Hybrid MPI/OpenMP Parallelization
in FETI-DP Methods

Axel Klawonn, Martin Lanser, Oliver Rheinbach, Holger Stengel,
and Gerhard Wellein

Abstract We present an approach to hybrid MPI/OpenMP parallelization in FETI-
DP methods using OpenMP with PETSc+MPI in the finite element assembly and
using the shared memory parallel direct solver Pardiso in the FETI-DP solution
phase. Our approach thus uses OpenMP parallelization on subdomains and MPI
in between subdomains. We investigate the efficiency of this approach for a
benchmark problem from two dimensional nonlinear hyperelasticity. We observe
good scalability for up to four threads for each MPI rank on a state-of-the-art Ivy
Bridge architecture and incremental improvements for up to ten OpenMP threads
for each MPI rank.

1 Introduction

The solution of large nonlinear and linear problems arising from the finite element
discretization of partial differential equations requires fast and highly scalable
parallel solvers. Domain decomposition methods [27, 28] are constructed to handle
such large, discretized problems in parallel and are well known for their robustness
and scalability, especially in structural mechanics and for material science problems.

In domain decomposition methods, a geometrical decomposition of the com-
putational domain is performed, and parallelization is based on a divide and
conquer strategy. For static and quasi-static problems, an additional small coarse
problem is essential for numerical and parallel scalability. In the family of domain

A. Klawonn ¢ M. Lanser (<)
Mathematisches Institut, Universitidt zu Koln, Weyertal 86-90, 50931 Ko6ln, Germany
e-mail: axel.klawonn @uni-koeln.de; martin.lanser @uni-koeln.de

O. Rheinbach

Fakultit fiir Mathematik und Informatik, Institut fiir Numerische Mathematik und Optimierung,
Technische Universitit Bergakademie Freiberg, 09596 Freiberg, Germany

e-mail: oliver.rheinbach@math.tu-freiberg.de

H. Stengel * G. Wellein
Erlangen Regional Computing Center, University of Erlangen—Nuremberg, Erlangen, Germany
e-mail: holger.stengel @fau.de; gerhard.wellein@fau.de

© Springer International Publishing Switzerland 2015 67
M. Mehl et al. (eds.), Recent Trends in Computational Engineering - CE2014,

Lecture Notes in Computational Science and Engineering 105,

DOI 10.1007/978-3-319-22997-3_4

mailto:axel.klawonn@uni-koeln.de
mailto:martin.lanser@uni-koeln.de
mailto:oliver.rheinbach@math.tu-freiberg.de
mailto:holger.stengel@fau.de
mailto:gerhard.wellein@fau.de

68 A. Klawonn et al.

decomposition methods, nonoverlapping approaches such as FETI-DP (Finite
Element Tearing and Interconnecting—Dual Primal), first introduced by Farhat
et al. [12, 13], have reduced communication compared to overlapping Schwarz
methods [27, 28]. A classical FETI-DP implementation was awarded a Gordon Bell
prize in 2002 [8] for the solution of a structural mechanics problem using 3400
cores. Modified versions, i.e., inexact FETI-DP methods have scaled up to 65,536
BlueGene/P cores for elasticity problems already in 2009 [21, 24].

In pure MPI parallel implementations of FETI- or Neumann-Neumann-type
iterative substructuring methods, one or more subdomains are assigned to one MPI
rank and the local calculations are performed sequentially. We will introduce a
second level of parallelism by using shared memory parallelism on the subdomains.
This approach was also taken, e.g., for a FETI-1 method in [14, 16] based on a
different shared memory direct solver [14, 15].

The robustness of FETI-DP methods partially stems from the use of sparse direct
solvers as building blocks. In the past, we have used, e.g., the sequential sparse
solver package UMFPACK [9], known for its robustness, as well as the solver
package MUMPS [2]. In this work, we apply the more recent shared memory
parallel sparse solver PARDISO [25]. Additionally, we introduce an OpenMP
parallel assembly of the local finite element problems. In this paper, we present
numerical results and a detailed performance analysis of our hybrid FETI-DP
implementation.

In this work, we will not consider large core counts as in [19], where weak
scalability results for our current FETI-DP implementation for up to 262K cores
using pure MPI have recently been presented. Instead, a fixed number of subdomains
and MPI ranks, e.g., 4 or 64 subdomains and ranks, is considered. We then spawn
different numbers of threads for this configuration. The goal of this paper is to
investigate the efficiency of this approach on a state-of-the-art architecture. In the
future, we will then apply our hybrid MPI/OpenMP approach for a large number
of subdomains and MPI ranks on supercomputers where pure MPI implementations
do not scale well enough.

2 Description of the FETI-DP Method

The FETI-DP (Finite Element Tearing and Interconnecting—Dual Primal) method
is a domain decomposition method based on the geometric decomposition of a
computational domain 2 C R d = 2,3, into N nonoverlapping subdomains
£2;. Instead of solving a single and large problem Ku = f arising from a finite
element discretization on the domain £2, in FETI-type methods several smaller
problems K@u® = £ associated to the subdomains £2;, are solved in parallel.
Here, the locally assembled stiffness matrices are denoted by K and the local
load vectors by . As a divide-and-conquer technique FETI type methods are thus
very suitable for parallel computations. A combination of a global subassembly in
a few variables and dual conditions ensures the continuity of the solution on the

Hybrid MPI/OpenMP Parallelization in FETI-DP Methods 69

N

interface I' := | 0£2; \ 0£2: We partition the degrees of freedom on I' into sets
i=0

of primal and dual variables, denoted by IT and A and also define the index set of

inner and dual variables B := [I, A] . The assembly in some primal variables u
is performed by means of the standard FETI-DP partial assembly operator R ; see,
e.g., [21, 28]. The assembled system in the primal variables is also named FETI-
DP coarse problem and can include more than just vertex constraints (c.f. [22]).
To obtain continuity in the remaining interface variables we introduce the jump
operator Bg, c.f. the definition in [21, 28], and Lagrange multipliers A to enforce
the continuity condition Bgup = 0 on the variables up. This leads to the FETI-DP
master system

