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Abstract In this work we apply the high-order discontinuous Galerkin spectral
element method (DGSEM) with explicit Runge-Kutta time integration to a classical
square duct channel flow problem, which is a widely used benchmark case for
turbulent flows. We show that due to its good scale resolving capabilities and low
dispersion and dissipation errors DGSEM is a suitable alternative to both finite
difference and finite volume methods in the field of LES and DNS. We demonstrate
the computational efficiency and parallel scalability of the scheme by performing
both DNS and LES simulations of the channel flow at a Reynolds number of
Re� D 395. We employ an implicit closure strategy for the subgrid fluxes in the LES
setting and show that our results are on par with reference results from literature.

1 Introduction

Direct numerical simulation (DNS) and to a lesser extent large-eddy simulation
(LES) of compressible flows are the most accurate but also most costly tools in
computational fluid dynamics. They have thus mostly been applied to a range of
selected problems, which could be characterized by having a rather simple geometry
and low to medium Reynolds numbers, in contrast to the very complex geometries
and high Reynolds regimes of RANS simulations typically used in an industrial
setting. However, for LES and DNS to become affordable to a wider audience,
numerical methods need to be more efficient and accurate and at the same time
harness the computing power of today’s parallel compute architectures. The first
time DG methods appeared in literature was in the early 1970s, where Reed and
Hill [30] and Lesaint and Raviart [26] applied them to neutron transport equations.
In the early 1990s research interest in the field of DG arose again after a series of
papers by Cockburn and Shu [12, 13], who found a DG formulation for non-linear
hyperbolic systems. Several years later Bassi and Rebay extended the method for
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the compressible Navier-Stokes equations [1, 3], paving the way for DG to become
a practical tool in CFD. Further notable research for viscous problems has been
conducted by Cockburn and Shu [14] and Warburton et al. [34].

It was also Bassi and Rebay [2] who pointed out that DG methods require
a high-order boundary representation to retain their high-order of accuracy near
curved boundaries. This has been identified [23] as a key problem for the industrial
application of DG methods, where complex geometries are required. Since then
several approaches have been proposed to generate curved meshes [17, 20].

For a long period of time DG methods for LES and DNS have only been of minor
interest, research was largely focused on high Reynolds number RANS [4, 18, 28].
However, in recent years two mentionable large-scale projects [23, 24] with focus on
RANS-DG found that while DG methods are more accurate per degree of freedom
than existing first and second order methods, they still could only in few cases beat
these state-of-the-art methods in terms of overall efficiency. This is mostly due to
the large system matrices of the implicit schemes occurring for higher polynomial
degrees and a lack of DG-optimized preconditioners, which are at the present time
an active topic of research [7, 8].

On the other hand high-order DG has rarely been applied to LES and DNS,
despite the methods superior scale resolving capabilities and highly parallel nature.
In [16], Gassner and Kopriva showed that for DG methods at high polynomial
degrees, while dispersion and dissipation already being very low, the remaining
dissipation even exhibits a spectral cut-off like behavior, providing an accurate
numerical representation over a wide range of scales. In [15], Gassner and Beck
carried out under-resolved DG simulations of a homogeneous isotropic turbulent
flow and could considerably outperform finite volume schemes using a de-aliased
discontinuous Galerkin spectral element framework. Several other authors conclude
that high-order methods are beneficial for the use in LES and DNS settings
[5, 10, 29, 33] and are on par or superior to standard finite difference or finite volume
methods in terms of accuracy and efficiency.

In this work we demonstrate the capabilities of our high-order explicit DGSEM-
based solver Flexi at the example of a turbulent incompressible channel flow at a
Reynolds number of Re� D 395. For this type of channel flows extensive literature
is available, we compare against the reference DNS results by Moser [27]. We
first carry out a DNS to validate our framework against the reference results and
followed by a “no-model” LES relying solely on the unmodified DG operator to
provide sufficient numerical dissipation and on de-aliasing to prevent integration
instabilities.

