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Abstract In this work linear-quadratic optimal control problems for parabolic
equations with control and state constraints are considered. Utilizing a Lavrentiev
regularization we obtain a linear-quadratic optimal control problem with mixed
control-state constraints. For the numerical solution a Galerkin discretization is
applied utilizing proper orthogonal decomposition (POD). Based on a perturbation
method it is determined by a-posteriori error analysis how far the suboptimal
control, computed on the basis of the POD method, is from the (unknown) exact one.
POD basis updates are computed by optimality-system POD. Numerical examples
illustrate the theoretical results for control and state constrained optimal control
problems.

1 Introduction

In this paper we consider a certain class of linear-quadratic optimal control problems
governed by linear evolution equations together with control and state constraints.
Such linear-quadratic problems are especially interesting as they occur for example
as subproblems in each step of sequential quadratic programming (SQP) methods
for solving nonlinear problems. For the numerical solution we apply a Galerkin
approximation, which is based on proper orthogonal decomposition (POD), a
method for deriving reduced-order models of dynamical systems; see [7, 11, 19],
for instance. In order to ensure that the POD suboptimal solutions are sufficiently
accurate, we derive an a-posteriori error estimate for the difference between the
exact (unknown) optimal control and its suboptimal POD approximations. The proof
relies on a perturbation argument [5] and extends the results of [8, 22, 25].

However, to obtain the state data underlying the POD reduced order model,
it is necessary to solve once the full state system and consequently the POD
approximations depend on the chosen parameters for this solve. To be more precise,
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the choice of an initial control turned out to be essential. When using an arbitrary
control, the obtained accuracy was not at all satisfying even when using a huge
number of basis functions whereas an optimal POD basis (computed from the
FE optimally controlled state) led to far better results. To overcome this problem
different techniques for improving the POD basis have been proposed. Here, we will
apply the so called optimality system POD (OS-POD) introduced in [17]. The idea
of OS-POD is straightforward: include the equations determining the POD basis
in the optimization process. A thereby obtained basis would be optimal for the
considered problem. We follow the ideas in [6, 26], where OS-POD is combined
efficiently with an a-posteriori error estimation to compute a better initializing
control. The POD basis is then determined from this control and the a-posteriori
error estimate ensures that the optimal control problem is solved up to a desired
accuracy. Let us refer to [1] where the trust-region POD method is introduced as a
different update strategy for the POD basis.

The paper is organized in the following manner: In Sect. 2 we introduce our
optimal control problem with control and state constraints. To deal numerically
with the state constraints a Lavrentiev regularization is utilized in Sect. 3. The
POD method is explained briefly in Sect. 4. In Sect. 5 the existing a-posteriori error
analysis is extended to our state-constrained control problem. The combination of
the a-posteriori error estimation and OS-POD is explained in Sect. 6. In Sect. 7 we
propose two algorithms to solve the reduced optimal control problem. Numerical
examples are presented in Sect. 8.

2 The State-Constrained Optimal Control Problem

Suppose that˝ � R
d, d 2 f1; 2; 3g, is an open and bounded domain with Lipschitz-

continuous boundary � D @˝ . Let V be a Hilbert space with H1
0.˝/ � V �

H1.˝/. We endow the Hilbert spaces H D L2.˝/ and V with the usual inner
products

h'; iH D
Z
˝

' dx; h'; iV D
Z
˝

' C r' � r dx

Let T > 0 be the final time. We introduce a continuous bilinear form a.� ; �/ W V �
V ! R satisfying

a.'; '/ � ˛1 k'k2V � ˛2 k'k2H for all ' 2 V

for constants ˛1 > 0 and ˛2 � 0. Let us mention that the results can be extended
easily to time-dependent bilinear forms in a straightforward way. Recall the Hilbert
space W.0;T/ D f' 2 L2.0;TI V/ j 't 2 L2.0;TI V 0/g endowed with the common
inner product [4, pp. 472–479]. Let D be a bounded subset of Rd with d 2 N. Then
the control space is given by U D L2.DIRm/ for m 2 N. By Uad � U we define
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the closed, convex and bounded subset Uad D fu 2 U j ua � u � ub in Ug, where
ua; ub 2 U holds with ua � ub. In particular, we identify U with its dual space U0.
For u 2 Uad, yı 2 H and f 2 L2.0;TI V 0/ we consider the linear evolution problem

d

dt
hy.t/; 'iH C a.y.t/; '/ D h.f C Bu/.t/; 'iV0;V 8' 2 V in .0;T�;

y.0/ D yı in H;

(1)

where h� ; �iV0;V stands for the dual pairing between V and its dual space V 0 and
B W U ! L2.0;TI V 0/ is a continuous, linear operator. It is known that for every
f 2 L2.0;TI V 0/, u 2 U and yı 2 H there is a unique weak solution y 2 W.0;T/
satisfying (1) and

kykW.0;T/ � C
�kyıkH C kf kL2.0;TIV0/ C kukU

�
(2)

for a constant C > 0which is independent of yı, f and u. For a proof of the existence
of a unique solution we refer to [4, pp. 512–520]. The a-priori error estimate follows
from standard variational techniques and energy estimates.