Kpp {21T73 B up I8
Kng Knp 0 ug | =\ fm |- (D
Bg 0 O A 0

Here, Kpp is a block diagonal matrix and the blocks K,(;,)g are local to the subdomains
£2;, while the matrices including primal variables [T are global but small. Elimina-
tion of up and 1 leads to

Fi=d)
_ —1 npT —1 T S—1 p —1 pT

where F = BgKp By + BpKpg K581 1 KKy By, [—1ex] 3)

d = BgKpsfs + BsKp Kb S (fr — KnsKyp/fs)- 4)

Here, S nm = K fedst -K nBKgBl I?ITY g 18 the Schur complement on the primal variables.
Finally, the FETI-DP method is the iterative solution of the preconditioned system

M'FA=M"14d 5)

with a Krylov subspace method such as CG or GMRES. In this paper, we always
use the standard Dirichlet preconditioner My, =: M~" which is a weighted sum
of local Schur complements SO .= KX)A — K(Ai)IKI(P—lKX;T; see, e.g., [21, 28] for
complete notation.

3 Classical MPI Parallelism in FETI-DP Methods

MPI-parallel FETI-DP implementations usually handle one or more subdomains
per MPI rank. For simplicity, let us assume that we always assign exactly one
subdomain to each MPI rank. In this case, the assembly of local problems and the
LU factorizations are naturally parallelizable and communication is only required
during the assembly process of the coarse problem Sy;7 and in each application of
the jump operator B or its transpose.

70 A. Klawonn et al.

Algorithm 3 Structure of a FETI-DP method. The assembly phase (red), LU factorizations (blue), LU
forward/backward substitutions (magenta). Parts with significant MPI communication are marked in green. Some MPI
communication can be hidden behind local factorizations.

FETI-DP Method

Local Assembly Phase
LOCAL assembly of K and £
LOCAL extraction of FETI-DP submatrices
FETI-DP Setup Phase
Build B and Ry as Scatter/Gather operation on vectors
Assembly of K77 and /n
LOCAL LU factorization of KBB
LOCAL LU factorization of K, tN'or the preconditioner
Build primal Schur complement S;;; = Kijjp — Km;KRR Kn/;
Send serial copy of Sp77 to all MPI ranks
LOCAL LU factorization of S
Krylov Iteration Phase
Krylov iterationon M~ 'FA = M~'d
Obtain final solution by z = K~ (f — [Bz0]" A

In general, we can split the computations in three phases: Local Assembly,
FETI-DP Setup, and Krylov Iteration. The first phase contains the local assembly
of the matrices K and the local right-hand sides . This process is naturally
parallelizable, since no communication between the subdomains is needed.

The second phase FETI-DP Setup is dominated by LU factorizations of sub-
domain matrices K, (?9 and Kl(li) Here, sparse direct solver packages such as UMF-
PACK [10, 11], MUMPS [1, 2] or PARDISO [23, 25, 26] are used. Once factorized,
each application of KBB and KI(I ! requires only two forward-backward substitu-
tions. The factorizations are completely parallel since all involved matrices are local
to an MPI rank. The coarse operator S is also assembled in the FETI-DP Setup
phase. The assembly can be performed in parallel using an MPI parallel matrix
structure. Here, of course, MPI communication is needed. Many implementations
are then possible for the solution of the coarse problem. Since the FETI-DP coarse
problem is not in the focus of this paper, we only discuss the simplest choice here:
S 117 s copied to all MPI ranks, and a redundant factorization of S 77 1s performed
on all ranks; refer, e.g., to [21, 24] for other possibilities.

The third phase is the Krylov subspace iteration on the preconditioned linear
system M~'FA = M~'d. Each iteration includes several matrix vector multiplica-
tions but the dominating parts are the forward backward substitutions caused by the
applications of K, KI(;) "and 571 7 €., (2), (3), and (4).

The three FETI-DP phases are illustrated in Algorithm 3.

4 Shared Memory Parallelism in FETI-DP Methods

Modern supercomputer architectures have more and more cores per node while the
amount of available memory per core even tends to decrease. To utilize all cores
using a pure MPI implementation, we assign at least one FETI-DP subdomain (and
one MPI rank) to each core. Sometimes even an overcommit can be beneficial, i.e.,

Hybrid MPI/OpenMP Parallelization in FETI-DP Methods 71

using multiple MPI ranks per core, e.g., on BlueGene/Q; see [19]. As a result,
available memory per rank can be scarce. This can enforce a decomposition into
small subdomains, which may not be optimal for scalability and performance.

A shared memory parallelization of the calculations on a single subdomain
allows the decomposition in fewer subdomains than available cores. Larger sub-
domains can then be chosen and the FETI-DP coarse problem can be kept small. In
an extreme scenario only one subdomain (and one MPI rank) could be assigned to
a complete compute node, although judging from the results in this paper, this may
not be the most efficient choice.

To determine the hotspots of the FETI-DP algorithm and to decide which parts
should be thread-parallel, we present a preliminary runtime profile of a current
MPI parallel FETI-DP implementation. We have performed certain simplifications
and optimizations of the assembly process, which are described in more detail in
Sect.7.1. These modifications are possible in the setting which we discuss here.