We start by deriving the DGSEM method for the Navier-Stokes equations in
Sect. 2. In Sect. 3.1 we describe the simulation setup and present the results of the
DNS and LES computations in Sect. 3.2. In Sect. 4 we briefly summarize the work
carried out and discuss the results as well as potential advantages.
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2 Numerical Methods

We will now briefly derive the basics of the discontinuous Galerkin spectral element
method in three space dimensions. A detailed description of this particular method is
available in [19], while for a general overview of DGSEM we refer to Kopriva [22].
We start by subdividing the domain˝ 2 R

d into non-overlapping grid-cells Q with
a surface @Q. As DGSEM inherits the ideas from the spectral element methods,
the grid cells need to support a tensor-product structure. This limits the method to
quadrilateral (d D 2) and hexahedral (d D 3) elements. To recover some flexibility,
the mesh can be unstructured and may also contain hanging nodes, though we will
not describe the latter for simplicity.

2.1 Weak Formulation

In this work, we consider solutions to the compressible Navier-Stokes equations,
which can be written as a system of conservation laws

Ut C rx � F.U;rxU/ D 0; 8 x 2 ˝; t 2 R
C; (1)

where U D U.x; t/ denotes the vector of conserved quantities. The corresponding
fluxes can be decomposed into F D Fa.U/ � Fv.U;rxU/ with the advection
component Fa and the viscous part Fv . For the treatment of the solution gradients
rxU we employ the BR1 scheme by Bassi and Rebay [1]. As a first step we
rewrite (1) as a system of first order equations

Ut C r x � F.U; S/ D 0;

S � r xU D 0:
(2)

We now transform the equations from physical space x into reference space �,
with the associated inverse mapping x.�/. The equations in the reference element
E D Œ�1; 1�d read

JUt C r � � F .U; S/ D 0;

JS � r �U D 0
(3)

with the Jacobian J D J.�/ of the mapping and the transformed fluxes F .
For the variational formulation we multiply by a polynomial test function �.�/

and integrate over the reference element
Z

E

�
JUt C r� � F .U; S/

�
� d� D 0;

Z
E

�
JS � r �U

�
� d� D 0:

(4)
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We subsequently integrate by parts to split the fluxes into volume and surface
contributions

@

@t

Z
E

JU� d� C
I
@E
.F� � n/� ds �

Z
E
F � �r ��

�
d� D 0;

Z
E

JS� d� C
I
@E
.U� � n/� ds �

Z
E

U � �r ��
�

d� D 0:

(5)

Here, n denotes the outward pointing normal vector at the element boundary and
.F��n/ and .U��n/ the fluxes and states at the boundary. In the DG setting we permit
the state as well as the gradients between two elements to be discontinuous, and thus
we have to define a unique value at the interface. This approximation depends on
the solution on the left and right of the interface denoted by ˙

F� � n D F�
a .U

�;UC/� 1

2
.F�

v .U
�; S�/C F�

v .U
C; SC// ; (6)

U� D 1

2
.U� C UC/: (7)

The advective part of the flux F�
a .U

�;UC/ is approximated by a numerical flux
function according to Roe’s method [31]. The central approximation for the unique
state U� and flux F�

v of the viscous part follows from the BR1 scheme [1].
For the time integration of the semi-discrete problem resulting from (5) we

rely on explicit Runge-Kutta methods in various low-storage formats. For the
present simulations the well-known 5-stage fourth order Williamson type scheme
by Carpenter et al. [9] is used.

2.2 Numerical Approximation

As a next step we approximate the solution, its gradients and the fluxes by a tensor-
product basis of 1D Lagrange polynomials `.�/

U.�; t/ D
NX

i;j;kD0
OUijk 

N
ijk.�/;  N

ijk.�/ D `N
i .�

1/`N
j .�

2/`N
k .�

3/;

F d.�; t/ D
MX

i;j;kD0
OF d
ijk 

M
ijk.�/; Sd.�; t/ D

NX
i;j;kD0

OSd
ijk 

N
ijk.�/; d D 1; 2; 3

(8)

with the nodal degrees of freedom OUijk; OF d
ijk;

OSd
ijk. Note that due to the non-linearity

of the fluxes with respect to the solution, we want to use a higher polynomial degree
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M to represent these, while we employ degree N for the solution as well as the
gradients, with M � N.

For evaluating the integrals in (5) we rely on Legendre-Gauß quadrature.
Following the Galerkin ansatz we choose the test functions �.�/ to be identical
to the basis functions `.�/. By collocating the quadrature points and interpolation
points we can write the volume integral as

Z
E
F d.U;rxU/

@�

@�d
d� �

MX
l;m;nD0

MX
i;j;kD0

OF l
ijk 

M
ijk.�

M
lmn/

@�

@�d

ˇ̌
ˇ̌
�D�pqr

!M
p !

M
q !

