
Sriram Sankaranarayanan
Enrico Vicario (Eds.)

 123

LN
CS

 9
26

8

13th International Conference, FORMATS 2015
Madrid, Spain, September 2–4, 2015
Proceedings

Formal Modeling
and Analysis
of Timed Systems



Lecture Notes in Computer Science 9268

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Sriram Sankaranarayanan • Enrico Vicario (Eds.)

Formal Modeling
and Analysis
of Timed Systems
13th International Conference, FORMATS 2015
Madrid, Spain, September 2–4, 2015
Proceedings

123



Editors
Sriram Sankaranarayanan
University of Colorado
Boulder, CO
USA

Enrico Vicario
University of Florence
Florence
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-22974-4 ISBN 978-3-319-22975-1 (eBook)
DOI 10.1007/978-3-319-22975-1

Library of Congress Control Number: 2015946098

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

FORMATS 2015 was the 13th edition of the International Conference on Formal
Modeling and Analysis of Timed Systems. It promoted the study and experimentation
of fundamental and practical aspects of modeling and analysis of timed systems, and
brought together researchers from different disciplines on various related topics,
including:

– Foundations and Semantics: Theoretical foundations of timed systems and lan-
guages; comparison between different models (timed automata, timed Petri nets,
hybrid automata, timed process algebra, max-plus algebra, probabilistic models).

– Methods and Tools: Techniques, algorithms, data structures, and software tools for
analyzing timed systems and resolving temporal constraints (scheduling, worst-case
execution time analysis, optimization, model checking, testing, constraint solving,
etc.).

– Applications: Adaptation and specialization of timing technology in application
domains for which timing plays an important role (real-time software, hardware
circuits, and problems of scheduling in manufacturing and telecommunication).

FORMATS 2015 was held in Madrid, continuing the tradition of the events held in
Florence (2014), Buenos Aires (2013), London (2012), Aalborg (2011), Klosterneu-
burg (2010), Budapest (2009), St Malo (2008), Salzburg (2007), Paris (2006), Uppsala
(2005), Grenoble (2004), and Marseille (2003).

FORMATS 2015 was organized under the umbrella of Madrid Meet 2015 - a
one-week event focussing on the areas of formal and quantitative analysis of systems,
performance engineering, computer safety, and industrial critical applications.
Co-located conferences included the 12th International Conference on Quantitative
Evaluation of Systems (QEST 2015), the 26th International Conference on Concurrency
Theory (CONCUR 2015), the 10th European Workshop on Performance Engineering
(EPEW 2015), and various other associated workshops and symposia.

The Program Committee (PC) for FORMATS 2015 was formed by 36 experts plus
the two PC chairs. A total of 42 full papers were submitted. All manuscripts received 4
reviews, with the exception of a single one which received 3. In this step, 81 additional
subreviewers were involved. Reviews were discussed by the PC and the subreviewers
using the EasyChair system. In the end, 19 papers were accepted. The conference
program was then enriched with an invited talk by Jeremy Sproston (University of
Turin, Italy) included in the proceedings of FORMATS, and an invited talk by Jozef
Hooman (RU Nijmegen and TNO-ESI, The Netherlands) reported in the proceedings
of QEST.

We sincerely thank all the authors who submitted papers for their interest in
FORMATS and more generally for their involvement and contribution to the research
in formal modeling and analysis of timed systems.We thank each member of the PC,
and each sub-reviewer, for the high professionality and commitment shown in the



elaboration of reviews and the following discussion. Their service was essential for
continuinig the tradition of FORMATS. We thank the publicity chair Marco Paolieri
and the webmaster Simone Mattolini for their precious service. We thank David De
Frutos for the organization of the Madrid Meet event. We thank Oded Maler and
Eugene Asarin for the help that they provided from a distance, and the Steering
Committee of FORMATS for giving us the occasion to lead, for one step, this lively
community.

June 2015 Sriram Sankaranarayanan
Enrico Vicario

VI Preface
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Verification and Control of Probabilistic
Rectangular Hybrid Automata

Jeremy Sproston(B)

Dipartimento di Informatica, University of Turin, Turin, Italy
sproston@di.unito.it

Abstract. Hybrid systems are characterised by a combination of dis-
crete and continuous components. In many application areas for hybrid
systems, such as vehicular control and systems biology, stochastic
behaviour is exhibited. This has led to the development of stochastic
extensions of formalisms, such as hybrid automata, for the modelling of
hybrid systems, together with their associated verification and controller
synthesis algorithms, in order to allow reasoning about quantitative prop-
erties such as “the vehicle’s speed will reach 50kph within 10 seconds with
probability at least 0.99”. We consider verification and control of prob-
abilistic rectangular hybrid automata, which generalise the well-known
class of rectangular hybrid automata with the possibility of representing
random behaviour of the discrete components of the system, permitting
the modelling of the likelihood of faults, choices in randomised algorithms
and message losses. Furthermore, we will also consider how probabilistic
rectangular hybrid automata can be used as abstract models for more
general classes of stochastic hybrid systems.

1 Background and Motivation

Verification and Control. The development of correct and reliable computer sys-
tems can benefit from formal verification and controller synthesis methods. Both
of these kinds of methods necessitate the precise specification of a set of require-
ments that the system should satisfy: examples are the avoidance of an error state
or the repeated completion of a task. A typical formal verification method is that
of model checking [4,8], in which the system is modelled formally as a transition
system (or in a high-level modelling formalism which has transition systems as
its semantics), the requirements are modelled using temporal logic formulae or
automata, and an algorithm determines whether the model of the system sat-
isfies its requirements. Controller synthesis considers a partially-specified model
of the system, which is subject to a method for restricting the behaviours of the
system so that the restricted system satisfies a set of requirements. Controller
synthesis is typically solved by representing the system as a two-player game,
in which one player takes the role of the controller, which has the objective of

Supported by the MIUR-PRIN project CINA and the EU ARTEMIS Joint Under-
taking under grant agreement no. 332933 (HoliDes).

c© Springer International Publishing Switzerland 2015
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2 J. Sproston

restricting system behaviours in order to achieve the requirements, and the other
player takes the role of the system’s environment [5,24,25]. A winning strategy
of the first player constitutes a control mechanism that ideally can be used as a
basis of an implementation, so that the system’s behaviour is restricted in such
a way as to satisfy the requirements.

Hybrid Automata. For the development of a wide range of computer systems,
ranging from domestic appliances to vehicular controllers to medical devices,
the interaction between the discrete behaviour of the digital system and the
continuous behaviour of the environment in which the system operates is vital to
understanding and reasoning about the overall system. Such systems are termed
hybrid systems. Hybrid automata [1] have been introduced as a formalism for
hybrid systems. A hybrid automaton consists of a finite directed graph and a
set of real-valued variables, representing the discrete and continuous parts of
the system, respectively. The discrete and continuous parts interact according
to constraints on the continuous variables, and on their first derivatives, that
label the nodes and edges of the graph. We refer to constraints on the first
derivatives of variables as flow constraints. Variables can be reset to new values
when an edge is traversed: resets are expressed as a relation between the previous
value of the variable and its new value, and may involve nondeterministic choice
(for example, a variable may be reset to any value in the interval [1, 2] after
taking an edge, where the choice of the new value is nondeterministic). For more
information on hybrid automata, see [17,26].

The semantics of a hybrid automaton is represented by an infinite-state tran-
sition system: each state comprises a node and a valuation, that is a function
associating a real value to each variable, and the transitions between states
either correspond to the elapse of time or to the traversal of an edge of the
hybrid automaton’s graph. We say that the continuous-time semantics of hybrid
automata corresponds to the case in which the durations of time-elapse transi-
tions are taken from the set of non-negative reals, whereas the discrete-time
semantics corresponds to the case in which time-elapse transitions can corre-
spond to natural numbered durations (and duration 0) only.

Probabilistic Hybrid Automata. In many application contexts for hybrid sys-
tems, system behaviours may have dramatically varying degrees of likelihood.
Examples of events that typically have a low probability include faults, message
losses or extreme meteorological conditions. In such settings, the traditional for-
mulation of verification and control problems, with their Boolean view of system
correctness, is insufficient: for example, a message loss may be acceptable if
the message can eventually be delivered within a specified deadline with high
probability, and a lengthier journey of an automated vehicle may be accept-
able in the case of uncharacteristically inclement weather. These facts have led
to the development of the field of stochastic hybrid systems. In the literature,
a number of formalisms have been considered, of which we mention piecewise-
deterministic Markov processes [6,10], controlled discrete-time Markov processes
[31] and stochastic hybrid automata [13,16]. In this paper, we consider proba-
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Fig. 1. A probabilistic hybrid automaton modelling a faulty thermostat

bilistic hybrid automata [27,28], which extend the classical hybrid automaton
formalism with the possibility to associate probability to the edges of the model’s
graph. From another perspective, probabilistic hybrid automata can be viewed
as finite-state Markov decision processes (for verification) or finite-state stochas-
tic games (for control) extended with continuous variables and their associated
constraints, in the same way that hybrid automata can be seen as finite-state
graphs extended with variables and constraints. Probabilistic hybrid automata
allow the modelling of probabilistic phenomena associated with the discrete part
of the system, such as randomised choice between a finite number of alternatives
of a digital controller, or the occurrence of a fault at the moment in which a dis-
crete action is performed. The semantics of a probabilistic hybrid automaton is
represented by an infinite-state Markov decision process (when considering veri-
fication) or stochastic game (when considering control). As for hybrid automata,
either a continuous-time or discrete-time semantics can be considered.

An example of a probabilistic hybrid automaton modelling a faulty thermo-
stat is shown in Figure 1. The ambient temperature is represented by the variable
x, and variable y is a timer. When the heater is on (node ON or node MALF),
the temperature increases at a rate between 1 and 6; when the heater is off (loca-
tion OFF), the temperature changes at a rate between -4 and -1. The nodes ON
and OFF corresponds to non-faulty behaviour, whereas the node MALF corre-
sponds to the heater being on in the presence of a fault in the temperature sensor
that means that the measurement of the temperature is temporarily unavailable.
The system passes from ON to OFF, with probability 1, when the temperature
is between 20 and 25, and from OFF to ON, with probability 9

10 , or to MALF,
with probability 1

10 , when the temperature is between 10 and 15. The sensor
fault means that the temperature can increase to a higher level in MALF than
in ON. After a malfunction, either the system is deactivated if the temperature
reaches an excessive level (location DEACT), or the system times-out exactly
20 time units after the location MALF was entered, in which case the heater is
switched off. All edges of this example correspond to reaching a certain location
with probability 1, apart from the probabilistically branching edge from OFF.
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When considering verification problems of formalisms based on Markov deci-
sion processes, such as probabilistic hybrid automata, we must take into account
the fact that there are two types of choice in the model, namely nondetermin-
istic choice and probabilistic choice. A strategy is a function that, given a finite
execution of the model, returns the next action to be performed from the set of
possible actions that can be chosen nondeterministically in the final state of the
execution. Hence, a strategy resolves the nondeterministic choice of the model,
but not the probabilistic choice. Given a particular system requirement and a
particular strategy, we can then reason about the probability of satisfying the
requirement when the nondeterministic choice of the model is resolved by the
strategy. In particular we are interested computing in the maximum or mini-
mum probability of satisfying a requirement. Hence verification typically takes
the form of considering a requirement ϕ (for example reachability, which spec-
ifies that a state with a node F is eventually reached, but more generally an
ω-regular property), and a threshold λ ∈ [0, 1], and then relies on determining
whether the maximum probability of satisfying ϕ is at least λ. Controller synthe-
sis approaches take a similar form although, recalling that control of probabilistic
systems is typically stated in terms of a stochastic game [3,7], in that setting
there are strategies belonging to each player. Hence we determine whether the
controller player can guarantee that ϕ is satisfied with probability at least λ,
regardless of the behaviour of the environment player.

2 Probabilistic Rectangular Hybrid Automata

Methods for the verification and control of probabilistic hybrid automata, like
the associated methods for classical hybrid automata, must take into account the
fact that the underling state space of the model is infinite; more precisely, the
semantics of a probabilistic hybrid automaton is described in terms of an infinite-
state Markov decision process or stochastic game. We can identify a number of
techniques for the verification and control of probabilistic hybrid automata: in
this paper, we will focus mainly on the approach of constructing a finite-state
Markov decision process or stochastic game, which is then analysed using well-
established methods. We also mention briefly alternative methods for verification
of probabilistic hybrid automata: in [33], “symbolic” search through the state
space of a probabilistic hybrid automaton using non-probabilistic methods is
performed first, after which a finite-state Markov decision process is constructed
and analysed; [14] uses stochastic satisfiability modulo theories to permit the
verification of bounded requirements; [9] employs a stochastic semantics for more
general stochastic hybrid systems, to which statistical model checking is applied.

Subclasses of hybrid automata are generally characterised in terms of the
form of the constraints associated with the nodes and edges of the graph. In a
similar way, we can characterise subclasses of probabilistic hybrid automata in
terms of the form of constraints utilised. In particular, a probabilistic rectangu-
lar automaton is a probabilistic hybrid automaton for which the constraints on
continuous variables take the form of conjunctions of comparisons of a variable
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with a constant, and flow constraints take the form of conjunctions of compar-
isons of a first derivative of a variable with a constant (that is, the constraints
of probabilistic rectangular automata have the same form as the constraints
used in non-probabilistic rectangular automata [19]). The example in Figure 1
is a probabilistic rectangular automaton. We say that a probabilistic rectangu-
lar automaton is initialised if the value of a variable is reset when making a
transition between nodes with flow constraints on that variable.

We focus first on verification problems with the continuous-time semantics.
Many verification problems for probabilistic timed automata [15,21], which are
probabilistic rectangular automata for which variables increase at the same rate
as real-time, are decidable. In particular, reachability verification for probabilis-
tic timed automata is EXPTIME-complete [21,23]. These results can be gen-
eralised in the following way: letting H be a class of (non-probabilistic) hybrid
automata, and letting P be the associated class of probabilistic hybrid automata
(where H being associated with P means that the constraints used for both
classes are of the same form), if the hybrid automata of the class H have finite
bisimulation relations, then the probabilistic automata of the class P will have
finite probabilistic bisimulation relations [30]. Given that, for an infinite-state
Markov decision process with a finite probabilistic bisimulation relation, we can
construct a finite-state Markov decision process that is equivalent with respect
to a wide range of verification problems, this result means that a number of
bisimulation-based decidability results for verification in the hybrid automata
setting can be lifted to the probabilistic hybrid automata setting. For example,
we can establish the decidability of a number of verification problems (including
verification of requirements expressed as ω-regular properties or as probabilistic
temporal logic formulae) for probabilistic hybrid automata that are probabilis-
tic extensions of initialised multisingular automata [19] (a subclass of proba-
bilistic rectangular automata), and also for classes incomparable to rectangular
automata, such as o-minimal automata [22] and STORMED hybrid automata
[32]. This result relies crucially on the fact that the hybrid automata considered
have finite bisimulation relations: intuitively, bisimulation takes into account the
branching structure of the system, which then allows results on bisimulation for
hybrid automata to be lifted to the probabilistic case. Indeed, we note that the
reduction from initialised rectangular automata to timed automata presented in
[19], which results in a language equivalent and not necessarily bisimilar timed
automaton, can be adapted to the probabilistic case [27,28], but obtains an
over-approximate model, rather than a faithful representation of the original
initialised probabilistic rectangular automaton.

Next we consider both verification and control of probabilistic rectangular
automata with the discrete-time semantics. In this case, with the assumption
that each variable is either non-decreasing (as time elapses) or remains within a
bounded range throughout the model’s execution, but without the assumption of
initialisation, it is possible to obtain a finite probabilistic bisimulation relation of
the model, and hence a finite-state Markov decision process or stochastic game
[29]. Hence verification of many requirements, such as reachability, safety and
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ω-regular properties, is EXPTIME-complete, whereas controller synthesis of the
same classes of requirements can be done in NEXPTIME ∩ coNEXPTIME.

Instead, the problem of controller synthesis of probabilistic rectangular
automata with the continuous-time semantics has received little attention so
far. A notable exception is [12], in which a game version of probabilistic timed
automata is considered.

3 Approximation with Probabilistic Hybrid Automata

A well-established approach in the field of modelling and verification is the con-
struction of models that are amenable to verification and that over-approximate
more faithful, but more difficult-to-verify models. In the context of classical
hybrid automata, over-approximation generally consists of constructing a model
whose set of observable behaviours contains all those of the original model. For
example, rectangular automata have been used to approximate hybrid automata
with more complex dynamics, in particular with respect to the constraints on
the first derivatives of the variables [11,18]. In the context of probabilistic hybrid
automata, or more general types of stochastic hybrid system, over-approximation
generally consists of constructing a model for which, for any strategy σ of the
original model, there exists a strategy σ′ of the over-approximating model such
that σ and σ′ assign the same probability to observable events. This means
that the maximum (minimum) probability of satisfying a certain requirement
in the over-approximating model is no less than (no greater than) the proba-
bility of satisfying the requirement in the original model: that is, the maximum
and minimum probabilities of a requirement in the over-approximating model
bound those of the original model. Such an approach has been applied in the
context of stochastic hybrid automata, in order to transform a model of a cer-
tain class of stochastic hybrid automata to a model of an more easily-analysed
class of probabilistic hybrid automata. The applications of the approach have
taken two forms: over-approximation of flows (which extends the results of [18]
to the probabilistic setting) [2], and over-approximation of probabilistic resets.
We concentrate our attention on the latter.

Recall that, in the probabilistic hybrid automaton framework described
above, a variable can be reset when traversing an edge. The mechanism of reset-
ting variables is generalised in [13,16,20] to allow the possibility to reset variables
according to continuous probability distributions, such as the uniform or normal
distributions, and thus allowing the modelling of an increased range of proba-
bilistic phenomena, such as measurement errors and uncertain times of events.
The resulting formalism is called stochastic hybrid automata. The approach
taken in [13,16,20] to analyse a stochastic hybrid automaton S is to construct
over-approximating probabilistic hybrid automaton P, where P is obtained from
S by replacing the probabilistic choice involved in a probabilistic reset (over
a continuous domain) by a discrete probabilistic choice (over a finite domain)
between a number of intervals that cover the support of the probabilistic reset.
After a probabilistic choice between the intervals, a nondeterministic choice is
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made within the chosen interval. For example, consider the probabilistic reset
in which a variable x is updated according to a uniform distribution over [1, 3].
The probabilistic reset can be replaced by a discrete probabilistic choice over (for
example) the intervals [1, 2] and [2, 3], each of which correspond to probability 1

2 ,
in accordance with the original uniform distribution, and which is then followed
by a nondeterministic choice over the chosen interval. If, in all other respects
(nodes, flows etc.), S and P are identical, then P over-approximates S.

The framework of over-approximation of probabilistic resets, with the aim
of obtaining probabilistic rectangular automata, has been considered in [30]. In
this context, stochastic hybrid automata are restricted as having rectangular-like
constraints on flows and variables, although flows of the form ẋ = y, where y is
constant as time passes, are allowed: this permits the modelling of situations in
which the flow of a variable within a node is chosen according to a continuous
probability distribution on entry to the node. With regard to the example of
Figure 1, in node ON, rather than increase nondeterministically with a rate in
[1, 6], we could consider that the rate of increase of the temperature is chosen on
entry to the node from the normal distribution with mean 3.5 and standard devi-
ation 1, truncated to the interval [1, 6]. It is shown that such stochastic hybrid
automata can be over-approximated by probabilistic rectangular automata.
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Abstract. We analyze a timed Petri net model of an emergency call
center which processes calls with different levels of priority. The counter
variables of the Petri net represent the cumulated number of events as
a function of time. We show that these variables are determined by a
piecewise linear dynamical system. We also prove that computing the
stationary regimes of the associated fluid dynamics reduces to solving
a polynomial system over a tropical (min-plus) semifield of germs. This
leads to explicit formulæ expressing the throughput of the fluid system as
a piecewise linear function of the resources, revealing the existence of dif-
ferent congestion phases. Numerical experiments show that the analysis
of the fluid dynamics yields a good approximation of the real throughput.

1 Introduction

Motivations. Emergency call centers must handle complex and diverse help
requests, involving different instruction procedures leading to the engagement
of emergency means. An important issue is the performance evaluation of these
centers. One needs in particular to estimate the dependence of quantities like
throughputs or waiting times with respect to the allocation of resources, like the
operators answering calls.

The present work originates from a case study relative to the current project
led by Préfecture de Police de Paris (PP), involving the Brigade de sapeurs-
pompiers de Paris (BSPP), of a new organization to handle emergency calls to
Police (number 17), Firemen (number 18), and untyped emergency calls (number
112), in the Paris area. In addition to the studies and experimentation already
carried out by PP and BSPP experts, we aim at developing formal methods,
based on mathematical models. One would like to derive analytical formulæ or
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performance bounds allowing one to confirm the results of simulation, to iden-
tify exceptional situations not easily accessible to simulations, and to obtain a
general understanding of potential bottlenecks. In such applications, complex
concurrency phenomena (available operators must share their time between dif-
ferent types of requests) are arbitrated by priority rules. The systems under
study are beyond the known exactly solvable classes of Markov models, and it
is desirable to develop new analytical results.

Contributions. We present an algebraic approach which allows to analyze the
performance of systems involving priorities and modeled by timed Petri nets. Our
results apply to the class of Petri nets in which the places can be partitioned in
two categories: the routing in certain places is subject to priority rules, whereas
the routing at the other places is free choice.

Counter variables determine the number of firings of the different transitions
as a function of time. Our first result shows that, for the earliest firing rule,
the counter variables are the solutions of a piecewise linear dynamical system
(Sect. 3). Then, we introduce a fluid approximation in which the counter vari-
ables are real valued, instead of integer valued. Our main result shows that in
the fluid model, the stationary regimes are precisely the solutions of a set of
lexicographic piecewise linear equations, which constitutes a polynomial system
over a tropical (min-plus) semifield of germs (Sect. 4). The latter is a modifi-
cation of the ordinary tropical semifield. In essence, our main result shows that
computing stationary regimes reduces to solving tropical polynomial systems.

Solving tropical polynomial systems is one of the most basic problems of
tropical geometry. The latter provides insights on the nature of solutions, as well
as algorithmic tools. In particular, the tropical approach allows one to determine
the different congestion phases of the system.

We apply this approach to the case study of PP and BSPP. We introduce a
simplified model of emergency call center (Sect. 2). This allows us to concentrate
on the analysis of an essential feature of the organization: the two level emer-
gency procedure. Operators at level 1 initially receive the calls, qualify their
urgency, handle the non urgent ones, and transfer the urgent cases to specialized
level 2 operators who complete the instruction. We solve the associated system
of tropical polynomial equations and arrive at an explicit computation of the
different congestion phases, depending on the ratio N2/N1 of the numbers of
operators of level 2 and 1 (Sect. 5). Our analytical results are obtained only
for the approximate fluid model. However, they are confirmed by simulations in
which the original semantics of the Petri nets (with integer firings) is respected
(Sect. 6).

Related work. Our approach finds its origin in the maxplus modeling of timed
discrete event systems, introduced by Cohen, Quadrat and Viot and further
developed by Baccelli and Olsder, see [1,2] for background. The idea of using
counter variables already appeared in their work. However, the classical results
only apply to restricted classes of Petri nets, like event graphs, or event graphs
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with weights as, for instance, in recent work by Cottenceau, Hardouin and Boi-
mond [3]. The modeling of more general Petri nets by a combination of min-
plus linear constraints and classical linear constraints was proposed by Cohen,
Gaubert and Quadrat [4,5] and Libeaut and Loiseau (see [6]). The question of
analyzing the behavior of the dynamical systems arising in this way was stated
in a compendium of open problems in control theory [7]. A key discrepancy with
the previously developed min-plus algebraic models lies in the semantics of the
Petri nets. The model of [4,5] requires the routing to be based on open loop
preselection policies of tokens at places, and it does not allow for priority rules.
This is remedied in the present work: we show that priority rules can be written
in a piecewise linear way, leading to a rational tropical dynamics.

Our approach is inspired by a work of Farhi, Goursat and Quadrat [8], who
developed a min-plus model for a road traffic network. The idea of modeling
priorities by rational min-plus dynamics first appeared there. By comparison,
one aspect of novelty of the present approach consists in showing that this idea
applies to a large class of Petri nets, mixing free choice and priority routing, so
that its scope is not limited to a special class of road traffic models. Moreover,
we provide a complete proof that these Petri nets follow the rational tropical
dynamics, based on a precise analysis of the counter variables along an execu-
tion trace. Finally, the approach of [8] was developed in the discrete time case.
A novelty of the present work consists in the treatment of the continuous time.

The analysis of timed Petri nets is a major question, which has been exten-
sively studied. We refer to [9–12] for a non-exhaustive account on the topic,
and to [13–15] for examples of tools implementing these techniques. An impor-
tant effort has been devoted to the comparison of timed Petri nets with timed
automata in terms of expressivity, see for instance [16,17]. The approaches devel-
oped in the aforementioned works aim at checking whether a given specification
is satisfied (for instance, reachability, or more generally, a property expressed in
a certain temporal logic), or at determining whether two Petri nets are equiva-
lent in the sense of bisimulation. Hence, the emphasis is on issues different from
the present ones: we focus on the performance analysis of timed Petri nets, by
determining the asymptotic throughputs of transitions.

Acknowledgments. We thank Régis Reboul, from PP, in charge of the emergency
call centers project, and Commandant Stéphane Raclot, from BSPP, for the
information and insights they provided throughout the present work. We are
grateful to the anonymous reviewers for their comments which helped to improve
the presentation of this paper.

2 A Simplified Petri Net Model of an Emergency Call
Center

In this section, we describe a call center answering to emergency calls according
to a two level instruction procedure. In the new organization planned by PP
together with BSPP [18], the emergency calls to the police (number 17), to
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Fig. 1. Simplified Petri net model of the Parisian 17-18-112 emergency call center
(organization in project). Blue arrows do not belong to the Petri net and symbolize
the entrance and exit of calls in the system.

the firemen (18), and untyped emergency calls (European number 112) will be
dealt with according to a unified procedure, allowing a strong coordination.
Another important feature of this organization is that it involves a two level
treatment. In the present paper, we limit our attention to the analysis of the
two level procedure. We defer to a further work the analysis of the unification
of the treatment of calls with heterogeneous characteristics. Hence, we discuss a
simplified model, for academic purposes.

The first level operators filter the calls and assign them to three categories:
extremely urgent (potentially life threatening situation), urgent (needing further
instruction), and non urgent (e.g., call for advice). Non-urgent calls are dealt
with entirely by level 1 operators. Extremely urgent and urgent calls are passed



14 X. Allamigeon et al.

to level 2 operators. An advantage of this procedure lies in robustness consid-
erations. In case of events generating bulk calls, the access to level 2 experts is
protected by the filtering of level 1. This allows for better guarantees of service
for the extremely urgent calls. Every call qualified as extremely urgent generates
a 3-way conversation: the level 1 operator stays in line with the calling person
when the call is passed to the level 2 operator. Such 3-way conversations were
shown to contribute to the quality of the procedure [18]. Proper dimensioning of
resources is needed to make sure that the synchronizations between level 1 and
level 2 operators created by these 3-way conversations do not create bottlenecks.
We focus on the case where the system is saturated, that is, there is an infinite
queue of calls that have to be handled. We want to evaluate the performance of
the system, i.e. the throughput of treatment of calls by the operators.

The call center is modeled by the timed Petri net of Fig. 1. We describe here
the net in informal terms, referring the reader to Sect. 3 for more information
on Petri nets and the semantics that we adopt. We use the convention that all
transitions can be fired instantaneously. Holding times are attached to places.

Let us give the interpretation in terms of places and transitions. The number
of operators of level 1 and 2 is equal to N1 and N2, respectively. The marking
in places p1 and p2, respectively, represents the number of idle operators of level
1 or 2 at a given time. In particular, the number of tokens initially available
in places p1 and p2 is N1 and N2. The initial marking of other places is zero.
A firing of transition q1 represents the beginning of a treatment of an incoming
emergency call by a level 1 operator. The arc from place p1 to transition q1 indi-
cates that every call requires one level 1 operator. The routing from transition q1
to transitions q2, q3, q4 represents the qualification of a call as extremely urgent,
urgent, or non urgent (advice). The proportions of these calls are denoted by
πext, πur, and πadv, respectively, so that πext + πur + πadv = 1. The proportions
are known from historical data. The instruction of the call at level 1 is assumed
to take a deterministic time τext, τur, or τadv, respectively, depending on the type
of call.

After the treatment of a non urgent or urgent call at level 1, the level 1
operator is made immediately available to handle a new call. This is represented
by the arcs leading to place p1 from the transitions located below the places with
holding times τur and τadv. Before an idle operator of level 2 is assigned to the
treatment of an urgent call, which is represented by the firing of transition q6,
the call is stocked in the place located above q6. In contrast, the sequel of the
processing of an extremely urgent call (transition q5) requires the availability of a
level 2 operator (incoming arc p2 → q5) in order to initiate a 3-way conversation.
The level 1 operator is released only after a time τtr corresponding to the duration
of this conversation. This is represented by the arc q7 → p1. The double arrow
depicted on the arc p2 → q5 means that level 2 operators are assigned to the
treatment of extremely urgent calls (if any) in priority. The holding times τ ′

ext and
τ ′
ur represent the time needed by a level 2 operator to complete the instruction

of extremely urgent and urgent calls respectively.
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3 Piecewise Linear Dynamics of Timed Petri Nets with
Free Choice and Priority Routing

3.1 Timed Petri Nets: Notation and Semantics

A timed Petri net consists of a set P of places and a set Q of transitions, in
which each place p ∈ P is equipped with a holding time τp ∈ R>0 as well as an
initial marking Mp ∈ N. Given a place p ∈ P, we respectively denote by pin and
pout the sets of input and output transitions. Similarly, for all q ∈ Q, the sets of
upstream and downstream places are denoted by qin and qout respectively.

The semantics of the timed Petri net which we use in this paper is based
on the fact that every token entering a place p ∈ P must stay at least τp time
units in place p before becoming available for a firing of a downstream transition.
More formally, a state of the semantics of the Petri net specifies, for each place
p ∈ P, the set of tokens located at place p, together with the age of these tokens
since they have entered place p. In a given state σ, the Petri net can evolve into
a new state σ′ in two different ways:

(i) either a transition q ∈ Q is fired, which we denote σ
q−→ σ′. This occurs

when every upstream place contains a token whose age is greater than or equal
to τp. The transition is supposed to be instantaneous. A token enters in each
downstream place, and its age is set to 0;

(ii) or all the tokens remain at their original places, and their ages are incre-
mented by the same amount of time d ∈ R�0. This is denoted σ

d−→ σ′.
In the initial state σ0, all the tokens of the initial marking are supposed

to have an “infinite” age, so that they are available for firings of downstream
transitions from the beginning of the execution of the Petri net. The set of
relations of the form

q−→ and d−→ constitutes a timed transition system which,
together with the initial state σ0, fully describe the semantics of the Petri net.
Note that in this semantics, transitions can be fired simultaneously. In particular,
a given transition can be fired several times at the same moment. Recall that
every holding time τp is positive, so that we cannot have any Zeno behavior.

In this setting, we can write any execution trace of the Petri net as a sequence
of transitions of the form:

σ0 d0

−→ q0
1−→ q0

2−→ . . .
q0
n0−→ σ1 d1

−→ q1
1−→ q1

2−→ . . .
q1
n1−→ σ2 d2

−→ . . . (1)

where d0 � 0 and d1, d2, · · · > 0. In other words, we consider traces in which we
remove all the time-elapsing transitions of duration 0, except the first one, and
in which time-elapsing transitions are separated by groups of firing transitions
occurring simultaneously. We say that a transition q is fired at the instant t if
there is a transition

q−→ in the trace such that the sum of the durations of the
transitions of the form d−→ which occur before in the trace is equal to t. The
state of the Petri net at the instant t refers to the state of the Petri net appearing
in the trace (1) after all transitions have been fired at the instant t.

In the rest of the paper, we stick to a stronger variant of the semantics,
referred to as earliest behavior semantics, in which every transition q is fired
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Fig. 2. Conflict, synchronization and priority configurations.

at the earliest moment possible. More formally, this means that in any state
σ arising during the execution, a place p is allowed to contain a token of age
(strictly) greater than τp only if no downstream transition can be fired (i.e. no
transition

q−→ with q ∈ pout can be applied to σ). The motivation to study
the earliest behavior semantics originates from our interest for emergency call
centers, in which all calls are supposed to be handled as soon as possible.

3.2 Timed Petri Nets with Free Choice and Priority Routing

In this paper, we consider timed Petri nets in which places are free choice, or sub-
ject to priorities. This class of nets includes our model of emergency call center.
Recall that a place p ∈ P is said to be free choice if either |pout| = 1, or all the
downstream transitions q ∈ pout satisfy qin = {p}. The main property of such a
place is the following: if one of the downstream transitions is activated (i.e. it can
be potentially fired), then the other downstream transitions are also activated.
A place is subject to priority if the available tokens in this place are routed to
downstream transitions according to a certain priority rule. We denote by Ppriority

the set of such places. For the sake of simplicity, we assume that every p ∈ Ppriority

has precisely two downstream transitions, which we respectively denote by pout+

and pout− . Then, if both transitions are activated, the tokens available in place
p are assigned to pout+ as a priority. Equivalently, in the execution trace of the
Petri net, we have σ →pout

− σ′ only if the transition →pout
+ cannot be applied to

the state σ. We remark that it is possible to handle multiple priority levels, up
to making the presentation of the subsequent results more complicated.

To summarize, there are three possible place/transition patterns which can
occur in the timed Petri nets that we consider, see Fig. 2. The first two ones
involve only free choice places, and are referred to as conflict and synchronization
patterns respectively. We denote by Pconflict the set of free choice places that have
at least two output transitions, and by Qsync the set of transitions such that every
upstream place p satisfies |pout| = 1. By definition, we have Pconflict ∩ (Qsync)in =
∅. The third configuration in Fig. 2 depicts a place p subject to priority. In order
to distinguish pout+ and pout− , we depict the arc leading to the transition pout+ by a
double arrow. We assume that pout+ and pout− do not have edges coming from other
places subject to priority. This allows to avoid inconsistency between priority
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rules (e.g. two priority places acting on the same transitions in a contradictory
way). Consequently, as the non-priority places are free choice, the places r �= p
located upstream pout+ and pout− have only one output transition, as depicted in
Fig. 2(c).

3.3 Piecewise Linear Representation by Counter Variables

Since we are interested in estimating the throughput of transitions in a Petri
net, we associate with any transition q ∈ Q a counter variable zq from R to N

such that zq(t) represents the number of firings of transition q that occurred up
to time t included. Similarly, given a place p ∈ P, we denote xp(t) the number
of tokens that have entered place p up to time t included. Note that the tokens
initially present in place p are counted. More formally, xp(t) is given by the sum
of the initial marking Mp and of the numbers of firings of transitions q ∈ pin

which occurred before the instant t (included). We extend the counter variables
xp and zq to R<0 by setting:

xp(t) = Mp , zq(t) = 0 , for all t < 0 . (2)

By construction, the functions xp and zq are non-decreasing. Besides, since
they count tokens up to time t included, they are càdlàg functions, which means
that they are right continuous and have left limits at any point. Given a càdlàg
function f , we denote by f(t−) the left limit at the point t.

The goal of this section is to describe the dynamics of timed Petri nets with
free choice and priority routing by means of a set of piecewise linear equality
constraints over the counter variables. We provide an informal presentation of
these constraints. First observe that we necessarily have:

∀p ∈ P , xp(t) = Mp +
∑

q∈pin

zq(t) , (3)

as the initial marking Mp is counted in xp(t), and any token entering place p
before the instant t must have been fired from an upstream transition q ∈ pin

before. In a similar way, if p ∈ Pconflict, the total number of times the downstream
transitions have been fired before the instant t is necessarily equal to the number
of tokens which entered place p before time t − τp (included). This is due to the
fact that if a token enters p at the instant s, then it is consumed exactly at the
instant s + τp (by definition of the earliest behavior semantics). This yields the
identity:

∀p ∈ Pconflict ,
∑

q∈pout

zq(t) = xp(t − τp) . (4)

Now consider a transition q ∈ Qsync. The number of times this transition is fired
at the instant t is given by zq(t) − zq(t−). In each upstream place p ∈ qin, the
number of tokens which are available for firing q is equal to xp(t − τp) − zq(t−).
Indeed, since place p does not have any other output transition, the total number
of tokens which have left place q until the instant t equals zq(t−). By definition
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of the earliest behavior semantics, the number of firings of q at the instant t must
be exactly equal to the minimum number of tokens available in places p ∈ qin.
If we denote min(x, y) by x ∧ y, we consequently get:

∀q ∈ Qsync , zq(t) =
∧

p∈qin

xp(t − τp) . (5)

Finally, let us take a place p ∈ Ppriority. Since the transition pout+ has priority over
pout− , the quantity zpout

+
(t) − zpout

+
(t−) must be equal to the minimal number of

tokens available in the upstream places, including p. For every place r ∈ (pout+ )in

distinct from p, the number of available tokens is given by xr(t − τr) − zpout
+

(t−)
(recall that pout+ is the only downstream transition of r). In contrast, the number
of tokens available for firing in place p is equal to xp(t − τp) − (zpout

+
(t−) +

zpout
− (t−)). We deduce that we have:

∀p ∈ Ppriority , zpout
+

(t) =
(
xp(t − τp) − zpout

− (t−)
) ∧

∧

r∈(pout
+ )in

r �=p

xr(t − τr) . (6)

The number of tokens from place p which are available for the transition pout−
after the firings of pout+ is given by xp(t−τp)− (zpout

+
(t−)+zpout

− (t−))− (zpout
+

(t)−
zpout

+
(t−)). Hence, we obtain:

∀p ∈ Ppriority , zpout
− (t) =

(
xp(t − τp) − zpout

+
(t)

) ∧
∧

r∈(pout
− )in

r �=p

xr(t − τr) . (7)

We summarize the previous discussion by the following result:

Theorem 1. Given any execution trace of a timed Petri net with free choice
and priority routing, the counter variables xp (p ∈ P) and zq (q ∈ Q) satisfy the
constraints (3)–(7) for all t � 0, together with the initial conditions (2).

Notice that, if we do not restrict to the earliest behavior semantics, the con-
straints (4)–(7) are relaxed to inequalities.

So far, we have described the dynamics of timed Petri nets in the continuous
time setting. However, since the Petri net of our case study is a model of a
real system which is implemented in silico, we need to investigate the dynamics
in discrete time as well. In more details, assuming that all the quantities τp

are multiple of an elementary time step δ > 0, the discrete-time version of the
semantics of the Petri net restricts the transitions d−→ to the case where d is a
multiple of δ. In this case, on top of being càdlàg, the functions xp and zq are
constant on any interval of the form [kδ, (k + 1)δ) for all k ∈ N. Then, we can
verify that the following result holds:

Proposition 1. In the discrete time semantics, the counter variables xp and zq

satisfy the constraints (3)–(7) for all t � 0, independently of the choice of the
elementary time step δ.
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In other words, the dynamics in continuous-time is a valid representation of the
dynamics in discrete time which allows to abstract from the discretization time
step. We also note that we can refine the constraint given in (6) by replacing the
left limit zpout

− (t−) by an explicit value:

∀p ∈ Ppriority , zpout
+

(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
xp(t − τp) − zpout

− (t − δ)
)

∧
∧

r∈(pout
+ )in , r �=p

xr(t − τr) if t ∈ δN ,

(
xp(t − τp) − zpout

− (t)
)

∧
∧

r∈(pout
+ )in , r �=p

xr(t − τr) otherwise.

(8)

(Here and below, we denote by δN the set {0, δ, 2δ, . . . }.) The system formed by
the constraints (3)–(5), (7), (8) is referred to as the δ-discretization of the Petri
net dynamics.

The only source of non-determinism in the model that we consider is the
routing policy in the conflict pattern (Fig. 2(a)). In the sequel, we assume that
the tokens are assigned according to a stationary probability distribution. Given
a free choice place p ∈ Pconflict, we denote by πqp the probability that an available
token is assigned to the transition q ∈ pout. In the following, we consider a fluid
approximation of the dynamics of the system, in which the xp and zq are non-
decreasing càdlàg functions from R to itself, and the routing policy degenerates
in sharing the tokens in fractions πqp. Equivalently, the fluid dynamics is defined
by the constraints (3)–(7) and the following additional constraints:

∀p ∈ Pconflict , ∀q ∈ pout , zq(t) = πqpxp(t − τp) . (9)

Note that the latter equation is still valid in the context of discrete time. By
extension, the system formed by the constraints (3)–(5), (7)–(9) is referred to as
the δ-discretization of the fluid dynamics.

Example 1. We illustrate Theorem 1 on the Petri net of Fig. 1. It can be shown
that the fluid dynamics is described by the following reduced system

z1(t) = N1 + z5(t − τtr) + πurz1(t − τur) + πadvz1(t − τadv)

z5(t) =
(
N2 + z5(t − τtr − τ ′

ext) + z6(t − τ ′
ur) − z6(t−)

) ∧ πextz1(t − τext)

z6(t) =
(
N2 + z5(t − τtr − τ ′

ext) + z6(t − τ ′
ur) − z5(t)

) ∧ πurz1(t − τur)

(10)

which involve the counter variables z1, z5 and z6 only (here, zi denotes zqi for
brevity). These variables correspond to the key characteristics of the system.
They respectively represent the number of calls handled at level 1, and the
number of extremely urgent and urgent calls handled at level 2, up to time t.
All the other counter variables can be easily obtained from z1, z5 and z6.

We point out that in Fig. 1, we omitted to specify the holding time of some
places. By default, this holding time is set to a certain τε > 0, and is meant to be
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negligible w.r.t. the other holding times. For the sake of readability, we slightly
modified the holding times τt, τur, . . . to incorporate the effect of τε, so that τε

does not appear in dynamics given in (10).

4 Computing Stationary Regimes

We investigate the stationary regimes of the fluid dynamics associated with
Petri nets with free choice and priority routing. More specifically, our goal is
to characterize the non-decreasing càdlàg solutions xp and zq of the dynamics
which behave ultimately as affine functions t 	→ u + ρt (u ∈ R and ρ ∈ R�0).
By ultimately, we mean that the property holds for t large enough. In this case,
the scalar ρ corresponds to the asymptotic throughput of the associated place or
transition. However, if the functions xp and zq are continuous, and a fortiori if
they are affine, their values at points t and t− coincide, and then, the effect of the
priority rule on the dynamics vanishes (see (6)). Hence, looking for ultimately
affine solutions of the continuous time equations might look as an ill posed
problem, if one interprets it in a naive way. However, looking for the ultimately
affine solutions of the δ-discretization of the fluid dynamics is a perfectly well
posed problem. In other words, we aim at determining the solutions xp and zq

of the discrete dynamics which coincide with affine functions at points kδ for all
sufficiently large k ∈ N. These solutions are referred to as the stationary solutions
of the dynamics. As we shall prove in Theorem 2, the characterization of these
solutions does not depend on the value of δ, leading to a proper definition of
ultimately affine solutions of the continuous time dynamics.

In order to determine the stationary regimes, we use the notion of germs of
affine functions. We introduce an equivalence relation ∼ over functions from R to
itself, defined by f ∼ g if f(t) and g(t) are equal for all t ∈ δN sufficiently large.
A germ of function (at point infinity) is an equivalence class of functions with
respect to the relation ∼. For brevity, we refer to the germs of affine functions
as affine germs, and we denote by (ρ, u) the germ of the function t 	→ u + ρt. In
this setting, our goal is to determine the affine germs of the counter variables of
the Petri net in the stationary regimes.

