
Deciding Concurrent Planar Monotonic Linear
Hybrid Systems

Pavithra Prabhakar1, Nima Roohi2(B), and Mahesh Viswanathan2

1 IMDEA Software Institute, Madrid, Spain
pavithra.prabhakar@imdea.org

2 Department of Computer Science, University of Illinois at Urbana-Champaign,
Champaign, USA

{roohi2,vmahesh}@illinois.edu

Abstract. Decidability results for hybrid automata often exploit subtle
properties about dimensionality (number of continuous variables), and
interaction between discrete transitions and continuous trajectories of
variables. Thus, the decidability results often do not carry over to parallel
compositions of hybrid automata, even when there is no communication
other than the implicit synchronization of time. In this paper, we show
that the reachability problem for concurrently running planar, monotonic
hybrid automata is decidable. Planar, monotonic hybrid automata are
a special class of linear hybrid automata with only two variables, whose
flows in all states are simultaneously monotonic along some direction in
the plane. The reachability problem is known to be decidable for this
class. Our concurrently running automata synchronize with respect to
a global clock, and through labeled discrete transitions. The proof of
decidability hinges on a new observation that the timed trace language of
a planar monotonic automaton can be recognized by a timed automaton,
and the decidability result follows from the decidability of composition of
timed automata. Our results identify a new decidable subclass of multi-
rate hybrid automata.

1 Introduction

Hybrid automata [6] model the interaction between a discrete controller and a
physical environment. Such automata have finitely many control locations, mod-
eling the state of the discrete controller, and real-valued variables that evolve
continuously with time, modeling the state of the physical environment. They
exhibit hybrid behavior where control location changes influence the values of
the real-valued variables and the physical laws governing their evolution. The
safety verification of such systems can often be reduced to the reachability prob-
lem, wherein one asks if a certain state/set of states can be reached during an
execution that starts from some initial state.

The reachability question for hybrid automata is in general undecidable [7], and
special classes of decidable hybrid automata have been identified [2–4,7,8,11,13].
Small variations to the decidable classes are known to make the reachability prob-
lem undecidable [1,3,7,10,13]. The reason for this is because the decidability
c© Springer International Publishing Switzerland 2015
S. Sankaranarayanan and E. Vicario (Eds.): FORMATS 2015, LNCS 9268, pp. 256–269, 2015.
DOI: 10.1007/978-3-319-22975-1 17

Deciding Concurrent Planar Monotonic Linear Hybrid Systems 257

results exploit subtle properties about dimensionality (number of continuous vari-
ables in the hybrid automaton), and the interaction between the discrete transi-
tions and the continuous dynamics of the variables. One consequence of this is that
the reachability problem is often undecidable for parallel compositions of decidable
automata. This is true even when the concurrently running automata do not com-
municate other than the implicit synchronization of time [5].

In this paper, we show that the reachability problem is decidable for paral-
lel compositions of planar monotonic linear hybrid systems. Planar monotonic
linear hybrid systems are hybrid systems with the following restrictions — the
automaton has only two real-valued variables; the flows (continuous dynamics
with time) of the variables are given by linear functions, and all the constraints
describing the invariants, guards, and resets are linear functions; the flow in every
control location is monotonic in some direction on the plane and the variables
are reset on discrete transitions that either change this monotonic direction, or
are labeled through actions that are used for communication between automata.
The reachability problem for the subclass of the automata with no resets is
known to be decidable [11].

Our proof proceeds as follows. For a planar monotonic linear hybrid system
H, let us consider TReachH to be the set of triples (x, t, y) such that there is an
execution starting at x that reaches y at time t, and the variables are never reset
along this execution. Our first observation is that TReachH is expressible in the
first order theory of linear arithmetic. This requires us to adapt the decidability
proof for reachability presented in [11] to consider timed reachability and rep-
resentation in the theory of reals; the challenge in proving such an expressivity
result is that executions of such automata can have an unbounded number of
discrete transitions. One consequence of this is that the set of times at which
one can reach a polyhedron P2 when starting from a polyhedron P1 can also be
expressed in the theory of linear arithmetic. Since this theory is o-minimal [12],
this means that this set of times can be expressed as a finite union of inter-
vals. We use this conclusion to argue that the timed trace language of H (the
sequence of visible synchronizable actions along with the time when they hap-
pen) can be generated by a timed automaton. Hence the parallel composition of
planar monotonic linear hybrid automata is timed trace language equivalent to
the parallel composition of timed automata, which can be effectively constructed
from the component planar monotonic linear hybrid automata. Since the reacha-
bility question can be reduced to the emptiness of the timed trace language, our
decidability result follows from the fact that the emptiness of the timed trace
language of timed automata can be decided [2].

Our proof is inspired by ideas presented in [9] where a new decidability
proof for initialized rectangular hybrid automata is obtained by viewing such
an automaton as the parallel composition of 1-dimensional systems. Our proof
and the results in [9] suggest a method to lift decidability results for low dimen-
sional systems to higher dimensional systems. For example, one consequence of
our results is the identification of new decidable subclass of multi-rate automata
that we call phased multi-rate automata; reachability for the general class of

258 P. Prabhakar et al.

multi-rate automata is known to be undecidable [7]. Our result is proved by
demonstrating that phased multi-rate automata can be seen as the parallel com-
position of planar monotonic linear hybrid systems.