M
r

D
MX

l;m;nD0
OF d
lmn

@�

@�d

ˇ̌
ˇ̌
�D�pqr

!M
l !

M
m !

M
n ; (9)

Z
E

Sd.U/
@�

@�d
d� �

NX
l;m;nD0

OSd
lmn

@�

@�d

ˇ̌
ˇ̌
�D�pqr

!N
l !

N
m!

N
n ; (10)

where ! denotes the integration weights.
As the fluxes depend nonlinearly on the solution, they are of degree 2N in the

incompressible and 3N in the compressible case and can thus be integrated exactly
with M D 3

2
N and M D 2N following the Legendre-Gauß quadrature rule. The

error resulting from a lack of integration accuracy is referred to as aliasing and
can severely degrade the solution quality and introduce instabilities. We therefore
refer to the process of exactly integrating the fluxes as polynomial de-aliasing. The
de-aliasing not only increases accuracy but also leads to an improved robustness
of the numerical scheme as a side effect. On first sight the idea of polynomial de-
aliasing increases the schemes complexity and seemingly sabotages the benefits of
collocation due to the different polynomial degrees of the solution and the fluxes.
However, this is not the case, as the de-aliasing can be implemented efficiently by
the means of a modal cutoff filter. Instead of choosing two different polynomial
degrees we start with a standard DGSEM scheme using polynomial degree M and
equally represent the solution U on M C 1 Gauß-Legendre quadrature points. We
define a modal cutoff filter

�j D
(
1 j 2 Œ1;N�
0 j 2 ŒN C 1;M�

(11)

where �j are the coefficients of the filter matrix and apply this filter to the modal
represent of U each time it is updated, i.e. after every Runge-Kutta stage. This
guarantees U staying a polynomial of degree N, while all integrals are evaluated
on M C 1 points.
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3 Turbulent Channel Flow

A direct numerical simulation (DNS) of a generic turbulent channel flow between
two plane-parallel walls has been conducted. Furthermore, to illustrate the perfor-
mance of the DGSEM for under-resolved computations, large-eddy simulations on
various meshes have been conducted.

Extensive DNS data is available from Moser et al. [27] for a variety of Reynolds
numbers. These test cases have often been used for LES. In 2000, Lenormand et al.
[25] simulated compressible flows for Mach numbers Ma D 0:5 and Ma D 1:5,
using a fourth order finite difference method and explicit SGS modelling with
the Smagorinsky model and a variation of a mixed-scale model. A high order
Chebyshev multi-domain staggered-grid method with polynomial degrees of N D 6

and N D 10 has been used for under-resolved DNS of a subsonic channel flow
at Ma D 0:4 by Jacobs et al. [21] in 2005. An explicit LES of the same channel
flow has been conducted by Sengupta et al. [32], using a high order spectral multi-
domain method with the dynamic Smagorinsky model. More recently, Carton de
Wiart et al. [11] successfully tested a fourth order DG scheme for under-resolved
DNS of the channel flow at a friction Reynolds number Re� D 395, based on the
friction velocity u� which is linked to the averaged wall shear stress, u� D p

�w=�.
A further DG investigation of this problem has been carried out by Wei et al.
[35] who performed direct numerical simulations at Re� D 180; 186; 208 with
the corresponding Mach numbers Ma D 0:2; 0:7; 1:5 at N D 9 applying over-
integration to prevent aliasing similar to our strategy.

3.1 Simulation Setup

The numerical setup follows the DNS performed in [27] for the case with Re� D
395. The flow features high Re-effects but the Reynolds number is low enough to
keep the computational costs manageable. The geometry is chosen as two plane-
parallel walls with Dirichlet type, isothermal, no-slip boundary conditions (BC),
where the velocity at the wall is zero and the temperature is constant while in
streamwise and spanwise directions periodic BC are applied. Figure 1 shows the
channel with mean flow direction and BC. The dimension of the domain is chosen

Fig. 1 Geometry of the
channel with mean flow
direction. The filled grey
walls are equipped with
Navier-Stokes boundary
conditions. The other
boundary conditions are set
as periodic
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as 2�ı��ı�2ı in x; y; z directions, where x; y; z denote the streamwise, wall-normal
and spanwise directions.

The geometry is simple and due to the periodic BC it resembles two planes that
are infinite in streamwise and spanwise directions. This allows for the development
of homogeneous turbulence in both directions, while in wall normal direction
turbulence is anisotropic and near-wall effects can be studied.

