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Abstract. In this paper we consider the problem of computing the min-
imum expected time to reach a target and the synthesis of the corre-
sponding optimal controller for a probabilistic timed automaton (PTA).
Although this problem admits solutions that employ the digital clocks
abstraction or statistical model checking, symbolic methods based on
zones and priced zones fail due to the difficulty of incorporating proba-
bilistic branching in the context of dense time. We work in a generalisation
of the setting introduced by Asarin and Maler for the corresponding prob-
lem for timed automata, where simple and nice functions are introduced
to ensure finiteness of the dense-time representation. We find restrictions
sufficient for value iteration to converge to the minimum expected time on
the uncountable Markov decision process representing the semantics of a
PTA. We formulate a Bellman operator on the backwards zone graph of a
PTA and prove that value iteration using this operator equals that com-
puted over the PTA’s semantics. This enables us to extract an ε-optimal
controller from value iteration in the standard way.

1 Introduction

Systems which exhibit real-time, probabilistic and nondeterministic behaviour
are widespread and ubiquitous in many areas such as medicine, telecommunica-
tions, robotics and transport. Timing constraints are often vital to the correct-
ness of embedded devices and stochasticity is needed due to unreliable channels,
randomisations and component failure. Finally, nondeterminism is an important
concept which allows us to model and analyse systems operating in a distributed
environment and/or exhibiting concurrency. A natural model for such systems,
probabilistic timed automata (PTAs), a probabilistic extension of timed automata
(TAs) [1], was proposed in [20]. They are finite-state automata equipped with
real-valued clocks which measure the passage of time and whose transitions are
probabilistic. Transitions are expressed as discrete probability distributions over
the set of edges, namely a successor location and a set of clocks to reset.

An important class of properties on PTAs are probabilistic reachability prop-
erties. They allow us to check statements such as: “with probability 0.05 or
less the system aborts” or “the data packet will be delivered within 1 second
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with minimum 0.95 probability”. Model checking algorithms for these properties
are well studied. Forwards reachability [20] yields only approximate probability
values (upper bounds on maximum reachability probabilities). An abstraction
refinement method, based on stochastic games, has subsequently been proposed
in [17] for the computation of exact values and implemented in PRISM [18].
An alternative method is backward reachability [21], also giving exact values.
These are all symbolic algorithms based on zones, a structure that represents in
a concise way sets of the automaton states with equivalent behaviour.

Another important class of properties, which is the focus of this paper, is
expected reachability. They can express statements such as “the expected num-
ber of packets sent before failure is at least 100” or “the expected time until a
message is delivered is at most 20ms”. These properties turned out to be more
difficult to verify on PTAs and currently no symbolic approach exists. Even
for TAs, the research first concentrated on checking whether there exist system
behaviours that satisfy a certain property φ (for example, reaching the target
set of states). In many situations this is not sufficient, as we often want to dis-
tinguish between behaviours that reach target states in 10 or in 1000 seconds. In
[2], a backward fixed-point algorithm was proposed for controller synthesis for
TAs, which generates a controller that reaches the target in minimum time. The
analogous problem for priced timed automata, a model comprising more general
reward (or cost) structures, was also considered. The minimum reward reacha-
bility for this model has been solved using the region graph method [4], and later
extended for more efficient priced zones [22] and implemented in Uppaal [23].

Contributions. We propose the first zone-based algorithm to compute the min-
imum expected time to reach a target set and synthesise the ε-optimal controller
for PTAs. The semantics of a PTA is an uncountable Markov decision process
(MDP). Under suitable restrictions, we are able to prove that value iteration
converges to the minimum expected time on this MDP. We formulate a Bellman
operator on the backwards zone graph of a PTA and show that value iteration
using this operator yields the same value as that computed on the MDP. This
enables us to extract an ε-optimal controller from value iteration in the standard
way. This problem has been open for several years, with previous symbolic zone-
based methods, including priced zones, being unsuitable for computing expected
values since accumulated rewards are unbounded. In order to represent the value
functions we introduce rational k-simple and rational k-nice functions, a gener-
alisation of Asarin and Maler’s classes of functions [2].

Related Work. Expected reachability properties of PTAs can be verified using
the digital clocks method [19], which assumes an integral model of time as
opposed to a dense model of time. This method, however, suffers from state-
space explosion. In [12], the minimum expected reward for priced timed games
has been solved using statistical model checking and Uppaal-SMC [11]. This
is orthogonal to numerical model checking, based on simulation and hypothesis
testing, giving only approximate results which are not guaranteed to be correct.



142 A. Jovanović et al.

In [7] the authors consider priced probabilistic timed automata and study
reward-bounded probabilistic reachability, which determines whether the max-
imal probability to reach a set of target locations, within given bounds on the
accumulated reward and elapsed time, exceeds a threshold. Although this prob-
lem is shown to be undecidable [6], a semi-decidable backwards algorithm using
priced zones, which terminates if the problem is affirmative, is implemented in
Fortuna [8].

