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Abstract In this paper, we are concerned with the simulation of blood flow and
mass transport in vascularized human tissue. Our mathematical model is based on
a domain decomposition approach, i.e., we separate the blood vessel network from
the tissue and assign different flow and transport models to them. In a second step,
the different models are coupled in a weakly consistent way. Flow and transport
processes within a 3D tissue are governed by standard equations for porous media
flow while within the larger blood vessels less complex 1D models can be used, and
the smaller blood vessels can be even treated by 0D lumped parameter models. This
results in a 3D-1D-0D coupled multi-scale model. By means of this tri-directionally
coupled system, the influence of a peripheral stenosis on tissue perfusion and
oxygen supply is investigated.

1 Introduction

Mathematical models have become more and more important in many applications
from medicine and biology [5, 6, 8, 10]. In this paper, we are concerned with the
simulation of blood flow and mass transport, e.g. oxygen transport, from the heart
through the arterial vessel system to the peripheral vessels and tissue. In particular,
the impact of peripheral arterial stenoses on blood flow and oxygen supply is investi-
gated. A stenosis is an abnormal narrowing in a blood vessel. Such a narrowing may
arise from atherosclerosis, a specific form of arteriosclerosis, which is caused by
the accumulation of fatty plaques and cholesterol. Typically, it appears in large- or
middle-sized arteries. A stenosis causes pressure drops and reduced oxygen supply,
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ischemia in the distal tissue results. If a stenosis is located in the distal part of an arm
or a leg, it is called peripheral stenosis [18]. “Distal” is a term used in anatomy to
describe parts of a feature that are respectively distant from a certain reference point.
The counterpart is the term “proximal” describing parts of a feature that are close to
a certain reference point. For our model we use the heart as a reference point.

Modeling blood flow and transport processes from large vessels down to the
capillaries is a very complex matter, since one has to simulate flow on different
scales through a huge number of vessels. To resolve every vessel within the arterial
tree is unaffordable in terms of numerical simulation. Therefore, we take only the
most important arteries of the vessel system into account, i.e., we truncate the
network after some bifurcations. In the larger vessels the flow is fast compared
with the flow in the arterioles and the rather diffusion-dominated flow in the
capillaries and tissue. Because of this heterogeneous flow behavior, we require for
the numerical modeling a scheme that uses small time steps for the fast flow region
and large time steps for the slow flow region. In order to keep the computational
costs low, it is necessary to establish for the network flow a model which causes low
computational effort in each time step. In this context, 1D reduced models proved
very effective [4, 6, 9, 10].

To determine flow and transport through a whole network, a domain decompo-
sition approach has been applied, i.e., the network is split into its single vessels
and the reduced 1D models are assigned to each vessel. At each bifurcation, the
adjacent 1D models are coupled by an algebraic system of equations. The resistance
and compliance of the omitted vessels are accounted for by lumped parameter
models [1] which are given by a system of ordinary differential equations (ODEs,
0D models). The influence of a stenosis is also simulated by lumped parameter
models presented in [20].

Flow and transport processes from the blood vessels into the surrounding tissue
are modeled with the help of the coupling strategies presented in [6, 7]. In these
publications, human tissue and the feeding capillaries are regarded as a 3D porous
medium. Within the porous medium, flow and transport are governed by a diffusion-
reaction equation, Darcy’s law and a convection-diffusion equation.

The paper is structured as follows: In Sect. 2, we present some mathematical
models governing the flow and transport processes in the vessels and tissue.
Furthermore, we explain in detail, how the network and tissue models are coupled.
In the following section (Sect. 3) a short description of the numerical discretization
can be found. Our simulation results are discussed in Sect. 4. Finally, we make some
concluding remarks (Sect. 5).