Due to the streamwise periodic BC, a forcing term has to be applied to supply
a pressure gradient. The formulation is taken from Benocci and Pinelli [6], using a
time dependent body force that maintains a constant mass flow rate.

The grid parameters for the DNS are chosen to capture all flow phenomenas for
Mach number of 0.1 which is corresponding to the reference of Moser et al. [27].
The resulting non-dimensional length scales alongside the number of elements are
listed in Table 1. Here	yC

c gives the y-resolution at the center line. The polynomial
degree of the solution is N D 5 resulting in 83:1 � 106 degrees of freedom.

For the LES, three different grids are used, where the polynomial degree of
the solution remains constant, N D 7, and the number of elements is varied to
investigate h-convergence. We apply an incomplete polynomial de-aliasing strategy
detailed in Sect. 2.2 with two de-aliased modes (M D 9) as opposed to the
four modes required for complete de-aliasing. The three grids considered contain
35�12�18, 20�17�17 and 12�17�8 elements in x; y; z-directions. This results
in 3:87 � 106, 2:95 � 106 and 0:84 � 106 degrees of freedom, which is significantly less
than in the DNS case. While the first case is best resolved in stream- and spanwise
direction, the second and third case are better resolved in wall-normal direction
though having less degrees of freedoms. The meshes are displayed in Fig. 2.

In contrast to the DNS and the simulation performed by Moser et al. [27], we
choose a Mach number Ma D 0:4 for the LES to obtain larger convection dominated
time steps. It was found that the flow field shows only negligibly small signs of
compressibility.

For initialization of the LES, an asymmetric velocity profile is chosen instead of a
laminar velocity profile used for the DNS. Though non-physical, the new approach

Table 1 Grid and geometry
parameters of the direct
numerical simulation

Re� Cells W Nx � Ny � Nz 	xC 	yC
c 	zC

395 86 � 66� 64 4:70 3:82 3:12

X

Y

Z
(a) X

Y

Z
(b) X

Y

Z
(c)

Fig. 2 Meshes of the channel geometry. (a) 35� 12� 18, (b) 20� 17� 17, (c) 12 � 17� 8
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Fig. 3 Initialization of
channel flow with a
polynomial, superimposed by
a tanh-function, a laminar
velocity profile and the fully
turbulent profile from [27]

y [-]

<
u>

 [-
]

-1 -0.5 0 0.5 1
0

0.5

1

1.5

Initialisation
DNS
Laminar Channel Flow

yields a quicker transition to turbulence and thus reduces computation time. We
did not thoroughly investigate its influence on the solution, instead we rely on a
sufficiently large time-averaging period to make up for eventual side effects. A
polynomial is interpolated to fit the velocity gradient at the wall and the maximum
velocity at mid channel. It was then superimposed by a tanh function to obtain an
inflection point at y D 0:

u.t D 0/ D �0:5y6�0:5476y4�0:2y2C1:2476C0:075 tanh.25y/.1�y2/: (12)

The velocity profile is shown in Fig. 3, compared to the fully turbulent profile
from [27] and the laminar velocity profile. The mean value for all three profiles is
identical, resulting in the same mass flow and contained energy. Finally, random
fluctuations ffluc are added to all initialization profiles.

3.2 Results for DNS and LES

An impression of wall-bounded turbulence is given in Fig. 4, where we visualize the
coherent structures of the DNS results, using the 
2 vortex detection criterion.

The following paragraphs set out to address the DNS computation. Figure 5 (left)
shows the averaged velocity profile normalized by the friction velocity in wall-
coordinates uC D hUi=u� and yC D y u�=�. The results obtained by DGSEM are in
very good agreement with the reference DNS. The velocity variance hu1u1i shows a
slight difference above yC D 75, as presented in Fig. 5 (right).
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Fig. 4 
2-isosurfaces colored by streamwise velocity

y+

<U
+ >

10-1 100 101 102
0

2

4

6

8

10

12

14

16

18

20

DG_N5
DNS_Moser

y+

<u
iu

j>
/u

t2

0 50 100 150 200 250 300 350
-1

0

1

2

3

4

5

6

7

8

<u1u1>/ut
2_DG_N5

<u1u1>/ut
2_DNS_Moser

<u2u2>/ut
2_DG_N5

<u2u2>/ut
2_DNS_Moser

<u1u2>/ut
2_DG_N5

<u1u2>/ut
2_DNS_Moser

Fig. 5 Time- and spanwise-averaged velocity profile (left) and velocity fluctuations uiuj=u� (right)
in wall units