2 Preliminaries

Notations. Q, R, and R≥0 are, respectively, the set of rational, real, and non-
negative real numbers. Given u ∈ Rn, we use ui to denote the i-th component of
u. Given u ∈ Rn and v ∈ Rm, we use u◦v to denote the concatenation of u with v
in Rn+m. Given two sets U ⊆ Rn and V ⊆ Rm, U◦V = {u◦v |u ∈ U,v ∈ V }. For
any two functions f1 ∈ [A1 → Rn] and f2 ∈ [A2 → Rm], their Cartesian product
f1 × f2 maps (a1, a2) to f1(a1) ◦ f2(a2). For any two functions f1 ∈ [A1 → 2R

n

]
and f2 ∈ [A2 → 2R

m

], f1 ⊗ f2 maps (a1, a2) to f1(a1) ◦ f2(a2). Given a function
f ∈ [A → B] and A′ ⊆ A, we denote the restriction of f to A′ by f [A′] and the
image of A′ under f , that is, {f(a) | a ∈ A′}, by f(A′). Finally, idA denotes the
identity function on A.

Polyhedral Sets. Let Poly(Rn), OpenPoly(Rn) and BOpenPoly(Rn), respectively,
denote the set of all polyhedral sets, open polyhedral sets and bounded open
polyhedral sets in Rn. We refer to R2 as the plane, and any polyhedral set in R2

is called a planar polyhedral set. Recall that a polyhedral set P is the set of all
points x satisfying a finite set of linear constraints {u1 · x+ b1 �1 0, . . . ,uk · x+
bk �k 0}. where �i ∈ {<,≤}, ui ∈ Rn and bi ∈ R. When the polyhedral set P
is planar, we denote the lines corresponding to the constraints ui · x+ bi = 0 as
Lines(P).

An n-dimensional rectangular set is a polyhedral set which can be expressed
as the cross product of intervals I1 × . . .× In. The set of all rectangular sets and
open rectangular sets of dimension n are denoted as Rect(Rn) and OpenRect(Rn),
respectively. In addition, PBOpenRect(Rn) is the set of all partially bounded
rectangular sets, that is, rectangular sets I1 × . . . × In, where for every i ∈
{1, . . . n}, either Ii = (−∞,∞) or Ii is bounded.

3 Linear Hybrid Systems

Hybrid automata [6] are a popular formalism for modeling systems with mixed
discrete continuous behaviors. The discrete behavior is captured by a finite state
automaton, and the continuous behavior is captured by a finite set of continu-
ously evolving variables.

Definition 1. A linear hybrid system or a linear hybrid automaton H, is a
tuple (Loc, dim,Act, Inv,Flow,Edge, Init,Final), where
– Loc is a finite non-empty set of (discrete) locations.
– dim is the dimension of the hybrid system H and represents the number of

continuous variables of the system. Rdim is referred to as the continuous
state-space.

Deciding Concurrent Planar Monotonic Linear Hybrid Systems 259

– Act is a finite non-empty set of actions which does not contain a special
symbol τ or the elements of R≥0.

– Inv ∈
[
Loc → Poly

(
Rdim

)]
maps each location q to a polyhedral set as the

invariant of q.
– Flow ∈

[
Loc → Qdim

]
maps each location q to a vector as the flow in q.

– Edge ⊆ Loc × Loc × (Act ∪ {τ}) × Poly
(
R2dim

)
is a finite set of edges. Each

e ∈ Edge is a tuple (q1, q2, l, r) where
• q1 ∈ Loc is the source of e.
• q2 ∈ Loc is the destination of e.
• l ∈ Act ∪ {τ} is the label of e.
• r ∈ Poly

(
R2dim

)
is the reset of e and captures a binary relation on the

continuous state-space.
An edge labelled by an element of Act is called a visible edge, and that labelled
by τ is called an invisible or a silent edge. We denote the different elements
of e by Src(e), Dest(e), Lab(e), and Reset(e), respectively.

– Init ∈
[
Loc → Poly

(
Rdim

)]
maps each location q to a polyhedral set repre-

senting the initial continuous states in q.
– Final ∈

[
Loc → Poly

(
Rdim

)]
maps each location q to a polyhedral set repre-

senting the final continuous states in q.
We require that for all q ∈ Loc, Init(q) ⊆ Inv(q) and Final(q) ⊆ Inv(q).

We denote the different elements of Hη respectively by Locη, dimη, Actη, Invη,
Flowη, Edgeη, Initη and Finalη. From now on, a hybrid system will refer to
a linear hybrid system. Finally, we require that all constants used in H are
rationals.