2 Mathematical Model

For our numerical simulations we consider an arterial network presented in [19, 22].
It consists of the 55 main arteries of the human blood vessel system. In order to
model a peripheral stenosis, we place a stenosis in the middle of artery 54 (posterior
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Fig. 1 Arterial network consisting of 55 large and middle sized arteries. In artery 54 a stenosis
is placed to simulate the influence of reduced blood flow and oxygen transport on distal tissue
[22] (left). The small arteries, capillaries and tissue in the red rectangle are considered as a porous
medium and put together with the larger arteries in a cuboid (right). Flow and transport within the
arterial tree and the porous medium are governed by a 3D-1D-0D coupled multi-scale model

tibial artery, see Fig. 1, left). Since only the local impact of the stenosis on tissue
perfusion is of interest, not the entire network is embedded into tissue, but only
artery 54, 55 and the distal third of artery 53 are coupled with the surrounding
tissue (red rectangle in Fig. 1, left). These vessels or vessel parts form a subnetwork
SN consisting of four vessels V1; V2; V3 and V4. By V1 we denote the distal third
of artery 53, by V2 the proximal part of artery 54. V3 indicates the distal part of
artery 54 and V4 is identical with artery 55 (see Fig. 2, left). In the following, we
present some models for the arterial network flow and transport, the stenosis and
the coupling of flow and transport in the tissue with the subnetwork SN .

2.1 Model for Arterial Network Flow and Transport

In this subsection, we give a description of the domain decomposition approach
providing the basis for our network model.

2.1.1 Flow and Transport Through a Single Vessel

The non-linear 1D system of transport equations for the i-th arterial vessel having
the length li Œcm� and the section area A0;i

�
cm2

�
is given by Alastruey et al. [1] and
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D’Angelo [6, Chap. 2].
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where Ai; Qi; �i and pi denote the section area, average volumetric flux, averaged
concentration and mean pressure of the i-th vessel, i 2 f1; : : : ; 55g, respectively. �

is the blood density. The coefficient Kr is a resistance parameter linked to the blood
viscosity �: Kr D 22��

�
. �A and �C will be specified in Sect. 2.2.1.

If G0;i and A0;i are constant along z, a suitable way to close this system is to
provide an algebraic relation between the pressure and the vessel area Ai:

pi.z; t/ D G0;i

 s
Ai

A0;i
� 1

!

; G0;i D
p

�h0;iEi

.1 � 	2/
p

A0;i

; (4)

where Ei is the Young modulus, h0;i is the vessel thickness and 	 is the Poisson ratio.
An analysis of the characteristics of system (1)–(4), reveals that changes in pressure,
flow rate and concentration are propagated by W1;i, W2;i and W3;i [6, Chap. 2]:

W1;i D �Qi

Ai
C 4
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2�
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� 1
4
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C 4
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� 1
4

; W3;i D �i

Ai
;

(5)

where under physiological conditions, it can be shown that W1;i is a backward and
W2;i is a forward traveling wave. The propagation of W3;i depends on the sign of Qi.

2.1.2 Bifurcations

At a bifurcation the adjacent 1D models are coupled by an algebraic system of
equations providing for each time step the missing boundary conditions. Every
subsystem requires three boundary values. Therefore nine equations have to be
established. The first three equations are obtained from the characteristics which
leave the vessels. According to the previous subsection there is for the AQ-
variables at least one outgoing characteristic at each boundary. Three further
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equations are derived from mass conservation and the continuity of the total
pressure pt.

pt D 1

2
�

�
Qi

Ai

�2

C G0;i

 s
Ai

A0;i
� 1

!

: (6)

These six equations form a subsystem for the flow variables A and Q [19, 22]. In
order to obtain the boundary values for the concentration variable � one has to
check first, how many values can be determined by standard upwinding. Depending
on that, the system is closed by the continuity of the volumetric concentration
Cv D � =A or a conservation equation. For a detailed discussion of this system of
equations we refer to [14].

2.1.3 Outflow Boundaries

Since we model only a small part of the arterial vessel system by the 1D model (1)–
(4), we have to provide at the outflow boundaries of the network boundary
conditions accounting for the hemodynamic effects of the omitted arteries and veins.
In this context 0D lumped parameter models proved to be very effective. They
are given by a system of ODEs having the pressure and the flow rate as solution
variables.

