ {1?} with true?(m) = true, and
1?(m) = true if and only if m = 1, F = {[m] | m ∈ M} and [m] : M → M is
defined by [m](m′) = m′ · m.

For a given M -automaton A, we construct an equivalent MON(M)-
automaton B as follows. If (q, x, q′,m) is a transition of A (with states q, q′,
input symbol x, and m ∈ M), then (q, x, true?, q′, [m]) is a transition of B. More-
over, for each final state q of A, the transition (q, ε, 1?, qf , [1]) is in B where qf

is the only final state of B. ��

Weighted Automata with Storage: Next we define the weighted version of (S,Σ)-
automata. The line of our definitions follows the definition of weighted pushdown
automata in [9].

An (S,Σ)-automaton with weights in K is a tuple A = (Q,Σ, c0, q0, Qf , T,wt)
where (Q,Σ, c0, q0, Qf , T) is an (S,Σ)-automaton (underlying (S,Σ)-automaton)
and wt: T → K (weight assignment). If the underlying (S,Σ)-automaton is ε-
free, then we call A ε-free. Let θ = τ1 . . . τn be a computation of A. The weight
of θ is the element in K defined by wt(θ) = val(wt(τ1), . . . ,wt(τn)) .

An (S,Σ,K)-automaton is an (S,Σ)-automaton A with weights in K such
that (i) ΘA(w) is finite for every w ∈ Σ∗ or (ii) K is complete. In this case the
weighted language recognized by A is the K-weighted language ||A|| : Σ∗ → K
defined for every w ∈ Σ∗ by ||A||(w) =

∑
θ∈ΘA(w) wt(θ) .

A weighted language r : Σ∗ → K is (S,Σ,K)-recognizable if there is an
(S,Σ,K)-automaton A such that r = ||A||.

120 L. Herrmann and H. Vogler

Example 5. (1) Each (S,Σ,B)-automaton A can be considered as an (S,Σ)-
automaton which recognizes supp(||A||). (2) Apart from ε-moves, (TRIV, Σ,K)-
automata are the same as weighted finite automata over Σ and the valuation
monoid K [9]. (3) The (P1, Σ,K)-automata are essentially the same as weighted
pushdown automata over Σ and K [9] where acceptance with empty pushdown
can be simulated in the usual way. Thus, for every r : Σ∗ → K we have: r is the
quantitative behaviour of a WPDA as defined in [9] if and only if r is (P1, Σ,K)-
recognizable. ��

For n ≥ 0, a weighted n-iterated pushdown language over Σ and K is a
(Pn, Σ,K)-recognizable weighted language.

4 Separating the Weights from an (S, Σ, K)-Automaton

In this section we will represent an (S,Σ,K)-recognizable weighted language as
the homomorphic image of an (S,Δ)-recognizable language.

We recall from [9] the concept of (weighted) alphabetic morphism. First, we
introduce monomes and alphabetic morphisms. A mapping r : Σ∗ → K is called
a monome if supp(r) is empty or a singleton. If supp(r) = {w}, then we also
write r(w).w instead of r. We let K[Σ ∪{ε}] denote the set of all monomes with
support in Σ ∪ {ε}.

Let Δ be an alphabet and h : Δ → K[Σ ∪ {ε}] be a mapping. The alpha-
betic morphism induced by h is the mapping h′ : Δ∗ → K〈〈Σ∗〉〉 such that
for every n ≥ 0, δ1, . . . , δn ∈ Δ with h(δi) = ai.yi we have h′(δ1 . . . δn) =
val(a1, . . . , an).y1 . . . yn . Note that h′(v) is a monome for every v ∈ Δ∗, and
h′(ε) = 1.ε. If L ⊆ Δ∗ such that the family (h′(v) | v ∈ L) is locally finite
or if K is complete, we let h′(L) =

∑
v∈L h′(v). In the sequel we will use the

following convention. If we write “alphabetic morphism h : Δ → K[Σ ∪ {ε}]”,
then we mean the alphabetic morphism induced by h.

We define a special case of alphabetic morphisms in which K = B. If for every
δ ∈ Δ the support of h(δ) is {σ} for some σ ∈ Σ, then we call h′ a letter-to-letter
morphism. Note that in this case the alphabetic morphism induced by h has the
property that for every v ∈ Δ∗, supp(h′(v)) contains at most one element and
if supp(h′(v)) = {w} for some w ∈ Σ∗, then the lengths of w and v are equal.

Theorem 6. For every r ∈ K〈〈Σ∗〉〉 the following two statements are equivalent:
(1) r is (S,Σ,K)-recognizable.
(2) There are an alphabet Δ, an unambiguous ε-free (S,Δ)-automaton A, and

an alphabetic morphism h : Δ → K[Σ ∪ {ε}] such that r = h(L(A)).

Proof. (1) ⇒ (2): This generalizes [9, Lm. 3] in a straightforward way. Let
B = (Q,Σ, c0, q0, Qf , T,wt) be an (S,Σ,K)-automaton. We construct the (S, T)-
automaton A = (Q,T, c0, q0, Qf , T ′) and the mapping h : T → K[Σ ∪ {ε}] such
that, if τ = (q, x, p, q′, f) is in T , then (q, τ, p, q′, f) is in T ′ and we define
h(τ) = wt(τ).x. Obviously, A is unambiguous and ε-free.

A Chomsky-Schützenberger Theorem for Weighted Automata with Storage 121

Let w ∈ Σ∗ and θ = τ1 . . . τn ∈ ΘB(w). By definition of h, we have that
h(θ) = val(wt(τ1), . . . ,wt(τn)).w. Hence wt(θ) =

(
h(θ)

)
(w). Also, by defini-

tion of (S,Σ,K)-automata, the set ΘB(w) is finite if K is not complete. Thus
the family (h(θ) | θ ∈ L(A)) is locally finite if K is not complete. Then, for

every w ∈ Σ∗, we have ||B||(w) =
∑

θ∈ΘB(w) wt(θ) =
∑

θ∈ΘB(w)

(
h(θ)

)
(w)

(∗)
=∑

θ∈L(A)

(
h(θ)

)
(w) =

(∑
θ∈L(A) h(θ)

)
(w) =

(
h(L(A))

)
(w) where (∗) holds

because for every θ ∈ L(A) with θ /∈ ΘB(w), we have
(
h(θ)

)
(w) = 0 and due to

the fact that
∑

θ∈L(A), θ/∈ΘB(w) 0 = 0. Thus ||B|| = h(L(A)).
(2) ⇒ (1): Let A = (Q,Δ, c0, q0, Qf , T) be an unambiguous ε-free (S,Δ)-

automaton and h : Δ → K[Σ ∪ {ε}] an alphabetic morphism. Moreover, we
assume that the family (h(v) | v ∈ L(A)) is locally finite if K is not complete.
We will construct an (S,Σ,K)-automaton B such that ||B|| = h(L(A)).

Our construction employs a similar technique of coding the preimage of h
into the set of states as in [9, Lm. 4] in order to handle non-injectivity of h
appropriately. However, we have to modify the construction slightly, because the
straightforward generalization would require that S has an identity instruction
(needed in the first step of the computation), which in general we do not assume.
In our constructed automaton, the target state (and not, as in [9, Lm. 4], the
source state) of each transition encodes a preimage of the symbol which is read
by this transition.

Formally, we construct the (S,Σ,K)-automaton B =
(Q′, Σ, c0, q

′
0, Q

′
f , T ′,wt) where Q′ = {q′

0} ∪ Δ × Q with some element q′
0

with q′
0 /∈ Δ×Q, Q′

f = Δ×Qf , and T ′ and wt are defined as follows. Let δ ∈ Δ
and h(δ) = a.y.
– If (q0, δ, p, q, f) is in T , then (q′

0, y, p, (δ, q), f) is in T ′, and its weight is a.
– If (q, δ, p, q′, f) is in T , then ((δ′, q), y, p, (δ, q′), f) is in T ′ for each δ′ ∈ Δ,

and its weight is a.
Let w ∈ Σ∗. First, let v ∈ Δ∗ with h(v) = z.w for some z ∈ K. We write

v = δ1 . . . δn ∈ Δ∗ with n ≥ 0 and δi ∈ Δ. Let h(δi) = ai.yi for every 1 ≤ i ≤ n.
Thus h(v) = val(a1, . . . , an).y1 . . . yn and w = y1 . . . yn and z = val(a1, . . . , an).

Let θ = τ1 . . . τn be a q0-computation in ΘA(v). Clearly, for each i ∈ [n], the
second component of τi is δi. Then we construct the q′

0-computation θ′ = τ ′
1 . . . τ ′

n

in ΘB(y1 . . . yn) inductively as follows:
– If τ1 = (q0, δ1, p1, q1, f1), then we let τ ′

1 = (q′
0, y1, p1, (δ1, q1), f1).

– If 1 < i ≤ n and τi = (qi−1, δi, pi, qi, fi), then we let
τ ′
i = ((δi−1, qi−1), yi, pi, (δi, qi), fi).

Note that
(
h(v)

)
(w) = val(a1, . . . , an) = val(wt(τ ′

1), . . . ,wt(τ
′
n)) = wt(θ′).

Conversely, for every q′
0-computation θ′ = τ ′

1 . . . τ ′
n in ΘB(w) by definition

of T ′ there are a uniquely determined v ∈ Δ∗ and a uniquely determined q0-
computation θ = τ1 . . . τn in ΘA(v) such that θ′ is the computation constructed
above. Hence, for every v ∈ Δ∗ and w ∈ Σ∗, if h(v) = z.w for some z ∈ K, then
ΘA(v) and ΘB(w) are in a one-to-one correspondence.

Thus, for every w ∈ Σ∗, we obtain
(
h(L(A))

)
(w) =

∑
v∈L(A)

(
h(v)

)
(w) =∑

v∈L(A):
(h(v))(w) �=0

(
h(v)

)
(w). Since A is unambiguous this is equal to

122 L. Herrmann and H. Vogler

∑
v∈L(A),θ∈ΘA(v):

(h(v))(w) �=0

wt(θ′). Since there is a one-to-one correspondence between

ΘA(v) and ΘB(w), this is equal to
∑

θ′∈ΘB(w) wt(θ
′) = ||B||(w). Thus

h(L(A)) = ||B||. ��
We could strengthen Theorem 6 by proving (2′) ⇒ (1) where (2′) is obtained

from (2) by dropping the ε-freeness of A.

5 Separating the Storage from an (S, Δ)-Automaton

In this section we will characterize the language recognized by an ε-free (S,Δ)-
automaton A as the image of the set of behaviours of the initial configuration of
A under a simple transducer mapping. Note that A need not be unambiguous.
Our proof follows closely the technique in the proof of [14, Thm. 3.26].

Let c0 be the initial configuration of A and θ a computation of A, i.e., θ ∈
ΘA(q0, w, c0) for some w. By dropping from θ all references to states and to the
input, a sequence of pairs remains where each pair consists of a predicate and
an instruction. This sequence might be called a behaviour of c0. Formally, let Ω
be a finite subset of P × F ,4 c ∈ C, and v = (p1, f1) . . . (pn, fn) ∈ Ω∗. We say
that v is an Ω-behaviour of c if for every i with i ∈ [n] we have (i) pi(c′) = true
and (ii) fi(c′) is defined where c′ = fi−1(. . . f1(c) . . .) (note that c′ = c for i = 1).
We denote the set of all Ω-behaviours of c by B(Ω, c). Note that each behaviour
of c is a path in the approximation of c according to [14, Def. 3.23].

An a-transducer [19] is a machine M = (Q,Ω,Δ, δ, q0, Qf) where Q, Ω, and
Δ are alphabets (states, input/output symbols, resp.), q0 ∈ Q (initial state),
Qf ⊆ Q (final states), and δ is a finite subset of Q × Ω∗ × Q × Δ∗. We say that
M is a simple transducer (from Ω to Δ) if δ ⊆ Q × Ω × Q × Δ. The binary
relation �M on Q×Ω∗×Δ∗ is defined as follows: let (q, ww′, v) �M (q′, w′, vv′) if
(q, w, q′, v′) ∈ δ. The mapping induced by M, also denoted by M, is the mapping
M : Ω∗ → P(Δ∗) defined by M(w) = {v ∈ Δ∗ | (q0, w, ε) �∗

M (q, ε, v), q ∈ Qf}.
If M is a simple transducer, then M(w) is finite for every w. For every L ⊆ Ω∗

we define M(L) =
⋃

v∈L M(v).
Our goal is to prove the following theorem.

Theorem 7. Let S = (C,P, F,C0) be a storage type. Moreover, let L ⊆ Δ∗.
Then the following are equivalent:
(1) L is recognizable by some ε-free (S,Δ)-automaton.
(2) There are c ∈ C, a finite set Ω ⊆ P × F , and a simple transducer M from

Ω to Δ such that L = M(B(Ω, c)).

We note that (1)⇒(2) of Theorem 7 is similar to [19, Lm. 2.3] (after decomposing
the simple transducer M from Ω to Δ according to Theorem 9).

For the proof of this theorem, we define the concept of relatedness between
an ε-free (S,Δ)-automaton A and a simple transducer M with the following
intention:
4 We recall that S = (C, P, F, C0) is an arbitrary storage type.

A Chomsky-Schützenberger Theorem for Weighted Automata with Storage 123

A allows a computation
(q0, x1, p1, q1, f1)(q1, x2, p2, q2, f2) . . . (qn−1, xn, pn, qn, fn) ,

for some states q1, . . . , qn−1 if and only if
(q0, (p1, f1) . . . (pn, fn), ε) �∗

M (qn, ε, x1 . . . xn) .
That is, while reading a behaviour of the initial configuration of A, the simple
transducer M produces a string which is recognized by A. Formally, let A =
(Q,Δ, c, q0, Qf , T) be an ε-free (S,Δ)-automaton and M = (Q′, Ω,Δ′, δ, q′

0, Q
′
f)

be a simple transducer. Then A is related to M if
– Q = Q′, q0 = q′

0, Qf = Q′
f ,

– Δ = Δ′ and Ω is the set of all pairs (p, f) such that T contains a transition
of the form (q, x, p, q′, f) for some q,q′, and x, and

– for every q, q′ ∈ Q, x ∈ Δ, p ∈ P , and f ∈ F we have: (q, x, p, q′, f) ∈ T if and
only if (q, (p, f), q′, x) ∈ δ.

Lemma 8. Let A be an ε-free (S,Δ)-automaton with initial configuration c
and let M be a simple transducer from Ω to Δ. If A is related to M, then
L(A) = M(B(Ω, c)).

Proof. Let A = (Q,Δ, c, q0, Qf , T) and M = (Q,Ω,Δ, δ, q0, Qf). First we prove
that L(A) ⊆ M(B(Ω, c)). Let v ∈ L(A). Then v = x1...xn for some n ≥ 0 and
xi ∈ Δ for every 1 ≤ i ≤ n. Moreover, there is a q0-computation θ in ΘA(v) with
θ = τ1...τn, such that τi ∈ T where τ1 = (q0, x1, p1, q1, f1), for every 2 ≤ i ≤ n
we have τi = (qi−1, xi, pi, qi, fi), and qn ∈ Qf . Since A is related to M, we have
(qi−1, (pi, fi), qi, xi) ∈ δ for every 1 ≤ i ≤ n. Hence (q0, w, ε) �∗

M (qn, ε, x1 . . . xn)
with w = (p1, f1) . . . (pn, fn). Since w ∈ B(Ω, c) is a behaviour of c, v = x1 . . . xn,
and qn ∈ Qf , we obtain that v ∈ M(B(Ω, c)).

Next we prove that M(B(Ω, c)) ⊆ L(A). Let v ∈ M(B(Ω, c)) with v =
x1...xn for some n ≥ 0 and xi ∈ Δ for every 1 ≤ i ≤ n. Then there is a
behaviour w ∈ B(Ω, c) of c such that v ∈ M(w). Then there are (pi, fi) ∈ Ω with
1 ≤ i ≤ n such that w = (p1, f1) . . . (pn, fn). Moreover, there are q0, . . . , qn ∈ Q
such that (q0, (p1, f1), q1, x1) ∈ δ, for every 2 ≤ i ≤ n : (qi−1, (pi, fi), qi, xi) ∈ δ,
and qn ∈ Qf . Since A is related to M, we have τi = (qi−1, xi, pi, qi, fi) ∈ T .
Since w ∈ B(Ω, c), q0 is the initial state of A, and qn ∈ Qf , we have that
τ1 . . . τn ∈ ΘA(v) and thus v ∈ L(A). ��
Proof (of Theorem 7). (1) ⇒ (2): Let L be recognizable by some ε-free (S,Δ)-
automaton A = (Q,Δ, c, q0, Qf , T). Let Ω be the set of all pairs (p, f) such that T
contains a transition of the form (q, x, p, q′, f) for some q,q′, and x. We construct
the simple transducer M = (Q,Ω,Δ, δ, q0, Qf) by defining (q, (p, f), q′, x) ∈ δ if
and only if (q, x, p, q′, f) ∈ T for every q, q′ ∈ Q, x ∈ Δ, and (p, f) ∈ Ω. Clearly,
A is related to M and thus, by Lemma 8, we have that L(A) = M(B(Ω, c)).

(2) ⇒ (1): Let c ∈ C, Ω a finite subset of P × F , and M =
(Q,Ω,Δ, δ, q0, Qf) a simple transducer. First we reduce M to the simple trans-
ducer M′ = (Q,Ω′,Δ, δ, q0, Qf) where Ω′ is the set of all pairs (p, f) such that
(q, (p, f), q′, x) ∈ δ for some q, q′ ∈ Q and x ∈ Δ. Obviously, δ ⊆ Q × Ω′ × Q × Δ
and M(B(Ω, c)) = M′(B(Ω′, c)).

124 L. Herrmann and H. Vogler

Next we construct the ε-free (S,Δ)-automaton A = (Q,Δ, c, q0, Qf , T) by
defining T = {(q, x, p, q′, f) | (q, (p, f), q′, x) ∈ δ}. Since A is related to M′, we
have that L(A) = M′(B(Ω′, c)) = M(B(Ω, c)) by Lemma 8. ��

6 The Main Result and Its Applications

For the proof of our CS theorem for weighted automata with storage, we first
recall a result for simple transducers [18, proof of Thm. 2.1].

Theorem 9. Let Ω be an alphabet and L ⊆ Ω∗ and let M : Ω∗ → Pfin(Δ∗) be
induced by a simple transducer M. Then there are an alphabet Φ, two letter-
to-letter morphisms h1 : Φ → B[Ω] and h2 : Φ → B[Δ], and a regular language
R ⊆ Φ∗ such that M(L) = h2(h−1

1 (L) ∩ R).

Next we show that a letter-to-letter morphism h2 : Φ → B[Δ] and an alpha-
betic morphism h : Δ → K[Σ ∪ {ε}] can be combined smoothly. We define
the alphabetic morphism (h ◦ h2) : Φ → K[Σ ∪ {ε}] for every x ∈ Φ by
(h ◦ h2)(x) = h(δ) if h2(x) = 1.δ for some δ ∈ Δ (recall that | supp(h2(x))| = 1).

Lemma 10. Let h2 : Φ → B[Δ] be a letter-to-letter morphism and
h : Δ → K[Σ ∪ {ε}] an alphabetic morphism. Moreover, let H ⊆ Φ∗ be a lan-
guage. If (h(v) | v ∈ h2(H)) is locally finite, then ((h ◦h2)(w) | w ∈ H) is locally
finite.

Proof. Let u ∈ Σ∗. By assumption, we have that {v ∈ h2(H) | u ∈ supp(h(v))}
is finite; let us denote this set by Cu. Since h2 is letter-to-letter, we have that
{y ∈ H | v ∈ h2(y)} is finite for each v ∈ h2(H). Then we have: |{w ∈ H |
u ∈ supp((h ◦ h2)(w)}| = ∑

v∈Cu
|{y ∈ H | v ∈ h2(y)}|. Hence, {w ∈ H | u ∈

supp((h ◦ h2)(w)} is finite. ��
Now we can prove the CS theorem for (S,Σ,K)-automata (cf. Fig.1).

Theorem 11. Let S = (C,P, F,C0) be a storage type, Σ an alphabet, and K a
unital valuation monoid. If r ∈ K〈〈Σ∗〉〉 is (S,Σ,K)-recognizable, then there are
– an alphabet Φ and a regular language R ⊆ Φ∗,
– a finite set Ω ⊆ P × F and a configuration c ∈ C,
– a letter-to-letter morphism h1 : Φ → B[Ω], and
– an alphabetic morphism h′ : Φ → K[Σ ∪ {ε}]

such that r = h′(h−1
1 (B(Ω, c)) ∩ R).

Proof. By Theorem 6 there are an alphabet Δ, an ε-free (S,Δ)-automaton A,
and an alphabetic morphism h : Δ → K[Σ∪{ε}] such that r = h(L(A)). Hence, if
K is not complete, then ΘA(w) is finite for every w ∈ Σ∗, and (h(v) | v ∈ L(A))
is locally finite. According to Theorem 7, there are c ∈ C, a finite set Ω ⊆
P × F , and a simple transducer M from Ω to Δ such that L(A) = M(B(Ω, c)).
Due to Theorem 9, there are an alphabet Φ, two letter-to-letter morphisms
h1 : Φ → B[Ω] and h2 : Φ → B[Δ], and a regular language R ⊆ Φ∗ such that

A Chomsky-Schützenberger Theorem for Weighted Automata with Storage 125

r ∈ K〈〈Σ∗〉〉

Δ∗ ⊇ L(A)

h

B(Ω, c) ⊆ Ω∗ M

R ⊆ Φ∗

h1 h2 h′

Fig. 1. An illustration of the proof of Theorem 11

M(B(Ω, c)) = h2(h−1
1 (B(Ω, c))∩R). Let us denote the language h−1

1 (B(Ω, c))∩R
by H. Thus L(A) = h2(H).

Since (h(v) | v ∈ L(A)) is locally finite if K is not complete, we have by
Lemma 10 that also ((h ◦ h2)(w) | w ∈ H) is locally finite if K is not complete.
Thus r = (h ◦ h2)(h−1

1 (B(Ω, c)) ∩ R) and we can take h′ = (h ◦ h2). ��
Finally we instantiate the storage type S in Theorem 11 in several ways

and obtain the CS theorem for the corresponding class of (S,Σ,K)-recognizable
weighted languages: (1) S = Pn: K-weighted n-iterated pushdown languages.
(2) S = NS(TRIV) where NS is the nested stack operator defined in [14, Def.
7.1]: K-weighted nested stack automata (cf. Ex. 3). (3) S = SC(TRIV) where
SC is obtained from NS by forbidding instructions for creating and destructing
nested stacks: K-weighted stack automata (weighted version of stack automata
[20]). (4) S = MON(M) for some monoid M (cf. Ex. 4): K-weighted M -automata
(weighted version of M -automata [24]).

In future investigations we will compare formally the CS theorem for quan-
titative context-free languages over Σ and K [9, Thm. 2(1) ⇔ (2)] with our
Theorem 11 for (P 1, Σ,K)-recognizable weighted languages.

References

1. Aho, A.V.: Indexed grammars – an extension of context-free grammars. J. ACM
15, 647–671 (1968)

2. Aho, A.V.: Nested stack automata. JACM 16, 383–406 (1969)
3. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages.

In: Computer Programming and Formal Systems, pp. 118–161. North-Holland,
Amsterdam (1963)

4. Damm, W.: The IO- and OI-hierarchies. Theoret. Comput. Sci. 20, 95–207 (1982)
5. Damm, W., Goerdt, A.: An automata-theoretical characterization of the OI-

hierarchy. Inform. Control 71, 1–32 (1986)
6. Denkinger, T.: A Chomsky-Schützenberger representation for weighted multiple

context-free languages. In: The 12th International Conference on Finite-State Meth-
ods and Natural Language Processing (FSMNLP 2015) (2015). (accepted for pub-
lication)

126 L. Herrmann and H. Vogler

7. Droste, M., Meinecke, I.: Describing average- and longtime-behavior by weighted
MSO logics. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 537–548. Springer, Heidelberg (2010)

8. Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation
monoids. Intern. J. of Found. of Comp. Science 22(8), 1829–1844 (2011)

9. Droste, M., Vogler, H.: The Chomsky-Schützenberger theorem for quantitative
context-free languages. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol.
7907, pp. 203–214. Springer, Heidelberg (2013)

10. Eilenberg, S.: Automata, Languages, and Machines - Volume A. Pure and Applied
Mathematics, vol. 59. Academic Press (1974)

11. Engelfriet, J.: Iterated pushdown automata and complexity classes. In: Proc. of
STOCS 1983, pp. 365–373. ACM, New York (1983)

12. Engelfriet, J.: Context-free grammars with storage. Technical Report 86–11, Uni-
versity of Leiden (1986). see also: arXiv:1408.0683 [cs.FL] (2014)

13. Engelfriet, J., Schmidt, E.M.: IO and OI.I. J. Comput. System Sci. 15(3), 328–353
(1977)

14. Engelfriet, J., Vogler, H.: Pushdown machines for the macro tree transducer. The-
oret. Comput. Sci. 42(3), 251–368 (1986)

15. Engelfriet, J., Vogler, H.: High level tree transducers and iterated pushdown tree
transducers. Acta Inform. 26, 131–192 (1988)

16. Fischer, M.J.: Grammars with macro-like productions. Ph.D. thesis, Harvard Uni-
versity, Massachusetts (1968)

17. Fratani, S., Voundy, E.M.: Dyck-based characterizations of indexed languages. pub-
lished on arXiv http://arxiv.org/abs/1409.6112 (March 13, 2015)

18. Ginsburg, S., Greibach, S.A.: Abstract families of languages. Memoirs of the Amer-
ican Math. Soc. 87, 1–32 (1969)

19. Ginsburg, S., Greibach, S.A.: Principal AFL. J. Comput. Syst. Sci. 4, 308–338
(1970)

20. Greibach, S.A.: Checking automata and one-way stack languages. J. Comput. Sys-
tem Sci. 3, 196–217 (1969)

21. Greibach, S.A.: Full AFLs and nested iterated substitution. Inform. Control 16,
7–35 (1970)

22. Harrison, M.A.: Introduction to Formal Language Theory, 1st edn. Addison-Wesley
Longman Publishing Co., Inc, Boston (1978)

23. Hulden, M.: Parsing CFGs and PCFGs with a Chomsky-Schützenberger represen-
tation. In: Vetulani, Z. (ed.) LTC 2009. LNCS, vol. 6562, pp. 151–160. Springer,
Heidelberg (2011)

24. Kambites, M.: Formal languages and groups as memory. arXiv:math/0601061v2
[math.GR] (October 19, 2007)

25. Kanazawa, M.: Multidimensional trees and a Chomsky-Schützenberger-Weir rep-
resentation theorem for simple context-free tree grammars. J. Logic Computation
(2014)

26. Maslov, A.N.: The hierarchy of indexed languages of an arbitrary level. Soviet
Math. Dokl. 15, 1170–1174 (1974)

27. Maslov, A.N.: Multilevel stack automata. Probl. Inform. Transm. 12, 38–42 (1976)
28. Okhotin, A.: Non-erasing variants of the Chomsky–Schützenberger theorem. In:

Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer,
Heidelberg (2012)

29. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer-Verlag (1978)

30. Scott, D.: Some definitional suggestions for automata theory. J. Comput. System
Sci. 1, 187–212 (1967)

http://arxiv.org/abs/1408.0683
http://arxiv.org/abs/http://arxiv.org/abs/1409.6112
http://arxiv.org/abs/math/0601061v2

A Chomsky-Schützenberger Theorem for Weighted Automata with Storage 127

31. Wand, M.: An algebraic formulation of the Chomsky hierarchy. In: Manes, E.G.
(ed.) Category Theory Applied to Computation and Control. LNCS, vol. 25, pp.
209–213. Springer, Heidelberg (1975)

32. Weir, D.J.: Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D.
thesis, University of Pennsylvania (1988)

33. Yoshinaka, R., Kaji, Y., Seki, H.: Chomsky-Schützenberger-type characterization
of multiple context-free languages. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C.
(eds.) LATA 2010. LNCS, vol. 6031, pp. 596–607. Springer, Heidelberg (2010)

EF+EX Forest Algebras

Andreas Krebs1(B) and Howard Straubing2

1 Wilhelm-Schickard-Institut at Eberhard-Karls, Universität Tübingen,
Tübingen, Germany

krebs@informatik.uni-tuebingen.de
2 Boston College, Chestnut Hill, USA

Abstract. We examine languages of unranked forests definable using
the temporal operators EF and EX. We characterize the languages defin-
able in this logic, and various fragments thereof, using the syntactic forest
algebras introduced by Bojanczyk and Walukiewicz. Our algebraic char-
acterizations yield efficient algorithms for deciding when a given language
of forests is definable in this logic. The proofs are based on understand-
ing the wreath product closures of a few small algebras, for which we
introduce a general ideal theory for forest algebras. This combines ideas
from the work of Bojanczyk and Walukiewicz for the analogous logics on
binary trees and from early work of Stiffler on wreath product of finite
semigroups.

1 Overview

Understanding the expressive power of temporal and first-order logic on trees is
important in several areas of computer science, for example in formal verification.
Using algebraic methods, in particular, finite monoids, to understand the power
of subclasses of the regular languages of finite words has proven to be extremely
successful, especially in the characterization of regular languages definable in var-
ious fragments of first-order and temporal logics ([CPP93,TW96,Str94]). Here
we are interested in sets of of finite trees (or, more precisely, sets of finite forests),
where the analogous algebraic structures are forest algebras.

Bojanczyk et. al. [BW08,BSW12] introduced forest algebras, and under-
scored the importance of the wreath product decomposition theory of these
algebras in the study of the expressive power of temporal and first-order log-
ics on finite unranked trees. For languages inside of CTL the associated forest
algebras can be built completely via the wreath product of copies of the forest
algebra U2 = ({0,∞}, {1, 0, c0}), where the vertical element 0 is the constant
map to ∞, and the vertical element c0 is the constant map to 0 ([BSW12]). The
problem of effectively characterizing the wreath product closure of U2 is thus an
important open problem, equivalent to characterization of CTL. Note that if one
strips away the additive structure of U2, the wreath product closure is the family
of all finite aperiodic semigroups (the Krohn-Rhodes Theorem). Forest algebras
have been successfully applied to the obtain characterization of other logics on
trees; see, for example [BSS12,BS09].
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 128–139, 2015.
DOI: 10.1007/978-3-319-23021-4 12

EF+EX Forest Algebras 129

Here we study in detail the wreath product closures of proper subalgebras of
U2. In one sense, this generalizes early work of Stiffler [Sti73], who carried out an
analogous program for wreath products of semigroups. Along the way, we develop
the outlines of a general ideal theory for forest algebras, which we believe will
be useful in subsequent work. After developing the underlying algebraic theory,
we give an application to logic, obtaining a characterization of the languages of
unranked forests definable with the temporal operators EF and EX.

Bojanczyk and Walukiewicz [BW06] obtained similar results for binary trees,
using methods quite different from ours. Esik [Ési05] considered the analogous
logics for ranked trees, and proved similar decidability results with techniques
very much in the same spirit as ours, relying on a version of the wreath product
tree automata acting on ranked trees.

Much of our goal in presenting these results in the context of unranked forest
algebras is to develop the outlines of a general ideal theory for these algebras,
and to show its connection with wreath product decompositions. We believe this
approach will prove useful in subsequent work.

2 Forest Algebras

2.1 Preliminaries

We refer the reader to [BW08,BSW12] for the definitions of abstract forest
algebra, free forest algebra, and syntactic forest algebra. We denote the free
forest algebra over a finite alphabet A by AΔ = (HA, VA), where HA denotes the
monoid of forests over A, with concatenation as the operation, and VA denotes
the monoid of contexts over A, with composition as the operation. A subset L
of HA is called a forest language over A. We denote its syntactic forest algebra
by (HL, VL), and its syntactic morphism by μL : AΔ → (HL, VL).

For the most part, our principal objects of study are not the forest alge-
bras themselves, but homomorphisms α : AΔ → (H,V). It is important to bear
in mind that each such homomorphism is actually a pair of monoid homomor-
phisms, one mapping HA to H and the other mapping VA to V. It should usually
be clear from the context which of the two component homomorphisms we mean,
and thus we denote them both by α. The ‘freeness’ of AΔ is the fact that a homo-
morphism α into (H,V) is completely determined by giving its value, in V, at
each a ∈ A.

A homomorphism α as above recognizes a language L ⊆ HA if there exists
X ⊆ H such that α−1(X) = L.

If α : AΔ → (H,V) and β : AΔ → (H ′, V ′), are homomorphisms, we say
that β factors through α if for all s, s′ ∈ HA, α(s) = α(s′) implies β(s) = β(s′).
This is equivalent to the existence of a homomorphism ρ from the image of α
into (H ′, V ′) such that β = ρα. A homomorphism α recognizes L ⊆ HA if and
only if μL factors through α.([BW08]).

In the course of the paper we will see several congruences defined on free forest
algebras. Such a congruence is determined by an equivalence relation ∼ on HA

130 A. Krebs and H. Straubing

such that for any p ∈ VA, s ∼ s′ implies ps ∼ ps′. This gives a well-defined
action of VA on the set of ∼-classes of HA. We define an equivalence relation
(also denoted ∼) on VA by setting p ∼ p′ if for all s ∈ HA, ps ∼ p′s. The result is
a quotient forest algebra (HA/∼, VA/∼). In order to prove that an equivalence
relation ∼ on HA is a congruence, it is sufficient to verify that s ∼ s′ and t ∼ t′

implies s + t ∼ s′ + t′ and as ∼ as′ for all s, s′, t, t′ ∈ HA and a ∈ A.

2.2 Horizontally Idempotent and Commutative Algebras

We now introduce an important restriction. Throughout the rest of the paper,
we will assume that all of our finite forest algebras (H,V) have H idempotent
and commutative; that is h + h′ = h′ + h and h + h = h for all h, h′ ∈ H. This
is a natural restriction when talking about classes of forest algebras arising in
temporal logics, which is the principal application motivating this study.

When H is horizontally idempotent and commutative, the sum of all its
elements is an absorbing element for the monoid. While an absorbing element
in a monoid is ordinarily written 0, since we use additive notation for H, its
identity is denoted 0, and accordingly we denote the absorbing element, which
is necessarily unique, by ∞.

We say that two forests s1, s2 ∈ HA are idempotent-and-commutative equiv-
alent if s can be transformed into t by a sequence of operations of the follow-
ing three types: (i) interchange the order of two adjacent subtrees (that is, if
s = p(t1+t2) for some context p and trees t1, t2, then we transform s to p(t2+t1));
(ii) replace a subtree t by two adjacent copies (that is, transform pt to p(t + t));
(iii) replace two identical adjacent subtrees by a single copy (transform p(t + t)
to pt). Since operations (ii) and (iii) are inverses of one another, and operation
(i) is its own inverse, this is indeed an equivalence relation.

We have the following obvious lemma:

Lemma 1. Let α : AΔ → (H,V) be a homomorphism, where H is horizon-
tally idempotent and commutative. If s, t ∈ HA are idempotent-and-commutative
equivalent, then α(s) = α(t).

There is a smallest nontrivial idempotent and commutative forest algebra, U1 =
({0,∞}, {1, 0}). The horizontal and vertical monoids of U1 are isomorphic, but
we use different names for the elements because of the additive notation for the
operation in one of these monoids, and multiplicative notation in the other. We
have not completely specified how the vertical monoid acts on the horizontal
monoid—this is done by setting 0 · x = ∞ for x ∈ {0,∞}.

2.3 1-Definiteness

In Section 5 we will discuss in detail the notion of definiteness in forest algebras;
for this preliminary section, we will only need to consider a special case. A forest
algebra homomorphism α : AΔ → (H,V) is said to be 1-definite if for s ∈ HA,
the value of α(s) depends only on the set of labels of the root nodes of s.

EF+EX Forest Algebras 131

We define an equivalence relation ∼1 on HA by setting s ∼1 s′ if and only if
the sets of labels of root nodes of s and s′ are equal. This defines a congruence
on AΔ. We denote the homomorphism from AΔ onto the quotient under ∼1 by
αA,1. It is easy to show that a homomorphism α : AΔ → (H,V) is 1-definite if
and only if it factors through αA,1.

2.4 Wreath Products

We summarize the discussion of wreath products given in [BSW12]. The wreath
product of two forest algebras (H1, V1), (H2, V2) is (H1, V1) ◦ (H2, V2) = (H1 ×
H2, V1 × V H1

2), where the monoid structure of H1 × H2 is the ordinary direct
product, and the action is given by (v1, f)(h1, h2) = (v1h1, f(h1)h2), for all
h1 ∈ H1, h2 ∈ H2, v1 ∈ V1, and f : H1 → V2. It is straightforward to verify that
the resulting structure satisfies the axioms for a forest algebra. Note that if one
forgets about the monoid structure on H1 and H2, this is just the ordinary wreath
product of left transformation monoids. Because we use left actions rather than
the right actions that are traditional in the study of monoid decompositions,
we reverse the usual order of the factors. The projection maps π : (h1, h2) �→
h1, (v, f) �→ v, define a homomorphism from the wreath product onto the left-
hand factor.