After these improvements, the FETI-DP Setup phase takes 62 %, the assembly
process 16 %, the assembly of the right-hand side 6 %, and the Krylov phase the
remaining 16 % of the average runtime of the Newton steps, c.f. Fig. 1 (left). The
FETI-DP Setup phase is strongly dominated by the local LU factorizations, which
make more than 80 % of the FETI-DP Setup runtime, c.f. Fig. 1 (right). All in all,
the assembly and the direct solver package add up to almost 80 % of the FETI-
DP runtime. Therefore, a shared memory parallelization of these two phases has
priority.

In the remainder of this paper, we discuss the optimization and OpenMP
parallelization of the assembly process, which is based on a parallelization of the
loop over the finite elements and also investigate the use of the shared memory
parallel direct solvers PARDISO.

Let us summarize our approach: We use MPI parallelism in between the
subdomains, which is well-established, and we provide an additional level of shared
memory parallelism on the subdomains. In an extreme case, FETI-DP with one
subdomain per node is possible.

@ Assembly Phase @ FETI-DP Setup Phase @ Other
o Krylov lteration Phase @ Assembly Right-Hand Side @ LU Factorizations

Fig. 1 Left: runtime profile of the FETI-DP method for a Neo-Hookean hyperelasticity problem
in 2D with m, = m, = 200, using the optimized assembly; see Sect. 7.1. Right: distribution of the
runtime in the FETI-DP Setup phase

72 A. Klawonn et al.

5 Hybrid Parallelization in Inexact and Nonlinear FETI-DP
Approaches

In this paper, we consider nonlinear hyperelasticity as a model problem and
follow a standard Newton-Krylov-FETI-DP approach for its solution. Moreover,
since the number of subdomains is moderate, we always use exact FETI-DP
methods [12, 13, 28], i.e., we can afford to solve the FETI-DP coarse problem
exactly by a sparse direct solver. The findings presented in this paper on hybrid
MPI/OpenMP parallelization are, nevertheless, also valid for inexact FETI-DP
methods [18, 20, 21], which remain efficient also for a large number of subdomains.
Since the families of the recently introduced nonlinear FETI-DP methods [18, 20,
21] use the same algorithmic building blocks as standard exact or inexact FETI-DP
methods our results also apply to these approaches. Due to space limitations, and to
keep the paper self-contained, we do not report on results on these methods, here.

6 Experimental Setting

6.1 Model Problem

In all experiments in this paper, we consider nonlinear two-dimensional hyperelas-
ticity problems. We consider a Neo-Hookean material with a soft matrix material
and stiff circular inclusions; see Fig. 2 for the geometry.

The strain energy density function W is given by [30]

W(u) = %(K - %G) In(det F) + %G[tr(FTF) —3 —2In(det F)]

K=—F G=_"t
C3(1-2v) T 2(14v)

with

Fig. 2 Decomposition of the
computational domain §2 into
16 subdomains; each
subdomain has a (slightly
randomly off-centered)
circular inclusion of stiffer
material

Hybrid MPI/OpenMP Parallelization in FETI-DP Methods 73

and the deformation gradient F(x) := Ve¢(x); here, ¢(x) = x + u(x) denotes
the deformation and u(x) the displacement of x. The energy functional of which
stationary points are computed, is given by

J(u) = Q/ W(u) — F(u)dx — /1“ G(u)ds,

where F(u) and G(u) are functionals related to the volume and traction forces. In
our experiments in 2D, we choose the following material parameters £ and v, see
Fig. 2 for the geometry: In the circular inclusions we have E = 210, 000 and in the
surrounding matrix material E = 210. We have chosen v = 0.3 in the complete
domain £2. We use a C++ implementation of a Neo-Hooke material and use the
MPI-parallel infrastructure provided by PETSc [4-6].

The nonlinear elasticity problem is discretized with piecewise quadratic finite
elements. Each square subdomain is discretized by 2 x m, X m, quadratic finite
elements. This corresponds to 2(2m, + 1)(2m, + 1) degrees of freedom per
subdomain. We have tested subdomain sizes of m, = m, = 100, m, = m, = 200,
and m, = m, = 300 to cover a reasonable range relevant in real-life applications.
But as performance results are qualitatively identical for those subdomain sizes, we
consistently present performance values only for the subdomain size m, = m, =
200 to increase comparability.

We will first consider four subdomains and thus four MPI ranks, while the
subdomain size is set to m, = m, = 200. If not noted otherwise, each of the four
MPI processes is placed on a separate node. Appropriate measures were taken to pin
processors and threads to the cores in a controlled way. The following parameters
where used for the PARDISO solver:

-mat_pardiso 65 ${OMP_NUM THREADS} -mat_pardiso 68 0 -mat pardiso 1 1
-mat_pardiso 24 1 -mat_pardiso 69 11 -mat_pardiso 2 3 -mat_pardiso 11 0

6.2 Hardware, Compiler, and Compiler Flags

All measurements for this report have been executed on a QDR InfiniBand cluster
at RRZE. One node has two sockets, each equipped with an Intel Xeon 2660v2
“Ivy Bridge” chip (10 cores + SMT). To achieve consistent performance results,
automatic frequency adjustment during socket scaling runs was prevented by fixing
the processor frequency to the nominal core clock speed of 2.2 GHz. Each node has
64 GB of RAM (DDR3-1600), the available socket memory bandwidth is 42 GB/s.
We use the Intel Compiler 13.1.3.192 with optimization flags -03 -xAVX and
Intel MKL 11.0 Update 5. To use OpenMP within the application (additional flag
-openmp), PETSc was built using the thread-aware version of the MPI library
(Intel MPI flag -mt_mp1i), which had no impact on the serial performance. For pin-
ning of threads to cores and for performance analysis, we use LIKWID 3.1.1 [29].