A possible cause for this deviation may be an insufficient time averaging period.
On the other hand, the velocity variance hu2u2i and covariance Reynolds shear
stress hu1u2i are almost perfectly superimposed on the reference data. One further
expected characteristic of a wall bounded flow is that the production and dissipation
of turbulent kinetic energy (TKE) will be approximately in balance inside the
logarithmic region. However the results also confirm the observation by Moser
et al. [27] that the ratio is slowly increasing over the log range, as shown in Fig. 6.
Despite the small oscillations in the balance region, the profile is well captured.
Details of computational cost of the DNS are summarized in Table 2, where the
characteristic time T� D ı=ub is chosen in relation to the characteristic length scale
ı and the streamwise bulk velocity ub.

We now discuss the results of the large-eddy simulation. Since a newly developed
velocity profile has been used for initialization, the temporal development of the
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y+
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2
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Fig. 6 Production (P) to dissipation (�) ratio of TKE in wall units

Table 2 Computational setup and cost of the direct numerical simulation

Case DOFs 	t=T� Cores Cells/core TCPU=T�[h] Trun=T�[min]

N D 5 83:1 � 106 3:1 � 10�4 8196 47 702 5:2

flow during the transient stage is depicted in Fig. 7 in terms of the streamwise
force. After initialization, the simulation oscillates mildly due to the initial velocity
fluctuations. For t > 40, the fluctuations are damped while the mean force in
streamwise direction is slightly decreasing. Due to the non-physical velocity profile
at t D 0, the flow solution obtained in this region is referred to as quasi-laminar
flow.

Eventually, each simulation reaches the transitional regime, indicated as the
rapid increase in streamwise force, representing the increased pressure gradient
due to larger friction induced by turbulent wall shear stresses. Here the second
case with the best wall-normal resolution is the first to make the transition at
t � 110, while for both other cases transition occurs considerably later at roughly
t � 170. Interestingly, these other cases show fluctuations during transition when
the force in streamwise direction is near 0:08; this behaviour cannot be observed
for 20 � 17 � 17. As the turbulent regime is reached, each simulation settles for a
mean force of approximately 0.130–0.132, while fluctuating with an amplitude up
to approximately 0:01. This state is kept for the remainder of the simulation, with
some perturbations of larger scale but without visible periodicity.

Turbulence statistics have been obtained by time averaging over a period of	t D
100 ub=ı, corresponding to approximately 16 flow-throughs. The characteristic
parameters, or wall units, for inner scaling, wall shear stress �w and friction velocity
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t [-]
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Fig. 7 Temporal development of the force in streamwise direction

Table 3 Overview over turbulent parameters for the LES calculations, compared to the DNS
results from Moser et al. [27]

35 � 12� 18 20� 17� 17 12� 17� 8 DNS [27]

Re� [-] 392.09 391.52 394.03 392.24

�w [-] 3:322 � 10�3 3:312 � 10�3 3:355 � 10�3 3:325 � 10�3

u� [-] 5:764 � 10�2 5:755 � 10�3 5:792 � 10�2 5:766 � 10�2

uc [-] 1.146 1.152 1.155 1:161

yC
1 , cell [-] 17.54 8.54 8.64 –

u� , are calculated as averaged mean values over both channel walls. An overview
over these parameters, Re� and the velocity at the channel centre uc is given in
Table 3 along with the spatial resolution in wall units. Case 35 � 12 � 17, with
Re� D 392:09, comes very close to the DNS value, whereas the coarser grid
20 � 17 � 17 further underestimates it with Re� D 391:52 and the coarsest grid
overestimates it with Re� D 394:03. Both �w and u� behave similarly. More
interestingly, the center-line velocity uc comes closest for the coarse mesh, the
relative error compared to Moser et al. [27] is only 0:53%, while for 35 � 12 � 18
it is underestimated by 1:26%.