Given two functions f and g of affine germs (ρ, u) and (ρ′, u′) respectively,
it is easy to show that f(t) � g(t) for all sufficiently large t ∈ δN if, and only if,
the couple (ρ, u) is smaller than or equal to (ρ′, u′) in the lexicographic order.
Moreover, the affine germ of the function f + g is simply given by the germ
(ρ + ρ′, u + u′), which we denote by (ρ, u) + (ρ′, u′) by abuse of notation. As a
consequence, affine germs provide an ordered group. Let us add to this group a
greatest element �, with the convention that �+(ρ, u) = (ρ, u)+� = �. Then,
we obtain the tropical (min-plus) semiring of affine germs (G,∧,+), where G is
defined as {�}∪R

2, and for all x, y ∈ G, x∧ y stands for the minimum of x and
y in lexicographic order (extended to �). Since in G, the addition plays the role
of the multiplicative law, the additive inversion defined by −(ρ, u) := (−ρ,−u)
corresponds to a division over G. This makes G a semifield, i.e., in loose terms, a
structure similar to a field, except that the additive law has no inverse. Finally,
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we can define the multiplication by a scalar λ ∈ R by λ(ρ, u) := (λρ, λu). When
λ ∈ N, this can be understood as an exponentiation operation in G.

Instantiating the functions xp and zq by affine asymptotics t 	→ up + tρp and
t 	→ uq + tρq in the δ-discretization of the fluid dynamics leads to the following
counterparts of the constraints (3), (5), (7) and (9), the variables being now
elements of the semifield G of germs:

∀p ∈ P , (ρp, up) = (0,Mp) +
∑

q∈pin

(ρq, uq) (11a)

∀p ∈ Pconflict ,∀q ∈ pout , (ρq, uq) = πqp(ρp, up − ρpτp) (11b)

∀q ∈ Qsync , (ρq, uq) =
∧

p∈qin

(ρp, up − ρpτp) (11c)

∀p ∈ Ppriority , (ρpout
− , upout

− ) = (ρp − ρpout
+

, up − ρpτp − upout
+

)

∧
∧

r∈(pout
− )in , r �=p

(ρr, ur − ρrτr)

(11d)

Given p ∈ Ppriority, the transposition of (6) (or equivalently (8)) to germs is
more elaborate due to the occurrence of the left limit xpout

− (t−). We obtain:

(ρpout
+

, upout
+

) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(ρp − ρpout
− , up − ρpτp − upout

− )

∧
∧

r∈(pout
+ )in , r �=p

(ρr, ur − ρrτr) if ρpout
− = 0 ,

∧

r∈(pout
+ )in , r �=p

(ρr, ur − ρrτr) otherwise.

(11e)

The correctness of these constraints is stated in the following result:

Theorem 2. The affine germs of the stationary solutions of the δ-discretization
of the fluid dynamics are precisely the solutions of System (11) such that ρp, ρq �
0 (p ∈ P, q ∈ Q).

Since the expressions at the right hand side of the constraints of System (11)
involve minima of linear terms, these expressions can be interpreted as frac-
tional functions over the tropical semifield G. In this way, System (11) can be
thought of as a set of tropical polynomial constraints (or more precisely, rational
constraints).

The solutions of tropical polynomial systems is a topic of current interest,
owing to its relations with fundamental algorithmic issues concerning classical
polynomial system solving over the reals. Here, we describe a simple method to
solve System (11), which is akin to policy search in stochastic control. Observe
that System (11) corresponds to a fixpoint equation (ρ, u) = f(ρ, u), where the
function f can be expressed as the infimum

∧
π fπ of finitely many linear (affine)

maps fπ. In more details, every function fπ is obtained by selecting one term for
each minimum operation

∧
occurring in the constraints (for instance, in (11c),
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Table 1. The normalized throughputs ρ1, ρ5 and ρ6 as piecewise linear functions of
N2/N1.

0 � N2/N1 � r1 r1 � N2/N1 � r2 r2 � N2/N1

ρ1/ρ∗ τ̄

πext(τtr + τ ′
ext)

N2

N1
1 1

ρ5/ρ∗ τ̄

τtr + τ ′
ext

N2

N1
πext πext

ρ6/ρ∗ 0
τ̄

τ ′
ur

N2

N1
− πext(τtr + τ ′

ext)

τ ′
ur

πur

we select one term (ρp, up − ρpτp) with p ∈ qin). For every selection π, we can
solve the associated linear system (ρ, u) = fπ(ρ, u), and under some structural
assumptions on the Petri net, the solution (ρπ, uπ) is unique. If fπ(ρπ, uπ) =
f(ρπ, uπ), i.e. in every constraint, the term we selected is smaller than or equal
to the other terms appearing in the minimum, then (ρπ, uπ) forms a solution of
System (11) associated with the selection π. Otherwise, the selection π does not
lead to any solution. Iterating this technique over the set of selections provides
all the solutions of System (11). Every iteration can be done in polynomial time.
However, since there is an exponential number of possible selections, the overall
time complexity of the method is exponential in the size of the Petri net.

5 Application to the Emergency Call Center

We now apply the results of Sect. 4 to determine the stationary regimes of the
fluid dynamics associated with our timed Petri net model of emergency call
center. As in Example 1, we consider the subsystem reduced to the variables
z1, z5 and z6. The corresponding system of constraints over the germ variables
(u1, ρ1), (u5, ρ5) and (u6, ρ6) is given by:

(ρ1, u1) =
(
ρ5 + πurρ1 + πadvρ1,

N1 + (u5 − ρ5τtr) + πur(u1 − ρ1τur) + πadv(u1 − ρ1τadv)
)

(12a)

(ρ5, u5) =

{(
ρ5, N2 + u5 − ρ5(τtr + τ ′

ext)
) ∧ πext(ρ1, u1 − ρ1τext) if ρ6 = 0

πext(ρ1, u1 − ρ1τext) if ρ6 > 0
(12b)

(ρ6, u6) =
(
ρ6, N2 − ρ5(τtr + τ ′

ext) + (u6 − ρ6τ
′
ur)

) ∧ πur(ρ1, u1 − ρ1τur) (12c)

We solve System (12) using the method described previously, and report the
value of the throughputs ρ1, ρ5 and ρ6 in Table 1. We normalize these values by a
quantity ρ∗ which corresponds to the throughput (of transition q1) in an “ideal”
call center which involves as many level 2 operators as necessary, i.e. N2 = +∞.
Then, the throughput ρ∗ is given by N1/τ̄ , where τ̄ := πext(τext + τtr)+πurτur +
πadvτadv represents the average time of treatment at level 1.
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Fig. 3. Comparison of the throughputs of the real system with the theoretical
throughputs (fluid model), for (τext, τur, τadv, τtr, τ

′
ext, τ

′
ur) = (16, 20, 27, 7, 61, 28),

(πext, πur, πadv) = (0.15, 0.25, 0.6) and N1 = 10. In this case, r1 = 0.413 and r2 = 0.688.

As shown in Table 1, the ratios ρ1/ρ∗, ρ5/ρ∗ and ρ6/ρ∗ are piecewise linear
functions of the ratio N2/N1. The non-differentiability points are given by:

r1 :=
πext(τtr + τ ′

ext)
τ̄

r2 :=
πext(τtr + τ ′

ext) + πurτ
′
ur

τ̄
.

They separate three phases:
(i) when N2/N1 is strictly smaller than r1, the number of level 2 operators

is so small that some extremely urgent calls cannot be handled, and no urgent
call is handled. This is why the throughput of the latter calls at level 2 is null.
Also, level 1 operators are slowed down by the congestion of level 2, since, in
the treatment of an extremely urgent call, a level 1 operator cannot be released
until the call is handled by a level 2 operator.

(ii) when N2/N1 is between r1 and r2, there are enough level 2 operators to
handle all the extremely urgent calls, which is why the throughput ρ5 is equal to
ρ1 multiplied by the proportion πext of extremely urgent calls. As a consequence,
level 2 is no longer slowing down level 1 (the throughput ρ1 reaches its maximal
value ρ∗). However, the throughput of urgent calls at level 2 is still limited
because N2 is not sufficiently large.

(iii) if N2/N1 is larger than r2, the three throughputs reach their maximal
values. This means that level 2 is sufficiently well-staffed w.r.t. level 1.

This analysis provides a qualitative method to determine an optimal dimen-
sioning of the system in stationary regimes. Given a fixed N1, the number
N2 of level 2 operators should be taken to be the minimal integer such that
N2/N1 � r2. This ensures that the level 2 properly handles the calls transmitted
by the level 1 (all calls are treated). Then, N1 should be the minimal integer
such that ρ1 = N1

τ̄ dominates the arrival rate of calls.
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6 Experiments

We finally compare the analytical results of Sect. 5, obtained in the fluid setting,
with the asymptotic throughputs of the Petri net provided by simulations.

Asymptotic behavior of the non-fluid dynamics. We have implemented the
δ-discretization of the non-fluid dynamics (Equations (3)–(5), (7) and (8)) since
this setting is the closest to reality. Recall that, in this case, tokens are routed
towards transitions q2, q3 and q4 randomly according to a constant probabil-
ity distribution. We assume that holding times are given by integer numbers
of seconds, so that we take δ = 1 s. In this way, we compute the quantities
z1(t), z5(t) and z6(t) by induction on t ∈ N using the equations describing the
dynamics. In the simulations, we choose holding times and probabilities which
are representative of the urgency of calls.

Figure 3 compares the limits when t → +∞ of the throughputs z1(t)/t,
z5(t)/t, z6(t)/t of the “real” system, with the throughputs ρ1, ρ5 and ρ6 of the
stationary solutions which have been determined in Sect. 5. The latter are simply
computed using the analytical formulæ of Table 1. We estimate the limits of the
throughput zi(t)/t by evaluating the latter quantity for t = 106 s. As shown
in Fig. 3, these estimations confirm the existence of three phases, as described
in the previous section. The convergence of zi(t)/t towards the throughputs ρi

is mostly reached in the two extreme phases. In the intermediate phase, the
difference between the limit of zi(t)/t and the throughput ρi is more important.
This originates from the stochastic nature of the routing, which causes more
variations in the realization of the minima in the zi(t): the throughput of q6
increases and the throughputs of q1 and q5 decrease.

Asymptotic behavior of the fluid dynamics. We also simulate the discrete-time
fluid dynamics (using Equations (3)–(5) and (7)–(9)). In most cases, we observe
that the corresponding asymptotic throughputs converge to the throughputs of
the stationary solutions. However, there are also cases in which they slightly
differ. In the experiments we have made, this happens only in the intermediate
phase, when r1 < N2/N1 < r2. Such cases suggest the existence of other kinds
of stationary regimes of the dynamics, in which the system oscillates between
different phases. We remark that these phenomena appear to be related to the
existence of arithmetical relationships between the holding times of places.

7 Concluding Remarks

We have shown that timed Petri nets with free choice and priority routing can be
analyzed by means of tropical geometry. This allows us to identify the congestion
phases in the fluid version of the dynamics of the Petri net. We have applied this
method to a model of emergency call center. Numerical experiments indicate
that these theoretical results are representative of the real dynamics.
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In future work, we aim at comparing the behaviors of the fluid deterministic
model and of the discrete stochastic one. We also plan to study uniqueness
conditions of the stationary regimes, and conditions under which convergence of
the fluid dynamics to a stationary regime can be shown. We will refine our Petri
net model of emergency call center to take care of the heterogeneous nature of
level 2 (calls to police and firemen require different instruction times). To this
end, it will be helpful to implement an analysis tool determining automatically
the stationary regimes of a timed Petri net given in input. Finally, we plan to
analyze the treatment times of the system, on top of the throughputs.
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Abstract. Parametric timed automata (PTA) are a powerful formal-
ism to model and reason about concurrent systems with some unknown
timing delays. In this paper, we address the (untimed) language- and
trace-preservation problems: given a reference parameter valuation, does
there exist another parameter valuation with the same untimed language
(or trace)? We show that these problems are undecidable both for gen-
eral PTA, and even for the restricted class of L/U-PTA. On the other
hand, we exhibit decidable subclasses: 1-clock PTA, and 1-parameter
deterministic L-PTA and U-PTA.

1 Introduction

Timed Automata. Timed Automata (TA hereafter) were introduced in the
1990’s [1] as an extension of finite automata with clock variables, which can be
used to constrain the delays between transitions. Despite this flexibility, TA enjoy
efficient algorithms for checking reachability (and many other properties), which
makes them a perfect model for reasoning about real-time systems.

In TA, clock variables are compared to (integer) constants in order to allow
or disallow certain transitions. The behaviour of a TA may heavily depend on the
exact values of the constants, and slight changes in any constant may give rise to
very different behaviours. In many cases however, it may be desirable to optimise
the values of some of the constants of the automaton, in order to exhibit better
performances. The question can then be posed as follows: given a TA and one of
the integer constant in one of the clock constraints of this TA, does there exist
another value of this constant for which the TA has the exact set of (untimed)
behaviours? We call this problem the language-preservation problem.

A special case of this problem occurs naturally in recent approaches for deal-
ing with robustness of timed automata [7,11,12]. The question asked there is
whether the behaviour of a timed automaton is preserved when the clock con-
straints are slightly (parametrically) enlarged. In most of those cases, the exis-
tence of a parametric enlargement for which the behaviours are the same as in
the original TA has been proved decidable.

This work is partially supported by the ANR national research program PACS (ANR-
14-CE28-0002), and by European projects ERC EQualIS (308087) and FET Cassting
(601148).

c© Springer International Publishing Switzerland 2015
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For the general problem however, the decidability status remains open. To the
best of our knowledge, the only approach to this problem is a procedure (called
the inverse method [3]) to compute a dense set of parameter valuations around
a reference valuation v0.

Parametric Timed Automata. In this paper, we tackle the language-preser-
vation problem using Parametric Timed Automata (PTA) [2]. A PTA is a TA in
which some of the constants in clock constraints are replaced by variables (a.k.a.
parameters), whose value is not fixed a priori. The classical problem (sometimes
called the EF-emptiness problem) in PTA asks whether a given target location
of a PTA is reachable for some valuation of the parameter(s). This problem was
proven undecidable in various settings: for integer parameter valuations [2], for
bounded rational valuations [10], etc. The proofs of these results exist in many
different flavours, with various bounds on the number of parameters and clocks
needed in the reductions.

To the best of our knowledge, the only non-trivial syntactic subclass of PTA
with decidable EF-emptiness problem is the class of L/U-PTA [8]. These models
have the following constraint: each parameter may only be used either always as
a lower bound in the clock constraints, or always as an upper bound. For those
models, the problems of the emptiness, universality and finiteness (for integer-
valued parameters) of the set of parameters under which a target location is
reachable, are decidable [6,8]. In contrast, the AF-emptiness problem (“does
there exist a parameter valuation for which a given location is eventually visited
along any run?”) is undecidable for L/U-PTA [9].

OurContributions. In thispaper,wefirstprove that the language-preservation
problem(andvarious relatedproblems) is undecidable inmost cases.While itmight
not look surprising given the numerous undecidability results about PTA, it con-
trasts with the decidability results proved so far for robustness of TA.

Our second contribution is to devise a semi-algorithm that solves the
language- and trace-preservation problems (and actually synthesizes all parame-
ter valuations yielding the same untimed language (or trace) as a given reference
valuation), in the setting of deterministic PTA. Finally, we also study the decid-
ability of these emptiness problems for subclasses of PTA: we prove decidability
for PTA with a single clock, undecidability for L/U-PTA, and decidability for
two subclasses of L/U-PTA with a single parameter.

A long version of this paper, with detailed proofs, is available as [4].

2 Definitions

Constraints. We fix a finite set X = {x1, . . . , xH} set of real-valued variables
(called clocks in the sequel). A clock valuation w is a function w : X → R≥0.
We define two operations on clock valuations: for d ∈ R≥0 and a clock valua-
tion w, we let w+d be the valuation w′ such that w′(x) = w(x)+d for all x ∈ X.
Given a set R ⊆ X and a valuation w, we let w[R �→ 0] be the clock valuation w′

such that w′(x) = 0 if x ∈ R, and w′(x) = w(x) otherwise. We also fix a finite
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set P = {p1, . . . , pM} of rational-valued variables called parameters. A parame-
ter valuation v is a function v : P → Q≥0. In the sequel, we will have to handle
clocks and parameters together. A valuation is a function u : X ∪P → R≥0 such
that u|X is a clock valuation and u|P is a parameter valuation.

An atomic constraint over X and P is an expression of the form either x ≺
p + c or x ≺ c or p ≺ c, where ≺ ∈ {<,≤,=,≥, >}, x ∈ X, p ∈ P and c ∈ Z.
The symbols 
 and ⊥ are also special cases of atomic constraints. Notice that
our constraints are a bit more general than in the setting of [2], where only
atomic constraints of the form x ≺ p and x ≺ c (and 
 and ⊥) were allowed.
A constraint over X and P is a conjunction of atomic constraints. An (atomic)
diagonal constraint is a constraint of the form x − x′ ≺ p + c or x − x′ ≺ c,
where x and x′ are two clocks and ≺, p and c are as in plain atomic constraints.
A generalized constraint over X and P is a conjunction of atomic constraints
and atomic diagonal constraints.

Remark 1. We mainly focus here on continuous time (clock valuations take real
values) and rational-valued parameters, as defined above. However, several of
our results remain valid for discrete time (clock valuations take integer values)
and integer-valued parameters. We will mention it explicitly when it is the case.

A valuation u satisfies an atomic constraint ϕ : x ≺ p + c, which we denote
u |= ϕ, whenever u(x) ≺ u(p) + c. The definition for diagonal constraints is
similar. All valuations satisfy 
, and none of them satisfies ⊥. A valuation u
satisfies a constraint Φ, denoted u |= Φ if, and only if, it satisfies all the conjuncts
of Φ. A constraint Φ is said to depend on D ⊆ X ∪ P whenever for any two
valuations u and u′ such that u(d) = u′(d) for all d ∈ D, it holds u |= Φ if, and
only if, u′ |= Φ. A parameter constraint is a constraint that depends only on P .

Given a partial valuation u and a constraint Φ, we write u(Φ) for the con-
straint obtained by replacing each z ∈ dom(u) in Φ with u(z). The resulting
constraint depends on (X ∪ P ) \ dom(u).

We denote by Φ↓V the projection of constraint Φ onto V ⊆ X ∪ P , i.e. the
constraint obtained by eliminating the clock variables. This projection has the
property that v |= Φ↓P if, and only if, there is an extension u of v to X ∪P such
that u |= Φ. Such projections can be computed e.g. using Fourier-Motzkin elimi-
nation. We also define the time elapsing of Φ, denoted by Φ↑, as the generalized
constraint over X and P obtained from C by delaying an arbitrary amount of
time. The time-elapsing of a constraint Φ is obtained by preserving all differences
between any pair of clocks, preserving lower bounds, and relaxing upper bounds
on atomic (single-clock) constraints. Given R ⊆ X, we define the reset of Φ,
denoted by [Φ]R, as the constraint obtained from Φ by resetting the clocks in R,
and keeping the other clocks unchanged. This is computed in the same way as
projection above (i.e., it corresponds to an existential quantification), and then
adding constraints x = 0 on the clocks being reset.

Parametric Timed Automata. Parametric timed automata are an extension
of the class of timed automata to the parametric case, where parameters can be
used within guards and invariants in place of constants [2].
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l1 l2 l3

y ≤ p2
y ≤ p3

press?
x := 0
y := 0

y= p2
cup!

x ≥ p1
press?
x := 0

y= p3
coffee!

Fig. 1. An example of a coffee machine

Definition 2. A parametric timed automaton (PTA for short) is a tuple A =
〈Σ,L, linit,X, P, I,→〉, where: Σ is a finite set of actions; L is a finite set of
locations; linit ∈ L is the initial location; X is a set of clocks; P is a set of
parameters; I assigns to every l ∈ L a constraint I(l), called the invariant of l;

→ is a set of edges (l, g, a,R, l′), also denoted by l
g,a,R−−−→ l′, where l, l′ ∈ L

are the source and destination locations, g is a constraint (called guard of the
transition), a ∈ Σ, and R ⊆ X is a set of clocks to be reset.

For example, the PTA in Fig. 1 has 3 locations, 3 parameters p1, p2, p3 and
2 clocks x, y.

A PTA is deterministic if, for all l ∈ L, for all a ∈ Σ, there is at most one
edge (l′, g, a′, R, l′′) ∈ → with l′ = l and a′ = a.

Given a PTA A = 〈Σ,L, linit,X, P, I,→〉, and a parameter valuation v,
v(A) denotes the automaton obtained from A by substituting every occurrence
of a parameter pi by the constant v(pi) in the guards and invariants. Then v(A)
is a timed automaton [1], whose semantics is defined as follows:

Definition 3. Given a PTA A = 〈Σ,L, linit,X, P, I,→〉, and a parameter valua-
tion v, the semantics of v(A) is given by the timed transition system 〈Q, qinit,⇒〉
where Q = {(l, w) ∈ L × (R≥0)X | w(v(I(l))) evaluates to true}, with initial
state qinit = (linit,0X), and ((l, w), (d, e), (l′, w′)) ∈ ⇒ whenever e is a transition
(l, g, a,R, l′) ∈ → such that (l, w + d) |= I(l)∧ g and w′ = (w + d)[R �→ 0].

A run of a TA is a maximal sequence of consecutive transitions of the timed
transition system associated with the TA. For the sake of readability, we usually

write runs as s0
d0,e0⇒ s1

d1,e1⇒ · · · dm−1,em−1⇒ sm · · · . With maximal, we mean that a
run may only be finite if its last state has no outgoing transition. The timed word

associated to a run s0
d0,e0⇒ s1

d1,e1⇒ · · · dm−1,em−1⇒ sm · · · is the (finite or infinite)
sequence (di, ai)i such that for all i, ai is the action of edge ei. The corresponding
untimed word is the word (ai)i. The timed (resp. untimed) language of a TA A,
denoted by Langt(A) (resp. Lang(A)), is the set of timed (resp. untimed) words
associated with maximal runs of this automaton. Similarly, the untimed trace

associated with the run s0
d0,e0⇒ s1

d1,e1⇒ · · · dm−1,em−1⇒ sm · · · is the sequence
(li, ai)i s.t. li is the location of si and ai is the action of edge ei. The set of
untimed traces of A is denoted by Traces(A).
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Given a state s = (l, w), state s is said reachable in A under valuation v if s
belongs to a run of v(A); a location l is reachable if some state (l, w) is.

Following [8], we now define a symbolic semantics for PTA:

Definition 4 (Symbolic State). A symbolic state of a PTA A is a pair (l,C)
where l ∈ L is a location, and C is a generalized constraint.

Given a parameter valuation v, a state s = (l,C) is v-compatible if v |= C↓P .
The computation of the state space relies on the Succ operation. The initial state
of A is sinit = (linit, (X = 0)↑ ∧ I(linit)). Given a symbolic state s = (l,C) and a
transition e = (l, g, a,R, l′), we let Succe(s) = {(l′,C′) | C′ =

(
[(C∧g)]R

)↑∩I(l′)}
(notice that this is a singleton); we write Succ(s) =

⋃
e∈→ Succe(s). By extension,

given a set S of states, Succ(S) = {s′ | ∃s ∈ S s.t. s′ ∈ Succ(s)}. Again, this
gives rise to an infinite-state transition system, called the parametric zone graph
later on. A symbolic run of a PTA from some symbolic state s0 is an infinite
sequence of edges (ei)i such that there exists a sequence of symbolic states (si)i

such that si+1 = Succei
(si). Two runs are said equivalent when they correspond

to the same sequences of edges (hence the same sequences of locations), but
may visit different symbolic states. In this paper, we address the following two
problems:

Definition 5. Given a PTA A and a parameter valuation v,

– the language preservation problem asks whether there exists another param-
eter valuation v′ giving rise to the same untimed language (i.e. such that
Lang(v(A)) = Lang(v′(A));

– the trace preservation problem asks whether there exists another param-
eter valuation v′ giving rise to the same set of traces (i.e. such that
Traces(v(A)) = Traces(v′(A)) [3].

The continuous versions of those problems additionally require that the lan-
guage (resp. set of traces) is preserved under any intermediary valuation of the
form λ · v + (1 − λ) · v′, for λ ∈ [0, 1] (with the classical definition of addition
and scalar multiplication).

3 Undecidability of the Preservation Problems in General

3.1 Undecidability of the Language Preservation Problem

Theorem 6. The language preservation problem for PTA with one parameter is
undecidable (both over discrete and continuous time, and for integer and rational
parameter valuations).

Proof. The proof proceeds by a reduction from the halting problem for two-
counter machines. We begin with reducing this problem into the classical prob-
lem of reachability emptiness (“EF-emptiness”) in parametric timed automata
(“does there exist a valuation of the parameters under which the target location
is reachable?”). We then extend the construction in order to prove the result.
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Fig. 2. Encoding a 2-counter machine

Fix a deterministic two-counter machine M = 〈S, T 〉. Our reduction requires
four clocks: clock t will serve as a tick (it will be reset exactly every p time
units, where p is the parameter), and we will have a correspondence between
a configuration of the timed automaton and a configuration of the two-counter
machine exactly when t = 0; clocks x1 and x2 are used to store the values
of counters c1 and c2 of M, with the correspondence x1 = c1 and x2 = c2
when t = 0; finally, clock z is used to count the number of steps of the two-
counter machine: this is where our construction differs from the classical ones
(e.g., [2,9]), as we use the parameter p to bound the length (number of step) of
the possible halting computation of the two-counter machine. As the number of
steps is bounded by p, we know that both c1 and c2 are also bounded by p. The
parametric timed automaton A associated with M is defined as follows:

– its set of states has two copies of the set S of states of M: for each s ∈ S, there
is a main state with the same name s, and an intermediary state named s;

– each state of A carries four self-loops, associated with each of the four clocks
and reseting that clock when it reaches value p. This requires a global invari-
ant enforcing the clocks t, x1 and x2 to remain below p, and clock z to remain
below p − 1.
Then each transition (s, ck + +, s′) incrementing counter ck in M gives rise
to a transition from state s to state s′, with guard is xk = p−1, and reseting
clock xk (see Figure 2a). Each transition of the form (s, ck − −, s0, s1) is
handled similarly, but gives rise to two transitions: one transition from s
to s0 with guard t = 0∧ xk = 0, and one transition from s to s1 with
guard xk = 1 and reseting clock xk. Then, from each state s of A, there is a
transition to the corresponding state s with guard z = p − 1 and reseting z
(see Figure 2b).

This construction works as we expect (assuming p is an integer, which is easily
checked by a simple initial module): clock t is reset every p time units (which can-
not be seen in Figure 2 because we omitted the self-loops); clocks x1 and x2 keep
track the values of c1 and c2, with the correspondence xk = ck when t = 0; finally,
clock z counts the number of steps (when considering the value of this clock
when t = 0, it encodes a counter that is incremented at every transition of M).
Notice that clock z counts, but for the moment, it does not impose any constraint
on the length of the simulation. Notice also that this construction currently does
not correctly encode the runs of M, since the counters are encoded modulo p.
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sinit

s0 shalt

s∞p = 0

p > 0

Fig. 3. Encoding the halting problem into the language-preservation problem

We modify our construction by adding the extra condition that 0 < t < p
(or equivalently 1 ≤ t ≤ p − 1) to the guards z = p − 1 of the transitions leaving
the intermediary states. This way, when z (seen as a counter) has value p − 1,
no transition is available from any state s (or a transition to a sink state can be
added), so that the encoding stops after mimicking p − 1 steps of the execution
of M. With this reduction, we have:

Lemma 7. The two-counter machine M has a computation of length at
most p − 1 reaching shalt from (s0, (c1 = 0, c2 = 0)) if, and only if, there is a run
reaching the corresponding state shalt from (s0, (t = 0, x1 = 0, x2 = 0, z = 0)) in
v(A).

We now explain how to adapt this construction to the language preservation
problem. The idea is depicted on Figure 3 (where all transitions are labeled with
the same letter a): when p = 0, the automaton accepts the untimed language
{aω}. Notice that the guard p = 0 in the automaton can be encoded by requiring
t = 0∧ t = p. On the other hand, when p > 0, we have to enter the main part of
the automaton A, and mimic the two-counter machine. From our construction
above, the untimed language is the same if, and only if, the halting location is
reachable.

Finally, notice that our reduction is readily adapted to the discrete-time
setting, and/or to integer-valued parameters. ��

Remark 8. Our construction uses both p and p − 1 in the clock constraints, as
well as parametric constraints p = 0 and p > 0. This was not allowed in [2] (where
three parameters were needed to compare the clocks with p, p − 1 and p + 1).
Our construction could be adapted to only allow comparisons with p − 1, while
keeping the number of clocks unchanged:

– the parametric constraints p = 0 and p > 0 could be respectively encoded
as (x = p)∧(x = 0) and (x < p)∧(x = 0);

– transitions guarded by x = p (which always reset the corresponding clock x)
would then be encoded by a first transition with x = p − 1 resetting x and
moving to a copy of A where we remember that the value of x should be
shifted up by p − 1. All locations have invariant x ≤ 1, and transitions
guarded with x = 1, resetting x and returning to the main copy of A. The
same can be achieved for the other clocks, even if it means duplicating A
16 times (twice for each clock).
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3.2 Undecidability of the Trace Preservation Problem.

In this section, we provide two proofs of the following result:

Theorem 9. The trace-preservation problem for PTA with one parameter is
undecidable.

The first proof is by a generic transformation of timed automata without zero-
delay cycle into one-location timed automata; it involves diagonal constraints,
but only a fixed number of parametric clocks. The second proof does not involve
diagonal constraints, but it uses an unbounded number of parametric clocks.

Encoding Timed Automata into One-Location Timed Automata. Our
first proof relies on the encoding of TA (with the restriction that no sequence of
more than k transitions may occur in zero delay, for some k; equivalently, those
timed automata may not contain zero-delay cycles) into an equivalent TA with
a single location; this reduction uses k ×|L| additional clocks (where |L| denotes
the number of clocks of A) and requires diagonal constraints, i.e. constraints
comparing clocks with each other (of the form x1 − x2 ≺ c).

This result extends to PTA, and the additional clocks are non-parametric.
Using this reduction, the undecidability of the language preservation (Theorem 6)
trivially extends to trace preservation. Let us first show the generic result for TA.

Proposition 10. Let A be a TA in which, for some k, no sequence of more than
k transitions occur in zero delay. Then there exists an equivalent TA A′ with only
one location and k ×|A|+1 additional clocks, such that the timed languages of A
and A′ are the same.

Proof. We begin with the intuition behind our construction: each location � of
the automaton A is encoded using an extra clock x�, with the following property:
when location � is entered, the clock x� is reset. An extra clock x0 is reset along
each transition. Then when the automaton is visiting �, it holds x� − x0 = 0.
However, the converse does not hold, because several transitions may be taken
in zero delay.

To overcome this difficulty, we use k + 1 copies of x�, numbered x1
� to xk+1

� .
The exact encoding is then as follows: each transition (�, g, a,R, �′) is encoded
as several self-loops on the single location of A′:

– one self-loop is guarded with the conjunction of the guard g and of the
constraint x0 > 0∧ ∨

i≥1

[
xi

� − x0 = 0∧ ∧
�′′∈L xi+1

�′′ − x0 > 0
]
; it is labeled

with a, and resets the clocks in R as well as x0 and x1
�′ .

– for each 1 ≤ i ≤ k, one self-loop is guarded with the conjunction of g and
x0 = 0∧ [

xi
� = 0∧ ∧

�′′∈L xi+1
�′′ > 0

]
; it is labeled with a and resets the clocks

in R and xi+1
�′ .

With this transformation, we get a one-to-one correspondence between the run
in A and in A′, so that both automata have the same timed language. ��

The above transformation can be applied to a PTA, with the property that
the timed language is preserved for any valuation of the parameters. Proposi-
tion 10 can be extended to PTA as follows:
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Proposition 11. Let A be a PTA with no zero-delay cycle (for any valuation of
the parameters). Then there exists an equivalent PTA A′ with only one location
and k×|A|+1 additional clocks such that for any parameter valuation v, the timed
languages of v(A) and v(A′) coincide.

Now, for one-location automata, the untimed languages and the sets of untimed
traces coincide. Applying this to our construction of Theorem 6 proves our result.

An Ad-Hoc Proof Avoiding Diagonal Constraints. We propose a second
proof, where we avoid the use of diagonal constraints, at the expense of using
unboundedly many parametric clocks. This proof follows the reduction of the
proof of Theorem 6, but with only four states: one state is used to initialize the
computation, and the other three states are then visited cyclically, in order to
first update the information about the counters and then about the state of the
two-counter machine. The location of the machine is then stored using as many
clocks as the number of locations of the machine: the clock with least value (less
than or equal to p) corresponds to the current location.

Formally, from a deterministic two-counter machine M with n states, we
build a PTA with n + 4 (parametric) clocks: n clocks q1 to qn are used to store
the current location of M (the only clock with value less than or equal to p
corresponds to the current state of M), two clocks x1 and x2 store the values
of the two counters, clock t measures periods of p time units (where p is the
parameter), and an extra clock r stores temporary information along the run.
Intuitively, the PTA cycles between two main states: it goes from the first one
to the second one for updating the values of the counters, and from the second
one back to the first one for updating clocks encoding the location of M.

This is a direct encoding of a two-counter machine as a PTA. It is easily
adapted to follow the reduction scheme of Theorem 6, which entails our result.
Note that by adding two extra clocks and two intermediary locations, we can get
rid of comparisons with p−1 and p+1, and use only constraints of the form x ∼ p.

3.3 Undecidability of the Robust Language-Preservation Problem

The robust language-preservation problem extends discrete one by additionally
requiring that the language is preserved on a “line” of valuations originating
from the reference valuation. This is not the case of our previous proofs, which
require the parameter to take integer values for the reduction to be correct.
In this section, we depart from the “discrete” setting of the previous section,
and use rational-valued parameters and the full power of real-valued clocks.

Theorem 12. The robust language preservation problem for PTA with one (pos-
sibly bounded) parameter is undecidable.

Proof. We begin with a reduction1 of the halting problem for counter machines
to the EF-emptiness problem for 1-parameter PTA. The proof is then adapted to
the language-preservation problem in the same way as for the proof of Theorem 9.
1 This reduction for the EF problem we present here is an unpublished proof by Didier

Lime; we develop the reduction here for our paper to be self-contained.
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The encoding of the two-counter machine is as follows: it uses one rational-
valued parameter p, one clock t to tick every time unit, and one parametric
clock xi for storing the value of each counter ci, with xi = 1 − p · ci when t = 0.

An initial transition is used to initialize the values of x1 and x2 to 1, while it
sets t to zero. It also checks that the value of p is in (0, 1). Zero-tests are easily
encoded by checking whether xi = 1 while t = 0. Incrementation is achieved by
reseting clock xi when it reaches 1+p, while the other clocks are reset when they
reach 1. This way, exactly one time unit elapses in this module, and clock xi is
decreased by a, which corresponds to incrementing ci. Decrementing is handled
similarly. Finally, notice that the use of the constraint xi = 1 + p can be easily
avoided, at the expense of an extra clock.

One easily proves that if a (deterministic) two-counter machine M halts, then
by writing P for the maximal counter value reached during its finite computation,
the PTA above has a path to the halting location as soon as 0 < p ≤ 1/P .
Conversely, assume that the machine does not halt, and fix a parameter value 0 <
p < 1. If some counter of the machine eventually exceeds 1/p, then at that
moment in the corresponding execution in the associated PTA, the value of t
when xi = 1 + p will be larger than 1, and the automaton will be in a deadlock.
If the counters remain bounded below 1/p, then the execution of the two-counter
machine will be simulated correctly, and the halting state will not be reached.

We now adapt this construction to our language preservation problem.
We have to forbid the infinite non-halting run mentioned above. For this, we add
a third counter, which will be incremented every other step of the resulting three-
counter machine, in the very same way as in the proof of Theorem 9. We then
have the property that if M does not halt, the simulation in the associated PTA
will be finite. Adding states sinit and s∞ as in Fig. 3, we get the result that the
two-counter machine M halts if, and only if, there is a parameter value v0(p) > 0
such that all values v(p) between 0 and v0(p) give rise to timed automata v(A)
accepting the same language. ��

3.4 Undecidability of the Robust Trace Preservation Problem

Combining Theorem 12 and the arguments of Section 3.2, we get:

Theorem 13. The robust trace-preservation problem is undecidable for PTA
with one (possibly bounded) parameter.

4 A Semi-algorithm for the Trace Preservation Synthesis

In this section, we propose a semi-algorithm that solves the following parameter-
synthesis problem: “given a PTA A and a parameter valuation v, synthesize
parameter valuations that yield the same language (or trace set) as v”.

The inverse method proposed in [3] outputs a parameter constraint that is
a correct but non-complete answer to the trace-preservation problem. Below,
we rewrite this algorithm so that, whenever it terminates, it outputs a correct
answer for any PTA, and a complete answer for deterministic PTA.
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We give TPSynth(A, v) in Algorithm 1. TPSynth maintains two constraints:
Kgood is the intersection of v-compatible states met, whereas Kbad is the union2

of all v-incompatible states. TPSynth also maintains two sets of states, viz. the
set S of all states met, and the set Snew of states met at the latest iteration of the
while loop. TPSynth is a breadth-first search algorithm, that iteratively explores
the symbolic state space. Whenever a new state is met, its v-compatibility is
checked (line 4). If it is v-compatible, its projection onto the parameters is
added to Kgood (line 4). Otherwise, its projection onto the parameters is added
to Kbad (line 5), and the state is discarded from Snew (line 5), i.e. its successors
will not be explored. When no new states can be explored, i.e. the set Snew is
either empty or contains only states explored earlier (line 6), the intersection
of v-compatible parametric constraints and the negation of the v-incompatible
parametric constraints is returned (line 6). Otherwise, the algorithm explores
one step further in depth (line 7).

Algorithm 1. TPSynth(A, v)
input : PTA A, parameter valuation v
output : Constraint K over the parameters

1 Kgood ← � ; Kbad ← ⊥ ; Snew ← {sinit} ; S ← ∅

2 while true do
3 foreach state (l,C) ∈ Snew do
4 if v |= C↓P then Kgood ← Kgood ∧ C↓P ;
5 else Kbad ← Kbad ∨ C↓P ; Snew ← Snew \ {(l,C)} ;

6 if Snew ⊆ S then return Kgood ∧ ¬Kbad ;
7 S ← S ∪ Snew ; Snew ← Succ(Snew )

Theorem 14 states that, in case TPSynth(A, v) terminates, its result is correct.

Theorem 14 (correctness of TPSynth). Let A be a PTA, let v be a parameter
valuation. Assume TPSynth(A, v) terminates with constraint K. Then v |= K, and
for all v′ |= K, Traces(v′(A)) = Traces(v(A)).

We now state the completeness of TPSynth for deterministic PTA.

Theorem 15 (completeness of TPSynth). Let A be a deterministic PTA, let
v be a parameter valuation. Assume TPSynth(A, v) terminates with constraint K.
Then v′ |= K iff Traces(v′(A)) = Traces(v(A)).

Remark 16. The incompleteness of TPSynth for nondeterministic PTA is easily
seen: consider a PTA with two states l and l′, and two transitions from l to l′

labeled with a and guarded with x = p ∧ x ≥ 5 and x = p ∧ x ≤ 2. Consider
v such that p = 0. TPSynth(A, v) outputs p ≤ 2, whereas the complete set of
parameter valuations with the same trace set as v(A) is in fact p ≤ 2 ∨ p ≥ 5.
2 This union of a constraints can be seen (and implemented) as a finite list of convex

constraints.
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5 Decidability Results for Subclasses of PTA

In this section, we first prove the finiteness of the parametric zone graph of 1-
clock PTA over both discrete and rational time (Section 5.1). We then study the
(un)decidability of the language and trace preservation emptiness problems for
deterministic 1-clock PTA (Section 5.2), L/U-PTA (Section 5.3) and determin-
istic 1-parameter L-PTA and U-PTA (Section 5.4).

5.1 1-Clock PTA

In this section, we restrict the number of clocks of a PTA, without any restriction
on the number of parameters. In fact, we even slightly extend the definition of
PTA, by allowing parametric linear terms in guards and invariants.

Definition 17. An extended 1-clock PTA (1cPTA for short) is a PTA with only
one clock and possibly several parameters, and allowing guards and invariants of
the form x ≺ ∑

i αipi + c, with pi ∈ P and αi ∈ Z.

We show below that the parametric zone graph for 1cPTA is finite. In [2],
it is shown that the set of parameters reaching some location can be computed
for PTA over discrete time with only one parametric clock and arbitrarily many
non-parametric clocks. Here, we lift the assumption of discrete time, we allow
more general guards and invariants, and the finiteness of the parametric zone
graph allows to synthesize valuations for more complex properties than pure
reachability; however, we only consider a single (parametric) clock. Eliminating
non-parametric clocks in this setting is the subject of future work.

Definition 18. Given a 1cPTA A, a 1-clock symbolic constraint is a constraint
over X ∪P of the form

∧
i(<i∼ x)∧∧

j(<
1
j∼<2

j ), where i, j ∈ N, x is the unique
clock of A, and <i, <

1
j , <

2
j are parametric linear terms either (i.e. of the form∑

i αipi + c) appearing in guards and invariants of A, or equal to 0, and such
that <1

j , <
2
j are all different from each other. We denote by 1CSC(A) the set of

1-clock symbolic constraints of A.

Lemma 19. Let A be a 1cPTA. Let (l,C) be a reachable symbolic state of A.
Then C ∈ 1CSC(A).

Proof sketch. We reason by induction on the length of the runs. For the base
case, the initial state is obviously in 1CSC(A). Then, for any state, we compute
one of its successors using the Succ relation; and we show that each operation
(intersection with the guard, resetting clocks, time elapsing, intersection with
the invariant) makes the resulting constraint still belong to 1CSC(A). ��

Theorem 20. The parametric zone graph of a 1cPTA is finite.
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Proof. From Lemma 19, each symbolic state of a 1cPTA A belongs to 1CSC(A).
Due to the finite number of linear terms in the guards and invariants in A and
the finite number of locations of A, there is a finite number of possible symbolic
states reachable in A. ��

Let us compute below an upper bound on the size of this symbolic graph.
In the following, |LT | denotes the number of different parametric linear terms
(i.e. the number of guards and invariants) used in A.

Proposition 21. The parametric zone graph of a 1cPTA is in |L| ×
2|LT |(|LT |+1).

5.2 Decidability and Synthesis for Deterministic 1-Clock PTA

We show here that the language- and trace-preservation problems are decidable
for deterministic 1cPTA. These results rely on the correctness and completeness
of Algorithm 1 and on the finiteness of the parametric zone graph of 1cPTA.

Theorem 22 (trace-preservation synthesis). Let A be a deterministic
1cPTA and v be a parameter valuation. The set of parameters for which the
trace set is the same as in v(A) is computable in |L| × 2|LT |(|LT |+1).

Proof. Since A is a 1cPTA, then its parametric zone graph is finite from Theo-
rem 20. Hence TPSynth(A, v) terminates. Furthermore, since A is deterministic,
from Theorems 14 and 15, TPSynth(A, v) returns all parameter valuations v′

such that Traces(v′(A)) = Traces(v(A)).
Concerning the complexity, in the worst case, all symbolic states of A are

v-compatible, and TPSynth(A, v) needs to explore the entire parametric zone
graph, which is of size |L| × 2|LT |(|LT |+1). ��

Theorem 23 (language-preservation synthesis). Let A be a deterministic
1cPTA and v be a parameter valuation. The set of parameters for which the
language is the same as in v(A) is computable in |L| × 2|LT |(|LT |+1).

Proof. Since A is deterministic, the set of parameter valuations v′ such that
Lang(v′(A)) = Lang(v(A)) is the same as the set of parameter valuations v′ such
that Traces(v′(A)) = Traces(v(A)). Hence one can directly apply TPSynth(A, v)
to compute the parameter valuations with the same language as v(A). ��

As direct corollaries of these results, the language- and trace-preservation
problems are decidable for deterministic 1cPTA.