Remark 1 Let Oy 2 W.0;T/ be the unique solution to the problem

d

dt
hy.t/; 'iH C a.y.t/; '/ D hf .t/; 'iV0;V 8' 2 V in .0;T�; y.0/ D yı in H:

We introduce the bounded, linear solution operator S W L2.0;TI V 0/ ! W.0;T/:
for g 2 L2.0;TI V 0/ the function S g 2 W.0;T/ is the unique solution to

d

dt
hy.t/; 'iH C a.y.t/; '/ D hg.t/; 'iV0;V 8' 2 V in .0;T�; y.0/ D 0 in H:

Then, the unique solution to (1) is given by y D Oy C SBu. Þ

We set W D L2.0;TIRn/. Let us introduce the set of admissible states

QYad D ˚
y 2 W.0;T/

ˇ̌
ya � I y � yb in W

�
;

where I W L2.0;TI V/ ! W is a bounded, linear operator with n 2 N, ya; yb 2 W

with ya � yb. It follows that QYad is closed and convex in W.0;T/. We introduce
the Hilbert space QX D W.0;T/ � U endowed with the natural product topology.
Moreover, we define the closed and convex subset QXad D QYad � Uad � QX. The cost
function QJ W QX ! R is given by

QJ.y; u/ D �˝

2
ky.T/ � y˝k2H C �Q

2

Z T

0

ky.t/ � yQ.t/k2H dt C �u

2
kuk2U (3)
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for x D .y; u/ 2 QX, where �Q, �˝ are nonnegative weighting parameters, �u > 0 is
a regularization parameter and yQ 2 L2.0;TI H/, y˝ 2 H are given desired states.
Then, we consider the following convex optimal control problem

min QJ.x/ subject to (s.t.) x 2 F(P) (P)

with the set F(P) D f.Oy C SBu; u/ 2 QXadg of feasible solutions. By (2) the
cost functional is radially unbounded. Since J is weakly lower semicontinuous, (P)
admits a global optimal solution Nx D .Ny; Nu/ providedF(P) is nonempty. Since �u > 0

holds, Nx is uniquely determined. Uniqueness follows from the strict convexity
properties of the objective functional on QXad. For a proof we refer to [14, Sect. 1.5.2]
or [24], for instance.

Example 1 (Boundary Control Without State Constraints) For T > 0 we set Q D
.0;T/ �˝ and ˙ D .0;T/ � � . Let V D H1.˝/. For the control space we choose
D D ˙ and m D 1, i.e., U D L2.˙/. Then, for given control u 2 U and initial
condition yı 2 H we consider

cpyt.t; x/��y.t; x/ D Qf .t; x/ in Q; (4a)

@y

@n
.t; x/C qy.t; x/ D u.t; x/ on ˙; (4b)

y.0; x/ D yı.x/ in ˝: (4c)

In (4) we suppose cp > 0, q � 0 and Qf 2 L2.0;TI H/. Setting f D Qf=cp, introducing
the bounded (symmetric) bilinear form a W V � V ! R by

a.';  / D 1

cp

Z
˝

r'.x/ � r .x/ dx C q

cp

Z
�

'.x/ .x/ dx for '; 2 V

and the linear, bounded operator B W U ! L2.0;TI V 0/ by

h.Bu/.t/; 'iV0;V D 1

cp

Z
�

u.t; x/'.x/ dx for � 2 V; t 2 Œ0;T�

then the weak formulation of (4) can be expressed in the form (1). More details on
this example one can found in [6]. Þ
Example 2 (Distributed Control with State Constraints) Let ˝ , � , T, Q, ˙ as in
Example 1. Let �i 2 H, 1 � i � m, denote given control shape functions. For the
control space we choose D D .0;T/ and set U D L2.0;TIRm/. Then, for given
control u 2 U, initial condition yı 2 H and inhomogeneity f 2 L2.0;TI H/ we
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consider the linear heat equation

yt.t; x/� ��y.t; x/C ˇ � ry.t; x/ D f .t; x/C
mX

iD1
ui.t/�i.x/; in Q;

y.t; x/ D 0 on ˙;

y.0; x/ D yı.x/ in ˝:

(5)

with � > 0 and ˇ 2 R
d. We introduce the bounded form

a.';  / D �

Z
˝

r' � r dx C
Z
˝

ˇ � r'dx for '; 2 V

and the bounded, linear operator B W U ! L2.0;TI H/ ,! L2.0;TI V 0/ as

.Bu/.t; x/ D
mX

iD1
ui.t/�i.x/ for .t; x/ 2 Q and u 2 U:

It follows that the weak formulation of (5) can be expressed in the form (1). We
choose certain shape functions 	1; : : : ; 	n 2 H and introduce the operator I W
L2.0;TI V/ ! W by

.I '/.t/ D

0
B@
.I1'/.t/

:::

.In'/.t/

1
CA with .Ii'/.t/ D

Z
˝

	i.x/'.t; x/ dx

for ' 2 L2.0;TI V/. Then, the state constraints have the form

yai.t/ �
Z
˝

	i.x/y.t; x/ dx � ybi.t/ in Œ0;T� and for 1 � i � n;

where .y;w/ 2 W.0;T/ � W holds; see also [7]. Þ

3 The Lavrentiev Regularization

It is well-known that the (sufficient) first-order optimality conditions for (P)
involve a measure-valued Lagrange multiplier associated with the state constraint
Ny 2 QYad; see [14, Sect. 1.7.3]. To develop a fast numerical solution methods (by
combining semismooth Newton techniques with reduced-order modelling) we apply
a Lavrentiev regularization of the state constraints. For that purpose we introduce
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an additional (artificial) control variable and approximate the pure state by mixed
control-state constraints, which enjoy L2-regularity; see [23].