2.5 Reachability

Let (H,V) be a finite forest algebra. For h, h′ ∈ H we write h ≤ h′ if h = vh′

for some v ∈ V, and say that h is reachable from h′. This gives a preorder on H.
We set h ∼= h′ if both h ≤ h′ and h′ ≤ h. An equivalence class of ∼= is called a
reachability class. The preorder consequently results in a partial order on the set
of reachability classes of H. We always have h+h′ ≤ h, because h+h′ = (1+h′)h.
If h ∈ H and Γ is a reachability class of H then we write, for example, h ≥ Γ
to mean that Γ ≤ Γ ′, where Γ ′ is the class of h.

A reachability ideal in (H,V) is a subset I of H such that h ∈ I and h′ ≤ h
implies h′ ∈ I. If we have a homomorphism α : AΔ → (H,V) and a reachability
ideal I ⊆ H, we define an equivalence relation ∼I on HA by setting s ∼I s′

if α(s) = α(s′) /∈ I, or if α(s), α(s′) ∈ I. Easily s ∼I s′ implies ps ∼I ps′

for any p ∈ VA. We thus obtain a homomorphism onto the quotient algebra
αI : AΔ → (H/∼I , V/∼I) which factors through α. Note that I is, in particular,
a two-sided ideal in the monoid H, and H/∼I is identical to the usual quotient
monoid H/I = (H − I) ∪ {∞}. We will thus use the notation (H/I, V/I) for
the quotient algebra, instead of (H/∼I , V/∼I). If Γ ⊆ H is a reachability class,
then both IΓ = {h ∈ H : h �> Γ} and I≥Γ = {h ∈ H : h �≥ Γ} are reachability
ideals. We denote the associated quotients and projection homomorphisms by
(HΓ , VΓ), αΓ , (H≥Γ , V≥Γ), α≥Γ .

Given the restriction that H is idempotent and commutative, the absorb-
ing element ∞ is reachable from every element. The reachability class of ∞ is
accordingly the unique minimal class, which we denote Γmin. A reachability class

132 A. Krebs and H. Straubing

Γ is subminimal if Γmin < Γ, but there is no class Λ with Γmin < Λ < Γ. The
following lemma will be used several times.

Lemma 2. Let α : AΔ → (H,V), and let Γ1, . . . , Γr be the subminimal reacha-
bility classes of (H,V). Then

αΓmin : AΔ → (HΓmin , VΓmin)

factors through the direct product
(r∏

j=1

α≥Γj

)
: AΔ →

r∏

j=1

(H≥Γj
, V≥Γj

).

Further each of the algebras (H≥Γj
, V≥Γj

) has a unique subminimal reachability
class.

We will also need the following lemma, which concerns the behavior of reach-
ability classes under homomorphisms.

Lemma 3. Let β : (H1, V1) → (H2, V2) be a homomorphism of finite forest
algebras. Let Λ ⊆ H1 be a reachability class. There is a reachability class Γ
of (H2, V2) such that β(Λ) ⊆ Γ. If Λ is a minimal class of (H1, V1) satisfying
β(Λ) ⊆ Γ, and β is onto, then β(Λ) = Γ. If, further, H2 is idempotent and
commutative, then there is only one such minimal class Λ.

3 Connections to Logic

For the definition of temporal logic and especially the temporal operators EF
and EX we refer to [BSW12] as our approach closely follows the one given there.

Intuitively, when we interpret formulas in trees, EFφ means ‘at some time in
the future φ’ and EXφ means ‘at some next time φ’. When we interpret such
formulas in forests, we are in a sense treating the forest as though it were a
tree with a phantom root node. Observe that if a ∈ A, we do not interpret the
formula a in forests at all. Thus a formula can have different interpretations
depending on whether we view it as a tree or a forest formula. For example, as a
forest formula EXa means ‘there is a root node labeled a’ while as a tree formula
it means ‘some child of the root is labeled a’. If φ is a forest formula, then we
denote by Lφ the set of all s ∈ HA such that s |= φ. Lφ is the language defined
by φ.

Example 4. Consider the following property of forests over {a, b}: There is a tree
component containing only as, and another tree component that contains at least
one b. Now consider the set L of forests s that either have this property, or in
which for some node x, the forest of strict descendants of x has the property.
The property itself is defined by the forest formula

ψ : EX(a ∧ ¬EFb) ∧ EX(b ∨ EFb)

and L is defined by ψ∨EFψ. In Example 9, we discuss the syntactic forest algebra
of L.

EF+EX Forest Algebras 133

3.1 Correspondence of Operators with Wreath Products

The principal result of this paper is the algebraic characterization of the forest
languages using the operators EF and EX, either separately or in combination.
It will require some algebraic preparation, in Sections 4, 5 and 6 before we can
give the precise statement of this theorem. The bridge between the logic and the
algebra is provided by the next two propositions.

Let φ be a tree formula. Then φ can be written as a disjunction
∨

a∈A(a∧ψa),
where each ψa is a forest formula. Let Ψ = {ψa : a ∈ A}. We’ll call Ψ the set of
forest formulas of φ. We say that a homomorphism β : AΔ → (H,V) recognizes
Ψ if the value of β(s) determines exactly which formulas of Ψ are satisfied by
s. To construct such a homomorphism, we can take the direct product of the
syntactic algebras of Lψ for ψ ∈ Ψ, and set β to be the product of the syntactic
morphisms.

The following theorem, adapted from [BSW12], gives the connection between
the EF operator and wreath products with U1:

Proposition 5. (a) Suppose that φ is a tree formula, Ψ is the set of forest
formulas of φ, and that Ψ is recognized by α : AΔ → (H,V). Then EFφ is
recognized by a homomorphism β : AΔ → (H,V) ◦ U1, where πβ = α.
(b) Suppose that L ⊆ HA is recognized by a homomorphism β : AΔ → (H,V)◦U1.
Then L is a boolean combination of languages of the form EF(a ∧ φ), where Lφ

is recognized by πβ.

Here we prove an analogous result for the temporal operator EX.

Proposition 6. (a) Suppose that φ is a tree formula, Ψ is the set of forest
formulas of φ, and that Ψ is recognized by α : AΔ → (H,V). Then EXφ is
recognized by a homomorphism α ⊗ β : AΔ → (H,V) ◦ (H ′, V ′), where β :
(A × H)Δ → (H ′, V ′) is 1-definite.
(b) Suppose that L ⊆ HA is recognized by a homomorphism α ⊗ β : AΔ →
(H,V) ◦ (H ′, V ′), Suppose further that every language recognized by α is defined
by a formula in some set Ψ of formulas. If β : (A×H)Δ → (H ′, V ′) is 1-definite,
then L is a boolean combination of languages of the form Lψ and EX(a∧ψ), where
ψ ∈ Ψ.

4 EF-algebras

Following [BSW12], we define:

Definition 7. A finite forest algebra (H,V) is an EF-algebra if it satisfies the
identities h + h′ = h′ + h, vh + h = vh for all h, h′ ∈ H and v ∈ V. The
second identity with v = 1 gives h+h = h. Thus every EF-algebra is horizontally
idempotent and commutative.

The following result is proved in [BSW12], and is the key element in the
characterization of languages definable in one of the temporal logics we consider

134 A. Krebs and H. Straubing

in Section 3. We will give a new proof, as it provides a good first illustration
of how we use the reachability ideal theory introduced above in decomposition
arguments.

Theorem 8. Let α : AΔ → (H,V) be a homomorphism onto a forest algebra.
(H,V) is an EF-algebra if and only if α factors through a homomorphism β :
AΔ → U1 ◦ · · · ◦ U1.

A classic result of Stiffler [Sti73] shows that a right transformation monoid
(Q,M) divides an iterated wreath product of copies of the transformation
monoid U1 = ({0, 1}, {0, 1}) if and only if M is R-trivial. In terms of trans-
formation monoids this means there is no pair of distinct states q �= q′ ∈ Q
such that qm = q′, q′m′ = q for some m,m′ ∈ M. Since forest algebras are left
transformation monoids, the analogous result would suggest that a forest alge-
bra (H,V) divides an iterated wreath product of copies of U1 if and only if V is
L-trivial—that is, if and only if (H,V) has trivial reachability classes. We have
already seen that this condition is necessary.

However, the following example shows that it is not sufficient.

Example 9. Figure 1 below defines the syntactic forest algebra of the language L
of Example 4. The nodes in the diagram represent the elements of the horizontal
monoid, and the arrows give the action of a generating set of letters A = {a, b}
on the horizontal monoid. The letter transitions, together with the conventions
about idempotence and commutativity, and the meaning of 0 and ∞, completely
determine the addition and the action. Since ∞ = a + b = a + ba �= ba = b, this
is not an EF-algebra, but the reachability classes are singletons.

0 a b a+b
a

a

b

a, b

b

a, b

Fig. 1. An algebra with trivial reachability classes that is not an EF-algebra

5 Definiteness

5.1 Definite Homomorphisms

Let k > 0. A finite semigroup S is said to be reverse k-definite if it satisfies the
identity x1x2 · · · xky = x1 · · · xk. The reason for the word ‘reverse’ is that defi-
niteness of semigroups was originally formulated in terms of right transformation
monoids, so the natural analogue of definiteness in the setting of forest algebras
corresponds to reverse definiteness in semigroups. Observe that the notions of
definiteness and reverse definiteness in semigroups do not really make sense for

EF+EX Forest Algebras 135

monoids, since only the trivial monoid can satisfy the underlying identities. For
much the same reason, we define definiteness for forest algebras not as a property
of the algebras themselves, but of homomorphisms α : AΔ → (H,V).

The depth of a context p ∈ VA is defined to be the depth of its hole; so for
instance a context with its hole at a root node has depth 0. We say that the
homomorphism α is k-definite, where k > 0, if for every p ∈ VA of depth at
least k, and for all s, s′ ∈ HA, α(ps) = α(ps′). Easily, if α1, α2 are k-definite
homomorphisms, then so are α1 × α2 and ψα1, where ψ : (H,V) → (H ′, V ′) is
a homomorphism of forest algebras.

A context is guarded if it has depth at least 1, that is, if the hole is not at
the root. We denote by V gu

A the subsemigroup of VA consisting of the guarded
contexts.

Lemma 10. Let k > 0. A homomorphism α : AΔ → (H,V) is k-definite if and
only if α(V gu

A) is a reverse k-definite semigroup.

Definition 11. An EX-homomorphism is a homomorphism that is k-definite for
some k ∈ N.

5.2 Free k-definite Algebra

We construct what we will call free k-definite algebra over an alphabet A. This is
a slight abuse of terminology, since as we noted above, it is the homomorphism
into this algebra, and not the algebra itself, that is k-definite. We do this by
recursively defining a sequence of congruences ∼k on AΔ. If k = 0, then ∼0 is
just the trivial congruence that identifies all forests. If k ≥ 0 and ∼k ha been
defined then we associate to each forest s = a1s1 + · · · arsr, where each ai ∈ A,
si ∈ HA, the set

T k+1
s = {(ai, [si]∼k

) : 1 ≤ i ≤ r},

where []∼k
denotes the ∼k-class of a forest. We then define s ∼k+1 s′ if and only

if T k+1
s = T k+1

s′ .

Proposition 12. Let k ≥ 0. Then ∼k+1 refines ∼k . ∼k is a congruence of
finite index on AΔ, with a horizontally idempotent and commutative quotient.

Intuitively, s ∼k s′ means that the forests s and s′ are identical at the k levels
closest to the root, up to idempotent and commutative equivalence. In fact, this
intuition provides an equivalent characterization of ∼k, which we give below. We
omit the simple proof.

Lemma 13. Let s, s′ ∈ HA and k > 0. Let s̄, s̄′, denote, respectively, the forests
obtained from s and s′ by removing all the nodes at depth k or more. Then
s ∼k s′ if and only if s̄ and s̄′ are idempotent-and-commutative equivalent.

Let us denote by αA,k the homomorphism from AΔ onto its quotient by ∼k .
In the case where k = 1, we will identify HA/∼1 with the monoid (P(A),∪),
and the horizontal component of αA,1 with the map that sends each forest to
the set of its root nodes.

136 A. Krebs and H. Straubing

The following theorem gives both the precise sense in which this is the ‘free
k-definite forest algebra’, as well as the wreath product decomposition of k-
definite homomorphisms into 1-definite homomorphisms into a forest algebra
with horizontal monoid {0,∞}.

Theorem 14. Let α : AΔ → (H,V) be a homomorphism onto a finite forest
algebra. Let k > 0. The following are equivalent.

(a) α is k-definite.
(b) α factors through αA,k.
(c) α factors through

β1 ⊗ · · · ⊗ βk : AΔ → (H1, V1) ◦ · · · ◦ (Hk, Vk),

where each βi : (A × H1 × · · · × Hi−1)Δ → (Hi, Vi) is 1-definite.
(d) α factors through an iterated wreath product of k 1-definite homomorphisms

into U2.

6 (EF,EX)-algebras

6.1 The Principal Result

Definition 15. An (EF,EX)-homomorphism α : AΔ → (H,V) is one that fac-
tors through an iterated wreath product

β1 ⊗ · · · ⊗ βk,

where each βi either maps into U1 or is 1-definite. By Theorem 14 we can suppose
that each 1-definite βi maps into U2.

The principal result of this paper is an effective necessary and sufficient
condition for a homomorphism to be a (EF,EX)-homomorphism.

Definition 16. Suppose α : AΔ → (H,V). Let s1, s2 ∈ HA, k > 0, and Γ ⊆ H
a reachability class for (H,V). We say that s1, s2 are (α, k, Γ)-confused, and
write s1 ≡α,k,Γ s2, if

(s1)αΓ ∼k (s2)αΓ , α(s1), α(s2) ∈ Γ.

Observe that the equivalence relation ∼k in the first item is over the extended
alphabet A×HΓ . It is worth emphasizing what (s)αΓ is when α(s) ∈ Γ : We are
tagging each node of x of s with the value α(t) ∈ H if the tree rooted at x is
at and α(t) > Γ, but we are tagging the node by ∞–effectively leaving the node
untagged–if α(t) ∈ Γ. Since α(s) ∈ Γ, every node is of one of these two types.

Definition 17. A homomorphism α is nonconfusing if and only if there exists
k > 0 such that ≡α,k,Γ is equality for reachability classes Γ.

EF+EX Forest Algebras 137

In the full version of the paper [KS14] we show that it can be effectively deter-
mined if a forest algebra morphism is nonconfusing.

It follows from Proposition 12 that ≡α,k+1,Γ refines ≡α,k,Γ , so that if α is
nonconfusing with associated parameter k, then it is nonconfusing for all m > k.

Our main result is:

Theorem 18. Let α : AΔ → (H,V) be a homomorphism into a finite forest
algebra. Then α is a (EF,EX) homomorphism if and only if it is nonconfusing.

The proof of Theorem 18 will be given in the next two subsections.

Example 19. Consider once again the algebra of Examples 4 and 9 and the asso-
ciated homomorphism α from {a, b}Δ. Since the algebra has trivial reachability
classes, α is nonconfusing for all k, so Theorem 18 implies that α is an (EF,EX)-
homomorphism. We will see in the course of the proof of the main theorem how
the wreath product decomposition is obtained.

Example 20. Consider again the forest algebra U2 = ({0,∞}, {1, c∞, c0}), and
the homomorphism α from {a, b, c}Δ onto U2 that maps a to 1, b to c0 and c to
c∞. There is a unique reachability class Γ, so for any forest s, sαΓ is identical to
s. Now observe that akb ∼k akc, but that these are mapped to different elements
under α. So by our main theorem, α is not an (EF,EX)-homomorphism.

6.2 Sufficiency of the Condition

We will use the ideal theory developed earlier to prove that every nonconfusing
homomorphism factors through a wreath product decomposition of the required
kind. The structure of our proof resembles the one given for Theorem 8. Once
again, we proceed by induction on |H|. The base of the induction is the trivial
case |H| = 1. Let us suppose that α : AΔ → (H,V) is nonconfusing with
parameter k, that |H| > 1, and that every nonconfusing homomorphism into a
forest algebra with a smaller horizontal monoid factors through a wreath product
of the required kind.

Let Γ = Γmin. Suppose first that |Γ | > 1. We claim that α factors through

β = αΓ ⊗ αB,k : AΔ → (HΓ , VΓ) ◦ BΔ/∼k

where B = A×HΓ . Since |HΓ | < |H| and αΓ is also nonconfusing, the induction
hypothesis gives the desired decomposition of α. To establish the claim, let s ∈
HA. Then

β(s) = (αΓ (s), [sαΓ]∼k
).

If s /∈ Γ, then the value of the left-hand coordinate determines α(s). If s ∈ Γ, then
by the nonconfusion condition, the value of the right-hand coordinate determines
α(s). Thus α factors through β as required.

So let |Γ | = 1. Then Γ = {∞} and (HΓ , VΓ) = (H,V). Lemma 2 implies
that we can suppose (H,V) has a single subminimal reachability class, because
each of the component homomorphisms in the direct product is nonconfusing,
and the direct product factors through the wreath product.

138 A. Krebs and H. Straubing

Thus we have a unique minimal element ∞, and a unique subminimal ideal
Γ ′. We claim that α factors through

β = α1 ⊗ α2 ⊗ α3 : AΔ → (HΓ ′ , VΓ ′) ◦ BΔ/∼k ◦ U1,

where α1 = αΓ ′ and α2 = αB,k, where B = A × HΓ ′ , and α3 : (B × 2B)Δ → U1

will be defined below. To see how α3 should be defined, let us consider what this
homomorphism needs to tell us. If α(s) > Γ ′, then the first coordinate of β(s)
determines α(s). If α(s) ∈ Γ ′, then the first two components of β(s) determine
α(s), by nonconfusion. So we will use the third component to distinguish between
α(s) ∈ Γ ′ and α(s) = ∞. The value of the first component already determines
whether or not α(s) ∈ Γ ′ ∪ {∞}, so we really just need to be able to tell when
α(s) = ∞. There are several cases to consider, depending on whether or not
s contains a tree t such that α(t) = ∞. If not, then s = t1 + · · · + tr, where
α(ti) ≥ Γ ′ for all i. Observe that if this is the case, then the set of values
{α(t1), · · · , α(tr)} is determined by the second component {[tα1

1]∼k
, . . . , [tα1

r]∼k
}

of β(s). If s contains a tree t such that α(t) = ∞, pick such a tree at maximal
depth. Then t = a(t1 + · · · + tr), where once again α(ti) ≥ Γ ′ for all i, and the
set of values {α(t1), · · · , α(tr)} is determined by the second component of β(s).
We now specify the value of α3(a, h,Q). As remarked above, Q determines a set
of values all in Γ ′ or strictly higher. Let hQ ∈ HA be the sum of these values. If
either hQ = ∞, or ahQ = ∞, set α3(a, h,Q) = 0. Otherwise, α3(a, h, q) = 1.

The third component of β(s) will be ∞ if and only if there is some subtree
a(t1 + · · · + tr) such that

α3(a, α1(t1 + · · · + tr), {[tα1
1]∼k

, . . . , [tα1
r]∼k

}) = 0.

If we pick the subtree of maximal depth at which this occurs, then as argued
above, α(s) = ∞. The only other way we can have α(s) = ∞ is if there is no
such subtree, but s = t1 + · · · + tr where each α(ti) ≥ Γ ′ and the sum of these
values is ∞. In this case, the fact that no such subtree exists is determined by
the third coordinate of β(s) being 1, and the set of α(ti) ≥ Γ ′ is determined by
the second coordinate of β(s). So in all cases β(s) determines α(s).

6.3 Necessity of the Condition

To prove the converse, we have to show preservation of nonconfusion under
quotients and wreath products with the allowable factors. This is carried out
in the following three lemmas. Preservation under quotients (Lemma 21) is the
most difficult of the three to show.

Lemma 21. Let α : AΔ → (H1, V1), β : AΔ → (H2, V2), be homomorphisms
onto finite forest algebras such that β factors through α. If α is nonconfusing
then so is β.

Lemma 22. Suppose that α : AΔ → (H,V) ◦ U1 is a homomorphism, and that
β = πα, where π is the projection morphism onto (H,V), is nonconfusing. Then
α is nonconfusing.

EF+EX Forest Algebras 139

Lemma 23. Suppose that α = β ⊗ γ : AΔ → (H,V) ◦ (H ′, V ′) is a homomor-
phism, that β is nonconfusing, and that γ : (A × H)Δ → (H ′, V ′) is 1-definite.
Then α is nonconfusing.

7 Results

Using the wreath product characterizations of EF-algebras, EX-homomorphisms,
and (EF,EX)-homomorphisms of the previous three sections, we get:

Theorem 24. Let A be a finite alphabet, and let L ⊆ HA.

(a) L is defined by an EF-formula if and only if (HL, VL) is an EF-algebra.
(b) L is defined by an EX-formula if and only if μL is an EX-homomorphism.
(c) L is defined by an EF + EX-formula if and only if

μL is an (EF,EX)-homomorphism.
(d) There are effective procedures for determining, given a finite tree automaton

recognizing L, whether L is definable by an EF-, EX-, or EF + EX-formula,
and for producing a defining formula in case one exists.

References

[BS09] Benedikt, M., Segoufin, L.: Regular tree languages definable in FO and in
FOmod. ACM Trans. Comput. Log. 11(1) (2009)

[BSS12] Bojanczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages.
Logical Methods in Computer Science 8(3) (2012)

[BSW12] Bojanczyk, M., Straubing, H., Walukiewicz, I.: Wreath products of forest
algebras with applications to tree logics. Logical Methods in Computer Sci-
ence 8(3) (2012)

[BW06] Bojanczyk, M., Walukiewicz, I.: Characterizing EF and EX tree logics.
Theor. Comput. Sci. 358(2–3), 255–272 (2006)

[BW08] Bojanczyk, M., Walukiewicz, I.: Forest algebras. In: Flum, J., Grädel, E.,
Wilke, T. (eds.) Logic and Automata. Texts in Logic and Games, vol. 2,
pp. 107–132. Amsterdam University Press (2008)

[CPP93] Cohen, J., Perrin, D., Pin, J.-E.: On the expressive power of temporal logic.
J. Comput. Syst. Sci. 46(3), 271–294 (1993)

[Ési05] Ésik, Z.: An algebraic characterization of the expressive power of temporal
logics on finite trees. In: 1st Int. Conf. Algebraic Informatics. Aristotle Univ.
of Thessaloniki, pp. 53–110 (2005)

[KS14] Krebs, A., Straubing, H.: EF+EX forest algebras. CoRR, abs/1408.0809
(2014)

[Sti73] Stiffler, P.E.: Extension of the fundamental theorem of finite semigroups.
Advances in Mathematics 11(2), 159–209 (1973)

[Str94] Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston (1994)

[TW96] Thérien, D., Wilke, T.: Temporal logic and semidirect products: An effec-
tive characterization of the until hierarchy. In: FOCS, pp. 256–263. IEEE
Computer Society (1996)

On Near Prime-Order Elliptic Curves
with Small Embedding Degrees

Duc-Phong Le1(B), Nadia El Mrabet2, and Chik How Tan1

1 Temasek Laboratories, National University of Singapore, Singapore, Singapore
{tslld,tsltch}@nus.edu.sg

2 SAS team CMP, Ecole des Mines de St Etienne LIASD,
University Paris 8, Saint-Denis, France

nadia.el-mrabet@emse.fr

Abstract. In this paper, we extend the method of Scott and Barreto
and present an explicit and simple algorithm to generate families of gener-
alized MNT elliptic curves. Our algorithm allows us to obtain all families
of generalized MNT curves with any given cofactor. Then, we analyze the
complex multiplication equations of these families of curves and trans-
form them into generalized Pell equations. As an example, we describe
a way to generate Edwards curves with embedding degree 6, that is,
elliptic curves having cofactor h = 4.

Keywords: Pairing friendly elliptic curve · MNT curves · Complex
multiplication · Pell’s equation

1 Introduction

Pairings used in cryptology are efficiently computable bilinear maps on torsion
subgroups of points on an elliptic curve that map into the multiplicative group
of a finite field. We call such a map a cryptographic pairing. The first notable
application of pairings to cryptology was the work of Menezes, Okamato and
Vanstone [15]. They showed that the discrete logarithm problem on a supersin-
gular elliptic curve can be reduced to the discrete logarithm problem in a finite
field through the Weil pairing. Then, Frey and Ruck [8] also consider this through
the Tate pairing. Pairings were thus used as a means of attacking cryptosystems.

However, pairings on elliptic curves only become a great interest since their
first application in constructing cryptographic protocols in [12]. Joux describes
an one-round 3-party Diffie-Hellman key exchange protocol in 2000. Since then,
the use of cryptographic protocols based on pairings has had a huge success with
some notable breakthroughs such as practical Identity-based Encryption (IBE)
schemes [5]. Unlike standard elliptic curve cryptosystems, pairing-based cryp-
tosystems require elliptic curves with special properties, namely, the embedding

N. El Mrabet—This work was supported in part by the French ANR-12-INSE-0014
SIMPATIC Project.

c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 140–151, 2015.
DOI: 10.1007/978-3-319-23021-4 13

On Near Prime-Order Elliptic Curves with Small Embedding Degrees 141

degree k is small enough1. Balasubramanian and Koblitz [2] showed that ordi-
nary elliptic curves with such a property are very rare. An elliptic curve with
such nice properties is called a pairing-friendly elliptic curve.

Miyaji, Nakabayashi and Takano introduced the concept of “family of pairing-
friendly elliptic curves” in [16]. They provided families of prime-order elliptic
curves with embedding degrees k = 3, 4 and 6, such that the number of points
on these curves E(Fq) are prime. As analyzed in [17], these families of curves,
so-called MNT curves, are more efficient than supersingular elliptic curves when
implementing pairing-based cryptosystems. Later, Scott and Barreto [18], and
Galbraith et al. [9] extended and introduced more MNT curves. These curves
are of near prime-order. The number of points on these curves is #E(Fq) = h ·r,
where r is a big prime number and the cofactor h ≥ 2 is small. While Galbraith et
al.’s method allows generating explicit families of curves, Scott-Barreto’s method
only generates particular elliptic curves.

In this paper we extend the method of Scott and Barreto in [18] and present
an explicit, simple algorithm to generate families of ordinary elliptic curves
of prime order (or near prime order with any cofactor) with small embedding
degrees. Given an embedding degree k and a cofactor h, we demonstrate that our
algorithm will output all possible families. We then point out a one-to-one corre-
spondence between families of MNT curves having the same embedding degree
and the same cofactor (Theorems 2, 3, and 4). We also analyze the complex
multiplication equations of these families of curves and show how to transform
these complex multiplication equations into generalized Pell equations that allow
us to find particular curves. We illustrate our analysis for constructing Edwards
curves with embedding degree 6.

The paper is organized as follows: Section 2 briefly recalls MNT curves, as
well as methods to generate MNT curves with small cofactors. Section 3 presents
our alternative method to generate such curves. We give our results in Section 4.
We also discuss the Pell equation for some particular cases of MNT curves in
this section. Finally, we conclude in Section 5.

2 Backgrounds

2.1 MNT Curves

An elliptic curve generated randomly would have a large embedding degree.
As a consequence, a random elliptic curve would not be suitable for efficient
computation of a pairing based protocol. Supersingular elliptic curves have small
embedding degree. However, such curves are limited to embedding degree k = 2
for prime fields and k ≤ 6 in general [15]. If we want to vary the embedding degree
to achieve a high security level, we must construct pairing-friendly ordinary
elliptic curves. However, a study by Balasubramanian and Koblitz in [2] showed

1 Let q be a prime number or a power of a prime, let E be an elliptic curve defined
over Fq with a subgroup of prime order r. Then the embedding degree is the smallest
integer such that r divides (qk − 1).

142 D.-P. Le et al.

that ordinary elliptic curves with such a small embedding degree are very rare
and thus require specific constructions.

Using the Complex Multiplication method (CM for short) to construct ellip-
tic curves, the ρ value satisfies that 1 ≤ ρ ≤ 2, where the value ρ is defined
as ρ = log(q)

log(r) . In order to save bandwidth during the calculation we are looking
for ρ as small as possible. The most interesting construction of pairing-friendly
elliptic curves is the one such that the result is a parameterization of a fam-
ily of elliptic curves. Miyaji, Nakabayashi, and Takano [16] presented the first
parameterized families that yield ordinary elliptic curves with embedding degree
k ∈ {3, 4, 6}. These curves have a ρ-value equal to 1. The families are given by
parameterization for q and t as polynomials in Z[x] with #E(Fq) = n(x). Let
Φk(x) be the k-th cyclotomic polynomial. Recall that n(x) = q(x) + 1 − t(x),
n(x) | Φk(q(x)), and n(x) represents primes in the MNT construction. Their
results are summarized in Table 1.

Table 1. Parameters for MNT curves [16]

k q(x) t(x)

3 12x2 − 1 −1 ± 6x

4 x2 + x + 1 −x or x + 1

6 4x2 + 1 1 ± 2x

The construction of MNT curves is based on the Complex Multiplication method.
That is, we have to find solutions (x0, V0) of the following CM equation:

DV 2 = 4q(x) − t2(x)

for small values of D. The right-hand side of this equation is of quadratic form
and can be transformed into a generalized Pell equation. Since the construction
depends on solving a Pell-like equation, MNT curves of prime order are sparse [7].
It means that the equation admits only a few solutions.

2.2 MNT Curves with Small Cofactors

Let E(Fq) be a parameterized elliptic curve with cardinality #E(Fq) = n(x). We
call the cofactor of E(Fq), the integer h such that n(x) = h × r(x), where r(x)
is a polynomial representing primes. The original construction of MNT curves
gives families of elliptic curves with cofactor h = 1. Scott-Barreto [18], and
Galbraith-McKee-Valença [9] extended the MNT idea by allowing small values
of the cofactor h > 1. This allows to find many more suitable curves with ρ ≈ 1
than the original MNT construction. We recall the following proposition.

Proposition 1. [7, Proposition2.4] Let k be a positive integer, E(Fq) be an
elliptic curve defined over Fq with #E(Fq) = q + 1 − t = hr, where r is prime,
and let t be the trace of E(Fq). Assume that r � kq. Then E(Fq) has embedding
degree k with respect to r if and only if Φk(q) ≡ 0 (mod r), or equivalently, if
and only if Φk(t − 1) ≡ 0 (mod r).

On Near Prime-Order Elliptic Curves with Small Embedding Degrees 143

Scott-Barreto’s Method. Let Φk(x) = d × r for some x. Scott-Barreto’s
method [18] first fixes small integers h and d and then substitutes r = Φk(t−1)/d,
where t = x + 1 to obtain the following CM equation:

DV 2 = 4h
Φk(x)

d
− (x − 1)2. (1)

Actually, Scott and Barreto used the fact that Φk(t−1) ≡ 0 (mod r). As above,
the right-hand side of Equation (1) is quadratic, hence it can be transformed
into a generalized Pell equation by a linear substitution (see [18, §2] for more
details). Then, Scott-Barreto found integer solutions to this equation for small
D and arbitrary V with the constraint 4h > d. The Scott-Barreto method [18]
presented generalized MNT elliptic curves with particular parameters. However
it failed to give explicit families of generalized MNT elliptic curves.

Galbraith McKee and Valença’s Method. Unlike Scott-Barreto’s method,
the mathematical analyses in [9] could lead to explicit families of generalized
MNT curves. Galbraith et al. [9] extended the MNT method [16] and gave a
complete characterization of MNT curves with small cofactors h. Actually, they
used the fact that Φk(q) ≡ 0 (mod r). Similarly to the method in [16], Galbraith
et al. defined λ by the equation Φk(q) = λr. For example, in the case k = 6, they
required λr = Φk(q) = q2 − q + 1. By using Hasse’s bound, |t| ≤ 2

√
q, they then

analyzed and derived possible polynomials q, t from the equation Φk(q) = λr.
Readers are referred to [9, Section3] for a particular analysis in the case, in which
the embedding degree is k = 6 and the cofactor is h = 2.

3 An Alternative Approach to Galbraith et al.’s Method

In this section, we present an alternative approach to generate explicit families
of ordinary elliptic curves with embedding degree 3, 4, or 6 and small cofactors.
Different fromthe analytic approach in [9], we obtain families of curves by pre-
senting a very simple and explicit algorithm. Our analyses also show that this
algorithm can find all families of generalized MNT elliptic curves with any given
cofactor.

3.1 Preliminary Observations and Facts

Some well-known facts and observations that can be used to find families of
curves are noted in this section. Similar to Scott-Barreto’s method, we use the
fact that Φk(t − 1) ≡ 0 mod r. Consider cyclotomic polynomials corresponding
to embedding degrees k = 3, 4, 6:

Φ3(t(x) − 1) = t(x)2 − t(x) + 1,

Φ4(t(x) − 1) = t(x)2 − 2t(x) + 2,

Φ6(t(x) − 1) = t(x)2 − 3t(x) + 3.

144 D.-P. Le et al.

By setting t(x) = ax + b, we have the following equations:

Φ3(t(x) − 1) = a2x2 + a(2b − 1)x + Φ3(b − 1), (2)

Φ4(t(x) − 1) = a2x2 + 2a(b − 1)x + Φ4(b − 1), (3)

Φ6(t(x) − 1) = a2x2 + a(2b − 3)x + Φ6(b − 1). (4)

Theorem 1. The quadratic polynomials Φ3(t(x)−1), Φ4(t(x)−1) and Φ6(t(x)−
1) are irreducible over the rational field.

Proof. We start with the following lemma.

Lemma 1. Let f(x) be a quadratic irreducible polynomial in Q[x]. If we perform
any Z-linear change of variables x �→ ax+ b for any a ∈ Q\{0} and b ∈ Q, f(x)
will still be a quadratic irreducible polynomial in Q[x].

Proof. If we assume that f(ax + b) is not irreducible in Q[X], then as f(x) is
a quadratic polynomial it means that f(ax + b) admits a decomposition of the
form f(ax + b) = c(x − c1)(x − c2), for c, c1, c2 ∈ Q. The values c1 and c2 are
rational roots of f(ax + b) = 0. It is easy to see that ac1 + b and ac2 + b would
then be rational roots of f(x) = 0.
�

We now prove Theorem 1. As the polynomial Φ3(x) = x2−x+1 is irreducible
in Q[x], according to Lemma 1 the polynomial Φ3(t(x) − 1) is also irreducible
in Q[x]. The same argument ensures that Φ4(t(x) − 1) and Φ6(t(x) − 1) are
irreducible in Q[x].
�

Let a triple (t, r, q) parameterize a family of generalized MNT curves, and
let h be a small cofactor. Let n(x) be a polynomial representing the cardinality
of elliptic curves in the family (t, r, q). That is, n(x) = h · r(x) = q(x) − t(x) + 1.
By [7, Definition2.7], we have:

Φk(t(x) − 1) = d × r(x), (5)

where d ∈ Z, and r(x) is a quadratic irreducible polynomial. By Hasse’s bound,
4q(x) ≥ t2(x), we get the inequality:

4h ≥ d (6)

From equations (2)–(4), we can see that d is the greatest common divisor of
the coefficients appearing in these equations. For instance, when k = 3, d is the
GCD of Φ3(b−1), a2, and a(2b−1). We recall the following well-known Lemma,
which can be found in [10, ChapterV,§6]:

Lemma 2. Let d be prime and k, n > 0. If d divides Φk(n), then d does not
divide n, and either d divides k or d ≡ 1 (mod k).

The above lemma points out that if Φk(n) can be factorized by prime factors
di, i.e. Φk(n) =

∏
di, then, either di | k or di ≡ 1 (mod k).

On Near Prime-Order Elliptic Curves with Small Embedding Degrees 145

Lemma 3. Given t(x) = ax + b, if d in Eq. (5) does not divide a, then d is
square free.

Proof. We know that d ∈ Z, and d is the greatest common divisor of factors of
Φk(t(x)− 1), i.e. d divides a2, 2a(2b− 1) or 2a(b− 1) or 2a(2b− 3) and Φk(b− 1)
(Equations (2)–(4)). Suppose that d is not square free, that is d = p2 × d′ with
p a prime number greater or equal to 2. By Lemma 2, p does not divide (b − 1)
and either p divides k or p ≡ 1 (mod k). We also assume that d divides a2, but
does not divide a, and hence p2 � a, and p is a prime factor of a.

– k = 3: As p divides Φ3(b − 1) = b2 − b + 1 and p divides 2b − 1 we have that
p divides (2b − 1) + Φ3(b − 1), i.e. p divides b(b − 1). We know that p does
not divide (b − 1), thus p must divide b.
We have p | 2b − 1 = (b − 1) + b, and p | b, hence p must divide b − 1. This
is contradictory with Lemma 2. Thus, d is square free.