Outline. In Section 2 we define MDPs and give existing results concerning
optimal reward computation for uncountable MDPs. Section 3 defines PTAs and
introduces the assumptions needed for the adoption of the results of Section 2.
In Section 4, we present our algorithm for computing the minimum expected
time and synthesis of an ε-optimal controller using the backwards zone graph
of a PTA. Section 4 also introduces a representation of the value functions that
generalise the simple and rational nice functions of [2] and gives an example
demonstrating the approach. We conclude with Section 5.

An extended version of this paper, with proofs, is available as [15].

2 Background

Let R be the set of non-negative reals, N the integers, Q the rationals and Q+

the non-negative rationals. A discrete probability distribution over a set S is a
function μ : S→[0, 1] such that

∑
s∈S μ(s) = 1 and the set {s ∈ S | μ(s)>0} is

finite. We denote by Dist(S) the set of distributions over S.
Markov Decision Processes (MDPs) is a widely used formalism for modelling

systems which exhibit both nondeterministic and probabilistic behaviour.

Definition 1. An MDP is a tuple M = (S, s0, A,PM,RM), where S is a (possi-
bly uncountable) set of states, s0 ∈ S is an initial state, A is a (possibly uncount-
able) set of actions, PM : (S×A) → Dist(S) is a (partial) probabilistic transition
function and RM : (S×A) → R is a reward function.

A state s of an MDP M has a set of enabled actions, denoted A(s), given by
the set of actions for which PM(s, a) is defined. A transition in M from state
s is first made by nondeterministically selecting an available action a ∈ A(s).
After the choice is made, a successor state s′ is selected randomly according to
the probability distribution PM(s, a), i.e. the probability that a transition to s′

occurs is equal to PM(s, a)(s′), and the reward RM(s, a) is accumulated when
making this transition.

An infinite path is a sequence ω = s0
a0−→ s1

a1−→ s2
a2−→ · · · of transitions

such that PM(si, a)(si+1)>0 for all i�0, and it represents a particular resolution
of both nondeterminism and probability. A finite path is a prefix of an infinite
path ending in a state. The (i+1)th state of a path ω is denoted by ω(i) and the
action associated with the (i+1)th transition by step(ω, i). We denote the set of
all infinite (finite) paths of M by IPathsM (FPathsM) and the last state of a
finite path ω by last(ω).
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A strategy (also called an adversary or policy) of M resolves the choice
between actions in each state, based on the execution so far.

Definition 2. A strategy of an MDP M is a function σ : FPathsM→Dist(A)
such that σ(ω)(a)>0 only if a ∈ A(last(ω)).

For a fixed strategy σ and state s, we can define a probability measure Pσ
s over

the set of infinite paths starting in s [16]. A strategy σ is memoryless if its
choices only depend on the current state, and deterministic if σ(ω) is a point
distribution for all ω ∈ FPathsM. The set of strategies of M is denoted by ΣM.

Two fundamental quantitative properties of MDPs are the probability of
reaching a set of target states and the expected reward accumulated before
reaching a target. For a strategy σ, state s and set of target states F , the
probability of reaching F and expected reward accumulated before reaching F
from s under σ are given by:

P
σ
M(s, F ) def= Pσ

s {ω ∈ IPathsM | ω(i) ∈ F for some i ∈ N}
E

σ
M(s, F ) def=

∫
ω∈IPathsM

rew(ω, F ) dPσ
s

where for any infinite path ω:

rew(ω, F )
def
=

{∑min{k−1 | ω(k)∈F}
i=0 RM(ω(i), step(ω, i)) if ω(k) ∈ F for some k ∈ N

∞ otherwise.

The standard approach is to analyse the optimal values of these measures, i.e.
the minimum and maximum values over all strategies. In this paper, we are
concerned with the maximum probability of reaching a target and minimum
expected accumulated reward before reaching a target:

P
max
M (s, F ) def= supσ∈ΣM P

σ
M(s, F ) and E

min
M (s, F ) def= infσ∈ΣM E

σ
M(s, F ) .

The optimal values can be computed using a Bellman operator [5]. More pre-
cisely, under certain conditions on the MDP and target set under study, using
a Bellman operator the optimal values can be obtained through a number of
techniques, including value iteration and policy iteration, see for example [9,10].
Concerning minimum expected reachability we have the following definition.

Definition 3. Given an MDP M and target set F , the Bellman operator TM :
(S→R) → (S→R) for minimum expected reachability is defined as follows. For
any f : S → R and s ∈ S:

TM(f)(s) =
{

0 if s ∈ F
infa∈A(s)

{
RM(s, a) +

∑
s′∈S PM(s, a)(s′)·f(s′)

}
otherwise.

Value iteration for TM corresponds to repeatedly applying the operator when
starting from some initial approximation f0 until some convergence criterion
is met, e.g. computing Tn+1(f0)=T (Tn(f0)) until ‖Tn+1(f0)−Tn(f0)‖ � ε for
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some threshold ε. On the other hand, policy iteration starts with an arbitrary,
deterministic and memoryless strategy, and then tries repeatedly to construct
an improved (deterministic and memoryless) strategy. This is achieved by com-
puting the expected reachability values for the current strategy and, if possible,
updating the actions choices so that the expected reachability values decrease.