Instead of QX we consider the Hilbert space X D W.0;T/�U�W, again supplied
with the product topology. For given " > 0 the subset QXad is replaced by the closed
and convex subset

X"ad D ˚
.y; u;w/ 2 X

ˇ̌
ya � "w C I y � yb in W; u 2 Uad

�
: (6)

For a chosen weight �w > 0 we also extend the cost functional QJ by defining J W
X ! R with

J.y; u;w/ D QJ.y; u/C �w

2
kwk2W; x D .y; u;w/ 2 X:

Now the regularized optimal control problem has the following form

min J.x/ s.t. x 2 F(P") (P")

with the feasible set F(P") D f.Oy C SBu; u;w/ 2 X "
adg. If F(P") 6D ; holds, it

follows by similar arguments as above that (P") possesses a unique global optimal
solution Nx.

Let us define the control space V D U � W. We introduce the reduced cost
functional OJ by OJ.v/ D J.Oy C SBu; u;w/ for v D .u;w/ 2 V. By Remark 1 the
solution to (1) can be expressed as y D Oy C SBu. Thus, the set of admissible
controls is given by

V
ad D ˚
v D .u;w/ 2 V j u 2 Uad and Oya � "w C ISBu � Oyb in W

�

with Oya D ya � I Oy and Oyb D yb � I Oy. Now, (P") is equivalent to the reduced
problem

min OJ.v/ s.t. v 2 V
ad: ( OP")

The control Nv D .Nu; Nw/ is the unique solution to ( OP") if and only if Nx D .OyCSB Nu; Nv/
is the unique solution to (P").

Next we formulate first-order sufficient optimality conditions for (P") (see [24],
for instance):

Theorem 1 Suppose that the feasible set F(P") is nonempty. The point Nx D
.Ny; Nu; Nw/ 2 X"ad is a (global) optimal solution to (P") if and only if there are unique
Lagrange multipliers .Np; N�u; N�y/ 2 X satisfying the dual equations

� d

dt
hNp.t/; 'iH C a.'; Np.t//C h.I ? N�y/.t/; 'iV0;V D �Q h.yQ � Ny/.t/; 'iH

8' 2 V in Œ0;T/; Np.T/ D �˝
�
y˝ � Ny.T/� in H;

(7)
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and the optimality conditions

�u Nu � B? Np C N�u D 0 in U; �w Nw C " N�y D 0 in W;

where I ? W W ! L2.0;TI V 0/ and B? W L2.0;TI V/ ! U denote the adjoint
operators of I and B, respectively. For the Lagrange multipliers N�u and N�y we
have

N�u D max
�
0; N�u C �u.Nu � ub/

� C min
�
0; N�u C �u.Nu � ua/

�
in U;

N�y D max
�
0; N�y C �w." Nw C I Ny � yb/

� C min
�
0; N�y C �w." Nw C I Ny � ya/

�
in W;

where �u; �w > 0 are arbitrarily chosen.

Remark 2

(1) Analogous to Remark 1 we split the adjoint variable into one part depending on
the fixed desired states and into two other parts, which depend linearly on the
control variable and on the multiplier �. Recall that we have defined Oy as well
as the operator S in Remark 1. For given yQ 2 L2.0;TI H/ and y˝ 2 H let
Op 2 W.0;T/ denote the unique solution to the adjoint equation

� d

dt
hOp.t/; 'iH C a.'; Op.t// D �Q h.yQ � Oy/.t/; 'iH 8' 2 V in Œ0;T/;

Op.T/ D �˝
�
y˝ � Oy.T/� in H:

Further, we define the linear, bounded operators A1 W U ! W.0;T/ and A2 W
W ! W.0;T/ as follows: for any u 2 U the function p D A1u is the unique
solution to

� d

dt
hp.t/; 'iH C a.'; p.t// D ��Q h.SBu/.t/; 'iH 8' 2 V in Œ0;T/;

p.T/ D ��˝.SBu/.T/ in H

and for given � 2 W the function p D A2� uniquely solves p.T/ D 0 in H and

� d

dt
hp.t/; 'iH C a.'; p.t//C h.I ?�y/.t/; 'iV0 ;V D 0 8' 2 V in Œ0;T/:

Then, the solution to (7) can be expressed as Np D Op C A1 Nu C A2
N�y.

(2) To solve (P") numerically for fixed " > 0 we use a primal-dual active
set strategy. This method is equivalent to a locally superlinearly convergent
semi-smooth Newton algorithm applied to the first-order optimality conditions
[8–10]. Þ
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4 The POD Method

Let Z be either the space H or the space V . In Z we denote by h� ; �iZ and k � kZ D
h� ; �i1=2Z the inner product and the associated norm, respectively. For fixed } 2 N let
the so-called snapshots zk.t/ 2 Z be given for t 2 Œ0;T� and 1 � k � }. To avoid
a trivial case we suppose that at least one of the zk’s is nonzero. Then, we introduce
the linear subspace

Z} D span
n
zk.t/ j t 2 Œ0;T� and 1 � k � }

o
� Z (8)

with dimension d � 1. We call the set Z} snapshot subspace. The method of POD
consists in choosing a complete orthonormal basis f ig1

iD1 in Z such that for every
` � d the mean square error between the } elements zk and their corresponding `th
partial Fourier sum is minimized:

8̂
<̂
ˆ̂:

min
}X

kD1

Z T

0

���zk.t/ �
X̀
iD1

hzk.t/;  iiZ  i

���2
Z

dt

s.t. f ig`iD1 � Z and h i;  jiZ D ıij; 1 � i; j � `:

(9)

In (9) the symbol ıij denotes the Kronecker symbol satisfying ıii D 1 and ıij D 0

for i ¤ j. An optimal solution f N n
i g`iD1 to (9) is called a POD basis of rank `.