– k = 4: We have that p divides 2(b − 1), recall from Lemma 3 that p does
not divide (b − 1), then p | 2. However, we can show that Φ4(b − 1) ≡ {1, 2}
(mod 4). It is thus impossible to have d = 22 × d′ and d | Φ4(b − 1).

– k = 6: Likewise, as p divides Φ6(b− 1) = b2 − 3b+3 and 2b− 3 we have that
p divides (2b − 3) + Φ3(b − 1) = b(b − 1). We know that p does not divide
(b − 1), then we have p divides b.
We have p divides 2b − 3, and p divides b. Then p must divides 2b − 3 + b =
3(b−1), hence p divides 3. That is, d = 32 ×d′. But, by [11, Proposition2.4],
this cannot occur. Thus, d must be square free.
�

3.2 The Proposed Algorithm

We start this section by presenting the following definition:

Definition 1. Let r(x), r′(x), t(x) and t′(x) be polynomials. We say that a pair
(t(x), r(x)) is equivalent to (t′(x), r′(x)) if we can transform the first into the
second by performing a Z-linear change of variables x �→ cx + d.

In principle, given an embedding degree k and a cofactor h, our method works
as follows:

1. We first fix the Frobenius trace to be t(x) = ax + b, for a ∈ Z \ {0} and
b ∈ Z. The possible values of a, b for a given cofactor h are determined by
Lemma 4.

2. Then, we determine d and r(x) thanks to Equation (5).
3. For given d and r(x), we determine n(x) and q(x).

Algorithm 1 explicitly describes our method. Given an embedding degree k
and a cofactor hmax, we demonstrate that Algorithm 1 will output a list of all
possible families of generalized MNT curves (t(x), r(x), q(x)) with the cofactors
h ≤ hmax. Lemma 4 gives the boundary for the values amax, bmax in order to
find all the possible families of curves.

146 D.-P. Le et al.

Algorithm 1. Generate families of generalized MNT curves
Input: An embedding degree k, a cofactor hmax.
Output: A list of polynomials (t(x), r(x), q(x)).

L ← {}; T ← {} ;

for a = −amax to amax do
for b = −bmax to bmax do

t(x) ← ax + b ;
f(x) ← Φk(t(x) − 1) ;
Let f(x) = d · r(x), where d ∈ Z and r(x) is an irreducible quadratic
polynomial;
if pair (t(x), r(x)) is not equivalent with any (t′(x), r′(x)) in T then

T ← T + {(d, t(x), r(x))} ;
for h = �d/4� to hmax do

q(x) ← h · r(x) + t(x) − 1 ;
if q(x) is irreducible and gcd(q(x), r(x) : x ∈ Z) = 1 then

L ← L + {(t(x), r(x), q(x), h)} ;
end

end

end

end

end
return L

Lemma 4. Given an embedding k, and a cofactor hmax, we have amax = 4hmax,
and bmax < amax.

Proof. We first demonstrate that amax = 4hmax. Suppose that d | a2, but d � a,
then by Lemma 3, d must be square free. This is a contradiction, thus we have
d | a.

Suppose that the algorithm outputs a family of curves with t(x) = ax + b,
and a is a multiple of d, that is, a = m × d. By a Z-linear transformation, we
know that this family is equivalent to a family of curves with t(x) = dx + b. For
the simplest form, the value of the coefficient a of polynomial t(x) should be
equal to d. Due to the inequality (6), the maximum value of a, amax = 4hmax.

Likewise, if b > a, we can make a transformation x �→ x + �b/a, and b′ =
b mod a. The value of bmax thus should be chosen less than amax.
�

4 More Near Prime-Order Elliptic Curves

The families of elliptic curves obtained from Algorithm 1 for k = 3, 4 and 6
are presented in Tables 2, 3, and 4, respectively. Our algorithms execute an
exhaustive search based on the given parameters, they can thus generate all
families of elliptic curves of small embedding degrees 3, 4 and 6. In these tables,
we present only families of curves with cofactors 1 ≤ h ≤ 6, but it is worth to
note that a family of curves with any cofactor can be easily found by adjusting
the parameters of the algorithms.

On Near Prime-Order Elliptic Curves with Small Embedding Degrees 147

4.1 k = 3

For the case of k = 3, our results are summarized curves in Table 2. We don’t
claim new explicit families in comparison to results in [9]. Our families of curves
in the Table 2 can be obtained due to a linear transform of variables from Table
3 in [9] when k = 3. For example, for h = 2, our family q(x) = 2x2 + x + 1, and
t(x) = −x is equivalent to the family q(x) = 8x2 + 2x + 1, and t(x) = −2x in [9,
Table3]. Our algorithm just gives the polynomials r(x) and q(x) with the least
value of coefficients.

Theorem 2. Table 2 gives all families of elliptic curves of the embedding degree
k = 3 with different cofactors 1 ≤ h ≤ 6.

Table 2. Valid q, r, t corresponding to k = 3

h q r t

1 3x2 − 1 3x2 + 3x + 1 −3x − 1

2
2x2 + x + 1 x2 + x + 1 −x

14x2 + 3x − 1 7x2 + 5x + 1 −7x − 2
14x2 + 17x + 4 7x2 + 5x + 1 7x + 3

3 3x2 + 2x + 2 x2 + x + 1 −x

4

4x2 + 3x + 3 x2 + x + 1 −x
12x2 + 9x + 2 3x2 + 3x + 1 −3x − 1
28x2 + 13x + 1 7x2 + 5x + 1 −7x − 2
28x2 + 27x + 6 7x2 + 5x + 1 7x + 3

5
5x2 + 4x + 4 x2 + x + 1 −x

35x2 + 18x + 2 7x2 + 5x + 1 −7x − 2
35x2 + 32x + 7 7x2 + 5x + 1 7x + 3

h q r t

5

65x2 + 22x + 1 13x2 + 7x + 1 −13x − 3
65x2 + 48x + 8 13x2 + 7x + 1 13x + 4
95x2 + 56x + 7 19x2 + 15x + 3 −19x − 7
95x2 + 94x + 22 19x2 + 15x + 3 19x + 8

6

6x2 + 5x + 5 x2 + x + 1 −x
18x2 + 15 + 4 3x2 + 3x + 1 −3x − 1
78x2 + 29x + 2 13x2 + 7x + 1 −13x − 3
78x2 + 55x + 9 13x2 + 7x + 1 13x + 4

114x2 + 71x + 10 19x2 + 15x + 3 −19x − 7
114x2 + 109x + 25 19x2 + 15x + 3 19x + 8
126x2 + 33x + 1 21x2 + 9x + 1 −21x − 4
126x2 + 75x + 10 21x2 + 9x + 1 21x + 5

Proposition 2. Let q(x), r(x) and t(x) be non-zero polynomials that parame-
terize a family of curves with embedding degree k = 3 and small cofactor h ≥ 1.
Then q′(x) = q(x) − 2t(x) + 1, r(x), and t′(x) = 1 − t(x) represent a family of
curves with the same group order r(x) and the same cofactor h.

Proof. Let q(x), r(x) and t(x) parameterize a family of curves with embedding
degree k = 3, the small cofactor h ≥ 1, and let n(x) = h · r(x) represent the
number of points on this family of curves. We have Φ3(t(x)−1) = t(x)2−t(x)+1
and Φ3(t′(x) − 1) = Φ3(−t(x)) = t(x)2 − t(x) + 1 = Φ3(t(x) − 1). Since r(x) |
Φ3(t(x) − 1), we have that r(x)|Φ3(t′(x) − 1) and q(x) = n(x) + t(x) − 1. Thus,
q′(x) = q(x) − 2t(x) + 1 = n(x) − t(x) = n(x) + t′(x) − 1. It is easy to verify
that q′(x) is the image of q(x) by a Z-linear transformation of t(x) �→ 1 − t(x).
According to Lemma 1, since q(x) is irreducible then q′(x) is irreducible. Let
n′(x) = n(x), then q′(x) represent the characteristic of the family of curves.

Now we need to prove that q′(x) and t′(x) satisfies Hasse’s theorem, i.e.
t′(x)2 ≤ 4q′(x). Suppose that t(x) = ax + b, then t′(x) = −ax − b + 1. It is clear
that the leading coefficient of q′(x) is equal to that of q(x). Since h > m/4, 4q(x)
would be greater than t2(x) for some value of x. Thus, q′(x) and t′(x) satisfies
Hasse’s theorem whenever q(x), t(x) do with some big enough values of x.
�

148 D.-P. Le et al.

4.2 k = 4

For the case of k = 4, our results are summarized curves in Table 3. It seems
that [9, Table3] gives more families than ours, but in fact several families of
curves with a given cofactor in [9, Table3] are curves with a higher cofactor.
Besides, some families of curves are equivalent by Definition 1, e.g., two families
(t, q) = ((−10l−1), (60l2+14l+1)) and ((10l+4), (60l2+46l+9)) are equivalent.
Thus, the number of their families obtained is not as much as they claimed.

Theorem 3. Table 3 gives families of elliptic curves of the embedding degree
k = 4 with small cofactors 1 ≤ h ≤ 6.

Table 3. Valid q, r, t corresponding to k = 4

h q r t

1 x2 + x + 1 x2 + 2x + 2 −x

2 4x2 + 2x + 1 2x2 + 2x + 1 −2x

3
3x2 + 5x + 5 x2 + 2x + 2 −x
15x2 + 7x + 1 5x2 + 4x + 1 −5x − 1
15x2 + 13x + 3 5x2 + 6x + 2 −5x − 2

4 8x2 + 6x + 3 2x2 + 2x + 1 −2x

5
5x2 + 9x + 9 x2 + 2x + 2 −x

25x2 + 15x + 3 5x2 + 4x + 1 −5x − 1
25x2 + 25x + 7 5x2 + 6x + 2 −5x − 2

h q r t

5

65x2 + 37x + 5 13x2 + 10x + 2 −13x − 4
65x2 + 63x + 15 13x2 + 10x + 2 13x + 6
85x2 + 23x + 1 17x2 + 8x + 1 −17x − 3
85x2 + 57x + 9 17x2 + 8x + 1 17x + 5

6

12x2 + 10x + 5 2x2 + 2x + 1 −2x
60x2 + 26x + 3 10x2 + 6x + 1 −10x − 2
60x2 + 46x + 9 10x2 + 6x + 1 10x + 4
102x2 + 31x + 2 17x2 + 8x + 1 −17x − 3
102x2 + 65x + 10 17x2 + 8x + 1 17x + 5

Proposition 3. Let non-zero polynomials q(x), r(x) and t(x) parameterize a
family of curves with embedding degree k = 4 and the small cofactor h. Then
q′(x) = q(x) − 2t(x) + 2, r(x), and t′(x) = 2 − t(x) represent a family of curves
with the same embedding degree and the same cofactor.

Proof. The proof of the Proposition 3 is similar to that of Proposition 2. Assume
that t(x) = ax + b and t′(x) = 2 − t(x), we have Φ4(t(x) − 1) = Φ4(t′(x) − 1) =
t(x)2 −2t(x)+2. Likewise, we can get q′(x) = q(x)−2t(x)+2 = n(x)+ t′(x)−1.
Polynomials t′(x), q′(x) satisfy Hasse’s theorem.
�

4.3 k = 6

Table 4 gives more explicit families than Table 3 of [9] for k = 6. For instance,
when h = 3, we have one more family of pairing-friendly elliptic curves with
t(x) = −3x, q(x) = 9x2 + 6x + 2, and r(x) = 3x2 + 3x + 1 .

Theorem 4. Table 4 gives families of elliptic curves of the embedding degree
k = 6 with different cofactors 1 ≤ k ≤ 6.

Proposition 4. Let non-zero polynomials q(x), r(x) and t(x) parameterize a
family of curves with embedding degree k = 6 and the small cofactor h ≥ 2.
Then q′(x) = q(x) − 2t(x) + 3, r(x), and t′(x) = 3 − t(x) represent a family of
curves with the same embedding degree and the same cofactor.

On Near Prime-Order Elliptic Curves with Small Embedding Degrees 149

Table 4. Valid q, r, t corresponding to k = 6

h q r t

1 x2 + 1 x2 + x + 1 −x + 1

2
2x2 + x + 2 x2 + x + 1 −x + 1
6x2 + 3x + 1 3x2 + 3x + 1 −3x

3
3x2 + 2x + 3 x2 + x + 1 −x + 1
9x2 + 6x + 2 3x2 + 3x + 1 −3x
21x2 + 8x + 1 7x2 + 5x + 1 −7x − 1
21x2 + 22x + 6 7x2 + 5x + 1 7x + 4

4

4x2 + 3x + 4 x2 + x + 1 −x + 1
28x2 + 13x + 2 7x2 + 5x + 1 −7x − 1
28x2 + 27x + 7 7x2 + 5x + 1 7x + 4
52x2 + 15x + 1 13x2 + 7x + 1 −13x − 2
52x2 + 41x + 8 13x2 + 7x + 1 13x + 5

5 5x2 + 4x + 5 x2 + x + 1 −x + 1

h q r t

5

15x2 + 12x + 4 3x2 + 3x + 1 −3x
35x2 + 18x + 3 7x2 + 5x + 1 −7x − 1
35x2 + 32x + 8 7x2 + 5x + 1 7x + 4
65x2 + 22x + 2 13x2 + 7x + 1 −13x − 2
65x2 + 48x + 9 13x2 + 7x + 1 13x + 5
95x2 + 56x + 8 19x2 + 5x + 3 −19x − 6
95x2 + 94x + 23 19x2 + 5x + 3 19x + 9

6

6x2 + 5x + 6 x2 + x + 1 −x + 1
18x2 + 15x + 5 3x2 + 3x + 1 −3x
42x2 + 23x + 4 7x2 + 5x + 1 −7x − 1
42x2 + 37x + 9 7x2 + 5x + 1 7x + 4
78x2 + 29x + 3 13x2 + 7x + 1 −13x − 2
78x2 + 55x + 10 13x2 + 7x + 1 13x + 5

Proof. The proof of the Proposition 4 is also similar to that of Proposition 2.
Assume that t(x) = ax+b and t′(x) = 3−t(x), we have Φ6(t(x)−1) = Φ6(t′(x)−
1) = t(x)2 − 3t(x) + 3. Similarly, we can get q′(x) = q(x) − 2t(x) + 3 = n(x) +
t′(x) − 1. Polynomials t′(x), q′(x) satisfy Hasse’s theorem.
�

4.4 Solving the Pell Equations

For elliptic curves with embedding degrees k = 3, 4, 6 it is clear that the CM
equation DV 2 = 4q(x)−t2(x) is quadratic. Such an equation can be transformed
into a generalized Pell equation of the form y2 + DV 2 = f . In [18], Scott and
Barreto showed how to remove the linear term in the CM equation to get a
generalized Pell equation. In this section, we generalize their idea to get Pell
equations for families of elliptic curves presented in Tables 2, 3, and 4.

Let t(x) = ax + b, Φk(t(x) − 1) = d · r(x), where k = 3, 4, 6 and #E(Fq) =
h ·r(x). Similarly to the analysis of Scott-Barreto in [18], we make a substitution
x = (y−ak)/n to transform the CM equations to the generalized Pell equations,
where a3 = 2h(2b−1)−(b−2)d, a4 = 4h(b−1)−(b−2)d, a6 = 2h(2b−3)−(b−2)d
and n = a(4h − d). We set n′ = n/a, g = dn′D and

f3 = a2
3 − (n′b)2 + 4n′(b − 1)(h − d),

f4 = a2
4 − (n′b)2 + 4n′(b − 1)(2h − d),

f6 = a2
6 − (n′b)2 + 4n′(b − 1)(3h − d).

The CM equation is transformed to its Pell equation y2 − gV 2 = fk, where
k = 3, 4, or 62. The works in [13],[6] investigated the problem on how solve Pell
equations of MNT curves. We illustrate our method for k = 6 and h = 4.

2 Note that we fix the typo in the value of fk in [18, §2]. Indeed, fk must be set to
a2
k − b2 instead of a2

k + b2.

150 D.-P. Le et al.

Case k = 6 and h = 4. Elliptic curves having cofactor h = 4 may be put in
form x2+y2 = 1+dx2y2 with d a non-square integer. Such curves called Edwards
curves were introduced to cryptography by Bernstein and Lange [4]. They showed
that the addition law on Edwards curves is faster than all previously known
formulas. Edwards curves were later extended to the twisted Edwards curves
in [3]. Readers also can see [1],[14] for efficient algorithms to compute pairings
on Edwards curves. In this section, we give some facts to solve Pell equation for
Edwards curves with embedding degree k = 6. We have:

y2
1 − D′

1V
2 = −176, (7)

y2
2 − D′

2V
2 = −80, (8)

y2
3 − D′

3V
2 = −80, (9)

y2
4 − D′

4V
2 = 16, (10)

y2
5 − D′

5V
2 = 16, (11)

where yi = (x − ai)/bi, D′
i = biD, for i ∈ [1, 5], and a1 = −7, a2 = −19,

a3 = −26, a4 = −4, a5 = −17, b1 = 15, b2 = 63, b3 = 63, b4 = 39, b5 = 39.
Karabina and Teske [13, Lemma1] showed that if 4 | fk then the set of solutions
to y2 − D′V 2 = fk does not contain any ambiguous class, i.e., there exists no
primitive solution α = y+v

√
D′ such that α and its conjugate α′ = y−v

√
D′ are

in the same class. Equations (7)–(11) thus won’t have any solution that contains
an ambiguous class. If equations (7)–(11) have solutions with yi ≡ −ai mod bi,
and a fixed positive square-free integer D′

i relatively prime to bi, for 1 ≤ i ≤ 5,
then t, r, q in Table 4 with h = 4 represent a family of pairing-friendly Edwards
curves with embedding degree 6.

5 Conclusion

In this paper we extended Scott-Barreto’s method and presented efficient and
simple algorithms to obtain MNT curves with small cofactors. Our algorithm
allows to find all possible families of generalized MNT curves. In the Proposi-
tions 2, 3 and 4 we point out a one-to-one correspondence between families of
MNT curves having the same embedding degree and the same cofactor. If given a
parameterization of a MNT curves, we can construct another MNT curve using a
Z-linear transformation. We also analyze the Complex Multiplication equations
of MNT curves and point out how to transform these Complex Multiplication
equations into generalized Pell equations. In addition, we give a method to gen-
erate Edwards curves with embedding degree 6.

Acknowledgments. The authors thank the anonymous referees for their detailed and
valuable comments on the manuscript.

On Near Prime-Order Elliptic Curves with Small Embedding Degrees 151

References

1. Arène, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster computation of the
Tate pairing. Journal of Number Theory 131(5), 842–857 (2011)

2. Balasubramanian, R., Koblitz, N.: The improbability that an elliptic curve has
subexponential discrete log problem under the menezes - okamoto - vanstone algo-
rithm. J. Cryptology, 141–145 (1998)

3. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023,
pp. 389–405. Springer, Heidelberg (2008)

4. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

5. Boneh, D., Franklin, M.: Identity-Based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

6. Fotiadis, G., Konstantinou, E.: On the efficient generation of generalized MNT
elliptic curves Santa Barbara, California, USA. In: Muntean, T., Poulakis, D.,
Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 147–159. Springer, Heidelberg
(2013)

7. Freeman, D., Scott, M., Teske, E.: A Taxonomy of Pairing-Friendly Elliptic Curves.
J. Cryptol. 23, 224–280 (2010)

8. Frey, G., Rück, H.-G.: A remark concerning m-divisibility and the discrete loga-
rithm in the divisor class group of curves. Math. Comput. 62(206), 865–874 (1994)

9. Galbraith, S.D., McKee, J.F., Valença, P.C.: Ordinary abelian varieties having
small embedding degree. Finite Fields and their Applications 13(4), 800–814 (2007)

10. Grillet, P.A.: Abstract Algebra. Springer (July 2007)
11. Jameson, G.: The cyclotomic polynomials. http://www.maths.lancs.ac.uk/

jameson/cyp.pdf
12. Joux, A.: A one round protocol for tripartite diffie–hellman. In: Bosma, W. (ed.)

ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000)
13. Karabina, K., Teske, E.: On prime-order elliptic curves with embedding degrees k

= 3, 4, and 6. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS,
vol. 5011, pp. 102–117. Springer, Heidelberg (2008)

14. Le, D.-P., Tan, C.H.: Improved Miller’s Algorithm for Computing Pairings on
Edwards Curves. IEEE Transactions on Computers 63(10), 2626–2632 (2014)

15. Menezes, A., Vanstone, S., Okamoto, T.: Reducing elliptic curve logarithms to
logarithms in a finite field. In: STOC 1991: Proceedings of the Twenty-third Annual
ACM Symposium on Theory of Computing, pp. 80–89. ACM, New York (1991)

16. Miyaji, A., Nakabayashi, M., Takano, S.: New Explicit Conditions of Elliptic Curve
Traces for FR-Reduction. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 84(5), 1234–1243 (2001)

17. Page, D., Smart, N., Vercauteren, F.: A comparison of MNT curves and supersin-
gular curves. Applicable Algebra in Engineering, Communication and Computing
17(5), 379–392 (2006)

18. Scott, M., Barreto, P.S.: Generating More MNT Elliptic Curves. Des. Codes
Cryptography 38, 209–217 (2006)

http://www.maths.lancs.ac.uk/ jameson/cyp.pdf
http://www.maths.lancs.ac.uk/ jameson/cyp.pdf

Key-Policy Multi-authority Attribute-Based
Encryption

Riccardo Longo1(B) , Chiara Marcolla2, and Massimiliano Sala1

1 Department of Mathematics, University of Trento, Via Sommarive, 14,
38123 Povo, Trento, Italy

{riccardolongomath,maxsalacodes}@gmail.com
2 Department of Mathematics, University of Turin,

Via Carlo Alberto, 10, 10123 Turin, Italy
chiara.marcolla@gmail.com

Abstract. Bilinear groups are often used to create Attribute-Based
Encryption (ABE) algorithms. In particular, they have been used to cre-
ate an ABE system with multi authorities, but limited to the ciphertext-
policy instance. Here, for the first time, we propose a multi-authority
key-policy ABE system.

In our proposal, the authorities may be set up in any moment and
without any coordination. A party can simply act as an ABE authority
by creating its own public parameters and issuing private keys to the
users. A user can thus encrypt data choosing both a set of attributes
and a set of trusted authorities, maintaining full control unless all his
chosen authorities collude against him.

We prove our system secure under the bilinear Diffie-Hellman
assumption.

Keywords: ABE · Bilinear groups · Algebraic cryptography

1 Introduction

The key feature that makes the cloud so attracting nowadays is the great accessi-
bility it provides: users can access their data through the Internet from anywhere.
Unfortunately, at the moment the protection offered for sensitive information is
questionable and access control is one of the greatest concerns. Illegal access may
come from outsiders or even from insiders without proper clearance. One possi-
ble approach for this problem is to use Attribute-Based Encryption (ABE) that
provides cryptographically enhanced access control functionality in encrypted
data.

ABE developed from Identity Based Encryption, a scheme proposed by
Shamir [18] in 1985 with the first constructions obtained in 2001 by Boneh
and Franklin [4]. The use of bilinear groups, in particular the Tate and Weil
pairings on elliptic curves [4], was the winning strategy that finally allowed to
build schemes following the seminal idea of Shamir. Bilinear groups came in
nicely when a preliminary version of ABE was invented by Sahai and Waters
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 152–164, 2015.
DOI: 10.1007/978-3-319-23021-4 14

Key-Policy Multi-authority Attribute-Based Encryption 153

[17] in 2005. Immediately afterwards, Goyal, Pandey, Sahai, and Waters [7] for-
mulated the two complimentary forms of ABE which are nowadays standard:
ciphertext-policy ABE and key-policy ABE. In a ciphertext-policy ABE system,
keys are associated with sets of attributes and ciphertexts are associated with
access policies. In a KP-ABE system, the situation is reversed: keys are associ-
ated with access policies and ciphertexts are associated with sets of attributes.
Several developments in efficiency and generalizations have been obtained for
key-policy ABE, e.g. [1], [8], [16]. A first implementation of ciphertext-policy
ABE has been achieved by Bethencourt et al. [3] in 2007 but the proofs of secu-
rity of the ciphertext-policy ABE remained unsatisfactory since they were based
on an assumption independent of the algebraic structure of the group (the generic
group model). It is only with the work of Waters [20] that the first non-restricted
ciphertext-policy ABE scheme was built with a security dependent on variations
of the DH assumption on bilinear groups. Related to the work we propose in
this paper is the construction for multiple authorities (ciphertext-policy ABE)
that have been proposed in [5], [6] and [11].
However, before the present paper no multi-authority KP-ABE scheme has
appeared in the literature with a proof of security.

Our Construction. In this paper we present the first multi-authority KP-ABE
scheme. In our system, after the creation of an initial set of common parameters,
the authorities may be set up in any moment and without any coordination. A
party can simply act as an ABE authority by creating a public parameters and
issuing private keys to different users (assigning access policies while doing so). A
user can encrypt data under any set of attributes specifying also a set of trusted
authorities, so the encryptor maintains high control. Also, the system does not
require any central authority. Our scheme has both very short single-authority
keys, that compensate the need of multiple keys (one for authority), and also
very short ciphertexts. Moreover, the pairing computations in the bilinear group
are involved only during the decryption phase, obtaining this way significant
advantages in terms of encryption times.

Even if the authorities are collaborating, the existence of just one non-
cheating authority guarantees that no illegitimate party (including authorities)
has access to the encrypted data.

We prove our scheme secure using the classical bilinear Diffie-Hellman
assumption.

Organization. This paper is organized as follows. In Section 2 we present the
main mathematical tools used in the construction of multi authority KP-ABE
scheme. In Section 3 we explain in detail our multi authority KP-ABE scheme
and its security is proven under standard, non-interactive assumptions in the
selective set model. Finally conclusions are drawn in Section 4.

154 R. Longo et al.

2 Preliminaries

We do not prove original results here, we only provide what we need for our
construction. See the cited references for more details on these arguments.

Let G1,G2 be groups of the same prime order p.

Definition 1 (Pairing). A symmetric pairing is a bilinear map e such that
e : G1 ×G1 → G2 has the following properties:

– Bilinearity: ∀g, h ∈ G1,∀a, b ∈ Zp, e(ga, hb) = e(g, h)ab.
– Non-degeneracy: for g generator of G1, e(g, g) � 1.

Definition 2 (Bilinear Group). G1 is a Bilinear group if the conditions above
hold and both the group operations in G1 and G2 as well as the bilinear map e
are efficiently computable.

Let a, b, s, z ∈ Zp be chosen at random and g be a generator of the bilinear
group G1. The decisional bilinear Diffie-Hellman (BDH) problem consists in
constructing an algorithm B(A = ga,B = gb,S = gs,T) → {0, 1} to efficiently
distinguish between the tuples (A,B,S, e(g, g)abs) and (A,B,S, e(g, g)z) outputting
respectively 1 and 0. The advantage of B is:

AdvB =
∣
∣
∣
∣Pr
[

B(A,B,S, e(g, g)abs) = 1
]

− Pr
[B(A,B,S, e(g, g)z) = 1

]
∣
∣
∣
∣

where the probability is taken over the random choice of the generator g, of
a, b, s, z in Zp, and the random bits possibly consumed by B to compute the
response.

Definition 3 (BDH Assumption). The decisional BDH assumption holds if
no probabilistic polynomial-time algorithm B has a non-negligible advantage in
solving the decisional BDH problem.

Access structures define who may and who may not access the data, giving
the sets of attributes that have clearance.

Definition 4 (Access Structure). An access structure A on a universe of
attributes U is the set of the subsets S ⊆ U that are authorized. That is, a set of
attributes S satisfies the policy described by the access structure A if and only if
S ∈ A.

They are used to describe a policy of access, that is the rules that prescribe
who may access to the information. If these rules are constructed using only
AND, OR and threshold operators on the attributes, then the access struc-
ture is monotonic.

Definition 5 (Monotonic Access Structure). An access structure A is said
to be monotonic if given S0 ⊆ S1 ⊆ U it holds

S0 ∈ A =⇒ S1 ∈ A

Key-Policy Multi-authority Attribute-Based Encryption 155

An interesting property is that monotonic access structures (i.e. access struc-
tures A such that if S is an authorized set and S ⊆ S′ then also S′ is an authorized
set) may be associated to linear secret sharing schemes (LSSS). In this setting
the parties of the LSSS are the attributes of the access structure.

A LSSS may be defined as follows (adapted from [2]).

Definition 6 (Linear Secret-Sharing Schemes (LSSS)). A secret-sharing
scheme Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix M with l rows and n columns called the share-

generating matrix for Π. For all i ∈ {1, . . . , l} the i-th row of M is labeled
via a function ρ, that associates Mi to the party ρ(i). Considering the vector
v = (s, r2, . . . , rn) ∈ Zn

p, where s ∈ Zp is the secret to be shared, and ri ∈ Zp,
with i ∈ {2, . . . ,n} are randomly chosen, then Mv is the vector of l shares of
the secret s according to Π. The share (Mv)i = Miv belongs to party ρ(i).

It is shown in [2] that every linear secret sharing-scheme according to the
above definition also enjoys the linear reconstruction property, defined as fol-
lows: suppose that Π is an LSSS for the access structure A. Let S ∈ A be any
authorized set, and let I ⊆ {1, . . . , l} be defined as I = {i : ρ(i) ∈ S}. Then, there
exist constants wi ∈ Zp, with i ∈ I such that, if λi are valid shares of any secret
s according to Π, then

∑

i∈I

wiλi = s (1)

Furthermore, it is shown in [2] that these constants wi can be found in time
polynomial in the size of the share-generating matrix M.

Note that the vector (1, 0, . . . , 0) is the target vector for the linear secret
sharing scheme. Then, for any set of rows I in M, the target vector is in the span
of I if and only if I is an authorized set. This means that if I is not authorized,
then for any choice of c ∈ Zp there will exist a vector u such that u1 = c and

Mi ·w = 0 ∀i ∈ I

In the first ABE schemes the access formulas are typically described in terms
of access trees. The appendix of [11] is suggested for a discussion of how to
perform a conversion from access trees to LSSS.

See [7], [2] and [13] for more details about LSSS and access structures.

3 Our Construction

This section is divided in three parts. We start with definitions of Multi-
Authority Key-Policy ABE and of CPA selective security. In the second part
we present in detail our first scheme and, finally, we prove the security of this
scheme under the classical BDH assumption in the selective set model.

A security parameter will be used to determine the size of the bilinear group
used in the construction, this parameter represents the order of complexity of the

156 R. Longo et al.

assumption that provides the security of the scheme. Namely, first the complexity
is chosen thus fixing the security parameter, then this value is used to compute
the order that the bilinear group must have in order to guarantee the desired
complexity, and finally a suitable group is picked and used.

3.1 Multi Authority KP-ABE Structure and Security

In this scheme, after the common universe of attributes and bilinear group are
agreed, the authorities set up independently their master key and public parame-
ters. The master key is subsequently used to generate the private keys requested
by users. Users ask an authority for keys that embed a specific access struc-
ture, and the authority issues the key only if it judges that the access structure
suits the user that requested it. Equivalently an authority evaluates a user that
requests a key, assigns an access structure, and gives to the user a key that
embeds it. When someone wants to encrypt, it chooses a set of attributes that
describes the message (and thus determines which access structures may read
it) and a set of trusted authorities. The ciphertext is computed using the public
parameters of the chosen authorities, and may be decrypted only using a valid
key for each of these authorities. A key with embedded access structure A may
be used to decrypt a ciphertext that specifies a set of attributes S if and only if
S ∈ A, that is the structure considers the set authorized.

This scheme is secure under the classical BDH assumption in the selective
set model, in terms of chosen-ciphertext indistinguishability.

The security game is formally defined as follows.

Let E = (Setup,Encrypt,KeyGen,Decrypt) be a MA-KP-ABE scheme for a mes-
sage space M, a universe of authorities X and an access structure space G and
consider the following MA-KP-ABE experiment MA-KP-ABE-ExpA,E(λ,U) for
an adversary A, parameter λ and attribute universe U:

Init. The adversary declares the set of attributes S and the set of authorities
A ⊆ X that it wishes to be challenged upon. Moreover it selects the honest
authority k0 ∈ A.

Setup. The challenger runs the Setup algorithm, initializes the authorities and
gives to the adversary the public parameters.

Phase I. The adversary issues queries for private keys of any authority, but k0
answers only to queries for keys for access structures A such that S � A. On
the contrary the other authorities respond to every query.

Challenge. The adversary submits two equal length messages m0 and m1. The
challenger flips a random coin b ∈ {0, 1}, and encrypts mb with S for the set
of authorities A. The ciphertext is passed to the adversary.

Phase II. Phase I is repeated.
Guess. The adversary outputs a guess b′ of b.

Definition 7 (MA-KP-ABE Selective Security). The MA-KP-ABE
scheme E is CPA selective secure (or secure against chosen-plaintext attacks)

Key-Policy Multi-authority Attribute-Based Encryption 157

for attribute universe U if for all probabilistic polynomial-time adversaries A,
there exists a negligible function negl such that:

Pr[MA-KP-ABE-ExpA,E(λ,U) = 1] ≤ 1
2
+ negl(λ).

3.2 The Scheme

The scheme plans a set X of independent authorities, each with their own para-
meters, and it sets up an encryption algorithm that lets the encryptor choose a
set A ⊆ X of authorities, and combines the public parameters of these in such
a way that an authorized key for each authority in A is required to successfully
decrypt.
Our scheme consists of three randomized algorithms (Setup,KeyGen, Encrypt)
plus the decryption Decrypt. The techniques used are inspired from the scheme of
Goyal et al. in [7]. The scheme works in a bilinear group G1 of prime order p, and
uses LSSS matrices to share secrets according to the various access structures.
Attributes are seen as elements of Zp.

The description of the algorithms follows.

Setup(U, g,G1)→ (PKk,MKk). Given the universe of attributes U and a genera-
tor g of G1 each authority sets up independently its parameters. For k ∈ X the
Authority k chooses uniformly at random αk ∈ Zp, and zk,i ∈ Zp for each i ∈ U.
Then the public parameters PKk and the master key MKk are:

PKk =
(

e(g, g)αk , {gzk,i }i∈U
)

MKk =
(

αk, {zk,i}i∈U})

KeyGenk(MKk, (Mk, ρk))→ SKk. The key generation algorithm for the authority
k takes as input the master secret key MKk and an LSSS access structure (Mk, ρk),
where Mk is an l × n matrix on Zp and ρk is a function which associates rows
of Mk to attributes. It chooses uniformly at random a vector vk ∈ Zn

p such that
vk,1 = αk. Then it computes the shares λk,i = Mk,ivk for 1 ≤ i ≤ l where Mk,i is
the i-th row of Mk. Then the private key SKk is:

SKk =

{

Kk,i = g
λk,i

zk,ρk (i)

}

1≤i≤l

Encrypt(m,S, {PKk}k∈A)→ CT. The encryption algorithm takes as input the pub-
lic parameters, a set S of attributes and a message m to encrypt. It chooses s ∈ Zp

uniformly at random and then computes the ciphertext as:

CT =

⎛

⎜
⎜
⎜
⎜
⎜
⎝
S,C′ = m ·

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∏

k∈A

e(g, g)αk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

s

, {Ck,i = (gzk,i)s}k∈A, i∈S

⎞

⎟
⎟
⎟
⎟
⎟
⎠

158 R. Longo et al.

Decrypt(CT, {SKk}k∈A) → m′. The input is a ciphertext for a set of attributes S
and a set of authorities A and an authorized key for every authority cited by the
ciphertext. Let (Mk, ρk) be the LSSS associated to the key k, and suppose that S
is authorized for each k ∈ A. The algorithm for each k ∈ A finds wk,i ∈ Zp, i ∈ Ik
such that ∑

i∈Ik

λk,iwk,i = αk (2)

for appropriate subsets Ik ⊆ S and then proceeds to reconstruct the original
message computing:

m′ =
C′

∏

k∈A
∏

i∈Ik
e(Kk,i,Ck,ρk(i))wk,i

=
m · (∏k∈A e(g, g)αk

)s

∏

k∈A
∏

i∈Ik
e
(

g
λk,i

zk,ρk (i) , (gzk,ρk (i))s

)wk,i

=
m · e(g, g)s(

∑

k∈A αk)

∏

k∈A e(g, g)s
∑

i∈Ik
wk,iλk,i

∗
=

m · e(g, g)s(
∑

k∈A αk)

e(g, g)s(
∑

k∈A αk)
= m

Where ∗
= follows from property (2).

3.3 Security

The scheme is proved secure under the BDH assumption (Definition 3) in a
selective set security game in which every authority but one is supposed curious
(or corrupted or breached) and then it will issue even keys that have enough
clearance for the target set of attributes, while the honest one issues only unau-
thorized keys. Thus if at least one authority remains trustworthy the scheme is
secure.
The security is provided by the following theorem.