3.1 Semantics

An execution of a hybrid system H starts in an initial state (p,u), where u ∈
Init(p), and evolves through a sequence of continuous and discrete transitions. In
any state (q,v), a continuous transition corresponds to a continuous evolution
of v using the rate Flow(q) while remaining within the invariant Inv(q); the
location q does not change. On the other hand, a discrete transition from a state
(q,v) to a state (q′,v′) labelled by l is allowed if there is an edge (q, q′, l, r)
such that (v,v′) ∈ r. Formally, the semantics of a linear hybrid system H is
defined by the transition system �H� = (S,Sin,Sfin,→), where S = Loc × Rn is
the set of states, Sin = {(q,v) | q ∈ Loc,v ∈ Init(q)} is the set of initial states,
and Sfin = {(q,v) | q ∈ Loc,v ∈ Final(q)} is the set of final states (note that
Sin,Sfin ⊆ S). Finally, →⊆ S × (Act ∪ {τ} ∪ R≥0) × S is the union of discrete

and continuous transitions that are defined as follows (we use s
l→ s′ to denote

(s, l, s′) ∈→):

– Discrete: (q,v) l→ (q′,v′) if v ∈ Inv(q), v′ ∈ Inv(q′), and there exists e ∈
Edge such that q = Src(e), q′ = Dest(e), l = Lab(e), and (v,v′) ∈ Reset(e).

– Continuous: (q,v) t→ (q′,v′) if q = q′, t ∈ R≥0, v′ = v + t · Flow(q) and
∀t′ ∈ [0, t] • v + t′ · Flow(q) ∈ Inv(q).

260 P. Prabhakar et al.

Path, Execution and Execution Fragment. A path of the hybrid system H
is a sequence π = e1, e2, . . . , ek such that for every j, Dest(ej) = Src(ej+1). An
execution fragment of H is a sequence σ = (q0,v0)a0(q1,v1)a1 . . . (qm−1,vm−1)
am−1(qm,vm), such that (qi,vi)

ai−→ (qi+1,vi+1), for 0 ≤ i < m. We call m the
length of σ, and is denoted |σ|. Let σs(i) denote the i-th state, namely, (qi,vi),
and σa(i) denote the i-th label, namely, ai. Let σ[i, j] denote the sequence from
(qi,vi) to (qj ,vj), namely, (qi,vi)ai(qi+1,vi+1) . . . (qj−1,vj−1)aj−1(qj ,vj). The
duration of σ, denoted Duration(σ), is given by

∑
0≤i<|σ|,σa(i)∈R≥0

σa(i). It taken
to be 0 when the summation is over an empty set. We call the execution fragment
σ an execution of H if σs(0) is an initial state and σs(|σ|) is a final state. Let
Exec(H) denote the set of all executions of H.

Reachability Problem. The reachability problem asks, given a linear hybrid
system H, is Exec(H) non-empty, i.e., is there an execution fragment of H from
an initial state to a final state.

Timed Trace. A timed trace corresponding to an execution fragment is an
alternating sequence of times (between consecutive visible transitions) and visi-
ble actions. First, we define a splitting of an execution. A splitting of an execution
σ is a finite sequence of execution fragments σ0 ◦σ1 ◦σ2 ◦ . . .◦σk such that there
exists a sequence of indices 0 ≤ i0 ≤ i1 ≤ i2 ≤ . . . ≤ ik = |σ|, where σ0 = σ[0, i0],
and for all 1 ≤ j ≤ k, σj = σ[ij−1, ij]. A visible splitting of σ is a splitting
σ = σ0 ◦ σ1 ◦ σ2 ◦ . . . ◦ σk such that for all 0 ≤ i < |σ0|, σa

0 (i) �∈ Act and for
all 1 ≤ j ≤ k, σa

j (i) ∈ Act if and only if i = 0. A timed trace of σ, denoted
TimedTrace(σ), is the sequence t0a1t1 . . . aktk in (R≥0 · Act)∗ · R≥0, such that
σ = σ0◦σ1◦. . .◦σk is a visible splitting of σ, for 0 ≤ i ≤ k, ti = Duration(σi), and
for 1 ≤ i ≤ k, ai = σa

i (0) is the unique visible action in σi. We define the timed
language of H, denoted TimedTrace(H), to be {TimedTrace(σ) |σ ∈ Exec(H)}.
Furthermore, we call two hybrid systems A and B timed language equivalent
(denoted by A ∼tt B) if TimedTrace(A) = TimedTrace(B).

3.2 Special Subclasses of Linear Hybrid Automata

In this section, we present two subclasses of linear hybrid automata, namely,
timed automata and planar monotonic linear hybrid automata. The decidability
of the composition of the automata from the latter class is investigated in the
paper, and the decidability proof reduces the reachability problem to that of
timed automata.

Timed Automata. A timed automaton is a special type of linear hybrid
automaton in which all the variables evolve at a constant rate of 1 in every
location. The variables are referred to as clocks. The initial values of the clocks
are 0. The resets are given by a pair of guard and zero sets. The guard is a
rectangular set which specifies an enabling condition for the edge, and the zero
set specifies a subset of the clocks that are reset to 0 with the remaining clock
values unaltered during the discrete transition.

