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Abstract. Sensory augmentation is one of the most exciting domains for re-
search in human-machine biohybridicity. The current paper presents the design 
of a 2nd generation vibrotactile helmet as a sensory augmentation prototype that 
is being developed to help users to navigate in low visibility environments.  
The paper outlines a study in which the user navigates along a virtual wall 
whilst the position and orientation of the user’s head is tracked by a motion  
capture system. Vibrotactile feedback is presented according to the user’s  
distance from the virtual wall and their head orientation. The research builds on 
our previous work by developing a simplified “tactile language” for communi-
cating navigation commands. A key goal is to identify language tokens suitable 
to a head-mounted tactile interface that are maximally informative, minimize 
information overload, intuitive, and that have the potential to become ‘experien-
tially transparent’. 
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1 Introduction 

Sensory substitution (translating one sensory modality into another [1]) was one of the 
first domains for research in human-machine biohybrid systems [2]. The development of 
devices for both sensory substitution and sensory augmentation (synthesizing new infor-
mation to an existing sensory channel) remains an exciting prospect for biohybrid tech-
nology. For example, whilst sensory substitution can help people with impaired sensing 
systems, the additional senses provided by sensory augmentation can be used to augment 
the spatial awareness of people operating in hazardous environments such as smoked-
filled buildings, on construction sites, or on the battlefield [3, 4]. 

Research in this area has been strongly influenced by the enactive view of cognition 
(see e.g. [5, 6, 7, 8]). Here, a key design aim is to make the device ‘experientially transpa-
rent’ such that the goal-directed behavior of the user naturally incorporates properties of 
the artifact including its capacity to transform from one sensory modality to another. 
Another influential approach has been from research on active perception—the view that 
sensing in animals including humans is purposeful and information-seeking. That  
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approach, together with bio-inspiration from mammalian sensing systems, informed our 
earlier efforts to develop a sensory augmentation device that incorporated a haptic  
interface for remote touch [3]. In the current contribution we describe our research on a 
second generation device that seeks to overcome some of the limitations of the earlier 
system. Here we describe the motivation for the approach and the design of a new  
prototype. Pilot results from the experiment outlined below will be presented at the  
conference. 

2 A Sensory Augmentation System Inspired by the Mammalian 
Vibrissal System 

Many mammals have a sensitive tactile sensing capacity provided by their facial 
whiskers (or vibrissae) that allows them to acquire detailed information about local 
environment useful for local navigation and object detection and recognition. Similar 
information could be provided to humans using a sensory augmentation system that 
combines active distance sensing of nearby surfaces with a head-mounted tactile dis-
play [3, 9]. Two such devices have been investigated to date: the Haptic Radar [9] and 
the Tactile Helmet [3]. 

The Haptic Radar [9] linked infrared sensors to head-mounted vibrotactile displays 
allowing users to perceive and respond simultaneously to multiple spatial information 
sources. Here, several sense-act modules were mounted together on a band wrapped 
around the head, each module measured distance from the user to nearby surfaces,  
in the direction of the sensor, and transduced this information into a vibrotactile signal 
presented to the skin directly beneath the module. Users intuitively responded to  
nearby objects, for example, by tilting away from the direction of an object moving 
close to the head, indicating that the device could be useful for detecting and avoiding 
collisions.  

The Tactile Helmet [3] was a prototype sensory augmentation device developed in 
Sheffield in collaboration with South Yorkshire Fire and Rescue (SYFR) services.  We 
selected a head-based tactile display as this allows rapid reactions to unexpected ob-
stacles, is intuitive for navigation, can easily fit inside the helmet, and leaves the fire 
fighter’s hands free for tactile exploration of objects and surfaces [9]. The first genera-
tion device (see Figure 1) comprised a ring of eight ultrasound sensors on the outside of 
a fire-fighter’s safety helmet with four vibrotactile actuators fitted to the inside head-
band. Ultrasound distance signals from the sensors were converted into a pattern of 
vibrotactile stimulation across all four actuators. Thus, unlike Haptic Radar, the Tactile 
Helmet was non-modular, allowing direction signals from the array of sensing elements 
to be combined into an appropriate display pattern to be presented to the new user. One 
of the goals of this approach was to have greater control over the information displayed 
to the user, and, in particular, to avoid overloading tactile sensory channels by display-
ing too much information at once. This is particularly important in the case of head-
mounted tactile displays, as vibration against the forehead is also detected as a sound 
signal (buzzing) in the ears; too much vibrotactile information can therefore be confus-
ing and irritating and could mask important auditory stimuli. Despite seeking to provide 
better control over the signal display, however, field tests with the Tactile Helmet, con 
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3 System Overview
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then waits until a new command is generated. Apparent motion commands exploit on 
the concept of vibrotactile apparent movement illusion [11] which creates an illusio-
nary sensation that the stimulus is travelling continuously from one position to anoth-
er. The feeling of apparent motion is controlled by two main parameters: duration of 
stimuli (DOS) and the stimulus onset asynchrony (SOA). The desired movement im-
pression was obtained with a DOS of 400 ms and a SOA of 100 ms. Unlike apparent 
motion, discrete commands create a discrete motion across the forehead. We will 
evaluate these four types of vibrotactile patterns for turn left/right and go-forward 
commands to find out which one is better suited for indoor guidance.  

5 Discussion 

Whereas some approaches to sensory substitution/augmentation, that take an enactive 
view, have favoured using simple mappings between modalities, our research is mov-
ing in the direction of more complex mappings. One reason is that the sensorimotor 
contingencies [12] are often very different in the modalities we are mapping from 
(here ultrasound for distance sensing) and to (here cutaneous touch). In particular, our 
project aims to investigate the hypothesis that the transparency of the device depends 
primarily on having a clear and timely mapping between the environmental affor-
dances (e.g. surfaces for navigational guidance) and the display presented on the sen-
sory surface. We suggest that to achieve this may require significant processing of the 
primary sensory data to identify the relevant affordances before re-coding them for 
the new modality.  
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