5.3 Undecidability for L/U-PTA

We showed so far that the language- and trace-preservation problems are unde-
cidable for general PTA (Section 3) and decidable for (deterministic) 1-clock
PTA (Section 5.2). These results match the EF-emptiness problem, also unde-
cidable for general PTA [2] and decidable for 1-clock PTA (at least over discrete
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time). We now show that the situation is different for L/U-PTA (PTA in which
each parameter is always either used as a lower bound or always as an upper
bound [8]): while EF-emptiness is decidable for L/U-PTA [6,8], we show that
the language- and trace-preservation problems are not.

l0 l1

l2

x1 ≤ pu x1 ≤ pu

x1 ≥ pl
a

x2 := 0 x2 > 0
b

x2 = 0
a

Fig. 4. PTA gadget ensuring pl = pu

Constraining Parameter Equality.
We first show how to encode equality of
a lower-bound parameter and an upper-
bound parameter in a L/U-PTA, using
language preservation. Consider the PTA
gadget depicted in Figure 4. Assume a
parameter valuation v such that pl = pu.
Note that since pl = pu, no time can
elapse in l1, and the b transition can never
be taken. In fact, we have that the lan-
guage of this gadget is aa iff pl = pu.

Now, one can rewrite the 2CM encoding of Section 3.1 using an L/U-PTA
which, together with the previous gadget, gives the following undecidability result.

Theorem 24. The language-preservation problem is undecidable for L/U-PTA
with at least one lower-bound and at least one upper-bound parameter.

This reasoning can be reused to prove the undecidability for L/U-PTA of the
other problems considered in Section 3. It follows:

Theorem 25. 1. The trace-preservation problem is undecidable for L/U-PTA
with at least one lower-bound and at least one upper-bound parameter.

2. The robust language- and trace-preservation problems are undecidable for L/U-
PTA with at least one lower-bound and at least one upper-bound parameter.

5.4 A Decidability Result for 1-Parameter L-PTA and U-PTA

In [6], a bound is exhibited for both L-PTA and U-PTA (i.e. PTA with only
lower-bound, resp. upper-bound, parameters) such that either all parameter val-
uations beyond this threshold have an accepting run, or none of them has. This
provides an algorithm for synthesizing all integer parameter valuations for which
there exists an accepting run, by considering this bound, and then enumerate
all (integer) valuations below this bound.

l1 l2

x1 = 1 ∧ x2 ≤ p
a; x1 := 0

x2 ≤ p
b

b

Fig. 5. An U-PTA with different
language for each parameter val-
uation

Unfortunately, such a bound for U-PTA
(and L-PTA) does not exist for the language, as
witnessed by the U-PTA of Fig. 5: given p ∈ N,
the accepted language is a≤pbω. A similar L-
PTA example is easily obtained.

We now show that the trace-preservation
problem is decidable for deterministic L-PTA
and U-PTA with a single integer parameter and
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arbitrarily many clocks: given a reference integer parameter valuation v, it suf-
fices to check v + 1 and v − 1 to decide whether another parameter valuation
yields the same trace set as v.

Theorem 26. The trace-preservation problem is decidable for deterministic U-
PTA and deterministic L-PTA with a single integer-valued parameter.

Proof. Let A be a deterministic U-PTA with a single integer-valued parameter p
(the reasoning is dual for L-PTA). Let v be a valuation of p. Construct the trace
set of v(A). Consider the valuation v + 1 (i.e. the smallest integer valuation
larger than v). It is known that increasing a parameter in a U-PTA can only add
behaviors. Suppose v + 1(A) adds a behavior, i.e. enables a transition that was
not enabled in v(A). Since A is deterministic, then necessarily v + 1(A) contains
a transition l1

a⇒ l2 that did not exist in v(A). Hence the trace set of v + 1(A)
strictly contains the trace set of v(A), and the trace set of any valuation greater
or equal to v +1 will again strictly contain the trace set of v(A). Hence, deciding
whether there exists a valuation greater than v for which the trace set is the
same as v(A) is equivalent to checking whether the trace set of v + 1(A) is the
same as the trace set of v(A).

The proof for v − 1 is symmetric. Hence it is decidable whether there exists
a valuation different from v for which the trace set is the same as v(A). ��

Since we have a direct correspondence between trace sets and languages in
deterministic automata, we get:

Theorem 27. The language-preservation problem is decidable for deterministic
U-PTA and deterministic L-PTA with a single integer-valued parameter.

l1

l3 l4

l2

x = 1 ∧ x ≤ p, a

b

x = 2 ∧ x ≤ p, a

x = 3 ∧ x ≤ p, b
b

Fig. 6

Theorem 27 cannot be lifted to the
language for non-deterministic L- and
U-PTA. Consider the U-PTA in Fig. 6:
for p = 1, the language is abω. For
p = 2, the language is abω|a, which
is different from p = 1. But then for
p ≥ 3, the language is again abω. Hence
testing only v + 1 = 2 is not enough.

Similarly, a counter-example to
the extension of Theorem 26 to non-
deterministic L- and U-PTA can be
obtained easily.

6 Conclusion and Perspectives

In this paper, we studied the decidability of the language and trace preservation
emptiness. We summarize in Table 1 our (un)decidability results for PTA and its
subclasses with arbitrarily many clocks; an italicized cell denotes undecidability.
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Table 1. Undecidability of preservation emptiness problems for subclasses of PTA

Preservation 1ip-dL&U-PTA L&U-PTA bL/U-PTA L/U-PTA bPTA PTA
Language Th. 27 open Th. 25 Th. 24 Th. 12 Th. 6

Trace Th. 26 open Th. 25 Th. 25 Th. 13 Th. 9
Robust language open open Th. 25 Th. 25 Th. 12 Th. 12

Robust trace open open Th. 25 Th. 25 Th. 13 Th. 13

(1ip-dL&U-PTA stand for deterministic L-PTA, resp. U-PTA, with one integer-
valued parameter; L&U-PTA stand for L-PTA and U-PTA; bPTA stand for PTA
with bounded parameters.) We also showed that both problems are decidable
for deterministic PTA with a single clock.

Future Works. First, we used an ad-hoc encoding of a 2-counter machine for
our proofs of undecidability, using four parametric clocks. In contrast, a new
encoding of a 2-counter machine using PTA was proposed very recently in [5],
that makes use of only three parametric clocks. We assume that our proofs could
be rewritten using that encoding, proving the undecidability of the problems
considered in this paper with as few as three clocks.

A promising direction to find decidability results consists in considering L-
PTA and U-PTA. Furthermore, our results are linked to the robustness of timed
systems; future works consist in finding the boundary between expressive models
of robustness (with many parameter dimensions), that are undecidable, and less
expressive models (usually with a single parameter), that are decidable.

Acknowledgments. We thank Didier Lime for telling us about the reduction we used
in the proof of Theorem 12.
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3. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. IJFCS 20(5), 819–836 (2009)
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Abstract. We introduce a theory of timed symbolic dynamics unifying
results from timed automata theory and symbolic dynamics. The timed
sofic shift spaces we define are a way of seeing timed regular languages as
shift spaces on general alphabets (in classical symbolic dynamics, sofic
shift spaces correspond to regular languages). We show that morphisms
of shift spaces on general alphabets can be approximated by sliding block
codes resulting in a generalised version of the so-called Curtis-Hedlund-
Lyndon Theorem. We provide a new measure for timed languages by
characterising the Gromov-Lindenstrauss-Weiss metric mean dimension
for timed shift spaces and illustrate it on several examples. We revisit
recent results on volumetry of timed languages in terms of timed symbolic
dynamics. In particular we explain the discretisation of timed shift spaces
and their entropy.

1 Introduction

Timed automata were introduced in the early 1990’s to model continuous time
behaviours in a verification context [1]. Since then they have been thoroughly
studied from a theoretical standpoint, a common challenge being the lifting of
results from the well established automata theory.

The theory of symbolic dynamics was developed since the beginning of the
20th century as a method to study, in a symbolic fashion, general dynamical
systems like ordinary differential equations. The method consists in associating
an (infinite) sequence of symbols to every (infinite) trajectory of the dynamical
system. The symbols represents regions of a finite partition of the state space
that are visited along trajectories at discrete time steps. Departing from its
topological origins, symbolic dynamics has a lot of applications in channel-coding
theory and data storage, number theory, and linear algebra (see [19] and reference
therein). It is also used in the context of analysis of algorithm (see e.g. [26]).

Thus, as automata theory, symbolic dynamics is a broad research field that
can provide a source of interesting results to lift to the timed world. Indeed, this
theory has three interesting characteristics. (i) It is really close to automata the-
ory and dealing with object very similar to regular languages (namely the set of

This research is supported in part by ERC Advanced Grant VERIWARE and was
also supported by the ANR project EQINOCS (ANR-11-BS02-004). The present
article is an improved and shortened version of Chapter 5 of the PhD thesis [10].
Omitted proofs and extra details can be found in the technical report [12].
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allowed block of sofic shifts) and having similar results such as determinisation,
minimisation, pumping lemma, etc. (ii) Symbolic dynamics provides a quantita-
tive analysis of regular languages with the notion of entropy. Entropy measures
the growth rate of the languages with respect to the size of words considered. (iii)
Symbolic dynamics considers regular languages as dynamical systems called shift
spaces and provides a topological point of view. For instance the entropy of a shift
space is a particular case of the so-called topological entropy defined for general
dynamical systems (see e.g. [16]). Thus this theory is nicely placed within broad
mathematical theories developed by the pioneers Markov, Shannon, Kolmogorov.

Volumes and volumetric entropy were recently introduced [4,6] to quantify
the size of timed languages and the information content of their elements. These
exploratory works were inspired by the symbolic dynamics’ notion of entropy
but left open several questions. What is the notion of shift space for timed
automata? How is the topological entropy of such an hypothetical shift space
linked to the volumetric entropy? What are the others quantitative results that
can be borrowed from symbolic dynamics?

Contributions. Here, we propose a theory of timed symbolic dynamics that sheds
a new light on the underlying dynamics of timed regular languages (the languages
recognised by timed automata). The main difficulty here is that the natural shift
space for a timed language has an infinite, and even uncountable, alphabet. Such
shift spaces are quite different from those usually studied in symbolic dynamics.
Thus we first define and characterise shift spaces on general alphabets that are
compact, metric and measurable spaces. Then we associate general alphabet shift
spaces to timed languages and study their properties; we call timed sofic shift such
shift spaces. As for size/complexity measures for timed sofic shift, the standard
approach based on topological entropy cannot work: this entropy is infinite, and
we study more relevant characteristics. The first one is the Gromov-Lindenstrauss-
Weiss metric mean dimension [20] that we characterise for timed sofic shift. The
second one is obtained by “renormalisation” of topological entropy, and turns out
to coincide with volumetric entropy of timed languages (thus we justify in terms of
symbolic dynamics the somewhat ad hoc definitions from [4,6]). We also investi-
gate morphisms for general alphabet shift spaces, namely, we state a generalisation
of the Curtis-Hedlund-Lyndon theorem after proving that the classical statement
cannot hold for general alphabet shift spaces.

Related work and possible applications. This article is designed for readers with
a basic knowledge of automata theory or of symbolic dynamics. No specific
knowledge of these fields is required to read the paper. We refer the reader
to [19] for an extensive introduction to symbolic dynamics and to [14] for an
exposition of this theory in the context of automata theory. The seminal paper
on timed automata is [1].

In [27], deterministic continuous dynamical systems are abstracted by timed
automata. Hence the state space is discretised as in symbolic dynamics while
the timing behaviours are made non-deterministic because of the abstraction. It
would be very interesting to use symbolic dynamics methods in this context.
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We introduced the basis of a timed theory of channel coding in [2]. Algorithms
and result of this latter paper were inspired by the theory of symbolic dynamics
and coding. We think that the formal exposition of timed symbolic dynamics in
the present paper will probably lead to new developments of the timed theory
of channel coding.

Metric mean dimension can be interpreted in terms of robustness analysis as
follows: it tells us how often arbitrary precision is required to encode delays along
timed words. For instance a timed automaton with metric mean dimension 1/3
means that 2/3 of the delays must be chosen with arbitrary precision. A more
detailed discussion with related work is given in the conclusion (Section 5).

Article structure. After giving preliminaries in Section 2, we characterise prop-
erties of general alphabet shift spaces in Section 3. In particular, we explain
why several key results of symbolic dynamics do not hold in this more general
settings (Fact 1 and 2) and what are the suitable generalisations of these results
(definition of the volumetric entropy and Theorem 3). In Section 4, we associate
general alphabet shift spaces to timed automata and study there quantitative
properties (entropy, metric mean dimension). In Section 5 we discuss the results
obtained in this paper and the perspectives.

2 Preliminaries

In this section we give topological definitions of shift spaces from symbolic
dynamics (see [16,19]) except that we generalise definitions from finite to com-
pact metric alphabets in Section 2.3. We use classical topology concepts whose
definitions and properties can be found in books such as [21].

2.1 Dynamical Systems

Let (X, d) be a compact metric space. A subset Y ⊆ X is an ε-net of X if
every element of X is at most ε far apart from an element of Y (∀x ∈ X, ∃y ∈
Y such that d(x, y) ≤ ε). In a compact set, for all ε > 0, there exists a finite
ε-net of it. We denote by Nε(X, d) the minimal cardinality of ε-net of X. A
subset Y ⊆ X is ε-separated if all two different elements of Y are at least ε
far apart from each other (∀x, y ∈ Y, x �= y ⇒ d(x, y) > ε). In a compact set,
all ε-separated set are of finite cardinality. We denote by Sε(X, d) the maximal
cardinality of ε-separated sets of X.

Lemma 1 ([18], see also [16] for an English version). Given a compact
metric space X the followings inequalities hold S2ε(X, d) ≤ Nε(X, d) ≤ Sε(X, d).

A discrete time dynamical system (just called dynamical system thereafter)
is a couple ((X, d), f) where (X, d) is a compact metric space and f is a homeo-
morphism of X i.e. a continuous bijection from X to X. Informally, we can see X
as the state space of the system. The function f is the evolution law of the sys-
tem, it gives the dynamics: given a starting state x0, the states f(x0), f2(x0), ...
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are the successors of x, fn(x0) is the state at the “moment” n. The function
f−1 permits one to go back in the past. A continuous function φ from a dynami-
cal system ((X, d), f) to another ((X ′, d′), f ′) that commutes with the dynamics
(i.e. f ′ ◦ φ = φ ◦ f) is called a morphism.

2.2 ε-Entropies and Topological Entropy

The topological entropy permits one to measure the complexity of a system.
Intuitively a system is complex when it is sensitive to initial conditions. There
are several equivalent ways to define topological entropy, here we give a definition
due to Bowen [15]. Let ((X, d), f) be a dynamical system. For all positive integer
n we define the distance between the n first iterations of f on x, y ∈ X by:

dn(x, y) = max
0≤k≤n−1

d(fk(x), fk(y)).

The idea is that two points x and y are ε far apart for dn if when iterating f
at most n times, we can distinguish them with a precision ε. An ε-net1 for dn is
thus an approximation of the system during n iterations and with precision ε.
The N -ε entropy hN

ε (X) measures the growth rate of these sets wrt. n:

hN
ε (X) = lim sup

n→∞
1
n

log2(Nε(X, dn)).

Similarly the S-ε-entropy is:

hS
ε (X) = lim sup

n→∞
1
n

log2(Sε(X, dn)).

The topological entropy is:

htop(X) def= lim
ε→0

hN
ε (X) = lim

ε→0
hS

ε (X). (1)

The second equality is due to Lemma 1. A real ε is called a discretisation step
if it is the inverse of a positive integer. In the following we consider wlog. only
reals ε that are discretisation steps (they provide sequences that tend to 0).

2.3 Shift Spaces on General Alphabet

In the broad field of research of symbolic dynamics (see [19]), the shift spaces
considered are on finite alphabets (we give an example in Section 2.4 below).
Here, we present shift spaces in a version extended to general alphabets being
compact metric spaces. The main instantiation in the following is the timed
alphabet [0,M ] × Σ where M ∈ N and Σ is finite, with metric d((t, a), (t′, a′)) =
|t − t′| + 1a�=a′ . In the rest of the article (C, d) is a compact metric alphabet. We
denote by CZ the set of bi-infinite words over C (i.e. words of the form x = (xi)i∈Z

1 (X, dn) is a metric compact space when (X, d) is; so, one can consider ε-net of it.
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Fig. 1. A labelled graph (left) and its unlabelled version (right)

with xi ∈ C). One can define a metric d on CZ by d(x, x′) = supi∈Z

d(xi,x
′
i)

2|i| . The
shift map σ is defined by y = σ(x) when for all i ∈ Z, yi = xi+1.

It can easily be shown that ((CZ, d), σ) is a dynamical system, we call it the
full shift space on C and just denote it by CZ when d and σ are clear from the
context. A subspace X of CZ is called a sub-shift space of CZ whenever it is
topologically closed and shift invariant: σ(X) = X. We often just call shifts (or
shift spaces) the sub-shift spaces of full shift spaces.

Given a bi-infinite word x ∈ CZ and two indices i, j ∈ Z with i ≤ j, the finite
word xixi+1 · · · xj is called a factor of x and is denoted by x[i..j]. For a shift
space X, the set of factors of length n of bi-infinite words of X is denoted by
Xn

def= {x[i+1..i+n] | x ∈ X, i ∈ Z}.

2.4 Edge and Sofic Shifts from Classical Symbolic Dynamics

Here, we recall the definitions of edge and sofic shift central in symbolic dynam-
ics. These definitions will be lifted to the timed setting in Section 4.

Let G = (Q,Δ) be a finite graph with possibly multiple edges between two
vertices. Any edge δ ∈ Δ has an origin δ− ∈ Q and a destination δ+ ∈ Q. Let
Σ be a finite alphabet and Lab : Δ → Σ a labelling function on edges. The pair
(G, Lab) is called a labelled graph.

A finite (resp bi-infinite) path of G is a finite (resp bi-infinite) sequence of
consecutive edges δi such that for all i ∈ {1, . . . , n−1} (resp i ∈ Z) δi

+ = δi+1
−.

The set of bi-infinite paths of a graph G is a sub-shift of ΔZ called the
edge shift of G. The sofic shift of a labelled graph A = (G, Lab) is the set of
bi-infinite words that label bi-infinite paths of A: [A] def= {(Lab(δi))i∈Z | ∀i ∈
Z, δi

+ = δi+1
−}. It is a sub-shift of ΣZ. A labelled graph is called right-resolving

whenever for every vertex q, all edges starting from q have distinct labels.

Example 1. Consider the graph G on the right of figure 1 and Lab the labelling
function defined by Lab(δ) = 1 and Lab(δ′) = Lab(δ′′) = 0. The labelled graph
(G, Lab) is depicted on the left of figure 1, it is right-resolving and its sofic shift
is composed by the bi-infinite words such that the number of 0 between every
two consecutive 1 is even.

Note that vertices without incoming edges or without outgoing edges cannot be
visited by a bi-infinite words and can hence be deleted without loss of generality.
The resulted graph is called pruned.
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2.5 Comparison with Finite State Automata

A non-deterministic finite state automaton (NFA) B = (Q,Δ, Lab, I, F ) is a
labelled graph (with vertices called states) augmented with sets of initial and
final states I and F . The set of words that label paths leading from initial
states to final states is the language of B (such language is called regular). One
can see that sets of allowed factors ∪n∈N[A]n of sofic shifts A correspond to
regular languages L that are factorial (every factor of a word of L is a word
of L), left- and right-extensible (if w ∈ L then there exists a, b ∈ Σ such that
aw ∈ L and wb ∈ L). Being factorial and extensible are suitable properties in
the classical context of constrained-channel coding (for which symbolic dynamics
offer a meaningful framework). We already motivated these properties for timed
languages in [2] where we built the basis of a timed theory of channel coding.

There exists a variation of the theory of symbolic dynamics based on mono-
infinite words rather than bi-infinite words, that is, indexed by N rather than
Z (see §13.8 of [19]). The “one-sided” shift spaces of this theory are exactly the
omega-regular languages recognised by Büchi automata with all states initial
and final.

3 Factor Based Characterisations

In the previous section, we gave topological definitions of shift spaces, their
entropies and morphisms. Simpler characterisations of these objects based on
factors are available in symbolic dynamics (i.e. when the alphabet is finite).
In this section we generalise these characterisations to general alphabet shift
spaces. We carefully replace properties that implicitly use finite cardinality of
sets in symbolic dynamics by similar properties involving compactness or finite
measure of corresponding sets in our more general setting.

3.1 Factor Based Characterisation of General Alphabet Shift
Spaces

We recall that the alphabet C considered in the following is a compact metric
space.

Definition 1. Given a family O = (On)n∈N\{0} where all On are open sets of
Cn, we denote by F(O) the set of bi-infinite words not having factors in O :
F(O) = {x ∈ CZ | ∀i ∈ Z,∀n ∈ N \ {0}, x[i..i+n−1] �∈ On}.

We have also the dual definition

Definition 2. Given a family F = (Fn)n∈N\{0} where all Fn are closed sets of
Cn, we denote by B(F ) the set of bi-infinite words whose allowed factors are
those of F : B(F ) = {x ∈ CZ | ∀i ∈ Z,∀n ∈ N \ {0}, x[i..i+n−1] ∈ Fn}

Theorem 1. A subset of CZ is a shift space iff it can be defined as a F(O) iff
it can be defined as a B(F ).
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Note that, in symbolic dynamics (for which C is finite), there is no need of
specifying which sets are open or closed as all finite sets satisfy both properties.

Example 2. We introduce five running examples (indexed with roman number).
Let CI def= [0, 1] × {a} and the set of forbidden factors be given by OI

2
def=

{(t, a)(t′, a) | t + t′ > 1}. The shift space XI def= F(OI) is the set {(ti, a)i∈Z |
ti + ti+1 ≤ 1}.

Let CII def= [0, 1] × {a} and OII
1

def= {(t, a) | t < 1}. The only element of the
shift space XII def= F(OII) is (1, a)Z.

Let CIII def= [0, 1] × {a, b} and2 OIII
2

def= {(t, a)(t′, b) | t < 1, t′ ∈ [0, 1]} ∪
{(t, l)(t′, l) | l ∈ {a, b}, t, t′ ∈ [0, 1]}. The shift space XIII def= F(OIII) is the set of
bi-infinite words of the form [(ti, ai)(ti+1, bi+1)]i∈2Z or [(ti, ai)(ti+1, bi+1)]i∈2Z+1

with ti = 1 and ti+1 ∈ [0, 1].
Let CIV def= [0, 1] × {b} and OIV

n
def= {(t1, b) · · · (tn, b) | t1 + . . . + tn > 1}. The

shift space XIV def= F(OIV) is the set of bi-infinite words (ti, b)i∈Z satisfying the
(bi-infinite) Zeno condition

∑
i∈Z

ti ≤ 1.
Let CV def= [0, 1]×{a, b} and OV

1
def= {(t, a) | t < 1} and OV

n
def= {(t1, b) · · · (tn, b) |

t1 + . . . + tn > 1}. Every bi-infinite words of XV def= F(OV) has its delays corre-
sponding to events a equal to 1 (as for XII) and the sum of delays of blocks of
consecutive b bounded by 1 (as for XIV).

3.2 Entropies for General Alphabet Shift Spaces

Topological entropy is very useful to compare dynamical systems. Unfortunately
it is infinite for shift spaces on infinite alphabet as remarked in [20].

Fact 1. Let C be an infinite compact metric space then htop(CZ) = +∞.

A first approach to circumvent this issue is to generalise the following char-
acterisation of the entropy that holds for finite alphabet shift space X (see [19]),

htop(X) = lim
n→+∞

1
n

log2 |Xn|. (2)

Asarin and Degorre replaced cardinality measures by volume measures
(explained below) to define an ad hoc notion of entropy for timed automata
in [5] called volumetric in later papers [2–4]. Here, we describe both entropies
(classical and volumetric) in a unified and more general framework.

The compact metric spaces C considered in this paper are endowed with
a “natural” measure μ and hence the set Cn has the product measure μn. For
example the measure on Σn, for finite Σ, is the counting measure; the measure on
[0,M ]n is the n-dimensional volume (aka. Lebesgue measure); and the measure
on ([0,M ] × Σ)n ∼= [0,M ]n × Σn also called volume is the product of the two

2 We recall that a set A is open in [0, 1] if it is of the form A = B ∩ [0, 1] with B an
open set of R (i.e. a union of open intervals). In particular [0, 1] is open in [0, 1].
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preceding measures. More precisely, a subset E of ([0,M ] × Σ)n can be seen
as a formal sum of subsets E|w ⊆ [0,M ]n associated with w ∈ Σn as follows
E|w = {(t1, . . . , tn) | (t1, w1) . . . (tn, wn) ∈ E}. The volume of E is just the sum
of the volumes of E|w: Vol(E) =

∑
w∈Σn Vol(E|w).

We now give our general definition of entropy for general alphabet shift
spaces:

Definition 3. Given a compact metric space C and a measure μ on it, the
entropy of a subshift X ⊆ CZ is

H(X) = lim
n→+∞

1
n

log2 μn(Xn) (with Xn
def= {x[i+1..i+n] | x ∈ X, i ∈ Z}). (3)

Applying Fekete’s lemma ([17]) on sub-additive sequence to (log2 μn(Xn))n∈N

ensures that the limit exists in R ∪ {−∞,+∞}.
Another way of circumventing the problem of the infinite topological entropy

is to consider an asymptotic expansion of the ε-entropy instead of its limit when
ε tends to 0 in Equation (1). This has been done fruitfully for volumetric entropy
of timed automata in [13] (recalled in Theorem 7 below).

3.3 Sliding Block Codes for General Alphabet Shift Spaces

In this section C and C′ denote two compact metric spaces, X and Y denote sub-
shifts of CZ and C′Z respectively. Given a function ψ from X to C′ we denote by
ψ∞ : X → C′Z the function defined by (ψ∞(x))i = ψ(σi(x)). Such functions are
those that commute with the shifts (i.e. σ ◦ φ = φ ◦ σ) and are thus morphisms
if and only if continuous.

We say that ψ is a (2m + 1)-block function when for every x, ψ(x) depends
only on the (2m + 1)-central factor x[−m..m], i.e. there exists a function f :
C2m+1 → C′ such that for every x, ψ(x) = f(x[−m..m]). One can remark that
ψ is continuous iff so is f . A function φ that is equal to some ψ∞ with ψ a
(continuous) block function is called a (continuous) sliding block code.

The following famous theorem gives a characterization of the morphisms of
finite-alphabet shift spaces as sliding block codes.

Theorem 2 (Curtis-Hedlund-Lyndon). Let X and Y be two finite alphabet
shift spaces. A function ϕ : X → Y is a morphism if and only if it is a sliding
block code.

This Theorem cannot be extended to the case of general alphabets shift
spaces as highlighted by the following fact:

Fact 2. There are endomorphisms of [0, 1]Z which are not sliding block codes.

Proof (Sketch). Let ψ : [0, 1]Z → [0, 1] be defined by ψ(x) = 1
3

∑
i∈Z

xi

2|i| . One
can show that ψ∞ is an endomorphism of [0, 1]Z which is not a sliding block
code.

An adapted version of Theorem 2 can however be stated as follows.
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Theorem 3. Every morphism φ from a shift space X to a full shift CZ is the
uniform limit of a sequence of continuous sliding block codes (φm)m∈N from X
to CZ, that is supx∈X d(φ(x), φm(x)) →m→+∞ 0 where d is the metric on CZ.

Proof (Sketch). We first characterise every morphism as a function of the form
ψ∞ with ψ a continuous function from X to C. We then show that every contin-
uous function from X to C is a uniform limit of continuous block functions from
X to C. Theorem 3 can then be proved by combining these two last results.

4 Timed Shift Spaces and Their Measures

In this section we define and study timed sofic shifts which are a way to see
regular timed languages [1] as (general alphabet) shift spaces.

4.1 Timed Shift Spaces

Timed Graphs. Informally, a timed graph is to a timed automaton what a
graph is to an automaton: an automaton without initial, final states as well as
labels on transitions. Formally, a timed graph (TG) is a tuple G = (C,Q,Δ) such
that

– C is a finite set of bounded clocks which are variables ranging over [0,M ]
with M ∈ N;

– Q is a finite set of locations;
– Δ is a finite set of transitions. Any transition δ ∈ Δ has an origin δ− ∈ Q;

a destination δ+ ∈ Q; a closed guard gδ, that is a conjunction of inequalities
of the form x ∼ c or x ∼ y + c, where x and y are clocks, ∼∈ {≤,=,≥}
and c ∈ {0, . . . , M}; and a reset function rδ determined by a subset of clocks
B ⊆ C: it resets to 0 all the clocks in B and does not modify the value of
the other clocks.

States, Timed Transitions and Successor Actions. We denote by , the
set of states which are couples of a location and a clock vector S def= Q× [0,M ]C .
A timed transition is an element (t, δ) of A

def= [0,M ] × Δ. The time delay t
represents the time before firing the transition δ.

Given a state s = (q,x) ∈ S and a timed transition α = (t, δ) ∈ A the
successor of s by α is denoted by s � α and defined as follows. If δ− = q and
x + t satisfies the guard gδ then s � α = (δ+, rδ(x + t)) else s � α = ⊥. Here and
in the rest of the paper ⊥ represents undefined states.

Runs and Their Shifts. A bi-infinite run of a timed graph G is a bi-infinite
word (si, αi)i∈Z ∈ (S × A)Z such that si+1 = si � αi �= ⊥ for all i ∈ Z. Consider
the timed graph GI depicted on Figure 2 (left) and a bi-infinte words whose ith
letter is αi = (ti, δi) with δi = δ if i is even and δi = δ′ otherwise and such
that ti + ti+1 ∈ [0, 1] for every i ∈ Z; define for even i, si = (p, (ti−1, 0)) and
si+1 = (q, (0, ti)) then (si, αi)i∈Z is a run of GI.
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p q

δ, x ≤ 1, x := 0

δ′′, y ≤ 1, y := 0

p

δ, x = 1, x := 0

p q

δ, x = 1, x := 0

δ′, x ≤ 1, x := 0

p

δ′, x ≤ 1

p

δ, x = 1, x := 0

δ′, x ≤ 1

Fig. 2. From left to right LTGs Ai = (Gi, Lab) for i = I..V with Lab(δ) = Lab(δ′′) = a
and Lab(δ′) = b. They recognise timed sofic shift of Example 2.

Proposition 1. The set of bi-infinite runs of G is a sub-shift of (S × A)Z.

Timed Edge Shift and Timed Sofic Shift. We are now ready to define the
timed generalisation of edge shift and sofic shift.

Proposition-definition 1 (Timed edge shift) . The following set is a sub-
shift of AZ called the timed edge shift of G and denoted by [G]:

[G] = {(αi)i∈Z | ∃(si)i∈Z ∈ S
Z, ∀i ∈ Z, si+1 = si � αi}

When adding to a TG G a labelling function Lab : Δ → Σ from the set of
transition Δ to a finite alphabet of event Σ we obtain a labelled timed graph
(LTG) A = (G, Lab). Abusing the notation we extend the labelling function to
timed transitions and runs as follows: Lab(α) = (t, Lab(δ)) when α = (t, δ) and
Lab ((si, αi)i∈Z) = (si, Lab(αi))i∈Z. Thus we use two kinds of timed alphabet :
alphabet of timed transitions A = [0,M ] × Δ and alphabets of timed letters
Lab(A) = [0,M ] × Lab(Δ).

Proposition-definition 2 (Timed sofic shift) . Let A = (G, Lab) be a
labelled closed timed graph then the set [A] = {Lab ((αi)i∈Z) | (αi)i∈Z ∈ [G]}
is a sub-shift of (Lab(A))Z called the timed sofic shift of A.

An LTG is called right resolving if every two different transitions labelled by
the same letter and starting from the same location have pairwise incompatible
guards. As for classical symbolic dynamics, being right-resolving is the same
thing as being deterministic less the property of having a unique initial state
(see [1] for the usual definition of determinism in timed automata context). The
LTGs of Figure 2 are right-resolving, they recognise the shift spaces of Example 2.

4.2 Discretisation of Shift Spaces and Their Entropy

Several definitions of ε-entropy for compact metric alphabet shift spaces were
recalled in Section 2.2. Here, we give a simpler definition of ε-entropy for timed
shift spaces which is asymptotically linked to the other ε-entropies in Proposition
3. This new definition of ε-entropy is based on discretisation of the timed shift
space we explore now.
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We call ε-discrete the different objects involving delays and clocks multiple of
ε (i.e vector of delays of Rn, timed words, bi-infinite timed words, runs, etc.). The
ε-discretisation of a set B denoted by Bε is the set of its ε-discrete elements. For
instance, for A = [0,M ]×Δ, Aε = {0, ε, . . . ,M}×Δ; for X ⊆ A

Z, Xε = X ∩A
Z

ε .
The following proposition states a discretisation of timed shift spaces, the

resulting shift space being a finite alphabet shift space.

Proposition 2. If X is a sub-shift of BZ where B is a timed alphabet, then Xε

is a sub-shift of BZ

ε .

We define the ε-entropy of a shift X ⊆ B
Z as the entropy of the shift Xε ⊆ B

Z

ε :

hε(X) def= htop(Xε) = lim
n→∞

1
n

log2 |Xε,n|.

Proposition 3. For every two discretisation steps ε′ ≥ ε, for every timed sofic
shift X, it holds that h2ε′(X) ≤ hS

2ε(X) ≤ hN
ε (X) ≤ hε(X).

Let A = (G, Lab) be a right-resolving LTG. The discretisation of the timed
sofic shift [A] is the sofic shift of a right-resolving finite labelled graph Aε

obtained from A by a discretisation of its timed transitions and states as follows:
Aε = ((Qε,Δ

′), Lab′) with Qε = S ∩ (Q × {0, ε, . . . ,M}d), Lab′ : Δ′ → Lab(Aε)
and there is a transition δs,α,s′ ∈ Δ′ going from δs,α,s′ − def= s to δs,α,s′+

def= s′ and
labelled by Lab′(δs,α,s′) def= Lab(α) iff s � α = s′.

Proposition 4. Let A be a right-resolving LTG, then [Aε] = [A]ε.

As a corollary the computation of the ε-entropy of a timed sofic shift reduces
to the computation of the entropy of a (finite alphabet) sofic shift.

Corollary 1. Let A = (G, Lab) be a right-resolving LTG, its ε-entropy is the
topological entropy of the sofic shift of Aε: hε([A]) = htop([Aε]). In particular,
hε([A]) can be computed as the logarithm of the spectral radius of the adjacency
matrix of Aε (This matrix has order O(|Q|/ε|C|) where C is the set of clocks).

In [6], a similar approach was used to over- and under-approximate the quantity
H(A) + log2(1/ε) for a timed automaton A without guarantee of convergence.
The asymptotic equality of this quantity with the ε-entropy was later proved in
[13] (Theorem 7 below).

The following theorem justifies that one can focus on TGs rather than right-
resolving LTGs without loss of generality for the entropies.

Theorem 4. Let A = (G, Lab) be a right-resolving LTG, then H([A]) = H([G])
and hε([A]) = hε([G]).

Proof (Sketch). We use the following chain of equalities hε([A]) = htop([Aε]) =
htop([Gε]) = hε([G]) where the first and third equalities are given by Corollary
1 and the second equality follows from a classical correspondence of entropy
between finite alphabet sofic shift and their underlying edge shift (see [19]).
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To prove that H([A]) ≤ H([G]), we use the fact that for every word w ∈ Σ∗,
[A]|wn = ∪π∈Lab−1(w)[G]|πn , pass to volumes: Vol([A]|wn ) ≤ ∑

π∈Lab−1(w) Vol([G]|πn )
and apply operator limn→∞ 1

n log2
∑

w∈Σn( ). The converse inequality H([A]) ≥
H([G]) is more involved since the sets [G]|πn for π ∈ Lab−1(w) can overlap. How-
ever, using the fact that A = (G, Lab) is right-resolving, one can show that the
volume of the overlap does not contribute to the entropy as it decreases too fast
when n → ∞ and hence H([A]) ≥ H([G]) also holds. ��

4.3 Metric Mean Dimension of Timed Sofic Shifts

Given a timed graph G, a path π and n = |π|, it is well known that the set
of delay vectors [G]|πn

def= {(t1, . . . , tn) | (t1, π1) . . . (tn, πn) ∈ [G]n} is a polytope.
One can define the dimension dim(π) of a path, as the affine dimension of its
polytope, that is, the maximal number of affinely independent points in the
polytope minus 1 (see also [8]). A TG G is fleshy whenever all its path are full
dimensional, that is dim(π) = |π| for every paths π of G. It can happen that
when the length of paths considered tends to infinity the delays are more and
more constrained resulting in a null average choice. This kind of phenomena is
measured by metric mean dimension defined and illustrated on several examples
below.

The metric mean dimension [20] of a dynamical system ((X, d), f) is:

mdim(X) = lim inf
ε→0

log2 hS
ε (X)

log2(1/ε)
= lim inf

ε→0

log2 hN
ε (X)

log2(1/ε)

The second equality is due to Lemma 1. As a corollary of Proposition 3, we can
characterise the metric mean dimension of timed sofic shift explicitly in terms
of their ε-entropy as follows:

Corollary 2. The metric mean dimension of a timed sofic shift X is:

mdim(X) = lim inf
ε→0

log2 hε(X)
log2(1/ε)

(4)

Note that if X ⊆ Y then mdim(X) ≤ mdim(Y ) and that mdim(BZ) = 1 for
every timed alphabet B. Thus mdim(X) ≤ 1 for every sub-shift X of BZ.

Example 3 (Example 2 and Figure 2 continued). The shift space XI has metric
mean dimension 1 since all the delays can be chosen independently in the interval
[0, 1/2]. The shift space XII contains only one element and has thus metric mean
dimension 0. The metric mean dimension of XIII is 1/2. This corresponds to the
intuition that a full choice can be made half of the time, since delays before edges
δ are always in the 0-dimensional singleton {1} while delays before edges δ′ are to
be chosen in the 1-dimensional interval [0, 1]. The number of ε-discrete points in
the polytope [GIV]|πn for the only path π of length n is

(
n+1/ε

n

)
(Lemma 2 below)

and thus the metric mean dimension of XIV is null. Intuitively, there are less
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and less choices as n increases. Every path of GV containing a δ yields a volume
0, the only path of length n that yields a non-null volume is δ′n. This volume
is Vol(XV

n) = 1/n! and hence the entropy is H(XV) = −∞. The metric mean
dimension of XV is 1. Indeed, for every positive integer m, the paths in (δm−1δ′)∗

yield a metric mean dimension equal to (m − 1)/m and thus mdim ≥ 1 − 1/m
for every m > 0.

Lemma 2 (Few points in a simplex). The number of ε-discrete points in a
simplex described by inequalities 0 ≤ u1 ≤ · · · ≤ un ≤ M (resp. by inequalities
∑n

i=1 ui ≤ M and ui ≥ 0) is
(
n+M/ε

n

)
and (1/n) log2

[(
n+M/ε

n

)] →n→+∞ 0.

One can generalise GIII by defining a cycle with k transition b and l−k tran-
sition a for every naturals 1 ≤ k ≤ l. The resulting timed sofic shift has metric
mean dimension k/l. More surprisingly arbitrary rational metric mean dimen-
sions lower than 1 can be obtained from timed graph that have full dimensional
sets of factors Xn for every length n.

Theorem 5. For every rational r ∈ Q∩ [0, 1], there exists a timed sofic shift X
recognised by a right-resolving fleshy LTG such that mdim(X) = r.

Proof (sketch). Examples of fleshy timed graph with metric mean dimension
0 or 1 have already been treated (GI and GII). For every a, b ∈ N such that
0 < a < b, we describe a cyclic timed graph with 2b edges and metric mean

dimension a/b ∈ Q ∩ (0, 1). The edges are qi
x∈[i,i+1]−−−−−−→ qi+1 for i = 0..2a − 1;

qi
y≥2a+1,x∈[2a,2a+1]−−−−−−−−−−−−−→ qi+1 for i = 2a..2b−3; q2b−2

y≥2a+1,x∈[2a,2a+1],y:=0−−−−−−−−−−−−−−−−−→ q2b−1;

q2b−1
x∈[2a,2a+1],x:=0−−−−−−−−−−−→ q0. One can see that each edge of the first form yields

a full dimension (i = 0..2a − 1). The other edges impose stringent constraints
on clocks and delays like in a simplex. This yields a null mean dimension for
these edges (Lemma 2). At the end for each cycle of length 2b there are 2a full
dimensional edges and thus mdim = 2a/2b = a/b.

The Thick Timed Sofic Shifts. In [13], we characterised precisely a
dichotomy between thin and thick timed automata based on entropy, the former
having infinite entropy (H = −∞) while the latter having a finite one (H > −∞).
Beyond its entropy based definition we argued that this dichotomy is between
bad behaving and well behaving TA. The former are in some weak sense Zeno,
are non robust against clock perturbations, cannot be discretised well, etc. while
the latter enjoy better properties such as a good discretisation, a quantitative
pumping lemma and the existence of so-called forgetful cycles.

The metric mean dimension measurement gives a novel characterisation of
thickness in terms of maximal metric mean dimension:

Theorem 6. For timed sofic shifts X recognised by fleshy LTGs, thickness is
equivalent to maximal metric mean dimension: H(X) > −∞ iff mdim(X) = 1.
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Note that XV satisfies both H(XV) = −∞ and mdim(XV) = 1. This means
that fleshiness is necessary in Theorem 6. Remark that regarding thickness,
fleshiness is assumed wlog. since pruning the transitions involving punctual
guards (e.g. x = 1) does not change the volume nor the entropy.

Beyond the pure dichotomy between thin and thick timed languages [13],
Theorem 5 and 6 provide a deeper insight of convergence phenomena among thin
timed languages. There is a whole continuum of thin timed languages between
the extremely narrow ones of metric mean dimension 0 where all delays of timed
words are constrained in a very stringent way, and the ones of dimension almost
1 for which full freedom in the delay is available at almost each transition.

For the sake of completness we recall one of the main theorems of our previous
work [13] in terms of timed symbolic dynamics. This theorem ensures that the
approximation of the entropy by discretisation initiated in [6] converges.

Theorem 7 (A symbolic dynamics version of Theorem 4 of [13]). Let A
be a right-resolving fleshy thick LTG then its volumetric entropy can be approx-
imated by its ε-entropy as follows: hε([A]) = log2(1/ε) + H([A]) + o(1).

One can interpret as in [2,6] H([A]) as the average information per event and
log2(1/ε) as the information necessary to represents with precision ε the time
between two events.

5 Conclusion and Perspectives

In this paper, we introduced a theory of timed symbolic dynamics. We revisited
previous works on volumetry of timed languages [5,6,13] within this new theory.
We adapted to timed sofic shifts the metric mean dimension of Lindenstrauss,
Weiss and Gromov [20]. We also stated a generalisation of the Curtis-Hedlund-
Lyndon theorem for shift spaces on alphabets that are compact metric spaces.

Fundamental objects of classical symbolic dynamics are so-called shifts of
finite types (SFT): the shift spaces that can be defined with a finite set of for-
bidden factors. In fact, such shifts are conjugated to edge shifts. That is why
we are able to lift results from classical symbolic dynamics to the timed case
without referring to SFTs (but referring to graphs and edge shifts). The entropy
of probability measures on shift spaces is well studied in symbolic dynamics.
The entropy of a probability measure on an edge shift (or equivalently SFT) is
always bounded from above by the entropy of its underlying graph. An impor-
tant result obtained by Parry [23] is that for every edge shift associated to a
strongly connected graph, there is a unique probability measure whose entropy
is equal to that of the edge shift. This probability measure is given by a Markov
chain on the graph of the edge shift (originally described by Shannon [25]). We
already generalised such a Shannon-Parry Markov chain to the timed settings
motivated by verification purposes [9,11]. However, we left open the question of
uniqueness. Symbolic dynamics techniques (as those of Parry) could hence be
useful to address this problem.