We now adapt the results of [14] for the total expected reward for possibly
uncountable-state and uncountable-action set MDPs. The conditions imposed by
[14] correspond, in our setting, to those given below (since we restrict to discrete
distributions and non-negative reward values, the assumptions we require are
weaker).

Assumption 1. For an MDP M and target set F :

(a) A(s) is compact for all s ∈ S;
(b) RM is bounded and a �→ RM(s, a) is lower semi-continuous for all s ∈ S;
(c) if σ is a memoryless, deterministic strategy which is not proper, then

E
σ
M(s, F ) is unbounded for some s ∈ S;

(d) there exists a proper, memoryless, deterministic strategy;

where a strategy σ is called proper if P
σ
M(s, F )=1 for all s ∈ S.

Using these assumptions we have the following result.

Theorem 1 ([14]). If M and F are an MDP and target set for which Assump-
tion 1 holds, then:

− there exists a memoryless, deterministic strategy that achieves the minimum
expected reward of reaching F ;

− the minimum expected reward values are the unique solutions to TM;
− value iteration over TM converges to the minimum expected reward values

when starting from any bounded function;
− policy iteration converges to the minimum expected reward values when start-

ing from any proper, memoryless, deterministic strategy.

3 Probabilistic Timed Automata

We now introduce Probabilistic Timed Automata, a modelling framework for sys-
tems which incorporate probabilistic, nondeterministic and real-time behaviour.

Clocks, Clock Valuations and Zones. Let X be a set of real-valued variables
called clocks, which increase at the same, constant rate. A function v : X→R is
called clock valuation function and the set of all clock valuations is denoted as
R

X . Let 0 be a valuation that assigns 0 to all clocks in X . For any R ⊆ X and
any valuation v on X , we write v[R] for the valuation on X such that v[R](x)=0
if x ∈ R and v[R](x)=v(x) otherwise. For t ∈ R, v+t denotes the valuation
which assigns (v+t)(x)=v(x)+t to all x ∈ X . A zone is an expression of the
form: ζ := x∼c | x−y∼c | ζ∧ζ, where x, y ∈ X , ∼∈ {<,�, >,�} and c ∈ N. The
set of zones on X is denoted Zones(X ). A clock valuation v satisfies a zone ζ,
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denoted v|=ζ, if ζ resolves to true after substituting each occurrence of clock x
with v(x). A zone ζ represents the set of clock valuations v which satisfy it.

We require a number of classical operations on zones [24]. Zone ↗ζ contains
all valuations reachable from a valuation in ζ by letting time pass. Conversely,
↙ζ contains all valuations that can reach ζ by letting time pass. Furthermore,
for a set of clocks R, ζ[R] includes the valuations obtained by those in ζ by
resetting the clocks R and [R]ζ the valuations which result in a valuation in ζ
when the clocks in R are reset to 0.

Definition 4. A PTA P is a tuple (L, l0,X ,Act , enab, prob, inv) where: L is a
finite set of locations; l0 ∈ L is an initial location; X is a finite set of clocks; Act
is a finite set of actions; enab : (L×Act) → Zones(X ) is an enabling condition;
prob : (L×Act) → Dist(2X ×L) is a probabilistic transition function; inv : L →
Zones(X ) is an invariant condition.

A state of P is a pair (l, v) ∈ L×R
X such that the clock valuation v satisfies the

invariant inv(l). A transition is a time-action pair (t, a) corresponding to letting
time t elapse and then performing the action a. In a state (l, v), time can elapse
as long as the invariant inv(l) remains continuously satisfied and action a can be
performed only if the enabling condition enab(l, a) is then satisfied. If transition
(t, a) is performed, then the set of clocks to reset and successor location are
selected randomly according to the probability distribution prob(l, a).

For (l, a) ∈ L×Act , an element (R, l′) ∈ 2X ×L such that prob(l, a)(R, l′)>0
is called an edge of (l, a) and the set of all edges of (l, a) is denoted edges(l, a).

Definition 5. For PTA P = (L, l0,X ,Act , prob, inv) its semantics is given by
the (infinite-state) MDP [[P]] = (S, s0, R×Act ,P[[P]],R[[P]]) where:

− S = {(l, v) ∈ L×R
X | v |= inv(l)} and s0 = (l0,0);

− P[[P]]((l, v), (t, a)) = μ if and only if v+t′ |= inv(l) for all 0 � t′ � t, v+t |=
enab(l, a) and for any (l′, v′) ∈ S:

μ(l′, v′) =
∑ {| prob(l, a)(R, l′) | R ⊆ X ∧ v′ = (v+t)[R] |}

− R[[P]](t, a) = t for all (t, a) ∈ R×Act.

For Theorem 1 to be applicable to semantics of a PTA, we need to ensure
Assumption 1 holds. To this end, we introduce the following assumptions.