Theorem 1. If an adversary can break the scheme, then a simulator can be
constructed to play the Decisional BDH game with a non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversary A, that can attack the
scheme in the Selective-Set model with advantage ε. Then a simulator B can be
built that can play the Decisional BDH game with advantage ε/2. The simulation
proceeds as follows.

Init. The simulator takes in a BDH challenge g, ga, gb, gs,T. The adversary gives
the algorithm the challenge access structure S.

Key-Policy Multi-authority Attribute-Based Encryption 159

Setup. The simulator chooses random rk ∈ Zp for k ∈ A \ {k0} and implicitly sets
αk = −rkb for k ∈ A \ {k0} and αk0 = ab + b

∑

k∈A\{k0} rk by computing:

e(g, g)αk0 = e(ga, gb)
∏

k∈A\{k0}
(gb, grk)

e(g, g)αk = e(gb, g−rk) ∀k ∈ A \ {k0}
Then it chooses z′k,i ∈ Zp uniformly at random for each i ∈ U, k ∈ A and implicitly
sets

zk,i =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

z′k,i if i ∈ S

bz′k,i if i � S

Then it can publish the public parameters computing the remaining values as:

gzk,i =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

gz′k,i if i ∈ S
(gb)z′k,i if i � S

Phase I. In this phase the simulator answers private key queries. For the queries
made to the authority k0 the simulator has to compute the Kk0,i values of a key
for an access structure (M, ρ) with dimension l × n that is not satisfied by S.
Therefore for the properties of an LSSS it can find a vector y ∈ Zn

p with y1 = 1
fixed such that

Miy = 0 ∀i such that ρ(i) ∈ S (3)

Then it chooses uniformly at random a vector v ∈ Zn
p and implicitly sets the

shares of αk0 = b(a +
∑

k∈A\{k0} rk) as

λk0,i = b
n∑

j=1

Mi, j(vj + (a +
∑

k∈A\{k0}
rk − v1)yj)

Note that λk0,i =
∑n

j=1 Mi, juj where uj = b(vj + (a +
∑

k∈A\{k0} rk − v1)yj) thus
u1 = b(v1 + (a +

∑

k∈A\{k0} rk − v1)1) = ab + b
∑

k∈A\{k0} rk = αk0 so the shares are
valid. Note also that from (3) it follows that

λk0,i = b
n∑

j=1

Mi, jvj ∀i such that ρ(i) ∈ S

Thus if i is such that ρ(i) ∈ S the simulator can compute

Kk0,i = (gb)

∑n
j=1 Mi, jvj

z′
k0 ,ρ(i) = g

λk0 ,i
zk0 ,ρ(i)

Otherwise, if i is such that ρ(i) � S the simulator computes

Kk0,i = g

∑n
j=1 Mi, j (vj+(r−v1)yj)

z′
k0 ,ρ(i) (ga)

∑n
j=1 Mi, j yj

z′
k0 ,ρ(i) = g

λ1,i
zk0 ,ρ(i)

160 R. Longo et al.

Remembering that in this case zk0,ρ(i) := bz′k0,ρ(i). Finally for the queries to the
other authorities k ∈ A\{k0}, the simulator chooses uniformly at random a vector
tk ∈ Zn

p such that tk,1 = −rk and implicitly sets the shares λk,i = b
∑n

j=1 Mi, jtk, j by
computing

Kk,i =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

(gb)

∑n
j=1 Mi, j tk, j

z′
k,ρ(i) = g

b
∑n

j=1 Mi, j tk, j

z′
k,ρ(i) = g

λk,i
zk,ρ(i) if i ∈ S

g

∑n
j=1 Mi, j tk, j

z′
k,ρ(i) = g

b
∑n

j=1 Mi, j tk, j

bz′
k,ρ(i) = g

λk,i
zk,ρ(i) if i � S

Challenge. The adversary gives two messages m0,m1 to the simulator. It flips a
coin μ. It creates:

C′ = mμ · T ∗
= mμ · e(g, g)abs

= mμ ·
⎛

⎜
⎜
⎜
⎜
⎜
⎝
e(g, g)(ab+b

(∑

k∈A\{k0} rk

) ∏

k∈A\{k0}
e(g, g)brk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

s

Ck,i = (gs)z′k,ρ(i) = gszk,ρ(i) k ∈ A, i ∈ S

Where the equality ∗
= holds if and only if the BDH challenge was a valid tuple

(i.e. T is non-random).

Phase II. During this phase the simulator acts exactly as in Phase I.

Guess. The adversary will eventually output a guess μ′ of μ. The simulator then
outputs 0 to guess that T = e(g, g)abs if μ′ = μ; otherwise, it outputs 1 to indicate
that it believes T is a random group element in G2. In fact when T is not random
the simulator B gives a perfect simulation so it holds:

Pr
[

B
(

y,T = e(g, g)abs
)

= 0
]

=
1
2
+ ε

On the contrary when T is a random element R ∈ G2 the message mμ is com-
pletely hidden from the adversary point of view, so:

Pr
[B (y,T = R

)

= 0
]

=
1
2

Therefore, B can play the decisional BDH game with non-negligible advantage ε2 .

4 Related Works and Final Comments

Our scheme gives a solution addressing the problem of faith in the authority,
specifically the concerns arisen by key escrow and clearance check. Key escrow
is a setting in which a party (in this case the authority) may obtain access to
private keys and thus it can decrypt any ciphertext. Normally the users have
faith in the authority and assume that it will not abuse its powers. The problem

Key-Policy Multi-authority Attribute-Based Encryption 161

arises when the application does not plan a predominant role and there are trust
issues selecting any third party that should manage the keys. In this situation
the authority is seen as honest but curious, in the sense that it will provide
correct keys to users (then it is not malicious) but will also try to access to data
beyond its competence. It is clear that as long as a single authority is the unique
responsible to issue the keys, there is no way to prevent key escrow. Thus the
need for multi-authority schemes arises.

The second problem is more specific for KP-ABE. In fact, the authority has
to assign to each user an appropriate access structure that represents what the
user can and cannot decrypt. Therefore, the authority has to be trusted not only
to give correct keys and to not violate the privacy, but also to perform correct
checks of the users’ clearances and to assign correct access structures accordingly.
Therefore, in addition to satisfying the requirements of not being malicious and
not being curious, the authority must also not have been breached, in the sense
that a user’s keys must embed access structures that faithfully represent that
user’s level of clearance, and that no one has access to keys with a higher level of
clearance than the one they are due. In this case, to add multiple authorities to
the scheme gives to the encryptor the opportunity to request more guarantees
about the legitimacy of the decryptor’s clearance. In fact, each authority checks
the users independently, so the idea is to request that the decryption proceeds
successfully only when a key for each authority of a given set A is used. This
means that the identity of the user has been checked by every selected authority,
and the choice of these by the encryptor models the trust that he has in them.
Note that if these authorities set up their parameters independently and during
encryption these parameters are bound together irrevocably, then no authority
can single-handedly decrypt any ciphertext and thus key escrow is removed. So
our KP-ABE schemes guarantee a protection against both breaches and curiosity.

The scheme proposed has very short single-keys (just one element per row of
the access matrix) that compensates for the need of multiple single-keys (one for
cited authority) in the decryption. Ciphertexts are also very short (the number
of elements is linear in the number of authorities times the number of attributes
under which it has been encrypted) thus the scheme is efficient under this aspect.
Moreover, there are no pairing computations involved during encryption and this
means significant advantages in terms of encryption times. Decryption time is
not constant in the number of pairings (e.g. as in the scheme presented in [8]
or the one in [20]) but requires

∑

k∈A lk pairings where A is the set of authorities
involved in encryption and lk is the number of rows of the access matrix of the
key given by authority k, so to maintain the efficiency of the scheme only a few
authorities should be requested by the encryptor.

Taking a more historical perspective, the problem of multi-authority ABE
is not novel and a few solution have been proposed. The problem of building
ABE systems with multiple authorities was proposed by Sahai and Waters. This
problem with the presence of a central authority was firstly considered by Chase
[5] and then improved by Chase and Chow [6], constructing simple-threshold
schemes in the case where attributes are divided in disjoint sets, each controlled

162 R. Longo et al.

by a different authority. These schemes are also shown to be extensible from sim-
ple threshold to KP-ABE, but retaining the partition of attributes and requiring
the involvement of every authority in the decryption. In those works the main
goal is to relieve the central authority of the burden of generating key material
for every user and add resiliency to the system. Multiple authorities manage the
attributes, so that each has less work and the whole system does not get stuck if
one is down. Another approach has been made by Lin et al. [12] where a central
authority is not needed but a parameter directly sets the efficiency and number
of users of the scheme.

More interesting results have been achieved for CP schemes, in which the
partition of the attributes makes more sense, for example [15]. The most recent
and interesting result may be found in [11], where Lewko and Waters propose
a scheme where is not needed a central authority or coordination between the
authorities, each controlling disjoint sets of attributes. They used composite
bilinear groups and via Dual System Encryption (introduced by Waters [19]
with techniques developed with Lewko [10]) proved their scheme fully secure
following the example of Lewko et al. [9]. They allow the adversary to statically
corrupt authorities choosing also their master key. Note however that they did
not specifically address key escrow but distributed workload.

Our results of this article retain relevance since they address a different set-
ting. In fact, with this extensions the differences in the situations of ciphertext-
policy ABE and KP-ABE model become more distinct. For example a situation
that suits the scheme proposed here, but not the one of Lewko and Waters is the
following. Consider company branches dislocated on various parts of the world,
each checking its personnel and giving to each an access policy (thus acting
as authorities). This scheme allows encryptions that may be decrypted by the
manager of the branch (simply use only one authority as in classic ABE) but
also more secure encryptions that require the identity of the decryptor to be
guaranteed by more centers, basing the requirements on which branches are still
secure and/or where a user may actually authenticate itself.

Moreover, we observe that although the scheme of [11] is proven fully secure
(against selective security), the construction is made in composite bilinear
groups. It is in fact compulsory when using Dual System encryption, but this has
drawbacks in terms of group size (integer factorization has to be avoided) and the
computations of pairings and group operations are less efficient. This fact leads
to an alternative construction in prime order groups in the same paper, that
however is proven secure only in the generic group and random oracle model.
These considerations demonstrate that our construction in prime groups under
basic assumptions retains validity and interest.

Acknowledgments. Most results in this paper are contained in the first’s author
Msc. thesis [14] who wants to thank his supervisors: the other two authors.

Key-Policy Multi-authority Attribute-Based Encryption 163

References

1. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., De Panafieu, E.,
Ràfols, C., et al.: Attribute-based encryption schemes with constant-size cipher-
texts. Theoretical Computer Science 422, 15–38 (2012)

2. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Technion-Israel Institute of technology, Faculty of computer science (1996)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proc. of SP 2007, pp. 321–334 (2007)

4. Boneh, D., Franklin, M.: Identity-Based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

6. Chase, M., Chow, S.S.: Improving privacy and security in multi-authority attribute-
based encryption. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security, pp. 121–130. ACM (2009)

7. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proc. of CCS 2006, pp. 89–98 (2006)

8. Hohenberger, S., Waters, B.: Attribute-Based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013)

9. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 62–91. Springer, Heidelberg (2010)

10. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

11. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011)

12. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute
based encryption without a central authority. Information Sciences 180(13),
2618–2632 (2010)

13. Liu, Z., Cao, Z.: On efficiently transferring the linear secret-sharing scheme matrix
in ciphertext-policy attribute-based encryption. IACR Cryptology ePrint Archive
(2010)

14. Longo, R.: Attribute Based Encryption with Algebraic Methods. Master’s thesis
(laurea magistrale), University of Trento, Department of Mathematics (2012)

15. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption.
In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer,
Heidelberg (2009)

16. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proc. of CCS 2007, pp. 195–203 (2007)

17. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

164 R. Longo et al.

18. Shamir, A.: Identity-Based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

19. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 619–636. Springer, Heidelberg (2009)

20. Waters, B.: Ciphertext-Policy attribute-based encryption: an expressive, effi-
cient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg
(2011)

Extended Explicit Relations Between Trace,
Definition Field, and Embedding Degree

Atsuko Miyaji1,2, Xiaonan Shi1, and Satoru Tanaka1(B)

1 Japan Advanced Institute of Science and Technology,
Asahidai 1–1, Nomi-shi, Ishikawa 923–1292, Japan

stanaka@jaist.ac.jp
2 CREST, JST, Kawaguchi Center Building 4–1–8, Honcho,

Kawaguchi-shi, Saitama 332–0012, Japan

Abstract. An elliptic curve cryptosystem (ECC) is one of public key
cryptosystem, whose security is based on elliptic curve discrete logarithm
problem (ECDLP). An elliptic curve is uniquely determined by math-
ematical parameters such as j-invariant of an elliptic curve. By giving
trace of elliptic curve, t, a definition field Fp, and discriminant D, an
elliptic curve with order �E(Fp) = n is determined. Therefore it is an
open problem to determine explicit relations between the mathematical
parameters and the embedding degrees k. Hirasawa and Miyaji presented
concrete relations between the mathematical parameters and the embed-
ding degrees. In this research, a new explicit relation between elliptic-
curve parameters and embedding degrees is investigated by generalizing
their research.

Keywords: Elliptic curve · Embedding degree · Trace

1 Introduction

An elliptic curve cryptosystems (ECC) is one of public key cryptosystems, whose
security is based on elliptic curve discrete logarithm problem (ECDLP) and
which can achieve high security with a small key size. Another advantage of
ECC is to use the Weil and Tate pairings to construct cryptographic protocols
such as one-round key exchange [12], identity-based encryption [4], and short
digital signatures [5]. These cryptosystems using pairings are called pairing-based
cryptosystems. One of important issues on ECC is to evaluate the security level
by using mathematical parameters such as j-invariant, definition field or trace.
Remark that after MOV or FR-reduction [8,14] were proposed, one of security
level of ECC is an embedding degree k, which means the security of ECDLP on
Fp is equal to that of DLP on Fpk .

Only elliptic curves known to admit subgroups with appropriate k were super-
singular curves, which are susceptible to discrete logarithm algorithms [16] until
Miyaji, Nakabayashi and Takano [15] proposed ordinary elliptic curves of prime
order and embedding degree k ∈ {3, 4, 6} in 2001. Later, Brezing and Weng [6]
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 165–175, 2015.
DOI: 10.1007/978-3-319-23021-4 15

166 A. Miyaji et al.

presented an algebraic method, which generates ordinary elliptic curves with the
ratio ρ = log pm/ log � significantly less than 2, and the best known their results
achieved ρ ∼ 5/4 when k = 8 and 24. Barreto, Naehrig [3] and Freeman [7] then
showed the constructions of elliptic curves of prime order with k = 12 and 10
using factorization of cyclotomic polynomials presented in [9], respectively.

Besides the above methods, Hirasawa and Miyaji [10] investigated concrete
relations between definition field Fpm , order �E(Fpm), trace t, and embedding
degree k of E(Fpm) based on the elementary number theory, they gave two
algorithms for searching mathematical elliptic curve parameters with a pre-
determined embedding degree k. In their results, k is determined as k = 2r+1L
by r, L, where r can be any non-negative number but L can only be an odd
prime. As a result, there are restrictions on the values of k. Their results focus
on the most optimal case in cryptography, that is, prime order �E(Fpm) = n
satisfies n | φk(pm) where φk(x) is the cyclotomic polynomial. It is interesting to
investigate another condition with an embedding degree k being even and ρ > 1
being as small as possible (say, ρ ≤ 5/4) [3].

In this paper, we extend the methods of Hirasawa and Miyaji in two direc-
tions. First, we consider L to be positive integers (L ≥ 2) from odd prime
numbers such that k can be taken as all even values, which are advantageous
from the point of view of efficient implementation of the pairing algorithm since
the use of prime or odd k discourages many optimizations that are only possible
for even k [2]. The second direction is to obtain more elliptic curve parameters by
incorporating cofactors into the analysis. We present two searching algorithms
dealing with searching elliptic curve parameters according to our extensional
results. We also examine the CM discriminants D of our results and compare
with the previous Hirasawa-Miyaji results as D is significant for constructions
of elliptic curves.

This paper is organized as follows. Section 2 describes preliminary knowledge
on elliptic curves and reviews Hirasawa and Miyaji’s results. Section 3 shows our
main contribution. We discuss the extensions of Hirasawa and Miyaji’s results
and present two searching algorithms according to our new relation. Section 5
compares our results with Hirasawa and Miyaji’s results by discussing experi-
mental results. We conclude and summarize our results in Section 6.

2 Preliminaries

Let Fpm be a finite field for a prime p and a positive integer m. Let E be an
elliptic curve defined over Fpm . The embedding degree is defined as follows:

Definition 1. Let E(Fpm) be an elliptic curve defined over Fpm whose group
order is �E(Fpm) is divisible by a prime �. Then E(Fpm) has an embedding
degree k with respect to � if k is the smallest integer such that � | pmk − 1.

If E(Fpm) has a subgroup 〈G〉 with �〈G〉 = � and gcd(�, p) = 1, then the
Weil pairing e� is defined from the �-torsion points on E, to an �th root of unity
in F

∗
pmk . An extension degree k is called an embedding degree. MOV-reduction

Extended Explicit Relations 167

and FR-reduction [8] embed the Elliptic Curve Discrete Logarithm Problem
(ECDLP) in E(Fpm) to Discrete Logarithm Problem (DLP) in Fpmk , where
there are attacks with the sub-exponential time. Therefore, as for pairing-based
cryptosystems, we would like to build elliptic curves with embedding degrees k
that are large enough for the DLP in the embedding field to be difficult, but small
enough for the pairing to be efficiently computable. Unfortunately, however, for
most non-supersingular curves, the embedding degree is enormous [1]. This is
an open problem to give an explicit condition between embedding degrees k and
the mathematical parameters such as the definition field Fpm and �E(Fpm).

The k-th cyclotomic polynomial φk(x) is defined as the minimum polynomial
of the primitive k-th root of unity [13]. The embedding degree k of a subgroup 〈G〉
of E(Fpm) with ord(G) = � is equal to the minimal number such that � | φk(pm),
i.e., φk(pm) ≡ 0 (mod �). Let t = pm + 1 − �E(Fpm) be the trace of E(Fpm).
Then, (t − 1) ≡ pm (mod �), which implies (t − 1)k ≡ pmk ≡ 1 (mod �). Thus,
(t − 1) must be a k-th root of unity modulo �. That is, E(Fpm) has embedding
degree k with respect to � is equivalent to φk(t − 1) ≡ 0 (mod �).

Hirasawa and Miyaji [10] presented an explicit relation between the defini-
tion field Fpm , �E(Fpm) and embedding degree k by extending Hitt’s results on
hyperelliptic curve [11]. They also gave algorithms for searching elliptic-curve
parameters with pre-determined embedding degree. We present their results,
which will later be extended in this paper.

The following lemma determines order of an element a in Zn, which is denoted
by ordn(a).

Lemma 1 ([10]). Let r, a, λ ∈ Z (r, λ ≥ 0), L be an odd prime, and n =
a2rL+1

λ(a2r+1)
. If a2r 	≡ −1 (mod n), then ordn(a) = 2r+1L.

They also presented the following theorem that determines embedding degree k
by describing a relation between embedding degree k and order n in Zn ordn(a).

Theorem 1 ([10]). Let r, m, λ ∈ Z(r,m, λ ≥ 0). Let L and p be odd primes,
n = a2rL+1

λ(a2r+1)
, D = gcd(ordn(p),m). Then, the following two relations hold:

1. if �E(Fpm) = p2rL

λ(p2r+1)
= n is a prime and p2

r 	≡ −1 (mod n), then the
embedding degree k of E(Fpm) is given by
– k = 2r+1−iL when D = 2i(0 ≤ i ≤ r + 1); and
– k = 2r+1−iL when D = 2iL(0 ≤ i ≤ r + 1);

2. if �E(Fpm) = (t−1)2
rL

λ((t−1)2r+1)
= n is a prime and (t − 1)2

r 	≡ −1 (mod n), then
the embedding degree of E(Fpm) k is given by k = 2r+1L.

3 The New Relations

Lemma 1 and Theorem 1 cover only the cases where L is an odd prime. Extension
degrees that Theorem 1 can construct are limited to k = 2α+1q for Z
 α ≥ 0
and an odd prime q. This implies that the following extension degrees k can not
be constructed by Theorem 1:

168 A. Miyaji et al.

1. k = 2α+1qη for Z
 α ≥ 0, an odd prime q, and an odd number η.
2. k = 2α+1 for Z
 α ≥ 0.

In this paper, we will extend conditions of L from odd primes to odd numbers
and even numbers:

L = {q} −→ L = {qη} ∪ {2β (Z
 β ≥ 2)}.

Thus, we can construct elliptic curves with the above two types of embedding
degrees k. Each embedding degree k has a different feature. For example. it
is well known that even values of k are advantageous from the point of view
of efficient implementation of pairing algorithms [3]. Thus, it is meaningful to
extend conditions of embedding degrees k.

We discuss the case where L is odd composite numbers or powers of 2 in
Lemma 2 or 3, respectively. In addition, the results in [10] investigates cases of
prime-order elliptic curves, that is n = �E(Fpm) is prime, i.e., n | pmk − 1. This
is the most relevant case in pairing-friendly elliptic curve cryptosystems. This,
however, reduces the existence possibility of elliptic curves with given embedding
degrees k. We extend prime-order elliptic curves to ‘nearly-prime-order’ elliptic
curves. More specifically, we deal with elliptic curves E with �E(Fpm) = n = h ·�
for the largest prime divisor � of n and � | pmk − 1 and a reasonably small
cofactor h.

Lemma 2. Let r, a, λ ∈ Z (r ≥ 0, λ > 0, a 	= 0), L = qη be an odd positive
integer, where q and η are a prime divisor and an odd divisor of L, respectively.
If both � = a2rL+1

λ(a2rη+1)
and a2rη 	≡ −1 (mod �) hold, then ord�(a) = 2r+1L.

proof: From � = a2rL+1
λ(a2rη+1)

, we have λ(a2rη + 1)� = a2rL + 1. So, the following
holds:

a2rL ≡ −1 (mod �). (1)

This implies a2r+1L ≡ 1 (mod �). Therefore, ord�(a) | 2r+1L. On the other
hand, from the above fact of a2rL ≡ −1 (mod �), ord�(a) � 2rL, that is, both
ord�(a) 	= 2j and ord�(a) 	= 2jL hold for 0 ≤ ∀j ≤ r.

Suppose that ord�(a) | 2r+1η, that is, a2r+1η ≡ 1 (mod �). From the fact of
L = qη, we can get the following sequences: a2rL = a2r+1ηa2r(L−2η) = a2r(L−2η).
Continuing the same procedures for L, L−2η, L−2 ·2η, L−2 ·3η · · · , it reaches
to L − 2 q−1

2 η = qη − (q − 1)η = η since q is an odd prime. Then, combining the
equation (1), we get a2rL ≡ · · · ≡ a2rη ≡ −1 (mod �). This, however, contradicts
the condition of Lemma 2 of a2rη 	≡ −1 (mod �). Hence, ord�(a) � 2r+1η. This
implies that ord�(a) 	= 2jη (0 ≤ ∀j ≤ r + 1), and ord�(a) 	= 2r+1. Therefore, we
have proved ord�(a) = 2r+1qη = 2r+1L since q is an odd prime. ��
Lemma 3. Let r, a, λ ∈ Z. Let L = 2β be an even positive integer for Z
 β ≥
2, where the next condition of [(a > 0) ∧ (λ > 0)] ∨ [(a < 0) ∧ (even β) ∧ (λ >
0)] ∨ [(a < 0) ∧ (r > 0) ∧ (λ > 0)] ∨ [(a < 0) ∧ (r = 0) ∧ (λ < 0)] holds. If
� = a2rβ+1

λ , then ord�(a) = 2rL.

Extended Explicit Relations 169

proof: From � = a2rβ+1
λ , we have λ� = a2rβ + 1. So, a2rβ ≡ −1 (mod �), and,

thus a2r2β ≡ 1 (mod �) holds. Therefore, ord�(a) | 2rL, ord�(a) 	= 2j (0 ≤ ∀j ≤
r), and ord�(a) 	= 2jβ (0 ≤ ∀j ≤ r) hold. Thus, the only possible order of ord�(a)
is 2rL, then the lemma follows. ��
Remark 1. Conditions of a are determined by those to lead a positive integer � in
Lemmas 2 and 3, respectively. In Lemma 2, when a > 0, obviously, � = a2rL+1

λ(a2rη+1)

is positive for any r ≥ 0 and any L > 0. When a < 0 and r = 0, both a2rL + 1
and a2rη + 1 are negative since both L and η are odd numbers. Therefore, � is
positive. When a < 0 and r > 0, both a2rL +1 and a2rη +1 are positive. Thus, �
is positive. This discussion leads the conditions of a in Lemma 2, that is a 	= 0.

In the case of Lemma 3, when a < 0, r = 0, λ < 0 and L = 2β with an odd
number β, � = a2rβ+1

λ > 0. When a < 0, r = 0, λ > 0 and L = 2β with an even

number β, � = a2rβ+1
λ > 0. When r > 0 and λ > 0, � = a2rβ+1

λ > 0, no matter
the sign of a. Therefore, the conditions of a in Lemma 3, [(a > 0)∧(λ > 0)]∨[(a <
0)∧(even β)∧(λ > 0)]∨ [(a < 0)∧(r > 0)∧(λ > 0)]∨ [(a < 0)∧(r = 0)∧(λ < 0)]
are leaded.

These discussion becomes important in Algorithms 1 and 3

We are interested in a relation between trace t, group order �, and embedding
degree k. Thus if we apply a = t − 1 to Lemmas 2 and 3, we have the following
theorem that describes such a relation.

Theorem 2. Let r, λ ∈ Z (r ≥ 0, λ > 0). Let L be a positive integer, t be the
trace and k be the embedding degree of E(Fp) with order �E(Fp) = n = h�, then
the following relations holds:

1. If L = qη is an odd number for a prime q, � = (t−1)2
rL+1

λ((t−1)2rη+1)
(t − 1 	= 0), and

(t − 1)2
rη 	≡ −1 (mod �), then k = 2r+1L.

2. If L = 2β is an even number for β ≥ 2 and � = (t−1)2
rβ+1

λ (t − 1 	= 0) with
either condition of [(t > 1) ∧ (λ > 0)] ∨ [(t < 1) ∧ (even β) ∧ (λ > 0)] ∨ [(t <
1) ∧ (r > 0) ∧ (λ > 0)] ∨ [(t < 1) ∧ (r = 0) ∧ (λ < 0)], then k = 2rL.

proof: As for 1, by substituting a = t − 1 into Lemma 2, we obtain � =
(t−1)2

rL+1
λ((t−1)2rx+1)

. Since t = p + 1 − n, we have t − 1 ≡ p (mod �). Since k is the
smallest positive integer such that pk = 1 (mod �), (t − 1)k ≡ pk ≡ 1 (mod �)
holds. Therefore, we get embedding degree k = ord�(p) = ord�(t − 1) = 2r+1L.

As for 2, the proof follows in the same way as 1. ��

4 Searching Algorithm

Based on the parametrization given in Theorem 2, we present two searching
algorithms Algorithms 1 and 3, which for input of embedding degree k, the
maximum cofactor hmax, the initial maximum trace tmax, and the security

170 A. Miyaji et al.

level Lev, outputs elliptic curve parameters such as definition field Fp, order
of elliptic curve �E(Fp) = n = h�, and the trace t = p + 1 − n. Algorithm 1
corresponds to the first case of Theorem 2; and Algorithm 3 corresponds to the
second case of Theorem 2.

We also examine the ratio ρ = log p
log � , which is set to be the ideal range of 1 ≤

ρ < 2 as for secure and efficient implementation. In addition, CM discriminant
D is also computed.

Algorithm 1. Searching �E(Fp) = n = h · � with k = 2r+1L (L is odd).
Require: k = 2r+1L, tmin, tmax, hmax, and Lev,
Ensure: Fp, #E(Fp) = n = h�, ratio ρ
1: Set S to a set of prime divisors of L.
2: for all q ∈ S do
3: η ← L/q.
4: while |t| ∈ [tmin, tmax] do

5: Γ ← (t−1)2
rL+1

(t−1)2
rη+1

.

6: if (t − 1)2
rη ≡ −1 (mod �) then

7: go to step 4 for the next t.
8: end if
9: if The largest prime divisor � of Γ satisfies � < Lev then

10: go to step 4 for the next t.
11: end if
12: for h = 1 to hmax do
13: Set n ← h · �, p ← n + t − 1.
14: if p is a prime. then
15: output {t, p1, n, � }.
16: end if
17: end for
18: end while
19: end for

Remark 2. In Algorithm 1, traces t can be taken positive and negative if t−1 	= 0
as we have discussed in Remark 1. Γ = (t−1)2

rL+1
(t−1)2rx+1

has same value for t and −t+2
if r > 0, so after finding desired largest prime divisor � of Γ for a certain t, we
are able to apply this � to −t + 2. When trace is equal to −t + 2, we have
p = n + (−t + 2) − 1 = n − t + 1. Thus, |t| ∈ [tmin, t0] needs to be checked
but some negative t can be skipped. This short-cut algorithm will be shown in
Algorithm 2.

The Algorithms 1 and 3 output all possible elliptic curve parameters for one
taken trace t. We discuss some details of the two algorithms as follows:

Remark 3. In Algorithm 3, traces t−1 can be taken positive and negative (t−1 	=
0) only if (r > 0) or (r = 0) and x is even) as we have discussed in Remark 1.

Extended Explicit Relations 171

Algorithm 2. Searching �E(Fp) = n = h · � with k = 2r+1L (L is odd) and
r > 0.
Require: k = 2r+1L, tmin, tmax, hmax, and Lev,
Ensure: Fp, #E(Fp) = n = h�, ratio ρ
1: Set S to a set of prime divisors of L.
2: for all q ∈ S do
3: η ← L/q.
4: for t = tmax to tmin do

5: Γ ← (t−1)2
rL+1

(t−1)2
rη+1

.

6: if (t − 1)2
rη ≡ −1 (mod �) then

7: Go to step 4 for the next t.
8: end if
9: if The largest prime divisor � of Γ satisfies � < Lev then

10: Go to step 4 for the next t.
11: end if
12: for h = 1 to hmax do
13: Set n ← h · �, p1 ← n + t − 1.
14: if p1 is a prime. then
15: Output {t, p1, n, � }.
16: end if
17: if t ≥ tmin + 2 then
18: Set p2 ← n + (2 − t) − 1 = n − t + 1.
19: if p2 is a prime. then
20: Output {2 − t, p2, n, � }.
21: end if
22: end if
23: end for
24: end for
25: Set t ← −tmax or −tmax + 1 and do the same procedure of steps 4 to 16.
26: end for

In this condition, we are able to search curve parameters with the corresponding
negative trace (−t + 2) of a positive t in same way as we have discussed in
Remark 2. However, if (r = 0 and x is odd), negative traces lead to negative

Γ = (t−1)2
rL−1

(t−1)2rx−1
, and thus we can not check p for negative traces.

5 Comparison

We compare our results with Hirasawa, Miyaji’s results through implementing
Algorithms 1 and 3 for t ∈ [2�log pm/(2r(L−x))�, 2�log pm/(2r(L−x))� + 10000]. Our
implementation assumption is that 6 ≤ k ≤ 30, 3 ≤ L ≤ 15, and 0 ≤ B ≤ log pm

2
when n is near prime. And we do comparison in the following two directions:

1. the extension of the embedding degree k to be arbitrary even values.
2. the extension that taking order n to be near prime.

172 A. Miyaji et al.

Algorithm 3. Searching �E(Fp) = n = h · � k = 2rL(L = 2β is even).
Require: k = 2rL = 2r+1β, tmax, hmax, and Lev,
Ensure: Fp, #E(Fp) = n = h�, ratio ρ
1: Set β ← L/2.
2: while |t| ∈ [tmin, tmax] do

3: Set Γ ← (t − 1)2
rβ + 1.

4: if The largest prime divisor � of Γ satisfies � < Lev then
5: Go to step 4 for the next t.
6: end if
7: for h = 1 to hmax do
8: Set n ← h · �, p1 ← n + t − 1.
9: if p1 is a prime. then

10: Output {t, p1, n, � }.
11: end if
12: end for
13: end while

Hirasawa and Miyaji presented Table 1 for showing the total number of
elliptic-curve parameters �{n, pm, t} searched by their algorithm with fixed k (r,
L) under running 10,000 times of different t. These parameters correspond to 160-
bit ordinary elliptic curves of prime order n where the size of n should be equal or
larger than 150 bits. Since the discriminant D is an essential parameter related
to construction of elliptic curve, that is, when D is not large, say ∼ 109, the
elliptic curve can be constructed by using CM method. Therefore we investigate
the size of D of their searched parameters and add to Table 1.

Table 1. �parameters with different k = 2r+1L over t ∈ [2�160/(2r(L−1))�,
2�160/(2r(L−1))� + 105] (Experimental results in [10])

160-bit prime p

k r L �{n, pm, t} size of D

10 0 5 225 141 ∼ 160
12 1 3 136 137 ∼ 160
14 0 7 135 138 ∼ 160
20 1 5 180 137 ∼ 160
24 2 3 84 139 ∼ 160

First, we examine all even values of k in the range of k ∈ [8, 30] without
changing the condition of n, i.e., n is still prime. The number of parameters
corresponding to 160-bit elliptic curves under running 105 kinds of t are shown
in Table 2.

For the value of k, 8, 16, 18 and 30 are only available by using our results.
Furthermore, it becomes possible for factorizing fixed k to different ways. For
example, k = 12 can be factored as 12 = 4 · 3({r, L} = {1, 3}), and 12 =
2 · 6({r, L} = {1, 6}). This implies the number of parameters can be increased
by different factorizations of embedding degree k. However, we conjecture that

Extended Explicit Relations 173

factoring k with L to be prime probably can achieve more results. The reason
might be that when n = (t−1)2

rL+1
(t−1)2r+1

is 160 bits, the probability that the prime
divisor l = n/λ larger than 150 bits is much higher than when 160-bit n =
(t−1)2

rL−1
(t−1)2rx−1

.

Table 2. �parameters over t ∈ [2�160/(2r(L−x))�, 2�160/(2r(L−x))� + 105] (k = 2r+1L for
odd L or k = 2rL for even L, n is prime)

160-bit prime p

k r L �{n, pm, t} size of D

6 0 6 89 134 ∼ 160
8 1 4 149 143 ∼ 160
10 0 10 97 137 ∼ 160
12 1 6 29 135 ∼ 160
14 0 14 9 138 ∼ 160
16 1 8 111 148 ∼ 160
18 0 9 174 141 ∼ 160
20 1 10 9 136 ∼ 160
22 0 22 10 137 ∼ 160
24 1 12 90 142 ∼ 160
26 0 26 31 137 ∼ 160
28 1 14 57 136 ∼ 160
30 0 15 109 137 ∼ 160

Then we choose same values of k in Table 2 and investigate the case where
n is near prime and n = h · l with l is prime, for all integer h ≤ 103. Since
comparison should be taken in same security level, l is chosen as the same size

Table 3. �parameters, size of D, and ρ over t ∈ [2�160/(2r(L−x))�, 2�160/(2r(L−x))�+105].
(k = 2r+1L for odd L or k = 2rL for even L, n is prime)

160-bit prime p

k r L �{l, n, pm, D} size of D ρ(average)

6 0 3 17138 138 ∼ 172 1.05316
8 1 4 41640 132 ∼ 172 1.05318
10 0 5 22916 142 ∼ 172 1.05324
12 1 3 72974 141 ∼ 172 1.05324
14 0 7 34185 145 ∼ 174 1.05258
16 1 8 33261 139 ∼ 172 1.05310
18 0 9 32490 141 ∼ 174 1.05276
20 1 5 54842 142 ∼ 174 1.05304
22 0 11 56300 138 ∼ 186 1.05153
24 2 3 121913 137 ∼ 174 1.05309
26 0 13 170618 131 ∼ 212 1.04739
28 1 7 169781 142 ∼ 212 1.04739
30 0 15 N/A N/A N/A

174 A. Miyaji et al.

of n in Table 1. The results of running 105 kinds of t based on all proposed
algorithms are shown in Table 3. By the Table 3, the number of elliptic-curve
parameters significantly increased by transforming n is prime to n is near prime
(ρ ∼ 1), however it is rare enough to find such curve has order of nearly prime.

6 Conclusion

We have generalized the Hirasawa-Miyaji method to search mathematical param-
eters with pre-determined arbitrary even k of near prime order elliptic curves.
This allows us to more flexibly choose k and find more elliptic-curve parameters
with ρ closer to one.