In [7], Asarin and Degorre introduced a mean dimension (that we call syn-
tactic) for timed automata and proposed an algebraic characterisation of it.
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However this dimension only measures the proportion of non-punctual transi-
tions along runs but not the Zeno behaviours. For instance, every fleshy timed
graph has syntactic mean dimension 1 including GIV. It seems easy to show that
the syntactic mean dimension is upper bounded by the metric mean dimension.
The case of equality is more involved and still needs to be investigated.

Metric mean dimension and controllability. In robust control [22,24], the goal is
to design a controller that chooses step by step an infinite timed word satisfying
a Büchi condition even if every delay is slightly perturbed. As every transition
can be perturbed, the part that is robustly controllable does not contain punc-
tual guards (fleshiness). Robust controllability is equivalent to the reachability
(through fleshy transitions) of a forgetful cycle satisfying the Büchi condition
[22,24]. It would be interesting to relax the condition that every transition must
be robustly controllable and consider a framework where in some steps delays
with arbitrary precision are chosen. In such a framework we would like to prove
that timed automata with metric mean dimension α are the timed automata
that can be robustly controlled with a frequency of α and that require arbitrary
precision with frequency 1 − α.
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Abstract. The development of formal methods for control design is an
important challenge with potential applications in a wide range of safety-
critical cyber-physical systems. Focusing on switched dynamical systems,
we propose a new abstraction, based on time-varying regions of invari-
ance (the control funnels), that models behaviors of systems as timed
automata. The main advantage of this method is that it allows auto-
mated verification of formal specifications and reactive controller synthe-
sis without discretizing the evolution of the state of the system. Efficient
constructions are possible in the case of linear dynamics. We demonstrate
the potential of our approach with two examples.

1 Introduction

Verification and synthesis are notoriously difficult for hybrid dynamical systems,
i.e. systems that allow abrupt changes in continuous dynamics. For instance,
reachability is already undecidable for 2-dimensional piecewise-affine maps [14],
or for 3-dimensional dynamical systems with piecewise-constant derivatives [2].

To enable automated logical reasoning on switched dynamical systems, most
methods tend to entirely discretize the dynamics, for example by approximating
the behavior of the system with a finite-state machine. Alternatively, early work
pointed out links between hybrid and timed systems [20], and several methods
have been designed to create formal abstractions of dynamical systems that do
not rely on a discretization of time. In [11], a finite maneuver automaton is
constructed from a library of motion primitives, and motion plans correspond
to timed words. In [12,16], switched controller synthesis and stochastic optimal
control are realized via metric temporal logic (MTL) or metric-interval tempo-
ral logic (MITL) specifications. In [19,22], grid-based abstractions and timed
automata are used for motion planning or to check timed properties of dynam-
ical systems. In [24], a subdivision of the state space created from sublevel sets
of Lyapunov functions leads to an abstraction of dynamical systems by timed
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automata that enables verification and falsification of safety properties. The
same kind of abstraction is used in [23] for controller design via timed games,
but the update map of the timed games obtained is such that synthesis cannot be
realized using existing tools. In [8], the state space of each mode of a piecewise-
affine hybrid system is portioned into polytopes, and thanks to control laws that
prevent the system from exiting through a given facet, or that force the system
to exit through a facet in finite time, reactive control problems can be solved as
timed games on timed automata.

Our contribution is a novel timed-automata abstraction of switched dynam-
ical systems based on a particular kind of time-varying regions of invariance:
control funnels. Recent results have shown that these invariants are very useful
for robust motion planning and control [17,18,26], and that funnels or similar
concepts related to the notion of Lyapunov stability can be used for formal
verification of hybrid systems [10,13], and for reactive controller synthesis [9].

The paper is organized as follows: Section 2, describes how control funnels,
especially for trajectory tracking controllers, can be used to create timed transi-
tion systems that abstract the behavior of a given switched dynamical system,
and as a result can potentially allow the use of verification tools for motion plan-
ning. In Section 3, we show how these timed transition systems can be encoded as
timed automata. In Section 4, we consider the case of linear dynamics and intro-
duce the notion of fixed size LQR funnel. In Section 5, we present two examples
of application and efficient algorithms that manipulate these LQR funnels. In
the first one, a timed game is solved by the tool Uppaal-Tiga [5] for the synthesis
of a controller that can reactively adjust the phase of a sine wave controlled in
acceleration. In the second example, we show that, using our timed-automata
abstraction with LQR funnels along constant velocity trajectories, a non-trivial
solution to a pick-and-place problem can be computed by the model checker
Uppaal [6]. Section 6 concludes and presents avenues for future work.

2 Graphs of Control Funnels

2.1 Control Funnels

Consider a controlled dynamical system governed by the following equation:

ẋ = f(x, t, u(x, t)), (1)

where x ∈ R
d is the state of the system (which can contain velocities1), t ∈ R

+

is a real (clock) value corresponding to time (we restrict ourselves to nonnega-
tive time values), u : R

d × R
+ → R

k is the control input function, and f is a
continuously differentiable function from R

d × R
+ × R

k to R
d (which ensures

1 In this paper, we mostly consider state spaces that describe the position and velocity
of systems controlled in acceleration. The continuity of trajectories in the state space
ensures that the position is always a continuously differentiable function of time.
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Fig. 1. An example of control funnel for a controller tracking a reference trajectory.
The dashed line is a trajectory of the controlled system in the state space. On the right
side, switching transitions between control funnels are depicted.

the uniqueness of the solution for given initial conditions). Assuming that the
function u is fixed, we also use the following notation for Equation (1):

ẋ = fu(x, t). (2)

A control funnel for the above dynamical system is a function F : I → 2R
d

such that I ⊆ R
+ and for any solution x(t) of (2), the following property holds:

∀t1 ∈ I. ∀t2 ∈ I. (t2 > t1 and x(t1) ∈ F(t1)) ⇒ x(t2) ∈ F(t2). (3)

It corresponds to time-varying regions of invariance.

Example 1. A typical example of a control funnel based on a trajectory tracking
controller (that is, a control funnel asymptotically converging towards a reference
trajectory in the state space) is shown in Fig. 1.

Example 2. For a concrete example, consider the simple system whose trajec-
tories are of the form e−t · x0. Then any set W ⊆ R

d defines a control funnel
FW : t �→ {e−t · w | w ∈ W}.

The notion of funnel was popularized by Mason [21], and it usually specifically
refers to operations that eliminate uncertainty (as is the case in the example of
Fig. 1) by collapsing a large set of initial conditions into a smaller set of final
conditions (see for instance [26]). In our case, the control funnel may or may not
reduce uncertainty, and it is important to note that the set F(t) does not have
to decrease in size over time. This more general concept is closer to the definition
of viability tubes [4], but we nevertheless use the term control funnel as some
reduction of uncertainty is often essential to the usefulness of our abstractions.
We address the computation of control funnels in Section 4, and leave them as
relatively abstract objects for now.

2.2 Motion Planning

Let us suppose that we have a finite set U of control laws u1(x, t), u2(x, t), . . . ,
un(x, t) that respectively set the dynamics of a given system to ẋ = fu1(x, t),
ẋ = fu2(x, t), . . . , ẋ = fun

(x, t).
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We say that the system can switch to the control law ui(x, t) at some state x̃
whenever there is t0 ∈ R

+ and a solution x(t) of ẋ = fui
(x, t) with initial

condition x̃ = x(t0). Typically, if ui(x, t) corresponds to a trajectory tracking
controller, t0 identifies the point of the trajectory where the tracking is triggered.

Informally, the motion planning problem asks, given a finite set of control
laws as above, an initial point x0, a target zone Tf ⊆ R

d, and an obstacle
Ω ⊆ R

d, whether there exists a sequence of control law switches that generates
a trajectory from x0 to Tf while avoiding the obstacle Ω. Several variants of this
problem can be considered, that vary on the objective (for instance some tasks
can be expressed as ω-regular objectives), but we focus here on a reachability
with avoidance objective.

More formally, motion planning asks for a finite sequence of time values
t10 < t11, t20 < t21, . . . , tP0 < tP1 , a finite sequence of control laws indices k1, . . . , kP ,
and a finite sequence x1, . . . , xP ∈ Tf of points in R

d, such that:

(a) for every 1 ≤ p ≤ P , if xp is the unique solution to ẋ = fukp
(x, t) with

initial condition xp(tp0) = xp−1, then xp(tp1) = xp.
(b) for every 1 ≤ p ≤ P , for every tp0 ≤ t ≤ tp1, x

p(t) /∈ Ω.

Intuitively, this means that we can switch conveniently between all the con-
trol laws, causing discrete changes in the system dynamics, and ensure the
global (reachability with avoidance) objective. The continuous trajectory gen-
erated by the solution above is the concatenation of the trajectory portions
{xp(t) | tp0 ≤ t ≤ tp1} for 1 ≤ p ≤ P .

2.3 Motion Planning with Graphs of Control Funnels

We now explain how the motion planning problem can be abstracted using timed
transition systems based on control funnels.

For each control law ui(x, t), we assume that we have a finite set of control
funnels F1

i ,F2
i , . . . ,Fmi

i , respectively defined over I1i ⊆ R
+, I2i ⊆ R

+, . . . , Imi
i ⊆

R
+. We assume that for every 1 ≤ i ≤ n, for every 1 ≤ j ≤ mi, for every t ∈ Ij

i ,
it holds F j

i (t)∩Ω = ∅, which means that trajectories contained in these funnels
always avoid the obstacle Ω.

Consider a control law switch at position x̃ to law ui(x, t) with clock value t0.
If there exists a control funnel Fj

i such that t0 ∈ Ij
i , and x̃ ∈ Fj

i (t0), then we
know that the state of the system will remain inside Fj

i (t) for any t > t0 in Ij
i

(as long as control law ui(x, t) is used). To always keep the system inside one
of the control funnels, we can impose sufficient conditions on the switches. For
instance, if the state is inside Fj

i (t0), and if for some future clock value t1,
there exists a control funnel F l

k and t2 ∈ I l
k such that F j

i (t1) ⊆ F l
k(t2), then

when the clock value is t1 we can safely switch to the control law uk(x, t) while
setting the clock to t2. Indeed, we know that the state of the system at the
switch instant will be inside F l

k(t2), and therefore it will remain inside F l
k(t)

after the switch. Such transitions from a funnel to another are illustrated on the
right side of Fig. 1. It is worth noting that similar transitions could be achieved
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with, instead of control funnels, controller specifications as introduced in [15].
For some control funnels F j

i and Fk
i associated to the same control law, it is the

case (see Section 4) that when funnel F j
i is entered at time t, then at any time

t′ ≥ t+hj→k
i (where hj→k

i is a constant), the state of the system is inside Fk
i (t′).

In that case, we say that the funnel Fk
i hj→k

i -absorbs the funnel F j
i .

These rules for navigating between control funnels give to the set of control
funnels the structure of an infinite graph, or, more precisely, of a timed transition
system with real-valued clocks. One of the clocks of this timed transition system
is ct, the controller clock. We add two other clocks: a global clock cg, and a local
clock ch.

The funnel timed transition system TU,F associated with the family of laws
U = (ui(x, t))1≤i≤n and the family of funnels F = ((Fj

i , Ij
i ))1≤i≤n,1≤j≤mi

is
defined as follows. The configurations are pairs (Fj

i , v) where v assigns a non-
negative real value to each of the clocks ct, cg and ch, with v(ct) ∈ Ij

i , and its
transition set contains three types of elements:

– the time-elapsing transitions: (Fj
i , v) → (F j

i , v + Δ) whenever [v(ct), v(ct) +
Δ] ⊆ Ij

i (where v + Δ denotes the valuation that maps each clock c to
v(c) + Δ);

– the switching transitions : (Fj
i , v) → (F l

k, v′) whenever v′(cg) = v(cg),
v′(ch) = 0, v(ct) ∈ Ij

i , v′(ct) ∈ I l
k, and F j

i (v(ct)) ⊆ F l
k(v′(ct));

– the absorbing transitions: (Fj
i , v) → (Fk

i , v′) whenever Fk
i hj→k

i -absorbs F j
i ,

v(ch) ≥ hj→k
i , v′(ch) = 0, v′(cg) = v(cg) and v′(ct) = v(ct).

A run in this timed transition system is a finite sequence of configurations(
(F j0

i0
, v0), (Fj1

i1
, v1), . . . , (F jP

iP
, vP )

)
such that v0(ch) = v0(cg) = 0, v0(ct) ∈

Ij0
i0

, and all the transitions (F jp

ip
, vp) → (F jp+1

ip+1
, vp+1) for 0 ≤ p < P are valid

transitions that belong to TU,F .
Such a run is of total duration vP (cg), and it corresponds to a schedule of

control law switches that results from the following rules: initially, the control
law is set to ui0(x, t), and the controller clock ct is set to v0(ct). For every time-
elapsing transition (F j

i , v) → (F j
i , v+Δ), the same control law ui(x, t) is kept for

a duration of Δ time units, and for every switching transition (Fj
i , v) → (F l

k, v′),
the control law is switched from ui(x, t) to uk(x, t), with an initialization of
the controller clock to v′(ct). Absorbing transitions are discarded, as they just
correspond to an instantaneous change of funnels for the same control law. Let us
denote this sequence of switches by r. Then, it is fundamental to notice that
for every x ∈ Fj0

i0
(v0(ct)), if we follow the schedule of control law switches just

described, then the system remains inside control funnels and reaches at the
end of the run a unique point of R

d, that we denote r(x). The trajectory going
from x to r(x) is also uniquely defined.

The funnel timed transition system TU,F satisfies the following property:

Theorem 1. Let r =
(
(F j0

i0
, v0), (Fj1

i1
, v1), . . . , (F jP

iP
, vP )

)
be a run in TU,F .

If x ∈ Fj0
i0

(v0(ct)), then r(x) ∈ FjP

iP
(vP (ct)).
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Fig. 2. Run of a funnel timed transition system with three control funnels:
r =

(
(F1

1 , v1
0), (F1

1 , v1
1), (F1

2 , v2
0), (F1

2 , v2
1), (F1

3 , v3
0), (F1

3 , v3
1), (F1

4 , v4
0), (F1

4 , v4
1)

)
, with:

∀1 ≤ i ≤ 4, vi
0(ct) = ti0, vi

1(ct) = ti1, vi
0(ch) = 0, vi

1(ch) = ti1−ti0, vi
1(cg) = vi

0(cg)+vi
1(ch),

and v1
0(cg) = 0, and ∀2 ≤ i ≤ 4, vi

0(cg) = vi−1
1 (cg).

In some sense, the funnel timed transition system TU,F is a correct abstraction of
trajectories that can be generated by the set of control laws: if x0 ∈ Fj0

i0
(v0(ct))

and FjP

iP
(vP (ct)) ⊆ Tf , then such a run witnesses a solution to the motion

planning problem. However, this abstraction is obviously not complete.

Example 3 (An example with obstacles). The example in Fig. 2 shows a run with
three control laws u1(x, t), u2(x, t) and u3(x, t), three control funnels F1

1 , F1
2

and F1
3 , and an obstacle in the state space. The domains of definition of the

control funnels I11 , I12 and I13 are such that for all α ∈ {1, 2, 3} and all t ∈ I1α,
F1

α(t) does not intersect the obstacles.
With the previous property, any run in the corresponding funnel timed tran-

sition system leads to a trajectory that avoids the obstacles. The example of
Fig. 2, where reaching F1

1 (t41) from F1
1 (t10) requires a series of switches between

the different control funnels, shows the potential interest of automated verifica-
tion in timed transition systems, as it can result in the generation of obstacle-free
dynamic trajectories via appropriate control law switches.

3 Reduction to Timed Automata

Timed automata [1] are a timed extension of finite-state automata, with a well-
understood theory. They provide an expressive formalism for modelling and
reasoning about real-time systems, and enjoy decidable reachability properties;
much efforts have been invested over the last 20 years for the development of
efficient algorithms and tools for their automatic verification (such as the tool
Uppaal [6], which we use in this work).

Let C be a finite set of real-valued variables called clocks. A clock valuation
over a finite set of clocks C is a mapping v : C → R

+. We write R
C for the set

of clock valuations over C. If Δ ∈ R
+, we write v + Δ for the clock valuation
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defined by (v + Δ)(c) = v(c) + Δ for every c ∈ C. A clock constraint over C
is a boolean combination of expressions of the form c ∼ α where α ∈ Q, and
∼ ∈ {≤, <,=, >,≥}. We denote by C(C) the set of clock constraints over C.
We write v |= g if v satisfies g (defined in a natural way). A reset of the clocks is
an element res of (Q∪{⊥})C (which we may write R(C)), and if v is a valuation,
its image by res, denoted res(v), is the valuation mapping c to v(c) whenever
res(c) = ⊥, and to res(c) ∈ Q otherwise.

We define a slight extension of timed automata with rational constants, gen-
eral boolean combinations of clock constraints and extended clock resets; those
timed automata are as expressive as standard timed automata [7], but they will
be useful for expressing funnel timed transition systems. A timed automaton is
a tuple A = (L,L0, LF , C,E, Inv) where L is a finite set of locations, L0 ⊆ L is
a set of initial locations, LF ⊆ L is a set of final locations, C is a finite set of
clocks, E ⊆ L × C(C) × R(C) × L is a finite set of edges, and Inv : L → C(C) is
an invariant labelling function.

A configuration of A is a pair (�, v) ∈ L × R
C such that v |= Inv(�), and the

timed transition system generated by A is given by the following two rules:

– time-elapsing transition: (�, v) → (�, v+Δ) whenever v+δ ∈ Inv(�) for every
0 ≤ δ ≤ Δ;

– switching or absorbing transition: (�, v) → (�′, v′) whenever there exists
(�, g, res, �′) ∈ E such that v |= g ∧ Inv(�), v′ = res(v), and v′ ∈ Inv(�′).

A run in A is a sequence of consecutive transitions. The most fundamental result
about timed automata is the following:

Theorem 2 ([1]). Reachability in timed automata is PSPACE-complete.

We consider again the family of control laws U = (ui(x, t))1≤i≤n, and the fam-
ily of funnels F = ((F j

i , Ij
i ))1≤i≤n,1≤j≤mi

, as in the previous section. For every
pair 1 ≤ i, k ≤ n, and every 1 ≤ j ≤ mi and 1 ≤ l ≤ mk, we select finitely many
tuples (switch, [α, β], (i, j), γ, (k, l)) with α, β, γ ∈ Q such that (i) [α, β] ⊆ Ij

i ,
(ii) γ ∈ I l

k, and (iii) for every t ∈ [α, β], F j
i (t) ⊆ F l

k(γ). This allows us to under-
approximate the possible switches between funnels. For every 1 ≤ i ≤ n, for every
pair 1 ≤ j, k ≤ mi, we select at most one tuple (absorb, ν, (i, j, k)) such that
ν ∈ Q and Fk

i (t) ν-absorbs Fj
i (t). This allows us to under-approximate the pos-

sible absorbing transitions. For every 1 ≤ i ≤ n and every 1 ≤ j ≤ mi, we fix a
finite set of tuples (initial, α, (i, j)) such that α ∈ Q and x0 ∈ Fj

i (α). This allows
us to under-approximate the possible initialization to a control funnel containing
the initial point x0. For every 1 ≤ i ≤ n and 1 ≤ j ≤ mi, we fix finitely many
tuples (invariant, Si,j , (i, j)), where Si,j ⊆ Ij

i is a finite set of closed intervals
with rational bounds. This allows us to under-approximate the definition set of
the funnels. Finally, for every 1 ≤ i ≤ n and 1 ≤ j ≤ mi, we fix finitely many
tuples (target, [α, β], (i, j)), where α, β ∈ Q and [α, β] ⊆ Ij

i ∩ {t | Fj
i (t) ⊆ Tf}.

This allows us to under-approximate the target zone. We denote by K the set
of all tuples we just defined.
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We can now define a timed automaton that conservatively computes the
runs generated by the funnel timed transition system. It is defined by AU,F,K =
(L,L0, LF , C,E, Inv) with:

– L = {F j
i | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {init, stop}; L0 = {init}; LF = {stop};

– C = {ct, cg, ch};
– E is composed of the following edges:

• for every (initial, α, (i, j)) ∈ K, we have an edge (init, true, res,Fj
i ) in E,

with res(ct) = α and res(cg) = res(ch) = 0;
• for every (switch, [α, β], (i, j), γ, (k, l)) ∈ K, we have an edge (Fj

i , α ≤
ct ≤ β, res,F l

k) with res(ct) = γ, res(ch) = 0 and res(cg) = ⊥;
• for every (target, [α, β], (i, j)) ∈ K, we have an edge (Fj

i , α ≤ ct ≤
β, res, stop) in E, with res(ct) = res(cg) = res(ch) = ⊥;

• for every (absorb, ν, (i, j, k)) ∈ K, we have an edge (F j
i , ch ≥ ν, res,Fk

i )
with res(ch) = 0 and res(ct) = res(cg) = ⊥;

– for every (invariant, Si,j , (i, j)) ∈ K, we let Inv(Fj
i ) �

∨
[α,β]∈Si,j

(α ≤ ct ≤ β).

We easily get the following result:

Theorem 3. Let (init, v0) → (�1, v1) → · · · → (�P , vP ) → (stop, vP ) be a run
in AU,F,K such that v0 assigns 0 to every clock. Then r = ((�1, v1), . . . , (�P , vP ))
is a run of the funnel timed transition system TU,F that brings x0 to r(x0) ∈ Tf

while avoiding the obstacle Ω.

This shows that the reachability of stop in AU,F,K implies that there exists an
appropriate schedule of control law switches that safely brings the system to the
target zone. Of course, the method is not complete, not all schedules can be
obtained using the timed automaton AU,F,K . But if AU,F,K is precise enough, it
will be possible to use automatic verification techniques for dynamic trajectory
generation.

Remark 1. We could be more precise in the modelling as a timed automaton, if
we could use non-deterministic clock resets [7]; but we should then be careful with
decidability issues. Additionally, non-deterministic resets are not implemented in
Uppaal, which is why we have chosen timed automata with deterministic resets
only.

Remark 2. As we show with some examples in Section 5, our timed-automata
abstraction can be used for other types of objectives than just reachability with
avoidance. In particular, the approach can be extended to timed games [3], where
special uncontrollable transitions model uncertainty in the environment. In that
case, the aim is not to synthesize one single run in the system, but rather a strat-
egy that dictates how the system should be controlled, depending on how the
environment evolves. It is worth knowing that winning strategies can be com-
puted in exponential time in timed games, and that the tool Uppaal-Tiga [5]
computes winning strategies. In Section 5.1, we give an example of application
where timed games and Uppaal-Tiga are used.
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4 LQR Funnels

In this section we consider the particular case of linear time-invariant stabilizable
systems whose dynamics are described by the following equation:

ẋ = Ax + Bu, (4)

where A ∈ R
d×d and B ∈ R

d×k are two constant matrices, and u ∈ R
k is the

control input. We also consider reference trajectories that can be realized with
controlled systems described by Eq. (4), i.e. trajectories xref(t) for which there
exists uref(x, t) such that ẋref = Axref + Buref. We can combine this equation
with (4) and get ẋ − ẋref = A(x − xref) + B(u − uref), which rewrites

ẋΔ = AxΔ + BuΔ. (5)

To track ẋref, we compute uΔ as an infinite-time linear quadratic regulator
(LQR, see [25]), i.e. a minimization of the cost: J =

∫ ∞
0

(
xT

ΔQxΔ + uT
ΔRuΔ

)
dt,

where Q and R respectively are positive-semidefinite and positive-definite matri-
ces. The solution is uΔ = −KxΔ, with K = R−1BTP and P being the unique
positive-definite matrix solution of the continuous time algebraic Riccati equa-
tion: PA + ATP − PBR−1BTP + Q = 0.

The dynamics can be rewritten ẋΔ = (A − BK)xΔ = ĀxΔ, i.e.:

ẋ = ẋref + Ā(x − xref), (6)

and the matrix Ā is Hurwitz, i.e. all its eigenvalues have negative real parts.
Additionally, V : xΔ �→ xT

ΔPxΔ is a Lyapunov function (V (0) = 0 and for all
xΔ �= 0, it holds V (xΔ) > 0 and V̇ (xΔ) < 0). The solutions of Eq. (6) can be
written: x(t) = xref(t) + eĀ(t−t0)xΔ(t0). Since Ā is Hurwitz, the term eĀ(t−t0)

tends to 0 exponentially fast, and the tracking asymptotically converges towards
the reference trajectory xref(t). The Lyapunov function V can be used to define
control funnels as follows. For α > 0, we let:

Fα(t) = {xref(t) + xΔ | V (xΔ) ≤ α} (7)

F is a control funnel defined over R: if xΔ(t) = x(t) − xref(t) is a solution
of Eq. (5) such that x(t1) ∈ Fα(t1), then for any t2 > t1, since V (xΔ) only
decreases, V (xΔ(t2)) ≤ V (xΔ(t1)) ≤ α, and thus x(t2) = xref(t2) + xΔ(t2) ∈
Fα(t2).

Fα(t) is a fixed d-dimensional ellipsoid centered at xref (t). Without going
into details, it is possible to get lower bounds on the rate of decay of V (xΔ),
and effectively compute β > 0 such that, for any solution xΔ(t) of Eq. (5):

∀t ∈ R,∀δt ∈ R
+, V (xΔ(t + δt)) ≤ e−β.δtV (xΔ(t)) (8)

This proves that if the system is inside the control funnel Fα(t) at a given
instant, then after letting time elapse for a duration of δt, the system will be
inside the control funnel Fαe−β.δt(t). Using the terminology of Section 2.3, this
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Fig. 3. An absorbing transition (in green) between two switching transitions.

can be equivalently stated as follows: for 0 < α′ < α, the control funnel Fα′(t)[
1
β log( α

α′ )
]
-absorbs the control funnel Fα(t). Thanks to this property, for a

given LQR controller and a reference trajectory xref(t), we can define a finite set
of fixed-size control funnels Fα0(t),Fα1(t), . . . , Fαq

(t), with α0 > α1 > · · · >
αq > 0, and absorbing transitions between them in the corresponding timed
automaton.

In the remainder of the article, we will only use this kind of fixed size control
funnels, which we call “LQR funnels”. They are convenient because the larger
ones can be used to “catch” other control funnels, and the smaller ones can easily
be caught by other control funnels. Figure 3 depicts a typical sequence, where
first a large control funnel (in green) catches the system, then after some time,
an absorbing transition can be triggered, and finally, a new transition brings
the system to a larger control funnel (in blue) on another trajectory. Besides
that, testing for inclusion between fixed-size ellipsoids is easy, and therefore
LQR funnels allow relatively efficient algorithms for the computation of the
tuples needed for the timed-automaton reduction ((switch, [α, β], (i, j), γ, (k, l)),
(invariant, Si,j , (i, j)), . . . , see Section 3).

It should be noted that the concepts of fixed size control funnels and absorb-
ing transitions, introduced here for linear systems, are also suitable for general
nonlinear systems. Lyapunov functions in general, and quadratic ones in partic-
ular, can be computed via optimization, for example with Sum-of-Squares tech-
niques as shown in [17]. By imposing specific constraints on the optimization,
fixed size control funnels with exponential convergence can be obtained inducing
the same kind of absorbing transitions as introduced in the last paragraph.

5 Examples of Application

5.1 Synchronization of Sine Waves

In this example, there is a unique reference trajectory: xref(t) = sin(2π
τ t),

for t ∈ [0, τ ] and τ ∈ Q, and a unique LQR controller tracking this trajectory.
We define two fixed size LQR funnels F1 (the large one) and F2 (the small one)
defined over [0, τ ] such that F2 γ-absorbs F1 for some γ ∈ Q. The size of F1 is
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Fig. 4. On the left: the timed automaton for the controlled signal (the system). On the
right: the timed automaton used to model the target signal with an initially unknown
phase ϕ0. The opponent transition (dashed) is the one used to set ϕ0.

Fig. 5. The reactive controller performs three switching transitions to exactly adjust
its phase to that of the target signal.

computed so that an upper bound on the acceleration is always ensured, as long
as the state of the system remains inside the control funnel.

The set F1(τ/2) contains the smaller control funnel F2(t) for a range of
time values [α, β] for some α < τ

2 ∈ Q and β > τ
2 ∈ Q. This allows switching

transitions from F2 to F1 with abrupt modifications of the controller clock ct.
Together with the absorbing transition and “cyclic transitions” that come from
the equalities F1(0) = F1(τ) and F2(0) = F2(τ), it results in an abstraction by
the timed automaton shown on the left side of Fig. 4. The goal is to synchronize
the controlled signal to a fixed signal sin(2π

τ t + ϕ0). The phase ϕ0 is initially
unknown, which we model using an adversary: we use a new clock c′

t, and an
opponent transition as in the timed automaton on the right side of Fig. 4.

With these two timed automata, we can use the tool Uppaal-Tiga to syn-
thesize a controller that reacts to the choice of the adversary, and performs
adequate switching transitions until ct = c′

t. It is even possible to generate a
strategy that guarantees that the synchronization can always be performed in a
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Fig. 6. The figure on
the left shows the set-
up. The black dots corre-
spond to the position of
the lanes. On the right
are shown some LQR fun-
nels along the constant
velocity reference trajec-
tories in the state space.

320 1

bounded amount of time. We show in Fig. 5 a trajectory generated by the syn-
thesized reactive controller. In this example, the phase chosen by the adversary
is such that it is best to accelerate the controlled signal. Therefore, the controller
uses twice the switching transition from F2 to F1 with a reset of the controller
clock from α to τ/2 ( 1 and 2 in Fig. 5). Between these switching transitions,
an absorbing transition is taken to go back to the control funnel F2 ( A in Fig. 5).
After the first two switching transitions, the remaining gap ε between ct and c′

t

is smaller than τ
2 −α, and therefore the controller waits a bit longer (until τ

2 −ε)
to perform the switching transition that exactly synchronizes the two signals
( 3 in Fig. 5).

This example shows that our abstraction can be used for reactive controller
synthesis via timed games. The main advantage of our approach over methods
based on full discretization is that, since a continuous notion of time is kept in
our abstraction, the reactive strategy is theoretically able to exactly synchronize
the controlled signal to any real value of ϕ0. One of our hopes is that extensions
of this result can lead to a general formal approach for signal processing.

5.2 A 1D Pick-and-Place Problem

In this second example, we show that timed-automata abstractions based on
control funnels can be used to perform non-trivial planning. We propose a one-
dimensional pick-and-place scenario. The set-up consists of a linear system con-
trolled in acceleration moving along a straight line. On this line, four positions
are defined as lanes (see Fig. 6). On three of these lanes (1, 2 and 3), packages
arrive that have to be caught at the right time by the system and later delivered
to lane 0. The system has limited acceleration and velocity, and can carry at
most two packages at a time.

The LQR funnels in this example are constructed based on 12 reference
trajectories. The first four have different constant positive velocities (xi

ref with
i ∈ {1, . . . , 4}, the fastest one being x4

ref, and the slowest one x1
ref). The next

four are the same trajectories with negative velocities. On each of these ref-
erence trajectories, five different control funnels of constant size are defined
(Fj

i for j ∈ {0, . . . , 4}, the largest one being F0
i ). The control funnels with

negative constant velocity are the mirror image of those with positive velocity.
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Fig. 7. In order to define the tuples
(switch, [α, β], (i, j), γ, (k, l)) (see Section
3), N regularly spaced points are chosen
in xk

ref (defining the ellipses F l
k(tn) for

n ∈ {1, . . . , N}), and for each n, we set
γ = tn, and if a point xi

ref (t) such that

Fj
i (t) ⊂ F l

k(γ) is found, an incremental search
is performed to define a range [α, β] such that
∀t ∈ [α, β], Fj

i (t) ⊂ F l
k(γ).

Additionally, four stationary trajectories xLk
ref (with k ∈ {0, . . . , 3}) at the posi-

tions of the lanes are defined. The controllers associated to these trajectories
simply stabilize the system at lane positions. For each of these trajectories a
small (j = 0) and a large (j = 1) control funnel are constructed. They are
denoted by F j

Lk. By construction, neighboring trajectories (e.g. x3
ref and x2

ref or
x1
ref and x−1

ref ) are connected, meaning that for two neighboring trajectories xi
ref

and xk
ref, ∀t ∈ Ii, ∃t′ ∈ Ik s.t. F4

i (t) ⊂ F0
k (t′) (see Fig. 6). This allows the system

to reach a higher or lower velocity without the need of an explicitly defined accel-
eration trajectory. While the abstraction based on these control funnels does not
represent all the possible behaviors of the system (it is not complete), switching
between different velocity references allows the system to perform a great variety
of trajectories with continuous and bounded velocity and bounded acceleration.

To fully specify the timed-automata abstraction, the tuples defining the tran-
sition guards must be computed (see Section 3). Here, the regions of invariance
defining the funnels are identically-shaped ellipses (only translated along a ref-
erence trajectory and scaled), thus the test for inclusion is computationally very
cheap. Therefore, many points can be tested for inclusion on each trajectory, as
depicted in Fig. 7, which leads to precise ranges for the switching transitions.
Since the funnels are fixed sets translated along reference trajectories, knowing
velocity or acceleration bounds on these references, and using offsets in the inclu-
sion tests, we can ensure inclusion on the whole range of a switching transition
with only a finite number of inclusion tests.

We consider an example where three packages respectively arrive on lanes 3,
2 and 1 at times t1arrive = 40, t2arrive = 111 and t3arrive = 122 (corresponding equal-
ity tests on cg can be used to refer to these moments in the timed automaton
abstraction). The goal is to find a trajectory that catches all the packages and
delivers them to lane 0. At the moment of the catch (cg = tparrive), the refer-
ence xi

ref tracked by the system must be exactly at the correct position (i.e. on
the lane of the arriving package). Depending on the reference trajectory, this
corresponds to a particular value of ct. We add the following constraints on the
catches: an upper bound on velocity such that the system cannot be tracking
x4
ref, x

3
ref, x

−3
ref or x−4

ref when it catches a package, and a bound on uncertainty
such that the system must be in a small control funnel to catch a package. Using
additional constructions in our timed automaton abstraction (for example a
bounded counter that keeps track of the number of packages being carried by
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Fig. 8. Execution of a succeeding control strategy given as a timed word.

the system), it is easy to specify these constraints and the objective as a reach-
ability specification that can be checked by Uppaal. Uppaal outputs a timed
word that corresponds to the schedule of control law switches and the trajectory
shown on Fig. 8, which successfully catches the packages and delivers them to
lane 0.

The two upper graphs of Fig. 8 show the evolution of the system in its state
space and some of the regions of invariance when taking a switching transition
(colored ellipses). The green dots mark positions at which absorbing transitions
take place (F j

i → F j+1
i ). Purple crosses represent a package. The lower graph

compares the evolution of the position of the real system with the reference.
One can see that even though the reference velocity can only take seven differ-
ent values, a relatively smooth trajectory is realized. Before catching the first
package, the system switches from F4

1 to F0
L3 1 . It then converges to F1

L3 2

just before the catch. The difference between the real system position and the
reference is very small at that point in time. The system then switches to F0

−1 3

in order to return to lane 0. It is interesting to notice that the system chooses
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to return to lane 0 after having picked only one package, therefore adopting a
non-greedy strategy. This is because it wouldn’t have time to perform a delivery
to lane 0 between the arrival of the second and third packages.

When the second package arrives on lane 2, the system catches it while
being in F4

−1 4 . This is again a non-trivial behavior: in order to get both the
second and the third packages, the system has to first go a little bit further than
lane 2 so as to be able to catch the two packages without violating the limit on
acceleration. A slight adjustment of the reference position 5 has to be done to
catch the third package exactly on time 6 . After that, the system performs a
local acceleration 7 to reach lane 0 as soon as possible, and delivers the two
packages.

6 Conclusion and Future Work

We have presented a timed-automata abstraction of switched dynamical sys-
tems based on control funnels, i.e. time-varying regions of invariance. Applying
verification tools (such as Uppaal) on this abstraction, one can solve motion plan-
ning or more complicated problems with timing requirements. In the example of
Section 5.2, we are able to generate a non-trivial solution for a pick-and-place
problem. Synthesis of controllers that react to the environment can be done by
solving timed games, and in the example of Section 5.1 we use Uppaal-Tiga to
generate a controller that can reactively adjust the phase of a signal controlled
in acceleration.

To go further and improve our abstraction, as mentioned in Section 3
(Remark 1), we could use non-deterministic clock updates and study the related
decidability issues. We could also exploit the specific structure of the timed
automata used in our abstraction and design dedicated verification and synthe-
sis algorithms. Indeed, the timed automata of our model have three clocks, and
there is non-determinism for only one of them (ct). This makes us believe that we
could potentially outperform the general algorithms of Uppaal and Uppaal-Tiga
and solve more complex problems. Finally, in this quest to scale our approach
up to larger models and more advanced specifications, we also plan to combine
it to numerical and optimization methods.
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Abstract. Message sequence charts (MSCs) and their higher-order for-
malism in terms of message sequence graphs (MSGs) provide an intu-
itive way to describe communication scenarios. Naturally, quantitative
aspects such as the probability of failure, maximal latency or the expected
energy consumption play a crucial role for communication systems. In this
paper, we introduce quantitative MSGs with costs or rewards and stochas-
tic timing information in terms of rates. To perform a quantitative analy-
sis, we propose a branching-time semantics for MSGs as possibly infinite
continuous-time Markov chains (CTMCs) interpreting delayed choice on
the partial-order semantics of MSGs. Whereas for locally synchronized
MSGs a finite-state bisimulation quotient can be found and thus, stan-
dard algorithms for CTMCs can be applied, this is not the case in general.
However, using a truncation-based approach we show how approximative
solutions can be obtained. Our implementation shows feasibility of this
approach exploiting reliability, resilience and energy consumption.

1 Introduction

Nowadays, communication protocols have to face many
s r

data

data

ack

ack

Fig. 1. An MSC

non-functional requirements to be considered during their
design process. For instance, the next-generation wireless
communication standard 5G will rely on time-bounded
requirements concerning latency, energy consumption,
and outage probability [28]. To avoid costly and timely
redesign steps, these requirements should be considered
already in early design phases [32]. An intuitive formal-
ism to describe communication systems widely used in
early stages of development is provided by message sequence charts (MSCs),
standardized by the ITU [22]. Figure 1 shows an example MSC where a sender
s sends two data packages that are in turn acknowledged by a receiver r. The
partial-order semantics for MSCs arises from the time-line orderings of each
process and the condition that each send event must precede the corresponding
receive event.
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In order to specify collections of MSCs, the standard higher-order formalism
is given in terms of high-level MSCs [22]. In this paper, we deal with message
sequence graphs (MSGs), the simplest form of high-level MSCs that are, how-
ever, expressively equivalent to high-level MSCs [5]. MSGs can be seen as finite
automata over MSCs where the collections of scenarios arise from composing
MSCs along accepting paths. The composition of MSCs is performed by glue-
ing the time lines of the processes together and possibly matching unmatched
send events and corresponding receive events [14,15]. The verification of MSGs
and linear-time requirements has been extensively studied (cf. surveys [23,30]),
but most verification problems turn out to be undecidable. However, for MSGs
where processes locally synchronize, the execution language can be represented
by a finite-state automaton, which renders many linear-time verification prob-
lems decidable for this class of MSGs. Also when directly reasoning about the
graph structure of the MSCs defined by an MSG, decidability results can be
established [25,26,30].

This paper aims to establish a probabilistic model-checking approach for
the quantitative analysis of MSGs with annotated costs and stochastic timing
information in terms of rates. In order to apply probabilistic model-checking
techniques, a branching-time view on (quantitative) MSGs is required, where
choices are resolved probabilistically. In the ITU standard [21,22], an interleav-
ing branching-time semantics was specified which relies on delayed choice, where
any resolution of a choice between the communication scenarios specified by the
MSG is avoided until it is inevitable:

“In the case where alternative MSC sections have common preamble,
the choice of which MSC section will be executed is performed after the
execution of the common preamble.”

Using process algebra, the concept of delayed choice was specified by an intrinsic
linear-time operator ∓ [27] (cf. the rules (DC1) and (DC2) below).

x
α−→ x′ ∧ y � α−→ (DC1)

(x ∓ y) α−→ x′
x

α−→ x′ ∧ y
α−→ y′

(DC2)
(x ∓ y) α−→ (x′ ∓ y′)

For formal reasoning about MSGs, the process-algebraic semantics proposed in
the standard is, however, difficult to use since it includes all facets of the modeling
formalism and an algorithmic analysis turns out to be very challenging [34].

Our Contribution. First, we propose a branching-time semantics for MSGs
in terms of transition systems by interpreting delayed choice directly on the
partial-order semantics of MSGs. With the partial-order semantics of MSGs as
an intermediate step, we obtain a uniform approach to support many variants
of MSGs that have been proposed in the literature, such as causal MSGs [13]
(required, e.g., to specify TCP/IP protocol scenarios) and compositional MSGs
[9,15,26] (required, e.g., to specify scenarios of the alternating-bit or stop-and-
wait protocol [36]). As an MSG may exhibit infinite communication scenarios,
our transition-system semantics cannot be fully constructed in general. However,



78 C. Dubslaff and C. Baier

we show that the transition system of an MSG can be constructed on-the-fly,
crucial for an algorithmic analysis.

Second, according to the (hardware and software) characteristics of the com-
munication system modeled, we annotate communication actions by costs and
rates. The arising quantitative MSG constitutes a continuous-time Markov chain
(CTMC) semantics, where the underlying transition system coincides with our
branching-time semantics for (non-quantitative) MSGs. The CTMC semantics
enables for a quantitative analysis using probabilistic model-checking techniques
to reason, e.g., about the communication system’s resilience, expected energy
costs and the probability of failure.

Third, we investigate applicability of algorithmic analysis on the transition-
system and CTMC semantics. Given the undecidability results for linear-time
properties and the fact that the transition system of MSGs can be infinite,
the undecidability of even basic reachability properties is as expected. However,
when the MSG is locally synchronized, its transition system (or CTMC, respec-
tively) has a finite bisimulation index. Then, a bisimilar finite-state transition
system (CTMC, respectively) can be constructed and analyzed using standard
(probabilistic) model-checking algorithms. For general (not necessarily locally
synchronized) MSGs, we show that the probabilities for time-bounded reacha-
bility properties are approximable up to an arbitrary precision by constructing
the CTMC on-the-fly up to a sufficient depth.

Fourth, we implemented the construction of the CTMC semantics for quanti-
tative MSGs up to a given truncation bound and applied approximative methods
to reason about performance measures. This implementation is used to carry out
a case study investigating non-functional properties of scenarios from the USB
1.1 protocol and two variants of a classical stop-and-wait protocol. State aggre-
gation with respect to bisimulation equivalence (a.k.a. lumpability for CTMCs)
based on the structure of the MSGs allows to establish results within a reason-
able time, whereas without such bisimulation techniques we run into timeouts.

Related Work. Several branching-time semantics have been proposed for sub-
classes of MSGs [10,17,25], however not focusing on delayed choice and with-
out the support for compositional MSGs. Also the automata constructions to
describe the execution language of locally synchronized MSGs [5,9,13,29] define
inherently a branching-time semantics. These semantics are directly defined on a
fixed communication architecture and have to be redefined when the underlying
partial-order semantics changes [4].