74 A. Klawonn et al.

7 Numerical Results

7.1 OpenMP Parallel Assembly

In a first quick runtime profile we observe that the assembly of the local stiffness
matrix K constitutes the major contribution to the overall program runtime (55 %;
177 s assembly, 320 s overall). Therefore, the assembly subroutine is refactored as a
preliminary step before parallelization.

Our setting allows certain simplifications in the assembly. In unstructured
finite element meshes the number of nonzeros in each row can largely differ. In
standard CSR-type matrix storage, as implemented in the PETSc-AlJ format, the
performance penalty for insufficient preallocation of memory for the rows is very
high. Thus, an upper bound for the nonzeros per row has to be estimated or the
number of nonzeros has to be precomputed by looping over all finite elements. The
latter approach will effectively double the assembly time since the loop over all finite
elements has to be traversed twice. We often use a custom, flexible sparse matrix
type that does not require memory preallocation and still allows efficient insertion
of entries with a cost logarithmic in the number of nonzero entries. On the other
hand, this flexibility comes at the cost of non-optimal element access and overheads
for conversion to the PETSc matrix format used after the assembly phase. In the
setting presented here, however, it is known that the number of nonzeros in each
row is bounded by 38. A simple preallocation can therefore be used and the custom
matrix class can be eliminated. This results in a reduction of the assembly time by
77% (177s vs. 40s). With this approach, the overall program runtime is halved
(320 vs. 157 s). As a result, the assembly is not the dominant runtime contribution
any more (40 of 157 s, about 25 %). Nevertheless, we proceed with parallelizing the
assembly phase.

The local stiffness matrices on the finite elements can be computed indepen-
dently. Therefore, no data dependencies between iterations of the finite element
loop exist, and the loop can be parallelized using OMP_SCHEDULE=static.
After declaring all data structures to be local to each loop iteration, the insertion
of the values into the target matrix with the PETSc function MatSetValues
is protected by an OpenMP critical region. This is necessary, since in finite
element matrices, matrix entries will generally be accessed multiple times. The
serialization of the calls to MatSetValues exposed no drawback in terms of
performance. An implementation of a matrix coloring scheme as in [17] is therefore
not required in our case. This straightforward threading approach of the assembly
routine shows good scalability. A speedup of 8 using ten threads per process is
reached; see the solid line in Fig. 3.

In order to determine whether certain use of STL containers, such as, e.g., calls to
vector.pushback (), within the OpenMP parallel part of the assembly routine
is performance critical, we also conduct a single-thread runtime profile (using
gprof and Intel loopprofileviewer).

Hybrid MPI/OpenMP Parallelization in FETI-DP Methods 75

40

30 = Assembly Phase —
= Assembly Phase w/o fill_n in Tensor::transpose
Assembly Phase w/o -ip compiler flag

0L ° B

runtime [s]

LR
.....
......
........

1 2 3 4 5 6 7 8 9 10

#threads per process

Fig. 3 Socket scaling of the OpenMP parallel assembly routine. Measurements are based on
consecutive code modifications (Neo-Hookean hyperelasticity problem in 2D with m, = m, =
200)

The profiling reveals that the major part, indeed about 90 %, of the assembly
runtime is spent in the computation of the element stiffness matrix. This is to
be expected. This function in turn is then dominated by the innermost of three
nested loops. The outermost loop is a loop over the integration points given by a
numerical integration scheme. The two nested inner loops are loops over the degrees
of freedom of the finite element.

For the computation of the element stiffness matrix, the transposes of matrices
storing the derivatives of the finite element basis functions are required. The
derivatives are implemented using a custom C++ class Tensor, which provides
several tensor operations, such as a transpose method. Surprisingly, this transpose
method of the Tensor class is the hotspot in the innermost for loop. In this method,
the standard constructor is used to construct a temporary Tensor object. About
50 % (1.4 billion) of the calls to this constructor can be accounted to transpose.
This constructor then initializes a Tensor element using std:: £ill n, which,
surprisingly, turns out to be the largest runtime contribution in the whole application:
According to the profile, this function makes up 25% of the overall runtime.
As the dimensions of the input and output Tensors in this case are identical, we
have implemented a specialized transpose function that does not use the standard
constructor to initialize the returned matrix but the implicit copy constructor, and
therefore avoids excessive calls to std:: f£fill n. A subsequent profiling run
shows that this transpose now makes up only 0.05 % of the overall runtime. Single-
thread assembly runtime is reduced by about one third; cf. the solid and dotted
lines in Fig. 3. The reason for this, however, is not a reduction of computational
complexity. The copy constructor in the specialized transpose as well as the
std:: fill n in the default constructor both loop over all Tensor elements.
The reason is rather a reduction of code complexity which enables the compiler

76 A. Klawonn et al.

to inline and optimize the modified transpose method, which it was not able to do
with the original version. As other functions still use std:: £ill n,including
the standard constructor and, e.g., the multiplication function, its share of overall
runtime is now about 8 % and subject to further optimizations.

In order to get a more detailed profile we have tried to reduce code inlining by
compiling the application without the - ip (inter-procedural optimization) compiler
flag. This did not influence profile detail, but had an unexpected influence on
performance: The original single-thread assembly runtime is halved, regardless
whether the original or specialized transpose function is used; cf. the solid and
dashed lines in Fig.3. Apparently, the compiler itself is now able to perform the
optimizations just described, i.e., it is able to use inlining. This is surprising, as inter-
procedural optimization is intended to provide the compiler a better overview of the
code. However, in the present case it caused a lack of appropriate inlining. With
this, overall single-thread program runtime reduces to 134 s, where the assembly
phase requires 20s (15 %). As building PETSc without the -ip compiler switch
seems to have no impact on performance in our setting, we now generally omit it.
Assembly of the load vector @ is currently of minor impact to overall performance.
Nevertheless, the steps described for the stiffness matrix here should be considered
there, too, in the future.