Remark 3 In real computations, we do not have the whole trajectories zk.t/ at hand
for all t 2 Œ0;T� and 1 � k � }. Here we apply a discrete variant of the POD
method; see [7, 16] for more details. Þ

To solve (9) we define the linear operator R W Z ! Z} as follows:

R D
}X

kD1

Z T

0

h ; zk.t/iZ zk.t/ dt for  2 Z: (10)

Then, R is a compact, nonnegative and selfadjoint operator. Suppose that f N�ig1
iD1

and f N ig1
iD1 denote the nonnegative eigenvalues and associated orthonormal eigen-

functions of R satisfying

R N i D N�i N i; N�1 � : : : � N�d > N�dC1 D : : : D 0: (11)

Then, for every ` � d the first ` eigenfunctions f N ig`iD1 solve (9) and

}X
kD1

Z T

0

���zk.t/ �
X̀
iD1

hzk.t/; N iiZ N i

���2
Z

dt D
dX

iD`C1
N�i:

For more details we refer the reader to [11, 12] and [7, Chap. 2], for instance.
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Remark 4

(a) In the context of the optimal control problem (P") a reasonable choice for the
snapshots is z1 D y and z2 D p. Utilizing new POD error estimates for evolution
problems [3, 20] and optimal control problems [13, 25] convergence and rate
of convergence results are derived for linear-quadratic control constrained
problems in [7] for the choices Z D H and Z D V .

(b) For the numerical realization the space Z has to be discretized by, e.g., finite
element discretizations. In this case the Hilbert space Z has to be replaced by
an Euclidean space R

l endowed with a weighted inner product; see [7].

If a POD basis f ig`iD1 of rank ` is computed, we set V` D span f 1; : : : ;  `g.
Then, one can derive a reduced-order model (ROM) for (1): for any g 2 L2.0;TI V 0/
the function q` D S `g is given by q`.0/ D 0 in H and

d

dt
hq`.t/;  iH C a.q`.t/;  / D hg.t/;  iV0;V 8 2 V` in .0;T�:

For any u 2 Uad the POD approximation y` for the state solution is y` D OyCS `Bu.
Analogously, a ROM can be derived for the adjoint equation; see, e.g., [7]. The POD
Galerkin approximation of ( OP") is given by

min J`.v/ D J.Oy C S `Bu; v/ s.t. v D .u;w/ 2 V

;`
ad ( OP";`)

where the set of admissible controls is

V
;`ad D ˚
v D .u;w/ 2 V j u 2 Uad and Oya � "w C IS `Bu � Oyb in W

�
:

5 A-Posteriori Error Analysis

Let us consider (P) with control, but no state constraints. Based on a perturbation
argument [5] it is derived in [25] how far the suboptimal POD control Nu`, computed
on the basis of the POD model, is from the (unknown) exact Nu. Then, the error
estimate reads as follows:

kNu` � NukU � 1

�u
k`kU; (12)

where the computable perturbation function ` 2 U is given by

` D

8̂
<̂
ˆ̂:

� min
�
0; �u Nu` � B? Qp`� in A`

a D ˚
s 2 D

ˇ̌ Nu`.s/ D ua.s/
�
;

� max
�
0; �u Nu` � B? Qp`� in A`

b D ˚
s 2 D

ˇ̌ Nu`.s/ D ub.s/
�
;

� �
�u Nu` � B? Qp`� in D n �

A`
a [ A`

b

�
;
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with Qp` D Op C A1 Nu`. It is shown in [7, 25] that k`kU tends to zero as ` tends
to infinity. Hence, increasing the number of POD ansatz functions leads to more
accurate POD suboptimal controls.

Estimate (12) can be generalized for the mixed control-state constraints. First-
order sufficient optimality conditions for ( OP") are of the form

hOJ0. Nv/; v � NviV � 0 for all v 2 V "
ad; (13)

where the gradient at a point v D .u;w/ 2 V is given by Tröltzsch [24]

hOJ0.v/; vıiV D h�uu � B?.Op C A1u/; uıiU C h�wwı;wıiW 8vı D .uı;wı/ 2 V:

Let us introduce the bounded, linear transformation T W V ! V as

T .v/ D .u; "w C ISBu/ for v D .u;w/ 2 V: (14)

We assume that T is continuously invertible. For sufficient conditions we refer to
[8, Lemma 2.1]. Then, v D .u;w/ belongs to V
ad if and only if v D .u;w/ D T .v/

satisfies

ua � u � ub in U and Oya � w � Oyb in W: (15)

Notice that (13) can be expressed equivalently as

˝
T �? OJ0.T �1 Nv/; v � Nv˛

V
� 0 for all v 2 V satisfying (15); (16)

where T �? denotes the inverse of the operator T ?. Suppose that Nv` D .Nu`; Nw`/ 2
V
";`
ad is the solution to ( OP";`). Our goal is to estimate the norm

k Nv � Nv`kV
without the knowledge of the optimal solution Nv D T �1 Nv. We set Nv` D T Nv` D
.Nu`; " Nw`CISB Nu`/. If Nv` ¤ Nv holds, then Nv` ¤ Nv. In particular, Nv` does not satisfy
the sufficient optimality condition (13). However, there exists a function ` 2 V such
that

˝
T �? OJ0.T �1 Nv`/C `; v � Nv`˛

V
� 0 for all v 2 V satisfying (15): (17)