For profiles of mean velocities and Reynolds stresses, the statistics are averaged
in both homogeneous directions, yielding profiles varying only in wall-normal
direction y. For visualization, the solution is interpolated on a grid with NVisu D 20

interpolation points, equidistantly distributed in each element.
For each mesh, the streamwise mean velocity is very close to the DNS by Moser

et al. [27]. At the wall, all simulations are identical and meet the correct gradients.
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Only from the buffer region at yC > 10 they deviate. At the beginning of the
log-layer, at yC � 12, they all underestimate the DNS. This can be attributed to
the underestimation of centre velocity uc, however, 12 � 17 � 8 features also an
overestimation in friction velocity while uc is larger than for the other cases. Both
effects contribute to the behavior of mean velocity uC. The largest deviation from
the DNS is reached by 12 � 17 � 8 in the buffer layer and by both 35 � 12 � 18

and 12 � 17 � 8 at the channel center-line. Furthermore, at those locations, the
deviation between the DGSEM results themselves is most distinctive. As a measure
of accuracy, the relative L2-error norm, normalized by the L2-norm of the solution
by Moser et al. [27], and the L1-error has been calculated. Both yield best results
for 20�17�17with L2.uC/ D 1:147�10�2 and L1.uC/ D 2:535�10�1 (Fig. 8).

The more challenging profiles of Reynolds stresses hu0
iu

0
ji are plotted as functions

of the wall distance in Fig. 9a–d. .�/C indicates a representation in wall units,
i.e. the stresses are normalized by u2� . The shear stresses .u0w0/C and .v0w0/C are
theoretically zero and are therefore omitted in the figure.

The general observation for all Reynolds stresses is that the fine grid predicts
the solutions closest to the DNS values. Especially at the wall, except for the
spanwise stress .w0w0/C, all simulations reproduce the gradients exactly, including
the accurate location of the peak values. The spanwise stress, however, shows
a larger deviation for the coarsest mesh which is attributed to inferior spatial
resolution in the spanwise direction.

The streamwise normal stress in Fig. 9 is underestimated for every mesh.
Especially the small peak value is in literature often considered an indication of

y+ [-]

u+  [-
]

100 101 102
0

5

10

15

20

DNS
35x12x18
20x17x17
12x17x8

Fig. 8 uC in logarithmic-normal representation, plotted over yC for different meshes. DNS for
comparison is taken from [27]
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Fig. 9 Reynold stresses (a) .u0u0/C, (b) .u0v0/C, (c) .v0v0/C, (d) .w0w0/C in normal-normal
representation. Each profile is plotted over yC. DNS for comparison is taken from [27]

under dissipative behavior [21, 25]. This assumption is supported by the fact that
the coarsest simulation, which is expected to be the most dissipative one, reaches
the maximum slightly closer to the wall and with a larger magnitude. However, the
results for the streamwise normal stress deviate only little from each other, the same
accounts for the shear stress .u0v0/C, displayed in Fig. 9b.

A general trend, regarding the solution quality of the remaining Reynolds stresses
depending on the h-resolution is found only close to the wall. There, the wall
normal stress .v0v0/C (Fig. 9c) reduces its magnitude for coarser meshes, while the
spanwise stress .w0w0/C (Fig. 9d) predicts the opposite behavior.

In conclusion, 35�12�18 produces the best results, caused by its superior spatial
resolution in spanwise and streamwise directions. As expected, the largest errors
occur with the coarse mesh but, nevertheless, the solution is still close to the DNS,
although there is no explicit SGS model active. The results of the LES, or under-
resolved DNS, indicate that the high-order approximation is capable of resolving
a large range of scales, while the polynomial de-aliasing provides stability and the
numerical dissipation accounts for the subgrid effects.
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4 Conclusion

In this work, we have demonstrated that high-order discontinuous Galerkin methods
are inherently well suited for the simulation of turbulent flows at moderate Reynolds
numbers. We have chosen a well investigated square duct channel flow at Re� D 395

as a benchmark case and carried out a direct numerical simulation as well as a
“no-model” large-eddy simulation, where we do not use any explicit or implicit
subgrid scale model. For the LES we apply incomplete de-aliasing to greatly reduce
integration errors and render our simulations accurate and stable. We show that for
both the DNS and the LES our results are in good agreement with the reference
results from literature, despite the LES having significantly less degrees of freedom
then both DNS. Due to the schemes excellent parallel scalability several thousand
cores could be used for the DNS with 83 � 106 DOFs. Unlike finite difference
schemes our numerical framework is fully unstructured and can be applied to more
complex flows and geometries in a straight-forward fashion. We conclude that DG
methods are favorable for scale-resolving simulations and are capable of delivering
high-fidelity results not only in well-resolved but also in under-resolved settings,
for moderate Reynolds numbers even without a necessity for explicit subgrid scale
modeling.
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