7.2 Shared Memory Parallel Direct Solver PARDISO

To provide shared memory parallelism in the FETI-DP Setup phase, which is
dominated by the LU factorizations, we use the shared memory parallel direct
solver package PARDISO [25] from the Inte]l MKL library. We interface PARDISO
through PETSc using a third party interface [7]. The current PETSc version 3.5 ships
with an included PARDISO interface [3]. We use PARDISO to perform the sparse
LU factorizations (FETI-DP Setup phase in the graphs) and the forward/backward
substitutions (Krylov Iteration phase in the graphs) in a threaded parallel fashion
within each MPI process. Our PARDISO options are shown in Sect. 6.1.

The runtime of the threaded PARDISO-based phases FETI-DP Setup and Krylov
Iteration is shown for a single socket in Fig. 4. Both parts show a stepwise decrease
in runtime and a speed-up of only 3.5-4 on ten cores. Substantial performance
improvement can be seen when hitting “magic” thread counts, which are powers
of two, while runtime stays constant otherwise. This behaviour is a first indication
that the PARDISO phases are not limited by typical hardware bottlenecks such as
the data transfer bandwidths. In Fig. 5 we confirm this assumption by showing the
bandwidths utilized over the different data paths as measured with our LIKWID
tool. The Krylov Iteration has the highest main memory bandwidth utilization
but still only exploits 50 % of the maximum bandwidth of the processor. It is
interesting to see that bandwidth over the on-chip data paths is almost identical to
main memory bandwidth for the Krylov Iteration, clearly indicating that the current
implementation is stream like and makes no reuse of data in L2 and L3 cache. A

Hybrid MPI/OpenMP Parallelization in FETI-DP Methods 77

80

70 -

60 — O-O FETI-DP Setup Phase |
%=X Krylov Iteration Phase

runtime [s]

1 2 3 4 5 6 7 8 9 10
#threads per process

Fig. 4 Socket scaling of program parts parallelized with PARDISO (Neo-Hookean hyperelasticity
problem in 2D with m, = m, = 200)

Y OHO FETI-DP Setup (MEM)
% | -0 Krylov Tteration (MEM)
_ ﬂ O-O FETI-DP Setup (L3 agg.)
P== O-O Krylov lieration (L3 agg.)
O FETI-DP Setup (L2 agg.)
<~ Krylov Iteration (L2 agg.)

D

bandwidth [GB/s]

#threads per process

Fig. 5 Bandwidth utilization of the memory hierarchy levels of one socket for the two PARDISO
parallel program parts. The different symbols mark bandwidth between memory and L3 cache
(squares), L3 and L2 caches (circles), and L2 and L1 caches (diamonds). Cache bandwidth values
are aggregated over all utilized cores. The available socket memory bandwidth of the IvyBridge
system is 42 GB/s

different characteristic shows up for the FETI-DP Setup phase where main memory
bandwidth is of no relevance but cache reuse seems to be high due to strong increase
of utilized bandwidth for inner level caches. However the cache bandwidths shown
in Fig. 5 for FETI-DP Setup are still a factor of 5x-10x away from practical hardware
limitations ruling them out as potential bottlenecks. Moreover, the LIKWID analysis

78 A. Klawonn et al.

has revealed a high AVX vectorization rate for FETI-DP Setup (which is the time
critical phase) and pure scalar execution for the Krylov Iteration. This analysis gives
a clear indication that improving the parallelization approach in the two phases is
the most promising strategy to further boost performance for the direct solver phase.
Work in this direction has been started with one of the developers of PARDISO (Olaf
Schenk).

7.3 Runtime Study of the Full Threaded Software

We now consider the total time to solution for our Neo-Hooke material using the
OpenMP threaded assembly and the shared memory solver PARDISO. We use four
subdomains distributed to four MPI ranks. The four processes are placed on four
nodes (one process per node, Setup 1), on the four sockets of two nodes (Setup
2), on the two sockets of one node (Setup 3) or on a single socket (Setup 4). Then
we vary the number of threads, i.e., each MPI process spawned up to ten threads
(Setups 1 and 2), up to five threads (Setup 3), and up to two threads (Setup 4). See
Table 1 for an illustration of the hybrid setups. The results are presented in Fig. 6.
Interestingly, we observe that the quantitative scaling behavior (runtime variation) is
virtually independent of the hybrid configuration, i.e., the distribution of processes
and threads within nodes and sockets. The parallel efficiency falls below 50 % when
five or more threads are used.

Since the scaling behaviour is basically identical for the different hybrid setups
(Setup 1, 2, 3, and 4), we report on detailed timings only for Setup 1; see Table 2.
The scaling results are not optimal but encouraging. Satisfactory results could
be achieved using up to ten threads for the Assembly phase adopting our simple
approach of protecting the calls to MatSetValues by an OpenMP critical
region, and without parallelization of the load vector assembly. The scaling of the
FETI-DP Setup and the Krylov iteration phase relies on the scaling behavior of
PARDISO. It is known that perfect parallel scalability of direct solvers for sparse
linear systems from PDEs is hard to achieve.

From Table 2, we observe that for our hybrid MPI/OpenMP approach we obtain
an overall efficiency of 58 % using four OpenMP threads per MPI rank. Investing up
to ten threads per MPI rank still reduces the total execution time but at diminishing
returns. Our results are thus similar to the findings in [16, Table II] for FETI-1.

In Fig. 7 the experiments from Fig. 6 are repeated but now using 64 MPI ranks
and up to 640 threads. The results are qualitatively identical. Due to numerical
effects the number of Krylov iterations is slightly larger. Instead of four Newton
steps and between 61 and 67 Krylov iterations it now takes five Newton steps and
between 209 and 211 Krylov iterations until convergence resulting in slightly higher
runtimes.