Deciding Concurrent Planar Monotonic Linear Hybrid Systems 261

Definition 2. A timed automaton H with n clocks is a linear hybrid system of
dimension n with the following conditions:
– Flow maps each location to 1n.
– Init maps each location to either the empty set or {0n}.
– for every edge e ∈ Edge, there exists a guard Guard(e) ∈ Rect(Rn) and a zero

set Zero(e) ⊆ {1, . . . , n} such that Reset(e) = {(u, v)|u ∈ Guard(e) ∧ ∀i ∈
{1, . . . , n} • [(i ∈ Zero(e) ⇒ vi = 0) ∧ (i /∈ Zero(e) ⇒ vi = ui)]}.

– Inv,Final ∈ [Loc → Rect(Rn)].

Planar Monotonic Linear Hybrid System. The main result of the paper
is to show that the reachability problem of parallel compositions of a class of
two dimensional linear hybrid systems called planar monotonic linear hybrid
systems is decidable. Planar Monotonic Linear Hybrid Systems were introduced
in [11] and their reachability problem was shown to be decidable. A planar
monotonic linear hybrid system is a two dimensional system such that all the
flows are “monotonic”, that is, all the flow vectors have a positive projection on
some direction vector. There are no jumps in the system, that is, upon a discrete
transition, the values of the continuous states remain the same. We present below
a definition of planar monotonic linear hybrid systems which is slightly more
general than the original version. In particular, we allow strong resets on edges,
wherein the values of the continuous variables are non-deterministically reset to
a polyhedral set. Strong resets essentially disengage the continuous states before
and after the discrete transition. Also, we allow the flow vectors to be monotonic
with respect to different direction vectors; however, we require strong resets on
the edges whose source and target have different direction vectors. Further, we
require that the edges with visible actions are also strongly reset.

Definition 3. A planar monotonic linear hybrid system (PMHS for short) H
is a linear hybrid system with the following constraints:
– H is 2 dimensional.
– Inv ∈

[
Loc → OpenPoly

(
R2

)]
.

– Init,Final ∈
[
Loc → BOpenPoly

(
R2

)]
.

– H is monotonic, that is, there exists a monotonicity function Mon ∈[
Loc → Q2

]
that maps each location q to a direction f such that f ·Flow(q) >

0.
– For every e ∈ Edge, one of the following is true:

1. There exists Guard(e) ∈ OpenPoly(Rn) such that Reset(e) = {(x, x)|x ∈
Guard(e)}. This means that in order to traverse an edge, the current
values of the variables must satisfy a guard Guard(e), and the values of
variables before and after traversing e are the same. We call e an identity
reset edge.

2. There exist Guard(e),Target(e) ∈ BOpenPoly(Rn) such that Reset(e) =
Guard(e) × Target(e). This means that in order to traverse an edge, the
current values of variables must satisfy a guard Guard(e) (same as the
previous case), but the values of variables after traversing e are reset to
some values satisfying the reset Target(e). We call e a strong reset edge.

262 P. Prabhakar et al.

– For every e ∈ Edge, if Lab(e) �= τ (a visible edge) or Mon(Src(e)) �=
Mon(Dest(e)) (monotonicity function changes), then e must be a strong reset
edge.

We define the polyhedral sets associated with a PMHS H, denoted P(H), to
consist of polyhedral sets Inv(q), Init(q) and Final(q) for every location q, and
the sets Guard(e) and Target(e) appearing in the reset Reset(e) for every edge
e. The set of lines associated with H, denoted LH, is Lines(P(H)). We call a
planar linear hybrid system H simple if no three distinct lines in LH intersect
at a common point. We will assume that the planar linear hybrid systems are
simple.

Fig. 1. Thermostat Example

Example 1. Consider the example of a thermostat
shown in Figure 1. There are two locations: ON
and OFF. It has one variable x that keeps track
of temperature. When thermostat is off, tempera-
ture decreases with constant rate 2, and when it
is on, temperature increases with constant rate 3.
If thermostat is off and temperature is less than
19, we can turn it on by moving to location ON. Similarly, if the thermostat is
on and temperature is above 21, we can turn it off by moving back to location
OFF. When thermostat is off, temperature must always be above 18, and when
it is on, temperature must always be below 22. This thermostat is an example
of a PMHS. If we add an additional variable that behaves like a clock, then the
automaton is monotonic.

3.3 Parallel Composition of Linear Hybrid Automata

The parallel composition of two linear hybrid automata corresponds to executing
the two automata simultaneously with the restriction that they synchronize on
common labels, that is, a transition labelled by a common label occurs only if
both the automata execute a discrete transition labelled by the common label.

Definition 4. For two linear hybrid systems HA and HB, their parallel compo-
sition HA ‖ HB is a linear hybrid system HC which is defined as follows:
– LocC = LocA × LocB
– dimC = dimA + dimB
– ActC = ActA ∪ ActB
– InvC = InvA ⊗ InvB

– FlowC = FlowA × FlowB
– InitC = InitA ⊗ InitB
– FinalC = FinalA ⊗ FinalB

– EdgeC is the set of edges ((p1, p2), (q1, q2), l, r) which satisfy the following:
P1 : If l ∈ ActA ∩ ActB, then ∃r1, r2 • (p1, q1, l, r1) ∈ EdgeA ∧ (p2, q2, l, r2) ∈

EdgeB ∧ r = r1 × r2
P2 : If l /∈ ActB, then p2 = q2 ∧ ∃r1 • r = r1 × id

R
dimB ∧ (p1, q1, l, r1) ∈ EdgeA

P3 : If l /∈ ActA, then p1 = q1 ∧∃r2 • r = id
R

dimA × r2 ∧ (p2, q2, l, r2) ∈ EdgeB
P1 represents edges in both HA and HB such that their labels are in the

common alphabet of HA and HB. P2 (P3) represents edges in HA (HB) such

Deciding Concurrent Planar Monotonic Linear Hybrid Systems 263

that their labels are not in the alphabet of HB (HA). Note that when l = τ , the
premises of both P2 and P3 hold.