Within time-constrained MSGs, time intervals are annotated to pairs of
actions to specify the time horizon in which the second action of the pair has to
be performed after the first one [1,2,24]. Similar as within locally synchronized
MSGs in the untimed case, subclasses of time-constrained MSGs exhibit a timed
automata which accepts the language of timed words satisfying the constraints
imposed on action pairs. Also in this paper we annotate timing information to
actions of MSGs. However, our approach is orthogonal, as the timing informa-
tion on actions is modeled stochastically. A simulation-based stochastic analysis
of MSCs with annotated rates has been undertaken by [37] using the trace-
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generation engine of the tool Mübius [11]. However, a formal framework for a
CTMC semantics of MSGs was not specified in [37]. Finite-state discrete-time
Markov chains synthesized from from the local views of each process in an MSG
annotated with reliability probabilities has been presented by [35]. Their app-
roach disregards the global control of MSGs and could thus be applied for locally
synchronized MSGs which are implementable [3].

Probabilistic model checking of infinite-state CTMCs is challenging already
independent from the context of MSGs. Model-checking algorithms for highly
structured infinite CTMCs (including Jackson queuing networks and quasi-birth-
death processes) and properties in continuous stochastic logic (CSL) [7] have
been presented by Remke et al. (see, e.g., [33]). In order to approximate prop-
erties of infinite CTMCs arising from biological systems, [18] presented on-the-
fly analysis techniques. Similarly, [16] established approximation methods for
arbitrarily structured infinite CTMCs with possible unbounded rates and time-
bounded CSL properties.

Outline. We recall basics on modeling communication systems, including MSCs
and MSGs in Section 2. Section 3 is advocated to our branching-time seman-
tics for MSGs, its consistency within the standard, and related model-checking
problems. Quantitative MSGs and their properties are introduced in Section 4.
We illustrate our approach towards approximative performance measures by a
case study within our implementation in Section 5 and conclude with Section 6.

2 Preliminaries

We denote by A∞ (A�, A+, Aω) the set of all (finite, non-empty finite, infinite)
words over an alphabet A. By wi we denote the (i+1)-th symbol of a word w
and by |w| the length of w (|w| = ∞ if w ∈ Aω). The concatenation of languages,
i.e., subsets of A∞, is defined as the union of element-wise concatenation of their
words. Atomic actions are tasks of some process of P = {p1, p1, ..., pk} indivisible
on the abstraction level of the model and collected in Σ =

⋃
p∈P Σp. Here,

Σp = {p}×({!, ?}×P\{p}×Γ∪Λ), where Γ and Λ are sets of message and local
action labels, respectively. The action p!q(m) ∈ Σ stands for sending a message
m from process p to process q, p?q(m) ∈ Σ for p receiving m from q, and p(a) ∈ Σ
for a local action a. Events are occurrences of atomic actions collected in a set E
and assigned to actions through a labeling function λ : E → Σ. We partition E
into the set of send events E!, receive events E?, and local events El. By Ep we
denote the set of events of process p, i.e., Ep = {e ∈ E : λ(e) ∈ Σp}. A (labeled)
partial order is a tuple P = (E,≤, λ), where ≤ is an asymmetric, reflexive and
transitive binary relation over E. Isomorphic labeled partial orders are identified.
P is called total if for all e, e′ ∈ E with e �= e′ we have either e < e′ or e > e′.
A linearization of P is a word w ∈ Σ∞ where there is a bijection f : N → E with
N ⊆ N such that for all i, j ∈ N : λ(f(i)) = wi and if i < j then f(i) �≥ f(j). We
define the language of P as the set of linearizations L(P) ⊆ Σ∞. The downward
closure ↓F on sets of events F is defined as {e ∈ E : ∃f ∈ F.e ≤ f}. We call P
prefinite if ↓e =↓{e} is finite for all e ∈ E. Besides P, let P ′ = (E′,≤′, λ′) be
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another partial order. If E′ is a finite downward-closed subset of E, ≤′ = ≤ ∩
(E × E′) and λ′ = λ|E′ , then P ′ is called a prefix of P. The set of all prefixes of
P is denoted by Pref(P). Concurrent systems are modeled by sets F of partial
orders, called partial-order families. Notations for partial orders defined above
extend to partial-order families as expected, e.g., the set of all prefixes of F is
Pref(F) = {P ′ : ∃P ∈ F .P ′ ∈ Pref(P)}.

2.1 Branching-Time Models and Quantitative Annotations

A transition system (TS) is a tuple (S, s0,−→), where S is a countable set of
states, s0 ∈ S is an initial state, and −→ ⊆ S×Σ×S is a transition relation.
We denote by En(s) the set of enabled actions in s, i.e., the set of all α ∈ Σ

where there is an s′ with s
α−→ s′. T is deterministic if for all s

α−→ s′, s
α−→ s′′

follows s′ = s′′. Likewise, an execution is a sequence η = s0α0s1α1 . . . ∈ S ×
(Σ×S)∞, where si

α−→ si+1 for all i < |η|−1. A path is an execution where
transition actions are omitted. If T is deterministic, we identify executions with
their projections onto actions and define the language L(T ) ⊆ Σ∞ as the set of
maximal executions. When C ⊆ S, we denote by ♦C the set of all finite paths
π such that s|π|−1 ∈ C and si �∈ C for all i < |π|−1.

Quantitative Annotations. A continuous-time Markov chain (CTMC) [7]
is a tuple C = (T ,R,C), where T = (S, s0,−→) is a transition system, and
R : S×Σ×S → Q≥0 and C : S ∪ S×Σ×S → Q≥0 assign rates and costs, respec-
tively. For a state s ∈ S and a set of states C ⊆ S, we denote by Q(s, s′) =∑

α∈Σ Q(s, α, s′) and Q(s, C) =
∑

s′∈C Q(s, s′), where Q is either R or C. We
assume that the exit rate E(s) = R(s, S) converges for all s ∈ S. According
to the rates, a race between the outgoing transitions from state s exists, where
the probability of state s′ winning the race is P(s, s′) = R(s, s′)/E(s). Paths in
T annotated with exit time points are timed paths, i.e., sequences of the form
ϑ = s0t0s1t1 . . . ∈ S × (R>0×S)∞. The accumulated costs along ϑ is defined as

C(ϑ) =
∑

i<|π|−1

(
C(si) · ti + C(si, si+1)

)
.

For s, s′ ∈ S, and u, v ∈ R≥0 with u � v, the probability of moving from s to s′

after at least time t and at most time T is given by transition probabilities

P(s, [t, T ], s′) = P(s, s′) · (
e−E(s)t − e−E(s)T

)

We write Θ = s0I0s1I1 . . . In−1sn for the set of all timed paths s0t0s1 . . . tn−1sn . . .
with ti ∈ Ii and refer to Θ as a trajectory. As usual, we define a probability mea-
sure Prs(Θ) for a state s as product of the transition probabilities for the inter-
vals Ii, i = 0, ..., n−1 [7]. Expected accumulated costs Ex(♦≤tC) are defined as the
expectation of the random variable which assigns to some timed path the minimal
accumulated costs of either reaching C ⊆ S or the time bound t ∈ Q>0.

2.2 Scenarios Specifying Communication Systems

To model communication systems, we focus on message sequence charts (MSCs)
with lost and found messages [22] (also known as compositional MSCs) and their
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higher-order formalism in terms of message sequence graphs (MSGs), defining
possibly infinite collections of MSCs [14,15].

Definition 1 (MSC). An MSC is a prefinite partial order M = (E,≤, λ, μ),
equipped with an injective function μ : M → E? matching corresponding send
events M ⊆ E! and receive events in E? such that ≤μ= {(e, μ(e)) : e ∈ M} is
contained in ≤ and for all e ∈ M with λ(e) = p!q(m) we have λ(μ(e)) = q?p(m).
Furthermore, we require ≤|Ep

to be total for all p ∈ P .

An event not contained in M , μ(M), or El is called unmatched. M is called
basic if λ is injective, left-closed if there are no unmatched receive events, and
closed if M is left-closed and there are no unmatched send events. We denote
by MSC the set of MSCs and by bMSC the set of basic MSCs. If any confusion
is excluded, we abbreviate the empty MSC by ε and the MSC containing only
one event labeled by α ∈ Σ by α.

MSC Families, Systems and Graphs. MSCs are composed by “glueing” their
process lines together, and possibly matching send and receive events [14,21].
Formally, let Mi = (Ei,≤i, λi, μi) for i = 1, 2 be two disjoint MSCs and let
Mi as in Definition 1. The composition M1·M2 is the family of all MSCs M =
(E,≤, λ, μ) with E = E1∪E2, where (1) M|Ei

= Mi for i = 1, 2 and (2) for all
e ∈ E2, e

′ ∈ E holds e ≤ e′ ⇒ e′ ∈ E2. The latter condition (2) implies that
send events in M2 are not matched with receive events in M1 and that the
events of each process in M1 are all lower than the events of the same process
in M2. Collections of MSCs are composed through the union of element-wise
composition of the MSCs in the families, i.e.,

F1·F2 = {M ∈ M1·M2 : M1 ∈ F1,M2 ∈ F2}.

We define the composition along a word over basic MSCs π ∈ bMSC
∞ by

F0 = {π0} and Fi = Fi−1·πi for each 0 < i < |π|. This naturally extends to lan-
guages L ⊆ bMSC

∞ as the union of all MSC families arising from compositions
along π ∈ L. To ease notations, we identify with π ∈ bMSC

∞ (L ⊆ bMSC
∞,

respectively) the MSC family arising by composition along π (L, respectively).
If L is left-closed, we call L an MSC system. Regular MSC systems are usually
provided by message sequence graphs (MSGs) [22], which are in essential finite
automata over basic MSCs.

Definition 2 (MSG). An MSG is a tuple G=(N,n0,→), where N is a set of
nodes, n0 ∈ N an initial node, and → ⊆ N×bMSC×N a transition relation.

We may employ the same terminology as for transition systems. An MSC M is
accepted by G if there is a composition along a maximal execution containing
M. The MSC system containing all left-closed MSCs accepted by G is denoted
by S(G). When not stated differently, we assume an MSG to be safe, i.e., every
accepting execution contains a left-closed MSC (which can be decided [23]).

Example 1. The MSG Gusb depicted in Figure 2, which is taken from [14], for-
malizes scenarios of transactions according to the USB 1.1 protocol. The MSG
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Fig. 2. Scenarios of USB 1.1 transactions by the MSG Gusb

is shown on the left, the assigned MSC labels on the right. A sender s contin-
uously sends data to a receiver r, which returns an acknowledgement directly
after it received the data package. However, the sender has some advance by 2-3
messages. The smallest scenario described by Gusb is the only left-closed MSC
contained in the execution M!M!M?M? shown in Figure 1.

Locally Synchronized MSGs. For MSGs over closed basic MSCs, [5] and [29]
independently stated a syntactic criterion such that a finite automaton accepting
the linearizations of the partial-order semantics can be constructed. We deal
here with a similar criterion based on [14,15]. For an MSC M = (E,≤, λ, μ),
the communication graph HM is defined as the directed graph (P,→), where
p → q iff there exists an event e in M with λ(e) = p!q(m) for some m ∈ Γ or
p = q and λ(e) = p(a) for some a ∈ Λ. The deficit DM : P×P×Λ → Z is defined
as the number of messages in the communication channels after executing M:

DM(p, q,m) = |{e ∈ E : λ(e) = p!q(m)}| − |{e ∈ E : λ(e) = q?p(m)}|
If for every M contained in a composition along cycles in an MSG G the commu-
nication graph HM consists of a single non-trivial strongly connected component
and DM(p, q,m) = 0 for all p, q ∈ P , m ∈ Λ, then G is called locally synchronized.
Note that the MSG in Example 1 is locally synchronized.

3 Branching-Time Semantics

The semantics of an MSG with quantitative annotations in form of rates and
costs for actions will be given as an infinite-state continuous-time Markov chain.
To define this CTMC, we first provide a (non-probabilistic) transition-system
semantics for MSGs that is compatible with the ITU standard and the delayed
choice interpretations of branchings [21,22]. The transition system will serve as
basis for the CTMC semantics, but might be also useful for other (non-stochastic)
purposes as well. First, we transfer the concept of delayed choice to the setting of
an MSC system S. The set of communication scenarios in S according to which
a common preamble1 w ∈ Σ� could have been executed is

S(w) = {P ∈ S : w ∈ Pref(L(P))}.

1 Check for the definition of delayed choice provided in the introduction.
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Hence, interpreting delayed choice for S reveals that during the execution of w,
no choice between the scenarios in S(w) is made. Furthermore, any reordering
ŵ of w where S(w) = S(ŵ) yields the same global state of the system. Such
reorderings are exactly executions of partial-order prefixes of S(w) containing
only events executed by w and thus can be represented by w-configurations

Conf(S, w) = {P ∈ Pref(S) : w ∈ L(P)}.

The set of all configurations in S is then defined as

Conf(S) =
⋃

w∈Pref(L(S)) Conf(S, w).

This yields an operational transition-system semantics for MSC systems S as

TS = (Conf(S), {ε},−→),

where −→ is defined through Conf(S, w) α−→ Conf(S, wα) for any w∈Σ� with
Conf(S, wα)�=∅. Recall that ε stands for the empty MSC. Due to delayed choice,
TS is deterministic. As the level �v�(K) = {|P| : P ∈ K} of configurations K along
paths in TS increase within each transition, TS is also acyclic. Furthermore, TS
is infinite if S contains an infinite MSC, such that it cannot be fully constructed
in general, e.g., TS(G) is infinite for an MSG G containing loops. This transition-
system semantics is language consistent with the partial-order semantics in the
sense that prefixes of executions agree with the one of S(G):

Proposition 1. When S is an MSC system, Pref(L(S)) = Pref(L(TS)).

Example 2. Let us consider a simple stop-and-wait protocol [36,37] described
through the MSG Gstoc depicted on the left in Figure 3. A sender s sends a
data package to a receiver r over an unreliable channel. The receiver provides
an acknowledgement “ack” if the data has been transmitted successfully and
a negative acknowledgement “nak” if not. A message is considered to be lost
after a timeout “to” has been risen on the sender’s side. Note that this MSG
is neither locally synchronized nor realizable in the sense of [3]. In the center,
a part of the infinite-state transition system TS(Gstoc) is shown (event labels are
abbreviated, e.g., “s!r(data)” by “!d”). Due to delayed choice, the triangular
states do not agree: The state reached by !d·to·?d·!d surely matches the first
send and receive event. Differently, the filled triangle state reachable through
!d·to·!d·?d could match ?d with either one of the both !d events and thus, its
configuration has two elements. For further illustrating the impact of delayed
choice, we depicted the configurations after an action !n on the right – dashed
arrows indicate possible matches of events (i.e., which yield several elements in
the configuration) and solid ones indicate sure matchings.

3.1 Model Checking Branching-Time Requirements

Our transition-system semantics for MSGs enables to reason about branching-
time properties. However, even basic reachability problems are undecidable:
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Fig. 3. Stop-and-wait protocol scenarios by the MSG Gstoc and its TS semantics

Theorem 1. The action-enabled reachability problem for an MSG G and A⊆Σ,
asking whether there is a state K reachable in TG with En(K)=A, is undecidable.

The proof of this theorem relies on a reduction from the Post’s Correspondence
Problem as presented in [30] for the linear-time setting and matchings of execu-
tions due to delayed choice. Clearly, Theorem 1 renders model checking MSGs
against branching-time logics such as ACTL [12] undecidable. However, when G
is locally synchronized, a finite transition system bisimilar to TS(G) can be con-
structed, which enables to apply standard algorithms to reason about branching-
time requirements on G. To see this, we use a similar construction as presented
in [29], where a finite-state automaton AG has been constructed which accepts
the executions L(S(G)) of G. Performing a determinization on AG yields a finite
transition system, which is bisimilar to TS(G) since trace equivalence coincides
with bisimulation equivalence for deterministic systems [8].

Theorem 2. For a locally synchronized MSG G, TS(G) has a finite bisimulation
quotient which can be effectively constructed.

Note that TS(G) having a finite bisimulation quotient does not necessarily imply
that G is locally synchronized.

4 Quantitative Message Sequence Graphs

We now introduce MSGs with quantitative annotations and a suitable CTMC
semantics based on the transition-system semantics of the last section. As we
consider events in an MSC as instances of actions, i.e., tasks indivisible on the
abstraction level, it is rather natural to extend this interpretation to quantitative
annotations on MSC systems. That is, quantitative annotations are mappings
from actions to rational values. We focus here on annotation structures we call
profiles, formalizing the specification of different (hardware or software) setups.

Definition 3. A profile is a tuple I = (r, c, σ), where r : Σ → Q>0 assigns
rates, c : Σ → Q≥0 costs and σ ∈ Q>0 specifies stationary costs.
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The rates r contain stochastic timing information about the frequency actions
are executed. Costs are given by c, formalizing the costs of executing an action,
and by σ, formalizing the stationary costs required keep the system operational
for one time unit. We call an MSG G amended with a profile I quantitative MSG.

Definition 4. Let G be an MSG with TS(G) = (S, s0,−→) and I = (r, c, σ) a
profile. The CTMC semantics CG = (TS(G),R,C) of the quantitative MSG (G, I)
is defined as follows: R(s, α, s′) = r(α), C(s, α, s′) = c(α), and C(s) = σ for all
s, s′ ∈ S, α ∈ Σ if s

α−→ s′ and R(s, α, s′) = C(s, α, s′) = 0 otherwise.

Note that these assignments to the transition system of an MSG still obey the
rules of delayed choice. The same rate r(α) is attached to all transitions labeled
by α, no matter whether the transitions arise by “merging” two or more α-
events according to the rules for delayed choice. This is in contrast to the choice
operator + of PEPA [19] and other stochastic process algebras, where α.x + α.y
implies a race between two α-labeled transitions. In particular, the exit rate
of α.x + α.y is 2·r(α), whereas for the delayed choice operator ∓, the process
α.x ∓ α.y is (bisimulation) equivalent to α.(x ∓ y) and has the exit rate r(α).

Example 3. Let us assume that both, the USB 1.1 scenario given in Example 1
and the stop-and-wait protocol of Example 2 use a low-speed USB 1.1 data
connection for the communication between sender and receiver. To exemplify
how statistical data can be included into early design steps for communication
protocols, we define a profile I = (r, c, σ) with timings and costs in terms of

s!r(data) r?s(data) s(timeout) r!s(ack) s?r(ack) r!s(nak) s?r(nak)

rates r(·) 1 1 0.1 10 10 0.5 10
energy c(·) 0.0323 0.0323 0 0.0032 0.0032 0.0032 0.0032

energy consumption within several assumptions inspired by measurements for
USB 1.1 devices [31]. Rates are scaled upon sending/receiving one data pack-
age which comprises 8 bytes of data, 1 byte package identifier and 2 bytes
CRC. Acknowledgements (positive and negative ones) have a package size of
1 byte. With probability 0.05 data is corrupted and with probability 0.01 totally
lost. The energy-cost rate is fixed to be constantly σ = 0.0597, representing the
power consumption of an idling USB device. Action energy costs stand for the
additional power required to perform an action.

4.1 Model Checking Quantitative Requirements

In the following, let us fix the CTMC semantics CG for a quantitative MSG (G, I).
Due to the undecidability result by Theorem 1, we cannot expect decidability
for model checking CG against even basic qualitative reachability requirements.

Corollary 1. Given a quantitative MSG (G, I), A ⊆ Σ, and a time bound t ∈
Q>0, the decision problems for CG whether Pr(♦≤tD) > 0 and whether Pr(♦D) >
0 with D = {K ∈ Conf(S(G)) : En(K) = A} are undecidable.
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This result directly yields undecidability of model checking quantitative MSGs
against action-based CSRL requirements [6]. However, if G is locally synchro-
nized, Theorem 2 yields that the underlying transition system of CG has a finite
bisimulation quotient. Thus, also CG itself has a finite bisimulation quotient as
rates and costs only depend on the actions assigned to transitions and TS(G) is
deterministic. In this case, standard CTMC techniques are applicable.

Time-Bounded Reachability. Towards approximative solutions for arbitrary,
possibly infinite CG , we exploit the fact that CG is finitely branching and rates
and costs are bounded. Thus, the probability and expectation of time-bounded
reachability properties can be approximated by investigating only that part of
CG which is reachable within a sufficient truncation depth [16].

Theorem 3. Given a quantitative MSG (G, I), a decidable set of target states
D in CG, a time bound t ∈ Q>0 and a precision δ ∈ Q>0, one can compute
x ∈ Q≥0 such that |Pr(♦≤tD) − x| ≤ δ.

Let us go more into detail. For a set of states X ⊆ S, we denote by Xi the set of
states K ∈ X where �v�(K) = i for i ∈ N. We define X≤i =

⋃i
k=0 Xi and CD

≤i as
the projection of CG onto S≤i where all states in Si ∪ D≤i are made absorbing
without any rates or costs assigned. It is clear that by iteratively composing
MSCs along paths in G in a breadth-first fashion and computing their prefixes,
executions and configurations, CD

≤i can be effectively computed. Starting from
i=0 we step-wise increment i and compute the probability δi = Pr(♦≤tSi) in CD

≤i,
using standard methods for finite CTMCs. If δi ≤ δ, we are done by computing
x = Pr(♦≤tD≤i) in CD

≤i, again by using standard methods.
Similarly, the expected cumulative costs Ex(♦≤tD) for reaching D or the time

bound t ∈ Q>0 can be approximated up to precision δ ∈ Q>0. To see this, let
C+

≤i arise from CD
≤i by making all states s ∈ Si\D absorbing with R(s, s) =∑

α∈Σ r(α), C(s, s) = maxα∈Σ c(α), and C(s) = σ. When Ex−, Ex, and Ex+

are the expectations in CD
≤i, CG , and C+

≤i, respectively, we obtain

η− = Ex−(♦≤tD≤i) ≤ Ex(♦≤tD) ≤ Ex+(♦≤tD≤i) = η+

Again, we compute these expectations in the finite CTMCs CD
≤i for increasing i

until η+
i − η−

i ≤ δ and choose η−
i as approximation.

Limitations of the Approach. For time-bounded reachability of undecid-
able target sets D, our truncation-based approach clearly does not guarantee
to succeed. This is the case, e.g., if D = {s ∈ S : Prs(♦≤tU) ≥ τ} for some
probability threshold τ ∈ [0, 1] and a decidable set of states U (see Corollary 1).
Such a pattern is useful, e.g., to approximate requirements stated within nested
(action-based) CSRL formulas. To evaluate such nested formulas, we can apply a
top-down approach that approximates nested probability constraints on-the-fly
by possibly further increasing truncation depths [16]. For the above pattern, this
requires, e.g., that during the step-wise construction of CD

≤i there is a precision
γ ∈ Q>0 such that for all s ∈ S≤i we have Prs(♦≤tU) ≥ τ if Prs(♦≤tU) ≥ τ−γ.
Also for unbounded reachability probabilities of the form Pr(♦D), our approach
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is not applicable in general, as there might be a “drift away from D” such that
in CD

≤i the probability Pr(♦Si) does not converge to 0 when i tends to infinity
(e.g., for Gstoc of Example 2 with a profile where actions of s have much higher
rates than actions of r). However, in the case of convergence with limit 0, the
approach presented for time-bounded reachability properties yields an approxi-
mation technique also for the time-unbounded case.

5 Implementation and Case Study

We implemented the breadth-first level-wise construction of our transition-
system semantics for MSGs, the annotation of profiles and the finite-state
projection approach [16] to approximate action-based CSL properties [6] using
the probabilistic model checkerPrism

Prism
no

ye
s

⇒
i+

+

Prism

CT
≤i, Pr(Φ) =?

i=0

CT
≤i,Pr(♦≤tSi) > δ? result

Input: G, I,Φ(t), δ Output: Pr(Φ) ± δ

Fig. 4. The general tool scheme

[20]. As Prism does not natively sup-
port action-based requirements to rea-
son about, we included the option
to encode the last action fired as a
state variable in the target state [6].
Clearly, this yields a linear blow-up
of the state space in the number of
actions not apparent when using spe-
cialized action-based model-checking
algorithms. The key in our implemen-
tation is an efficient construction of
the transition-system semantics in a
breadth-first fashion to obtain truncations. Given an MSG G, we first implemented
the construction directly on the partial-order prefixes of S(G) generated by com-
positions along paths in G up to a sufficient depth. This construction turned out
to be very time-consuming, as the sufficient length of paths in G can be very long
due to concurrent behaviors between basic MSCs in G. We thus replaced this app-
roach by generating candidates for enabled actions α in a configuration K from the
local views of each process (cf., e.g., [3]) and then omitted those MSCs in K·α which
are not prefixes of S(G), i.e., let the global control imposed by the G rule out only
locally enabled actions. The general computation scheme of our tool is depicted
in Figure 4. At each constructed truncation 1 , we feed Prism with the truncation
(but without encoding actions to avoid the linear blow-up) and compute the prob-
ability of reaching the states added in the last truncation step within the given time
bound 2 . When this probability is not greater than the desired precision δ anymore
3 , the Prism evaluates the property under consideration 4 . Here, we choose the
model where the last action performed is encoded into the states to allow reasoning
about state-based CSRL formulas containing action-based information.

5.1 Models and Requirements in our Case Study

We evaluated our implementation based on the quantitative MSGs provided in
Example 3. Besides the CTMCs for Gusb and Gstoc, we consider a variant Grstoc of
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Table 1. Results of the truncation-based quantitative analysis

depth i #states overall time analysis time
MSG property result CG CG/≡ CG CG/≡ CG CG/≡ CG CG/≡
Gusb success 0.966 38 16 145 (231) 43 (65) 1.3s 0.6s 0.8s 0.3s

energy 0.351 37 16 141 (226) 43 (65) 1.4s 0.6s 0.8s 0.3s
Grstoc success 0.946 22 11 3252 (5158) 26 (53) 6.5s 0.3s 1.8s 0.2s

energy 0.225 21 11 2524 (4067) 26 (53) 4.8s 0.3s 1.4s 0.2s
resilience 0.995 >40 11+1 >400000 28 (58) >12h 0.4s – 0.2s

Gstoc success 0.955 21 21 12513 (17824) 4124 (6177) 84.7s 39.2s 5.6s 2.1s
energy 0.221 21 21 12513 (17824) 4124 (6177) 86.4s 41.0s 10.0s 3.9s
resilience 0.999 >40 29+0 >400000 69084 (99505) >12h 1.3h – 38.2s

Gstoc where the data channel is reliable, i.e., the upper left transition in Figure 3
is omitted. We also exploit the regular structure of the MSGs and introduce
backward transitions to bisimilar states on-the-fly during the construction of
the truncations, based on the following observations for configurations K:

(usb) Fully executed loops do not have any impact on future behaviors, i.e.,
if the uniquely defined prefix in K has the form M!M!M?N , then K is
bisimilar to the configuration {M!M!N}.2

(stoc, rstoc) Matches not affected by delayed choice synchronize. That is, if
there is a message matched in each prefix K ∈ K at the same position,
removing preceding events in all prefixes of K yields a bisimilar configuration.

As requirements for the performance analysis, we investigated the following prop-
erties expressed in an action-based CSRL fashion [6]:

(success) Pr(♦≤6s?r(ack)): What is the probability of a successful communica-
tion within 6 time units?

(energy) Exenergy(♦≤6s?r(ack)): What is the expected energy consumed
towards a successful communication or reaching the deadline of 6 time
units?3

(resilience) Pr(�((s?r(nak)∨s(timeout)) ⇒ P≥0.9(♦≤6s?r(ack)))): What is the
probability that always after an unsuccessful communication, with probabil-
ity at least 0.9 the communication is successful within 6 time units?

The latter resilience property can only be expressed by a nested formula,
where evaluating the inner probability operator is undecidable in general (see
Corollary 1). Furthermore, the property contains a time-unbounded reachabil-
ity modality, such that our approach is not a priori successful. Fortunately, for
the quantitative MSGs we considered in our case study, our approach is still
applicable (cf. last paragraph of Section 4).

2 Cutting off fully executed loops of configurations is in the spirit of [10], however,
does not always yield a bisimular configuration in general due to delayed choice.

3 This property corresponds to the Prism query R=?[C<=6] on the transformed model
C′

G as described in Section 4, where all states are terminal after an s?r(ack) action.



Quantitative Analysis of Communication Scenarios 89

5.2 Evaluation

For carrying out the case study, we used Prism version 4.2 on a computer with
Intel i7-3720QM processor running at 2.6 Ghz with 8 GBytes of memory. The
required truncation depth i is computed for a precision of δ = 10−6 and we chose
a precision of ε = 10−12 for the Prism computations. In Table 1, we summa-
rize our results, where CG/≡ stands for the bisimulation quotient constructed
with respect to the bisimulation relations identified above. The number of states
are those of the final CTMC and we indicated the number of states in the
action-encoded model (required for the final Prism computation) in brackets.
As shown also in the table, generating the truncations of the CTMC semantics
of quantitative MSGs is very time-consuming and bisimulation techniques are
very promising. This is especially the case for the most simple quantitative MSG
Gusb, which is locally synchronized and where after a truncation depth i = 16, the
bisimulation quotient does not change anymore (see Theorem 2). The resilience
property is not considered for Gusb, as the channels of the communication scenar-
ios generated are all reliable. We indicated the further truncation steps j required
to guarantee correct approximations of the nested action-based CSRL formula
for the resilience property separately, indicated by i + j. Without employing
bisimulation techniques, we run into timeouts in all resilience experiments.

Remark 1. Besides the finite-state projection we applied in our approach, [16]
presented other heuristics to compute sufficient truncation depths and saving
analysis time. We evaluated their unichain and layered-chain method, but got
high truncation depths where the truncation could not be constructed anymore.
This is not surprising, as the analysis step is not the bottleneck in our approach,
rather than the construction of the truncation (see timings in Table 1).

6 Conclusion

We presented a transition-system semantics for MSGs, which obeys delayed
choice and thus follows the ITU standard for MSGs [22]. Different to other
branching-time semantics for MSGs, our semantics can be interpreted on all
kinds of MSGs where a partial-order semantics is defined, including composi-
tional MSGs [9,15,26] and causal MSGs [13]. Our semantics opens the door
towards probabilistic operational semantics for MSGs which may arise by an
annotation of stochastic information. Such annotations enable to reason about
performance measures, which can trigger redesign steps in early communica-
tion protocol development. In this paper, we focused on annotations in terms
of stochastic timing information and costs and presented a (possibly infinite)
CTMC semantics for MSGs. We showed that already a simple qualitative time-
bounded reachability problem is undecidable, whereas approximative solutions
can be obtained choosing a truncation-based approach. By an implementation
and a case study we demonstrated that practical relevant properties such as
the probability of failure, the expected energy consumption and a probabilistic
resilience measure can be approximated using our approach.
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Our transition-system semantics as well as the CTMC semantics can be
used for many other purposes. For instance, states could be annotated with
atomic propositions defined through MSO formulas over MSCs (which are decid-
able [26]). This enables to reason about state-based branching-time properties
aimed already for in [25] but now with obeying delayed choice. More sophis-
ticated annotations for stationary costs can also be imagined, depending for
instance on the local state of each process in the spirit of [3] or histories of
actions performed to reach the state. We noticed in our case study that bisimu-
lation techniques play an important role for analyzing MSGs. However, finding
a suitable bisimulation is not as easy (e.g., cutting of fully executed loops as pre-
sented by [10] does not maintain language consistency within a delayed choice
semantics). Establishing generic approaches towards bisimulations are left for
further work.
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Abstract. Technical systems interacting with the real world can be ele-
gantly modelled using probabilistic hybrid automata (PHA). Parametric
probabilistic hybrid automata are dynamical systems featuring hybrid
discrete-continuous dynamics and parametric probabilistic branching,
thereby generalizing PHA by capturing a family of PHA within a sin-
gle model. Such system models have a broad range of applications,
from control systems over network protocols to biological components.
We present a novel method to synthesize parameter instances (if such
exist) of PHA satisfying a multi-objective bounded horizon specifica-
tion over expected rewards. Our approach combines three techniques:
statistical model checking of model instantiations, a symbolic version
of importance sampling to handle the parametric dependence, and SAT-
modulo-theory solving for finding feasible parameter instances in a multi-
objective setting. The method provides statistical guarantees on the
synthesized parameter instances. To illustrate the practical feasibility
of the approach, we present experiments showing the potential benefit of
the scheme compared to a naive parameter exploration approach.

1 Introduction

Systems engineering frequently calls for finding parameters on event probabili-
ties, like frequencies of inspections or halts for maintenance, under constraints
on expected values of costs and rewards, like expected maintenance cost and
expected loss due to unscheduled downtime. In this article, we propose a method
which can systematically address this problem for probabilistic hybrid automata
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featuring parametric discrete probability distributions governing choices within
the automaton’s control flow. We are able to devise instances of the paramet-
ric distribution guaranteeing multi-objective specifications concerning expected
costs and rewards over a bounded horizon, i.e., enforcing that expectations on
a multi-dimensional vector of costs/rewards incurred within the bounded hori-
zon satisfy a first-order specification over these costs and rewards. Such speci-
fications may place bounds on individual costs/rewards as well as relate them
arithmetically, e.g., enforcing a relation between maintenance costs and system
availability. The bounded horizon may deal with a number of computation steps
or with a time bound, provided the system is non-Zeno.

For confined settings, such parameter fitting could be reduced to SAT mod-
ulo theory (SMT) solving, based on a parametric extension of the encodings
pioneered by Wimmer et al. [23]. This would, however, require that both the
system dynamics and the reward functions, as well as their dependency on prob-
abilistic choices, can be encoded in the arithmetic theory supported by the SMT
solver, and that the bounded horizon is given in terms of a step bound in order to
facilitate a symbolic unravelling of the transition tree. Such an approach would
for example require SMT over polynomials to deal with parametric probabilis-
tic linear hybrid automata (featuring piecewise constant differential equations,
linear guards, etc.). It is thus confined to systems with rather simple dynamics
and, given the complexity of polynomial constraint solving, of rather small size
under rather restrictive bounds on the temporal horizon.

To overcome these shortcomings, our method is based on ideas from sta-
tistical model checking (SMC) [24], which in its traditional setup deals with
non-parametric probabilistic (hybrid) systems. The strength of SMC is that it
can tackle arbitrary system dynamics, as long as a simulator is available, and is
rather insensitive to system size. The underlying principle is to run a number
of simulations of the system under investigation within a simulator faithfully
representing the — then necessarily non-parametric — probabilistic choices in
the system as well as its state dynamics, and to exploit the set of traces obtained
from the simulations for computing an estimate of the expected values of reward
or cost variables by means of averaging over the individual traces.

Extensions of SMC to parametric probabilistic hybrid systems could in prin-
ciple be addressed by sampling the parameter space, yet this would induce the
curse of dimensionality, confining such a method to fitting isolated parameters.
We avoid this problem by adequately adapting the concept of importance sam-
pling, which permits factoring out the parameter dependency of the distributions
by sampling a fixed substitute distribution instead. The method is based on a
combination of statistical model checking of a substitute model devoid of para-
metricity, a symbolic version of importance sampling providing an SMT repre-
sentation of the parameter dependencies, and SMT solving for finding feasible
parameter instances satisfying the constraints imposed on expected values.

Organization of the Paper. Section 2 introduces parametric probabilistic hybrid
automata and multi-objective specifications on expected rewards. Section 3
explains importance sampling for parametric distributions and presents the
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equations that are key to our approach. Section 4 considers the specific case
of parametric distributions in (finite- or infinite-state) Markov chains and pro-
vides statistical guarantees in the form of confidence intervals. Section 5, finally,
sketches how SMT solving can be applied so as to find (a) feasible parame-
ter instances satisfying the multi-objective specification and (b) the confidence
in the provided solution. We close with discussing related work and general
conclusions.

2 Parametric Probabilistic Hybrid Automata

Fig. 1. PPHA model of a charging station. Modes
are labeled with labels charge and discharge abbre-
viating ODE (not shown explicitly) representing
corresponding dynamics over a continuous capacity
�. Modes can switch according to guarded transi-
tions leading to a probabilistic branch. Probabilities
are summarized as terms t1, . . . , t4 indicating their
parameter dependencies.

Probabilistic hybrid automata
(PHA). [19] extend hybrid
automata with discrete prob-
abilistic branching. This ena-
bles modeling of, e.g., random
component failures and data
packet losses. Similar to hybrid
automata, PHA feature a
finite set of discrete locations
(or modes), each of which
comes decorated with a differ-
ential equation governing the
dynamics of a vector of con-
tinuous variables while resid-
ing in that mode. Modes
change through instantaneous
transitions guarded by con-
ditions on the current values
of the continuous variables,
and may yield discontinu-
ous updates of the contin-
uous variables. Aiming at
simulation-based evaluation
methods as in SMC, transition selection here is assumed to be deterministic,
i.e., guard conditions at each mode are mutually exclusive. To prevent non-
determinism between possible time flows and transitions, we also assume that
transitions are urgent, i.e., they are taken as soon as they are enabled (which fur-
thermore renders mode invariants redundant). In addition to these mechanisms
from deterministic hybrid automata, PHA allow for the probabilistic selection of
a transition variant based on a discrete random experiment. Following the idea
of Sproston [19,20], the selected transition entails a randomized choice between
transition variants according to a discrete probability distribution. The different
transition variants can lead to different follow-up locations and different contin-
uous successors, as depicted in Figure 1, where the guard condition determining
transition selection is depicted along the straight arrows leading to a potential
branching annotated with probability terms denoting the random experiment.
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Parametric probabilistic hybrid automata (PPHA) extend PHA with the pres-
ence of parameters. Whereas in PHA the probability distributions are constants,
PPHA allow the branching probabilities to be terms over a set Param of param-
eter names. The viable parameter instantiations θ : Param → R are constrained
by an arithmetic first-order predicate φ over Param, defining their mutual rela-
tion. Let Θ = {θ : Param → R | θ |= φ} denote the set of all viable parameteri-
zations. Arithmetic terms over Param are subject to the constraint that for all
viable parameter valuations θ |= φ, the sum of outgoing probabilities assigned
to each transition is one, i.e., φ =⇒ ∑n

i=1 ti(θ) = 1 holds for the probability
terms t1, . . . , tn associated to each transition t. Note that the probability terms
need not contain free variables θ: ordinary non-parametric distributions are thus
special cases of parametric distributions and do not require special treatment.

2.1 Interpretation as Parametric Infinite-State Markov Chain

A PPHA engages in a sequence of continuous flows and discrete jumps. The con-
tinuous flows are solutions of the ordinary differential equations assigned to the
current location. The discrete jumps originate from taking enabled transitions,
thereby eliciting a transition as soon as it is triggered, and then probabilistically
deciding among the different transition variants, with their associated target
locations and resets to continuous variables. For the sake of formal analysis, we
formalize the semantics of PPHA through a reduction to a parametric infinite-
state Markov chain. For a PPHA with location set Λ and continuous variables
x1, . . . , xD, the states of the Markov chain are given by Σ = Λ × R

D and the
initial state distribution is inherited from the PPHA. Each state σ = (l,x) ∈ Σ
gives rise to a parameter-dependent distribution1 pσ : Σ×Θ → [0, 1] of successor
states:

pσ(σ′, θ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t(θ) if a transition (σ, σ′) labeled with probability term t is enabled,

1 if σ′ = (l, g(t)), where g is a solution to the ODE associated to

l ∈ Λ with g(0) = x, no transition is enabled in (l, g(t′)) for any

t′ ∈ [0, t[, and a transition is enabled in σ′ = (l, g(t)),

0 otherwise.

Given a parametric infinite-state Markov chain M with its initial (state)
distribution given by a density ι : Σ → R≥0 and a parametric next-state dis-
tribution pσ : Σ × Θ → [0, 1], the density function associated to finite runs
〈σ0, σ1, . . . , σk〉 ∈ Σ∗ given a parameter instance θ ∈ Θ is

pM (〈σ0, σ1, . . . , σk〉; θ) = ι(σ0) ·
k−1∏

i=0

pσi
(σi+1, θ).

Note that while we represented the parametric dependence by a single param-
eter θ, this can be vector valued, thereby encoding potentially different depen-
dencies for different nodes.
1 Note that due to the finite probabilistic branching in PPHA, we deal with distribu-

tions rather than densities here.
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2.2 Parameter Synthesis

Let f : Σ → R be a scalar function on states, to be evaluated on the last state
of a run and called the reward f of the run,2 and let k ∈ N. The k-bounded
expected reward for f in a parameter instance θ ∈ Θ is

EM,k[f ; θ] =
∫

Σk

f(σk−1)pM (〈σ0, σ1, . . . , σk−1〉; θ) d〈σ0, σ1, . . . , σk−1〉,

where Σk denotes the sequences over Σ of length k. We will subsequently drop
the index M in EM,k and pM whenever it is clear from the context.

Rewards represent quantitative measures of the system’s performance, and
therefore mutual constraints on their values can be used for capturing design
goals. The design problem we are thus facing is, given a vector f1, . . . , fn :
Σ → R of rewards in Markov chain M , to ensure via adequate instantiation of
the parameter that the expected rewards meet the design goal. The following
definition captures this intuition.

Definition 1 (Parameter Synthesis Problem). Let f1, . . . , fn : Σk → R be
a vector of rewards in a Markov chain M and let C be a design goal in the form
of a constraint on the expected rewards, i.e., an arithmetic predicate containing
f1, . . . , fn as free variables. A parameter instance θ : Param → R is feasible
(wrt. M and C) iff

θ |= φ and [f1 �→ EM,k(f1; θ), . . . , fn �→ EM,k(fn; θ)] |= C.

The multi-objective parameter synthesis problem is to find a feasible param-
eter instance θ, if it exists, or to prove its absence otherwise.

Stated in words, a parameter instance θ is feasible wrt. φ and C iff the parame-
ters are in the range defined by φ and the expected rewards resulting from the
instantiation meet the multi-objective C. Note that the aim is to find a param-
eter instance meeting our design goal; we are not considering determining all
instantiations. In the sequel, we will focus on a single reward f rather than n
such functions and indicate whenever appropriate how to deal with a vector.

3 Estimating Expectations by Sampling

In order to introduce the general concept of importance sampling [21], we mostly
abstract from our PPHA setting in this section. We instead assume that the para-
metric probability distribution of the random variable x ∈ X is given in terms
of a density function p(·; θ) which depends on a vector θ of bounded real-valued
parameters. Permissible values of θ are defined by a first-order constraint φ.
2 Despite the generality of the PPHA model, defining rewards exclusively on the final

state σk of a run 〈σ0, σ1, . . . , σk〉 ∈ Σ∗ is as expressive as defining them via func-
tions f(〈σ0, σ1, . . . , σk〉), where f : Σk+1 → R. Such rewards can be alternatively
encoded by augmenting the state-space of the PPHA model with additional variables
accumulating the quantities of interest along the trajectory.
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Classical Sampling. Given an arbitrary (bounded) function f : X → R, we are
interested in estimating expected values of f under all parameter values θ |= φ.
The expectation E [f ; θ] for reward f given parameter vector θ is

E [f ; θ] =
∫

X

f(x)p(x; θ) dx . (1)

Given a specific parameter instance θ∗ and a process sampling xi according to
the distribution p(·; θ∗), the expectation E [f ; θ∗] can be estimated by

Ẽ [f ; θ∗] =
1
N

N∑

i=1

f(xi) , (2)

which is the empirical mean of the sampled f -values. In our PPHA setting,
a reasonable process for generating such samples xi according to the distri-
bution p(·; θ∗) would be a simulator for non-parametric PHA, applied to the
instance of the PPHA under investigation obtained by substituting θ∗ for the
free parameters.

For sufficiently large N , we expect E [f ; θ∗] ≈ Ẽ [f ; θ∗] due to the law of large
numbers. We can quantify the quality of the approximation in (2) using Hoeff-
dings inequality [13], provided that f has a bounded support [af , bf ]:

P
(
E [f ; θ∗] − Ẽ [f ; θ∗] ≥ ε

)
≤ exp

(
−2

ε2N

(bf − af )2

)
≥ P

(
Ẽ [f ; θ∗] − E [f ; θ∗] ≥ ε

)
(3)

Therefore, the empirical mean (2) yields a very reliable estimate of the actual
expectation when the number of samples is large, with the accuracy given by (3).