References

1. Balasubramanian, R., Koblitz, N.: The improbability that an elliptic curve has
subexponential discrete log problem under the Menezes-Okamoto-Vanstone algo-
rithm. Journal of Cryptology 11(2), 141–145 (1998)

2. Barreto, P.S.L.M., Lynn, B., Scott, M.: On the selection of pairing-friendly groups.
In: Cohen, H. (ed.) 10th International Workshop on Revised Selected Papers of
Selected Areas in Cryptography, SAC 2003. LNCS, vol. 3006, pp. 17–25. Springer,
Heidelberg (2004)

3. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order.
In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331.
Springer, Heidelberg (2006)

4. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. Journal of Cryptology 24(4), 659–693 (2011)

5. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,
Heidelberg (2001)

6. Brezing, F., Weng, A.: Elliptic curves suitable for pairing based cryptography.
Designs, Codes and Cryptography 37(1), 133–141 (2005)

7. Freeman, D.: Constructing Pairing-Friendly Elliptic Curves with Embedding
Degree 10. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076,
pp. 452–465. Springer, Heidelberg (2006)

8. Frey, G., Rück, H.G.: A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves. Mathematics of Computation 62, 865–874
(1994)

9. Galbraith, S.D., McKee, J.F., Valença, P.C.: Ordinary abelian varieties having
small embedding degree. Proceedings of Workshop on Mathematical Problems and
Techniques in Cryptology 13(4), 29–45 (2004)

10. Hirasawa, S., Miyaji, A.: New concrete relation between trace, definition field, and
embedding degree. IEICE Transactions on Funamentals of Electronics, Communi-
cations and Computer Science 94-A(6), 1368–1374 (2011)

11. Hitt, L.: On the Minimal Embedding Field. In: Takagi, T., Okamoto, E.,
Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 294–301.
Springer, Heidelberg (2007)

Extended Explicit Relations 175

12. Joux, A.: A one round protocol for tripartite Diffie-Hellman. In: Bosma, W. (ed.)
4th International Symposium on Proceedings of Algorithmic Number Theory,
ANTS-IV, pp. 385–394. Springer, Heidelberg (2000)

13. Lang, S.: Algebra, 3rd edn. Addison-Wesley (1993)
14. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curve logarithms to

logarithms in a finite field. IEEE Transactions on Infomation Theory 39, 1639–
1646 (1993)

15. Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve
traces for fr-reduction. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences E84-A(5), 1234–1243 (2001)

16. Schirokauer, O., Weber, D., Denny, T.F.: Discrete logarithms: The effectiveness of
the index calculus method. In: Cohen, H. (ed.) Proceedings of Algorithmic Number
Theory - ANTS-II, Second International Symposium. LNCS, vol. 1122, pp. 337–
361. Springer, Heidelberg (1996)

Complexity of Uniform Membership
of Context-Free Tree Grammars

Johannes Osterholzer(B)

Faculty of Computer Science,
Technische Universität Dresden, 01062 Dresden, Germany

johannes.osterholzer@tu-dresden.de

Abstract. We show that the uniform membership problem of context-
free tree grammars is PSPACE-complete. The proof of the upper bound is
by construction of an equivalent pushdown tree automaton representable
in polynomial space.With this technique, we also give an alternative proof
that the respective non-uniform membership problem is in NP. A corollary
for uniform membership of ε-free indexed grammars is obtained.

1 Introduction

Context-free tree grammars (cftg) [3,10] generalize the concept of context-free
rewriting to the realm of tree languages. They have been studied, among others,
for their close connection to indexed grammars: their yield languages are pre-
cisely the indexed languages [1,10]. Recently, there has been renewed interest in
cftg within the area of natural language processing, as they – and related for-
malisms such as tree adjoining grammars – allow modelling particular linguistic
phenomena.

In this paper, we investigate the computational complexity of the uniform
membership problem of cftg. In Section 5, this problem is shown to be PSPACE-
complete. In order to prove containment in PSPACE, an equivalent pushdown tree
automaton (pta) M† [4] is constructed from G in a succession of intermediate
steps (Section 4). We demonstrate that M† can be implemented in polynomial
space. The idea behind M† is taken from Aho’s proof that the indexed languages
are context-sensitive [1, Sec. 5]. Note that in [1], the construction is given directly
by means of a rather complex Turing machine, and without proof of correctness.
In contrast, by employing pta, we can provide a formal proof; moreover, we think
that this presentation is easier to understand. As a corollary, we establish the
PSPACE-completeness of uniform membership of ε-free indexed grammars.

To show that the constructed pta M† is also of potential interest besides
the paper’s main theorem, we use M† in Section 6 for an alternative proof of
the fact that the non-uniform membership problem of cftg is in NP. Note that
this result already follows from the containment of the indexed languages in NP,
whose proof in [11] rests, however, upon the correctness of the Turing machine
mentioned above. In [7], containment in NP was proven for the class of output
languages of compositions of macro tree transducers, which contains the context-
free tree languages properly.
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 176–188, 2015.
DOI: 10.1007/978-3-319-23021-4 16

Complexity of Uniform Membership of Context-Free Tree Grammars 177

Recall that there are two restricted modes of derivation for cftg, the OI and
the IO mode. In fact, the OI mode is equivalent to the unrestricted mode used
in this paper [3]. For complexity results on cftg under the IO mode cf. [2,14].

2 Preliminaries

The set of natural numbers with zero is denoted byN, and the set {1, . . . , n} by [n],
for every n ∈ N. Note that [0] = ∅, the empty set. Let A be a set. Given relations
R, S ⊆ A×A, their product R◦S is the relation {(a, c) ∈ A×A | ∃b ∈ A : (a, b) ∈
R, (b, c) ∈ S}. An alphabet is a finite nonempty set. The set of words over A is A∗,
the empty word is ε, and A+ = A∗ \ {ε}. Let w = a1 . . . an with a1, . . . , an ∈ A
for some n ∈ N. Then |w| = n, and w̃ = an . . . a1, the reversal of w.

An alphabet Σ equipped with a function rkΣ : Σ → N is a ranked alphabet.
Let Σ be a ranked alphabet. When Σ is obvious, we write rk instead of rkΣ . Let
k ∈ N. Then Σ(k) = rk−1(k). We often write σ(k) and mean that rk(σ) = k. We
assume tacitly that there are some α(0) and σ(n) ∈ Σ such that n ≥ 2. Let U be a
set and Λ denote Σ∪U ∪C, where C is made up of the three symbols ‘(’, ‘)’, and
‘,’. The set TΣ(U) of trees (over Σ indexed by U) is the smallest set T ⊆ Λ∗ such
that U ⊆ T , and for every k ∈ N, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ T , we also have that
σ(ξ1, . . . , ξk) ∈ T . A tree α() is abbreviated by α, a tree γ(ξ) by γξ, and TΣ(∅)
by TΣ . Let ξ, ζ ∈ TΣ(U). The set of positions (Gorn addresses) of ξ is denoted
by pos(ξ) ⊆ N

∗. The size |ξ| of ξ is |pos(ξ)|. Denote the label of ξ at its position
w by ξ(w), and the subtree of ξ at w by ξ|w. The result of replacing the subtree
ξ|w in ξ by ζ is ξ[ζ]w. Given k ∈ N, ξ, ξ1, . . . , ξk ∈ Λ∗, and pairwise different
u1, . . . , uk ∈ U , denote by ξ[u1/ξ1, . . . , uk/ξk] the result of substituting every
occurrence of ui in ξ with ξi, where i ∈ [k]. If ξ, ξ1, . . . , ξk are trees in TΣ(U),
then so is ξ[u1/ξ1, . . . , uk/ξk]. We will use the sets of variables X = {x1, x2, . . .}
and Y = {y}. For each k ∈ N, let Xk = {xi | i ∈ [k]}. Unless specified, Σ and N
denote arbitrary ranked alphabets, and Γ an arbitrary alphabet.

We presuppose the basic definitions and results from computational com-
plexity theory, cf. e.g. [8]. In particular, we will use the same concept of reduc-
tion as in [8]; i.e., many-one reductions that are computable by a deterministic
multi-tape Turing machine with work tape space in O(log n). Functions that
are computable in this manner are logspace-computable. Assuming a reasonable
encoding, operations on trees such as determining the j-th subtree of a node, or
substitution at a given position, are logspace-computable, cf. [6, Lem. 2].

3 Context-Free Tree Grammars and Pushdown Automata

A context-free tree grammar (cftg) over Σ is a tuple G = (N,Σ, S, P) such that
Σ and N are disjoint ranked alphabets (of terminal resp. nonterminal symbols),
S ∈ N (0), and P is a finite set of productions of the form A(x1, . . . , xk) → ξ
for some k ∈ N, A ∈ N (k), and ξ ∈ TN∪Σ(Xk). Let G = (N,Σ, S, P) be a cftg.
Given ζ1, ζ2 ∈ TN∪Σ , we write ζ1 ⇒G ζ2 if there are (A(x1, . . . , xk) → ξ) ∈ P
and w ∈ pos(ζ1) such that ζ1(w) = A and ζ2 = ζ1[ξ[x1/ζ1|w1, . . . , xk/ζ1|wk]]w.

178 J. Osterholzer

Table 1. Membership problems of cftg (over Σ)

Uniform Membership Membership

Input cftg G over Σ, ξ ∈ TΣ ξ ∈ TΣ

Question Is ξ ∈ L(G)? Is ξ ∈ L(G) for a fixed cftg G over Σ?

The tree language of G, denoted by L(G), is the set {ξ ∈ TΣ | S ⇒∗
G ξ}. In this

situation, we call L(G) a context-free tree language. The size of G, denoted by
|G|, is |N | +

∑
(l→r)∈P (|l| + |r|).

In this work, we will investigate the uniform membership problem, as well as
the (non-uniform) membership problem of cftg (over Σ), as defined in Tab. 1.

A pushdown tree system (pts) is a tuple M = (Q,Σ, Γ, q0, R) such that Q is
an alphabet (of states), Σ is a ranked alphabet, Γ is a nonempty set, q0 ∈ Q,
and R is a set of rules of the following three forms:

(i) q(y) → σ(p1(y), . . . , pk(y)), (ii) q(y) → p(γy), (iii) q(γy) → p(y),

where y ∈ Y , σ ∈ Σ(k) for some k ∈ N, q, p, p1, . . . , pk ∈ Q, and γ ∈ Γ . We call
M a pushdown tree automaton (pta) when Γ (and thus R) is finite.1 The set of
rules from R of form (i) (resp. (ii), (iii)) is denoted by RΣ (resp. by R↑, R↓),
and their elements are called stay, push, and pop rules.

Given a pts M = (Q,Σ, Γ, q0, R), let CM = {q(η) | q ∈ Q, η ∈ Γ ∗} and
DFM = TΣ(CM), the sets of configurations and derivation forms of M . Given a
rule ρ ∈ R of the form l → r, and ζ1, ζ2 ∈ DFM , we write ζ1 ⇒ρ

M ζ2 if there
are some w ∈ pos(ζ1) and η ∈ Γ ∗ such that ζ1|w = l[y/η], ζ2 = ζ1

[
r[y/η]

]
w
,

and w is the leftmost position in ζ1 which is labeled by an element of Q. We
let ⇒M=

⋃
ρ∈R ⇒ρ

M . Let ζ, ζ ′ ∈ DFM . A derivation of ζ ′ from ζ in M is a
sequence ρ1 . . . ρm ∈ R∗ such that there are ζ0, . . . , ζm ∈ DFM where ζ = ζ0,
ζi−1 ⇒ρi

M ζi for every i ∈ [m], and ζ ′ = ζm. If d is of this form, we write
ζ0 ⇒d

M ζm. The set of all derivations of ζ ′ from ζ in M is denoted by DM (ζ, ζ ′).
We let DM =

⋃
ζ∈CM ,ξ∈TΣ

DM (ζ, ξ). The tree language of M , denoted by L(M),
is the set {ξ ∈ TΣ | q0(ε) ⇒∗

M ξ}, and the size of M , which is denoted by |M |,
is |Q| + |Γ | +

∑
(l→r)∈R(|l| + |r|).

Let Z1 be a cftg or a pts, and Z2 be a cftg or a pts. Then Z1 and Z2 are
equivalent if L(Z1) = L(Z2). If not specified otherwise, G will denote an arbitrary
cftg (N,Σ, S, P) in the sequel, and M an arbitrary pta (Q,Σ, Γ, q0, R).

As proven in [4, Thm. 1], pta accept exactly the context-free tree lan-
guages. A close inspection of the proof shows that all constructions are logspace-
computable.
1 In fact, pta as given here are in two ways a special case of the restricted pushdown tree
automata (rpta) of [4]. First, the pushdowns of rpta are monadic trees from TΓ ({Z})
for some distinct nullary symbol Z, while pta use words over Γ . Both approaches are
clearly equivalent. Second, the rules of pta are more restricted than those of rpta.
However, in the construction of an equivalent rpta from a cftg in [4, Thm. 3], only
rules of type (i)–(iii) are created, so the restriction has no impact.

Complexity of Uniform Membership of Context-Free Tree Grammars 179

Lemma 1 ([4]). Let L ⊆ TΣ. There is a cftg G such that L = L(G) iff there is
a pta M such that L = L(M). Also, M is logspace-computable from G, and vice
versa.

4 Compact pts and Finite Representations

Both in our analysis of uniform and non-uniform membership of cftg, the proof of
containment in the respective complexity class rests on the successive application
of certain transformations to the pta M that is obtained from an input cftg G
by using Lem. 1.

We introduce these transformations in the following subsections, drawing
upon ideas Aho used in the construction of the linear bounded automaton that
demonstrates the context-sensitivity of the indexed languages [1, Sec. 5]. We
apply these ideas directly at the level of pta instead of building a complex Turing
machine, and provide formal proofs of correctness.

4.1 Augmented pta

Later on, we will require for our proofs that the amount of steps in a derivation
of a tree ξ ∈ TΣ in the pta M is bounded. However, for an arbitrary pta, it seems
difficult to find the respective bound. This is due to the presence of unnecessary
turns of M . Take, e.g., the following derivation in some pta M :

q(γ) ⇒M q1(δγ) ⇒M q2(τδγ) ⇒M q3(δγ) ⇒M q4(γ) ⇒M p(ε) .

Clearly, the turn q(γ) ⇒∗
M q4(γ) was in some sense unnecessary, and we could

have avoided it if there was already some rule q(γy) → p(y) in R, because then
q(γ) ⇒M p(ε). The existence of such rules to avoid unnecessary turns is exactly
what constitutes an augmented pta. Formally, a pta M is augmented if for every
q1, q2, q3 ∈ Q and γ ∈ Γ such that q1(ε) ⇒M q2(γ) ⇒M q3(ε), and for every
rule q3(l) → r in R, the rule q1(l) → r is also in R.

Lemma 2. For every pta M , an equivalent augmented pta M ′ is constructible
in polynomial time.

Proof. Given a pta M , define the pta M ′ = (Q,Σ, Γ, q0, R
′), where R′ results

from the following fixed-point iteration. Initially, let R′ = R. Then, while there
are q1, q2, q3 ∈ Q, γ ∈ Γ , and (q3(l) → r) ∈ R′ such that q1(ε) ⇒M ′ q2(γ) ⇒M ′

q3(ε) and (q1(l) → r) /∈ R′, insert (q1(l) → r) into R′.
It is easy to see that every iteration respects the invariant L(M ′) = L(M).

Moreover, after termination of the algorithm, M ′ is obviously augmented.
Observe that the maximal number of rules of a pta over the terminal alphabet

Σ is in O(|Q|2 ·|Γ |+|Σ|·|Q|m+1), where m is the maximal rank of a symbol from
Σ. As a rule is added in every iteration, the algorithm terminates eventually.
Since Σ is fixed, the number of iterations is polynomial in the input. ��

180 J. Osterholzer

A derivation with no unneccessary turns is called succinct. More precisely,
d ∈ DM is succinct if there are e1 ∈ R∗

↓, e2 ∈ R∗
↑, ω ∈ RΣ , k ∈ N and d1,

. . . , dk ∈ DM such that d = e1e2ωd1 . . . dk and for every i ∈ [k], di is succinct.
The set of succinct derivations of ξ ∈ TΣ from q(η) ∈ CM in M is denoted by
DSM (q(η), ξ), and the set of all succinct elements of DM by DSM . The following
lemma means that in an augmented pta M , we need only consider succinct
derivations. We omit its proof, which is based on the observation that in a
derivation d of M , it is not necessary to apply a push rule ρ1 right before a pop
rule ρ2, as we can always replace ρ1ρ2 in d by some other rule ρ′ of M .

Lemma 3. Let M be augmented, q(η) ∈ CM , and ξ ∈ TΣ. If q(η) ⇒∗
M ξ, then

there is also a succinct derivation d ∈ DSM (q(η), ξ).

4.2 Compact pts

Besides avoiding unnecessary turns of M , there is still one problem to solve. We
might refer to it as M being too verbose in its pushdowns. E.g., in the derivation

q(ε) ⇒M q′(γ) ⇒M q′′(δγ) ⇒M σ
(
u(δγ), p(δγ)

) ⇒2
M σ

(
α, p(γ)

) ⇒M σ
(
α, p(ε)

)

one could save time and space – i.e., derivation steps and pushdown cells – if
there was some pushdown symbol [δγ] such that

q(ε) ⇒M q′′([δγ]) ⇒M σ
(
u([δγ]), p([δγ])

) ⇒2
M σ

(
α, p(ε)

)
.

We will construct a pts M � with such pushdown symbols, i.e., with all symbols
of the form [η], where η ∈ Γ+. It is said to be a compact pts, since, as will
be proved later on, for every tree ξ ∈ L(M �), only polynomially many steps in
|ξ| are required for a derivation of ξ in M �, and the sizes of the pushdowns in
the derivation can also bounded in this manner. Evidently, M � can be infinite.
However, considering M � makes the following proofs easier, hence we stick with
it for now, and deal with the question of a finite representation of M � later.

The pushdown words of M � can be understood as subdivisions of those of M .
Because we must subdivide M �’s pushdown words even further in some proofs,
the following definitions are needed. Choose two symbols ‘[’ and ‘]’ not from Γ ,
and let S(Γ) = {[η] | η ∈ Γ+}. Let η = γ1 . . . γn from Γ+, where γi ∈ Γ for
i ∈ [n]. Given k0, . . . , km ∈ N with 0 = k0 < · · · < km = n for some m > 0,
the (k0, . . . , km)-subdivision of η is the word [γk0+1 . . . γk1] . . . [γkm−1+1 . . . γkm

] ∈
S(Γ)+. Moreover, the ε-subdivision of ε is ε. An η′ ∈ S(Γ)∗ is a subdivision of
an η ∈ Γ ∗, denoted by η′ η, if η′ is an E-subdivision of η for some E ∈ N

∗.
This E is unique; we denote it by E(η′). If E(η′) = (k1, . . . , km), then let
E(η′) = {k1, . . . , km}. Define ι : Γ ∗ → S(Γ)∗ by ι(ε) = ε and ι(η) = [η] for
η ∈ Γ+. Let now η ∈ Γ ∗ and η′, η′′ ∈ S(Γ)∗ with η′, η′′ η. We write η′ η′′

if E(η′) ⊇ E(η′′). We denote the unique κ η with E(κ) = E(η′) ∪ E(η′′) by
η′ � η′′. Note that η′ � η′′ η′ and η′ � η′′ η′′. Regarding the length of η′ � η′′

as an element of S(Γ)∗,

|η′ � η′′| = |E(η′ � η′′)| − 1 ≤ |E(η′)| + |E(η′′)| − 3 = |η′| + |η′′| − 1 (1)

Complexity of Uniform Membership of Context-Free Tree Grammars 181

whenever η ∈ Γ+, and if η = ε, then obviously |η′ � η′′| = |η′| + |η′′| = 0.
Finally, if η′ ∈ S(Γ)∗ is the (k1, . . . , km)-subdivision of η, then let η̃′ denote the
(|η| − km, . . . , |η| − k1)-subdivision of η̃.

Now we define the compact pts M � = (Q,Σ, Γ�, q0, R�) of M , where Γ� =
S(Γ), and R� contains the rules (i) q1(y) → q2([η]y) for every η ∈ Γ+ such that
q1(ε) ⇒r1...rk

M q2(η) with r1, . . . , rk ∈ R↑, denote the resulting rule by [r1 . . . rk];
(ii) q1([η]y) → q2(y) for every η ∈ Γ+ such that q1(η) ⇒r1...rk

M q2(ε) with r1, . . . ,
rk ∈ R↓, denote the resulting rule by [r1 . . . rk]; (iii) and for every rule ω ∈ RΣ ,
the rule [ω], which is identical to ω.

Obviously, L(M �) = L(M). By the notation for the rules of M �, we have
R� ⊆ S(R). The notion of subdivision, of the relation , and of the operation �,
carries over to derivations of M � in a straightforward manner. In a derivation d
in M �, a subdivision η′ of a pushdown η determines a corresponding subdivision
d′ of d, and vice versa. The following lemma circumstantiates this observation.

Lemma 4. Let q, p ∈ Q, η ∈ Γ ∗, and d ∈ R∗. Moreover, let d′ d and η′ η.

(i) If d ∈ R∗
↓ with q(η) ⇒d

M p(ε), then q(η′) ⇒d′
M� p(ε) iff E(η′) = E(d′).

(ii) If d ∈ R∗
↑ with q(ε) ⇒d

M p(η), then q(ε) ⇒d′
M� p(η′) iff E(η̃′) = E(d′).

The following restricted mode of derivation is important as well. Let μ ∈ N and
ζ ∈ DFM . We say that ζ has μ-bounded pushdowns if there is no infix κ ∈ Γ ∗ of
ζ with |κ| > μ. Thus the size of every pushdown occurring in ζ is at most μ. Let

moreover ζ1, ζ2 ∈ DFM . We write ζ1
(μ)
==⇒ρ

M ζ2 if ζ1 ⇒ρ
M ζ2 and both ζ1 and ζ2

have μ-bounded pushdowns. The relations
(μ)
==⇒M and

(μ)
==⇒d

M , for some d ∈ R∗,
are defined analogously. In the latter case, all intermediate derivation forms of
d are required to have μ-bounded pushdowns.

In the following lemmas, we establish polynomial bounds for the lengths of
successful derivations in M �, and for the sizes of the pushdowns “along the way.”

Lemma 5. Let M be augmented, and let q(η) ∈ CM , η′ η, d ∈ DSM , d′ d,

ξ ∈ TΣ, and μ ∈ N with q(η) ⇒d
M ξ and q(η′)

(μ)
==⇒d′

M� ξ. For every η′′ η′, there

is a d′′ d′ such that q(η′′)
(μ′)
==⇒d′′

M� ξ, and μ′ = μ + |η′′| − |η′|.
Proof. Presume η, η′, d, d′, q, ξ, and μ as above, and let η′′ η′ and μ′ =
μ + |η′′| − |η′|. The proof is by structural induction on ξ, hence suppose k ∈ N,
σ ∈ Σ(k) and ξ1, . . . , ξk ∈ TΣ such that ξ = σ(ξ1, . . . , ξk). As d ∈ DSM , there
are e1 ∈ R∗

↓, e2 ∈ R∗
↑, ω ∈ RΣ , u, p ∈ Q, pi(θ) ∈ CM and di ∈ DSM (pi(θ), ξi) for

every i ∈ [k] such that d = e1e2ωd1 . . . dk and

q(η1η2) ⇒e1
M u(η2) ⇒e2

M p(η3η2) ⇒ω
M σ(p1(θ), . . . , pk(θ)) ⇒d1

M · · · ⇒dk

M ξ ,

for some η1, η2, η3 ∈ Γ ∗ with η = η1η2 and θ = η3η2.
By definition of M �, we have d′ = e′

1e
′
2[ω]d′

1 . . . d′
k for some e′

1 e1, e′
2 e2,

and d′
i di, for every i ∈ [k]. Furthermore, q(η′)

(μ)
==⇒e′

1e′
2

M� p(θ′), where η′ = η′
1η

′
2,

182 J. Osterholzer

θ′ = η′
3η

′
2, and η′

i ηi for every i ∈ [3]. Observe that |θ′| ≤ μ. As η′′ η′, there
must be η′′

1 η′
1 and η′′

2 η′
2 such that η′′ = η′′

1η′′
2 . Note that |η′′

1 | ≥ |η′
1|. Let e′′

1

be the E(η′′
1)-subdivision of η1, then q(η′′

1 η′′
2) ⇒e′′

1
M� u(η′′

2). In fact,

|η′′| = |η′| + |η′′| − |η′| ≤ μ + |η′′| − |η′| ,

hence q(η′′
1η′′

2)
(μ′)
==⇒e′′

1
M� u(η′′

2). Moreover, u(η′′
2) ⇒e′

2
M� p(η′

3η
′′
2). Let θ′′ = η′

3η
′′
2 , then

|θ′′| = |η′
3| + |η′

2| + |η′′
2 | − |η′

2| = |θ′| + |η′
1| + |η′′

2 | − (|η′
1| + |η′

2|)
≤ μ + |η′′

1 | + |η′′
2 | − (|η′

1| + |η′
2|) = μ + |η′′| − |η′| ,

and thus u(η′′
2)

(μ′)
==⇒e′

2
M� p(η′

3η
′′
2). Since θ′′ θ′, the induction hypothesis implies

that for every i ∈ [k], there are some d′′
i d′

i such that pi(θ′′)
(μ′′)
==⇒d′′

i

M� ξi and
μ′′ = μ + |θ′′| − |θ′|. We have

μ′′ = μ + |θ′′| − |θ′| = μ + |η′
3| + |η′′

2 | − |η′
3| − |η′

2|
≤ μ + |η′′

1 | + |η′′
2 | − |η′

1| − |η′
2| = μ + |η′′| − |η′| = μ′ .

The inequation holds because |η′′
1 | ≥ |η′

1|. Thus for each i ∈ [k], pi(θ′′)
(μ′)
==⇒d′′

i

M� ξi.

We set d′′ = e′′
1e′

2[ω]d′′
1 . . . d′′

k , yielding q(η′′)
(μ′)
==⇒d′′

M� ξ. ��
In the following, we denote the number 2 · |ξ| by μ(ξ), for every tree ξ ∈ TΣ .

Lemma 6. Suppose that M is augmented. For every q(η) ∈ CM , ξ ∈ TΣ and

d ∈ DSM (q(η), ξ), there are η′ η and d′ d such that q(η′)
(μ(ξ))
===⇒d′

M� ξ.

Proof. Assume q(η), ξ and d as given above. The proof is by structural induction
on ξ, therefore let ξ = σ(ξ1, . . . , ξk) for some k ∈ N, σ ∈ Σ(k) and ξ1, . . . , ξk ∈ TΣ .
Moreover, let d = e1e2ωd1 . . . dk such that e1 ∈ R∗

↓, e2 ∈ R∗
↑, ω ∈ RΣ , and d1,

. . . , dk ∈ DSM . Thus there are η1, η2, η3, and θ ∈ Γ ∗ with η = η1η2 and
θ = η3η2, as well as u, p, p1, . . . , pk ∈ Q, satisfying

q(η1η2) ⇒e1
M u(η2) ⇒e2

M p(η3η2) ⇒ω
M σ(p1(θ), . . . , pk(θ)) ⇒d1

M · · · ⇒dk

M ξ .

By the induction hypothesis, for every i ∈ [k], there are a θ′
i θ and a d′

i di

such that |θ′
i| ≤ μ(ξi) and pi(θ′

i)
(μ(ξi))====⇒d′

i

M� ξi. Set θ′ = θ′
1 � · · ·� θ′

k � (ι(η3)ι(η2)).
Note that if k = 0, then θ′ = ι(η3)ι(η2). By applying (1) k times,

|θ′| ≤
(∑

i∈[k]

|θ′
i|
)

+ 2 − k ≤
(∑

i∈[k]

μ(ξi)
)

+ 2 − k = μ(ξ) − k ≤ μ(ξ) . (2)

Thus p(θ′)
(μ(ξ))
===⇒[ω]

M� σ(p1(θ′), . . . , pk(θ′)). Let j ∈ [k]. Because θ′ θ′
j , by Lem. 5,

there is some d′′
j d′

j such that pj(θ′)
(μ′)
==⇒d′′

j

M� ξj , and where

μ′ = μ(ξj) + |θ′| − |θ′
j | ≤ μ(ξj) +

(∑

i∈[k]

|θ′
i|
)

+ 2 − |θ′
j | ≤

(∑

i∈[k]

μ(ξi)
)

+ 2 = μ(ξ) .

Complexity of Uniform Membership of Context-Free Tree Grammars 183

Thus also pj(θ′)
(μ(ξ))
===⇒d′′

j

M� ξj . By definition of θ′, there must be some η′
2 η2

and η′
3 η3 such that θ′ = η′

3η
′
2. Set η′ = ι(η1)η′

2. If k = 0, then clearly
|η′

2| = 1 < μ(ξ). If k > 0, then by (2), |η′
2| ≤ |θ′| < μ(ξ). Thus in both cases

|η′| ≤ μ(ξ). Hence q(η′)
(μ(ξ))
===⇒ι(e1)

M� u(η′
2). Moreover, as η′

3 ι(η3), by Lem. 4,

there is some e′
2 e2 with u(η′

2)
(μ(ξ))
===⇒e′

2
M� p(η′

3η
′
2). Set d′ = ι(e1)e′

2[ω]d′′
1 . . . d′′

k ,

then q(η′)
(μ(ξ))
===⇒d′

M� ξ, and the proof is concluded. ��
Lemma 7. Let M be augmented. For every ξ ∈ L(M), there is a derivation
d′ ∈ DM�(q0(ε), ξ) with |d′| ≤ μ(ξ)2 + μ(ξ).

Proof. Let ξ ∈ L(M), let d ∈ DSM (q0(ε), ξ), and consider the derivation d′ as
constructed in Lem. 6. Let w ∈ pos(ξ), and let d′′ be an infix of d′ such that d′′ ∈
DM�(q(η′), ξ|w), for some q(η′) ∈ CM� . We prove that |d′′| ≤ (μ(ξ)+1) ·μ(ξ|w) by
well-founded induction using the relation “is child node of” on pos(ξ). For this
purpose, let ξ|w = σ(ξ1, . . . , ξk) for some k ∈ N, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ .
Observe that d′′ is of the form e1e2[ω]d′

1 . . . d′
k for some e1 ∈ (R�)∗

↓, e2 ∈ (R�)∗
↑,

ω ∈ RΣ , u, p1, . . . , pk ∈ Q, κ′, θ′ ∈ Γ ∗
� , and d′

i ∈ DM�(pi(θ′), ξi), for i ∈ [k], and

q(η′)
(μ(ξ))
===⇒e1

M� u(κ′)
(μ(ξ))
===⇒e2

M� p(θ′)
(μ(ξ))
===⇒[ω]

M� σ(p1(θ′), . . . , pk(θ′)) .

As the pushdowns η′ and θ′ are bounded in their size by μ(ξ), we must have
|e1e2[ω]| ≤ 2 ·μ(ξ)+1. By the induction hypothesis, |d′

i| ≤ (μ(ξ)+1) ·μ(ξi), thus

|d′′| ≤ 2 · (μ(ξ) + 1) +
∑

i∈[k]

(
(μ(ξ) + 1) · μ(ξi)

)
= (μ(ξ) + 1) · μ(ξ|w) .

The lemma follows with w = ε and d′′ = d′. ��

4.3 Representing M � by a Finite Object

Finally we show how to construct from M a finite representation M† of M �. Let
Γ† = P(Q × Q) and define a mapping h : Γ → Γ† such that, for every γ ∈ Γ ,
h(γ) =

{
(q, p) | q(γy) → p(y) in R

}
. We set M† = (Q,Σ, Γ†, q0, R†), where R†

is the smallest set R′ such that (i) RΣ ⊆ R′, (ii) for every rule q(y) → p(γy)
in R, the rule q(y) → p

(
h(γ)y

)
is in R′, (iii) whenever q(y) → p(Uy) and

p(y) → u(V y) are in R′, then also q(y) → u
(
(V ◦ U)y

)
is in R′, (iv) for every

U ∈ Γ† and (q, p) ∈ U , the rule q(Uy) → p(y) is in R′. Note that R† is given
effectively by these conditions. The size of M† is in general exponential in |M |.

We show that M† is indeed a faithful representation of M �. Extend h to
h̃ : Γ+ → Γ† by h̃(γ1 . . . γk) = h(γ1) ◦ · · · ◦ h(γk) for k > 0 and γ1, . . . , γk ∈ Γ .
Further, extend h̃ to ĥ : Γ ∗

� → Γ ∗
† by ĥ([η1] . . . [ηk]) = h̃(η1) . . . h̃(ηk) for every

k ∈ N and η1, . . . , ηk ∈ Γ+. We identify h, h̃, and ĥ in the following. There
is the following close relation between M � and M†; the uncomplicated proof is
omitted.

184 J. Osterholzer

Algorithm 1. Nondeterministic decision procedure for uniform membership
Input: pta M = (Q, Σ, Γ, q0, R), ξ ∈ TΣ

Output: “Yes” if ξ ∈ L(M), diverges otherwise
ζ ← q0(ε)
loop

select leftmost w ∈ pos(ζ) such that ζ(w) = q(η) for some q(η) ∈ CM†
either

choose a rule q(y) → σ(p1(y), . . . , pk(y)) ∈ R
ζ ← ζ[σ(p1(η), . . . , pk(η))]w

or
choose a rule q(y) → p(γy) ∈ R and set u ← p, U ← h(γ)
repeat n times for some n ∈ N

choose a rule u(y) → v(γy) ∈ R and set u ← v, U ← h(γ) ◦ U
end repeat
ζ ← ζ[u(Uη)]w

or if η = Uκ for some U ∈ Γ†, κ ∈ Γ ∗
†

choose some (u, p) ∈ U such that u = q
ζ ← ζ[p(κ)]

end either
if ζ = ξ then return “Yes” else if ζ ∈ TΣ then diverge endif

end loop

Lemma 8. For every n, μ ∈ N, q(η) ∈ CM� , and for every ξ ∈ TΣ, we have that

q(η)
(μ)
==⇒n

M� ξ iff q
(
h(η)

) (μ)
==⇒n

M† ξ.

Suppose that M is augmented. Then the lemma implies together with
Lem. 6 and 7 that while |M†| may be exponential in |M |, we may assume nev-
ertheless that for every ξ ∈ L(M), there is a derivation d of ξ in M† such that
both the length of d, as well as the size of every configuration in d, are bounded
by a polynomial in |ξ|.

5 The Uniform Membership Problem

Employing M†, we can now investigate the complexity of the uniform member-
ship problem of cftg. We begin with the upper bound.

Theorem 1. The uniform membership problem of cftg over Σ is in PSPACE.

Proof. Let ξ ∈ TΣ and let G be a cftg over Σ. Construct an augmented pta
M = (Q,Σ, Γ, q0, R) with L(M) = L(G). By Lem. 1 and 2, this takes time
(and thus space) polynomial in |G|. Recall the mapping h : Γ+ → Γ† from the
definition of M†. Alg. 1 contains a nondeterministic procedure which decides
ξ ∈ L(M) in space restricted to 2 · |ξ|2 ·Q2. It works by emulating a derivation d′

in the compact pta M† as constructed above. The construction of d′ is “on-the-
fly.” In each loop, the leftmost configuration q(η) in the current derivation form
ζ is selected, and a rule ρ is chosen. We may choose ρ to be a stay or pop rule of

Complexity of Uniform Membership of Context-Free Tree Grammars 185

M†, it is then applied to q(η). Then again, we may choose a nonzero number of
push rules of M with compatible states, apply h to the symbols they push, and
combine the results by the product of binary relations. Clearly, this procedure
can emulate exactly the derivations in M†.

If ξ ∈ L(M), then there is a succinct derivation d ∈ DSM (q0(η), ξ), and, by
Lem. 6 and 8, a derivation d′ d in M† that has (2 · |ξ|)-bounded pushdowns.
Each pushdown symbol that occurs in d′ is a subset of Q × Q, and can thus
be stored within space |Q|2. As the number of configurations occurring in an
intermediate derivation form ζ of d is bounded by |ξ|, the space bound of 2 · |ξ|2 ·
|Q|2 is sufficient to store ζ. By [12, Thm. 1], the procedure is also computable
in deterministic space polynomial in |ξ| and |M |. ��
Theorem 2. The uniform membership problem of cftg over Σ is PSPACE-hard.

Proof. Recall the following decision problem. Let Δ be an alphabet. The inter-
section problem is specified as follows.

Input: Deterministic finite-state automata A1, . . . , Ak over Δ for some k ∈ N

Question: Is
⋂k

i=1 L(Ai) = ∅?
This problem is PSPACE-complete [5]. We give a reduction of its complement to
the uniform membership problem of cftg. Then, as PSPACE = coPSPACE, the lat-
ter problem is PSPACE-hard. The reduction’s idea is to construct a pta M which
guesses some w ∈ Δ∗ on its pushdown, copies it as often as needed (by stay rules
with some symbol σ of at least binary rank), and then simulates the automata
A1, . . . , Ak on the respective copies. If Ai accepts w, M outputs some symbol α
on the i-th branch, else it blocks. The search for w ∈ ⋂k

i=1 L(Ai) is thus reduced
to the question ξ ∈ L(M), for a tree ξ ∈ TΣ that is independent of w.