Lemma 1 (Miller [9]). For any linear hybrid automata H1, H′
1, H2, and H′

2

if H1 ∼tt H′
1 and H2 ∼tt H′

2 then H1 ‖ H2 ∼tt H′
1 ‖ H′

2.

Lemma 2 (Alur et al. [2]). For any finite set of timed automata T1, . . . , Tn,
reachability problem for T1 ‖ . . . ‖ Tn is decidable in PSPACE.

4 Timed Language Equivalence of PMHS and Timed
Automata

Before presenting our decidability result for reachability in Section 5, we present
the key idea that enables this decidability result to go through, namely, that the
timed language of any PMHS is equivalent to that of a timed automaton that
can be effectively constructed.

Theorem 1. The timed language of a PMHS H is equivalent to the timed lan-
guage of a timed automaton TA(H) computable from H in EXPSPACE.

We will now sketch the ideas behind the proof of Theorem 1. Consider any
execution σ of PMHS H. The timed automaton TA(H) will “simulate” this exe-
cution σ of H by an execution σ′ such that the strong reset transitions taken in σ
and σ′ are the same, in the same order, and at the same times. Since every visible
transition of H is a strong reset transition, this ensures that TimedTrace(σ) is
the same as TimedTrace(σ′). Now if TA(H) simulates (in this manner) all execu-
tions of H, and if TA(H) only has such executions, then the timed languages of
H and TA(H) are the same. The executions of the timed automaton TA(H) will
only consist of a sequence of strong reset transitions of H. If a strong reset edge
e2 is taken immediately after a strong reset edge e1, then TA(H) will ensure that
the time elapsed between taking e1 and e2 is the same as the duration of some
reset-free execution fragment of H that starts in some state in Target(e1) and
ends in some state in Guard(e2). Notice, that this will immediately guarantee
that the executions of TA(H) “simulate” (in the sense outlined above) execu-
tions of H. The automaton TA(H) will maintain such constraints by having a
clock variable that measures the time between successive transitions, and having
locations that remember the last strong reset edge taken.

Before giving a formal definition, we introduce some concepts that will help
us describe TA(H) precisely. Given a PMHS H, let us denote by REdge(H), the
strong reset edges of H. We say that H is a reset-free PMHS, if REdge(H) = ∅.
For any PMHS H = (Loc, dim,Act, Inv,Flow,Edge, Init,Final) and Init′,Final′ ∈[
Loc → BOpenPoly

(
R2

)]
, we define ResetFree(H, Init′,Final′) to be the PMHS

(Loc, dim,Act, Inv,Flow,Edge′, Init′,Final′), where Edge′ = Edge \ REdge(H).
Finally, for a PMHS H, DReach(H) will denote the durations of all the exe-
cutions of H, i.e., DReach(H) = {t | ∃σ ∈ Exec(H). t = Duration(σ)}.

264 P. Prabhakar et al.

Definition 5. For a PMHS H = (Loc, dim,Act, Inv,Flow,Edge, Init,Final),
define the timed automaton TA(H) to be (Loc′, dim′ = 1,Act, Inv′,Flow′,Edge′,
Init′,Final′) where

– Loc′ = REdge(H) ∪ {qInit, qFinal},
– For every q ∈ Loc′, Inv′(q) = R, Flow′(q) = 1, Init′(q) = {0} if q = qInit and

∅ otherwise, and Final′(q) = R if q = qFinal and ∅ otherwise,
– Edge′ is the set of all edges e′ such that Zero(e′) = {1} (clock is always

reset), (Src(e′),Dest(e′)) ∈ (Loc′\{qFinal})×(Loc′\{qInit}) and the following
conditions hold:
1. If Dest(e′) ∈ REdge(H) then Lab′(e′) = Lab(Dest(e′)) and if Dest(e′) =

qFinal then Lab′(e′) = τ .
2. Guard(e′) = DReach(ResetFree(H, Init′,Final′)), where

• If Src(e′) = qInit then Init′ = Init. If Src(e′) ∈ REdge(H) then
Init′(p) = Target(Src(e′)), if p = Dest(Src(e′)), Init′(p) = ∅ other-
wise.

• If Dest(e′) = qFinal then Final′ = final. If Dest(e′) ∈ REdge(H)
then Final′(p) = Guard(Dest(e′)) if p = Src(Dest(e′)), and
Final′(p) = ∅ otherwise.