Importance Sampling. While determining the empirical mean (2) by repeated
simulation is an adequate procedure for assessing non-parametric PHA, it is
bound to fail for PPHA when applied näıvely, as it would require to sufficiently
densely cover the parameter space Θ with parameter instances θ∗

j and generating
j = 1, . . . , N samples for each instance θ∗

j . This is thus subject to the curse of
dimensionality. Fortunately, importance sampling [21] provides a means of using
substitute probability distributions in sampling processes. We will exploit this
for dealing with parameters. Importance sampling was originally designed to
enhancing the quality of empirical estimates by artificially drawing according to
their (assumed) importance for the estimate and later correcting the estimate by
weighting the individual samples by that importance. In our setting, we will use
importance sampling for estimating the parameter-dependent expectation E [f ; θ]
defined in equation (1). Instead of sampling X according to the distribution p,
importance sampling uses a different distribution q to sample from. It then
calculates the empirical mean of the samples (over q), but weighs each sample xi

by its importance weight p(xi)
q(xi)

, in order to obtain an estimate of the expectation
under the original distribution p. Applying this idea to our parametric setting,
we can pursue a single round of sampling wrt. some non-parametric distribution
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q and estimate the expected value E [f ; θ] for arbitrary θ as follows:

E [f ; θ] =
∫

X

f(x)p(x; θ) dx =
∫

X

f(x)p(x; θ)
q(x)

q(x) dx

≈ 1
N

N∑

i=1

f(xi)p(xi; θ)
q(xi)

=: Ê [f ; θ], where xi ∼ q. (4)

Note that all the samples {x1, . . . , xN} are drawn according to the substitute3

distribution q (indicated by xi ∼ q); nevertheless, (4) still keeps the parameter
dependence Ê [f ; θ] for arbitrary values of θ.

4 Symbolic Representation of Importance Sampling

The purpose of this section is to derive a symbolic characterization of a solution
to our parameter synthesis problem. This is achieved by using samples drawn
from the proposal distribution to construct a symbolic constraint system by
means of the importance sampling expression for the expectation.

A Symbolic Constraint System. Let p(x; θ) have a closed-form representation
given as term t. (Typically t contains one or more free occurrences of x and θ.)
A symbolic representation of the parameter dependency of Ê [f ; θ], and (due to
the sampling error) an approximate symbolic representation of the parameter
dependency of E [f ; θ] can now readily be obtained as follows. We replace all
occurrences of p(x1; θ) through p(xN ; θ) in (4) by the terms t[x1/x] through
t[xN/x] respectively, and substitute the concrete values for N , (xi)i=1...N , and
(f(xi))i=1...N . The resulting term, referred to as η, is a large sum with multiple
occurrences of θ in different instances of the sub-term t. Let C be a constraint on
the expected reward E , i.e., C is a formula with free variable f formalizing the
requirements on the expectation E [f ; θ]. A parameter instance θ |= φ statistically
guaranteeing C can now in principle be found — or conversely, the infeasibility
of C over φ be established — by solving the constraint system

(E [f ; θ] = η[f ; θ]) ∧ φ ∧ C (5)

using an appropriate constraint solver. Note that (5) enforces θ |= φ through the
conjunct φ and guarantees [f �→ Ê [f ; θ]] |= C due to the construction of η and
the presence of the constraints E = η and C.

As Ê [f ; θ] ≈ E [f ; θ], the instance θ of the parameterized system under inves-
tigation then intuitively is likely to also satisfy E [f ; θ] |= C, as desired. However,
the resulting parameter instances might suffer from being biased towards the
particular samples, which will be investigated in detail in the next section.

The generalization of (5) to multiple rewards fj : X → R and a corresponding
multi-objective constraint C containing arbitrary arithmetic and Boolean com-
binations of the expected rewards is straightforward, albeit potentially higher in
computational cost.
3 In principle, an arbitrary distribution q can serve as a substitute. In our setting, it is

natural to use an instance q = p(·; θ∗) of the parametric distribution, where θ∗ |= φ.
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Simplified Constraint System. In practice, the constraint (5) may become
unwieldy due to the large number of samples xi necessary for obtaining a suffi-
ciently tight confidence bound in equation (3), as the number of samples directly
translates into a corresponding number of summands in η. This problem can be
alleviated in our setting as we consider Markov processes.

For the sake of illustration, let us assume that there is a (non-empty) subset
Δ of the state set Σ of the Markov chain M , where the chain has a parameter-
dependent probabilistic choice between just two transition alternatives, taking
alternative one with probability t, where t is a term dependent on θ, and alter-
native two with probability 1 − t, and that all other states in Σ \ Δ feature
non-parametric distributions.4 During sampling, we substitute these parameter-
dependent probabilities t and 1−t by the static substitute probabilities q and
1−q, respectively, where q ∈ ]0, 1[ is a constant.

During a simulation providing N samples, we now keep track of how many
times a run takes transition alternatives one and two. Let Tn,m denote the set
of simulated trajectories taking n times alternative one and m times alternative
two. Note that there are finitely many Tn,m �= ∅, and that in practice the number
of non-empty Tn,m is considerably smaller than N . Let Σn,m =

∑
xi∈Tn,m

f(xi)
denote the sum of the rewards seen on all trajectories in Tn,m. This quantity
can easily be computed during sampling. With these notations in place, we can
partition the sum (4) in terms of the necessarily pairwise disjoint sets Tn,m,
obtaining the following equivalent formulation of (4):

Ê [f ; θ] =
1
N

∑

n,m∈N

(
Σn,m

(
t

q

)n (
1 − t

1 − q

)m)
(6)

Note that θ freely occurs in the right-hand side of (6), as it does so in t. If the
number of non-empty Tn,m is considerably smaller than N , the right-hand side of
equation (6), after dropping summands for which Tn,m = ∅ and thus Σn,m = 0,
provides us with a much shorter sum than (4), which still characterises Ê [f ; θ].
A symbolic representation η of the parameter-dependency of Ê [f ; θ] can again
be obtained by substituting the specific values for N , q, and Σn,m into (6).
Based on the resulting expression η, we can construct a logically equivalent, yet
syntactically shorter formulation of the constraint (5):

(
E =

1

N

∑

n,m∈N

(
Σn,m

(
t

q

)n (
1 − t

1 − q

)m))
∧ φ ∧ C. (7)

This constraint expresses [f �→ Ê [f ; θ]] |= C subject to θ |= φ, and thus
approximates the feasibility condition on θ up to the inaccuracies incurred
through sampling and rescaling due to importance sampling. In Sect. 6, we will
demonstrate that (7) is amenable to constraint solving for a set of interesting
PPHA.
4 The generalization to arbitrary discrete distributions (fan-out larger than two) con-

trolled by a finite-dimensional vector of parameters is straightforward, as is tackling
multiple different subsets Δi ⊂ Σ.
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5 Existence or Absence of Parameter Instances

As constraint (7) is an arithmetic constraint containing addition, multiplication,
and the operations found in the term t as well as in the parameter domain
constraint φ and the design goal C, it can be solved by SMT solvers addressing
the corresponding subset of arithmetic, e.g., iSAT [8]. This provides an automatic
feasibility check for (7), i.e., a test whether there is a parameter instance within
the domain defined by φ which guarantees (modulo sampling errors) satisfaction
of constraint C over the expectations. Should this test succeed, it will also deliver
a parameter instance. Additional optimization wrt. the expectation E [f ; θ] can
be added on top by a branch-and-prune algorithm, as available in the HySAT
II tool [12]. It is, however, obvious that a solution to (7), if existing, guarantees
the approximate feasibility condition [f �→ Ê [f ; θ]] |= C only, rather than the
desired [f �→ E [f ; θ]] |= C. Therefore, we have to account for the statistical
approximation error associate to the empirical estimate.

For the sake of simplicity, assume in the sequel that the constraint C on
the expectation E [f ; θ] is of the form E [f ; θ] < c, for some constant c ∈ R.
The generalization to arbitrary constraints, including constraints on multiple
different expectations, is straightforward by adopting the concept of δ-weakening
discussed in the context of robust interpretations of arithmetic logics [17].

In the following, we consider the case that symbolic checking of the empir-
ical constraint system (7) could not be satisfied. In this case, we know that
minθ Ê [f ; θ] > c + ε, with an additional slackness ε to be defined shortly.
We are then interested in the probability that there nevertheless exists a
θ′ with E [f ; θ′] < c, i.e., minθ′ E [f ; θ′] < c. To quantify this, let the sub-
index S = (X1, . . . , XN ) indicate the dependency of the estimated expecta-
tion on the ensemble of samples drawn from the proposal q, i.e., ÊS [f ; θ] =
1
N

∑
i f(xi)

p(xi;θ)
q(xi)

:

PS

(
min

θ
ÊS [f ; θ] ≥ ε + c ∧ min

θ
E [f ; θ] < c

)
≤ PS

(
min

θ
ÊS [f ; θ] ≥ min

θ
E [f ; θ] + ε

)

Jensen ineq.

≤ PS

⎛

⎜⎜⎝min
θ

ÊS [f ; θ]
︸ ︷︷ ︸

=:g(S)

−E
[
min

θ
ÊS [f ; θ]

]
≥ ε

⎞

⎟⎟⎠ = PS (g(S) − E [g(S)] ≥ ε)

McDiarmid ineq.

≤ exp

(
−ε2N

4B2

)
=: δ; B := max

x,θ

p(x; θ)

q(x)

Markov≤
(

max
θ

{
pθ

q
,
1 − pθ

1 − q

})k−1

(8)

The last of these inequalities is specific to our case of a binary Markov chain
with samples consisting of k probabilistic transitions.

Therefore, if we are aiming for a confidence of 1− δ, we can use equation (8)
and check the symbolic constraint system with an adapted threshold c′ = c +

ε(δ,N) =
√

log( 1
δ )

N 2B. If this constraint system is unsatisfiable, we know with
probability at least 1−δ that the original constraint system is also unsatisfiable.

Obtaining similar bounds in case we have found a parameter instance for
which the empirical constraint system is indeed satisfiable is more involved.
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In fact, these bounds are tightly coupled to the generalization bounds within
statistical learning theory (see [1,5,22]). Therefore, in case we find a potential
satisfying parameter setting using the symbolic constraint system, we simply
check the validity of this parameter statistically using another round of näıve
sampling, similar to [25], thereby avoiding restricting ourselves to particular
function classes for the parameter dependence of the terms t.

Using the above two tests, we can iteratively solve for a parameter satis-
fying the desired constraint system until one of the tests succeeds, giving us
a (statistically) reliable answer. If a parameter instance satisfying (7) is found
that nevertheless fails to pass the statistical check, we use the fresh samples to
build another symbolic constraint system as in equation (7). We can then use
this constraint system to solve for a new parameter value, which we can then
check subsequently. To use as much information as possible from the samples,
instead of building a completely fresh symbolic constraint system, we simply add
the newly constructed constraint system to the previous one (see Algorithm 1).
To retain the confidence statement with respect to unsatisfiability when adding
more clauses to the constraint system, we have to account for sequential hypoth-
esis testing. This can be achieved by using a Bonferroni correction, i.e., requiring
the individual tests to be more confident, relative to the maximal amount of tests
to be performed (δc = δ

I in Algorithm 1).

Algorithm 1. Parameter Fitting by Symbolic Importance Sampling
function SYM-IMP(φ, C, confidence δ, number of samples N , max. iterations I)

δc ← δ
I
; θ0 ← DrawUniform(Θ); ε ←

√
log( 1

δc )

N
2B; n ← 0; φ̂0 ← φ

while n ≤ I do
q ← p(·; θn)
S = (x1, . . . , xN ) ← DrawSamples(q, N)
if CheckSamples(S, δ, φ, C) then

return θn � Found parameterization satisfying C with prob. ≥ 1 − δ
else

φ̂n+1 ← φ̂n ∧ (η(S) < c + ε) � Add samples to empirical system
θn+1 ← SolveConstraintSystem(φ̂n+1)
if φ̂n+1 is unsatisfiable then

return Unsat � Original system is unsatisfiable with prob. ≥ 1 − δ
else n ← n + 1
end if

end if
end while
return Unknown � Reached maximal iterations I

end function

Altogether, we arrive at Algorithm 1 which upon termination within the
specified maximal number of iterations either delivers a parameter instance sat-
isfying the design objective with the desired confidence or proves with the desired
confidence that no such instance exists.
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6 Experiments

In this section, we explore the potential and limitations of the presented app-
roach, exemplified on the PPHA depicted in Figure 1. The PPHA simplistically
models a battery being charged and discharged, where switching between those
two modes happens randomly, thereby reflecting external influences like weather
on a solar panel. As the climatic conditions might change depending on the
region, the probabilistic transitions are parameterized. Initially, the battery is
in charge mode. As long as its capacity has not reached its maximal value
(guard:  < 1), it can switch randomly with probability t1 to the discharge
mode. During the transition from charge to discharge mode, the capacity is
reduced. For simplicity, we assume a fixed value of 0.048 (see Figure 1), which
reduces the continuous variable  to the new value after the transition to ′. For
the probabilistic transitions, we assume the following parametric dependence
to include non-linear dependence of the parameters h: t1 = t3 = sin (h), and
t2 = t4 = 1 − t1, where h ∈ [0.0, 0.1] is the parameter of interest. As an illus-
trative objective for this PPHA, we are interested in finding a parameter value
such that the charge of the battery reaches a sufficient level at a certain time,
e.g., exceeding a threshold level at sunset which provides sufficient power for the
following night. This property can be formalized as follows:

Goal: The battery is sufficiently charged at sunset (indicated by time
step K) in 90% of the days. The corresponding reward function takes the
current time into account: it evaluates to 1 if  ≥ 0.98 at time K, and 0
otherwise. We require this condition to hold with probability c ≥ 0.9.

Using this formalization, we evaluate the presented approach in terms of both
accuracy and efficiency. Using Algorithm 1, we can obtain the following results
from our solver characterizing the solution: ‘unknown’, ‘candidate solution’,
‘unsatisfiable’. If the problem is satisfiable, we expect the solver to return, either
‘unknown’ or ‘candidate solution’ due to the general undecidable nature of the
problem. However, if the solver returns ‘unsatisfiable’, we know that with a high
likelihood (1−δ) there is no parameter value within the given domain, such that
the constraint system is satisfiable.

Fortunately, the simplicity of the model allows us to calculate maximal and
minimal values for the expected values as a function of the parameter quite
accurately, thereby enabling us to determine the satisfiability of the problem
analytically in some of the settings. Using this analytical result we can determine
the fraction of simulations in which we have obtained the most informative result
with respect to these analytically obtained satisfiability statements.

For the model described above, we are able to compute the satisfiability for
both constraint variants by calculating the expected values using h = 0.0 and
h = 0.1, due to the monoticity of the properties: From these expectations, we
can conclude on the existence of a parameter instances for which θ |= C or θ �|= C
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holds5. Using these bounds we evaluate the frequency with which the algorithm
found the most informative solution as a proxy for the accuracy of the approach.

To judge the improvement of the presented approach, we compare the sam-
pling based verification with a parameter-state exploration approach. As we are
considering a bounded model checking approach within a Markov transition sys-
tem, we can fully unroll the probabilistic transitions and use the same SMT
solver to check the existence of a parameter value that result in a satisfaction
of the desired property. As the complexity of the satisfaction property increases
with increasing unrolling depth, we vary the maximal number of transitions as
well as the level of confidence. As we expect the choice of the proposal distri-
bution to crucially influence the effectiveness of the approach, we compare two
different choices: one minimizing the possible range B of the fraction q(x)

p(x;θ) (as
a function of the parameter as well as a function of the sampled path x, cf. (8)),
and a slightly perturbed version. As a backend SMT solver, we used iSAT36.

In Figure 2, we compare the accuracy as well as the run-time of our sampling-
based method against a full exploration approach. In the left panel, the obtained
(and averaged obtained) result are plotted for either method. For the sampling
based method the results are averaged across 50 repetitions, for each of which we
used a confidence of 1 − δ = 0.7, N = 15000 samples, and a maximal number of
I = 3 iterations. Although none of the algorithms, both sampling and unwinding
based, produced any wrong results, the sampling-based algorithm was able to
provide more informative results for models with large complexity. Although
we know the problem for the settings with higher unrolling depth (≥ 16) to be
satisfiable, only the sampling based approach was able to provide a corresponding
certificate, while the unwinding scheme returned a ‘potentially satisfiable’ result,
indicated by the UNKNOWN result. The drop in accuracy around unrolling
depth K ≈ 15 can be explained by the fact that the range of possible expected
values E as a function of the parameters overlaps with the confidence interval,
rendering the problem harder to answer. As the problem size for näıve scheme
of fully unwinding the transition system grows exponentially with the maximal
length of paths (K), we expect the speedup compared to the run-time of the
sampling based scheme also to be exponential as a function of K. It can be
observed that the speedup in the run-time increases with the complexity, as
shown in Figure 2b. However, for settings with small number of possible paths,
the speedup is less pronounced. In fact, it could also happen that the speedup
is below 1 (a slower performance), as the sampling based approach needs to
simulate more than actual possible paths for small unrolling depths, leading to
an overhead in computation.

5 These regions are indicated in Figure 2 in green and red respectively. For the region
inbetween, we could not analytically calculate the true result. As the sampling-based
method returned some satisfiable parameter values, it suggests the satisfiable region
to be larger than depicted in the Figure.

6 https://projects.avacs.org/projects/isat3

https://projects.avacs.org/projects/isat3
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(a) Solution found by either method (b) Sampling-based speed-up

Fig. 2. Comparison of exhaustive and sample based method wrt. accuracy and running-
time. For the accuracy (left panel), the analytically guaranteed UNSAT and SAT
regions are marked red (left) and green (right) respectively. For the sample-based algo-
rithm an interpolated average ± 1 standard error is plotted.

7 Related Work

The verification of parametric probabilistic models in which certain transition
probabilities are given as parameters (or functions thereof) has received consider-
able attention recently. Most approaches focus on parameter synthesis: for which
parameter instances does a given (LTL or probabilistic CTL) formula hold? This
question has been tackled in several different settings, varying in the properties,
the forms of parameter dependence, as well as the class of systems considered.
Han et al. [3,11] considered the problem for timed reachability in continuous-
time Markov chains, Hahn et al. [9] and Pugelli et al. [18] for discrete-state
Markov decision processes (MDPs). Benedikt et al. [2] considered the parameter
synthesis as a maximization problem for the probability of satisfying ω-regular
properties within an interval Markov chain without further constraints on the
parameter dependence. Hahn et al. [10] provide an algorithm for computing the
rational function of the parameters expressing the probability of reaching a given
set of states in a parametric (reward) MDP based on exploiting regular expres-
sions, as initially proposed by Daws [6]. For non-probabilistic systems and linear
arithmetic dependence on parameters, the synthesis (i.e., reachability as the dual
problem) has been analyzed in [4]. Similarly, in [15] and [14] reachability is ana-
lyzed for parametric probability distribution in a finite-state Markov chain. To
increase the efficiency of the synthesis problem, [14] restricted the parametric
dependence to rational functions. Zhang et al., [25] considered the following
problem: Find parameters u such that for a given black box function r, the fol-
lowing holds: PX(r(u, x) ∈ [a, b]) ≥ θ. For this single objective the probability
distribution of x needs to be known and independent of the design parame-
ters u. The presented procedure is similar, as it iterates between optimization
and a simulation-based verification step, however, it cannot provide an unsatis-
fiability statement. The parametric dependence of the probability distributions
presented in this paper can also be integrated into a hierarchical optimization
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procedure, see [7] for more details. There however, only single objectives were
considered instead of multiple constraints as specified in equation (5).

To the best of our knowledge, synthesis wrt. arbitrary first-order objectives
over expected rewards has not been considered so far. Parameter synthesis in
PHA also seems to be a mostly unexplored research arena.

8 Conclusion

We have discussed a method for automatically finding parameter instances sat-
isfying arbitrary first-order, multi-objective specifications on expected rewards,
given a probabilistic hybrid system with parametric probability distributions.
Although our approach is based on simulations and hence can only provide
statistical guarantees of the property being satisfied, we found that such an app-
roach can rapidly find parameter instances at similar or even better accuracy
than exhaustive, safely overapproximating procedures. The probable reason is
that the overall number of paths to be analyzed is drastically reduced by the sam-
pling process, thereby rendering the approach less sensitive to the overapprox-
imations typically used by the internal mechanics of the solver used.7 For this
reason, it is to be expected that this accuracy benefit gets even more pronounced
for higher-dimensional optimization problems. As our approach effectively tames
the dimensionality barrier, which inevitably is hit by both exhaustive procedures
and procedures sampling the parameter space, by employing a form of symbolic
importance sampling it should scale well to such higher-dimensional problems.
This, however, remains subject to future investigations.
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Abstract. Recent papers have reported on successful application of
constraint solving techniques to off-line real-time scheduling problems,
with realistic size and complexity. Success allegedly came for two rea-
sons: major recent advances in solvers efficiency and use of optimized,
problem-specific constraint representations. Our current objective is to
assess further the range of applicability and the scalability of such
constraint solving techniques based on a more general and agnostic eval-
uation campaign. For this, we have considered a large number of syn-
thetic scheduling problems and a few real-life ones, and attempted to
solve them using 3 state-of-the-art solvers, namely CPLEX, Yices2, and
MiniZinc/G12. Our findings were that, for all problems considered, con-
straint solving does scale to a certain limit, then diverges rapidly. This
limit greatly depends on the specificity of the scheduling problem type.
All experimental data (synthetic task systems, SMT/ILP models) are
provided so as to allow experimental reproducibility.

Keywords: Real-time scheduling · Satisfiability modulo theories ·
Constraint solving · Repeatable

1 Introduction

Multi-processor scheduling is a vast, difficult and still open topic. It is addressed
in several research areas (real-time scheduling, parallel compilation,. . . ), using
various formal resolution approaches (from operations research to dedicated algo-
rithmics). Still, regardless of the area or the solving approach, the majority of
multiprocessor scheduling problems are NP-hard [8,15]. Only a few utterly sim-
ple cases have polynomial solutions [6].

While NP-hard complexity is usually bad news, because some medium-size
problem instances may be found to be intractable, it is not always so. And,
because of the regularity induced by human-made specifications, the tough
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complexity sometimes only occur in accidental pathological descriptions. In fact,
many instances of NP-hard problems can be rapidly solved in practice using
exact algorithms [11]. This led to a renewal of interest in the improvement of
solvers to increase their efficiency, a topic once thought as almost closed decades
ago. And these recent improvements in solver power in turn led researchers for
a renewed interest in using these exact techniques for solving problems such as
multi-processor scheduling (whose need in part motivated the solver’s improve-
ments, so that everything gets quite intricated in the end).

Another avenue of research in this area was (and still is) the definition of
insightful heuristics for fast scheduling, with generally admittedly good results.
We shall not consider heuristic approaches here, partly because they are by defi-
nition non-optimal (meaning that they have no guarantee to find a schedule when
one exists, or that their solution is close or not to being optimal), but mostly
because the current relevance of exact scheduling techniques relying on top-class
constraint solvers is our actual research concern in this paper. It is therefore
always interesting to determine when exact/optimal techniques work. This is
exactly our objective here: to determine the limits of applicability of exact solv-
ing techniques for various multi-processor scheduling problems. In other terms,
we seek to determine the empirical practical complexity [11] of such problems.

Our approach considers static (off-line) real-time multi-processor schedul-
ing problems, encoded as specifications made for satisfiability modulo
theories (SMT), integer linear programming (ILP), or more general constraint
programming (CP). The encodings themselves cover a range of scheduler
features: single-period vs. multi-period, non-preemptive vs. preemptive, non-
dependent vs. dependent tasks, heterogenous architectures vs. homogenous
architectures, schedulability verification vs. optimization. For each scheduling
problem we study the evolution of resolution time as number of tasks and pro-
cessors grow, under different system loads. We deduce in a systematic way for
which range of values exact constraint resolution can be applied within reason-
able time, and where are the actual limits of tools and methods.

The problem instances we consider include (mostly) synthetic and (a few)
real-life examples. Constraints are generated from tasks graphs in a systematic
way [7]. Tasks graphs are usually displaying some amount of parametric sym-
metry which allows us to produce even more constraints [14] (see Section 4.2).
This allows to select one solution out of a stable symetric class and thus cuts
down the search space complexity.

We solve the resulting specifications using 3 state-of-the-art solvers: CPLEX
for ILP specifications, Yices2 for SMT, and MiniZinc/G12 for the CP programs.
We thus determine the (average) time required to solve instances of the schedul-
ing problems for each type of problem and for each choice of parameters (number
of tasks/processors and system load).

Our results indicate that, for most problems we considered, exact resolution
works very efficiently for small to medium-size instances, but an abrupt combina-
torial explosion systematically occurs at some point. It is thus interesting to figure
what is the range of values for which the exact solution scales up. The limit largely
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depends on the particular scheduling features as described above, and on the sys-
tem load (from less than 20 tasks for the optimal scheduling of average-load depen-
dent tasks to more than 150 tasks in the schedulability analysis of single-period
non-dependent, non-preemptive task systems with low system load).

By exploring the applicability limits of exact solving over multiple classes of
scheduling problems, we provide insight into which characteristics of a scheduling
problem make it more or less difficult to solve in practice. For instance, our results
show that it is generally easier to build schedules when system utilization is low
or, on the opposite, to prove unsatisfiability when load is very high.

Our experimental setting can be seen as a real-life effort at reconciling the
seemingly contradictory conclusions found in two series of papers:

– Papers recording unsuccessful previous attempts at using exact techniques
for off-line real time scheduling, such as [9]. This pessimistic view has recently
been reinforced by evidences that it is still unfeasible to map relatively simple
parallelized applications onto many-cores (cf. Section 5) or to map complex
embedded control applications modeled as real-time dependent task systems
onto bus-based multiprocessors when both allocation and scheduling must
be computed [4]. We do not consider in this category the many other papers
which discard exact solving techniques based on theoretical considerations,
rather than experimental ones, because the issue is indeed to consider the
potential gap between the two.

– A few recent papers reporting the successful application of modern constraint
solving tools to realistic real-time scheduling and compilation problems[7,13],
due to increase in solver efficiency.

As suggested by our experiments, the brute-force application of exact meth-
ods to any-size problems shall certainly comfort the first point-of-view (generally
the one shared amongst the real-time scheduling and compilation communities).
But, still, if one gets conscious of the boundaries as well as of the care and
attention that must be taken in modeling the problems to be presented to the
solvers, there is now a growing range of applications that can indeed fall into
the scope of these methods. And this includes already a number of problems of
practical relevance, especially those displaying certain features such as low sys-
tem utilization, non-preemptive execution model, few dependencies,. . . as shown
in our results.

Outline. The remainder of the paper is structured as follows. Section 2 reviews
related work. Section 3 fully defines the ILP/SMT/CP encoding schemes used
on the various scheduling problems we cover. Section 4 details the composition
of our testbench, i.e. the generation rules for the synthetic examples and the
structure of the non-synthetic ones. Section 5 provides and interprets the results,
and Section 6 concludes.

2 Related Work

One major inspiration came from previous work by Leyton-Brown et al. [11] on
understanding the empirical hardness of NP-complete problems, and in particu-
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lar SAT. Their paper points out that SAT solving is simple(r) when either the
number of constraints per variable is low (thus allowing the rapid construction of
a solution) or when it is high, in which case unsatisfiability can be rapidly deter-
mined. Our paper provides a similar conclusion when the number of constraints
per variable is replaced with the average real-time system load. Our paper also
provides a more practical evaluation of when exact solving is usable, through
criteria such as solving time and timeout ratio.

Our paper also develops over previous work on applying exact solving tech-
niques (ILP/SMT/CP, more classical branch-and-cut, model checking) to off-line
real-time scheduling problems [7,9,13]. These previous results all focus on either
the (improved) modeling of a given scheduling problem or on the improvement
of the solver algorithm. Our objective was quite different: to evaluate the lim-
its of applicability of existing techniques and to determine global patterns that
hold for all scheduling problems, and which should guide the search for efficient
solutions in particular cases.

Previous work also exhibits handcrafted operations research backtracking
algorithms for specific scheduling problems [2] with finely tuned branching and
constraint propagation policies. Our work assumes a more generic approach and
uses the policies of the solvers. Depending on the tool it is sometimes possible to
guide the solver in order to change those policies. Because of the variety of the
studied models and tools we did not investigate those possible optimizations.

Our paper is not directly related to previous work on heuristic solving of
scheduling problems. This includes work on the heuristic use of exact solving
methods, such as the use of intermediate non-optimal solutions provided by
optimizaton tools, or the use of exact techniques to separately solve parts of a
scheduling problem (e.g. communications scheduling). However, our work sug-
gests that solving complex scheduling problems is likely to require heuristics for
some time, especially given the trend of considering larger systems and adding
more and more detail (non-functional requirements).

Finally, in the SMT/ILP/CP modeling of this paper we have neglected the
modeling approach associated with fluid scheduling [12]. While this modeling
technique bears a promise of reduced complexity, it is not clear yet whether
it can deal with dependent tasks, which we consider central for the future of
real-time scheduling.

3 ILP/SMT/CP Modeling of Scheduling Problems

This section formally introduces the scheduling problems we consider and then
formally defines the encodings as SMT/ILP/CP constraint systems. We consider
scheduling problems of two main types: schedulability verification and optimiza-
tion. Schedulability verification consists here in determining if a schedule exists
when the periods and durations of the various tasks are fixed. All optimization
problems we consider concern single-period task systems. There, the objective
is to compute the smallest period ensuring the existence of a schedule. Only
the durations of the tasks are an input to the optimization problems. In all
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cases, deadlines are implicit (equal to the periods). Among the 3 solvers we use,
CPLEX and MiniZinc/G12 can natively solve optimization problems, whereas
Yices2 cannot.

As a baseline, we employ for all problems classical encodings, similar to the
one of [7]. In the case of parallelized code running on homogenous architectures,
this encoding is enriched with state-of-the-art symmetry-breaking constraints
[14] that largely reduce solving time. The symmetry-breaking constraints are
introduced later, in Section 4.2, after an application example has been introduced
(to allow intuitive presentation).

Our encoding will assume that all time values used in the definition of the
scheduling problem are a multiple of a given time base. This must hold for
problem inputs, like the worst-case durations of tasks, and also for problem
results (computed start dates and, for optimization problems, the period). All
these time values are represented using integer constants and variables.

We directly present here only the SMT/CP encoding of the problems. The
ILP encoding requires representing the Boolean logic parts of the rules with
integer linear constraints. This straightforward translation is not detailed here.

3.1 Single-Period Dependent Tasks, Heterogenous Architecture

The first problem we consider is that of non-preemptive distributed scheduling
of a set of dependent tasks having all the same period on a heterogenous set of
processors connected using a single broadcast bus. The abstract formal definition
of such a scheduling problem, known as a task model, must provide the following
objects:

– The sets of tasks, task dependencies, and processors, respectively denoted
with T, D, and P. We assume that each dependecy d ∈ D connects exactly
one source task denoted Src(d) and one destination task denoted Dst(d).
The elements of the task and dependency sets are totally ordered, so that
we can write τ1 > τ2 or d1 < d2 (any total order is good).

– For each τ ∈ T and p ∈ P, CanExec(τ, p) is a Boolean defining whether
processor p can execute task τ . Whenever CanExec(τ, p) is true, the value
WCET(τ, p) is defined as a safe upper bound of the worst-case execution
time of τ on p. WCET(τ, p) is a finite integer positive value.

– For each d ∈ D, WCCT(d) is a safe upper bound of the worst-case duration
of transmitting over the bus the data communication associated with d.
WCCT(d) is always a positive value. We make the assumption that the bus
can perform data communications associated with any d.

SMT/CP encoding: Variables and bounds.

– Alloc(τ, p) is a Boolean variable. It is true when task τ is allocated on pro-
cessor p. It is only defined and used in constraints when CanExec(τ, p) is
true.
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– BusAlloc(d) is a Boolean variable. It is true when a bus communication is
allocated for dependency d. It must be true when the source and destination
tasks of d are allocated on different processors.

– Before(τ1, τ2) is a Boolean variable. If true, it requires that task τ1 is sched-
uled before task τ2, in which case τ2 starts after τ1 ends.

– Before(d1, d2) is a Boolean variable. It is true when the bus communication
of dependency d1 is scheduled before the communication of d2, in which case
we will require that whenever both communications are scheduled on the
bus, d2 starts after d1 ends.

– Start(τ) and Start(d) are non-negative integers providing respectively the
start dates of task τ (on a processor) and communication associated with
dependency d (on the bus). The value of Start(d) should only be used when
BusAlloc(d) is true.

– T is the length of the schedule table, which gives the maximum period of
the resulting schedule. It can be either an input of the problem, when the
period is fixed, or an output, for optimization problems.

SMT/CP encoding: Constraints. The 8 following rules are used as constraint
constructors for both optimization and schedulability problems. Note that con-
sidering only rules [1], [2], [3], and [8] corresponds to encoding of single-period,
non-dependent tasks.
[1] Each task is allocated on exactly one processor.

for all τ ∈ T do∑

p∈P
CanExec(τ,p)=true

Alloc(τ, p) = 1

[2] If two tasks are ordered, the second starts after the first ends.
for all p ∈ P do

for all (τ1, τ2) ∈ T 2 with CanExec(τ1, p) = true and τ1 �= τ2 do
Before(τ1, τ2) ∧ Alloc(τ1, p) ⇒ Start(τ1) + WCET(τ1, p) ≤ Start(τ2)

[3] If two tasks are allocated on the same processor, they must be ordered.
for all p ∈ P do

for all τ1, τ2 ∈ T with CanExec(τi, p) = true, i = 1, 2 and τ1 < τ2 do
Alloc(τ1, p) ∧ Alloc(τ2, p) ⇒ Before(τ1, τ2) ∨ Before(τ2, τ1)

[4] The source and destination of a dependency must be ordered.
for all d ∈ D do

Before(Src(d), Dst(d)) ∧ ¬Before(Dst(d), Src(d))

[5] The bus communication associated with a dependency (if any) must start
after the source task ends and must end before the destination task starts.

for all (d, p) ∈ D×P do
if CanExec(Src(d), p) = true then

if CanExec(Dst(d), p) = true then
Alloc(Src(d), p) ∧ ¬Alloc(Dst(d), p) ⇒

Start(Src(d)) + WCET(Src(d), p) ≤ Start(d)
Alloc(Src(d), p) ∧ ¬Alloc(Dst(d), p) ⇒ Start(d) + WCCT(d) ≤ Start(Dst(d))
Alloc(Src(d), p) ∧ ¬Alloc(Dst(d), p) ⇒ BusAlloc(d)

else
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Alloc(Src(d), p) ⇒ Start(Src(d)) + WCET(Src(d), p) ≤ Start(d)
Alloc(Src(d), p) ⇒ Start(d) + WCCT(d) ≤ Start(Dst(d))
Alloc(Src(d), p) ⇒ BusAlloc(d)

[6] When two dependencies require both a bus communication, these communi-
cations must be ordered.

for all (d1, d2) ∈ D2 with d1 < d2 do
BusAlloc(d1) ∧ BusAlloc(d2) ⇒ Before(d1, d2) ∨ Before(d2, d1)

[7] If two dependencies are ordered, the first must end before the second starts.
for all (d1, d2) ∈ D2 with d1 �= d2 do

Before(d1, d2) ⇒ Start(d1) + WCCT(d1) ≤ Start(d2)

[8] All tasks must end at a date smaller or equal than the schedule length.
for all (p, τ) ∈ P×T with CanExec(τ, p) = true do

Alloc(τ, p) ⇒ Start(τ) + WCET(τ, p) ≤ T

3.2 Simplified Encoding for the Homogenous Case

In the homogenous case, all processors have the same computing power, so that
for each task τ we only need to define a single duration WCET(τ). We still allow
some allocation constraints: A task τ has either fixed allocation, in which case
CanExec(τ, p) is true for exactly one of the processors p, or can be executed on
all processors, in which case CanExec(τ, p) is true for all p. The constraint rules
[2], [5], and [8] need to be replaced with the following simplified rules.
[2hom] If two tasks are ordered, the second starts after the first ends.

for all p ∈ P do
for all (τ1, τ2) ∈ T 2 with CanExec(τ1, p) = true and τ1 �= τ2 do

Before(τ1, τ2) ∧ Alloc(τ1, p) ⇒ Start(τ1) + WCET(τ1) ≤ Start(τ2)

[5hom] The bus communication associated with a dependency (if any) must
start after the source task ends and must end before the destination task starts.

for all (d, p) ∈ D × P do
if CanExec(Src(d), p) = true then

if CanExec(Dst(d), p) = true then
Alloc(Src(d), p) ∧ ¬Alloc(Dst(d), p) ⇒ Start(Src(d)) + WCET(Src(d)) ≤
Start(d)
Alloc(Src(d), p) ∧ ¬Alloc(Dst(d), p) ⇒ Start(d) + WCCT(d) ≤ Start(Dst(d))
Alloc(Src(d), p) ∧ ¬Alloc(Dst(d), p) ⇒ BusAlloc(d)

else
Alloc(Src(d), p) ⇒ Start(Src(d)) + WCET(Src(d)) ≤ Start(d)
Alloc(Src(d), p) ⇒ Start(d) + WCCT(d) ≤ Start(Dst(d))
Alloc(Src(d), p) ⇒ BusAlloc(d)

[8hom] All tasks have release date 0 and implicit deadline (equal to the period),
so that they must end at a date smaller or equal than the schedule length.

for all τ ∈ T do
Start(τ) + WCET(τ) ≤ T
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3.3 Multi-period, Non-preemptive, Non-dependent Tasks

The scheduling problem has now a new input: For each task τ ∈ T, we define its
period, denoted T(τ). It must be a positive integer. Unlike in the single-period
case, the release date is not an input of the problem (it is assumed equal to the
start date that is computed). The deadline of each task (equal to its period) is
therefore trivially respected as soon as task WCET is smaller than the period.

As it is classically done in off-line real-time scheduling, the encoding of the
problem assumes that all task instances share the same start date. This property,
known as strict periodicity, has a negative impact on schedulability, but has the
advantage of producing more compact schedules. For cases where strict period-
icity is not desired, analysis can be done by first translating the multi-period
problem into a single-period one, by means of a hyper-period expansion [5].

We provide here only the encoding for the heterogenous architecture case.
The homogenous case can be easily derived. The encoding uses the same variables
as for single-period tasks. To account for the multi-period case, the upper bound
for Start(τ) is set to T(τ)−1 for all τ . Among the constraints, we use unmodified
rule [1]. Rules [4]-[7] are not used here, because we have no dependencies. Rule
[8] is no longer needed because tasks do not have release date 0. Rules [2] and
[3] are replaced by a single rule (LCM denotes here the least common multiple
of two integers):
[2mpnp] Instances of two different tasks cannot overlap.

for all (p, τ1, τ2) ∈ P × T × T with CanExec(τi, p) = true, i = 1, 2 and τ1 < τ2 do
for all −1 ≤ α < LCM(T(τ1), T(τ2))/T(τ1) do

for all −1 ≤ β < LCM(T(τ1), T(τ2))/T(τ2) do
Alloc(τ1, p) ∧ Alloc(τ1, p) ⇒

(Start(τ1) + α ∗ T(τ1) + WCET(τ1, p) ≤ Start(τ2) + β ∗ T(τ2))∨
(Start(τ2) + β ∗ T(τ2) + WCET(τ2, p) ≤ Start(τ1) + α ∗ T(τ1))

3.4 Multi-period, Preemptive, Non-dependent Tasks

In the preemptive model, a task can be interrupted and resumed. In our off-line
scheduling context, the date of all interruptions and resumptions is an output of
the scheduling problem. These dates are taken in the same integer time base as
the start dates, periods... For simplicity, we consider non-dependent tasks, and
we only provide here the encoding for heterogenous architectures. Preemption
costs are neglected (as often in real-time scheduling). Migrations are not allowed.

The encoding basically replaces each preemptable task with a sequence of
non-preemptable tasks of duration 1 which must be all allocated on the same
processor. The output of the scheduling problem consists in one start date for
each unit task. We denote with Start(τ, p, i) the start of the ith unit task of
task τ on processor p, where i ranges from 0 to WCET(τ, p) − 1. The bounds
for Start(τ, p, i) are the same as for Start(τ) in the non-preemptive multi-period
case. Among the constraints, we preserve unchanged only rule [1]. Rules [4]-[8]
are not needed (as explained for the non-preemptive case). Rules [2] and [3] are
modified as follows:



116 R. Gorcitz et al.

[2mpp] Unit task instances of different tasks do not overlap.
for all (p, τ1, τ2) ∈ P × T 2 with CanExec(τ1, p) and CanExec(τ2, p) and τ1 < τ2 do

for all 0 ≤ α < LCM(T(τ1), T(τ2))/T(τ1) do
for all 0 ≤ β < LCM(T(τ1), T(τ2))/T(τ2) do

for all 0 ≤ i < WCET(τ1, p) and 0 ≤ j < WCET(τ2, p) do
Alloc(τ1, p) ∧ Alloc(τ1, p) ⇒

Start(τ1, p, i) + α ∗ T(τ1) �= Start(τ2, p, j) + β ∗ T(τ2)

[3mpp] Multiple reservations made for a given task cannot overlap.
for all (p, τ) ∈ P × T with CanExec(τ, p) = true do

for all 0 ≤ i < WCET(τ, p) − 1 do
Start(τ, p, i) < Start(τ, p, i + 1)

4 Test Cases

As often in real-time scheduling, we perform measurements on large numbers
of synthetic test cases. In addition, we consider two real-life signal processing
applications (an implementation of the Fast Fourier Transform, and an automo-
tive platooning application), typical for the field of real-time implementation of
data-parallel applications.

4.1 Test Case Generation

Synthesizing test cases posed significant challenges, because we must allow for
meaningful comparisons between a variety of scheduling problems. For instance,
we could not use the state-of-the-art algorithm UUniFast of Bini and Buttazzo
[3] because it does not cover heterogenous architectures. Finally, we decided to
use two synthesis algorithms.

The first one, used in comparisons involving non-dependent tasks, can be
seen as an extension of UScaling [3]. For each type of scheduling problem and
choice of system load, we generate examples with number of taks n ranging from
7 to 147 tasks, with an increment of 5. For each task size, we generate 40 problem
instances (reduced to 25 instances for the more complex multiperiodic preemp-
tive case). For each instance of a multi-period problem, periods are randomly
assigned to the tasks uniformly in the set {5, 10, 15, 20, 30, 60}. For single-period
schedulability problems, the period of all tasks is set to 60. In all cases, the
number of processors is set to �n/5�.

The choice of system load is done by setting the maximal per-task processor
usage value u. For a task τ of period T(τ), WCET values are chosen randomly,
with a uniform distribution, in the interval [1..�u ∗ T(τ)�]. For single-period opti-
mization problems T(τ) is replaced in the formula by 60 for all tasks. Our mea-
surements will use values of u ranging in the set {0.1, 0.3, 0.35, 0.5}. Given the
way the number of processors is computed, this respectively corresponds to aver-
age system loads of approximately 25%, 75%, 87.5%, and 125%, and to maximal
system loads of 50%, 150%, 175%, and 250%.

Each task is designated, with a 30% probability, a fixed-allocation task. In
this case, a processor is randomly allocated to it (with uniform distribution), and
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a WCET value is only assigned for the task on this processor. In the heterogenous
case, for each task τ that does not have fixed allocation, and for each processor
p, we decide with 70% probability that τ can be executed on p, in which case
we generate WCET(τ, p) as explained above.

The second generation algorithm is used in the comparison involving single-
period dependent task systems. We use here the algorithm proposed by Carle
and Potop [4] (in section 6). We use this algorithm to synthesize a single set
of 40 random test cases. For each of these examples we create one SMT system
including the dependence-related constraints, and one without these constraints.