Formally, assume deterministic finite-state automata Ai = (Qi,Δ, qi
0, Fi, δi),

defined as usual, for some k ∈ N and each i ∈ [k]. We require the state sets
Qi to be pairwise disjoint, and α /∈ Δ. By assumption, Σ contains some α(0)

and σ(n) with n ≥ 2. Construct the pta M = (Q,Σ,Δ ∪ {#}, q0, R) where
Q = {q0} ∪ {u0, . . . , uk} ∪ ⋃k

i=1 Qi, with q0, u0, . . . , uk distinct states, and R
contains the rules

q0(y) → uk(#y) , uk(y) → uk(by), ui(y) → σ
(
qi
0(y), ui−1(y), u0(y), . . . , u0(y)

)

for every i ∈ [k] and b ∈ Δ. Moreover, for every i ∈ [k], b ∈ Δ, q, p ∈ Qi such that
δi(q, b) = p, and f ∈ Fi, the rule set R contains q(by) → p(y) and f(#y) → α.
Finally, for every γ ∈ Δ ∪ {#}, the rule u0(γy) → α is in R. Let ξ be the tree
σ
(
α, σ(α, · · · σ(α, . . . , α) · · · , α, . . . , α), α, . . . , α

)
with exactly k occurrences of σ.

Both M and ξ are logspace-computable from the input. It is easy to show that
ξ ∈ L(M) iff there is some w ∈ Δ∗ such that w ∈ ⋂k

i=1 L(Ai). ��

5.1 Uniform Membership of ε-free Indexed Grammars

Following suit to earlier research, established results on cftg can also give new
insight on indexed languages.

186 J. Osterholzer

Let us recall indexed grammars [1]. In the spirit of [11], an indexed grammar
is a tuple G = (N,Σ, Γ, S, P), where N , Σ, and Γ are alphabets, S ∈ N ,
and P is a finite set of productions of the forms (i) A(y) → B1(y) . . . Bk(y),
(ii) A(y) → B(γy), (iii) A(γy) → B(y), and (iv) A(y) → a, for A, B, B1, . . . ,
Bk ∈ N , k ∈ N, γ ∈ Γ , and a ∈ Σ. We call G ε-free if all its productions of form
(i) satisfy k ≥ 1.

The similarity of indexed grammars to pta is apparent, and ⇒G, as well as
L(G), are defined analogously. This similarity is captured in the “yield theorem”
[10, p. 115]. Although its original formulation applies to cftg, we restate it for
pta, cf. [4, Prop. 8]. The remark on logspace-computability is easily reexamined.

Lemma 9 ([4,10]). Let L ⊆ (Σ(0))∗. Then, there is a pta M over Σ such that
L = yield(L(M)) iff there is an ε-free indexed grammar G over Σ(0) such that
L = L(G). Also, G is logspace-computable from M , and vice versa.

The following corollary is then a direct consequence of Thms. 1 and 2 together
with the yield theorem.

Corollary 1. The uniform membership problem of ε-free indexed grammars is
PSPACE-complete.

In contrast, the uniform membership problem of indexed grammars with ε-rules
is EXP-complete [13].2

6 The Non-Uniform Membership Problem

In this section, we intend to show that the pta M† may also be useful for other
means, by presenting an alternative proof of the NP upper bound of non-uniform
membership of cftg. Note that this bound is already known: the class of output
languages of compositions of macro tree transducers, a proper superclass of the
context-free tree languages, is in NP [7, Thm. 8].

If we regard trees from TΣ as well-parenthesized words over Σ ∪C, as defined
in the preliminaries, then a context-free tree language can be also understood
as an indexed string language. Therefore, the following upper bound is as well
a consequence of the containment of the indexed languages in NP. Its proof in
[11] rests on the correctness of the Turing machine from [1].

Theorem 3. The membership problem of cftg over Σ is in NP.

Proof. Let G be the cftg fixed in the membership problem. Construct an equiv-
alent augmented pta M , as well as M† as defined above. As G is not part
of the input, M† is constructible in constant time. Consider the nondetermin-
istic decision procedure in Alg. 2. By Lem. 8, L(M†) = L(M �), and more-
over L(M �) = L(M). So if the procedure returns “Yes”, then there is some
2 Still, the emptiness problem of ε-free indexed grammars remains EXP-complete. This
follows from a small modification of the indexed grammar witnessing EXP-hardness
in [13]. Hence, by Lem. 9, the emptiness problem of cftg is EXP-complete, too.

Complexity of Uniform Membership of Context-Free Tree Grammars 187

Algorithm 2. Nondeterministic decision procedure for membership of cftg
Input: ξ ∈ TΣ

Output: “Yes” if ξ ∈ L(M), diverges otherwise
choose some d ∈ R∗

† with |d| ≤ μ(ξ)2 + μ(ξ) and μ(ξ)-bounded pushdowns

if q0(η) ⇒d
M† ξ then return “Yes” else diverge endif

d ∈ DM†(q0(ε), ξ), and hence ξ ∈ L(M). Conversely, if ξ ∈ L(M), then
there must be some d′ ∈ DM�(q0(ε), ξ), and by Lem. 7, we may assume that
|d′| ≤ μ(ξ)2 + μ(ξ). By Lem. 8, there is a d ∈ DM†(q0(ε), ξ) with equal length
bound. Thus the procedure returns “Yes”. ��

Hardness of the problem can be demonstrated in the same manner as for
indexed grammars [11, Prop. 1], by devising a cftg G such that L(G) encodes
the set of all satisfiable propositional formulas in 3-conjunctive normal form. For
the sake of completeness, we restate the respective theorem.

Theorem 4. There are a ranked alphabet Σ and a cftg G over Σ such that the
membership problem of G is NP-hard.

7 Conclusion

In this paper, the complexity of the uniform membership problem of cftg was
proven to be PSPACE-complete. A corollary for uniform membership of indexed
grammars was obtained. As a by-product, we could state an alternative proof
for the NP-completeness of the non-uniform membership problem of cftg.

References

1. Aho, A.V.: Indexed grammars–an extension of context-free grammars. J. ACM
15(4), 647–671 (1968)

2. Asveld, P.: Time and space complexity of inside-out macro languages. Int. J. Com-
put. Math. 10(1), 3–14 (1981)

3. Engelfriet, J., Schmidt, E.M.: IO and OI. J. Comput. Syst. Sci. 15(3), 328–353
(1977); and 16(1), 67–99 (1978)

4. Guessarian, I.: Pushdown tree automata. Math. Syst. Theory 16(1), 237–263
(1983)

5. Kozen, D.: Lower bounds for natural proof systems. In: Proc. 18th Symp. Foun-
dations of Computer Science, pp. 254–266 (1977)

6. Lohrey, M.: On the parallel complexity of tree automata. In: Middeldorp, A. (ed.)
RTA 2001. LNCS, vol. 2051, p. 201. Springer, Heidelberg (2001)

7. Inaba, K., Maneth, S.: The complexity of tree transducer output languages. In:
Proc. of FSTTCS 2008, pp. 244–255 (2008)

8. Papadimitriou, C.H.: Computational Complexity. John Wiley and Sons (2003)
9. Rounds, W.C.: Mappings and grammars on trees. Theor. Comput. Syst. 4(3), 257–

287 (1970)

188 J. Osterholzer

10. Rounds, W.C.: Tree-oriented proofs of some theorems on context-free and indexed
languages. In: Proc. 2nd ACM Symp. Theory of Comput., pp. 109–116 (1970)

11. Rounds, W.C.: Complexity of recognition in intermediate level languages. In: Proc.
14th Symp. Switching and Automata Theory, pp. 145–158 (1973)

12. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

13. Tanaka, S., Kasai, T.: The emptiness problem for indexed language is exponential-
time complete. Syst. Comput. Jpn. 17(9), 29–37 (1986)

14. Yoshinaka, R.: An attempt towards learning semantics: Distributional learning of
IO context-free tree grammars. In: Proc. of TAG+11, pp. 90–98 (2012)

Attacking BEAR and LION Schemes
in a Realistic Scenario

Matteo Piva, Marco Pizzato(B), and Massimiliano Sala

University of Trento, Trento, Italy
{pvimtt,marco.pizzato1,maxsalacodes}@gmail.com

Abstract. BEAR and LION are block ciphers introduced by Biham and
Anderson in 1996. Their special feature is that they use very efficiently
a hash function and a stream cipher, so that the hardware implemen-
tation of BEAR and LION becomes straightforward, assuming that the
two other primitives are already present. In this paper we discuss their
security starting from the strength of their building blocks.

Keywords: Block-ciphers · Stream-ciphers · Hash functions · BEAR ·
LION · Key-recovery

1 Introduction

Traditional stream ciphers and hash functions enjoy cheaper hardware implemen-
tation compared to traditional block ciphers (such as AES or Kasumi). Although
this is not always the case (see e.g. [8]), it is not uncommon to have a device
already endowed with an implementation of a stream cipher and a hash function,
but still missing a block cipher. In this situation it would be very convenient to
construct a block cipher simply by reusing the other two primitives. The extreme
case happens with a family of block ciphers proposed in [1] by Anderson and
Biham in 1996, inspired by the famous Luby-Rackoff construction presented in
[2], whose most famous members are called BEAR and LION and which need
only a couple of extra XOR’s to get a secure block cipher, provided either the
hash function or the stream cipher is robust. In particular, under some condi-
tions of ideality for the two primitives, it is possible to show that no single-pair
key-recovery attack exists for BEAR/LION. Unfortunately, their security was
questioned in the paper [5] of same year, and so these systems do not enjoy the
popularity they probably deserve. A deeper analysis of their security has been
performed much later in [6], where alternative assumptions on the primitives
ensure even the non-existence of multi-pair key-recovery attacks.

Other similar constructions can be found in [2–4].
In this paper we present two types of results. While in Section 2 we revisit the

system definition and known results, in Section 3 we present three attacks, two
for BEAR and one for LION and we provide an estimate of the attack cost in the
(more realistic) situation offered by non-ideal primitives. Finally, in Section 4 we
improve and generalize some results of [6].
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 189–195, 2015.
DOI: 10.1007/978-3-319-23021-4 17

190 M. Piva et al.

2 Preliminaries and Known Results

In this paper we adopt the following notation. By F we denote the field F2, with
a capital R or a capital L we mean elements of Fr and F

l respectively, with r > l.
The set of plaintexts is composed of messages of the form (Li, Ri) ∈ F

l+r. The
key space is denoted by K. Its elements are of the form K = (K1,K2) ∈ F

k ×F
k,

with k ≥ l.

2.1 BEAR

The structure of BEAR is based on a stream cipher S and a keyed hash function
HK . They have to satisfy the following properties.
The keyed hash function HK : Fr → F

l:

– is based on a unkeyed hash function H ′ : Fr+k → F
l, in which the key is

appended or prepended to the message,
– is one-way and collision free, in the sense that it is hard given Y to find X

such that H ′(X) = Y , and to find unequal X and Y such that H ′(X) =
H ′(Y),

– is pseudo-random, in that even given H ′(Xi) for any set of inputs, it is hard
to predict any bit of H ′(Y) for a new input Y .

The stream cipher S : Fl → F
r:

– resists key recovery attacks, i.e. it is hard to find the seed X given S(X),
– resists expansion attacks, i.e. it is hard to expand any partial stream of Y .

We recall the BEAR encryption/decryption scheme, where “+” denotes
XOR, the standard sum in the vector space F

n.

ENCRYPTION DECRYPTION

L = L + HK1(R) L = L′ + HK2(R
′)

R′ = R + S(L) R = R′ + S(L)
L′ = L + HK2(R

′) L = L + HK1(R)

In their article, Anderson and Biham proved the following results.

Theorem 1. An oracle which finds the key of BEAR, given one plain-
text/ciphertext pair, can efficiently and with high probability find the seed M
of the stream cipher S for any output Y = S(M).

Theorem 2. An oracle which finds the key of BEAR, given one plain-
text/ciphertext pair, can efficiently and with high probability find preimages and
collisions of the hash function H ′.

As a consequence we have

Attacking BEAR and LION Schemes in a Realistic Scenario 191

Corollary 1. If it is impossible to find efficiently the seed of S or it is impossible
to find efficiently preimages and collisions for H ′, then no efficient key-recovery
single-pair attack exists for BEAR.

In [6], the authors introduced the following criterion of security for a hash
function, which is related to the definition of MAC algorithm in [7].

Definition 1. Given a keyed hash function H = {HK}K∈Fk , HK : Fr → F
l for

any K ∈ F
k, we say that H is key-resistant if, given a pair (Z,R) such that

Z = HK(R) for a random K and a random R, it is hard to find K.

With this definition they claim the following result.

Theorem 3. Let n ≥ 1. Let An be an oracle able to find the key of BEAR given
any set of n plaintext-ciphertext pairs {((Li, Ri), (L′

i, R
′
i))}1≤i≤n. Then An is

able to solve efficiently any equation Z = HK1(R), knowing Z and R, for any
random R ∈ F

r and any random K1 ∈ F
k.

2.2 LION

The structure of LION is based on a stream cipher S and a hash function H.
They have to satisfy the following properties.
The hash function H : Fr → F

l:

– is one-way and collision free, i.e. it is hard given Y to find X such that
H(X) = Y , and to find unequal X and Y such that H(X) = H(Y).

The stream cipher S : Fl → F
r:

– is pseudo-random,
– resists key recovery attacks, i.e. it is hard to find the seed X given S(X),
– resists expansion attacks, i.e. it is hard to expand any partial stream of Y .

We recall the LION encryption/decryption scheme.

ENCRYPTION DECRYPTION

R = R + S(L + K1) R = R′ + S(L′ + K2)
L′ = L + H(R) L = L′ + H(R)
R′ = R + S(L′ + K2) R = R + S(L + K1)

Note that the key space for LION is K = F
2l.

In their article, Anderson and Biham claimed that results similar to Theo-
rem 1 and Theorem 2 hold also for LION. In [6] the authors proved the following
result for the stream cipher.

Theorem 4. Let H : F
r → F

l and S : F
l → F

r. An oracle A1 which finds
the key of LION, given one plaintext/ciphertext pair, can efficiently and with
high probability find the seed M of the stream cipher S for any particular output
Y = S(M).

192 M. Piva et al.

They also proved a similar result for the hash function, although assuming a
restrictive condition as follows.

Definition 2. Let H and S be functions, H : Fr → F
l and S : Fl → F

r, with
r ≥ l. We say that (S,H) is a good pairing if for a random Y ∈ F

l we have
H−1(Y) ∩ Im(S) �= ∅.
Theorem 5. Assume that (S,H) is a good pairing. An oracle A1 which finds
the key of LION, given one plaintext/ciphertext pair, can efficiently and with
high probability find preimages and collisions of the hash function H.

As in the BEAR case, the authors introduced another concept of security for
the stream cipher S.

Definition 3. Let K = F
2l. Given a stream cipher S : Fl → F

r, we say that S
is key-resistant if, given a pair (Z,L) such that Z = S(L + K1) for a random
(K1,K2) ∈ K and a random L ∈ F

l, it is hard to find K1.

Theorem 6. Let n ≥ 1. Let An be an oracle able to find the key of LION given
any set of n plaintext-ciphertext pairs {((Li, Ri), (L′

i, R
′
i))}1≤i≤n. Then An is

able to solve any equation Z = S(L + K1), knowing Z and L, for any random
L ∈ F

l and any random K1 ∈ F
k.

3 Our Attacks

The results of [1] and [6] ensure that no practical key-recovery attack is possible
for BEAR and LION if the hash function or the stream cipher are ideal. Nev-
ertheless, no consequences are explored if both the primitives are not perfectly
secure. In this paper we deal with more realistic situations where stream ciphers
and hash functions are not ideal. We will explain the meaning of “not ideal” in
Definitions 4, 5, 6 and 7.

In this section we present three attacks, two on BEAR and one on LION.

3.1 Attacks on BEAR

The following definitions are useful to measure the non-ideality of our primitives.

Definition 4. Let HK : Fr �→ F
l be a keyed hash function. We say that HK

is t−key-resistant if, for every K and R, given Z = HK(R) and R, there is an
algorithm recovering the key K with an expected cost of 2t H-evaluations.

Definition 5. Let S : Fl �→ F
r be an injective stream cipher. We say that S is

u-resistant if, given S(L), there is an algorithm recovering the seed L with an
expected cost of 2u S-evaluations.

Remark 1. Since, by an exhaustive search involving, on average, half of all
keys we will be able to solve the equation Z = HK(R), it is obvious that an
ideal {HK}K∈Fk is (k − 1)−key-resistant. Similarly, an ideal stream cipher S is
(l − 1)−resistant. Therefore, t ≤ k − 1 and u ≤ l − 1.

Attacking BEAR and LION Schemes in a Realistic Scenario 193

We can now describe two attacks, attack A and attack B. The first is a
chosen-plaintext attack which assumes that the keyed hash function is not ideal,
that is, it is t−key-resistant (but the stream cipher could be ideal). In the second
attack we assume that also the stream cipher is not ideal, that is, it is u-resistant,
but we let the attacker mount a known-plaintext attack. The description of the
two attacks is given below, followed by Theorem 7, where their complexity is
shown. Essentially, Theorem 7 states that Attack B is more effective than Attack
A. We find this of interest because normally known-plaintext attacks need more
input data and computations than the corresponding chosen-plaintext attacks,
but in this case the known-plaintext version is using the big advantage of an
additional weaker primitive (i.e., the stream cipher).

ATTACK A
Let Y = S(0) and choose a random R̃. An L̃ ∈ F

l exists s.t. L̃ = HK1(R̃). We
do not know L̃ but we claim that we can recover it, as follows. Observe that if
someone encrypts (L̃, R̃) he will get L̄ = 0 and so R′ = R̃ + S(0) = R̃ + Y . We
encrypt some plaintexts {(L, R̃) | L ∈ F

l}, until we get a ciphertext (L′, R′) with

R̃ + R′ = Y (1)

which requires, on average, 2l−1 attempts. We note that equation (1) ensures
that L̃ = HK1(R̃), since the stream S is injective. We can now recover the
keys. In fact, from L′ = HK2(R

′) we obtain K2 with an expected cost of 2t

H-evaluations and, from L̃ = HK1(R̃), we obtain K1 with an expected cost of
2t H-evaluations.

ATTACK B
Given any random plaintext/ciphertext pair, (L,R) and (L′, R′), we compute
R + R′ = S(L). We recover L with an expected cost of 2u S-evaluations. Then
we compute L + L = HK1(R). With an expected cost of 2t H-evaluations we
recover K1. Finally, we obtain L′ +L = HK2(R

′). Again, with 2t H-evaluations
we can recover K2.

Theorem 7
The expected cost of Attack A is 2t+1 H-evaluations plus 2l−1 encryptions, which
is (2t+1 + 2l) H-evaluations plus 2l−1 S-evaluations.
The expected cost of Attack B is 2t+1 H-evaluations plus 2u S-evaluations.

Proof. As for Attack A, we have to consider 2l−1 encryptions in order to find
L̃, which amount to 2l H-evaluations plus 2l−1 S-evaluations. We need then to
consider the 2t+1 H-evaluations required to recover the key K = (K1,K2).

Now consider Attack B. We need 2u S-evaluations in order to obtain L̄ and
2t+1 H-evaluations to recover the key K = (K1,K2).

3.2 Attack on LION

The following definitions are useful to measure the non-ideality of our primitives.

194 M. Piva et al.

For any T subset of an additive group G and any g ∈ G, we write

T + g = {t + g | t ∈ T}.

Definition 6. Let H : Fr �→ F
l be a hash function and S : Fl �→ F

r a stream
cipher. We say that H is t−resistant if, for random R, Y ∈ F

r, given Z = H(R),
there is an algorithm recovering a preimage of Z lying in Im(S) + Y with an
expected cost of 2t H-evaluations.

Remark 2. The expected number of preimages H−1(Z) in F
r is 2r−l, so, on

average, we have only one preimage of Z in a random translate of Im(S). Clearly,
the best the attacker can hope for in an inversion attack on H is to be able to
list this preimage using only 1 H-evaluation, which means that H is at least
0−resistant.

An ideal H will force the attacker to perform nearly all possible H-evaluations
(namely 2l) in order to find the right preimage R, therefore H will be l−resistant.
In other words, 0 ≤ t ≤ l.

Definition 7. Let S : Fl �→ F
r be a stream cipher. We say that S is u−key-

resistant if, for random K and L, given S(L + K) and L, there is an algorithm
recovering K with an expected cost of 2u S-evaluations.

Remark 3. We note that the two definitions of u−resistant (keyed and unkeyed)
for S are equivalent, since translations act regularly. Therefore, 0 ≤ u ≤ l − 1,
with l − 1 being the ideal value.

We can now describe a known-plaintext attack (attack C), assuming the hash
function is t−resistant and the stream cipher is u−key-resistant.

ATTACK C
Consider any random plaintext/ciphertext pair, (L,R) and (L′, R′). We compute
Y = L+L′. For an unknown R̄, we have Y = H(R̄). With 2t operations we can
find the preimage H−1(Y) lying in Im(S)+R. It follows that this preimage must
be R̄ (Remark 2). Let us call this preimage R̄. Now we perform the following
operations. First, we compute R+R and we solve R+R = S(L+K1), recovering
K1 with expected cost of 2u S-evaluations. Then, we compute R′ + R and we
solve R′+R = S(L′+K2), recovering K2 with expected cost of 2u S-evaluations.

We note that we might have been unlucky in the sense that R̄ could not
have been the only preimage of Y in Im(S) + R. This is unlikely, since the
plaintext/ciphertext pair was random. Even in this case, it is enough to try a
few encryptions and check if the candidate key pair (K1,K2) is the correct one.
The cost of these tries is negligible (in real life situations) compared to the cost
of the equation solving.

Theorem 8
The expected cost of attack C is 2t H-evaluations plus 2u+1 S-evaluations.

Proof. We need 2t H-evaluations to invert Y and 2u S-evaluations for each half
of the key.

Attacking BEAR and LION Schemes in a Realistic Scenario 195

4 Good-Pairing Is Not Necessary

In this section we generalize the proof of Theorem 1.8 of [6], removing the useless
hypothesis on the good pairing and thus proving the original result as claimed
in [1].

Remark 4. Essentially, the idea in the following generalization is that we do not
need to assume the hypothesis on the good pairing, i.e. H−1(Y)∩ Im(S) �= ∅ for
a random Y , since it is almost always true that H−1(Y) ∩ (Im(S) + R) �= ∅, for
a suitable R.

Theorem 9. An oracle A1 which finds the key of LION, given one plaintext-
ciphertext pair, can efficiently and with high probability find preimages and
collisions of the hash function H.

Proof. Consider some R̃ and Y = H(R̃). With high probability we find R such
that H−1(Y) ∩ (Im(S) +R) �= ∅. Fix also some element L ∈ F

l. There exists K1

such that R̄ ∈ H−1(Y), with R̄ = S(L+K1)+R. We can also suppose (otherwise
we choose another R) that R̄ �= R̃. We obtain L′ = L + H(R̄) = L + Y . Now
with K2 = K1 + Y we have R′ = S(L+K1) +R+S(L+ Y +K1 + Y) = R. We
give to A1 as input the pair ((L,R), (L + Y,R)) and it returns (K1,K2). We can
then compute R̄ = S(L + K1) + R and we have H(R̄) = Y , finding a collision
H(R̃) = H(R̄) = Y .

To find a preimage, we can argument as above with a given Y and supposing
we do not know R̃.

Acknowledgements. The authors would like to thank the anonymous referees for

their valuable comments.

References

1. Anderson, R., Biham, E.: Two practical and provably secure block ciphers. In: Goll-
mann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–120. Springer, Heidelberg (1996)

2. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput., 373–386 (1988)

3. Lucks, S.: Faster luby-rackoff ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 189–203. Springer, Heidelberg (1996)

4. Lucks, S.: BEAST: A fast block cipher for arbitrary blocksizes. In: Proc. of IFIP,
pp. 144–153 (1996)

5. Morin, P.: Provably secure and efficient block ciphers. In: Proc. of Selected Areas
in Cryptography, pp. 30–37 (1996)

6. Maines, L., Piva, M., Rimoldi, A., Sala, M.: On the provable security of BEAR and
LION schemes. Applicable Algebra in Engineering, Communication and Computing
22(5–6), 413–423 (2011)

7. Preneel, B.: The state of cryptographic hash functions. In: Damg̊ard, I.B. (ed.) LDS.
LNCS, vol. 1561, pp. 158–182. Springer, Heidelberg (1999)

8. Preneel, B., Rijmen, V., Knudsen, L.R.: Evaluation of ZUC. ABT Crypto. Tech.
Report 7 (2010)

Weighted Restarting Automata
and Pushdown Relations

Qichao Wang, Norbert Hundeshagen, and Friedrich Otto(B)

Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany
{wang,hundeshagen,otto}@theory.informatik.uni-kassel.de

Abstract. Weighted restarting automata have been introduced to study
quantitative aspects of computations of restarting automata. Here we
study the special case of assigning words as weights from the semiring of
formal languages over a given (output) alphabet, in this way generalizing
the restarting transducers introduced by Hundeshagen (2013). We obtain
several new classes of word relations in terms of restarting automata,
which we relate to various types of pushdown relations.

Keywords: Weighted restarting automaton · Restarting transducer ·
Pushdown relation · Quasi-realtime pushdown relation

1 Introduction

Analysis by reduction is a linguistic technique that is used to check the correct-
ness of sentences of natural languages through sequences of local simplifications.
The restarting automaton was invented as a formal model for the analysis by
reduction [7]. In order to study quantitative aspects of computations of restarting
automata, weighted restarting automata were introduced in [10]. These automata
are obtained by assigning an element of a given semiring S as a weight to each
transition of a restarting automaton. Then the product (in S) of the weights of
all transitions that are used in a computation yields a weight for that computa-
tion, and by forming the sum over the weights of all accepting computations for
a given input w ∈ Σ∗, a value from S is assigned to w. Thus, a partial function
f : Σ∗ ��� S is obtained. Here we consider the special case that S is the semiring
of formal languages over some finite (output) alphabet Δ. Then f is a transfor-
mation from Σ∗ into the languages over Δ. Thus, we obtain a generalization of
the notion of a restarting transducer as introduced in [6].

It is well known (see, e.g., [8]) that the class of languages that are accepted
by monotone RWW- and RRWW-automata (see Section 2 for the definitions)
coincides with the class of context-free languages. Accordingly, we are inter-
ested in the classes of transformations that are computed by various types of
weighted restarting automata that are monotone. In this paper we compare
some of these classes to each other and we relate them to the class of push-
down relations and some of its subclasses. In particular, we prove that mono-
tone weighted RRWW-automata compute strictly more transformations than
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 196–207, 2015.
DOI: 10.1007/978-3-319-23021-4 18

Weighted Restarting Automata and Pushdown Relations 197

monotone weighted RWW-automata. The latter in turn compute a class that
properly includes the quasi-realtime pushdown relations, which we will show to
coincide with the transformations that are computed by monotone RWW- and
RRWW-transducers.

This paper is structured as follows. In Section 2 we recall some basic notions
concerning weighted restarting automata, and in Section 3 we look at the push-
down relations and some of their subclasses. Then, in Section 4 we study the
classes of transformations that are computed by (monotone) restarting trans-
ducers, and in Section 5 we investigate the computational power of weighted
RWW- and RRWW-automata that are monotone. The paper closes with a short
summary and some problems for future work.

2 Weighted Restarting Automata

We assume that the reader is familiar with the standard notions and concepts of
theoretical computer science, such as monoids, finite automata, and semirings.
Throughout the paper we will use |w| to denote the length of a word w and λ
to denote the empty word. Further, P(X) denotes the power set of a set X, and
Pfin(X) denotes the set of all finite subsets of X.

A restarting automaton (or RRWW-automaton for short) is a nondetermin-
istic machine with a finite-state control, a flexible tape with endmarkers, and a
read/write window of a fixed finite size. Formally, it is described by an 8-tuple
M = (Q,Σ, Γ, c, $, q0, k, δ), where Q is a finite set of states, Σ is a finite input
alphabet, Γ is a finite tape alphabet containing Σ, the symbols c, $ �∈ Γ are
used as markers for the left and right border of the work space, respectively,
q0 ∈ Q is the initial state, k ≥ 1 is the size of the read/write window, and δ is
the (partial) transition relation that associates finite sets of transition steps to
pairs of the form (q, w), where q is a state and w is a possible content of the
read/write window. There are four types of transition steps. A move-right step
(MVR) causes M to shift its read/write window one position to the right and
to change the state. A rewrite step causes M to replace the content w of the
read/write window by a shorter string v, thereby reducing the length of the tape,
and to change the state. Further, the read/write window is placed immediately
to the right of the string v. However, occurrences of the delimiters c and $ can
neither be deleted nor newly created by a rewrite step. A restart step causes M
to place its read/write window over the left end of the tape, so that the first
symbol it sees is the left sentinel c, and to reenter the initial state q0, and, finally,
an accept step causes M to halt and accept.

If δ(q, w) is undefined for some pair (q, w), then M necessarily halts in a
corresponding situation, and we say that M rejects. Finally, if each rewrite step
is combined with a restart step into a joint rewrite/restart operation, then M is
called an RWW-automaton.

A configuration of M is a string αqβ, where q ∈ Q, and either α = λ and β ∈
{c}·Γ ∗ ·{$} or α ∈ {c}·Γ ∗ and β ∈ Γ ∗ ·{$}; here q is the current state, and αβ is
the current content of the tape, where it is understood that the window contains

198 Q. Wang et al.

the first k symbols of β or all of β when |β| ≤ k. A restarting configuration is of
the form q0cw$. If w ∈ Σ∗, then q0cw$ is an initial configuration.

We observe that any computation of M consists of certain phases. A phase,
called a cycle, starts in a restarting configuration, the head moves along the tape
performing move-right operations and a single rewrite operation until a restart
operation is performed and thus a new restarting configuration is reached. If
no further restart operation is performed, the computation necessarily finishes
in a halting configuration – such a phase is called a tail. It is required that in
each cycle M performs exactly one rewrite step. A word w ∈ Σ∗ is accepted
by M , if there is an accepting computation which starts from the initial config-
uration q0cw$. By L(M) we denote the language consisting of all (input) words
that are accepted by M .

Next we come to the notion of monotonicity. Let C := αqβ be a rewrite
configuration of an RRWW-automaton M , that is, a configuration in which a
rewrite step is to be applied. Then |β| is called the right distance of C, which
is denoted by Dr(C). A sequence of rewrite configurations S = (C1, C2, . . . , Cn)
is called monotone if Dr(C1) ≥ Dr(C2) ≥ · · · ≥ Dr(Cn), that is, if the distance
of the place of rewriting to the right end of the tape does not increase from one
rewrite step to the next. A computation of an RRWW-automaton M is called
monotone if the sequence of rewrite configurations that is obtained from the
cycles of that computation is monotone. Observe that here the rewrite config-
uration is not taken into account that corresponds to the possible rewrite step
that is executed in the tail of the computation considered. Finally, an RRWW-
automaton M is called monotone if all its computations that start with an initial
configuration are monotone. We use the prefix mon- to denote monotone types
of restarting automata.

For studying quantitative aspects of computations of restarting automata,
the weighted restarting automaton has been introduced in [10]. A weighted
restarting automaton of type X, a wX-automaton for short, is a pair (M,ω),
where M is a restarting automaton of type X, and ω is a weight function from
the transitions of M into a semiring S. This weight function assigns an element
ω(t) ∈ S as a weight to each transition t of M . Here we only consider the case
that S is the semiring S = (P(Δ∗),∪, ·, ∅, {λ}) of languages over Δ with the
operations of union and product.

Let M = (M,ω) be a weighted restarting automaton, where M = (Q,Σ, Γ, c,
$, q0, k, δ). Let ACM (w) = {A1, A2, · · · , Am} be the set of all accepting compu-
tations of M on input w. We assume that the computation Ai ∈ ACM (w)
(1 ≤ i ≤ m) uses the transitions ti,1, ti,2, · · · , ti,ni

of M . Then the weight of
a transition ti,j (1 ≤ j ≤ ni) is a language ω(ti,j) = Li,j over Δ, and the
weight of the computation Ai is ω(Ai) = Li,1 · Li,2 · . . . · Li,ni

= L̂i ∈ P(Δ∗).
Finally, fM

ω (w) = L̂1 ∪ L̂2 ∪ · · · ∪ L̂m ∈ P(Δ∗) is the language over Δ that is
associated by M to w, that is, fM

ω is a transformation from Σ∗ into P(Δ∗).
If w /∈ L(M), then ACM (w) = ∅, and accordingly, fM

ω (w) = ∅. In this
way, the weighted restarting automaton M = (M,ω) on Σ yields the relation

Weighted Restarting Automata and Pushdown Relations 199

Rel(M) = { (u, v) | u ∈ L(M), v ∈ fM
ω (u) } ⊆ Σ∗×Δ∗. By R(wX) we denote the

class of relations that are computed by weighted restarting automata of type wX.
As the weight of a transition of M can be any language over Δ, the general

model of weighted restarting automata is quite powerful. Therefore, we introduce
some more restricted types of weighted restarting automata.

Definition 1. A weighted restarting automaton M = (M,ω) of type wX is
called a finitely weighted restarting automaton (a wFINX-automaton for short),
if the weight function ω maps the transitions of M into a semiring of the form
S = (Pfin(Δ∗),∪, ·, ∅, {λ}). It is called a word-weighted restarting automaton (a
wwordX-automaton for short), if the weight of each transition t of M is of the
form ω(t) = {v} for some v ∈ Δ∗.

It is rather obvious that R(wwordX) = R(wFINX) � R(wX) for each type X ∈
{mon-RWW,mon-RRWW,RWW,RRWW}. We close this section with a simple
example of a relation that is computed by a weighted restarting automaton.

Example 2. Let M1 = (Q,Σ, Γ, c, $, q0, k, δ) be the mon-RWW-automaton that
is defined by taking Q := {q0}, Γ := Σ := {a}, and k := 2, where δ is defined
as follows:

t1 : (q0, ca) → (q0,MVR), t3 : (q0, aa) → (q0,MVR),
t2 : (q0, c$) → Accept, t4 : (q0, a$) → $.

Here t4 is the only (combined) rewrite/restart operation of M1. It is easily seen
that L(M1) = { an | n ≥ 0 }.

Let (Pfin(Δ∗),∪, ·, ∅, {λ}) be the semiring of finite languages over Δ = {c},
let ω1 be the weight function that assigns the set {c} to the MVR transitions
t1 and t3, and that assigns the set {λ} to all other transitions, and let M1 =
(M1, ω1). It follows easily that

fM1
ω1

(w) =
{{c

1
2 (n+1)n}, for w = an, n ≥ 0,

∅, for w �∈ L(M1),

and hence, Rel(M1) = { (an, c
1
2 (n+1)n) | n ≥ 0 }.

Finally, we recall the notion of restarting transducer from [3]. In analogy
to finite transducers and pushdown transducers, a restarting transducer is a
restarting automaton that is equipped with an additional output function which
gives an output word for each restart and each accept transition. Hence, restart-
ing transducers are a special type of word-weighted restarting automata. By
R(X-Td) we denote the class of relations that are computed by restarting trans-
ducers of type X.

3 Pushdown Relations

A pushdown transducer (PDT for short) is defined by an 8-tuple T =
(Q,Σ,Δ,X, q0, Z0, F,E), where Q is a finite set of states, Σ is an input alpha-
bet, Δ is an output alphabet, X is a pushdown alphabet, q0 ∈ Q is the initial

200 Q. Wang et al.

state, Z0 ∈ X is the bottom marker of the pushdown, F ⊆ Q is the set of final
states, and E ⊂ Q × (Σ ∪ {λ}) × X × Q × X∗ × Δ∗ is a finite transition relation
that produces a (possible empty) output word in each step (see, e.g., [2]). The
output produced during a computation is then simply the concatenation of all
outputs produced during that computation.

A configuration of T is written as a 4-tuple (q, u, α, v), where q ∈ Q is the
current state, u ∈ Σ∗ is the still unread part of the input, α ∈ X∗ is the current
content of the pushdown, and v ∈ Δ∗ is the output produced so far. The relation
Rel(T) computed by T is defined as

Rel(T) = { (u, v) ∈ Σ∗ × Δ∗ | ∃q ∈ F, α ∈ X∗ : (q0, u, Z0, λ) �∗ (q, λ, α, v) }.

A relation R ⊆ Σ∗ × Δ∗ is called a pushdown relation if R = Rel(T) holds for
some PDT T . By PDR we denote the class of all pushdown relations.