Definition 5 formalizes the intuition outlined at the beginning of this section,
and so, its timed language is equivalent to the timed language of H. However,
to finish the proof of Theorem 1, we still need to establish two facts. First, the
automaton outlined above is a timed automaton only if the guards in the above
definition are “nice” sets; in particular they need to be finite unions of intervals 1.
Second, to argue that TA(H) can be effectively constructed from H, we need to
show that the transition guards can be computed. These two requirements do
indeed turn out to be true, and is established in Lemma 3.

Lemma 3. Given a reset-free PMHS H, the set DReach(H) is computable and
is a finite union of intervals.

The proof of Lemma 3 relies on the following key lemma. Define a timed
reachability predicate for an automaton H as TReachq1,q2

H = {(u, t,v) | ∃σ ∈
Exec(H), σs(0) = (q1,u), σs(|σ|) = (q2,v),Duration(σ) = t}.

Lemma 4. For a reset-free PMHS H and q1, q2 ∈ Loc, there is a first order
logic formula ϕq1,q2

H (x, τ,y) over (R,+, <) such that (v, t, v′) ∈ TReachq1,q2
H iff

ϕq1,q2
H (v/x, t/τ, v′/y) holds. Further, ϕq1,q2

H is only existentially quantified and
its length is bounded by an exponential in the size of H.

Proof. (Sketch.) The proof builds upon the results in [11], where it is shown that
the problem of point-to-point and region-to-region reachability is decidable for
the class of reset-free PMHS. Below we present briefly an overview of the proof
in [11], and highlight the changes in extending it to prove the current lemma.
1 Typically, the guards in a timed automaton are intervals. But transitions with finite

unions of intervals as guards can be thought of as a set of finitely many nondeter-
ministic transitions on intervals.

Deciding Concurrent Planar Monotonic Linear Hybrid Systems 265

The first step in [11] is to divide the state-space of H into regions where each
region is such that if it intersects with a guard or an invariant of H, then it is
contained in it. The maximal set of such regions can be uniquely determined
for H and effectively computable. A tree is constructed which has as nodes sub-
sets of edges of the regions. The children together capture the set of all states
reached from the states in the parent by a “region-execution” — executions
which remain within a single region. The main technical challenge lies in com-
puting the children, since the number of mode switches in a region-execution
between two edges of a region is not bounded. The challenging case is when
the hybrid system restricted to the region has cycles. Hence, the problem is
reduced to computing the reachable set of a hybrid automaton restricted to a
region whose underlying graph is strongly connected. Here, it is shown that the
following property P holds, that is, the reach set can be characterized by states
reached by certain “executions” with bounded number of mode switches which
can potentially violate the invariants and guards. The reach set can then be
computed by a finite number of state-space exploration steps. More importantly,
the monotonicity property of the flows ensures that the height of the tree is
bounded, when the initial and final regions are bounded. And a final region is
reachable if and only if one of the trees with root corresponding to an edge of
the initial region, contains a node which has an edge of the final region.

In this paper, we extend the proof to compute the predicate ϕq1,q2
H (x, τ,y).

Note that if node N2 is a descendant of N1, then there is an execution from every
state in N1 to some state in N2. Our main idea is to extend the information along
an edge in the tree to capture a ternary relation consisting of tuples (u, t,v) such
that there is a region execution from u on node N1 to node v on its child N2 of
duration t. Our main observation is that the boundedness property in P holds
even when we require the executions to be of equal duration. More precisely, v
can be reached from u by a region-execution of duration t if and only if there
exists a certain “execution” with bounded number of mode switches from u
to v of duration t potentially violating the invariants and guards. Further, we
show that this predicate can be captured as an existentially quantified first-order
logic formula over (R,+, <) with only conjunctions. The predicate ϕq1,q2

H (x, τ,y)
is then constructed by composing the predicates corresponding to the edges.

Next, we provide an upper bound on the length of ϕq1,q2
H (x, τ,y). Let n be the

size of the input representation of H. Note that the number of constraints used
in the description of the invariants and guards is at most n. Hence, the number
of regions associated with it is at most 2n, and the number of nodes in the tree
is linear in the number of regions and is bounded by O(2n) [11]. If L is a bound
on the length of the predicate corresponding to an edge, then the length of the
predicate ϕq1,q2

H (x, τ,y) is bounded by O(L2n). L is bounded by a polynomial in
the size of the automaton. Hence, ϕq1,q2

H (x, τ,y) is bounded by 2O(n).
We now complete the proof of Lemma 3 (and therefore, Theorem 1). Recall

that the first order theory of (R,+, <) is o-minimal [12]. Therefore, any set
defined by a first order formula with one free variable in this structure is a
finite union of intervals [12]. Finally, the theory of (R,+, <) has a PSPACE

266 P. Prabhakar et al.

quantifier elimination procedure for existentially quantified formulas (formulas
with no quantifier alternation), and hence, the intervals in the finite union are
computable. Now since DReach(H) = ∃x,y. ∨q1,q2 ϕq1,q2

H (x, τ,y), we have estab-
lished Lemma 3. Further, since, the length of the formula ϕq1,q2

H is at most
exponential in the size of H, DReach(H) can be computed in EXPSPACE, and
hence TA(H) can be computed in EXPSPACE.

5 Main Result

The timed trace equivalence of PMHS with timed automata (Theorem 1) allows
us to prove the following main result of this paper.