The ODE system exhibits three parameters R, C and L. R models the resistance
of the omitted vessels, C is the compliance and L incorporates the inductive effects.
By means of this model one can compute the ingoing characteristic. Combined with
the outgoing characteristic and (4) the boundary values for the flow variables A
and Q can be determined. The values for R and C can be found, e.g., in [20]. The
concentration values � are computed by standard upwinding, if blood is leaving the
vessel. Otherwise a boundary value has to be provided externally, e.g., the average
concentration of oxygen in blood: CO2 D 8:75 
mol=cm3. Details about this model
can be found in [1, 15].

2.1.4 Inflow Boundary

Within the considered network (see Fig. 1) we have only a single inflow boundary at
the inlet of the aorta (Vessel 1). In order to model the pulsure of the adjacent heart,
we prescribe the following flow rate profile:

Q.t/ D
(

485 � sin
�

�
T t
�

cm3

s for 0:0 s � t � T;

0 cm3

s for T < t � 1:0 s:
(7)
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For t > 1 it holds: Q.t/ D Q.t C 1/. In medical research, the time period Œ0:0; T�

is referred to as systole, while the time period .T; 1:0� is known as diastole. For our
simulations, we choose T D 0:3 s. Integrating the function in (7) over 1 min yields
that 5:5577 l are leaving the heart within 1 min. This is in agreement with medical
literature [3]. Together with the outgoing characteristic W1;1 the boundary value for
the section area A1 can be computed. For the concentration we prescribe the constant
CO2 : CO2 D �1.0; t/=A1.0; t/.

2.1.5 Stenosis

The 1D model (1)–(4) can not treat vessels with varying section areas A0;i [9].
Therefore the stenosis model described in [20] was incorporated, where the flow
rate qs and the pressure ps within the stenosis are governed by:

Cs
@ps

@t
D Qin � Qout; (8)

� Ku�ls
A0

@qs

@t
D �ps C Kv�

A0D0

qs C Kt�

2A0
2

�
A0

As
� 1

�2

qs jqsj : (9)

Qin and Qout are the flow rates at the inlet and the outlet of the stenosis. The pressure
drop �ps D pout � pin is the difference of the pressures at the outlet and the inlet.
Using (4), the values Qin; Qout; pin and pout are provided by the adjacent 1D models.
Cs is the compliance of the stenosis and ls denotes its length. In this paper, we
choose ls D 3:0 cm. A0 and As define the section areas of the normal and stenotic
segments. D0 and Ds are the corresponding diameters. Further, Ku, Kv and Kt are
empirical parameters: Ku D 1:20, Kv D 32:0 � .0:83 � ls C 1:64 � Ds/ � .A0=As/

2 =D0

and Kt D 1:52.
The ODEs (8) and (9) yield together with (4) two boundary conditions for

the flow variables. The missing conditions are again derived from the outgoing
characteristics. The concentration variables are obtained by standard upwinding and
the continuity of the volumetric oxygen concentration Cv . For further information,
we refer to [15].

2.2 Model for Tissue Flow and Transport

Human tissue can be regarded as an accumulation of cells having a specific task.
However, the cells do not cover the whole tissue volume, between the cells space
saturated with blood can occur, e.g., due to feeding capillaries. For that reason it
is common practice to model flow and transport processes in the tissue by PDEs
governing porous media flow and transport [13, 21]. In this section we outline how
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the PDEs for porous media flow and transport can be coupled with the reduced 1D
models described in the previous section.

Let us denote the 3D porous tissue matrix by ˝ � R
3. The unknowns associated

with the 3D problems are indicated by u3d; u 2 fp; cg. p ŒkPa� stands for the pressure
variable and c

�
mmol/cm3

�
for the volumetric concentration.