79

IL| OL/¢d IL| OL/cd| IL| OL/1d| IL| OL/0d 0| v dneg
PL| €L| ¢L| IL| OL/€d| ¥L| €L| ¢L| IL| OL/Td| ¥L| €L| L IL| OL/cd ¥L| €L ¢L| IL| 0L/0Y 0| ¢dmpog
6L| 8L| LL| 9L SL| #L| €L| ¢L| IL| OL/€d| 6L 8L| LL 9L SL YL | €L ¢L| IL| OL/CY 1 7 dnjpg
6L| 8L| LL| 9L SL| #L| €L| ¢L| IL| OL/1¥| 6L 8L| LL 9L SL vL| €L ¢L| IL| 0L/0Y 0
6L| 8L| LL 9L SL yL| €L ¢L| IL| OL/¢Y €
6L| 8L| LL 9L SL yL| €L ¢L| IL| OL/CY [4 [dmog
6L| 8L| LL 9L SL yL| €L ¢L| IL| OL/ 1Y 1
6L| 8L| LL 9L SL YL €L ¢L| IL| O0L/0Y 0
6D | 8D LD| 9O SO ¥D| €D | | ID 00| 60| 8D LD 9D SO Y| €D | 1D 0D | °PON
1 19008 0 19008

Hybrid MPI/OpenMP Parallelization in FETI-DP Methods

(D) s2100 (T YIm J0ss2001d 9FpLIg AT UE SPIOY J9Y00S oD
‘5J)[00S 0M] SBY dpou yoeq ‘syuel [JIA + Suisn sdnjas pLqAy Inoj Y} J0J duryorw Ay uo (syuel [JIN ¥) sosseooid pue (1) speany jo uonnquusiq | d[qeL

80 A. Klawonn et al.

140

120 —
= Setup 1: 4 nodes, 1 process per node
= Setup 2: 2 nodes, 1 process per socket

100 = = Setup 3: 1 node, 2 processes per socket -
Setup 4: 1 node, 4 processes on 1 socket

)
(=}
I

=N
=]
T

overall runtime [s]
T

IS
<)
T
|

S}
=]
T
|

1 2 3 4 5 6 7 8 9 10
#threads per process

Fig. 6 Socket scaling of Neo-Hookean hyperelasticity problem in 2D with m, = m, = 200 using
the four hybrid setups described in Sect. 7.3. Assembly is threaded using OpenMP, FETI-DP Setup
and Krylov Iteration use the threaded PARDISO solver

Let us briefly comment on the relevance of the hybrid parallelization approach
taken in this paper. In our approach using, e.g., 128 MPI ranks (and subdomains)
on 128 cores is more efficient than taking the hybrid approach using, e.g., 32 MPI
processes (and subdomains) and four threads (for each subdomain), i.e., we have
43.4 s for the pure MPI approach and 80.6 s for the hybrid approach.

In general, a pure MPI implementation of the FETI-DP method will scale with a
high parallel efficiency for a small number of MPI ranks. From Table 2, threading
on the subdomains scales from one to four threads with an acceptable efficiency
of 58 %. When scaling from one to eight threads only a low efficiency of 36 %
is reached. We therefore do not recommend to use eight threads with the current
implementation. An efficiency of 58 % using four threads for each subdomain,
however, is acceptable. Still, using cores by MPI ranks instead of threads will
usually be more efficient for a small number of subdomains. However, for a large
number of subdomains the time for solving the FETI-DP coarse problem becomes
significant and threading on the subdomains helps to keep the coarse problem small.
On large machines, such as SuperMUC, the time for the local problems and for
the coarse problem have to be balanced, carefully. Moreover, on architectures like
BlueGene/Q using 64 hardware threads per node by pure MPI can be challenging
due to the memory restrictions of 256 MB per rank which forces the use of very
small subdomains. Here, threading can be the only way to make efficient use of the
hardware threads.

81

Hybrid MPI/OpenMP Parallelization in FETI-DP Methods

0¢ YTy 6¢ 98°f (43 €r'€T LS 9p'¢ 01
€€ 61°St 94 167 S¢ Y6'€T 09 L9€ 6
9¢ 0€'9% a4 €€'S 8¢ LTHT €9 T6°€ 3
LE 16'1S 6¢ ¥69 6¢ 19'LT 99 ST L
w LY'€S Sy 06'9 a4 TI'8T 9 20 9
6V 'S €< 90°L (43 09°'8C YL w©s S
8¢ 89°LS S9 0T'L 19 9%°0¢ 6L ¥T'9 v
09 95 YL €S LTI 9 910 S8 SLL €
08 Y0¥ L SO°€l ¥8 STy 16 ¥8°01 (4
001 69°€€1 001 6L81 001 9S¥L 001 1L°61 I
(%) Kouaroyye | (S) [[BIAQ | (%) KoUSToyE | () UONEBINI AOJATY] | (%)Aoudtonyd | (8) dmds JA-TLHA | (%) Aduenyyg | (s) A[Quidssy | speary[,

(002 = “w = *w s qg ur wapqoad KAonseradAy urSYOO-03N ‘S9pou Inoj
Ay} Jo yoea uo ssavoid [JIA Quo o1] dmag) ssaoo1d [JIA 1od speary) ue) o3 dn duo Joj saseyd papeary) pue weiSoid [[BI9A0 JO SPUOIS UL dWINUNY T J[qeL

82 A. Klawonn et al.

200 T T T T T

180 = Setup 1: 64 nodes, 1 process per node
= Setup 2: 32 nodes, 1 process per socket
= = Setup 3: 16 nodes, 2 processes per socket
Setup 4: 8 nodes, 4 processes per socket

160

140

120
100
80

overall runtime [s]