Theorem 2. The following problem is decidable in EXPSPACE: Given hybrid
automata H1,H2, . . . ,Hk such that each Hi is either a PMHS or an initialized
rectangular hybrid automaton, is Exec(H1 ‖ H2 ‖ . . . ‖ Hk) empty?

Proof. (Proof Sketch). Theorem 1 shows that any PMHS H is equivalent to
the timed language of a timed automaton TA(H) which can be constructed
in EXPSPACE. Similarly, Miller [9] showed that any initialized rectangular
hybrid automaton is also timed language equivalent to a timed automaton, con-
structible in PSPACE. Hence, for each Hi, we can construct a timed automaton
TA(Hi) such that Hi ∼tt TA(Hi). From Lemma 1, H1 ‖ H2 ‖ . . . ‖ Hk ∼tt

TA(H1) ‖ TA(H2) ‖ . . . ‖ TA(Hk). Note that the latter is a composition of k
timed automata. Therefore, from Lemma 2, the reachability problem, namely, if
Exec(TA(H1) ‖ TA(H2) ‖ . . . ‖ TA(Hk)), is empty, is decidable in PSPACE.
Equivalently, the emptiness of Exec(H1 ‖ H2 ‖ . . . ‖ Hk), is decidable in
EXPSPACE.

The above theorem, in particular, implies that the control state reachability
problem is decidable for the composition of PMHS.

6 A Decidable Class of Multi-rate Automata

A multi-rate automaton is a generalization of timed automaton, where the con-
tinuous variables need not flow at rate 1. The reachability problem for general
multi-rate automata is known to be undecidable [1,7]. In this section we identify
a new subclass of multi-rate automata with a decidable reachability problem.
The decidability result will be a consequence of our main result (Theorem 2).
We begin by recalling what a multi-rate automaton is.

Definition 6. A multi-rate automaton of dimension n is a linear hybrid system
H with the restriction that
– Inv ∈ [Loc → OpenRect(Rn)],
– Init maps each location to either the empty set or {0n},
– Final ∈ [Loc → PBOpenRect(Rn)], and

Deciding Concurrent Planar Monotonic Linear Hybrid Systems 267

– for each edge e ∈ Edge, there exists a guard Guard(e) ∈ PBOpenRect(Rn)
and a zero set Zero(e) ⊆ {1, . . . , n} such that Reset(e) = {(u, v)|u ∈
Guard(e) ∧ ∀i ∈ {1, . . . , n} • [(i ∈ Zero(e) ⇒ vi = 0) ∧ (i /∈ Zero(e) ⇒
vi = ui)]}.

In the above definition, we assume that variables reset on an edge are reset to
0. However, this condition can be relaxed to one where the variables are reset
to any value in a bounded interval without affecting the decidability results. We
make the simplifying assumption to make the presentation and notation simpler.

We identify a special subclass of multi-rate automata that we call phased
multi-rate automata. Phased multi-rate automata are such that every execution
of the machine can be divided into “phases”. Each phase begins with a discrete
transition that resets some set of variables, and every other discrete transition
in the phase, leaves the continuous variables unchanged. In addition, during a
phase, after the first transition, the flow of at most one variable can change. We
will show that the reachability problem for such automata is decidable. Before
defining this class, we introduce some definitions and notations that we will need.

Affected and Used Variables. Consider a multi-rate automaton H of dimension
n and an edge e of H. We will say that a variable i ∈ {1, . . . n} is affected by
edge e, if either (a) i is reset, i.e., i ∈ Zero(e), or (b) i’s flow changes after taking
the edge, i.e., Flow(Src(e))i �= Flow(Dest(e))i. The set of variables affected by
e will be denoted by affect(e). A variable i is used by edge e if either (a) i
is affected by e, i.e., i ∈ affect(e), or (b) i appears in either Inv(Src(e)) or
Inv(Dest(e)), i.e., Ii or I ′

i not equal to (−∞,∞), where Inv(Src(e)) = I1×. . .×In

and Inv(Dest(e)) = I ′
1 × . . . × I ′

n, or (c) variable i appears in Guard(e), i.e.,
Ii �= (−∞,∞), where Guard(e) = I1 × . . . × In. The set of variables used by e is
denoted by use(e).

Phase Consistency. Consider a path π = e1, e2, . . . ek of H. A phase of π is a pair
(i, j) ∈ {0, 1, . . . k +1}2 with i < j such that (a) if i > 0 then Zero(ei) �= ∅, (b) if
j < k + 1 then Zero(ej) �= ∅, and (c) for all �, i < � < j, Zero(e�) = ∅. In other
words, (i, j) is a phase if ei and ej are successive reset edges in π. In the definitions
that follow, we will find it convenient to take Zero(e0) = Zero(ek+1) = {1, . . . n}.
The path π is phase consistent for phase (i, j) if there is a variable xij ∈ {1, . . . n}
such that (a) xij ∈ Zero(ei) ∩ Zero(ej), (b) for all i < � < k, affect(e�) ⊆ {xij}
and use(e�) ⊆ Zero(ei), and (c) use(ej)\Zero(ej) ⊆ Zero(ei). When this happens,
xij is said to be the phase variable of π in (i, j). We will say π is phase consistent
if it is phase consistent for every phase (i, j).