The main axes of the vessels V1–V4 belonging to the subnetwork SN in ˝ are
given by curves �i; i 2 f1; 2; 3; 4g and are parameterized as follows:

�i W Œ0; li� ! ˝; s 7! xci.s/:

li is the length of vessel Vi. By this, the corresponding 1D models are linked to their
position within ˝ . Combining the curves �i yields a 1D representation � of the
embedded subnetwork SN : � D S4

iD1 �i.

2.2.1 Tissue Perfusion Problem

The pressure p3d is governed by the following parabolic PDE [6, Chap. 6.3]:

C3d
@

@t
p3d � r ı .K3drp3d/ C ˛p3d � �3d D fp: (10)

The parameter C3d
�
kPa�1

�
denotes the hydraulic compliance of the tissue.

K3d
�
cm2 kPa�1 s�1

�
is the tissue permeability for blood, ˛

�
kPa�1 s�1

�
is the

hydraulic conductance and the source term fp is given by:

fp D ˛pven C qout .t/

Vol
; t � 0; (11)

where pven is the average venous blood pressure, Vol is the volume perfused by the
outlets of vessel V3 and V4. qout.t/ is the sum of the flow rates Qout

3 and Qout
4 at the

outlets of vessel V3 and V4:

qout.t/ D Qout
3 .t/ı�3.l3/ C Qout

4 .t/ı�4.l4/:

ı�i.li/ is a Dirac measure concentrated on the point �i .li/ 2 ˝ .
By �3d we denote an exchange term. It accounts for the blood transfer from

the vessels Vi caused by smaller arteries branching out of them to supply the
surrounding tissue. To decide how much blood volume is leaving Vi, we compare
for every curve parameter s the 1D pressure pi.s/ with an averaged pressure
p3d.s/.

For the computation of this average, one has to integrate p3d on a circle of radius
Ri D p

Ai=� with center xci.s/ and perpendicular to the tangent in xci.s/ (see
Fig. 2, right).
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Fig. 2 Decomposition of the
subnetwork SN embedded in
the tissue block. The vessel
containing the stenosis is split
into two parts. By
Vi; i 2 f1; 2; 3; 4g we denote
the corresponding vessels
(left). Computation of an
averaged pressure value p3d

concerning a circle of radius
Ri around the curve point xc;i

and perpendicular to the
tangent in xc;i (right)

By means of this average, we define a source term � given by the difference
of pi and p3d. The source term is weighted by the proportionality factor Lp;i�
cm kPa�1 s�1

�
to account for the number of arteries that are branching out of

Vi:

� .p3d; pi/ .s/ D 2�RiLp;i

�
pi.s/ � p3d.s/

	
;

p3d.s/ D
Z 1

0

p3d .s; Ri; 2��/ d�; if s 2 Œ0; li� ; i 2 f1; : : : ; 4g : (12)

To embed this quantity into the 3D problem, the source term � is used as a weighting
factor for a Dirac measure ı�i concentrated on the main axis of vessel Vi. All in all
we have for the exchange term �3d:

�3d.s/ D � .p3d; pi/ .s/ı�i ; if s 2 Œ0; li� ; i 2 f1; : : : ; 4g :

The source term �A for the vessels Vi in (1) is: �A D �� .p3d; pi/ and �C in (3) is
given by:

�C.s/ D �� .p3d; pi/
�i

Ai
.s/; if s 2 Œ0; li� ; i 2 f1; : : : ; 4g :

For the remaining vessels which do not belong to SN , we set: �A � 0 and
�C � 0.
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2.2.2 Transport Problem

The transport problem for oxygen concentration in tissue is given by [6, Chap. 6.3]:

@

@t
c3d C r ı .�D3drc3d C vc3d/ C !3dc3d � �3d D fc: (13)

D3d
�
cm2=s

�
denotes the diffusion coefficient for oxygen in tissue. The velocity

field v is provided by Darcy’s law:

v D �K3d

n3d
rp3d; (14)

where n3d denotes the porosity of the 3D tissue volume. The value !3d accounts for
the tissue perfusion, i.e., it quantifies the blood flow rate from the tissue into the
venous vessel system:

!3d D ˛p3d � fp D ˛ .p3d � pven/ � qout .t/

Vol
: (15)

The source term fc is given by the amount of oxygen leaving the network
through the outlets of V3 and V4 and a Michaelis-Menten law for the metabolic
rate:

fc D f out
c � Cco � c3d

c3d;0 C c3d
; (16)

where Cco
�
mmol=

�
cm3 s

��
denotes the consumption rate of oxygen in tissue and

c3d;0

�
mmol=cm3

�
is the average oxygen concentration in tissue. Furthermore f out

c
is given by:

f out
c D Qout

3 � � out
3

Vol � Aout
3

ı�3.l3/ C Qout
4 � � out

4

Vol � Aout
4

ı�4.l4/;

where � out
3 ; � out

4 ; Aout
3 and Aout

4 are provided by the 1D models at the outlets of V3

and V4. �3d is defined as follows:

�3d .c3d; �i; Ai/ .s/ D 2�RiLc;i

�
�i

Ai
.s/ � c3d.s/

�
ı�i

c3d.s/ D
Z 1

0

c3d .s; Ri; 2��/ d�; if s 2 Œ0; li� ; i 2 f1; : : : ; 4g : (17)
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It can be considered as a penalization term to weakly enforce the condition �i
Ai

D c3d.
The average values c3d are computed analogous to the average values concerning
the pressure (12). �i=Ai D c3d means that the cross-sectional concentration at the
actual vessel surface equals the vessel concentration �i=Ai. This is the case, if the
blood flow leakage term � is positive, which is our hypothesis. In general one has
to check, if � > 0 holds to treat �i as a source for the tissue matrix. The parameter
Lc;i

�
cm s�1

�
accounts for the permeability of the wall of vessel Vi. As boundary

and initial conditions for the Tissue perfusion and Transport problem, we
choose:

K3d
@p3d

@n
D 0;

@c3d

@n
D 0; t > 0; x 2 @˝; p3d .x; 0/ � 0; c3d .x; 0/ � 0; x 2 ˝;

where n is the outer normal in x 2 @˝ . By these boundary conditions we enforce
that there is no flux across the skin and other interfaces.

3 Numerical Discretization

The numerical solution of the 3D-1D coupled problems (10) and (13) is computed
by multiple time-stepping schemes [2, 11]. These schemes have been introduced
for time dependent problems in which partitioning into in slow and fast variables
is meaningful. As we already pointed out in the introduction (see Sect. 1), flow and
oxygen transport in the arteries is fast compared to flow and oxygen transport in the
tissue. Capturing the fast wave propagation within the 1D network, small time steps
are required to resolve it. On the other hand it is desirable to exert large time steps
for the computational expensive 3D problems.

As a time stepping method for the 1D transport equation systems, we use the
third order SSP Runge Kutta scheme [12] which is total variational diminishing
(TVD). However, it requires a time step restriction which is at least as strict as the
one for the forward Euler method. This property is no drawback in this context,
because small time steps are needed for the fast flow and transport. Furthermore
one time step for the 1D problems cause no great computational effort compared
to the 3D problems. For the space discretization, higher order discontinuous
Galerkin (DG) methods are applied. In the vicinity of steep gradients or disconti-
nuities, the numerical solution is stabilized by hierarchical slope limiter techniques
[16, 17].

Since the backward Euler scheme is unconditionally stable concerning the choice
of the time step size, we use this scheme for the time integration in 3D. The
spatial discretization is based on cell centered Finite Volumes which are robust and
incorporate the conservation of mass. The 3D and 1D problems are coupled by a
multiple time stepping scheme algorithm (see Fig. 3). Concerning the 3D time step
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Fig. 3 Multiple time stepping scheme for the tissue perfusion problem. The transport problem can
be treated in the same manner

h
t.n/
3d ; t.nC1/

3d

i
we have the following two phases:

1. We exert m micro-steps of step size �t1d of the 1D network problem, where we
use for every sub step the last computed 3D solution.