60
40
20

0 | | | | | | | |
5 6 7 8 9

#threads per process

)
W
~
S

Fig. 7 Socket scaling of Neo-Hookean hyperelasticity problem in 2D with m, = m, = 200 as in
Fig. 6 but using 64 MPI ranks and a maximum of 640 threads

8 Summary

We have presented a thorough profiling and code investigation in combination with
a hardware bottleneck analysis for important steps of the FETI-DP method with
special focus on node-level performance. It has been demonstrated that the impact
of widely used C++ techniques on performance needs to be carefully investigated
and rather basic code changes may result in large performance improvements. For
the two phases FETI-DP Setup and the Krylov iteration, we have clearly shown
that the code is “core-bound” and identified that the current parallelization strategy
is the performance limiting factor on the socket level. Improving shared memory
parallelization of the respective routines in the widely used PARDISO solver may
not only provide additional performance for our application but will be of great
interest for a large community.

Acknowledgements This work was supported by the German Research Foundation (DFG)
through the Priority Programme 1648 “Software for Exascale Computing” (SPPEXA) under KL
2094/4-1, RH 122/2-1, WE 5289/1-1.

References

1. Amestoy, PR., Duff, L.S., I’Excellent, J.Y.: Multifrontal parallel distributed symmetric and
unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2—4), 501-520 (2000)

2. Amestoy, P.R., Duff, .S., I’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal solver
using distributed dynamic scheduling. STAM J. Matrix Anal. Appl. 23(1), 15-41 (2001)

Hybrid MPI/OpenMP Parallelization in FETI-DP Methods 83

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Balay, S., Abhyankar, S., Adams, M.E,, Brown, J., Brune, P., Buschelman, K., Eijkhout, V.,
Gropp, W.D., Kaushik, D., Knepley, M.G., Mclnnes, L.C., Rupp, K., Smith, B.F,, Zhang, H.:
Changes in the petsc 3.5 version. http://www.mcs.anl.gov/petsc/documentation/changes/35.
html (2014)

. Balay, S., Abhyankar, S., Adams, M.E,, Brown, J., Brune, P., Buschelman, K., Eijkhout, V.,

Gropp, W.D., Kaushik, D., Knepley, M.G., Mclnnes, L.C., Rupp, K., Smith, B.F,, Zhang, H.:
PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.5, Argonne National Laboratory.
http://www.mcs.anl.gov/petsc (2014)

. Balay, S., Gropp, W.D., Mclnnes, L.C., Smith, B.F.: Efficient management of parallelism

in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen,
H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163-202. Birkhduser, Boston
(1997)

. Balay, S., Abhyankar, S., Adams, M.E,, Brown, J., Brune, P.,, Buschelman, K., Eijkhout, V.,

Gropp, W.D., Kaushik, D., Knepley, M.G., Mclnnes, L.C., Rupp, K., Smith, B.F,, Zhang, H.:
PETSc Web page. http://www.mcs.anl.gov/petsc (2014)

. Bermeo, J.D.: Added support for mkl-pardiso solver. https://bitbucket.org/petsc/petsc/pull-

request/105/added- support-for-mkl-pardiso- solver/commits (2013)

. Bhardwaj, M., Pierson, K.H., Reese, G., Walsh, T., Day, D., Alvin, K., Peery, J., Farhat, C.,

Lesoinne, M.: Salinas: a scalable software for high performance structural and mechanics
simulation. In: ACM/IEEE Proceedings of SCO02: High Performance Networking and
Computing. Gordon Bell Award, pp. 1-19 (2002)

. Davis, T.A.: A column pre-ordering strategy for the unsymmetric-pattern multifrontal method.

ACM Trans. Math. Softw. 30(2), 165-195 (2004). http://doi.acm.org/10.1145/992200.992205
Davis, T.A., Duff, I.S.: An unsymmetric-pattern multifrontal method for sparse lu factorization.
SIAM J. Matrix Anal. Appl. 18(1), 140-158 (1997)

Davis, T.A., Duff, 1.S.: A combined unifrontal/multifrontal method for unsymmetric sparse
matrices. ACM Trans. Math. Softw. 25(1), 1-19 (1999)

Farhat, C., Lesoinne, M., Pierson, K.: A scalable dual-primal domain decomposition method.
Numer. Linear Algebra Appl. 7, 687-714 (2000)

Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual-primal unified
FETI method - part i: a faster alternative to the two-level FETI method. Int. J. Numer. Methods
Eng. 50, 1523-1544 (2001)

Gueye, I.: Solving large linear systems arising in finite element approximations on massively
parallel computers. Theses, Mines ParisTech (2009). https://tel.archives-ouvertes.fr/tel-
00477653

Gueye, L., Juvigny, X., Feyel, F., Roux, EX., Cailletaud, G.: A parallel algorithm for direct
solution of large sparse linear systems, well suitable to domain decomposition methods. Eur.
J. Comput. Mech./Revue Européenne de Mécanique Numérique 18(7-8), 589-605 (2009).
doi:10.3166/ejcm.18.589-605

Gueye, L., Arem, S.E., Feyel, F., Roux, EX., Cailletaud, G.: A new parallel sparse direct solver:
Presentation and numerical experiments in large-scale structural mechanics parallel computing.
Int. J. Numer. Methods Eng. 88(4), 370-384 (2011). doi:10.1002/nme.3179. http://dx.doi.org/
10.1002/nme.3179

Guo, X., Gorman, G., Lange, M., Sunderland, A., Ashworth, M.: Developing hybrid
openmp/mpi parallelism for fluidity-icom - next generation geophysical fluid modelling tech-
nology (2012). http://www.hector.ac.uk/cse/distributedcse/reports/fluidity-icom02/fluidity-
icom(2.pdf. Final Report for DCSE ICOM