4.2 Signal Processing Case Studies

FFT. The first application is a parallelized version of the Cooley-Tukey imple-
mentation of the integer 1D radix 2 FFT [1]. The FFT has a recursive nature, as
the task graph of the FFT on 2n+1 inputs is obtained by instantiating twice the
FFT on 2n inputs and then adding 2n tasks. For instance, the task graph of an
8-input FFT, provided in Fig. 1(middle) can be obtained by instantiating twice
the task graph of the 4-input FFT, and then adding the 4 tasks of the bottom
row. In each of the 3 task graphs of Fig. 1, nodes are tasks and arcs are data
dependencies. All dependencies in an FFT transmit the same amount of data.
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Fig. 1. From left to right: FFT task graphs for 4, 8 and 16 inputs

Platooning. This application is run by one car in order to automatically follow
the car in front of it. It takes input from an embedded camera and controls the
speed and steering of the car. It uses a Sober filter and a histogram search in
order to detect the front car in the captured images. The detection and correction
function uses this data to correct car speed and steering. It also adjusts image
capture parameters, which creates a feedback loop in the model. The feedback
dependency arc initially contains 2 tokens.

The image processing part of the application can be parallelized, by splitting
the image into regions which can be processed independently. The task graph of
the application (after parallelization) is provided in Fig. 2. The parallelism (of
split/merge type) can be raised or decreased by changing the value of X. This
means that the application exibhits both task parallelism (breadth) and pipeline
parallelism (depth).
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Encoding of the Examples and Symmetry Breaking. The task graphs of
the 2 examples are transformed into a set of constraints by assuming that imple-
mentation is done on 3 homogenous processors connected by a bus, according to
the rules of Section 3.2. But our examples feature multiple identical processors
and split/merge parallelism defining groups of identical tasks [14]. Thus, the
resulting SMT/CP encoding is not very efficient, a solver being forced to spend
a lot of time traversing many equivalent configurations that are identical up to
a permutation of identical tasks or processors. This can be avoided by adding
symmetry-breaking constraints to the initial constraint system.

Fig. 2. Platooning application dataflow graph with X-way split/merge parallelism

In mapping the platooning application, a solver will explore the configu-
rations where task Sobel H 0 starts before Sobel H 1, but also those where
Sobel H 1 starts before Sobel H 0. However these two tasks have symmetric
dependencies and have the same cost so that exploring only one of the cases
is enough to solve the constraint system. This also means that one can swap
them (and their Histo dependency) without violating any dependency and with-
out modyfing the resulting makespan. Formally, if Ts is a set of symmetric tasks
in T (as defined in [14]), then we add to the constraint system the following rule:

[9] Start dates of symmetric tasks are ordered.
for all (τ1, τ2) ∈ T 2

s with τ1 < τ2 do
Start(τ1) ≤ Start(τ2)

Like task symmetries, core symmetries can be exploited by constraining the
allocation of tasks to processors, as explained in [14].

5 Experimental Results

We have run the SMT/ILP/CP specifications of the previous section respectively
through the Yices 2, CPLEX, and MiniZinc/G12 solvers on 8-core Intel Xeon
workstations. Solving was subject to a timeout of 3600 seconds (1 hour) for
synthetic test cases and 1800 seconds for the FFT and platooning applications.
For all synthetic schedulability problems we have used both Yices 2 and CPLEX.
Scalability findings are similar for the two solvers,1 so we will always plot only
one of the result sets. Comparisons are only made between figures obtained
using the same solver. For the FFT and platooning applications we have used
MiniZinc/G12.
1 We found differences between solvers, but they do not affect scalability and for space

reasons we cannot present them here.
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5.1 Synthetic Test Cases

For the test cases obtained using the first algorithm of Section 4.1, the solving
times for instances of the same scheduling problem with the same load and the
same number of tasks are averaged. The resulting average values are plotted
separately for each scheduling problem and load value against the number of
tasks. The resulting curve for preemptive, multi-periodic, heterogenous systems
with 75% average load, under schedulability analysis, is provided in Fig. 3(left
graph, dotted blue curve).
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Fig. 3. Left: Single-period, non-preemptive (solid line) vs. Multi-period, preemptive
(dotted line). Right: Heterogenous (solid) vs. homogenous (dotted)

To give a better feeling of how this graph is built, we plotted in Fig. 4(left)
the results of each problem instance. Values with the same abscissa are averaged
to obtain the blue line. Fig. 4(right) provides the evolution of timeouts as a
function of task number. From 50 tasks on, solving has a timeout rate of more
than 40%, making it unusable in practice. By comparison, Fig. 3(left graph, solid
red curve) shows the results for the single-period, non-preemptive problems of the
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same average load (schedulability analysis). Clearly, solving scales much better
for the second problem. Intuitively, our experiments show that multi-periodic
problems are more complex than single-period ones, and preemptive problems
are more complex than non-preemptive ones.

Fig. 3(right graph) provides the results for single-period, non-preemptive
task systems with 25% average load in the heterogenous and homogenous case
(without symmetry breaking). The graph shows no significant differences, but
we shall see later that the use of symmetry breaking should allow a significant
reduction of the solving time in the homogenous case if split/merge parallelism
is used (so that some homogenous problems are a lot easier to solve).
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Fig. 5. Complexity as a function of system load. Single-period, non-preemptive, het-
erogenous (left), Multi-period, non-preemptive, heterogenous (right).

Fig. 5 shows the evolution of the empyric complexity of a problem as a
function of the system load. The left graph show that for single-period, non-
preemptive, heterogenous schedulability problems, solving scales very well for
systems with either very low load (25% on average, solid red line) or very high
(over-)load (125% on average, solid green line). In the first case, it is very easy
to find solutions. In the second case, non-schedulability is rapidly determined.
The remaining two lines correspond to systems with average load, where solving
does not scale well. The right graph of the figure considers the multi-period,
non-preemptive, heterogenous schedulability problem, where at 75% load solving
scales indefinitely (most problems are non-schedulable), whereas at 25% load
solving does not scale well.

Fig. 6(left) compares the scalability of schedulability analysis (red solid line)
with that of period optimization (blue dotted line). The optimization problem
is far more complex and does not scale beyond 25 tasks, where the timeout rate
is 40% (cf. right graph).

For the test cases obtained using the second algorithm of Section 4.1, we
first determined that the solving time for a dependent task problem is always
greater or equal that the solving time for the corresponding problem without
the dependence-related constraints. Furthermore, the global timeout rate for
dependent tasks is 55%, whereas for non-dependent tasks is only 13% (due to the
high timeout rate, we consider that comparing the durations is not meaningful).
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Fig. 6. Left: Schedulability analysis (solid line) vs. optimization (dotted line) for single-
period, non-preemptive, heterogenous at 75% average load. Right: Percentage of time-
outs for the optimization runs.

5.2 Signal Processing Case Studies

FFT. The solver was only able to produce optimal schedules for small problems
(12 tasks and 16 dependencies), which is consistent with our synthetic example
experiments. Note that we were unable to exploit here the symmetry breaking
technique, because the FFT task graph does not use split/merge parallelism.

Table 1. Fast Fourier Transform CP resolution time at different levels of the recursion

FFT size (n. of inputs) n. of tasks (messages) opt. time (s) mem. peak (MB)

2 1(0) 0.5 4
4 4(4) 1 4
8 12(16) 2 18
16 32(48) > 1800 271
32 80(128) > 1800 > 8000
64 192(320) > 1800 > 8000

Platooning. The experiments show that the solver handles better a very deep
task graph than a very large graph. Given the results, a problem with higher
depth is expected to be solved within reasonable time as long as the memory of
the machine is not exhausted. On contrary, with a problem of large breadth, the
solver will not fill the memory of the machine, but will fail to return a solution
within reasonable time. Symetry breaking is not trivial in this application graph
but can still be achieved if the lexicographic order is the same for Sobel H X
and Histo H X.
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Table 2. CP solver optimisation: time(s), memory(MB) problem performance when
raising the breadth of the graph

Symmetry breaking
X (p=1) n.of tasks (messages) None Task CPU Both

0 7 (7) 0.7 2 0.7 2 0.7 2 0.7 2
1 11 (14) 0.9 18 0.7 7 0.7 5 0.6 5
2 15 (21) 5.4 28 1.5 28 2.9 26 1.1 20
3 19 (28) > 1800 80 159 58 > 1800 81 50 33

Table 3. CP solver optimisation problem performance when raising the depth of the
graph

p (X=0) 1 2 3 4 5 6 7 8 9 10 11 12 13
n.of tasks 7 14 21 28 35 42 49 56 63 70 77 84 91
n.of messages 7 14 22 30 38 46 54 62 70 78 86 94 102
opt time(s) 0.4 0.8 1.2 2 3.2 4.9 7.2 11.3 17.6 21 26 28 > 300
mem peak (MB) 4 10 21 89 199 426 701 1195 1882 2936 4143 5872 > 8000

6 Conclusion

There is a constant mutual challenge between solvers efficiency and problems
complexity: new needs from scheduling theory (in temporal correctness) and
formal verification theory (functional correctness) raise new interest in resolution
techniques, which at some points in history prompt advances in tool power (BDD
symbolic representation, SAT/SMT solvers, partial-order and symmetry-based
problem reductions,...). One is thus bound to periodically revise judgements on
whether the current state-of-affairs in solvers allows to cope with reasonable size
specifications, or how far it does.

We tried to provide an empirical answer of that sort (valid as of today), by
checking a number of real-time scheduling problems, with typical features repre-
sentative of real case-studies. We submitted them to state-of-the art constraint
solvers, using optimizing symmetry assumptions, and got answers beyond a sim-
ple yes/no, showing that exact computation techniques can indeed be currently
attempted on certain problems, provided much care is taken into the solver-aware
specification encoding. At the same time, solving complex scheduling problems is
likely to require heuristics for some time, especially given the trend of considering
larger systems and adding more detail to the specifications.

Our empyrical evaluation can be significantly improved. First of all, we need
to extend and improve our task generation techniques. For instance, we do
not currently have a way to synthesize data-parallel task systems with sym-
metry. Our code generators should also allow more architectural exploration, for
instance by considering the bus or shared memory load as a parameter, or by
varying the set of admissible periods.

Recently the Boolean satisfaction modulo theory priniciple was extended to
ILP modulo theory [10]. One could wonder at that point how our current contri-
bution could fit in a (much more ambitious) idea of a general Constraint modulo
theory.
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To allow reproduction and extension, all test cases (many gigabytes of data)
and generation scripts can be obtained by request to dumitru.potop@inria.fr.
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Abstract. Standard algorithms for reachability analysis of timed
automata are sensitive to the order in which the transitions of the
automata are taken. To tackle this problem, we propose a ranking system
and a waiting strategy. This paper discusses the reason why the search
order matters and shows how a ranking system and a waiting strategy
can be integrated into the standard reachability algorithm to alleviate
and prevent the problem respectively. Experiments show that the com-
bination of the two approaches gives optimal search order on standard
benchmarks except for one example. This suggests that it should be used
instead of the standard BFS algorithm for reachability analysis of timed
automata.

1 Introduction

Reachability analysis for timed automata asks if there is an execution of an
automaton reaching a given state. This analysis can be used to verify all kinds
of safety properties of timed systems. The standard approach to reachability
analysis of timed automata uses sets of clock valuations, called zones, to reduce
the reachability problem in the infinite state space of a timed automaton to the
reachability problem in a finite graph. We present two heuristics to improve the
efficiency of the zone based reachability algorithm.

The algorithm for reachability analysis of timed automata is a depth-first
search, or a breadth-first search on a graph whose nodes are pairs consisting of a
state of the automaton and a zone describing the set of possible clock valuations
in this state. The use of zone inclusion is crucial for efficiency of this algorithm.
It permits to stop exploration from a smaller zone if a bigger zone with the same
state has been already explored.

Due to the use of zone inclusion the algorithm is sometimes very sensitive
to exploration order. Indeed, it may happen that a small zone is reached and
explored first, but then it is removed when a bigger zone is reached later. We
will refer to such a situation as a mistake. A mistake can often be avoided by
taking a different exploration order that reaches the bigger zone first.

In this paper we propose two heuristics to reduce the number of mistakes
in the reachability analysis. In the example below we explain the mistake phe-
nomenon in more details, and point out that it can cause an exponential blowup
c© Springer International Publishing Switzerland 2015
S. Sankaranarayanan and E. Vicario (Eds.): FORMATS 2015, LNCS 9268, pp. 124–139, 2015.
DOI: 10.1007/978-3-319-22975-1 9



Improving Search Order for Reachability Testing in Timed Automata 125

(a) Timed automaton. (b) In wrong order. (c) In good order.

Fig. 1. A timed automaton and two exploration graphs of its state-space. On the left,
the transition to q3 is explored first, which results in exploring the subtree of q3 twice.
On the right, the transition to q2 is explored first and subsumption stops the second
exploration as Z3 is included in Z′

3.

in the search space; this happens in the FDDI standard benchmark. The two
heuristics are quite different in nature, so we evaluate their performance on the
standard examples. Based on these experimental results we propose a simple
modification to the standard exploration algorithm that significantly improves
the exploration order.

We now give a concrete example showing why exploration order matters.
Consider the timed automaton shown in Figure 1a, and assume we perform a
depth-first search (DFS) exploration of its state space. The algorithm starts in
(q1, Z1) where Z1 = (y ≥ 0) is the set of all clock values. Assume that the
transition to q3 is taken first as in Figure 1b. The algorithm reaches the node
(q3, Z3) with Z3 = (y > 1) and explores its entire subtree. Then, the algorithm
backtracks to (q1, Z1) and proceeds with the transition to q2 reaching (q2, Z2),
and then (q3, Z ′

3) with Z2 = Z ′
3 = (y ≥ 0). It happens that Z3 ⊆ Z ′

3: the node
(q3, Z ′

3) is bigger than the node (q3, Z3) which has been previously visited. At
this point, the algorithm has to visit the entire subtree of (q3, Z ′

3) since the clock
valuations in Z ′

3 \ Z3 have not been explored. The net result is that the earlier
exploration from (q3, Z3) turns out to be useless since we need to explore from
(q3, Z ′

3) anyway. If, by chance, our DFS exploration had taken different order
of transitions, and first considered the one from q1 to q2 as in Figure 1c, the
exploration would stop at (q3, Z3) since the bigger node (q3, Z ′

3) has already
been visited and Z3 ⊆ Z ′

3. To sum up, in some cases DFS exploration is very
sensible to the search order.

Several authors [3,6] have observed that BFS exploration is often much
more efficient than DFS for reachability testing in timed automata. This can
be attributed to an empirical observation that often a zone obtained by a short
path is bigger than the one obtained by a longer path. This is the opposite in our
example from Figure 1a. In consequence, a BFS algorithm will also do unnec-
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essary explorations. When (q3, Z ′
3) is visited, the node (q4, Z4) is already in the

queue. Hence, while the algorithm has a chance to realise that exploring (q3, Z3)
is useless due to the bigger node (q3, Z ′

3), it will keep visiting (q4, Z4) and all the
subtree of (q3, Z3). Indeed, in the standard BFS algorithm, there is no mechanism
to remove (q4, Z4) from the queue when (q3, Z ′

3) is reached. Again, considering
the transition from q1 to q2 before the transition to q3 as in Figure 1c, avoids
unnecessary exploration. Yet, by making the path q1 → q2 → q3 one step longer
we would obtain an example where all choices of search order would lead to
unnecessary exploration. Overall, the standard reachability algorithm for timed
automata, be it DFS or BFS, is sensitive to the alignment between the discovery
of big nodes and the exploration of small nodes.

q1

q2

q3

q4

q5 . . . q2n−1

q2n

q2n+1 qf

{y}

y > 1, {y}

{x1}

{y}

y > 1, {y}

{x2}

{y}

y > 1,{y}

{xn} (x1 ≤ n)
∧ · · ·
∧(xn ≤ n)
∧(n < y ≤ 5n)

Fig. 2. Timed automaton with a racing situation.

One could ask what can be the impact of a pattern from Figure 1a, and does
it really occur. The blowup of the exploration space can be exponential. One
example is presented in Figure 2. It is obtained by iterating n times the pattern
we have discussed above. The final state qf is not reachable. By a similar analy-
sis we can show that both the BFS and DFS algorithms with wrong exploration
order explore and store exponentially more nodes than needed. In the automa-
ton there are 2n different paths to q2n+1. The longest path q1, q2, q3, . . . , q2n+1

generates the biggest zone, while there are about 2n different zones that can
be generated by taking different paths. If the DFS takes the worst exploration
order, all these zones will be generated. If it takes the wrong order half of the
times, then about 2n/2 zones will be generated. Similarly for BFS.

In the experiments section we show that, this far from optimal behaviour
of BFS and DFS exploration indeed happens in the FDDI model, a standard
benchmark model for timed automata.

In this paper we propose simple modifications of the exploration strategy to
counter the problem as presented in the above examples. We will first describe
a ranking system that mitigates the problem by assigning ranks to states, and
using ranks to chose the transitions to explore. It will be rather clear that this
system addresses the problem from our examples. Then we will propose waiting
strategy that starts from a different point of view and is simpler to implement.
The experiments on standard benchmarks show that the two approaches are
incomparable but they can be combined to give optimal results in most of the
cases. Since this combination is easy to implement, we propose to use it instead
of standard BFS for reachability checking.



Improving Search Order for Reachability Testing in Timed Automata 127

Related work: The influence of the search order has been discussed in the lit-
erature in the context of state-caching [7,11–13], and state-space fragmentation
[3,6,8]. State-caching focuses on limiting the number of stored nodes at the cost
of exploring more nodes. We propose a strategy that improves the number of vis-
ited nodes as well as the number of stored nodes. In [3,6,8], it is suggested that
BFS is the best search order to avoid state-space fragmentation in distributed
model checking. We have not yet experimented our approach for distributed
state-space exploration.

In terms of implementation, our approaches add a metric to states. In a
different context a metric mechanism has been used by Behrmann et al. to guide
the exploration in priced timed automata in [5].

Organisation of the paper: In the next section we present preliminaries for this
paper: timed automata, the reachability problem and the standard reachability
algorithm for timed automata. In Section 3, we propose a ranking system to limit
the impact of mistakes during exploration. Section 4 presents another strategy
that aims at limiting the number of mistakes. Finally, Section 5 gives some
experimental results on the standard benchmarks.

2 Preliminaries

We introduce preliminary notions about timed automata and the reachability
problem. Then, we introduce the classical zone-based algorithm used to solve
this problem.

2.1 Timed Automata and the Reachability Problem

Let X = {x1, . . . , xn} be a set of clocks, i.e. variables that range over the non-
negative real numbers R≥0. A clock constraint φ is a conjunction of constraints
x#c for x ∈ X, # ∈ {<,≤,=,≥, >} and c ∈ N. Let Φ(X) be the set of clock
constraints over the set of clocks X. A valuation over X is a function v : X →
R≥0. We denote by 0 the valuation that maps each clock in X to 0, and by R

X
≥0

the set of valuations over X. A valuation v satisfies a clock constraint φ ∈ Φ(X),
denoted v |= φ, when all the constraints in φ hold after replacing every clock x
by its value v(x). For δ ∈ R≥0, we denote v + δ the valuation that maps every
clock x to v(x) + δ. For R ⊆ X, R[v] is the valuation that sets x to 0 if x ∈ R,
and that sets x to v(x) otherwise.

A timed automaton (TA) is a tuple A = (Q, q0, F,X,Act, T ) where Q is a
finite set of states with initial state q0 ∈ Q and accepting states F ⊆ Q, X is a
finite set of clocks, Act is a finite alphabet of actions, T ⊆ Q×Φ(X)×2X×Act×Q
is a finite set of transitions (q, g,R, a, q′) where g is a guard, R is the set of clocks
that are reset and a is the action of the transition.

The semantics of a TA A is given by a transition system whose states are
configurations (q, v) ∈ Q×R

X
≥0. The initial configuration is (q0,0). We have delay

transitions: (q, v) δ−→ (q, v+δ) for δ ∈ R≥0, and action transitions: (q, v) a−→ (q′, v′)
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if there exists a transition (q, g,R, a, q′) ∈ T such that v |= g and v′ = [R]v. A run
is a finite sequence of transitions starting from the initial configuration (q0,0).
A run is accepting is it ends in a configuration (q, v) with an accepting state
q ∈ F .

The reachability problem consists in deciding if a given TA A has an accepting
run. This problem is known to be Pspace-complete [1].

2.2 Symbolic Semantics

The reachability problem cannot be solved directly from A due to the uncountable
number of configurations. The standard solution is to use symbolic semantics of
timed automata by grouping valuations together. A zone is a set of valuations
described by a conjunction of two kinds of constraints: xi#c and xi −xj#c where
xi, xj ∈ X, c ∈ Z and # ∈ {<,≤,=,≥, >}.

The zone graph ZG(A) of a timed automaton A = (Q, q0, F,X,Act, T ) is a
transition system with nodes of the form (q, Z) where q ∈ Q and Z is a zone. The
initial node is (q0, Z0) where Z0 = {0+δ | δ ∈ R≥0}. The nodes (q, Z) with q ∈ F
are accepting. There is a transition (q, Z) ⇒ (q′, Z ′) if there exists a transition
(q, g,R, a, q′) ∈ T such that Z ′ = {v′ ∈ R≥0 | ∃v ∈ Z ∃δ ∈ R≥0 (q, v) a−→ δ−→
(q′, v′)} and Z ′ 	= ∅. The relation ⇒ is well-defined as it can be shown that if Z
is a zone, then Z ′ is a zone. Zones can be efficiently represented by Difference
Bound Matrices (DBMs) [10] and the successor Z ′ of a zone Z can be efficiently
computed using this representation.

The zone graph ZG(A) is still infinite [9], and an additional abstraction step is
needed to obtain a finite transition system. An abstraction operator is a function
a : P(RX

≥0) → P(RX
≥0) such that W ⊆ a(W ) and a(a(W )) = a(W ) for every set

W of valuations. An abstraction operator defines an abstract symbolic semantics.
Similarly to the zone graph, we define the abstract zone graph ZGa(A). Its initial
node is (q0, a(Z0)) and we have a transition (q, Z) ⇒a (q′, a(Z ′)) if a(Z) = Z
and (q, Z) ⇒ (q′, Z ′).

In order to solve the reachability problem for A from ZGa(A), the abstraction
operator a should have the property that every run of A has a corresponding
path in ZGa(A) (completeness) and conversely, every path in ZGa(A) should
correspond to a run in A (soundness). Furthermore, ZGa(A) should be finite.
Several abstraction operators have been introduced in the literature [4,9]. The
abstraction operator ExtraLU

+ [4] has all the required properties above. More-
over, the ExtraLU

+ abstraction of a zone is itself a zone. It can be computed
from the DBM representation of the zone. This allows to compute the abstract
zone graph efficiently using DBMs as a symbolic representation for zones. The
ExtraLU

+ abstraction is used by most implementation including the state-of-the-
art tool UPPAAL [2]. The theorem below reduces the reachability problem for
A to the reachability problem in the finite graph ZGExtraLU

+
(A).

Theorem 1 ([4]). There is an accepting run in A iff there exists a path in
ZGExtraLU

+
(A) from (q0,ExtraLU+(Z0)) to some state (q, Z) with q ∈ F . Further-

more ZGExtraLU
+
(A) is finite.
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Algorithm 1.1. Standard reachability algorithm for timed automaton A.

1 function reachability check(A)
2 W := {(q0,ExtraLU

+(Z0))} ; P := W // Invariant: W ⊆ P
3

4 while (W �= ∅) do
5 take and remove a node (q, Z) from W
6 i f (q i s accept ing )
7 return Yes
8 else
9 for each (q, Z) ⇒ExtraLU

+ (q′, Z′)
10 i f the re i s no (qB , ZB) ∈ P s . t . (q′, Z′) ⊆ (qB , ZB)
11 for each (qS , ZS) ∈ P such that (qS , ZS) ⊆ (q′, Z′)
12 remove (qS , ZS) from W and P
13 add (q′, Z′) to W and to P
14

15 return No

2.3 Reachability Algorithm

Algorithm 1.1 is the standard reachability algorithm for timed automata. It
explores the finite abstract zone graph ZGExtraLU

+
(A) of an automaton A from

the initial node until it finds an accepting node, or it has visited the entire state-
space of ZGExtraLU

+
(A). It maintains a set of waiting nodes W and a set of visited

nodes P such that W ⊆ P .
Algorithm 1.1 uses zone inclusion to stop exploration, and this is essential

for its efficiency. We have (q, Z) ⊆ (q′, Z ′) when q = q′ and Z ⊆ Z ′. Notice
that zone inclusion is a simulation relation over nodes since zones are sets of
valuations. Zone inclusion is first used in line 10 to stop the exploration in (q, Z)
if there is a bigger node (qB , ZB) in P . It is also used in line 12 to only keep the
maximal nodes w.r.t. ⊆ in P and W .

Algorithm 1.1 does not specify any exploration strategy. As we have stressed
in the introduction, the search order greatly influences the number of nodes
visited by the algorithm and stored in the sets W and P . At first sight it may
seem strange why there should be a big difference between, say, BFS and DFS
search orders. The cause is the optimisation due to subsumption w.r.t. ⊆ in
lines 10 and 12. When equality on nodes is used instead of zone inclusion, every
node is visited. Hence, BFS and DFS coincide in the sense that they will visit the
same nodes, while not in the same order. The situation is very different with zone
inclusion. Consider again the two nodes (q2, Z2) ⊆ (q2, Z ′

2) in Figure 1b. Since
the smaller node (q2, Z2) is reached first, the entire subtrees of both nodes are
visited whereas it would be sufficient to explore the subtree of the bigger node
(q2, Z ′

2) to solve the reachability problem. Indeed, every node below (q2, Z2) is
simulated by the corresponding node below (q2, Z ′

2). Notice that the problem
occurs both with a DFS and with a BFS strategy since the bigger node (q2, Z ′

2)
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is further from the root node than the smaller node (q2, Z2). When the bigger
node is found before the smaller one, as in Figure 1c, only the subtree of the
bigger node is visited. An optimal search strategy would guarantee that big
nodes are visited before small ones. In the remaining of the paper we propose
two heuristics to optimise the search order.

3 Ranking System

In this section we propose an exploration strategy to address the phenomenon we
have presented in the introduction: we propose a solution to stop the exploration
of the subtree of a small node when a bigger node is reached. As we have seen,
the late discovery of big nodes causes unnecessary explorations of small nodes
and their subtrees. In the worst case, the number of needlessly visited nodes may
be exponential (cf. Figure 2).

Our goal is to minimise the number of visited nodes as well as the number of
stored nodes (i.e. the size of P in Algorithm 1.1). Consider again the situation in
Figure 1b where (q3, Z3) ⊆ (q3, Z ′

3). When the big node (q3, Z ′
3) is reached, we

learn that exploring the small node (q3, Z3) is unnecessary. In such a situation,
Algorithm 1.1 erases the small node (q3, Z3) (line 10), but all its descendants
that are in the waiting list W will be still explored.

A first and straightforward solution would be to erase the whole subtree of the
small node (q3, Z3). Algorithm 1.1 would then proceed with the waiting nodes
in the subtree of (q3, Z ′

3). This approach is however too rudimentary. Indeed, it
may happen that the two nodes (q4, Z4) and (q4, Z ′

4) in Figure 1b are identical.
Then, erasing the whole subtree of (q3, Z3) will lead to exploring (q4, Z4) and all
its subtree twice. We have observed on classical benchmarks (see Section 5) that
identical nodes are frequently found. While this approach is correct, it would
result in visiting more nodes than the classical algorithm.

We propose a more subtle approach based on an interesting property of
Algorithm 1.1. Consider the two nodes (q4, Z4) and (q4, Z ′

4) in Figure 1b again,
and assume that (q4, Z ′

4) is reached after (q4, Z4). If the two nodes are identical,
then (q4, Z ′

4) is erased by Algorithm 1.1 in line 10, but (q4, Z4) is kept since it
has been visited first. Conversely, if the two nodes are different, we still have
(q4, Z4) ⊆ (q4, Z ′

4), then (q4, Z4) is erased by Algorithm 1.1 in line 10. Hence,
as the algorithm explores the subtree of (q3, Z ′

3), it progressively erases all the
nodes in the subtree of (q3, Z3) that are smaller than some node in the subtree
of (q3, Z ′

3). At the same time, it keeps the nodes that are identical to some node
below (q3, Z ′

3), hence avoiding several explorations of the same node.
Now, it remains to make all this happen before the subtree of (q3, Z3) is devel-

oped any further. This is achieved by giving a higher priority to (q3, Z ′
3) than

all the waiting nodes below (q3, Z3). This priority mechanism is implemented by
assigning a rank to every node.

Algorithm 1.2 below is a modified version of Algorithm 1.1 that implements
the ranking of nodes (the modifications are highlighted). Nodes are initialised
with rank 0. The rank of a node (q′, Z ′) is updated with respect to the ranks
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of the nodes (qS , ZS) that are simulated by (q′, Z ′) (line 15). For each node
(qS , ZS), we compute the maximum rank r of the waiting nodes below (qS , ZS).
Then, rank(q′, Z ′) is set to max(rank(q′, Z ′), r+1) giving priority to (q′, Z ′) over
the waiting nodes below (qS , ZS).

Algorithm 1.2. Reachability algorithm with ranking of nodes for timed
automaton A. The set P is stored as a tree →.

1 function reachability check(A)

2 W := {(q0, ExtraLU
+(Z0))} ; P := W

3 init rank(q0, ExtraLU
+(Z0))

4

5 while (W �= ∅) do
6 take and remove a node (q, Z) with highest rank from W
7 i f (q i s accept ing ) then
8 return Yes
9 else

10 for each (q, Z) ⇒ExtraLU
+ (q′, Z′)

11 init rank(q′, Z′)
12 i f the re i s no (qB , ZB) ∈ P s . t . (q′, Z′) ⊆ (qB , ZB) then
13 for each (qS , ZS) ∈ P s . t . (qS , ZS) ⊆ (q′, Z′)
14 i f (qS , ZS) �∈ W then // imp l i e s not a l e a f node in P
15 rank(q′, Z′) := max(rank(q′, Z′), 1 + max rank waiting(qS , ZS))
16 remove (qS , ZS) from W and P
17 add (q′, Z′) to W and to P
18 return No
19

20 function max rank waiting (q, Z )
21 i f (q, Z) i s in W then // imp l i e s l e a f node in P
22 return rank(q, Z)
23 else
24 r := 0 ;
25 for each edge (q, Z) → (q′, Z′) in P
26 r := max(r,max rank waiting(q′, Z′))
27 return r
28

29 function init rank(q, Z )
30 i f Z i s the true zone then
31 rank(q, Z) := ∞
32 else
33 rank(q, Z) := 0

The function max rank waiting determines the maximal rank among waiting
nodes below (qS , ZS). To that purpose, the set of visited nodes P is stored as a
reachability tree. When a node (qS , ZS) is removed in line 16, its parent node is
connected to its child nodes to maintain reachability of waiting nodes. Observe
that the node (q′, Z ′) is added to the tree P in line 17 after its rank has been
updated in line 15. This is needed in the particular case where (qS , ZS) is an
ancestor of node (q′, Z ′) in line 15. The rank of (q′, Z ′) will be updated taking
into account the waiting nodes below (qS , ZS). Obviously, (q′, Z ′) should not be
considered among those waiting nodes, which is guaranteed since (q′, Z ′) does
not belong to the tree yet.

The intuition behind the use of ranks suggest one more useful heuristic.
Ranks are used to give priority to exploration from some nodes over the oth-
ers. Nodes with true zones are a special case in this context, since they can
never be covered, and in consequence it is always better to explore them first.
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(q1, Z1)

(q3, Z3) (q2, Z2)

(q4, Z4) (q3, Z′
3)

(q4, Z′
4)

. . .

⊆
⊆

Fig. 3. Reachability tree for Algo-
rithm 1.2 on the automaton in
Figure 1a.

s

. . . . . . . . .

v1 v2 vn

. . . . . . . . .

t

. . . . . .

Fig. 4. Waiting strategy starts explor-
ing from t only after all paths leading
to t are explored.

We implement this observation by simply assigning the biggest possible rank
(∞) to such nodes (line 31 in the Algorithm).

Let us explain how the Algorithm 1.2 works on an example. Consider again
the automaton in Figure 1a. The final exploration graph is depicted in Figure 3.
When (q1, Z1) is visited, both (q3, Z3) and (q2, Z2) are put into the waiting list
W with rank 0. Recall that exploring (q3, Z3) first is the worst exploration order.
This adds (q4, Z4) to the waiting list with rank 0. The exploration of (q2, Z2)
adds (q3, Z ′

3) to the waiting list. At this stage, the rank of (q3, Z ′
3) is set to 1

since it is bigger than (q3, Z3) which is erased. The node (q3, Z ′
3) has the highest

priority among all waiting nodes and is explored next. This generates the node
(q4, Z ′

4) that is bigger than (q4, Z4). Hence (q4, Z4) is erased, (q4, Z ′
4) gets rank

1 and the exploration proceeds from (q4, Z ′
4). One can see that, when a big node

is reached, the algorithm not only stops the exploration of the smaller node
but also of the nodes in its subtree. Figure 3 shows a clear improvement over
Figure 1b.

4 Waiting Strategy

We present an exploration strategy that will aim at reducing the number of
exploration mistakes: situations when a bigger node is discovered later than a
smaller one. The ranking strategy from the previous section reduced the cost of
a mistake by stopping the exploration from descendants of a small node when
it found a bigger node. By contrast, the waiting strategy of this section will not
develop a node if it is aware of some other parts of exploration that may lead to
a bigger node.

The waiting strategy is based on topological-like order on states of automata.
We first present this strategy on a single automaton. Then we consider networks
of timed automata, and derive a topological-like ordering from orderings on the
components. Before we start we explain what kind of phenomenon our strategy
is capturing.

To see what we aim at, consider the part of a timed automaton depicted
in Figure 4. There is a number of paths form state s to state t, not necessary
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of the same length. Suppose the search strategy from (s, Z) has reached (t, Z1)
by following the path through v1. At this point it is reasonable to delay explo-
ration from (t, Z1) until all explorations of paths through v2, . . . , vk finish. This
is because some of these explorations may result in a bigger zone than Z1, and
in consequence make an exploration from (t, Z1) redundant.

The effect of such a waiting heuristic is clearly visible on our example from
Figure 2. The automaton consists of segments: from q1 to q3, from q3 to q5, etc.
Every segment is a very simple instance of the situation from Figure 4 that we
have discussed in the last paragraph. There are two paths that lead from state
q1 to state q3. These two paths have different lengths, so with a BFS exploration
one of the paths will reach q3 faster than the other. The longest path (that one
going through q2) gives the biggest zone in q3; but BFS will no be able to use
this information; and in consequence it will generate exponentially many nodes
on this example. The waiting heuristic will collect all the search paths at states
q3, q5, . . . and will explore only the best ones, so its search space will be linear.

We propose to implement these ideas via a simple modification of the stan-
dard algorithm. The waiting strategy will be based on a partial order �topo of
sates of A. We will think of it as a topological order of the graph of the automa-
ton (after removing cycles in some way). This order is then used to determine
the exploration order.

Algorithm 1.3. Reachability algorithm with waiting strategy

This algorithm is obtained from the standard Algorithm 1.1 by changing line 5 to
take and remove (q, Z) minimal w. r . t . �topo from W

In the remaining of the section we will propose some simple ways of finding
a suitable �topo order.

4.1 Topological-Like Ordering for a Timed Automaton

It is helpful to think of the order �topo on states as some sort of topological
ordering, but we cannot really assume this since the graphs of our automata
may have loops. Given a timed automaton A, we find a linear order on the
states of A in two steps:

1. we find a maximal subset of transitions of A that gives a graph ADAG

without cycles;
2. then we compute a topological ordering of this graph.

Given an automaton A, the graph ADAG can be computed by running a
depth-first search (DFS) from the initial state of A. While traversing A, we only
consider the transitions that point downwards or sideways; in other words we
ignore all the transitions that lead to a state that is on the current search stack.
At the end of the search, when all the states have been visited, the transitions
that have not been ignored form a graph ADAG.
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As an example, consider the timed automaton A in Figure 1a. The transition
from q4 to q1 is ignored when computing ADAG starting from q1. A topological-
like ordering is computed from the resulting graph: q1 �topo q2 �topo q3 �topo q4.
Let us see how �topo helps Algorithm 1.1 to explore bigger nodes first. Starting
from node (q1, true), Algorithm 1.1 adds (q2, true) and (q3, y > 1) to the waiting
list. Since q2 �topo q3, the algorithm then explores node (q2, true), hence adding
node (q3, true) to the waiting list. The small node (q3, y > 1) is then automati-
cally erased, and the exploration proceeds from the big node (q3, true). Observe
that the exploration of the node (q3, y > 1) is postponed until the second path
reaches q3. Upon this stage, the zone inclusion relation will help to stop all
explorations of smaller nodes; in our case it is (q3, y > 1). Thus, the algorithm
performs optimally on this example, no exploration step can be avoided.

4.2 Topological-Like Ordering for Networks of Timed Automata

Real-time systems often consist of several components that interact with each
other. In order to apply the same approach we need to find an ordering on a
set of global states of the system. For this we will find an ordering for each
component and then extend it to the whole system without calculating the set
of global states.

We suppose that each component of a system is modelled by a timed
automaton Ai = (Qi, q0i, Fi,Xi, Acti, Ti). The system is modelled as the prod-
uct A = (Q, q0, F,X,Act, T ) of the components (Ai)1≤i≤k. The states of A
are the tuples of states of A1, . . . ,Ak: Q = Q1 × · · · × Qk with initial state
q0 = 〈q01, . . . , q0k〉 and final states F = F1 × · · · × Fk. Clocks and actions are
shared among the processes: X =

⋃
1≤i≤k Xi and Act =

⋃
1≤i≤k Acti. Inter-

actions are modelled by the synchronisation of processes over the same action.
There is a transition (〈q1, . . . , qn〉, g, R, a, 〈q′

1, . . . , q
′
n〉) ∈ T if

– either, there are two processes i and j with transitions (qi, gi, Ri,a, q′
i) ∈ Ti

and (qj , gj , Rj ,a, q′
j) ∈ Tj such that g = gi ∧gj and R = Ri ∪Rj , and q′

l = ql

for every process l 	= i, j (synchronised action)
– or there is a process i with transition (qi, g, R, a, q′

i) ∈ Ti such that for every
process l 	= i, a 	∈ Actl and q′

l = ql (local action).

The product above allows synchronisation of 2 processes at a time. Our work
does not rely on a specific synchronisation policy, hence other models of interac-
tions (broadcast communications, n-ary synchronisation, etc.) could be consid-
ered as well. Notice that the product automaton A is, in general, exponentially
bigger than each component Ai.

The semantics of a network of timed automata (Ai)1≤i≤k is defined as the
semantics of the corresponding product automaton A. As a result, the reacha-
bility problem for (Ai)1≤i≤k reduces to the reachability problem in A.

In order to apply the same approach as above, an ordering must be defined
on the states of A which are tuples q = 〈q1, . . . , qk〉 of states of the component
automata Ai. It would not be reasonable to compute the product automaton A
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as its size grows exponentially with the number of its components. We propose an
alternative solution that consists in computing a topological-like ordering �i

topo

for each component Ai. To that purpose, we can apply the algorithm introduced
in the previous section. Then, the ordering of tuples of states is defined pointwise:

Definition 1 (Joint ordering). For q, q′ ∈ Q1 × · · ·×Qk, we have q �topo q′

if qi �i
topo q′

i for all 1 ≤ i ≤ k.

Thus for networks of timed automata we consider the joint ordering in our
waiting strategy.

5 Experimental Evaluation

We present and comment the experimental results that we have performed. The
results indicate that a mix of a ranking and waiting strategies avoids mistakes
in most the examples.

We have evaluated the ranking system (Section 3) and the waiting strategy
(Section 4) on classical benchmarks from the literature1: Critical Region
(CR), Csma/Cd (C), Fddi (FD), Fischer (Fi), Flexray (Fl-PL) and
Lynch (L), and on the BlowUp (B) example in Figure 2. These automata
have no reachable accepting state, hence forcing algorithms to visit the entire
state-space of the automata to prove unreachability.

Our objective is to avoid mistakes during exploration of the state-space of
timed automata. At the end of the run of the algorithm, the set of visited nodes
P forms an invariant showing that accepting nodes are unreachable. Every node
that is visited by the algorithm and that does not belong to P at the end of the
run is useless to prove unreachability. This happens when the algorithm does
a mistake: it first visits a small node before reaching a bigger node later. We
aim at finding a search order that visits bigger nodes first, hence doing as few
mistakes as possible. Notice that it is not always possible to completely avoid
mistakes since the only paths to a big node may have to visit a small node first.

We compare three algorithms in Table 1: BFS the standard breadth-first
search algorithm2 (i.e. Algorithm 1.1), R-BFS which implements a breadth-first
search with priority to the highest ranked nodes (i.e. Algorithm 1.2) and TW-
BFS which combines giving highest priority to true-zone nodes and the waiting
strategy. We report on the number of visited nodes, the number of mistakes, the
maximum number of stored nodes, and the final number of stored nodes. We also
mention in column “visited ranking” the number of nodes that are re-visited to
update the rank of the nodes by algorithm R-BFS (line 15 in Algorithm 1.2).
The number of visited nodes gives a good estimate of the running time of the
algorithm, while the maximal number of stored nodes gives a precise indication
of the memory used for the set P .

The ranking system gives very good results on all models except Csma/Cd. It
makes no mistakes on Fischer and Lynch. This is due to the highest priority
1 The models are available from http://www.labri.fr/perso/herbrete/tchecker.
2 Algorithm 1.1 is essentially the algorithm that is implemented in UPPAAL [2].

http://www.labri.fr/perso/herbrete/tchecker
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given to true-zone nodes. Indeed, column “visited ranking” shows that ranks
are never updated, hence the nodes keep their initial rank. It also performs
impressively well on BlowUp, Fddi and Flexray, gaining several orders of
magnitude in the number of mistakes. However, it makes more mistakes than
BFS on Csma/Cd. Indeed, the ranking system is efficient when big nodes are
reached quickly, as the example in Figure 3 shows. When the big node (q3, Z ′

3)
is reached, the ranking system stops the exploration of the subtree of the small
node (q3, Z3) at (q4, Z4). However, making the path q1 → q2 → q3 longer in
the automaton in Figure 1a leads to explore a bigger part of the subtree of
(q3, Z3). If this path is long enough, the entire subtree of (q3, Z3) may be visited
before (q3, Z ′

3) is reached. The ranking system does not provide any help in this
situation. This bad scenario occurs in the Csma/Cd example.

We have experimented the waiting strategy separately (not reported in
Table 1). While the results are good on some models (BlowUp, Fddi,
Csma/Cd), the waiting strategy makes a lot more mistakes than the standard
BFS on Lynch and Flexray. Indeed, the waiting strategy is sensitive to the
topological ordering. Consider the automaton in Figure 1a with an extra transi-
tion q3 → q2. The loop on q2 and q3 may lead to different topological orderings,
for instance q1 �topo q2 �topo q3 �topo q4 and q1 �topo q3 �topo q2 �topo q4.
These two choices lead to very different behaviours of the algorithm. Once the
initial node has been explored, the two nodes (q3, y > 1) and (q2, true) are in the
waiting queue. With the first ordering, (q2, true) is selected first and generates
(q3, true) that cuts the exploration of the smaller node (q3, y > 1). However,
with the second ordering (q3, y > 1) is visited first. As a result, (q3, true) is
reached too late, and the entire subtree of (q3, y > 1) is explored unnecessarily.
We have investigated the robustness of the waiting strategy w.r.t. random topo-
logical orderings for the models in Table 1. The experiments confirm that the
waiting strategy is sensitive to topological ordering. For most models, the best
results are achieved using the topological ordering that comes from running a
DFS on the automaton as suggested in Section 4.1.