Assumption 2. For any PTA P we have:

(a) all invariants and enabling conditions of P are bounded;
(b) only non-strict inequalities are allowed in clock constraints (P is closed);
(c) P is structurally non-zeno [25] (this can be identified syntactically and in a

compositional fashion [26] and guarantees time-divergent behaviour).

Conditions (a) and (b) are necessary and sufficient to ensure A(s) is compact
for all states s ∈ S, i.e. Assumption 1(a) holds. Assumption 1(b) follows from
Definition 5 as, for any (t, a) ∈ R×Act , we have R[[P]](s, (t, a))=t for all s ∈ S.



146 A. Jovanović et al.

l0 l1

l3l2

a 0.7

x:=0
0.3

x:=0

5�x�10

c

2�x�10b

d
e, x�1, x:=0

Fig. 1. PTA example

Structurally non-zeno is sufficient for ensuring Assumption 1(c) holds. More
precisely, if for strategy σ the probability of reaching the target is less than
1, there is a non-negligible set of paths under σ which never reach the target
and, since σ is non-zeno, elapsed time (and hence the accumulated reward) must
diverge on the paths in this set.

The remaining assumption, Assumption 1(d), holds if we restrict attention
to the sub-MDP of [[P]] which contains only states s for which P

max
[[P]] (s, F )=1 [13].

More precisely, if P
max
[[P]] (s, F )=1, then, using the region graph construction [20],

there exists a memoryless, deterministic strategy that reaches the target with
probability 1, and hence this strategy will also be proper.

We have imposed several restrictions on PTAs we analyse. First, bounded-
ness is not actually a restriction since bounded TAs are as expressive as standard
TAs [4] and the result carries over to PTAs. The fact that PTAs must be closed
is not a severe restriction in practice, as any PTA can be infinitesimally approx-
imated by one with closed constraints. Non-zenoness is a standard assumption
for both TAs and PTAs, as it discards unrealistic behaviours, i.e. executions for
which time does not diverge.

Example 1. Consider the PTA shown in Figure 1 where the target is l3. We
assume the invariant in each location equals x�10 and the enabling conditions
for transitions labelled a and d equal x�10. From the state (l0, v), if action a is
chosen, then the minimum expected time equals 0.3·5+0.7·2 = 2.9. On the other
hand, if action d is selected, then the minimum expected time equals 5−v(x) if
v(x)�5 and 0 otherwise. Therefore, in the initial state, i.e. when v(x)=0, the
minimum expected time equals min{2.9, 5−0} = 2.9.

In this example, the optimal choices are to take transitions as soon as they
are available. However, as we will see, this does not hold in general since we
might need to wait longer in a location in order for an enabling condition to be
satisfied later.

4 Minimum Expected Time Algorithm for PTAs

In this section we present our algorithm for the minimum expected time com-
putation for PTAs. It is based on a backwards exploration of the state space.
We adopt backwards as opposed to forwards search since, although forwards has
proven successful in the context of TAs, for PTAs it yields only upper bounds for
maximum probabilistic reachability [20]. For the remainder of the section we fix
a PTA P = (L, l0,X ,Act , enab, prob, inv), target set of locations F and suppose
[[P]] = (S, S0, R×Act ,P[[P]],R[[P]]) and SF = {(l, v) | l ∈ F ∧ v|=inv(l)}.
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Fig. 2. Backward reachability algorithm

Symbolic States. A symbolic state z of P is a pair (l, ζ) ∈ L×Zones(X )
representing the set of PTA states {(l, v) | v|=ζ}. Let ZF ={(l, inv(l)) | l ∈ F}, i.e.
the target set of symbolic states. For any symbolic states z=(l, ζ) and z′=(l, ζ ′)
let z∧z′=(l, ζ∧ζ ′), z ⊆ z′ if and only if ζ ⊆ ζ ′ and z=∅ if and only if ζ=false.
The time and discrete predecessor operations for z=(l, ζ) are defined as follows:

tpre(z) = (l,↙ζ ∧ inv(l))

dpre(l′′, a, (R, l′))(z) =
{

(l′′, false) if l �= l′

(l′′, [R]ζ ∧ enab(l′′, a)) otherwise

where (R, l′) ∈ edges(l′′, a), l′′ ∈ L and a ∈ Act .

Backward Reachability Algorithm. We use a slightly modified version of the
backward reachability algorithm on symbolic states taken from [21] (the same
operations are performed, we just add action labels to the edge tuples). The
modified version is given in Figure 2.

The backwards algorithm returns a zone graph (Z, E) with symbolic states
as vertices. Termination of the algorithm is guaranteed by the fact that only
finitely many zones can be generated. As demonstrated in [21], from this graph
one can build a finite state MDP for computing the exact maximum reachability
probabilities of [[P]]. The MDP M(Z,E) has state space Z, action set 2E and if
z ∈ Z and E ∈ 2E, then PM(Z,E)(z, E) is defined if and only if there exists a ∈ Act
such that

− (z′′, a′, (R, l′), z′) ∈ E implies z′′ = z and a′ = a;
− (z, a, (R, l′), z′) �= (z, a, (R̃, l̃′), z̃′) ∈ E implies (R, l′) �= (R̃, l̃′);
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where PM(Z,E)(z, E)(z′)=
∑{|prob(l, a)(R, l′) | (z, a, (R, l′), z′) ∈ E|} for z′ ∈ Z.