Choosing v D Nv` in (16), v D Nv in (17) and adding both inequality we infer that

0 �
D
T �?�OJ0.T �1 Nv`/C T ?` � OJ0.T �1 Nv/�; Nv � Nv`

E
V

D
DOJ0. Nv`/� OJ0. Nv/C T ?`;T �1�Nv � Nv`�E

V
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D ˝�
�u.Nu` � Nu/� B?A1.Nu` � Nu/; �w. Nw` � Nw/� C T ?`; Nv � Nv`˛

V

� �� k Nv � Nv`k2V C hB?A1.Nu � Nu`/; Nu � Nu`iU C hT ?`; Nv � Nv`iV

with � D min.�u; �w/ > 0. In [8, Lemma 2.2] it is shown that hB?A1.Nu � Nu`/; Nu �
Nu`iU � 0 holds. Consequently,

0 � �� k Nv � Nv`k2V C hT ?`; Nv � Nv`iV � �� k Nv � Nv`k2V C kT ?kVk Nv � Nv`kV
which implies the following proposition.

Proposition 1 Let the operator T —introduced in (14)—possess a bounded
inverse. Suppose that Nv and Nv` are the optimal solution to ( OP") and ( OP";`),
respectively, satisfying Nv` D T Nv` 2 V"ad. Then, there is a perturbation
` D .`u; 

`
w/ 2 V satisfying

k Nv � Nv`kV � 1

�
kT ?`kV with � D min.�u; �w/ > 0: (18)

The perturbation ` D .`u; 
`
w/ can be computed as follows: Let �` D .�`u ; �

`
w/ D

T �? OJ0. Nv`/ 2 V. Then, �` solves the linear system

�
idU 0

B?S ?I ? "idW

� �
�`u
�`w

�
D

�
�u Nu` � B?.Op C A1 Nu`/

�w Nw`
�
;

where, e.g., idU W U ! U stands for the identity operator. Note that (17) can be
written as h� C ; v � Nv`iV � 0 for all v 2 V satisfying (15). We find

`u D
8<
:

� min.0; �`u/ in Au
a D fNu` D uag � U;

� max.0; �`u/ in Au
b D fNu` D ubg � U;

��`u in U n .Au
a [ Au

b/

and

`w D
8<
:

� min.0; �`w/ in Aw
a D f" Nw` C ISB Nu` D Oyag � W;

� max.0; �`w/ in Aw
a D f" Nw` C ISB Nu` D Oybg � W

��`w in W n .Aw
a [ Aw

b /:

6 Optimality-System POD

The accuracy of the reduced-order model can be controlled by the a-posteriori
error analysis presented in Sect. 5. However, if the POD basis is created from a
reference trajectory containing features which are quite different from those of
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the optimally controlled trajectory, a rather huge number of POD ansatz functions
has to be included in the reduced-order model. This fact may lead to non-efficient
reduced-order models and numerical instabilities. To avoid these problems the POD
basis is generated in an initialization step utilizing optimality system POD (OS-
POD) introduced in [17]. In OS-POD the POD basis is updated in the direction
of the minimum of the cost. Recall that the POD basis is computed from the state
y D Oy C SBu with some control u0 2 Uad. Thus, the reduced-order Galerkin
projection depends on the state variable and hence on the control u at which the
eigenvalue R i D �i i for i D 1; : : : ; ` is solved for the basis f ig`iD1. If the
optimal control Nu differs significantly from the initially chosen control u0, the POD
basis does not reflect the dynamics of the system in a sufficiently accurate manner.
Therefore, we consider the extended problem:

min OJ`.v/ s.t.

(
v D .u;w/ 2 V";`ad ;

. ; �/ satisfies (11) for } D 1 and z1 D Oy C SBu:
( OP";`os )

Notice that the first line of the constraints in ( OP";`os ) coincides with the constraints
in ( OP";`), whereas the second line of the constraints in ( OP";`os ) are the infinite-
dimensional eigenvalue problem defining the POD basis. For the optimal solution
the problem formulation ( OP";`os ) has the property that the associated POD reduced
system is computed from the trajectory corresponding to the optimal control and
thus, differently from ( OP";`), the problem of unmodelled dynamics is removed. Of
course, ( OP";`os ) is more complicated than ( OP";`). For practical realization an operator
splitting approach is used in [17], where also sufficient conditions are given so
that ( OP";`os ) possesses a unique optimal solution, which can be characterized by first-
order necessary optimality conditions; compare [17] for more details. Convergence
results for OS-POD are studied in [18]. The combination of OS-POD and a-
posteriori error analysis is suggested in [26] and tested successfully in [6]. The
resulting strategy is presented in the next section.

7 Algorithms

For pure control constraints, i.e., OJ` depends only on u, a variable splitting is
proposed, where a good POD basis is initialized by applying a few projected
gradient steps [15]. Then, the POD basis is kept fixed and ( OP";`) is solved. If the
a-posteriori error estimator k`kU=�u is too large [compare (12)], the number ` of
POD basis elements is increased and a new solution to ( OP";`) is computed. This
process is repeated until we obtain convergence; see Algorithm 1. Let us mention
that we also utilize snapshots of the adjoint variable in order to compute a POD
basis as described in Remark 4(a).