A pushdown relation R is called linearly bounded if there exists a constant
c ∈ N such that |v| ≤ c · |u| holds for all pairs (u, v) ∈ R. By lbPDR we denote
the class of all linearly bounded pushdown relations.

A pushdown relation R is called realtime if it is computed by a PDT T =
(Q,Σ,Δ,X, q0, Z0, F,E) that does not perform any λ-steps, that is, its set of
transitions E satisfies the condition E ⊂ Q × Σ × X × Q × X∗ × Δ∗. By rtPDR
we denote the class of all realtime pushdown relations.

Finally, a pushdown relation R is called quasi-realtime if it is computed by
a PDT T = (Q,Σ,Δ,X, q0, Z0, F,E) for which each λ-step pops a symbol from
the pushdown, that is, if (q, λ, x, q′, x′, v) ∈ E, then x′ = λ. By qrtPDR we denote
the class of all quasi-realtime pushdown relations.

Proposition 3. rtPDR � qrtPDR � lbPDR � PDR.

Proof. The first and the third inclusions are obvious. Concerning the second
inclusion, assume that R is computed by a quasi-realtime PDT T . Let (u, v) ∈ R.
On reading an input symbol, T can push a string of length c (for some constant
c ≥ 1) onto its pushdown, and so altogether at most c · |u| symbols are pushed.
Hence, T can execute at most c · |u| λ-transitions, which means that, on input u,
T executes at most (c + 1) · |u| steps. Thus, the output v produced during this
computation satisfies the inequality |v| ≤ d · (c + 1) · |u|, where d is the maximal
length of any output string produced by T in a single step.

It remains to prove that all the inclusions above are proper. The transduction
RuuR = { (u, uuR) | u ∈ {a, b}∗ } is quasi-realtime: a PDT T can output its input
u letter by letter, also pushing each letter onto the pushdown. At the end of the
input, which T can guess, it empties its pushdown letter by letter, producing
the output uR. On the other hand, this transduction is not realtime, as in a
realtime pushdown relation the final output syllable is produced when the last
input symbol is being read, which is not possible for the relation RuuR .

The relation Rambmcn = { (ambmcn, cnambm) | m,n ≥ 1 } is a linearly
bounded pushdown relation. A PDT T can first guess cn, outputting this factor
and pushing it onto the pushdown. Then it compares the syllables am and bm,

Weighted Restarting Automata and Pushdown Relations 201

producing the output ambm. Finally, it checks the syllable cn against the c-
syllable on its pushdown. However, Rambmcn is not quasi-realtime. The output
syllable cn must be produced first, but the pushdown must be used for compar-
ing am to bm, which are the first two syllables of the input. In addition, when
this comparison is made, then the output ambm must be produced. Hence, the
output syllable cn must already be produced before the input syllable cn is being
read, that is, the output cn is produced through λ-transitions that do not pop
from the pushdown.

Finally, the relation R+ = { (am, bnambn) | m,n ≥ 1 } is a pushdown relation.
Obviously, it is not linearly bounded. �

The class of pushdown relations can be characterized in terms of context-free
languages and morphisms. For that we recall the following concept from [1].

Definition 4. A language L ⊆ Γ ∗ characterizes a relation R ⊆ Σ∗ × Δ∗ if
there exist two morphisms h1 : Γ ∗ → Σ∗ and h2 : Γ ∗ → Δ∗ such that R =
{ (h1(w), h2(w)) | w ∈ L }.

In [1] it was shown that the pushdown relations are characterized by the
context-free languages. For the case that Σ and Δ are disjoint, an even stronger
result was shown that assumes that Γ = Σ∪Δ and that h1 (h2) is the projection
from Γ ∗ onto Σ∗ (Δ∗). In terms of [1] this is expressed by saying that the
pushdown relations are strongly characterized by the context-free languages. In
the following we extend this result to lbPDR.

Lemma 5. Every linearly bounded pushdown relation is strongly characterized
by a context-free language.

Proof. Let R ⊆ Σ∗ × Δ∗ be an lbPDR, and let c be a constant such that |v| ≤
c · |u| for all (u, v) ∈ R. From Definition 4 it follows that R is characterized
by a context-free language L ⊆ Γ ∗ and two morphisms h1 : Γ ∗ → Σ∗ and
h2 : Γ ∗ → Δ∗. Thus, for each pair (u, v) ∈ R, there is a word w ∈ L such
that h1(w) = u and h2(w) = v. Now a strong characterization would put the
additional restriction |w| ≤ |u| + |v| ≤ (c + 1) · |u| on the length of w, which is
not necessarily the case for the above characterization in terms of L.

To simplify the discussion, we assume that Γ , Σ, and Δ are pairwise disjoint.
We introduce an additional alphabet Γ ′ = {x′ | x ∈ Γ, h2(x) �= λ } and take
Γ0 = Γ ∪ Γ ′. Further, we define a morphism h : Γ ∗ → Γ ∗

0 , where x ∈ Γ :

h(x) =

⎧
⎪⎨

⎪⎩

xx′, if h1(x) �= λ and h2(x) �= λ,

x′, if h1(x) = λ and h2(x) �= λ,

x, otherwise,

and we extend h1 and h2 to morphisms h′
1 : Γ ∗

0 → (Γ ′∪Σ)∗ and h′
2 : (Γ ′∪Σ)∗ →

(Σ ∪ Δ)∗ through h′
1(x) =

{
h1(x), x ∈ Γ
x, x ∈ Γ ′

}
and h′

2(x
′) =

{
h2(x), x′ ∈ Γ ′

x′, x′ ∈ Σ

}
.

Clearly, the language L′ = h′
2(h

′
1(h(L))) ⊆ (Σ ∪ Δ)∗ is context-free. Let πΣ

and πΔ be the projections from (Σ ∪ Δ)∗ onto Σ∗ and Δ∗. Then R is strongly
characterized by L′ and the two projections πΣ and πΔ. �

202 Q. Wang et al.

4 Pushdown Relations and Restarting Transducers

Every relation that is computed by a restarting transducer is linearly bounded
in the sense of the class lbPDR, as a restarting transducer outputs symbols only
during restart and accept steps, and any computation on an input of length n
contains at most n + 1 such steps. It follows that restarting transducers cannot
compute all pushdown relations. Naturally, the question arises of whether they
can at least compute all linearly bounded pushdown relations. In [3] it was
claimed that monotone RWW- and RRWW-transducers do exactly compute
these relations, but actually, only a weaker result was proven there. Here we show
that these transducers actually characterize the class qrtPDR. By Proposition 3
this means that they cannot realize all relations from the class lbPDR.

Theorem 6. R(mon-RWW-Td) = R(mon-RRWW-Td) = qrtPDR.

To prove this result we present two lemmas.

Lemma 7. qrtPDR ⊆ R(mon-RWW-Td).

Proof. Let R ⊆ Σ∗ × Δ∗ be the relation that is computed by the quasi-realtime
PDT T = (Q,Σ, Γ,Δ, δ, q0, Z0, F). We now simulate T by a mon-RWW-Td using
a construction from [9].

Let l := max{ |γ| | ∃(q, a,A, p, γ, v) ∈ δ }, and let Γ ′ := Γ ′
1 ∪ Γ ′

2, where
Γ ′
1 := { (x) | x ∈ Γ+, |x| ≤ 2l } and Γ ′

2 := { (y) | y ∈ Γ 2l }. Thus, a symbol
(x) ∈ Γ ′

1 encodes a word x ∈ Γ ∗ of length at most 2l, while a symbol (y) ∈ Γ ′
2

encodes a word y ∈ Γ ∗ of length 2l. Finally, let M be the RWW-Td M =
(QM , Σ, Γ ′,Δ, c, $, 4, δ′) that simulates T as follows.

In each cycle M simulates two steps of T . Assume that an accepting com-
putation of T on input w = a0a1 · · · an begins by first applying the transi-
tion (q1, B1 · · · Bm1C1, v1) ∈ δ(q0, a0, Z0) and then the transition (q2, Bm1+1 · · ·
Bm1+m2C2, v2) ∈ δ(q1, a1, C1). As m1 < l and m2 < l, |B1 · · · Bm1+m2C2| <
2l holds. Accordingly, starting with the input configuration corresponding to
input w, M can execute the rewrite step ca0a1a2 → c(xC2)a2, where x :=
B1 · · · Bm1+m2 , producing the output v1v2.

Assume that by executing the next two steps, the PDT T reaches the configu-
ration (q4, a4 · · · an, B1 · · · Bm1+m2−1x1), that is, the factor a2a3 is read from the
input tape, the internal state changes to q4, the two topmost symbols Bm1+m2C2

on the pushdown are rewritten into the string x1 ∈ Γ ∗, and the output v3v4 is
produced. If m1 + m2 − 1 + |x1| ≤ 2l, then M rewrites (xC2)a2a3a4 into (x′)a4,
where x′ = B1 · · · Bm1+m2−1x1, and if m1 + m2 − 1 + |x1| > 2l, then M rewrites
(xC2)a2a3a4 into (x′)(x′′)a4, where x′x′′ = B1 · · · Bm1+m2−1x1 and |x′| = 2l.

In addition, if T executes a λ-step, then it changes its state, pops a symbol
from the pushdown, and produces an output syllable. In order for M to simulate
this in a length-reducing fashion, we must combine up to 2l λ-steps of T (or
several λ-steps together with the next non-λ-step) into a single simulation step
of M . This is rather technical, but nevertheless fairly standard.

Weighted Restarting Automata and Pushdown Relations 203

Continuing in this way it follows that the tape content of M is always of
the form α(u)aj · · · an, where (u) ∈ Γ ′

1, and α ∈ Γ ′
2
∗. Here αu encodes the

current content of the pushdown of T , and aj · · · an is the suffix of the input
that T still has to read. As long as j < n−1, M can simulate the next two steps
of T by rewriting the four symbols (xi)(xi+1)ajaj+1 either into (xi)(xi+1)(xi+2),
into (xi)(xi+2), or into (xi+2), depending on the way in which the contents of
the pushdown of T is modified by these steps. This simulation continues until
either T rejects (and then M rejects as well), or until j = n − 1 is reached. At
that point M can detect whether T will accept or reject, and it will then act
likewise. It follows that M is monotone, and that Rel(M) = R holds. �
Lemma 8. R(mon-RRWW-Td) ⊆ qrtPDR.

Proof. Let M be a mon-RRWW-Td. Using the simulation technique from [8] it
can be shown that M can be simulated by a PDT T . Let cuqvw$ be a rewrite
configuration within an accepting computation of M , and assume that M now
executes the rewrite step (q′, v′) ∈ δ(q, v). Then the next cycle starts from the
restarting configuration q0cuv′w$, and as M is monotone, the next rewrite oper-
ation is performed within a suffix of uv′w of length at most |vw|. Thus, the
prefix uv′ can be stored on the pushdown of T , while the input contains the
suffix w still unread. As an RRWW-transducer, M moves to the right after per-
forming the above rewrite step, and (without loss of generality) it only restarts
and produces its output at the right end of the tape, provided the state reached
leads to a restart operation. As T cannot scan its input completely each time it
simulates a rewrite step, it guesses the output z produced by M at the end of
the current cycle, and it keeps the state q′ reached by the above rewrite step and
the output z guessed in its finite-state control. When it processes further letters
from w, it updates this state information. Finally, when w has been processed
completely, then T checks whether all the states of M stored in its finite-state
control correspond to restart steps and the corresponding output strings.

In fact, as M is monotone, it can be checked quite easily that T is quasi-
realtime, that is, whenever T executes a λ-transition, then it pops a symbol
from its pushdown. In addition, whenever T simulates a rewrite step of M , then
it must remember the state q′ that M enters through this rewrite step and the
output z that M will produce in the current cycle. Luckily, there are only finitely
many pairs of the form (q′, z) of M , and hence, T can actually store all the pairs
occurring in the computation being simulated in its finite-state control. �

As R(mon-RWW-Td) ⊆ R(mon-RRWW-Td), Lemmas 7 and 8 imply the
characterization in Theorem 6. Next it can be shown that all linearly bounded
pushdown relations are accepted by (non-monotone) RRWW-transducers.

Theorem 9. lbPDR ⊆ R(RRWW-Td).

Proof. Let R ⊆ Σ∗ × Δ∗ be a linearly bounded pushdown relation. W.l.o.g. we
assume that Σ and Δ are disjoint. By Lemma 5, R is strongly characterized by a
context-free language L ⊆ (Σ ∪Δ)∗ and the two projections hi : (Σ ∪Δ)∗ → Σ∗

204 Q. Wang et al.

and ho : (Σ ∪ Δ)∗ → Δ∗. Furthermore, there is a constant k such that, for
all (u, v) ∈ R, there exists a word w ∈ L such that |w| ≤ k · |u| and (u, v) =
(hi(w), ho(w)). Let M be a PDA for L. Now an RRWW-Td T for R can be
constructed that proceeds in two steps. For a given pair (u, v) ∈ R,

1. T guesses a characterizing word w of (u, v) and produces the output ho(w),
2. T verifies that w ∈ L by simulating the PDA M on w.

The main problem in constructing T is the fact that we have to ensure that these
steps are realized in a length-reducing manner. �

Actually, the inclusion in Theorem 9 has already been stated in [4] and its
journal version [5] by relating restarting transducers to transducing observer
systems. The proof above can easily be converted to the latter, in this way
correcting the proof given in these papers, which only proves a weaker result.

5 Relations Computed by Monotone Weighted RWW-
and RRWW-Automata

In the previous section we have shown that monotone RWW- and RRWW-
transducers compute the relations in qrtPDR. Are (word-weighted) RWW- and
RRWW-automata that are monotone more expressive?

We begin this investigation by studying the relation between the classes
R(mon-wRWW) and R(mon-wRRWW). Let τ1 ⊆ {a, b, c}∗ × {d, e}∗ be the rela-
tion

τ1 = { (akbkcm, dmek) | k,m ≥ 1 }.

Lemma 10. τ1 /∈ R(mon-wRWW).

Proof. Assume that τ1 ∈ R(mon-wRWW), that is, there exists a weighted mon-
RWW-automaton M and a weight function ω′ that maps the transitions of M
into subsets of {d, e}∗ such that τ1 = Rel((M,ω′)). As τ1 is actually a (partial)
function, we see that ω′ can be replaced by a weight function ω that maps each
transition of M into a singleton, which means that M = (M,ω) is a word-
weighted mon-RWW-automaton. Interpreting the weight ω(t) of a transition as
output, we see that, for an input of the form akbkcm, M first outputs the symbol
d m-times, which is the number of c-symbols in the input, and then it outputs
k e-symbols, which is the number of a- and b-symbols in the input.

As the language L = { akbkcm | k,m ≥ 1 } is not regular, M needs to execute
rewrite steps in all its accepting computations on input akbkcm, if k is sufficiently
large. At what position can the first of these rewrite steps be applied?
(1) Assume that the first rewrite step is applied within the suffix cm. While pro-
cessing this suffix, M can easily produce the output dm. Then M must compare
the prefix ak to the infix bk, and while doing so it should produce the output ek.
However, M is monotone, which means that the position of a rewrite step in a
cycle cannot have a larger right distance than the rewrite step in the previous

Weighted Restarting Automata and Pushdown Relations 205

cycle. Accordingly, the infix bk must be reduced by rewrites to a word that fits
into the window of M , which means that M cannot distinguish between bk and
bk+r for some positive integer r. Thus, together with akbkcm, M would also
accept the word akbk+rcm, contradicting our assumption on M .
(2) From the arguments above, it follows that the first rewrite step must be
executed within the prefix ak or at the border between the prefix ak and the
infix bk. This means that M must first compare the syllables ak and bk, and
since by this process the information on the exponent k is being destroyed, it
must produce the output ek during this process. However, as the output syllable
ek is preceded by the prefix dm, M must already output the syllable dm before
it starts to output e-symbols. As shown in [10], the length of any computation of
M on an input of length n is at most 1

2 (n+2)(n+3)−1. This means that during
the processing of the prefix akbk, M can perform at most 1

2 (2k + 2)(2k + 3) − 1
steps. Choose l ≥ 1 to be a constant such that |ω(t)| ≤ l for all transitions t
of M , and choose m such that m > (12 (2k+2)(2k+3)−1) · l. Then M is not able
to produce m d-symbols, while it is processing the prefix akbk. Thus, it either
stops producing d-symbols before it has erased all information on the number k,
which means that not enough d-symbols are produced, or it keeps on producing
d-symbols while erasing all information on k. In the latter case it will then not
be able to produce the correct number of e-symbols. �

Obviously, R(mon-wRWW) is contained in R(mon-wRRWW). We now prove
that this inclusion is proper.

Theorem 11. R(mon-xRWW) � R(mon-xRRWW) for all x ∈ {w,wFIN,wword}.
Proof. By Lemma 10, τ1 /∈ R(mon-wRWW). On the other hand, it is easy to
construct a monotone word-weighted RRWW-automaton M = (M,ω) such that
Rel(M) = τ1. This automaton M proceeds as follows. Let w = akbkcm be given
as input. In the first cycle, M places a marking on the prefix of w by encoding the
first two symbols into a combined (new) symbol, and then it moves to the suffix
cm of w. While scanning this suffix, it outputs a d-symbol for each c-symbol that
it encounters, and at the right delimiter, it restarts. In the subsequent cycles,
on seeing the marking at the left end of the tape, M realizes that it has already
produced the d-symbols. Hence, it now moves to the boundary between the prefix
ak and the infix bk to compare them. In each subsequent rewrite step, it removes
a single a-symbol and a single b-symbol, producing a single e-symbol as output
(via ω). It follows that Rel(M) = τ1, which completes the proof. �

We remark that Theorem 11 is the first result that establishes a difference in
the computational power between a model of the monotone RWW-automaton
and the corresponding model of the monotone RRWW-automaton.

The relation τ1 = { (akbkcm, dmek) | k,m ≥ 1 } considered above is a linearly
bounded pushdown relation that is not computed by any monotone weighted
RWW-automaton. On the other hand, the relation considered in Example 2 is
computed by a monotone word-weighted RWW-automaton. Its domain a∗ is
context-free, while its range { c

1
2 (n+1)n | n ≥ 0 } is not. Hence, this relation is

not a pushdown relation. Thus, we have the following incomparability result.

206 Q. Wang et al.

Theorem 12
For each prefix x ∈ {w,wFIN,wword}, the class of relations R(mon-xRWW) is
incomparable to the classes lbPDR and PDR with respect to inclusion.

Finally, we turn to the class of relations that are computed by monotone
wRRWW-automata. Let τ2 ⊆ {a, b, c}∗ × {d, e}∗ be the relation

τ2 = { (akbkcm+lal, dmekdmel) | k, l,m ≥ 1 }.

Lemma 13. τ2 /∈ R(mon-wRRWW).

Proof. The relation τ2 is a partial function. Thus, if τ2 is computed by a
monotone wRRWW-automaton, then it is also computed by a monotone word-
weighted RRWW-automaton M = (M,ω). Interpreting the weight ω(t) ∈
{d, e}∗ of a transition t as output, M first outputs the syllable dm, then ek,
then dm again, and finally el given the word akbkcm+lal as input.

As M is monotone, we see that M must first compare the prefix ak to the
infix bk (see the proof of Lemma 10). Since the information about the exponent
k is lost during this process, M must produce the output syllable ek during this
process. Hence, the prefix dm of the output must be produced before this process
starts, which means that M can only perform rewrites on the prefix ak of the
input while it produces the output dm.

The exact value of m is unknown, that is, while moving right across the input
syllable cm+l, M must guess it. After comparing the numbers of a- and b-symbols
and outputting correspondingly many e-symbols, M must again produce m d-
symbols, that is, it must somehow remember this number. However, as M must
not perform any rewrite steps on the suffix cm+lal before ak has been compared
to bk, it must encode the number m within the prefix ak. However, if m is
sufficiently large, then this is not possible. Hence, it follows that τ2 cannot be
computed by any weighted RRWW-automaton that is monotone. �

Clearly τ2 is a linearly bounded pushdown relation, too. Hence, from Exam-
ple 2 and Lemma 13 the following incomparability result follows.

Theorem 14
For each prefix x ∈ {w,wFIN,wword}, the class of relations R(mon-xRRWW) is
incomparable to the classes lbPDR and PDR with respect to inclusion.

6 Conclusion

We have studied the classes of (binary) relations that are computed by weighted
RWW- and RRWW-automata that are monotone, relating them to the classes of
relations that are computed by monotone RWW- and RRWW-transducers and
to some classes of pushdown relations. The inclusion results obtained are summa-
rized in the diagram in Figure 1. In particular, we have shown that the mono-
tone RWW- and RRWW-transducers characterize the class of quasi-realtime

Weighted Restarting Automata and Pushdown Relations 207

pushdown relations, and we have seen that monotone (word-) weighted RWW-
automata are strictly weaker in computational power than monotone (word-)
weighted RRWW-automata. The latter is the first known case where it has been
shown that a version of the (nondeterministic) monotone RWW-automaton dif-
fers in expressive power from the corresponding version of the (nondeterministic)
monotone RRWW-automaton. Of course, it remains to derive a characterization
of the classes of relations computed by these automata in terms of other types
of devices.

PDR

lbPDR

��

R(mon-wRWW) �� R(mon-wRRWW)

qrtPDR

��

R(mon-RWW-Td)

��

R(mon-RRWW-Td)

��

rtPDR

��

Fig. 1. Hierarchy of classes of (binary) relations that are computed by monotone
R(R)WW-transducers and (word-)weighted R(R)WW-automata. An arrow denotes a
proper inclusion, and classes that are not connected are incomparable with respect to
inclusion.

References

1. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling.
Prentice-Hall Inc., Upper Saddle River (1972)

2. Choffrut, C., Culik II, K.: Properties of Finite and Pushdown Transducers. SIAM
J. Comput. 12(2), 300–315 (1983)

3. Hundeshagen, N.: Relations and Transductions Realized by Restarting Automata.
Ph.D. thesis, Fachbereich Elektrotechnik/Informatik, Universität Kassel (2013)

4. Hundeshagen, N., Leupold, P.: Transducing by observing and restarting transduc-
ers. In: Freund, R., Holzer, M., Truthe, B., Ultes-Nitsche, U. (eds.) NCMA 2012.
books@ocg.at, vol. 290, pp. 93–106. Österreichische Computer Gesellschaft, Vienna
(2012)

5. Hundeshagen, N., Leupold, P.: Transducing by Observing Length-Reducing and
Painter Rules. RAIRO - Theor. Inform. Appl. 48(1), 85–105 (2014)

6. Hundeshagen, N., Otto, F.: Characterizing the rational functions by restarting
transducers. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183,
pp. 325–336. Springer, Heidelberg (2012)

7. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 965, pp. 283–292. Springer, Heidelberg (1995)

8. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On Monotonic Automata with a Restart
Operation. J. Auto. Lang. Comb. 4(4), 287–312 (1999)

9. Kutrib, M., Messerschmidt, H., Otto, F.: On Stateless Two-Pushdown Automata
and Restarting Automata. Int. J. Found. Comp. Sci. 21, 781–798 (2010)

10. Otto, F., Wang, Q.: Weighted Restarting Automata. The results of this paper have
been announced at WATA 2014 in Leipzig, May 2014 (submitted)

Equivalence Checking Problem for Finite State
Transducers over Semigroups

Vladimir A. Zakharov(B)

Institute for System Programming RAS,
National Research University Higher School of Economics, Moscow, Russia

zakh@cs.msu.su

Abstract. Finite state transducers over semigroups can be regarded as a
formal model of sequential reactive programs. In this paper we introduce
a uniform technique for checking effectively functionality, k-valuedness,
equivalence and inclusion for this model of computation in the case when
a semigroup these transducers operate over is embeddable in a decidable
group.

1 Introduction

Finite state transducers extend the finite state automata to model functions
on strings or lists, that is why they are used in fields as diverse as computa-
tional linguistics and model-based testing. In software engineering transducers
provide a suitable formal model for various device drivers for manipulating with
strings, transforming images, filtering dataflows, inserting fingerprints, etc. (see
[1,10]). Algorithms for building compositions of transducers, checking equiva-
lence, reducing their state space considerably enhance the effectiveness of design-
ing, testing, verification and maintenance of such software routines.

Transducers may be used also as simple models of sequential reactive
programs. These programs operate in the interaction with the environment per-
manently receiving data (requests) from it. At receiving a piece of data such pro-
gram performs a sequence of actions. When certain control points are achieved
a program outputs the current results of computation as a response. It is signif-
icant that different sequences of actions may yield the same result. Therefore,
the basic actions of a program may be viewed as generating elements of some
appropriate semigroup, and the result of computation may be regarded as the
composition of actions performed by the program.

Imagine, for example, that a radio-controlled robot moves on the earth sur-
face. It can make one step moves in any of 4 directions N,E, S,W . When such
robot receives a control signal syg in a state q it must choose and carry out a
sequence of steps (say, N,N,W,S), and enter to the next state q′. At some dis-
tinguished states qfin robot reports its current location. The most simple model
of computation which is suitable for designing such a robot and analyzing its
behaviour is non-deterministic finite state transducer operating on free Abelian
group of rank 2.
c© Springer International Publishing Switzerland 2015
A. Maletti (Ed.): CAI 2015, LNCS 9270, pp. 208–221, 2015.
DOI: 10.1007/978-3-319-23021-4 19

Equivalence Checking Problem for Finite State Transducers over Semigroups 209

These considerations give rise to the concept of a transducer which has some
finitely generated semigroup S for the set of outputs. In this paper we study the
equivalence checking problem and some related problems for finite state trans-
ducers over semigroups. The study of these problems for classical transducers
that operate on words began in the early 60s. First, it was shown that the equiva-
lence checking problem is undecidable for non-deterministic transducers [6] even
over 1-letter input alphabet [8]. But the undecidability displays itself only in the
case of unbounded transduction when an input word may have arbitrary many
images. At the next stage bound-valued transducers were studied. It was proved
that it is decidable in polynomial time whether the cardinality of the image of
every word by a given transducer is bounded [15] and whether it is bounded
by a given integer k [7]. The equivalence checking problem was shown also to
be decidable for deterministic [3], functional (single-valued) transducers [2,13],
and k-valued transducers [5,16]. In a series of papers [4,11,12,14] a construction
to decompose k-valued transducers into a sum of functional and unambiguous
ones was developed and used for checking bounded valuedness, k-valuedness and
equivalence of finite state transducers over words.

This paper offers an alternative technique for the analysis of finite state
transducers over semigroups. To check the equivalence of transducers π1 and π2

we associate with them a Labeled Transition System Γπ1,π2 . Each path in this
LTS represents all possible runs of π1 and π2 on the same input word. Every
node u of Γπ1,π2 keeps track of the states of π1 and π2 achieved at reading some
input word and the deficiency of the output words computed so far. If both
transducers reach their final states and the deficiency of their outputs is nonzero
then this indicates that π1 and π2 produce different images for the same word,
and, hence, they are not equivalent. The nodes of Γπ1,π2 that capture this effect
are called rejecting nodes. Thus, the equivalence checking of π1 and π2 is reduced
to checking the reachability of rejecting nodes in LTS Γπ1,π2 . We show that one
needs to analyze only a bounded fragment of Γπ1,π2 to certify (un)reachability of
rejecting nodes. The size of this fragment is polynomial of the size of π1 and π2 if
both transducers are deterministic, and single-exponential if they are k-bounded.
The same approach is applicable for checking k-valuedness of transducers over
semigroups.

Initially, this LTS-based approach was introduced and developed in [17] for
equivalence checking sequential programs in polynomial time. The concept of
deficiency and a similar way of its application to the analysis of classical trans-
ducers was independently introduced in [4] and used in [12,14] under the names
“Advance or Delay Action” (ADA), or “Lead or Delay Action” (LDA). The
main advantage of our approach (apart from the fact that it is applicable to a
more general type of transducers) is twofold. First, unlike one used in [11,16],
it does not require a pre-processing (decomposition) of transducers to be ana-
lyzed and can be applied to any given transducers at once. Second, the checking
procedure does not rely on the specific features of internal structures (like the
analysis of strongly connected components used in [12,14]) of transducers under
consideration and makes a plain depth-first search of rejecting nodes in the

210 V.A. Zakharov

corresponding LTS. Complexity issues of our technique are shortly discussed in
the conclusion.

2 Preliminaries

Given a finite alphabet A, denote by A∗ the set of all finite words over A. A finite
state automaton over A is 5-tuple A = 〈A,Q, init, F, ϕ〉, where Q is a finite set of
states, init is an initial state, F is a subset of final states, and ϕ,ϕ ⊆ Q×A×Q,
is a transition relation. An automaton A accepts a word w = a1a2 . . . an if
there exists a sequence of states q0, q1, . . . , qn such that q0 = init, qn ∈ F , and
(qi−1, ai, qi) ∈ ϕ holds for every i, 1 ≤ i ≤ n. A language L(A) of A is the set of
all words accepted by A. We write A[q] for the automaton 〈A,Q, q, F, ϕ〉 which
has q for the initial state.

Let S = (B, ·, e) be a semigroup generated by a set of elements B and
having the identity element e. A finite state transducer over S is 6-tuple π =
〈A,S,Q, q0, F, T 〉, where Q is a finite set of states, q0 is an initial state, F is a
subset of final states, and T, T ⊆ Q × A × S × Q, is a finite transition relation.

Quadruples (q, a, s, q′) in T are called transitions and denoted by q
a/s−→ q′. We

will denote by Aπ the underlying finite state automaton 〈A,Q, q0, F, ϕπ〉, where

ϕπ = {(q, a, q′) : q
a/s−→ q′ for some s in S}.

A run of π on a word w = a1a2 . . . an is a sequence of transitions of the form

qi
a1/s1−→ qi+1

a2/s2−→ · · · an−1/sn−1−→ qi+n−1
an/sn−→ qi+n . (1)

The element s = s1 ·s2 · · · sn of the semigroup S is called an image of w, and the

pair (w, s) is called the label of a run (1). We will use notation qi
w/s−→ qi+n for a

run of a transducer. If qi = q0 then (1) is an initial run. If qi+n ∈ F then (1) is a
final run. A run which is both initial and final is called complete. By Lab(π) we
denote the transduction relation realized by π which is the set of labels (w, s)
of all complete runs of π. A state q is useful if at least one complete run passes
via q. In what follows we will assume that all states of the transducers under
consideration are useful; in [4] such transducers are called trim. A transducer π
is deterministic if for every letter a and a state q the set T contains at most one

transition of the form q
a/s−→ q′. A transducer π is k-valued, where k is a positive

integer, if for every input word w the transduction relation Lab(π) contains at
most k labels of the form (w, s). A 1-valued transducer π is also called functional.
Transducers π′ and π′′ are equivalent (π′ ∼ π′′ in symbols) if Lab(π′) = Lab(π′′).

In the rest of the paper we define and study procedures for checking equiv-
alence and k-valuedness of finite state transducers over a semigroup S which
can be embedded in a group. A semigroup S is embeddable in a group G if this
group includes a semigroup S′ isomorphic to S. The set of necessary and suf-
ficient conditions for the embeddability of a semigroup in a group were given
in [9]. The conditions are countably infinite in number and no finite subset will
suffice. In fact, a free semigroup is embeddable in a free group, and any commu-
tative semigroup can be embedded in a group iff it is cancellative. Without loss

Equivalence Checking Problem for Finite State Transducers over Semigroups 211

of generality in what follows it will be assumed that the transducers under con-
sideration operate over a finitely generated decidable group G (i.e. there exists
an algorithm for checking whether two words in the generators of G represent
the same element), and, given an element s, we write s− for the element of G
which is inverse of s.

3 Equivalence Checking Deterministic Transducers

Let π = 〈A,G,Q, q0, F, T 〉 and π′ = 〈A,G,Q′, q′
0, F

′, T ′〉 be deterministic trans-
ducers over a finitely generated decidable group G. To check their equivalence
we define the Labeled Transition System (LTS) Γ 0

π,π′ = 〈Q × Q′ × G,⇒〉. The
nodes of Γ 0

π,π′ are triples of the form (q, q′, g), where q ∈ Q, q′ ∈ Q′, and g ∈ G.
The third component g in this triple is called a deficiency (of initial runs arriving
at the states q and q′).

The transition relation ⇒ is defined as follows: for every pair of nodes v1 =
(q1, q′

1, g1) and v2 = (q2, q′
2, g2), and for every letter a a relation v1

a⇒ v2 holds iff

q1
a/s−→ q2 and q′

1

a/s′
−→ q′

2 are transitions in π and π′ respectively, and g2 = s−g1s
′.

Given a word w = a1a2 . . . an and a pair of nodes v = (q1, q′
1, g1) and u =

(q2, q′
2, g2) we write v

w⇒ u as shorthand notation of a sequence v
a1⇒ v1

a2⇒
· · · an−1⇒ vn−1

an⇒ u which is called a path in Γ 0
π,π′ . In this case we say that a node

u is reachable from a node v. It is easy to see that v
w⇒ u holds iff q1

w/s−→ q2,

q′
1

w/s′
−→ q′

2, and s−g1s
′ = g2.

The node vsrc = (q0, q′
0, e), where e is the identity element of G, is called the

source node of Γ 0
π,π′ . Denote by V 0

π,π′ the set of nodes reachable in LTS Γ 0
π,π′

from vsrc. A node (q, q′, g) is called rejecting if it satisfies at least one of the
following requirements:

1. both q and q′ are final states of π and π′, and g
= e;
2. exactly one of the states q or q′ is final;
3. for some letter a only one of the states q or q′ has a a-transition, whereas

the other state does not.

The set of all rejecting nodes of LTS Γ 0
π,π′ is denoted by R0

π,π′ .

Lemma 1. Deterministic transducers π and π′ are equivalent iff V 0
π,π′ ∩R0

π,π′ = ∅.
Proof. Follows immediately from the definitions of LTS Γ 0

π,π′ , V 0
π,π′ , R0

π,π′ and
the equivalence ∼ in view of the fact that π and π′ are both deterministic and
trim. �

Thus, the equivalence checking of deterministic trim transducers is reduced
to the searching of rejecting nodes in the set of reachable nodes of LTS Γ 0

π,π′ .
Next we show how to cut down the search space.

Lemma 2. If the set V 0
π,π′ contains a pair of nodes v1 = (q, q′, g1) and v2 =

(q, q′, g2) such that g1
= g2 then V 0
π,π′ ∩ R0

π,π′
= ∅.

212 V.A. Zakharov

Proof. Suppose, to the contrary, that V 0
π,π′ ∩ R0

π,π′ = ∅, and, hence, π ∼ π′.

By the definition of Γ 0
π,π′ there is such a word w0 that q0

w0/s0−→ q, q′
0

w0/s′
0−→ q′,

and g1 = s−
0 s′

0. Since the state q is useful, there is such a word w that q0
w0/s0−→

q
w/s−→ p is a complete run of π. As far as π ∼ π′ and π′ is deterministic, the

run q′
0

w0/s′
0−→ q′ w/s′

−→ p′ of π′ is complete and s0s = s′
0s

′. Hence, g1 = s(s′)−.

Inasmuch as q
w/s−→ p and q′ w/s′

−→ p′, there is a path v2
w⇒ (p, p′, g) in Γ 0

π,π′ , where
g = s−g2s

′. Having in mind that (p, p′, g) is in V 0
π,π′ , both states p and p′ are

final, and assuming that V 0
π,π′ ∩ R0

π,π′ = ∅, we arrive at the equality g = e.
Therefore, g2 = s(s′)− = g1 which contradicts the premise of Lemma. �

By Lemmata 1 and 2, to check the equivalence of deterministic trim trans-
ducers π and π′ it is sufficient to analyze at most |Q||Q′| + 1 nodes reachable
from the source node of LTS Γ 0

π,π′ . This consideration brings us to

Theorem 1. The equivalence problem for deterministic transducers over finitely
generated decidable group G is decidable. Moreover, if the word problem for G
is decidable in polynomial time then the equivalence problem for deterministic
transducers over G is decidable in polynomial time as well.

4 Checking Functional Transducers

To check the functionality of a transducer π = 〈A,G,Q, q0, F, T 〉 we also take
advantage of LTSs. Let π = 〈A,G,Q, q0, F, T 〉 and π′ = 〈A,G,Q′, q′

0, F
′, T ′〉 be

a pair of transducers. Define a LTS Γ 1
π,π′ = 〈Q × Q′ × G,⇒〉 as follows: for

every pair of nodes v1 = (q1, q′
1, g1) and v2 = (q2, q′

2, g2), and for every letter a,

a relation v1
a⇒ v2 holds iff there exist transitions q1

a/s−→ q2 and q′
1

a/s′
−→ q′

2 such
that g2 = s−g1s

′, and L(Aπ[q2]) ∩ L(Aπ′ [q′
2])
= ∅. The set of all nodes of LTS

Γ 1
π,π′ reachable from the source node (q0, q0, e) is denoted by V 1

π,π′ . We say that
(q1, q2, g) is a rejecting node if q1 and q2 are final states, and g
= e. The set of
all rejecting nodes of LTS Γ 1

π,π′ is denoted by R1
π,π′ . The lemmata below can be

proved using the same reasoning as in previous section.