The following theorem shows the correspondence between the maximum
reachability probabilities for [[P]] and M(Z,E).

Theorem 2 ([21]).Let (Z, E)be the zonegraphreturnedbyBackwardsReach(P, F ),
then for any state s of [[P]] we have:

− P
max
[[P]] (s, SF )>0 if and only if there exists z ∈ Z such that s ∈ tpre(z);

− if Pmax
[[P]] (s, SF )>0, then P

max
[[P]] (s, SF ) = max

{
P
max
M(Z,E)

(z, ZF ) | z∈Z∧s∈tpre(z)}
.

Using Theorem 2 we can find the states s of [[P]] for which P
max
[[P]] (s, SF )=1

by computing the symbolic states z for which P
max
M(Z,E)

(z, ZF )=1. Finding these
symbolic states does not require numerical computation [13], and hence we do
not need to build M(Z,E), but can use (Z, E) directly in the computation.

For the remainder of this section we assume we have computed the states of
M(Z,E), and hence of [[P]], for which the maximum reachability probability is 1,
and [[P]] and (Z, E) are the sub-MDP and sub-graph restricted to these states.
Using Theorem 2, s ∈ S if and only if there exists z ∈ Z such that s ∈ tpre(z).

For states not considered, i.e. states for which the maximum reachability
probability is less than 1, since we assume P is non-zeno (Assumption 2(c)) their
minimum expected time equals infinity. Therefore, if we compute the minimum
expected time for the states of the constructed sub-MDP, we will have found the
minimum expected time for all states of the PTA.

Following the discussion in Section 3, [[P]] now satisfies Assumption 1 and
therefore we can use Theorem 1. In particular, value iteration for the Bellman
operator of Definition 3 for [[P]] and SF converges to the minimum expected
time when starting from any bounded function. Below we will present a value
iteration method over (Z, E) and prove that it corresponds to that for [[P]] and
SF , and hence will also converge to the minimum expected time values for [[P]].

Value Iteration Over the Zone Graph. To present the value iteration opera-
tor for (Z, E), we require the following notation. For (l, ζ) ∈ Z, the set of edges E ⊆
E is an element of E(l, ζ) if and only if there exists a ∈ Act such that edges(l, a) =
{(R1, l1), . . . , (Rn, ln)} and E={(z, a, (R1, l1), z1), . . . , (z, a, (Rn, ln), zn)} for
some z1, . . . , zn ∈ Z.

Definition 6. The operator T(Z,E) : (Z→(S→R))→(Z→(S→R)) on the zone
graph (Z, E) is such that for g : Z→(S→R), (l, ζ) ∈ Z and (l, v) ∈ S where
(l, v) ∈ tpre(l, ζ) we have T(Z,E)(g)(l, ζ)(l, v) equals 0 if l ∈ F and otherwise
equals

inf
t∈R∧v+t∈ζ

min
E∈E(l,ζ)

{

t +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈E

prob(l, a)(R, l′)·g(l′, ζ ′)(l′, (v+t)[R])

}

.

We now demonstrate the correspondence between value iteration using this oper-
ator over (Z, E) and that given by Definition 3 over [[P]].
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Proposition 1. If f : S→R and g : Z→(S→R) are functions such that f(s) =
g(z)(s) for all z ∈ Z and s ∈ tpre(z), then for any s ∈ S and n ∈ N we have:
Tn
[[P]](f)(s) = min{Tn

(Z,E)(g)(z)(s) | z ∈ Z ∧ s ∈ tpre(z) }.
Proof. Consider any f : S→R and g : Z→(S→R) such that f(s) = g(z)(s) for
all z ∈ Z and s ∈ z. The proof is by induction on n ∈ N. If n=0, then the result
follows by construction of f and g and since T 0

[[P]](f) = f and T 0
(Z,E)(g) = g.

Next we assume the proposition holds for some n ∈ N. For any s=(l, v) ∈ S, if
l ∈ F , then by the construction of the zone graph (see Figure 2), Definition 3 and
Definition6wehave:Tn+1

[[P]] (f)(s) = 0 = min
{
Tn+1
(Z,E)(g)(z)(s) | z ∈ Z∧s ∈ tpre(z)

}
.

It therefore remains to consider the case when s=(l, v) ∈ S and l �∈ F . For
any (t′, a′) ∈ A(s) and (R, l′) ∈ edges(l, a) by the induction hypothesis there
exists (l′, ζ(R,l′)) ∈ Z with (l′, (v+t′)[R]) ∈ tpre(l′, ζ(R,l′)) such that:

Tn
(Z,E)(g)(l′, ζ(R,l′))(l′, (v+t′)[R]) = Tn

[[P]](f)(l′, (v+t′)[R]) . (1)

Now since (t′, a′) ∈ A(s) and (l′, (v+t′)[R]) ∈ tpre(l′, ζ(R,l′)) it follows from
Definition 5 that (l, v+t) ∈ dpre(l, a′, (R, l′))(tpre(l′, ζ(R,l′))).