For the mixed constraints, this iteration does not turn out to be efficient enough.
The gradient steps do not lead to a satisfactorily fast and accurate POD basis.
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Algorithm 1 (OS-POD with a-posteriori error estimation for control constraints)
Require: Maximal number `max of POD basis elements, `min < `max , initial control u0, and a-

posteriori error tolerance "apo > 0;
1: Determine the state y D Oy C SBu0 and adjoint p D Op C A1u0;
2: Compute a POD basis f i.u/g`iD1 as described in Remark 4(a);
3: Perform k � 0 projected gradient steps (PGS) with an Armijo line search for ( OP";`os ) in order to

get uk and associated POD basis f i.uk/g`max
iD1 ; set ` D `min;

4: Solve ( OP";`) for Nu` 2 Uad by the primal-dual active set strategy;
5: Compute the perturbation ` D `.Nu`/ as explained in Sect. 5;
6: if k`kU=�u > "apo and ` < `max then
7: Enlarge ` and go back to step 4;
8:
9: end if

Therefore, we invest more effort in the gradient steps by interacting between
the projected gradient method and the primal-dual active set strategy (PDASS).
In contrast to the situation of pure control constraints, we can provide basis
updates based on the more accurate PDASS controls. The strategy is explained in
Algorithm 2.

Algorithm 2 (OS-POD with a-posteriori error estimation for state constraints)
Require: Maximal number `max of POD basis elements, ` < `max, initial control u0, and a-

posteriori error tolerance "apo > 0;
1: Determine the state y D Oy C SBu0 and adjoint p D Op C A1u0;
2: Compute a POD basis f i.u/g`iD1 as described in Remark 4(a);
3: Solve ( OP";`) for Nv` D .Nu`; Nw`/ 2 V

";`
ad by the primal-dual active set strategy;

4: Perform k � 0 projected gradient steps with an Armijo line search for ( OP";`os ) in order to get uk

and associated POD basis f i.uk/g`iD1;
5: Compute the perturbation  D . Nv`/ as explained in Sect. 5;
6: if kT ?kV=� > "apo and ` < `max then
7: Enlarge ` and go back to step 3;
8: else
9: Set ` D `min and go back to step 1;

10: end if

8 Numerical Experiments

In this section we carry out numerical test examples illustrating the efficiency of the
combination of OS-POD and a-posteriori error estimation. The evolution problems
are approximated by a standard finite element (FE) method with piecewise linear
finite elements for the spatial discretization. The time integration is done by the
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Fig. 1 Run 1: the initial condition yı (left) and the desired terminal state y˝ (right)

Fig. 2 Run 1: FE optimal control along the boundary parts x1 D 0, x1 D 1, x2 D 0, and x2 D 1

implicit Euler method. All programs are written in MATLAB utilizing the PARTIAL

DIFFERENTIAL EQUATION TOOLBOX for the FE discretization.

Run 1 (Example 1) We choose d D 2 and consider the unit square ˝ D
.0; 1/ � .0; 1/ � R

2 as spatial domain with time interval Œ0;T� D Œ0; 1�. The
FE triangulation with maximal edge length h D 0:06 leads to 498 degrees of
freedom. For the time integration we choose an equidistant time grid tj D j�t
for j D 0; : : : ; 250 with �t D 0:004. Motivated by the discretization error we set
"apo D max.h2;�t/ D �t. In (4) we choose the data cp D 10, q D 0:01, Qf D 0 and
yı.x1; x2/ D 3�4.x2�0:5/2; see left plot in Fig. 1. We use �Q D 0, �˝ D 1 and the
regularization �u D 0:1 in the cost function (3) to approximate the desired terminal
state y˝.x1; x2/ D 2 C 2 j2x1 � x2j; see right plot in Fig. 1. The control constraints
are chosen to be ua D 0 and ub D 1. The FE primal-dual active set strategy needs
five iterations and 860.75 s. The optimal FE control is presented in Fig. 2. We apply
Algorithm 1 with `max D 40, ` D 10 and initial control u0 D 0. First we do not
perform any OS-POD strategy (i.e., k D 0 In Algorithm 1). The method stops in
110.77 s with ` D 35 < `max ansatz functions with k`kU=�u � 0:0034 < "apo.
Each solve of ( OP";`) needs four or five iterations to determine the suboptimal POD
solutions. If we initialize Algorithm 1 with the optimal FE control NuFE as initial
control and perform no OS-POD strategy, only ` D 13 POD basis functions are
required. We get k`kU=�u � 0:0019 < "apo and the CPU time is 11.48 s, which
is ten times faster than with the initial control u0 D 0. With one OS-POD gradient
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Table 1 Run 1: performance of Algorithm 1

k D 0 k D 1 k D 2 With NuFE

Required ` 35 40 13 13

CPU time 110.77 s 147.14 s 18.39 s 11.48 s

k`kU=�u 3:43 � 10�3 1:14 � 10�2 2:82 � 10�3 1:94 � 10�3

kNu` � NuFEkU 3:15 � 10�3 9:53 � 10�3 2:62 � 10�3 1:93 � 10�3

Table 2 Run 1: comparison of POD suboptimal solutions for ` D 15 and k OS-POD steps

k D 0 k D 1 k D 2 With NuFE

k`kV=�u 2:50 � 10�2 1:45 � 10�2 2:27 � 10�3 1:59 � 10�3

kNu` � NuFEkU 2:06 � 10�2 1:19 � 10�2 2:07 � 10�3 1:59 � 10�3

Different ua 96 67 15 16

Different ub 63 38 6 4

Table 3 Run 1: number of
active nodes

u1 u2 NuFE

uk D ua 1321 (1321) 1814 (1812) 2233

uk D ub 986 (986) 3632 (3627) 3891

In parenthesis the number of nodes, where uk D
NuFE D ua or uk D NuFE D ub, respectively