Definition 7. A phased multi-rate automaton (PMA) of dimension n is multi-
rate automaton H with the following restrictions.
– For every edge e of H, if |affect(e)| > 1 then affect(e) ⊆ Zero(e). In other

words, if more than one variable is affected, then all affected variables are
reset.

– Every path π of H is phase consistent with respect to every phase.

268 P. Prabhakar et al.

Theorem 3. Reachability problem for phased multi-rate automata is decidable.

Phased multi-rate automata are incomparable to the class of initialized multi-
rate automata. Recall that in an initialized multi-rate automaton, a variable must
be reset if its flow changes. This is not required in a phased multi-rate automaton
as the phase variable can change its flow repeatedly without being reset. On the
other hand, in phased multi-rate automata, the phase variable must be reset
at the start and end of a phase; there is no analogous restriction in initialized
multi-rate automata.

Fig. 2. Water Tank Example

Example 2. Figure 2 shows an
example of a water tank system.
Here, we have two tanks and one
hose. The hose could be on or off,
and it could point to tank 1 or
tank 2. Water is added at a con-
stant rate to a tank when hose
is on and pointing to that tank.
Also, both tanks are leaking at
a constant rate. One can turn
the hose on and off at any time.
However, to move the hose from
tank 1 to tank 2, the tank 1 must have a sufficiently high level of water, and
tank 2 must have a low level; similar constraints are required to be satisfied
when moving the hose from tank 2 to tank 1. The level in a tank is considered
“sufficiently high” if the level is between almost full (AF) and full (F), and it is
low if it is between almost low (AL) and low (L). Observe that such a system is
not initialized as the rate of change of level in a tank can change due to turning
the hose on and off. However, it is a PMA as such changes to flow without resets
are allowed. This automaton has the slightly more general form of resets where
a variable can be reset to any value in a bounded set.

7 Conclusion

Our main result proved that the reachability problem is decidable for the paral-
lel composition of a collection of planar monotonic linear hybrid systems. Our
proof extends the observations in [11] to first showing that timed reachability
(and not just reachability) is decidable by reducing it to the theory of linear
arithmetic. This result allows us to conclude that the planar monotonic linear
hybrid automata are timed trace equivalent to timed automata. Finally, our
decidability result for concurrent planar monotonic linear hybrid systems fol-
lows from the decidability of the emptiness problem for timed trace language
of concurrent timed automata. One consequence of our results is that it identi-
fies a new decidable subclass of multi-rate automata, namely, phased multi-rate
automata. Our results present a general technique of lifting decidability results
for low dimensional systems to hybrid automata with many continuous variables.

Deciding Concurrent Planar Monotonic Linear Hybrid Systems 269

A future direction of research would be to see if this idea can be applied to other
decidable planar hybrid automata, i.e., automata with 2 variables.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. TCS
138(1), 3–34 (1995)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126, 183–235 (1994)

3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems hav-
ing piecewise-constant derivatives. Theoretical Computer Science 138(1), 35–65
(1995)

4. Asarin, E., Schneider, G., Yovine, S.: Algorithmic analysis of polygonal hybrid
systems. Part I: Reachability. TCS 379(1–2), 231–265 (2007)

5. Casagrande, A., Corvaja, P., Piazza, C., Mishra, B.: Decidable compositions of
o-minimal automata. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M.
(eds.) ATVA 2008. LNCS, vol. 5311, pp. 274–288. Springer, Heidelberg (2008)

6. Henzinger, T.A.: The theory of hybrid automata. In: Proceeding of IEEE
Symposium on Logic in Computer Science, pp. 278–292 (1996)

7. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? Journal of Computer and System Sciences 57(1), 373–382 (1995)

8. Lafferriere, G., Pappas, G., Sastry, S.: o-minimal hybrid systems. MCSS 13, 1–21
(2000)

9. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, pp. 296–309. Springer, Heidelberg (2000)

10. Mysore, V., Pnueli, A.: Refining the undecidability frontier of hybrid automata. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 261–272. Springer,
Heidelberg (2005)

11. Prabhakar, P., Vladimerou, V., Viswanathan, M., Dullerud, G.: A decidable class
of planar linear hybrid systems. Theoretical Computer Science 574, 1–17 (2015)

12. L. van den Dries: Tame Topology and O-minimal Structures. Cambridge Univesi-
tyPress (1998)

13. Vladimerou, V., Prabhakar, P., Viswanathan, M., Dullerud, G.E.: STORMED
Hybrid Systems. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 136–147. Springer, Heidelberg (2008)

	Deciding Concurrent Planar Monotonic Linear Hybrid Systems
	1 Introduction
	2 Preliminaries
	3 Linear Hybrid Systems
	3.1 Semantics
	3.2 Special Subclasses of Linear Hybrid Automata
	3.3 Parallel Composition of Linear Hybrid Automata

	4 Timed Language Equivalence of PMHS and Timed Automata
	5 Main Result
	6 A Decidable Class of Multi-rate Automata
	7 Conclusion
	References