2. We advance by one macro-step of the 3D problem (step size �t3d), using the last
computed 1D solution.

For our simulations we use m D 100.
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4 Results and Discussion

Using the numerical model developed in the previous sections, we present in this
section some simulation results on the influence of an arterial stenosis in a leg
artery (artery 54, right posterior tibial artery). The degree of the stenosis is varied
between 0 %, 90 % and 100 %. For 0 % and 90 % we set As in (9) to A0 and 0:1 � A0,
respectively. In the case of an occlusion (stenosis degree 100 %), we set the ingoing
characteristic W1;54 at the outlet of the distal part of artery 54 to the negative value
of the outgoing characteristic, i.e.: W1;54 D �W2;54. By this, a full reflection at the
stenosis is simulated. The computational domain for the porous matrix ˝ is given
by: ˝ D 15 � 15 � 50 cm.

In the following Tables 1 and 2, several parameter values and some additional
information concerning the vessels V1-V4 can be found. The mid axes �i are given
by cubic splines through the coordinates, where the tangents of the splines at
the beginning and the end of the spline are equal to the provided tangents. The
coordinates and tangents are listed in Table 3.

The different lengths, radii and the remaining vessel parameters are pro-
vided in [20, 22, Table 1]. For the simulation time we consider a period of
20 s.

Table 1 List of the fluid
parameters, Poisson ratio and
porous media parameters
for (10) and (13)

Physical parameter Sign Value Unit

Blood density � 1.028 g=cm3

Blood viscosity � 4.500 mPa s

Poisson ratio 	 0.500 –

Compliance C3d 0.01 kPa�1

Hydraulic permeability K3d 0.1 cm2 kPa�1 s�1

Hydraulic conductance ˛ 9:4 � 10�4 kPa�1 s�1

Venous pressure pven 5.0 mmHg

Porosity nb 0.02 –

Diffusivity D3d 1:7 � 10�5 cm2 s�1

Consumption rate Cco 0.08 
mol cm�3 s�1

Average concentration c3d;0 0.72 
mol cm�3

Table 2 Parameters for the subnetwork in the porous medium

Vessel V1 V2 V3 V4

Length li Œcm� 14:4 14:6 14:6 34:4

Radius Ri Œcm� 0:361 0:375 0:375 0:197

Permeability Lc;i

�
cm s�1

�
10:0 10:0 10:0 10:0

Permeability Lp;i

�
cm kPa�1 s�1

�
0:114 0:114 0:114 0:114

The values for Lp;i are adapted from [6, Sect. 6.6.4]
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Table 3 Coordinates and tangents for the lines/mid axes �i