Since the edge (R, l′) ∈ edges(l, a) was arbitrary, by the construction of the
zone graph (see Figure 2), there exists (l, ζ) ∈ Z such that v+t′ ∈ ζ and edge set:

E′ = {(l, ζ), a′, (R, l′), (l′, ζ(R,l′))) | (R, l′) ∈ edges(l, a)} ∈ E(l, ζ) . (2)

Furthermore, by definition of tpre we have (l, v) ∈ tpre(l, ζ). Now, by Definition 6,
Tn+1
(Z,E)(g)(l, ζ)(l, v) equals:

inf
t∈R∧v+t∈ζ

min
E∈E(l,ζ)

{
t +

∑
((l,ζ),a,(R,l′),(l′,ζ′))∈E

prob(l, a)(R, l′)·T n
(Z,E)(g)(l′, ζ′)(l′, (v+t)[R])

}

� min
E∈E(l,ζ)

{
t′ +

∑
((l,ζ),a′,(R,l′),(l′,ζ′))∈E

prob(l, a′)(R, l′)·T n
(Z,E)(g)(l′, ζ′)(l′, (v+t′)[R])

}

(since v+t′ ∈ ζ)

� t′ +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈E′
prob(l, a′)(R, l′)·T n

(Z,E)(g)(l′, ζ′)(l′, (v+t′)[R])

(since E′ ∈ E(l, ζ))

= t′ +
∑

(R,l′)∈edges(l,a′)
prob(l, a′)(R, l′)·T n

[[P]](f)(l′, (v+t′)[R]) (by (1) and (2))

= R[[P]](s, (t
′, a′)) +

∑
s′∈SP[[P]](s, (t

′, a′))(s′)·T n
[[P]](f)(s′) (by Definition 5)

Therefore, since (t′, a′) ∈ A(s) was arbitrary it follows from Definition 3 that:

Tn+1
[[P]] (f)(s) � min

{
Tn+1
(Z,E)(g)(z)(s) | z ∈ Z ∧ s ∈ tpre(z)

}
. (3)

Next we consider any z=(l, ζ) ∈ Z such that v+t ∈ ζ for some t ∈ R (i.e. z ∈ Z
such that s ∈ tpre(z)). For any t′ ∈ R such that v+t′ ∈ ζ and E′ ∈ E(l, ζ) by
construction of the zone graph there exists a′ ∈ Act where:

E′ = {(l, ζ), a′, (R, l′), (l′, ζ(R,l′))) | (R, l′) ∈ edges(l, a′)} (4)
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and (l′, (v+t′)[R]) ∈ tpre(l′, ζ(R,l′)) for all (R, l′) ∈ edges(l, a). Now by the induc-
tion hypothesis for any (R, l′) ∈ edges(l, a):

Tn
[[P]](f)(l′, (v+t′)[R]) � Tn

(Z,E)(g)(l′, ζ(R,l′))(l′, (v+t′)[R]) . (5)

Furthermore, by Definition 5 we have (t′, a′) ∈ A(s). Now by Definition 3:

Tn+1
[[P]] (f)(l, ν) = inf

(t,a)∈A(l,v)

{

R[[P]](s, (t, a)) +
∑

s′∈S

P[[P]](s, (t, a))(s′)·Tn
[[P]](f)(s′)

}

� R[[P]](s, (t′, a′)) +
∑

s′∈S

P[[P]](s, (t′, a′))(s′)·Tn
[[P]](f)(s′) (since (t′, a′) ∈ A(s))

= t′ +
∑

(R,l′)∈edges(l,a)

prob(l, a′)(R, l′)·Tn
[[P]](f)(l′, (v+t′)[R]) (by Definition 5)

� t′ +
∑

(R,l′)∈edges(l,a)

prob(l, a′)(R, l′)·Tn
(Z,E)(g)(l′, ζ(R,l′))(l′, (v+t′)[R]) (by (5))

= t′ +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈E′
prob(l, a′)(R, l′)·Tn

(Z,E)(g)(l′, ζ(R,l′))(l′, (v+t′)[R])

(by (4))

Since z=(l, ζ) ∈ Z such that v+t ∈ ζ for some t ∈ R, t′ ∈ R such that v+t′ ∈ ζ
and E′ ∈ E(l, ζ) were arbitrary, by Definition 6 it follows that:

Tn+1
[[P]] (f)(s) � min

{
Tn+1
(Z,E)(g)(z)(s) | z ∈ Z ∧ s ∈ tpre(z)

}
. (6)

Combining (3) and (6) we have:

Tn+1
[[P]] (f)(s) = min

{
Tn+1
(Z,E)(g)(z)(s) | z ∈ Z ∧ s ∈ tpre(z)

}
.

and hence, since s ∈ S was arbitrary, the proposition holds by induction. �
Rational Simple Functions and Rational Nice Functions. In [2], the
authors introduce simple functions and show that all value functions encountered
during the iterative procedure for computing the minimum time reachability for
TAs belong to this special class. For a zone ζ, a function f : ζ→R is simple if
and only if it can be represented as:

f(v) =

{
cj if v ∈ Cj

dl−v(xl) if v ∈ Dl

where cj , dl ∈ N, xl ∈ X , Cj and Dl are zones for 1�j�M and 1�l�N .
When it comes to PTAs, due to the presence of probabilistic branching,

simple functions are not sufficient, as shown by the example below. Moreover,
the domain of clocks cannot be represented by zones, as we now need to allow
more general linear constraints on clocks with rational coefficients.