Lemma 3. A transducer π is functional iff V 1
π,π ∩ R1

π,π = ∅.
Lemma 4. If the set V 1

π,π includes a pair of nodes v1 = (q, p, g1) and v2 =
(q, p, g2) such that g1
= g2 then V 1

π,π ∩ R1
π,π
= ∅.

As it follows from Lemmata 3 and 4, to check functionality of a transducer
π one needs only to analyze at most |Q|2 + 1 nodes reachable from the source
node of Γ 1

π,π.

Theorem 2. The functionality of transducers over finitely generated decidable
group G can be checked effectively. Moreover, if the word problem for G is decid-
able in polynomial time then the functionality checking can be performed in poly-
nomial time as well.

Equivalence Checking Problem for Finite State Transducers over Semigroups 213

The equivalence of functional transducers π and π′ can be checked in the
same way by means of LTS Γ 1

π,π′ . But now we need to check in advance that
L(Aπ[q0]) = L(Aπ′ [q′

0]) since, unlike the case of deterministic transducers, the
nodes (q1, q2, g) in Γ 1

π,π′ such that exactly one of the states q1 and q2 is final can
not be regarded as rejecting ones.

Lemma 5. If L(Aπ[q0]) = L(Aπ′ [q′
0]) then functional transducers π and π′ are

equivalent iff V 1
π,π′ ∩ R1

π,π′ = ∅.
Lemma 6. If the set V 1

π,π′ includes a pair of nodes v1 = (q, q′, g1) and v2 =
(q, q′, g2) such that g1
= g2 then V 1

π,π′ ∩ R1
π,π′
= ∅.

Theorem 3. The equivalence problem for functional transducers over finitely
generated decidable group G is decidable. Moreover, if the word problem for G is
decidable in polynomial time then the equivalence problem for functional trans-
ducers is PSPACE-complete.

5 Checking 2-Valuedness of Transducers

The LTS-based techniques put forward in Sections 3 and 4 for checking the
equivalence of deterministic and functional transducers can be developed further
to cope with the analysis of k-valued transducers. For the sake of clarity we
consider in details only the case of k = 2; the same arguments supplied with
a bit more cumbersome combinatorics gives a general solution to the checking
problems for k-valued finite state transducers.

We begin with checking 2-valuedness of transducers over a decidable group.
Given a transducer π = 〈A,G,Q, q0, F, T 〉 define a LTS Γ 2

π = 〈Q × (Q × G)2,⇒
〉 as follows: for every pair of nodes v1 = (q1, (q2, g12), (q3, g13)) and v2 =
(q′

1, (q
′
2, g

′
12), (q

′
3, g

′
13)), and a letter a, a transition v1

a⇒ v2 takes place if there

exist transitions q1
a/s1−→ q′

1, q2
a/s2−→ q′

2, and q3
a/s3−→ q′

3 such that the equalities
g′
12 = s−

1 g12s2 and g′
13 = s−

1 g13s3 hold, and L(Aπ[q′
1])∩L(Aπ[q′

2])∩L(Aπ[q′
3])
= ∅.

A triple of states (q1, q2, q3) will be called a type of a node
(q1, (q2, g12), (q3, g13)). As in the case of 1-valuedness, we define the set V 2

π of all
nodes reachable in LTS Γ 2

π from the source node (q0, (q0, e), (q0, e)). From the
definitions of Γ 2

π and V 2
π it follows that a node v = (q1, (q2, g12), (q3, g13)) is in

V 2
π iff there exists such a word w that q0

w/s1−→ q1, q0
w/s2−→ q2, q0

w/s3−→ q3, and
g12 = s−

1 s2, g13 = s−
1 s3.

The set R2
π of rejecting nodes includes all such nodes (q1, (q2, g), (q3, h)) that

q1, q2, q3 are final states, and g
= e, h
= e, g
= h hold.

Lemma 7. A transducer π is 2-valued iff V 2
π ∩ R2

π = ∅.
Proof. Follows from the definitions of V 2

π , R2
π, and 2-valuedness property. �

Now we need to cut off the space of V 2
π for searching the rejecting nodes.

This is achieved by means of the following two lemmata. Their proofs are based
on the pigeonhole principle and basic group-theoretic properties.

214 V.A. Zakharov

Lemma 8. Suppose that V 2
π includes four nodes vi = (q, (q′, g′

i), (q
′′, g′′

i)), 1 ≤
i ≤ 4, of the same type such that the inequalities g′

i
= g′
j, g′′

i
= g′′
j , and g′

i(g
′′
i)−
=

g′
j(g

′′
j)− hold for every pair of indices i, j, 1 ≤ i < j ≤ 4. Then V 2

π ∩ R2
π
= ∅.

Proof. Since all nodes vi, 1 ≤ i ≤ 4, are in V 2
π then L(Aπ[q]) ∩ L(Aπ[q′]) ∩

L(Aπ[q′′])
= ∅. Hence, there exists such a word w that q
w/s−→ p, q′ w/s′

−→ p′, and

q′′ w/s′′
−→ p′′ are final runs of the transducer π. Then, by definition of Γ 2

π , the set of
reachable nodes V 2

π includes four nodes ui = (p, (p′, s−g′
is

′), (p′′, s−g′′
i s′′)), 1 ≤

i ≤ 4. If u1 is not a rejecting node then at least one of the equalities hold:
s−g′

1s
′ = e, s−g′′

1 s′′ = e, or s−g′
1s

′ = s−g′′
1 s′′. Without loss of generality consider

the case of s−g′
1s

′ = e (two other possibilities are treated in the similar way).
Since g′

1
= g′
2, this case implies s−g′

2s
′
= e. Therefore, if u2 is not a rejecting

node then this is due to one of the equalities s−g′′
2 s′′ = e, or s−g′

2s
′ = s−g′′

2 s′′.
Consider the case of s−g′′

2 s′′ = e (the other possibility is treated similarly).
Since g′

1
= g′
3 and g′′

2
= g′′
3 , the above equalities s−g′

1s
′ = e and s−g′′

2 s′′ = e
imply s−g′

3s
′
= e and s−g′′

3 s′′
= e. Therefore, if u3 is not a rejecting node
then s−g′

3s
′ = s−g′′

3 s′′. But, taking into account that g′
1
= g′

4, g′′
2
= g′′

4 , and
g′
3(g

′′
3)−
= g′

4(g
′′
4)−, the equalities s−g′

1s
′ = e, s−g′′

2 s′′ = e, and s−g′
3s

′ = s−g′′
3 s′′

bring us to the conclusion that s−g′
4s

′
= e, s−g′′
4 s′′
= e, and s−g′

4s
′
= s−g′′

4 s′′,
which means that v4 ∈ R2

π. �
Lemma 9. Let vi = (q, (q′, g′

i), (q
′′, g′′

i)), 1 ≤ i ≤ 4, be four pairwise different
nodes in LTS Γ 2

π that satisfy one of the following requirements:
a) g′

i = g′
j holds for every pair i, j, 1 ≤ i < j ≤ 4;

b) g′′
i = g′′

j holds for every pair i, j, 1 ≤ i < j ≤ 4;
c) (g′

i)
−g′′

i = (g′
j)

−g′′
j holds for every pair i, j, 1 ≤ i < j ≤ 4.

If a rejecting node is reachable from v4 then some rejecting node is reachable
from one of the nodes v1, v2, v3.

Proof. We consider only the case when all nodes satisfy the first requirement
g′

i = g′ for every i, 1 ≤ i ≤ 4. The similar reasoning is adequate for the other
alternatives.

Suppose that a rejecting node u4 = (p, (p′, h′), (p′′, h′′
4)) is reachable from v4

through some word w. Then there are three final runs q
w/s−→ p, q′ w/s′

−→ p′, and

q′′ w/s′′
−→ p′′ of π such that h′ = s−g′s′ and h′′

4 = s−g′′
4 s′′. Since u4 is a rejecting

node, we have h′
= e.
The definition of Γ 2

π guarantees that for every i, 1 ≤ i ≤ 3, there is a path
from the node vi to the node ui = (p, (p′, h′), (p′′, h′′

i)), where h′′
i = s−g′′

i s′′. If
u1 /∈ R2

π then either h′′
1 = e or (h′)−h′′ = e. Consider only the case h′′

1 = e (the
other possibility is treated in the same way). Since g′′

2
= g′′
1 and g′′

1
= g′′
3 , we

have h′′
2
= e and h′′

3
= e. Therefore, if u2 /∈ R2
π then (h′)−h′′

2 = e. But, as far as
g′′
2
= g′′

3 , it is true that (h′)−h′′
3
= e. Thus, we conclude that u3 is a rejecting

node. �
With Lemmata 8 and 9 in hand we are able to prove

Equivalence Checking Problem for Finite State Transducers over Semigroups 215

Theorem 4. If G is a finitely generated decidable group then 2-valuedness is a
decidable property of transducers over G.

Proof. By Lemma 7 we can check 2-valuedness of a transducer π through
the reachability analysis of rejecting nodes in LTS Γ 2

π . To this end we intro-
duce a depth-first search of rejecting nodes. It begins with the source node
(q0, (q0, e), (q0, e)) and keeps track of useful nodes only. Suppose that at some
step the traversal reaches a node v = (q, (q′, g′), (q′′, g′′)) in Γ 2

π which has not
been visited yet. Then the following 4 cases are possible.
1) If v is a rejecting node then the search stops and announces that π is not
2-valued.
2) Otherwise, check if there exist 3 previously visited useful nodes vi =
(q, (q′, g′

i), (q
′′, g′′

i)), 1 ≤ i ≤ 3, of the same type as v that satisfy one of the
following requirements:

a) g′ = g′
i for every i, 1 ≤ i ≤ 3;

b) g′′ = g′′
i for every i, 1 ≤ i ≤ 3;

c) (g′)−g′′ = (g′
i)

−g′′
i for every i, 1 ≤ i ≤ 3.

If so then v is regarded as useless and a backtracking step is made from this
node.
3) Otherwise, if 27 useful nodes vi = (q, (q′, g′

i), (q
′′, g′′

i)), 1 ≤ i ≤ 27, of the same
type as v has been already visited then the search stops and announces that π
is not 2-valued.
4) Otherwise, the node v is regarded as useful, and the search procedure continues
its depth-first traversal of LTS Γ 2

π .
If the search backtracks finally to the source node then π is recognized 2-valued.

As it can be seen from the definition of the search procedure, it always
terminates at visiting at most 27|Q|3 useful nodes of Γ 2

π . Lemma 9 guarantees
that by skipping useless nodes we do not miss possible paths to some rejecting
nodes. This certifies the completeness of our search. To prove its correctness we
need to show that case 3) of the search is correct. Indeed, simple combinatorial
considerations disclose that if we have 28 nodes (v and vi, 1 ≤ i ≤ 27) such
that neither 4 nodes of them fall under the premise of Lemma 9 (i.e., the nodes
are useful) then this set of nodes includes a quadruple of nodes that satisfy the
assumptions of Lemma 8. �
Corollary 1. If the word problem for a group G is decidable in polynomial time
then 2-valuedness property of transducers over G can be checked in polynomial
time.

Both Lemmata 8 and 9, as well as the decision procedure defined in Theo-
rem 4 can be readily extended to the case of an arbitrary k: the nodes of LTS
Γ 2

π are (k + 1)-tuples (q0, (q1, h1), . . . , (qk, hk)), and to certify the reachability

of a rejecting node in Γ 2
π it suffices to visit at most

(
k+1
2

)(k+1
2)|Q|k+1 + 1 useful

nodes.

216 V.A. Zakharov

6 Checking the Equivalence of 2-Valued Transducers

Instead of solving the equivalence checking problem for finite state transducers
we study a more general inclusion checking problem: given a pair of transducers
π and π′ check whether Lab(π′) ⊆ Lab(π). The LTS-based approach is invoked
once again.

Let π = 〈A,G,Q, q0, F, T 〉 and π′ = 〈A,G,Q′, q′
0, F

′, T ′〉 be a pair of trim
2-valued transducers. Clearly, if Lab(π′) ⊆ Lab(π) then L(Aπ′) ⊆ L(Aπ).
Therefore, in this section we deal only with the case of π and π′ such that
L(Aπ′) ⊆ L(Aπ).

To define an LTS Γ 3
π,π′ corresponding to the inclusion checking problem for

transducers π and π′ we introduce a concept of block of states. Let Q̂ be some
multiset of states of transducer π. Then a block of states in Q̂ is any maximal
(i.e., inextensible) subset B of Q̂ such that

⋂
q∈B

L(Aπ[q])
= ∅, i.e. some word is

accepted by every automaton Aπ[q], q ∈ B, but no such words are accepted by
an automaton Aπ[q′] for any q′, q′ ∈ Q̂ \ B.

LTS Γ 3
π,π′ = 〈V,⇒〉 is defined as follows. The set of nodes V consists of

all such pairs u = (q′,X), where q′ ∈ Q′, and X = {(q1, g1), . . . , (qm, gm)} ⊆
Q × G, that satisfy the requirement L(Aπ′ [q′]) ∩

m⋂
i=1

L(Aπ[qi])
= ∅. The pair

(q′, {q1, . . . , qm}) will be referred to as a type of the node u. For every letter a
and a pair of nodes u = (q′,X) and v = (p′, Y) of types (q′, Bu) and (p′, Bv)
respectively a transition u

a⇒ v takes place iff

1. there is transition q′ a/s′
−→ p′ in the transducer π′,

2. Bv is a block of states in the multiset Q̂ = {q̂ : ∃q (q ∈ Bu and q
a/s−→ q̂) },

and
3. a pair (p, h) is in Y if and only if p ∈ Bv and there exists such a pair (q, g)

in X that q
a/s−→ p is a transition of transducer π and h = (s′)−gs.

As usual, given a word w we write u
w⇒ v for the composition of corresponding

1-letter transitions of LTS. The node vsrc = (q′
0, {(q0, e)}) is the source node of

LTS Γ 3
π,π′ . By V 3

π,π′ we denote the set of all nodes reachable from vsrc. A node
(q′,X) such that q′ ∈ F ′, and for every pair (q, g) in X either q /∈ F , or g
= e, is
called a rejecting node. The set of rejecting nodes of Γ 3

π,π′ is denoted by R3
π,π′ .

The intended meaning of LTS Γ 3
π,π′ with regard to the inclusion checking of π

and π′ is clarified in the propositions below.

Proposition 1. Let w0 and w1 be arbitrary words, and q′
0

w0/s′
0−→ q′

1

w1/s′
1−→ q′

2 be
a complete run of transducer π′. Then there exists such a node v = (q′

1,X) that

vsrc
w0⇒ v and for every complete run q0

w0/s0−→ q1
w1/s1−→ q2 of transducer π the

multiset X includes a pair (q1, (s′
0)

−s0).

Equivalence Checking Problem for Finite State Transducers over Semigroups 217

Proposition 2. Suppose that vsrc
w0⇒ (q′,X). Then there exist such a word w1

and a complete run q′
0

w0/s′
0−→ q′

1

w1/s′
1−→ q′

2 of transducer π′ that for every complete run

q0
w0/s0−→ q1

w1/s1−→ q2 of transducer π the multiset X includes a pair (q1, (s′
0)

−s0).

Both propositions can be proved by induction on the length of w0 relying on
the definition of transition relation ⇒ only. The correctness of these propositions is
due to the fact that the type of every reachable node is specified as block of states.

Lemma 10. Lab(π′) ⊆ Lab(π) ⇐⇒ V 3
π,π′ ∩ R3

π,π′ = ∅.
Proof. Follows from Propositions 1,2 above and the definition of rejecting
node. �

We show that, even though the set V 3
π,π′ may be infinite, only finitely many

nodes must be checked to verify (un)reachability of rejecting nodes.
Consider an arbitrary reachable node v of type (q′, B). Since the transducer

π is 2-valued, for every state q of π at most two copies of q may occur in the
multiset B. Therefore, |B| ≤ 2|Q|, and the total number of types of reachable
nodes in Γ 3

π,π′ does not exceed |Q′|3|Q|.
Consider the language L = L(Aπ′ [q′]) ∩ ⋂

q∈B

L(Aπ[q]); it will be called a

language of type (q′, B). By definition of Γ 3
π,π′ , this language is non-empty. The

set of types of all reachable nodes can be divided into three classes depending
on the properties of L. A type (q′, B) will be called A-type iff there exists such
a word w in L which has two different images s′

1 and s′
2 of w in two final runs

q′ w/s′
1−→ p′

1 and q′ w/s′
2−→ p′

2 of transducer π′. A type (q′, B) will be called B-type
iff it does not belong to the class A and there exist a state q in the multiset B
and a word w in L which has two different images s1 and s2 in two final runs

q
w/s1−→ p1 and q

w/s2−→ p2 of transducer π. All other types will be called C-types.
Lemmata below elucidate some properties of these classes that are crucial for
the solution of the inclusion checking problem.

Lemma 11. Suppose that Lab(π′) ⊆ Lab(π), and (q′, B) be a A-type. Then at
most 2|B| nodes of this type are reachable from the source node.

Proof. Let L be the language of type (q′, B). Consider an arbitrary node v =
(q′,X) of type (q′, B) such that vsrc

w0⇒ v, and an arbitrary pair (q, g) from
X. Since (q′, B) is A-type, there exists such a word w in L which has different

images s′
1 and s′

2 in two final runs q′ w/s′
1−→ p′

1 and q′ w/s′
2−→ p′

2 of transducer π′.

By definition of L, the transducer π has a final run q
w/s−→ q1. Notice, that

the elements s′
1, s

′
2 and s depend on the type (q′, B) and the state q only. By

Proposition 2, transducers π and π′ have initial runs q0
w0/s0−→ q and q′

0

w0/s′
0−→ q′ such

that g=(s′
0)

−s0. Then the transducer π′ has two complete runs q′
0

w0/s′
0−→ q′ w/s′

1−→ p′
1

and q′
0

w0/s′
0−→ q′ w/s′

2−→ p′
2, and the transducer π has a complete run q0

w0/s0−→ q
w/s−→q1.

218 V.A. Zakharov

Since π is a 2-valued transducer, s′
0s

′
1
= s′

0s
′
2, and Lab(π′) ⊆ Lab(π), we may be

sure that at least one of the equalities s0s = s′
0s

′
1 or s0s = s′

0s
′
2 holds. Hence,

either g = s′
1s

−, or g = s′
2s

−. The assertion of the Lemma follows from the
fact that both possible values of g depend on the type (q′, B) and the state q
only. �
Lemma 12. Suppose that Lab(π′) ⊆ Lab(π), and (q′, B) is a B-type. Then at
most 3|B| nodes of this type are reachable from the source node.

Proof. Let L be the language of type (q′, B). Consider an arbitrary node v =
(q′,X) of type (q′, B) such that vsrc

w0⇒ v. Let a pair (q, g) in X be such that for

some word w in L final runs q
w/s1−→ p1 and q

w/s2−→ p2 of transducer π yield different
images of w. Consider an arbitrary pair (p, h) in X. Since w ∈ L, there exist final

runs p
w/s−→ p3 and q′ w/s′

−→ p′ of π and π′. By referring to Proposition 2 we conclude
the following. Since Lab(π′) ⊆ Lab(π), exactly one of the equalities s′ = gs1 or
s′ = gs2 holds. Since π is a 2-valued transducer, exactly one of the equalities
gs1 = hs or gs2 = hs is valid. Hence, either h = s′s−, or h = s′(s1)−s2s

−,
or h = s′(s1)−s2s

−. The assertion of Lemma follows from the fact that these
possible values of h depend on the type (q′, B) and the states q and p only. �

Let (q′,B) be a C-type, where B = {q1, . . . , qm}, and L be the language of
this type. Associate with (q′,B) any word w0 from L and consider a final run

q′ w0/s′
−→ p′ of transducer π′ and final runs qi

w0/si−→ pi for every i, 1 ≤ i ≤ m. The
tuple (s′, s1, . . . , sm) of elements in S will be called a w0-characteristics of the
type (q′, B). This characteristics will help us to narrow the search space. Suppose
that u = (q′, {(q1, g1), . . . , (qm, gm)}) is a reachable node of the C-type (q′, B).
If s′
= gisi holds for every i, 1 ≤ i ≤ m, then, by definition of LTS Γ 3

π,π′ , a
rejecting node is reachable from u. We will say that such a node u is pre-rejecting
node of the type (q′, B). Otherwise, the set X can be split into two subsets
X0 = {(qi, gi) : s′ = gisi, 1 ≤ i ≤ m} and X1 = {(qj , gj) : s′
= gjsj , 1 ≤ j ≤ m}
such that X0
= ∅. We will use a notation (q′,X0 ⊕ X1) for such a node u.
Note that since π is a 2-valued transducer, gisi = gjsj holds for every two pairs
(qi, gi), (qj , gj) from X1.

Lemma 13. Let (q′, B) be a C-type, B = {q1, . . . , qm}, and k = 2m. Suppose
that k + 1 nodes u1 = (q′,X0 ⊕ X1), . . . , uk+1 = (q′,X0 ⊕ Xk+1) of type (q′, B)
are reachable from the source node. Then a rejecting node is reachable from one
of the nodes u1, . . . , uk+1 iff a rejecting node is reachable from one of the nodes
u1, . . . , uk.

Proof. Let (s′, s1, . . . , sm) be a characteristics of the type (q′, B). Assume that
X0 = {(q1, g1), . . . , (q�, g�)} and Xj = {(q�+1, g�+1j), (qm, gmj)} for every j, 1 ≤
j ≤ k + 1.

Suppose that uk+1
w⇒ v holds for some rejecting node v and a word w. Then,

by definition of Γ 3
π,π′ , the transducer π′ has a final run q′ w/s′

−→ p′ and for every
i, 1 ≤ i ≤ m, the transducer π either has no final runs on the word w from

Equivalence Checking Problem for Finite State Transducers over Semigroups 219

the state qi, or every final run qi
w/ti−→ pi yields an image ti of w such that

s′
= gik+1ti (actually, at most two such images ti1 and ti2 are possible due to
the fact that π is a 2-valued transducer). We analyze the worst case when the
second alternative is achieved for every state qi, 1 ≤ i ≤ m. Thus, we have at
most 2(m − 1) elements tiσ, σ ∈ {1, 2} from G that are images of w on final
runs from the states q�+1, . . . , qm.

If a rejecting node is not reachable from, say, a node u1 then for some (qi, gi1)
from X1 and for some image t of the word w the equality s′ = gi1t holds, i.e.
gi1 = s′t−. Recall that for any other pair (qj , gj1) we have gi1si = gj1sj , i.e.
gj1 = s′t−sis

−
j . This means that the image t completely defines all elements

gj1, � + 1 ≤ j ≤ m, in X1. Clearly, different images of the word w define the
elements in the different sets Xi. Since the amount of images of w does not
exceed 2(m−1) < k, there exists such node ui, 1 ≤ i ≤ k, that s′
= gjitjσ holds
for every component (qj , gji) of Xi and image(s) tjσ of the word w. The latter
means that a rejecting node is reachable from ui. �
Theorem 5. If G is a finitely generated decidable group G then inclusion prob-
lem Lab(π′) ⊆ Lab(π) for 2-valued transducers over G is decidable.

Proof. The search of rejecting nodes in Γ 3
π,π′ begins with the source node vsrc.

Suppose that at some step the traversal reaches a node u = (q′,X) of a type
(q′, B), and u has not been visited yet. Then the following 6 cases are possible.
1) If u ∈ R3

π,π′ then the search stops and announces that π does not include π′.
2) Otherwise, if (q′, B) is a A-type and 2|B| nodes of the same type have been
already visited then the search stops and announces that π does not include π′.
3) Otherwise, if (q′, B) is a B-type and 3|B| nodes of the same type have been
already visited then the search stops and announces that π does not include π′.
4) Otherwise, if (q′, B) is a C-type, and u is a pre-rejecting node of this type
then the search stops and announces that π does not include π′.
5) Otherwise, if (q′, B) is a C-type, u = (q′,X0 ⊕ X1), and 2|B| nodes of the
form ui = (q′,X0 ⊕ X1i) have been already visited then the search backtracks
from u.
6) Otherwise, the search procedure continues its depth-first traversal of LTS Γ 2

π .
If the backtracking ends in the source node then the inclusion Lab(π′) ⊆ Lab(π)
holds.

Termination, correctness and completeness of this search procedure follow
from Lemmata 10-13. As it can be seen from the description of the search pro-
cedure, to check the inclusion Lab(π′) ⊆ Lab(π) less than |Q′|8|Q| nodes of LTS
Γ 3

π,π′ have to be analyzed. �
Corollary 2. The equivalence checking problem for 2-valued transducers over
finitely generated decidable group G is decidable. Moreover, if the word problem
for G is decidable in polynomial time then the equivalence checking problem for
2-valued transducers over G is decidable in single exponential time.

The same approach is applicable to equivalence checking of k-valued trans-
ducers for an arbitrary k. But till now the author did not find adequate means

220 V.A. Zakharov

for presenting the general solution of this problem in short terms; this remains
the topic for further research.

7 Conclusion

The complexity of checking procedures defined in Sections 3-6 depends on the
complexity of the word problem for a group G. The time complexity of our
algorithms for the cases when G is the free group is estimated below on the
following parameters: n (number of states), m (number of transitions), and �
(maximal length of the outputs of transitions).

– deterministic equivalence checking: O(�n3),
– functionality checking: O(�m2n2),
– k-valuedness checking: O((k + 1)2(k+1)2�mk+1nk+1),
– functional equivalence checking: 2O(n);
– 2-valued equivalence checking: 2O(n log m).

One can compare these complexity estimates with previously known upper
bounds for the complexity of k-valuedness checking O(2(k+1)4�mk+1nk+1)
obtained in [12] and equivalence checking of k-valued transducers 2O(�k5nk+4)

presented in [14]. As is easy to see, even the best known algorithms for the
analysis of k-valued transducers have the complexity which is exponential of k.
So, an open question is if it is possible to check k-valuedness and equivalence of
nondeterministic transducers in time polynomial of k.

The author would like to thank the anonymous referees whose keen and
valuable comments helped him to improve the original version of the paper.

References

1. Alur, R., Cerny, P.: Streaming transducers for algorithmic verification of single-pass
list-processing programs. In: Proc. of 38th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pp. 599–610 (2011)

2. Blattner, M., Head, T.: Single-valued a-transducers. Journal of Computer and Sys-
tem Sciences 15, 310–327 (1977)

3. Blattner, M., Head, T.: The decidability of equivalence for deterministic finite
transducers. Journal of Computer and System Sciences 19, 45–49 (1979)

4. Beal, M.-P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: an effi-
cient procedure for deciding functionality and sequentiality. Theoretical Computer
Science 292 (2003)

5. Culik, K., Karhumaki, J.: The equivalence of finite-valued transducers (on HDTOL
languages) is decidable. Theoretical Computer Science 47, 71–84 (1986)

6. Griffiths, T.: The unsolvability of the equivalence problem for ε-free nondetermin-
istic generalized machines. Journal of the ACM 15, 409–413 (1968)

7. Gurari, E., Ibarra, O.: A note on finite-valued and finitely ambiguous transducers.
Mathematical Systems Theory 16, 61–66 (1983)

Equivalence Checking Problem for Finite State Transducers over Semigroups 221

8. Ibarra, O.: The unsolvability of the equivalence problem for Efree NGSM’s with
unary input (output) alphabet and applications. SIAM Journal on Computing 4
(1978)

9. Malcev, A.I.: Uber die Einbettung von assoziativen Systemen. Gruppen, Rec.
Math. (Mat. Sbornik) N.S. 6, 331–336 (1939)

10. Veanes, M., Hooimeijer, P., Livshits, B., et al.: Symbolic finite state transduc-
ers: algorithms and applications. In: Proc. of the 39th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (2012)

11. Sakarovitch, J., de Souza, R.: On the decomposition of k-valued rational relations.
In: Proc. of 25th International Symposium on Theoretical Aspects of Computer
Science, pp. 621–632 (2008)

12. Sakarovitch, J., de Souza, R.: On the decidability of bounded valuedness for trans-
ducers. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162,
pp. 588–600. Springer, Heidelberg (2008)

13. Schutzenberger, M.P.: Sur les relations rationnelles. In: Brakhage, H. (ed.)
GI-Fachtagung 1975. LNCS, vol. 33, pp. 209–213. Springer, Heidelberg (1975)

14. de Souza, R.: On the decidability of the equivalence for k-valued transducers. In:
Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 252–263. Springer,
Heidelberg (2008)

15. Weber, A.: On the valuedness of finite transducers. Acta Informatica 27, 749–780
(1989)

16. Weber, A.: Decomposing finite-valued transducers and deciding their equivalence.
SIAM Journal on Computing 22, 175–202 (1993)

17. Zakharov, V.A.: An efficient and unified approach to the decidability of equivalence
of propositional program schemes. In: Proc. of the 25th International Colloquium
“Automata, Languages and Programming”, pp. 247–258 (1998)

Author Index

Anselmo, Marcella 45

Balle, Borja 1
Borie, Nicolas 58

Calderini, Marco 70

Dalai, Deepak Kumar 79
Diekert, Volker 22
Droste, Manfred 90

El Mrabet, Nadia 140
Esgin, Muhammed F. 103

Giammarresi, Dora 45

Herrmann, Luisa 115
Heusel, Doreen 90
Hundeshagen, Norbert 196

Kari, Jarkko 29
Kiraz, Mehmet S. 103
Krebs, Andreas 128
Kuich, Werner 43

Le, Duc-Phong 140
Longo, Riccardo 152

Madonia, Maria 45
Marcolla, Chiara 152
Miyaji, Atsuko 165
Mohri, Mehryar 1

Osterholzer, Johannes 176
Otto, Friedrich 196

Piva, Matteo 189
Pizzato, Marco 189

Sala, Massimiliano 70, 152, 189
Shi, Xiaonan 165
Straubing, Howard 128
Szabados, Michal 29

Tan, Chik How 140
Tanaka, Satoru 165

Uzunkol, Osmanbey 103

Vogler, Heiko 90, 115

Wang, Qichao 196

Zakharov, Vladimir A. 208

	Preface
	Organization
	Contents
	Learning Weighted Automata
	1 Introduction
	2 Definitions and Properties
	2.1 Semirings
	2.2 Weighted Automata

	3 Hankel Matrices and WFA Reconstruction Algorithms
	3.1 Definitions
	3.2 Hankel Matrices of Rational Functions
	3.3 Standardization of WFAs
	3.4 Hankel Masks and Bases
	3.5 WFA Reconstruction from Complete Minimal Masks
	3.6 WFA Reconstruction via Rank Factorizations
	3.7 WFA Reconstruction from Noisy Hankel Matrices

	4 Algorithms for Learning WFAs
	4.1 Learning WFAs From Queries
	4.2 Learning Stochastic WFAs from I.I.D. Samples
	4.3 Learning WFAs from String--Value Pairs

	5 Conclusion

	More Than 1700 Years of Word Equations
	References

	An Algebraic Geometric Approach to Multidimensional Words
	1 Introduction
	2 Preliminaries
	3 Step 1: From Low Local Complexity to an Annihilating Filter
	4 Step 2: From an Annihilating Filter to a Periodic Decomposition
	5 An Example
	6 Conclusions and Applications
	References

	Why We Need Semirings in Automata Theory (Extended Abstract)
	References

	Unbordered Pictures: Properties and Construction
	1 Introduction
	2 Preliminaries
	2.1 Unbordered Strings and Nielsen's Construction
	2.2 Basic Notations on Pictures

	3 Bordered and Unbordered Pictures
	4 Construction of Unbordered Pictures
	5 Final Remarks
	References

	Effective Invariant Theory of Permutation Groups Using Representation Theory
	1 Introduction
	2 Invariant Ring and Representations of the Symmetric Group
	2.1 Invariant Ring of Permutation Group and Application to Combinatorics
	2.2 Representations of the Symmetric Group

	3 Higher Specht Polynomials for the Symmetric Group
	4 Combinatorial Description of the Invariant Ring
	4.1 A Refinement of the Moliens Series
	4.2 Secondary Invariants Built from Higher Specht Polynomials

	5 Algorithm Building Secondary Invariants
	5.1 A Large Trace of the Algorithm
	5.2 Complexity

	References

	On Differential Uniformity of Maps that May Hide an Algebraic Trapdoor
	1 Introduction
	2 Preliminaries
	3 On the Differential Uniformity of a -affine Map
	4 A Block Cipher With a Hidden Sum
	References

	On the Lower Block Triangular Nature of the Incidence Matrices to Compute the Algebraic Immunity of Boolean Functions
	1 Notation
	2 Introduction
	3 Lower-Block Triangular Nature of MVX
	3.1 Using the Ordering <w
	3.2 Using the Ordering <
	3.3 Ordering < and Dalai-Maitra Algorithm citeDM06

	4 Experiments on the AI of Power Functions
	References

	Weighted Unranked Tree Automata over Tree Valuation Monoids and Their Characterization by Weighted Logics
	1 Introduction
	2 Unranked Trees and (Product) Tree Valuation Monoids
	3 Weighted Unranked Tree Automata
	4 Weighted MSO Logic for Unranked Trees
	5 Weighted Tree Automata and Weighted MSO Logic

	A New Partial Key Exposure Attack on Multi-power RSA
	1 Introduction
	2 Preliminaries
	3 An Attack with Known LSBs
	4 Experimental Results
	5 Conclusion and Discussion

	A Chomsky-Schützenberger Theorem for Weighted Automata with Storage
	1 Introduction
	2 Preliminaries
	3 Weighted Automata with Storage
	4 Separating the Weights from an (S,, K)-Automaton
	5 Separating the Storage from an (S,)-Automaton
	6 The Main Result and Its Applications

	EF+EX Forest Algebras
	1 Overview
	2 Forest Algebras
	2.1 Preliminaries
	2.2 Horizontally Idempotent and Commutative Algebras
	2.3 1-Definiteness
	2.4 Wreath Products
	2.5 Reachability

	3 Connections to Logic
	3.1 Correspondence of Operators with Wreath Products

	4 EF-algebras
	5 Definiteness
	5.1 Definite Homomorphisms
	5.2 Free k-definite Algebra

	6 (EF,EX)-algebras
	6.1 The Principal Result
	6.2 Sufficiency of the Condition
	6.3 Necessity of the Condition

	7 Results
	References

	On Near Prime-Order Elliptic Curves with Small Embedding Degrees
	1 Introduction
	2 Backgrounds
	2.1 MNT Curves
	2.2 MNT Curves with Small Cofactors

	3 An Alternative Approach to Galbraith et al.'s Method
	3.1 Preliminary Observations and Facts
	3.2 The Proposed Algorithm

	4 More Near Prime-Order Elliptic Curves
	4.1 k = 3
	4.2 k = 4
	4.3 k = 6
	4.4 Solving the Pell Equations

	5 Conclusion
	References

	Key-Policy Multi-authority Attribute-Based Encryption
	1 Introduction
	2 Preliminaries
	3 Our Construction
	3.1 Multi Authority KP-ABE Structure and Security
	3.2 The Scheme
	3.3 Security

	4 Related Works and Final Comments
	References

	Extended Explicit Relations Between Trace, Definition Field, and Embedding Degree
	1 Introduction
	2 Preliminaries
	3 The New Relations
	4 Searching Algorithm
	5 Comparison
	6 Conclusion
	References

	Complexity of Uniform Membership of Context-Free Tree Grammars
	1 Introduction
	2 Preliminaries
	3 Context-Free Tree Grammars and Pushdown Automata
	4 Compact pts and Finite Representations
	4.1 Augmented pta
	4.2 Compact pts
	4.3 Representing M by a Finite Object

	5 The Uniform Membership Problem
	5.1 Uniform Membership of -free Indexed Grammars

	6 The Non-Uniform Membership Problem
	7 Conclusion
	References

	Attacking BEAR and LION Schemes in a Realistic Scenario
	1 Introduction
	2 Preliminaries and Known Results
	2.1 BEAR
	2.2 LION

	3 Our Attacks
	3.1 Attacks on BEAR
	3.2 Attack on LION

	4 Good-Pairing Is Not Necessary
	References

	Weighted Restarting Automata and Pushdown Relations
	1 Introduction
	2 Weighted Restarting Automata
	3 Pushdown Relations
	4 Pushdown Relations and Restarting Transducers
	5 Relations Computed by Monotone Weighted RWW- and RRWW-Automata
	6 Conclusion
	References

	Equivalence Checking Problem for Finite State Transducers over Semigroups
	1 Introduction
	2 Preliminaries
	3 Equivalence Checking Deterministic Transducers
	4 Checking Functional Transducers
	5 Checking 2-Valuedness of Transducers
	6 Checking the Equivalence of 2-Valued Transducers
	7 Conclusion
	References

	Author Index