�1 Coordinates: .7:5; 7:5; 50:0/T
; .4:5; 7:5; 42:0/T

; .3:5; 7:5; 36:8/T

Tangents: .0:0; 0:0; �1:0/T
; .0:0; 0:0; �1:0/T

�2 Coordinates: .3:5; 7:5; 36:8/T
; .5:5; 5:0; 29:0/T

; .6:0; 4:5; 21:0/T
; .6:5; 4:0; 19:0/T

Tangents: .�1:0; 0:0; �3:0/T
; .0:0; 0:0; �1:0/T

�3 Coordinates: .6:5; 4:0; 19:0/T
; .7:0; 3:0; 11:0/T

; .7:5; 2:0; 3:0/T

Tangents: .0:0; 0:0; �1:0/T
; .0:0; 0:0; �1:0/T

�4 Coordinates: .3:5; 7:5; 36:8/T
; .2:5; 7:5; 28:5/T

; .2:0; 7:5; 20:0/T
; .2:5; 7:5; 11:5/T

;
.2:8; 7:5; 3:0/T

Tangents: .1:0; 0:0; �2:0/T
; .0:0; 0:0; �1:0/T

The remaining part of this section contains some simulation results concern-
ing the described scenario. The concentration values, flow rates and pressure
values are reported in the middle of all vessels, for all the narrowing degrees:
0 %; 95 %; 100 %. To illustrate the impact of the stenosis within the peripheral
artery 54, we compute the ratio between the normal condition .0 %/ and the other
narrowing degrees. For an physiologist these values can be used to estimate the risk
of an aneurysm caused by an increased pressure in a certain vessel. An aneurysm
is a localized, blood filled balloon-like bulge in the wall of a blood vessel [3].
As an aneurysm grows, the risk of rupture becomes higher and higher. When it
is torn apart, it can lead to bleeding and a subsequent hypovolemic shock leading to
death.

The relative values of the quantities for the embedded subnetwork can be seen
in Fig. 4. Clearly, the pressure and the flow rate break down in Vessel 3 beyond the
stenosis. Considering the same physical values within the other embedded vessels,
one can observe that the pressure is remarkably increased (up to 37:0 % for an
occlusion). If the walls of these vessels are weakened at a certain location, there
is a high risk that an aneurysm is formed. The flow rates in the feeding vessels
V1 and V2 are decreased. This blood flow reduction leads to an insufficient blood
and oxygen supply of the tissue (see Fig. 5). Apparently this reduction can not be
compensated by the increased flow rate (up to 27:0 % for an occlusion) within vessel
V4. Due to the stabilization techniques for the 1D discretization and the robust Finite
Volume discretization for the 3D problem there are neither for the 3D problem
nor for the 1D problem unphysical oscillations around the concentration fronts.
Behind the concentration front in 3D, the concentration values range from 0:0070

to 0:0074 mmol=cm3. This is in agreement with other literature [6, Sect. 6.6], in
which the value 0:0072 mmol=cm3 was taken as a reference value for blood oxygen
concentration in tissue.

However the propagation speed of the concentration front is too slow, and the
pressure values within the porous matrix are too low compared to other literature
[6, Sect. 6.6]. Figure 6 shows the pressure values within the cross section at
y D 7:5 cm and at certain time points. To compute a more realistic propagation
of the oxygen concentration and pressure values, a better estimation of the involved
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Fig. 4 Pressure and flow rate ratios within the embedded vessels. The ratios are computed by
comparing the abnormal states (95 %; 100 % narrowing) to the healthy state (0 % narrowing)
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Fig. 5 Oxygen concentration distribution c3d (at t D 20 s) within three different slices at z D 45,
z D 25 and z D 10 and for different narrowing factors: 0 %; 95 % and 100 %. The concentration
front corresponds to the value 0:005 mmol=cm3

parameters combined with a hierarchical model for flow and transport within the
porous medium is required [21].

5 Conclusion

In this paper, we have presented a 3D-1D-0D coupled multi-scale model to simulate
the local impact of a peripheral stenosis on local blood perfusion and oxygen
supply. Transport and flow in the 3D tissue have been modeled by standard porous
medium equations whereas the 1D models are given by transport equation systems.
Lumped parameter models have been used to simulate the stenosis and the omitted
vessels. The 3D and 1D system have been coupled by its source terms, where
the 1D problems are embedded into the 3D matrix by Dirac line measures. For
the numerical solution multiple time stepping schemes have been considered. The
3D problems have been solved by Finite Volume schemes, for the 1D problems
stabilized DG methods have been used. It has been revealed that the pressures in
the vessels in front of the stenosis are remarkably increased which may lead to an
aneurysm in this area. The reduced blood perfusion and oxygen supply in the tissue
can be clearly observed. However, the propagation of the concentration front is too
slow and the pressure are too low. This could be improved by a better estimation
of the porous medium parameters and a hierarchical flow model within the tissue
[21].
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Fig. 6 Snapshots of the pressure distribution p3d . The cross section is placed at y D 7:5 cm
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