Example 2. We return to the PTA of Example 1 (see Figure 1). Expressing the
minimum expected time in the initial location as a function f : R

X →R we have:

f(v) =

⎧
⎨

⎩

2.9 if x�2.1
5−v(x) if 2.1�x�5

0 if 5�x�10

and hence it cannot be represented using simple functions.
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We introduce rational simple functions to represent the functions encountered
during value iteration. Let X = {x1, . . . , xn} and k be the maximum constant
appearing in P. By Assumption 2(a) P is bounded, and hence all clock values
in P are bounded by k.

Definition 7. A (convex) k-polyhedron C ⊆ {v ∈ R
X | v(x)�k for x ∈ X} is

defined by finitely many linear inequalities; formally, it is of the form:

C =
{
v ∈ R

X | ∑n
i=1 qij ·v(xi) � fj for 1�j�M

}

where qij , fj ∈ Q and fj�k for all 1�i�n and 1�j�M for some M ∈ N.

Definition 8. For zone ζ, a function f : ζ→R is rational k-simple if and only
if it can be represented as:

f(v) =

{
cj if v ∈ Cj

dl − ∑n
i=1 pil·v(xi) if v ∈ Dl

where cj , dl ∈ Q+, pil ∈ Q+∩[0, 1] such that
∑n

i=1 pil�1 and Cj ,Dl are k-
polyhedra for all 1�i�n, 1�j�M and 1�l�N .

Furthermore, a function f : Z→(S→R) is rational k-simple if f(l, ζ)(l, ·) :↙ζ→R

is rational k-simple for all (l, ζ) ∈ Z.

We require the following definition and lemma for rational k-simple functions.

Definition 9. If f : ζ→R is a rational k-simple function and R ⊆ X , let f [R] :
[R]ζ→R be the function where f [R](v) = f(v[R]) for all v ∈ ζ.

Lemma 1. If f : ζ→R is rational k-simple and R ⊆ X , then f [R] : [R]ζ→R is
rational k-simple. (The proof can be found in [15].)

During value iteration we obtain functions of the form v �→ t+f(l, ζ)(l, v+t)
where f is rational k-simple. This motivates the introduction of rational k-nice
functions, based on Asarin and Maler’s k-nice functions [2].

Definition 10. A k-bipolyhedron is a set of the form {(v, t) | v ∈ C∧v+t ∈ D}
where C and D are k-polyhedra. For a zone ζ, a function g : (ζ×R) → R is
rational k-nice if and only if it can be represented as:

g(v, t) =

{
cj+t if (v, t) ∈ Fj

dl−
∑n

i=1 pil·v(xi)+ (1− ∑n
i=1 pil) ·t if (v, t) ∈ Gl

where cj , dl ∈ Q+, pil ∈ Q+∩[0, 1] such that
∑n

i=1 pil�1 and Fj , Gl are rational
k-bipolyhedra for all 1�i�n, 1�j�M and 1�l�N .

We require the following properties of k-nice functions (proofs are available in
[15]).

Lemma 2. A convex combination of rational k-nice functions is rational k-nice.
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Lemma 3. The minimum of rational k-nice functions is rational k-nice.

Lemma 4. For any zone ζ, if g : (ζ×R)→R is rational k-nice, then the function
f : ζ→R where f(v) = inft∈R g(v, t) for v ∈ ζ is rational k-simple.

We are now in a position to show that that rational k-simple functions are a
suitable representation for value functions.

Proposition 2. If f : Z→(S→R) is a rational k-simple function, then T(Z,E)(f)
is rational k-simple.

Proof. Consider any rational k-simple function, z ∈ Z and E ∈ E(z). For any
v ∈ R

X and t ∈ R we have:

t +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈Eprob(l, a)(R, l′)·f(l′, ζ ′)(l′, (v+t)[R])

= t +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈Eprob(l, a)(R, l′)·f [R](l′, ζ ′)(l′, v+t)
(by Definition 9)

=
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈Eprob(l, a)(R, l′)· (t + f [R](l′, ζ ′)(l′, v+t)) (7)

since prob(l, a) is a distribution. By construction f is rational k-simple, and
hence for any (z, a, (R, l′), z) ∈ E using Lemma 1 we have f [R] is also rational
k-simple. Therefore, it follows from Definition 10 that:

(v, t) �→ t + f [R](l′, ζ ′)(l′, v+t)

is rational k-nice. Thus, since (z, a, (R, l′), z) ∈ E was arbitrary, using Lemma 2
and (7) we have that:

(v, t) �→ t +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈Eprob(l, a)(R, l′)·f(l′, ζ ′)(l′, (v+t)[R])

is also rational k-nice. Since E ∈ E(z) was arbitrary and E(z) is finite, Lemma 3
tells us:

(v, t) �→ min
E∈E(z)

{
t +

∑
((l,ζ),a,(R,l′),(l′,ζ′))∈Eprob(l, a)(R, l′)·f(l′, ζ ′)(l′, (v+t)[R])

}

is again rational k-nice. Finally, using Definition 6 and Lemma 4, it follows that
T(Z,E)(f)(z) is rational k-simple as required. �

Controller Synthesis. We now give an approach for computing the minimum
expected time of reaching a target in a PTA and synthesising ε-optimal strategy
when starting from the initial state. We first build the backwards zone graph
(Z, E) (see Figure 2), then, using Theorem 2 and graph-based algorithms [13],
we can find the states of [[P]] for which the maximum probability of reaching the
target is less than 1 and remove these from the zone graph. Next, using Defini-
tion 6, we apply value iteration to the zone graph which, by Proposition 2, can
be performed using rational k-simple functions (and rational k-nice functions).
Convergence to the minimum expected reachability values of P is guaranteed by
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l0 l1 l2a x:=0 0.5

x�1

y:=0
0.5 x�9

b

y=5 ∧ x=0

c

x�1, x:=0

Fig. 3. PTA

z10

z20

z11

z21

z2a, ({x}, l0)

a, ({x}, l0)

a, ({x}, l0)
a, ({x}, l1)

a, ({x}, l1)

a, ({x}, l1)

b, (∅, l2)

c, (∅, l2)

Fig. 4. Backwards Zone graph

Proposition 1 and Theorem 1. An ε-optimal deterministic, memoryless strategy
can be synthesised once value iteration has converged by starting from the initial
state and stepping through the backwards graph, in each state choosing the time
and action that achieve the values returned by value iteration.

Example 3. The PTA in Figure 3 presents an example where waiting longer
than necessary in a location can reduce the time to reach the target. Again
we suppose the invariant in all locations is x�10. The target is location l2 and
the zone graph is given in Figure 4, where z10=(l0, x�1), z20=(l0, y=5∧x�1),
z11=(l1, x�9), z21=(l1, y=5∧x=0) and z2=(l2, x�1). Starting from the constant
0 function f0 and performing value iteration gives for n� 2:

Tn
(Z,E)(f0)(z

1
0) =

{
(1−v(x))+

∑n−1
i=1 0.5n·9 if x�1∑n

i=1 0.5n−1·9 if 1�x�10

Tn
(Z,E)(f0)(z

2
0) =

{
(5−v(y))+0.5·(∑n

i=1 0.5n−1·9) if y�5
0.5·(∑n−1

i=1 0.5n−1·9) if 5�y�10

Tn
(Z,E)(f0)(z

1
1) =

{
9−v(x) if x�9

0 if 9�y�10

and Tn
(Z,E)(f0)(z

2
1) = Tn

(Z,E)(f0)(z2) = 0. Therefore, value iteration converges to:

f(z10) =
{

(1−v(x))+9 if x�1
9 if 1�x�10 and f(z20) =

{
(5−v(y))+0.5·9 if y�5

0.5·9 if 5�y�10

and hence the minimum expected time for the initial state equals the minimum
of (1−0)+9 and (5−0)+0.5·9, yielding 9.5. Performing controller synthesis we
find this corresponds to waiting until y=5, then performing the action a. If l1
is reached, we immediately perform the action c and reach the target. On the
other hand, if l0 is reached, we repeatedly immediately perform a and, if l1 is
reached, wait until x=9 and then perform the action b reaching the target.

5 Conclusion

We have proposed an algorithm to compute the minimum expected time to
reach a target set in a PTA. The algorithm is formulated as value iteration over
the backwards zone graph of the PTA. We also demonstrate that there is an
effective representation of the value functions in terms of rational simple and
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rational nice functions. However, zones are not sufficient and convex polyhedra
are required. Nevertheless, the Parma Polyhedra Library [3] offers efficient ways
to manipulate convex polyhedra and is commonly used in a variety of real-time
verification problems. For example, methods based on priced zones for TAs and
PTAs, such as [7] and [22], also use convex polyhedra, where similarly zones do
not suffice.

Regarding future work, as well as working on an implementation, we note
that optimisations to the backwards algorithm presented in [8], including first
performing forwards reachability to restrict analysis to the reachable state space,
could be considered here as well. Since policy iteration also converges (see The-
orem 1), we plan to investigate this approach and compare with value iteration.
Extending to linearly-priced PTAs does not appear straightforward, as ratio-
nal simple functions are not sufficient. Likewise, the case of maximum expected
values raises additional issues, since here one relies on minimum probabilistic
reachability, which is more complex to compute using zones and convexity is
lost [21].
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