step, the tolerance "apo is not reached with the available `max D 40 basis functions.
Though we make an effort in direction of the optimal control, the algorithm seems
to perform even worse than with the basis corresponding to the uncontrolled state.
This can be seen in the higher control errors that cause the algorithm to run up to
`max D 40 ansatz functions. We can see, however, that the errors in the suboptimal
state are one order smaller than without gradient steps, so the POD basis did improve
after all. After k D 2 gradient steps, the performance is considerably better: The
algorithm already terminates with a ROM rank of ` D 13 like in the optimal case.
In Table 1 we provide the required CPU times and final errors. Additionally regard
Table 2 where we compare the errors for the POD suboptimal solutions for fixed
rank ` D 15. Here, we also provide the number of nodes that are restricted by the
box constraints either in the suboptimal control Nu15 or in the FE optimal control
NuFE, but not in both. It tells us, how many of the restricted nodes are mistaken.
This number decreases to 21 by the gradient steps. Next we are interested in the
approximation of the active sets. The computations are done with 68 triangulation
nodes at the boundary and 251 time steps; that is a total amount of 68 �251 D 17068

boundary nodes in the time interval Œ0;T�. The FE optimal control is restricted by
ua at 2233 and by ub at 3891 nodes. In Table 3 we present the number of nodes
where uk is restricted to the lower or upper bound and, in parenthesis, how many
of these nodes are actually restricted correctly, i.e. equal to NuFE, what amounts to
more than 99 %. Finally, let us illustrate the changes achieved in the POD basis
by the OS-POD steps. The left plot of Fig. 3 shows how the decay of normalized
eigenvalues differs depending on the used control for snapshot generation. The
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Fig. 3 Run 1: comparison of eigenvalue decay for POD basis generated with uk after k gradient
steps or with NuFE (left) and a-posteriori error for increasing ` (right)

eigenvalues corresponding to the uncontrolled state decay faster and further than
those corresponding to the more or less optimally controlled state; increasing the
utilized rank further than ` D 35 yields no more improvement. The difference
caused by one gradient step is significant. A lot more basis functions contain still
relevant information for the reduced order models. After the second gradient step the
course is equal to the optimal situation, at least for the considered rank ` � 40. The
right plot of Fig. 3 shows the a-posteriori error for the suboptimal control. By one
gradient step the control error first decreases, but then stagnates at this level. Though
without any gradient step, the error is higher at the beginning, between 30 and 35
basis functions it jumps down once more and therefore the algorithm can reach the
tolerance. However, the right plot shows that the absolute error in state stays far
above the OS-POD results. In Fig. 4 we compare the first four POD basis functions
obtained either with u0 D 0, u2 or NuFE. In the first POD basis function associated
with the uncontrolled equation (u D 0) we recognize the initial condition; see left
plot of Fig. 1. The optimal state is richer in dynamics what is reflected by a different
shape of the POD basis functions. After two OS-POD steps the basis has changed
significantly and at least the first four modes can hardly be distinguished from the
optimal ones. Þ

Run 2 (Example 2) As a second test, we study a distributed control problem with
control and state constraints. In Example 2 we choose d D 1, � D 1, ˇ D �5, Nt D
400 time points in the time interval Œ0; 1�, Nx D 600 grid points in the domain˝ D
Œ0; 3�, m D 50 control components and n D 800, i.e. pointwise state constraints. For
the data, we choose f D 0, yı D 1

2
�Œ1:2;1:8� and yQ.t; x/ D 1

9
.6x C 6tx � 2x2/ for

t < 1 � 1
3
x, yQ.t; x/ D 0 elsewhere and �Q D 1, �˝ D 0, �u D �w D " D 7:5e-02.

The control and state bounds are ua D �1, ub D 4 and ya D 0:05, yb D 0:5.
Compared to the situation in Run 1 additional challenges arise here:

1. If the convection parameter ˇ which resembles the dispersal speed of the initial
profile is dominant, a rapid decay of the singular values of the POD operator R
is prevented. This results in a slower decay of the POD error ` 7! k Nv � Nv`kV, so
larger POD basis ranks are required to ensure a good approximation.
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Fig. 4 Run 1: first four POD basis functions associated with the initial control u0 D 0 (top),
with the control gained after k D 2 OS-POD steps (middle) and with the optimal FE control NuFE

(bottom)

2. The transport term ˇyx requires further considerations for the full-order solution
techniques. For instance, central differences lead to a stable discretization if
��t � �x2=2 holds true, but nevertheless, strong oscillations of the discrete
solution may occur if the condition jˇ�x=�j < 2 is violated; see, e.g., [21].
An upwind scheme for ˇyx which combines forward and backward differences
prevents oscillations, but is only of convergence order one.

3. By evaluation of the a-posteriori error estimator, the active set equations Nu` D
ua and Nu` D ub defining the control perturbation `u are fulfilled exactly by
construction since Nv`1 D Nu` holds. This is not the case for the state perturbation
`w: Here, a high-order solution operation is required to calculate Nv`2 D " Nw` C
ISB Nu` and to determine the active sets Nv`2 D Oya and Nv`2 D Oyb, respectively. We
propose to replace the active set equalities by kNv`2 � Oya;bkW < "acc, where "acc is
the accuracy of the full-order model.