Klawonn, A., Rheinbach, O.: Inexact FETI-DP methods. Int. J. Numer. Methods Eng. 69(2),
284-307 (2007)

Klawonn, A., Lanser, M., Rheinbach, O.: Towards extremely scalable nonlinear domain
decomposition methods for elliptic partial differential equation. Tech. Rep. 2014-13, Preprint
Reihe, Fakultit fir Mathematik, TU Bergakademie Freiberg, ISSN 1433-9407. http://tu-
freiberg.de/fakultl/forschung/preprints (2014) [Submitted to SISC]

http://www.mcs.anl.gov/petsc/documentation/changes/35.html
http://www.mcs.anl.gov/petsc/documentation/changes/35.html
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
https://bitbucket.org/petsc/petsc/pull-request/105/added-support-for-mkl-pardiso-solver/commits
https://bitbucket.org/petsc/petsc/pull-request/105/added-support-for-mkl-pardiso-solver/commits
http://doi.acm.org/10.1145/992200.992205
https://tel.archives-ouvertes.fr/tel-00477653
https://tel.archives-ouvertes.fr/tel-00477653
http://dx.doi.org/10.1002/nme.3179
http://dx.doi.org/10.1002/nme.3179
http://www.hector.ac.uk/cse/distributedcse/reports/fluidity-icom02/fluidity-icom02.pdf
http://www.hector.ac.uk/cse/distributedcse/reports/fluidity-icom02/fluidity-icom02.pdf
http://tu-freiberg.de/fakult1/forschung/preprints
http://tu-freiberg.de/fakult1/forschung/preprints

84

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

A. Klawonn et al.

Klawonn, A., Lanser, M., Rheinbach, O.: A nonlinear FETI-DP method with an inexact
coarse problem. In: Dickopf, T., Gander, M.J., Krause, R., Pavarino, L.F. (eds.) Domain
Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science
and Engineering, vol. 22. Springer, Heidelberg (2015); Accepted for publication October
2014. Proceedings of the 22nd Conference on Domain Decomposition Methods in Science and
Engineering, Lugano, 16-20 September 2013. Also http://tu-freiberg.de/fakultl/forschung/
preprints

Klawonn, A., Rheinbach, O.: Highly scalable parallel domain decomposition methods with
an application to biomechanics. ZAMM Z. Angew. Math. Mech. 90(1), 5-32 (2010).
doi:10.1002/zamm.200900329. http://dx.doi.org/10.1002/zamm.200900329

Klawonn, A., Widlund, O.B.: Dual-primal FETI methods for linear elasticity. Commun. Pure
Appl. Math. 59(11), 1523-1572 (2006)

Kuzmin, A., Luisier, M., Schenk, O.: Fast methods for computing selected elements of the
greens function in massively parallel nanoelectronic device simulations. In: Wolf, F., Mobhr,
B., Mey, D. (eds.) Euro-Par 2013 Parallel Processing. Lecture Notes in Computer Science,
vol. 8097, pp. 533—-544. Springer, Berlin/Heidelberg (2013)

Rheinbach, O.: Parallel iterative substructuring in structural mechanics. Arch. Comput.
Methods Eng. 16(4), 425-463 (2009). doi:10.1007/s11831-009-9035-4. http://dx.doi.org/10.
1007/s11831-009-9035-4

Schenk, O., Wichter, A., Hagemann, M.: Matching-based preprocessing algorithms to the solu-
tion of saddle-point problems in large-scale nonconvex interior-point optimization. Comput.
Optim. Appl. 36(2-3), 321-341 (2007). doi:10.1007/s10589-006-9003-y. http://dx.doi.org/10.
1007/s10589-006-9003-y

Schenk, O., Bollhofer, M., Romer, R.A.: On large-scale diagonalization techniques for the
anderson model of localization. SIAM Rev. 50(1), 91-112 (2008). doi:10.1137/070707002.
http://dx.doi.org/10.1137/070707002

Smith, B.E,, Bjgrstad, P.E., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)
Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and Theory. Springer
Series in Computational Mathematics, vol. 34. Springer, Heidelberg (2004)

Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented tool suite
for x86 multicore environments. In: PSTI2010, the First International Workshop on Parallel
Software Tools and Tool Infrastructures, pp. 207-216. IEEE Computer Society, Los Alamitos
(2010). http://dx.doi.org/10.1109/ICPPW.2010.38

Zienkiewicz, O., Taylor, R.: The Finite Element Method for Solid and Structural Mechanics.
Elsevier, Oxford (2005)

http://tu-freiberg.de/fakult1/forschung/preprints
http://tu-freiberg.de/fakult1/forschung/preprints
http://dx.doi.org/10.1002/zamm.200900329
http://dx.doi.org/10.1007/s11831-009-9035-4
http://dx.doi.org/10.1007/s11831-009-9035-4
http://dx.doi.org/10.1007/s10589-006-9003-y
http://dx.doi.org/10.1007/s10589-006-9003-y
http://dx.doi.org/10.1137/070707002
http://dx.doi.org/10.1109/ICPPW.2010.38

	Hybrid MPI/OpenMP Parallelization in FETI-DP Methods
	1 Introduction
	2 Description of the FETI-DP Method
	3 Classical MPI Parallelism in FETI-DP Methods
	4 Shared Memory Parallelism in FETI-DP Methods
	5 Hybrid Parallelization in Inexact and Nonlinear FETI-DP Approaches
	6 Experimental Setting
	6.1 Model Problem
	6.2 Hardware, Compiler, and Compiler Flags

	7 Numerical Results
	7.1 OpenMP Parallel Assembly
	7.2 Shared Memory Parallel Direct Solver PARDISO
	7.3 Runtime Study of the Full Threaded Software

	8 Summary
	References