4. If the penalized state constraint shall resemble a pointwise pure state constraint,
one may choose a fine partition .˝j/1�j�ny 	 ˝ of˝ and 	j.x/ D j˝jj�1 for x 2
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Fig. 5 Run 2: the uncontrolled state (left) and the desired state yQ (right)

Fig. 6 Run 2: the optimal FE state Ny (left), the optimal FE control Nu and the optimal FE penalty Nw
(right) to (P")

˝j as well as 0 otherwise. In this case, we have .Ijy/.t/ D j˝jj�1
R
˝j

y.t; x/ dx �
y.t; xj/. Now, choosing " 
 1 and �w � 1 ensures "w CI y � y: The penalty w
cannot compensate strong violations of the state constraint any more. A small "
leads to bad condition numbers of the optimality system matrices already for the
full-order model which causes not only stability problems, but also less regular
state solutions. Since the convergence of POD solutions to the full-order ones
require an additional regularity of the snapshot ensemble, a good accuracy of the
POD model can be expected only if additional effort is conducted for finding
appropriate snapshots.

The uncontrolled FE state is plotted in the left plot of Fig. 5. The discontinuous
desired state yQ is presented in the right plot of Fig. 5. The optimal FE solution
to (P") is shown in Fig. 6. The primal-dual active set strategy (PDASS) required a
rather large number of iterations to converge. The complex structure of the active
and inactive sets is given in Fig. 7. In this example, 39 updates of the active sets
are conducted until the iteration stops after 1217 s. Due to �u � 0 as well as the
control constraints which prevent that Nu develops singularities and Ny loses regularity,
the state solution is smooth. However, " 
 1 causes a plateau, where the upper
state constraint yb D 0:5 is active. This dynamics which do not occur in the
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Fig. 7 Run 2: the active sets of the upper bounds (white) and the lower bounds (black) as well as
the inactive regions (grey) for the control constraints (left) and the mixed penalty-state constraints
(right)

Table 4 Run 2: error analysis for different numbers of initializing gradient steps

GradSteps CPU time Err.vr / OJ`.vr / `.vr/ Iter. `/ kNv` � NvFEkV kT ?`kV=�

0 10.24 s – – 16 12 3.5 eC00 4.4 eC00

1 22.08 s 4.36 37.18 26 18 1.7e–01 2.1e–01

2 29.32 s 3.07 36.52 32 19 1.6e–01 1.9e–01

3 28.64 s 2.65 31.55 32 18 1.6e–01 1.9e–01

4 13.42 s 2.51 31.02 32 8 1.6e–01 1.8e–01

5 15.53 s 2.42 29.59 33 8 1.6e–01 1.9e–01

10 24.55 s 2.17 28.53 33 8 1.5e–01 1.8e–01

25 53.46 s 2.15 28.44 33 8 1.6e–01 1.8e–01

uncontrolled state Oy have to be included in appropriate snapshots to generate an
accurate POD basis. Due to the strong convection, projections even on the optimal
POD space spanned by the POD elements of the optimal snapshots Ny and Np cause
significant approximation errors if the POD basis rank ` is not chosen sufficiently
large. Table 4 shows that this procedure does not lead to an adequate model error
if state constraints are taken into account. The first row presents the gradient-
based error indicator Err.v/ D kv � Pv.v C dv/kV which is our termination
criterion for the projected gradient method [15]; the value almost stagnates after
circa eight iterations such as the corresponding objective value OJ`.v/. The third
line presents the POD basis ranks used for the active set strategy. We choose
` D minfmaxf� j�� > �ming; `maxg where we set �min D 10�4 and `max ensures
that the model reduction effect does not vanish by using too many POD elements.
We see that at least two gradient steps are required to get a sufficiently rich snapshot
sample. The next row shows the number of active set updates in the reduced model.
Four initializing gradient steps lead to a fast termination of this routine. However, the
corresponding errors do not decay below the value 0:15 independent of the number
of gradient steps or the chosen basis rank: Here, the gradient steps do not lead to
a control ur which is close enough to Nu to guarantee good snapshots for the POD
basis. The a-posteriori error bounds kT ?`kV=� turn out to be of the same order as
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Table 5 Run 2: error analysis for different numbers of gradient step/active set interactions

PDASS steps 1 2 3 4 .Nu; Nw/
CPU time 15.63 s 32.19 s 51.61 s 102.30 s 49.32 s

kNv` � NvFEkV 1:61 � 10�1 3:22 � 10�2 6:11 � 10�3 8:49 � 10�4 5:20 � 10�4

kT ?`kV=� 1:90 � 10�1 3:53 � 10�2 8:24 � 10�3 8:61 � 10�4 5:26 � 10�4

the errors themselves. Finally, the calculation times show that the model reduction
would be very efficient if the quality of the snapshots could be improved. Table 5
shows that the additional effort leads both to sufficiently small reduction errors and
still very efficient calculation times: With three steps, the a-posteriori error estimator
guarantees that the reduced order model error is below the discretization error of the
full order model. Solving the reduced-order problem lasts 51.61 s with this strategy
which is just 4.24 % of the full-order calculation time. Þ

9 Conclusions

We have presented a combination of adaptive OS-POD basis computation and a-
posteriori error estimation for solving linear-quadratic optimal control problems
with bilaterally control and state constraints. The considerations started from a basic
POD Galerkin approach, where the quality of the reduced order model is controlled
by an a-posteriori error estimate. In the context of optimal control it turned out to be
important that the POD basis is not computed from arbitrary control and state data,
but models more or less their optimal course. We succeed in providing convincing
numerical tests for the combination of OSPOD and a-posteriori error analysis.
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