The two heuristics perform well on different models. This suggests to com-
bine their strengths. Consider again the automaton in Figure 1a with an extra
transition q3 → q2. As explained above, due to the cycle on q2 and q3, sev-
eral topological orderings are possible for the waiting strategy. The choice of
q1 �topo q3 �topo q2 �topo q4 leads to a bad situation where (q3, y > 1) is taken
first when the two nodes (q3, y > 1) and (q2, true) are in the waiting queue.
As a result, the node (q3, y > 1) is visited without waiting the bigger node
(q3, true). In such a situation, combining ranking and the waiting strategies
helps. Indeed, after (q3, y > 1) has been explored, the waiting queue contains
two nodes (q2, true) and (q4, 1 < y ≤ 5). Since q2 �topo q4, the algorithm picks
(q2, true), hence generating (q3, true). As a true-zone node, (q3, true) immedi-
ately gets a higher rank than every waiting node. Exploring (q3, true) generates
(q4, y ≤ 5) that cuts the exploration from the small node (q4, 1 < y ≤ 5).
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We have tried several combinations of the two heuristics. The best one con-
sists in using the waiting strategy with priority to true zones. More precisely,
the resulting algorithm TW-BFS selects a waiting node as follows:

– True-zone nodes are taken in priority,
– If there is no true-zone node, the nodes are taken according to the waiting

strategy, and in BFS order.

As Table 1 shows, TW-BFS makes no mistake on all models but three. Crit-
ical Region has unavoidable mistakes: big nodes that can only be reached
after visiting a smaller node. The topological ordering used for Fddi is not opti-
mal. Indeed, there exists an optimal topological search order for which TW-BFS
makes no mistake, but it is not the one obtained by the algorithm presented
in Section 4.1. Finally, the algorithm makes a lot of mistakes on Flexray, but
the memory usage is almost optimal: the mistakes are quickly eliminated. This
example is the only one where applying the ranking heuristic clearly outperforms
TW-BFS.

We have also evaluated TW-BFS using randomised versions of the models in
Table 1. Randomisation consists in taking the transitions in a non-fixed order,
hence increasing the possibility of racing situations like in Figure 1. The experi-
ments show that the strategies are robust to such randomisation, and the results
on random instances are very close to the ones reported in the table.

The ranking strategy R-BFS requires to keep a tree structure over the passed
nodes. Using the classical left child-right sibling encoding, the tree can be repre-
sented with only two pointers per node. This tree is explored when the rank of a
node is updated (line 15 in Algorithm 1.2). Column “visited ranking” in Table 1
shows that these explorations do not inflict any significant overhead in terms of
explored nodes, except for Csma/Cd and Critical Region for which it has
been noticed above that algorithm R-BFS does not perform well. Furthermore,
exploring the tree is inexpensive since the visited nodes, in particular the zones,
have already been computed. Both the ranking strategy and the waiting strategy
require to sort the list of waiting nodes. Our prototype implementation based on
insertion sort is slow. However, preliminary experiments show that implementing
the list of waiting nodes as a heap turns out to be very efficient.

To summarise we can consider our findings from a practical point of view of
an implementation. The simplest to implement strategy would be to give priority
to true zones. This would already give some improvements, but for example for
Fddi there would be no improvement since there are no true zones. R-BFS gives
very good results on Flexray model its implementation is more complex than
TW-BFS strategy is relatively easy to implement and has very good performance
on all but one model, where it is comparable to standard BFS. This suggests that
TW-BFS could be used as a replacement for BFS.
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Table 1. Experimental results: BFS corresponds to Algorithm 1.1 with a BFS order on
the waiting nodes, R-BFS implements the ranking system on top of the BFS algorithm
(i.e. Algorithm 1.2), and TW-BFS implements the waiting strategy with a priority to
true-zone nodes.

BFS R-BFS TW-BFS

visited mist. stored visited mist. stored visited visited mist. stored
final max final max ranking final max

B-5 63 52 11 22 16 5 11 11 13 11 0 11 11
B-10 1254 1233 21 250 31 10 21 21 28 21 0 21 21
B-15 37091 37060 31 6125 46 15 31 31 43 31 0 31 31

FD-8 2635 2294 341 439 437 96 341 341 579 349 8 341 341
FD-10 10219 9694 525 999 684 159 525 525 1168 535 10 525 525
FD-15 320068 318908 1160 18707 1586 426 1160 1160 4543 1175 15 1160 1160

C-10 39698 5404 34294 48286 59371 25077 34294 52210 54319 34294 0 34294 34302
C-11 98118 17233 80885 124220 153042 72157 80885 130557 160822 80885 0 80885 80894
C-12 239128 50724 188404 311879 378493 190089 188404 320181 430125 188404 0 188404 188414

Fi-7 11951 4214 7737 7738 7737 0 7737 7737 0 7737 0 7737 7737
Fi-8 40536 15456 25080 25082 25080 0 25080 25080 0 25080 0 25080 25080
Fi-9 135485 54450 81035 81038 81035 0 81035 81035 0 81035 0 81035 81035

L-8 45656 15456 30200 30202 30200 0 30200 30200 0 30200 0 30200 30200
L-9 147005 54450 92555 92558 92555 0 92555 92555 0 92555 0 92555 92555
L-10 473198 186600 286598 286602 286598 0 286598 286598 0 286598 0 286598 286598

CR-3 1670 447 1223 1223 1532 309 1223 1223 1837 1563 340 1223 1223
CR-4 21180 7440 13740 13740 17694 3954 13740 13740 24295 19489 5749 13740 13740
CR-5 285094 113727 171367 171367 216957 45590 171367 171367 307010 257137 85770 171367 171367

Fl-PL 881214 228265 652949 652949 655653 2704 652949 652949 6977 12660557 11997402 663155 684467

6 Conclusion

We have analysed the phenomenon of mistakes in the zone based reachability
algorithm for timed automata. This situation occurs when the exploration algo-
rithm visits a node that is later removed due to a discovery of a bigger node.
It is well known that DFS exploration may suffer from an important number of
mistakes. We have exhibited examples where BFS makes an important number
of mistakes that can be avoided.

To limit the number of mistakes in exploration we have proposed two heuris-
tics: ranking system and the waiting strategy. The experiments on standard mod-
els show that, compared with the standard BFS reachability algorithm the strate-
gies using our heuristics give not only a smaller number of visited nodes, but
also a smaller number of stored nodes. Actually, on most examples our strate-
gies are optimal as they do not make any mistakes. In addition, the experiments
indicate that the TW-BFS strategy works often as good as the combination of
both waiting and ranking strategies, while its implementation is much simpler.
Therefore, we suggest to use the TW-BFS algorithm instead of standard BFS for
reachability checking.

Acknowledgements. The authors wish to thank Igor Walukiewicz for the many help-

ful discussions.
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Abstract. In this paper we consider the problem of computing the min-
imum expected time to reach a target and the synthesis of the corre-
sponding optimal controller for a probabilistic timed automaton (PTA).
Although this problem admits solutions that employ the digital clocks
abstraction or statistical model checking, symbolic methods based on
zones and priced zones fail due to the difficulty of incorporating proba-
bilistic branching in the context of dense time. We work in a generalisation
of the setting introduced by Asarin and Maler for the corresponding prob-
lem for timed automata, where simple and nice functions are introduced
to ensure finiteness of the dense-time representation. We find restrictions
sufficient for value iteration to converge to the minimum expected time on
the uncountable Markov decision process representing the semantics of a
PTA. We formulate a Bellman operator on the backwards zone graph of a
PTA and prove that value iteration using this operator equals that com-
puted over the PTA’s semantics. This enables us to extract an ε-optimal
controller from value iteration in the standard way.

1 Introduction

Systems which exhibit real-time, probabilistic and nondeterministic behaviour
are widespread and ubiquitous in many areas such as medicine, telecommunica-
tions, robotics and transport. Timing constraints are often vital to the correct-
ness of embedded devices and stochasticity is needed due to unreliable channels,
randomisations and component failure. Finally, nondeterminism is an important
concept which allows us to model and analyse systems operating in a distributed
environment and/or exhibiting concurrency. A natural model for such systems,
probabilistic timed automata (PTAs), a probabilistic extension of timed automata
(TAs) [1], was proposed in [20]. They are finite-state automata equipped with
real-valued clocks which measure the passage of time and whose transitions are
probabilistic. Transitions are expressed as discrete probability distributions over
the set of edges, namely a successor location and a set of clocks to reset.

An important class of properties on PTAs are probabilistic reachability prop-
erties. They allow us to check statements such as: “with probability 0.05 or
less the system aborts” or “the data packet will be delivered within 1 second
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with minimum 0.95 probability”. Model checking algorithms for these properties
are well studied. Forwards reachability [20] yields only approximate probability
values (upper bounds on maximum reachability probabilities). An abstraction
refinement method, based on stochastic games, has subsequently been proposed
in [17] for the computation of exact values and implemented in PRISM [18].
An alternative method is backward reachability [21], also giving exact values.
These are all symbolic algorithms based on zones, a structure that represents in
a concise way sets of the automaton states with equivalent behaviour.

Another important class of properties, which is the focus of this paper, is
expected reachability. They can express statements such as “the expected num-
ber of packets sent before failure is at least 100” or “the expected time until a
message is delivered is at most 20ms”. These properties turned out to be more
difficult to verify on PTAs and currently no symbolic approach exists. Even
for TAs, the research first concentrated on checking whether there exist system
behaviours that satisfy a certain property φ (for example, reaching the target
set of states). In many situations this is not sufficient, as we often want to dis-
tinguish between behaviours that reach target states in 10 or in 1000 seconds. In
[2], a backward fixed-point algorithm was proposed for controller synthesis for
TAs, which generates a controller that reaches the target in minimum time. The
analogous problem for priced timed automata, a model comprising more general
reward (or cost) structures, was also considered. The minimum reward reacha-
bility for this model has been solved using the region graph method [4], and later
extended for more efficient priced zones [22] and implemented in Uppaal [23].

Contributions. We propose the first zone-based algorithm to compute the min-
imum expected time to reach a target set and synthesise the ε-optimal controller
for PTAs. The semantics of a PTA is an uncountable Markov decision process
(MDP). Under suitable restrictions, we are able to prove that value iteration
converges to the minimum expected time on this MDP. We formulate a Bellman
operator on the backwards zone graph of a PTA and show that value iteration
using this operator yields the same value as that computed on the MDP. This
enables us to extract an ε-optimal controller from value iteration in the standard
way. This problem has been open for several years, with previous symbolic zone-
based methods, including priced zones, being unsuitable for computing expected
values since accumulated rewards are unbounded. In order to represent the value
functions we introduce rational k-simple and rational k-nice functions, a gener-
alisation of Asarin and Maler’s classes of functions [2].

Related Work. Expected reachability properties of PTAs can be verified using
the digital clocks method [19], which assumes an integral model of time as
opposed to a dense model of time. This method, however, suffers from state-
space explosion. In [12], the minimum expected reward for priced timed games
has been solved using statistical model checking and Uppaal-SMC [11]. This
is orthogonal to numerical model checking, based on simulation and hypothesis
testing, giving only approximate results which are not guaranteed to be correct.



142 A. Jovanović et al.

In [7] the authors consider priced probabilistic timed automata and study
reward-bounded probabilistic reachability, which determines whether the max-
imal probability to reach a set of target locations, within given bounds on the
accumulated reward and elapsed time, exceeds a threshold. Although this prob-
lem is shown to be undecidable [6], a semi-decidable backwards algorithm using
priced zones, which terminates if the problem is affirmative, is implemented in
Fortuna [8].

Outline. In Section 2 we define MDPs and give existing results concerning
optimal reward computation for uncountable MDPs. Section 3 defines PTAs and
introduces the assumptions needed for the adoption of the results of Section 2.
In Section 4, we present our algorithm for computing the minimum expected
time and synthesis of an ε-optimal controller using the backwards zone graph
of a PTA. Section 4 also introduces a representation of the value functions that
generalise the simple and rational nice functions of [2] and gives an example
demonstrating the approach. We conclude with Section 5.

An extended version of this paper, with proofs, is available as [15].

2 Background

Let R be the set of non-negative reals, N the integers, Q the rationals and Q+

the non-negative rationals. A discrete probability distribution over a set S is a
function μ : S→[0, 1] such that

∑
s∈S μ(s) = 1 and the set {s ∈ S | μ(s)>0} is

finite. We denote by Dist(S) the set of distributions over S.
Markov Decision Processes (MDPs) is a widely used formalism for modelling

systems which exhibit both nondeterministic and probabilistic behaviour.

Definition 1. An MDP is a tuple M = (S, s0, A,PM,RM), where S is a (possi-
bly uncountable) set of states, s0 ∈ S is an initial state, A is a (possibly uncount-
able) set of actions, PM : (S×A) → Dist(S) is a (partial) probabilistic transition
function and RM : (S×A) → R is a reward function.

A state s of an MDP M has a set of enabled actions, denoted A(s), given by
the set of actions for which PM(s, a) is defined. A transition in M from state
s is first made by nondeterministically selecting an available action a ∈ A(s).
After the choice is made, a successor state s′ is selected randomly according to
the probability distribution PM(s, a), i.e. the probability that a transition to s′

occurs is equal to PM(s, a)(s′), and the reward RM(s, a) is accumulated when
making this transition.

An infinite path is a sequence ω = s0
a0−→ s1

a1−→ s2
a2−→ · · · of transitions

such that PM(si, a)(si+1)>0 for all i�0, and it represents a particular resolution
of both nondeterminism and probability. A finite path is a prefix of an infinite
path ending in a state. The (i+1)th state of a path ω is denoted by ω(i) and the
action associated with the (i+1)th transition by step(ω, i). We denote the set of
all infinite (finite) paths of M by IPathsM (FPathsM) and the last state of a
finite path ω by last(ω).
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A strategy (also called an adversary or policy) of M resolves the choice
between actions in each state, based on the execution so far.

Definition 2. A strategy of an MDP M is a function σ : FPathsM→Dist(A)
such that σ(ω)(a)>0 only if a ∈ A(last(ω)).

For a fixed strategy σ and state s, we can define a probability measure Pσ
s over

the set of infinite paths starting in s [16]. A strategy σ is memoryless if its
choices only depend on the current state, and deterministic if σ(ω) is a point
distribution for all ω ∈ FPathsM. The set of strategies of M is denoted by ΣM.

Two fundamental quantitative properties of MDPs are the probability of
reaching a set of target states and the expected reward accumulated before
reaching a target. For a strategy σ, state s and set of target states F , the
probability of reaching F and expected reward accumulated before reaching F
from s under σ are given by:

P
σ
M(s, F ) def= Pσ

s {ω ∈ IPathsM | ω(i) ∈ F for some i ∈ N}
E

σ
M(s, F ) def=

∫
ω∈IPathsM

rew(ω, F ) dPσ
s

where for any infinite path ω:

rew(ω, F )
def
=

{∑min{k−1 | ω(k)∈F}
i=0 RM(ω(i), step(ω, i)) if ω(k) ∈ F for some k ∈ N

∞ otherwise.

The standard approach is to analyse the optimal values of these measures, i.e.
the minimum and maximum values over all strategies. In this paper, we are
concerned with the maximum probability of reaching a target and minimum
expected accumulated reward before reaching a target:

P
max
M (s, F ) def= supσ∈ΣM P

σ
M(s, F ) and E

min
M (s, F ) def= infσ∈ΣM E

σ
M(s, F ) .

The optimal values can be computed using a Bellman operator [5]. More pre-
cisely, under certain conditions on the MDP and target set under study, using
a Bellman operator the optimal values can be obtained through a number of
techniques, including value iteration and policy iteration, see for example [9,10].
Concerning minimum expected reachability we have the following definition.

Definition 3. Given an MDP M and target set F , the Bellman operator TM :
(S→R) → (S→R) for minimum expected reachability is defined as follows. For
any f : S → R and s ∈ S:

TM(f)(s) =
{

0 if s ∈ F
infa∈A(s)

{
RM(s, a) +

∑
s′∈S PM(s, a)(s′)·f(s′)

}
otherwise.

Value iteration for TM corresponds to repeatedly applying the operator when
starting from some initial approximation f0 until some convergence criterion
is met, e.g. computing Tn+1(f0)=T (Tn(f0)) until ‖Tn+1(f0)−Tn(f0)‖ � ε for
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some threshold ε. On the other hand, policy iteration starts with an arbitrary,
deterministic and memoryless strategy, and then tries repeatedly to construct
an improved (deterministic and memoryless) strategy. This is achieved by com-
puting the expected reachability values for the current strategy and, if possible,
updating the actions choices so that the expected reachability values decrease.

We now adapt the results of [14] for the total expected reward for possibly
uncountable-state and uncountable-action set MDPs. The conditions imposed by
[14] correspond, in our setting, to those given below (since we restrict to discrete
distributions and non-negative reward values, the assumptions we require are
weaker).

Assumption 1. For an MDP M and target set F :

(a) A(s) is compact for all s ∈ S;
(b) RM is bounded and a �→ RM(s, a) is lower semi-continuous for all s ∈ S;
(c) if σ is a memoryless, deterministic strategy which is not proper, then

E
σ
M(s, F ) is unbounded for some s ∈ S;

(d) there exists a proper, memoryless, deterministic strategy;

where a strategy σ is called proper if P
σ
M(s, F )=1 for all s ∈ S.

Using these assumptions we have the following result.

Theorem 1 ([14]). If M and F are an MDP and target set for which Assump-
tion 1 holds, then:

− there exists a memoryless, deterministic strategy that achieves the minimum
expected reward of reaching F ;

− the minimum expected reward values are the unique solutions to TM;
− value iteration over TM converges to the minimum expected reward values

when starting from any bounded function;
− policy iteration converges to the minimum expected reward values when start-

ing from any proper, memoryless, deterministic strategy.

3 Probabilistic Timed Automata

We now introduce Probabilistic Timed Automata, a modelling framework for sys-
tems which incorporate probabilistic, nondeterministic and real-time behaviour.

Clocks, Clock Valuations and Zones. Let X be a set of real-valued variables
called clocks, which increase at the same, constant rate. A function v : X→R is
called clock valuation function and the set of all clock valuations is denoted as
R

X . Let 0 be a valuation that assigns 0 to all clocks in X . For any R ⊆ X and
any valuation v on X , we write v[R] for the valuation on X such that v[R](x)=0
if x ∈ R and v[R](x)=v(x) otherwise. For t ∈ R, v+t denotes the valuation
which assigns (v+t)(x)=v(x)+t to all x ∈ X . A zone is an expression of the
form: ζ := x∼c | x−y∼c | ζ∧ζ, where x, y ∈ X , ∼∈ {<,�, >,�} and c ∈ N. The
set of zones on X is denoted Zones(X ). A clock valuation v satisfies a zone ζ,
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denoted v|=ζ, if ζ resolves to true after substituting each occurrence of clock x
with v(x). A zone ζ represents the set of clock valuations v which satisfy it.

We require a number of classical operations on zones [24]. Zone ↗ζ contains
all valuations reachable from a valuation in ζ by letting time pass. Conversely,
↙ζ contains all valuations that can reach ζ by letting time pass. Furthermore,
for a set of clocks R, ζ[R] includes the valuations obtained by those in ζ by
resetting the clocks R and [R]ζ the valuations which result in a valuation in ζ
when the clocks in R are reset to 0.

Definition 4. A PTA P is a tuple (L, l0,X ,Act , enab, prob, inv) where: L is a
finite set of locations; l0 ∈ L is an initial location; X is a finite set of clocks; Act
is a finite set of actions; enab : (L×Act) → Zones(X ) is an enabling condition;
prob : (L×Act) → Dist(2X ×L) is a probabilistic transition function; inv : L →
Zones(X ) is an invariant condition.

A state of P is a pair (l, v) ∈ L×R
X such that the clock valuation v satisfies the

invariant inv(l). A transition is a time-action pair (t, a) corresponding to letting
time t elapse and then performing the action a. In a state (l, v), time can elapse
as long as the invariant inv(l) remains continuously satisfied and action a can be
performed only if the enabling condition enab(l, a) is then satisfied. If transition
(t, a) is performed, then the set of clocks to reset and successor location are
selected randomly according to the probability distribution prob(l, a).

For (l, a) ∈ L×Act , an element (R, l′) ∈ 2X ×L such that prob(l, a)(R, l′)>0
is called an edge of (l, a) and the set of all edges of (l, a) is denoted edges(l, a).

Definition 5. For PTA P = (L, l0,X ,Act , prob, inv) its semantics is given by
the (infinite-state) MDP [[P]] = (S, s0, R×Act ,P[[P]],R[[P]]) where:

− S = {(l, v) ∈ L×R
X | v |= inv(l)} and s0 = (l0,0);

− P[[P]]((l, v), (t, a)) = μ if and only if v+t′ |= inv(l) for all 0 � t′ � t, v+t |=
enab(l, a) and for any (l′, v′) ∈ S:

μ(l′, v′) =
∑ {| prob(l, a)(R, l′) | R ⊆ X ∧ v′ = (v+t)[R] |}

− R[[P]](t, a) = t for all (t, a) ∈ R×Act.

For Theorem 1 to be applicable to semantics of a PTA, we need to ensure
Assumption 1 holds. To this end, we introduce the following assumptions.

Assumption 2. For any PTA P we have:

(a) all invariants and enabling conditions of P are bounded;
(b) only non-strict inequalities are allowed in clock constraints (P is closed);
(c) P is structurally non-zeno [25] (this can be identified syntactically and in a

compositional fashion [26] and guarantees time-divergent behaviour).

Conditions (a) and (b) are necessary and sufficient to ensure A(s) is compact
for all states s ∈ S, i.e. Assumption 1(a) holds. Assumption 1(b) follows from
Definition 5 as, for any (t, a) ∈ R×Act , we have R[[P]](s, (t, a))=t for all s ∈ S.
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l0 l1

l3l2

a 0.7

x:=0
0.3

x:=0

5�x�10

c

2�x�10b

d
e, x�1, x:=0

Fig. 1. PTA example

Structurally non-zeno is sufficient for ensuring Assumption 1(c) holds. More
precisely, if for strategy σ the probability of reaching the target is less than
1, there is a non-negligible set of paths under σ which never reach the target
and, since σ is non-zeno, elapsed time (and hence the accumulated reward) must
diverge on the paths in this set.

The remaining assumption, Assumption 1(d), holds if we restrict attention
to the sub-MDP of [[P]] which contains only states s for which P

max
[[P]] (s, F )=1 [13].

More precisely, if P
max
[[P]] (s, F )=1, then, using the region graph construction [20],

there exists a memoryless, deterministic strategy that reaches the target with
probability 1, and hence this strategy will also be proper.

We have imposed several restrictions on PTAs we analyse. First, bounded-
ness is not actually a restriction since bounded TAs are as expressive as standard
TAs [4] and the result carries over to PTAs. The fact that PTAs must be closed
is not a severe restriction in practice, as any PTA can be infinitesimally approx-
imated by one with closed constraints. Non-zenoness is a standard assumption
for both TAs and PTAs, as it discards unrealistic behaviours, i.e. executions for
which time does not diverge.

Example 1. Consider the PTA shown in Figure 1 where the target is l3. We
assume the invariant in each location equals x�10 and the enabling conditions
for transitions labelled a and d equal x�10. From the state (l0, v), if action a is
chosen, then the minimum expected time equals 0.3·5+0.7·2 = 2.9. On the other
hand, if action d is selected, then the minimum expected time equals 5−v(x) if
v(x)�5 and 0 otherwise. Therefore, in the initial state, i.e. when v(x)=0, the
minimum expected time equals min{2.9, 5−0} = 2.9.

In this example, the optimal choices are to take transitions as soon as they
are available. However, as we will see, this does not hold in general since we
might need to wait longer in a location in order for an enabling condition to be
satisfied later.

4 Minimum Expected Time Algorithm for PTAs

In this section we present our algorithm for the minimum expected time com-
putation for PTAs. It is based on a backwards exploration of the state space.
We adopt backwards as opposed to forwards search since, although forwards has
proven successful in the context of TAs, for PTAs it yields only upper bounds for
maximum probabilistic reachability [20]. For the remainder of the section we fix
a PTA P = (L, l0,X ,Act , enab, prob, inv), target set of locations F and suppose
[[P]] = (S, S0, R×Act ,P[[P]],R[[P]]) and SF = {(l, v) | l ∈ F ∧ v|=inv(l)}.
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Fig. 2. Backward reachability algorithm

Symbolic States. A symbolic state z of P is a pair (l, ζ) ∈ L×Zones(X )
representing the set of PTA states {(l, v) | v|=ζ}. Let ZF ={(l, inv(l)) | l ∈ F}, i.e.
the target set of symbolic states. For any symbolic states z=(l, ζ) and z′=(l, ζ ′)
let z∧z′=(l, ζ∧ζ ′), z ⊆ z′ if and only if ζ ⊆ ζ ′ and z=∅ if and only if ζ=false.
The time and discrete predecessor operations for z=(l, ζ) are defined as follows:

tpre(z) = (l,↙ζ ∧ inv(l))

dpre(l′′, a, (R, l′))(z) =
{

(l′′, false) if l �= l′

(l′′, [R]ζ ∧ enab(l′′, a)) otherwise

where (R, l′) ∈ edges(l′′, a), l′′ ∈ L and a ∈ Act .

Backward Reachability Algorithm. We use a slightly modified version of the
backward reachability algorithm on symbolic states taken from [21] (the same
operations are performed, we just add action labels to the edge tuples). The
modified version is given in Figure 2.

The backwards algorithm returns a zone graph (Z, E) with symbolic states
as vertices. Termination of the algorithm is guaranteed by the fact that only
finitely many zones can be generated. As demonstrated in [21], from this graph
one can build a finite state MDP for computing the exact maximum reachability
probabilities of [[P]]. The MDP M(Z,E) has state space Z, action set 2E and if
z ∈ Z and E ∈ 2E, then PM(Z,E)(z, E) is defined if and only if there exists a ∈ Act
such that

− (z′′, a′, (R, l′), z′) ∈ E implies z′′ = z and a′ = a;
− (z, a, (R, l′), z′) �= (z, a, (R̃, l̃′), z̃′) ∈ E implies (R, l′) �= (R̃, l̃′);
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where PM(Z,E)(z, E)(z′)=
∑{|prob(l, a)(R, l′) | (z, a, (R, l′), z′) ∈ E|} for z′ ∈ Z.

The following theorem shows the correspondence between the maximum
reachability probabilities for [[P]] and M(Z,E).

Theorem 2 ([21]).Let (Z, E)be the zonegraphreturnedbyBackwardsReach(P, F ),
then for any state s of [[P]] we have:

− P
max
[[P]] (s, SF )>0 if and only if there exists z ∈ Z such that s ∈ tpre(z);

− if Pmax
[[P]] (s, SF )>0, then P

max
[[P]] (s, SF ) = max

{
P
max
M(Z,E)

(z, ZF ) | z∈Z∧s∈tpre(z)}
.

Using Theorem 2 we can find the states s of [[P]] for which P
max
[[P]] (s, SF )=1

by computing the symbolic states z for which P
max
M(Z,E)

(z, ZF )=1. Finding these
symbolic states does not require numerical computation [13], and hence we do
not need to build M(Z,E), but can use (Z, E) directly in the computation.

For the remainder of this section we assume we have computed the states of
M(Z,E), and hence of [[P]], for which the maximum reachability probability is 1,
and [[P]] and (Z, E) are the sub-MDP and sub-graph restricted to these states.
Using Theorem 2, s ∈ S if and only if there exists z ∈ Z such that s ∈ tpre(z).

For states not considered, i.e. states for which the maximum reachability
probability is less than 1, since we assume P is non-zeno (Assumption 2(c)) their
minimum expected time equals infinity. Therefore, if we compute the minimum
expected time for the states of the constructed sub-MDP, we will have found the
minimum expected time for all states of the PTA.

Following the discussion in Section 3, [[P]] now satisfies Assumption 1 and
therefore we can use Theorem 1. In particular, value iteration for the Bellman
operator of Definition 3 for [[P]] and SF converges to the minimum expected
time when starting from any bounded function. Below we will present a value
iteration method over (Z, E) and prove that it corresponds to that for [[P]] and
SF , and hence will also converge to the minimum expected time values for [[P]].

Value Iteration Over the Zone Graph. To present the value iteration opera-
tor for (Z, E), we require the following notation. For (l, ζ) ∈ Z, the set of edges E ⊆
E is an element of E(l, ζ) if and only if there exists a ∈ Act such that edges(l, a) =
{(R1, l1), . . . , (Rn, ln)} and E={(z, a, (R1, l1), z1), . . . , (z, a, (Rn, ln), zn)} for
some z1, . . . , zn ∈ Z.

Definition 6. The operator T(Z,E) : (Z→(S→R))→(Z→(S→R)) on the zone
graph (Z, E) is such that for g : Z→(S→R), (l, ζ) ∈ Z and (l, v) ∈ S where
(l, v) ∈ tpre(l, ζ) we have T(Z,E)(g)(l, ζ)(l, v) equals 0 if l ∈ F and otherwise
equals

inf
t∈R∧v+t∈ζ

min
E∈E(l,ζ)

{
t +

∑
((l,ζ),a,(R,l′),(l′,ζ′))∈E

prob(l, a)(R, l′)·g(l′, ζ ′)(l′, (v+t)[R])

}
.

We now demonstrate the correspondence between value iteration using this oper-
ator over (Z, E) and that given by Definition 3 over [[P]].
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Proposition 1. If f : S→R and g : Z→(S→R) are functions such that f(s) =
g(z)(s) for all z ∈ Z and s ∈ tpre(z), then for any s ∈ S and n ∈ N we have:
Tn
[[P]](f)(s) = min{Tn

(Z,E)(g)(z)(s) | z ∈ Z ∧ s ∈ tpre(z) }.
Proof. Consider any f : S→R and g : Z→(S→R) such that f(s) = g(z)(s) for
all z ∈ Z and s ∈ z. The proof is by induction on n ∈ N. If n=0, then the result
follows by construction of f and g and since T 0

[[P]](f) = f and T 0
(Z,E)(g) = g.

Next we assume the proposition holds for some n ∈ N. For any s=(l, v) ∈ S, if
l ∈ F , then by the construction of the zone graph (see Figure 2), Definition 3 and
Definition6wehave:Tn+1

[[P]] (f)(s) = 0 = min
{
Tn+1
(Z,E)(g)(z)(s) | z ∈ Z∧s ∈ tpre(z)

}
.

It therefore remains to consider the case when s=(l, v) ∈ S and l �∈ F . For
any (t′, a′) ∈ A(s) and (R, l′) ∈ edges(l, a) by the induction hypothesis there
exists (l′, ζ(R,l′)) ∈ Z with (l′, (v+t′)[R]) ∈ tpre(l′, ζ(R,l′)) such that:

Tn
(Z,E)(g)(l′, ζ(R,l′))(l′, (v+t′)[R]) = Tn

[[P]](f)(l′, (v+t′)[R]) . (1)

Now since (t′, a′) ∈ A(s) and (l′, (v+t′)[R]) ∈ tpre(l′, ζ(R,l′)) it follows from
Definition 5 that (l, v+t) ∈ dpre(l, a′, (R, l′))(tpre(l′, ζ(R,l′))).

Since the edge (R, l′) ∈ edges(l, a) was arbitrary, by the construction of the
zone graph (see Figure 2), there exists (l, ζ) ∈ Z such that v+t′ ∈ ζ and edge set:

E′ = {(l, ζ), a′, (R, l′), (l′, ζ(R,l′))) | (R, l′) ∈ edges(l, a)} ∈ E(l, ζ) . (2)

Furthermore, by definition of tpre we have (l, v) ∈ tpre(l, ζ). Now, by Definition 6,
Tn+1
(Z,E)(g)(l, ζ)(l, v) equals:

inf
t∈R∧v+t∈ζ

min
E∈E(l,ζ)

{

t +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈E

prob(l, a)(R, l′)·T n
(Z,E)(g)(l′, ζ′)(l′, (v+t)[R])

}

� min
E∈E(l,ζ)

{

t′ +
∑

((l,ζ),a′,(R,l′),(l′,ζ′))∈E

prob(l, a′)(R, l′)·T n
(Z,E)(g)(l′, ζ′)(l′, (v+t′)[R])

}

(since v+t′ ∈ ζ)

� t′ +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈E′
prob(l, a′)(R, l′)·T n

(Z,E)(g)(l′, ζ′)(l′, (v+t′)[R])

(since E′ ∈ E(l, ζ))

= t′ +
∑

(R,l′)∈edges(l,a′)
prob(l, a′)(R, l′)·T n

[[P]](f)(l′, (v+t′)[R]) (by (1) and (2))

= R[[P]](s, (t
′, a′)) +

∑
s′∈SP[[P]](s, (t

′, a′))(s′)·T n
[[P]](f)(s′) (by Definition 5)

Therefore, since (t′, a′) ∈ A(s) was arbitrary it follows from Definition 3 that:

Tn+1
[[P]] (f)(s) � min

{
Tn+1
(Z,E)(g)(z)(s) | z ∈ Z ∧ s ∈ tpre(z)

}
. (3)

Next we consider any z=(l, ζ) ∈ Z such that v+t ∈ ζ for some t ∈ R (i.e. z ∈ Z
such that s ∈ tpre(z)). For any t′ ∈ R such that v+t′ ∈ ζ and E′ ∈ E(l, ζ) by
construction of the zone graph there exists a′ ∈ Act where:

E′ = {(l, ζ), a′, (R, l′), (l′, ζ(R,l′))) | (R, l′) ∈ edges(l, a′)} (4)
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and (l′, (v+t′)[R]) ∈ tpre(l′, ζ(R,l′)) for all (R, l′) ∈ edges(l, a). Now by the induc-
tion hypothesis for any (R, l′) ∈ edges(l, a):

Tn
[[P]](f)(l′, (v+t′)[R]) � Tn

(Z,E)(g)(l′, ζ(R,l′))(l′, (v+t′)[R]) . (5)

Furthermore, by Definition 5 we have (t′, a′) ∈ A(s). Now by Definition 3:

Tn+1
[[P]] (f)(l, ν) = inf

(t,a)∈A(l,v)

{
R[[P]](s, (t, a)) +

∑
s′∈S

P[[P]](s, (t, a))(s′)·Tn
[[P]](f)(s′)

}

� R[[P]](s, (t′, a′)) +
∑

s′∈S

P[[P]](s, (t′, a′))(s′)·Tn
[[P]](f)(s′) (since (t′, a′) ∈ A(s))

= t′ +
∑

(R,l′)∈edges(l,a)

prob(l, a′)(R, l′)·Tn
[[P]](f)(l′, (v+t′)[R]) (by Definition 5)

� t′ +
∑

(R,l′)∈edges(l,a)

prob(l, a′)(R, l′)·Tn
(Z,E)(g)(l′, ζ(R,l′))(l′, (v+t′)[R]) (by (5))

= t′ +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈E′
prob(l, a′)(R, l′)·Tn

(Z,E)(g)(l′, ζ(R,l′))(l′, (v+t′)[R])

(by (4))

Since z=(l, ζ) ∈ Z such that v+t ∈ ζ for some t ∈ R, t′ ∈ R such that v+t′ ∈ ζ
and E′ ∈ E(l, ζ) were arbitrary, by Definition 6 it follows that:

Tn+1
[[P]] (f)(s) � min

{
Tn+1
(Z,E)(g)(z)(s) | z ∈ Z ∧ s ∈ tpre(z)

}
. (6)

Combining (3) and (6) we have:

Tn+1
[[P]] (f)(s) = min

{
Tn+1
(Z,E)(g)(z)(s) | z ∈ Z ∧ s ∈ tpre(z)

}
.

and hence, since s ∈ S was arbitrary, the proposition holds by induction. �
Rational Simple Functions and Rational Nice Functions. In [2], the
authors introduce simple functions and show that all value functions encountered
during the iterative procedure for computing the minimum time reachability for
TAs belong to this special class. For a zone ζ, a function f : ζ→R is simple if
and only if it can be represented as:

f(v) =

{
cj if v ∈ Cj

dl−v(xl) if v ∈ Dl

where cj , dl ∈ N, xl ∈ X , Cj and Dl are zones for 1�j�M and 1�l�N .
When it comes to PTAs, due to the presence of probabilistic branching,

simple functions are not sufficient, as shown by the example below. Moreover,
the domain of clocks cannot be represented by zones, as we now need to allow
more general linear constraints on clocks with rational coefficients.

Example 2. We return to the PTA of Example 1 (see Figure 1). Expressing the
minimum expected time in the initial location as a function f : R

X →R we have:

f(v) =

⎧
⎨

⎩

2.9 if x�2.1
5−v(x) if 2.1�x�5

0 if 5�x�10

and hence it cannot be represented using simple functions.
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We introduce rational simple functions to represent the functions encountered
during value iteration. Let X = {x1, . . . , xn} and k be the maximum constant
appearing in P. By Assumption 2(a) P is bounded, and hence all clock values
in P are bounded by k.

Definition 7. A (convex) k-polyhedron C ⊆ {v ∈ R
X | v(x)�k for x ∈ X} is

defined by finitely many linear inequalities; formally, it is of the form:

C =
{
v ∈ R

X | ∑n
i=1 qij ·v(xi) � fj for 1�j�M

}

where qij , fj ∈ Q and fj�k for all 1�i�n and 1�j�M for some M ∈ N.

Definition 8. For zone ζ, a function f : ζ→R is rational k-simple if and only
if it can be represented as:

f(v) =

{
cj if v ∈ Cj

dl − ∑n
i=1 pil·v(xi) if v ∈ Dl

where cj , dl ∈ Q+, pil ∈ Q+∩[0, 1] such that
∑n

i=1 pil�1 and Cj ,Dl are k-
polyhedra for all 1�i�n, 1�j�M and 1�l�N .

Furthermore, a function f : Z→(S→R) is rational k-simple if f(l, ζ)(l, ·) :↙ζ→R

is rational k-simple for all (l, ζ) ∈ Z.

We require the following definition and lemma for rational k-simple functions.

Definition 9. If f : ζ→R is a rational k-simple function and R ⊆ X , let f [R] :
[R]ζ→R be the function where f [R](v) = f(v[R]) for all v ∈ ζ.

Lemma 1. If f : ζ→R is rational k-simple and R ⊆ X , then f [R] : [R]ζ→R is
rational k-simple. (The proof can be found in [15].)

During value iteration we obtain functions of the form v �→ t+f(l, ζ)(l, v+t)
where f is rational k-simple. This motivates the introduction of rational k-nice
functions, based on Asarin and Maler’s k-nice functions [2].

Definition 10. A k-bipolyhedron is a set of the form {(v, t) | v ∈ C∧v+t ∈ D}
where C and D are k-polyhedra. For a zone ζ, a function g : (ζ×R) → R is
rational k-nice if and only if it can be represented as:

g(v, t) =

{
cj+t if (v, t) ∈ Fj

dl−
∑n

i=1 pil·v(xi)+ (1− ∑n
i=1 pil) ·t if (v, t) ∈ Gl

where cj , dl ∈ Q+, pil ∈ Q+∩[0, 1] such that
∑n

i=1 pil�1 and Fj , Gl are rational
k-bipolyhedra for all 1�i�n, 1�j�M and 1�l�N .

We require the following properties of k-nice functions (proofs are available in
[15]).

Lemma 2. A convex combination of rational k-nice functions is rational k-nice.
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Lemma 3. The minimum of rational k-nice functions is rational k-nice.

Lemma 4. For any zone ζ, if g : (ζ×R)→R is rational k-nice, then the function
f : ζ→R where f(v) = inft∈R g(v, t) for v ∈ ζ is rational k-simple.

We are now in a position to show that that rational k-simple functions are a
suitable representation for value functions.

Proposition 2. If f : Z→(S→R) is a rational k-simple function, then T(Z,E)(f)
is rational k-simple.

Proof. Consider any rational k-simple function, z ∈ Z and E ∈ E(z). For any
v ∈ R

X and t ∈ R we have:

t +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈Eprob(l, a)(R, l′)·f(l′, ζ ′)(l′, (v+t)[R])

= t +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈Eprob(l, a)(R, l′)·f [R](l′, ζ ′)(l′, v+t)
(by Definition 9)

=
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈Eprob(l, a)(R, l′)· (t + f [R](l′, ζ ′)(l′, v+t)) (7)

since prob(l, a) is a distribution. By construction f is rational k-simple, and
hence for any (z, a, (R, l′), z) ∈ E using Lemma 1 we have f [R] is also rational
k-simple. Therefore, it follows from Definition 10 that:

(v, t) �→ t + f [R](l′, ζ ′)(l′, v+t)

is rational k-nice. Thus, since (z, a, (R, l′), z) ∈ E was arbitrary, using Lemma 2
and (7) we have that:

(v, t) �→ t +
∑

((l,ζ),a,(R,l′),(l′,ζ′))∈Eprob(l, a)(R, l′)·f(l′, ζ ′)(l′, (v+t)[R])

is also rational k-nice. Since E ∈ E(z) was arbitrary and E(z) is finite, Lemma 3
tells us:

(v, t) �→ min
E∈E(z)

{
t +

∑
((l,ζ),a,(R,l′),(l′,ζ′))∈Eprob(l, a)(R, l′)·f(l′, ζ ′)(l′, (v+t)[R])

}

is again rational k-nice. Finally, using Definition 6 and Lemma 4, it follows that
T(Z,E)(f)(z) is rational k-simple as required. �

Controller Synthesis. We now give an approach for computing the minimum
expected time of reaching a target in a PTA and synthesising ε-optimal strategy
when starting from the initial state. We first build the backwards zone graph
(Z, E) (see Figure 2), then, using Theorem 2 and graph-based algorithms [13],
we can find the states of [[P]] for which the maximum probability of reaching the
target is less than 1 and remove these from the zone graph. Next, using Defini-
tion 6, we apply value iteration to the zone graph which, by Proposition 2, can
be performed using rational k-simple functions (and rational k-nice functions).
Convergence to the minimum expected reachability values of P is guaranteed by
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l0 l1 l2a x:=0 0.5

x�1

y:=0
0.5 x�9

b

y=5 ∧ x=0

c

x�1, x:=0

Fig. 3. PTA

z10

z20

z11

z21

z2a, ({x}, l0)

a, ({x}, l0)

a, ({x}, l0)
a, ({x}, l1)

a, ({x}, l1)

a, ({x}, l1)

b, (∅, l2)

c, (∅, l2)

Fig. 4. Backwards Zone graph

Proposition 1 and Theorem 1. An ε-optimal deterministic, memoryless strategy
can be synthesised once value iteration has converged by starting from the initial
state and stepping through the backwards graph, in each state choosing the time
and action that achieve the values returned by value iteration.

Example 3. The PTA in Figure 3 presents an example where waiting longer
than necessary in a location can reduce the time to reach the target. Again
we suppose the invariant in all locations is x�10. The target is location l2 and
the zone graph is given in Figure 4, where z10=(l0, x�1), z20=(l0, y=5∧x�1),
z11=(l1, x�9), z21=(l1, y=5∧x=0) and z2=(l2, x�1). Starting from the constant
0 function f0 and performing value iteration gives for n� 2:

Tn
(Z,E)(f0)(z

1
0) =

{
(1−v(x))+

∑n−1
i=1 0.5n·9 if x�1∑n

i=1 0.5n−1·9 if 1�x�10

Tn
(Z,E)(f0)(z

2
0) =

{
(5−v(y))+0.5·(∑n

i=1 0.5n−1·9) if y�5
0.5·(∑n−1

i=1 0.5n−1·9) if 5�y�10

Tn
(Z,E)(f0)(z

1
1) =

{
9−v(x) if x�9

0 if 9�y�10

and Tn
(Z,E)(f0)(z

2
1) = Tn

(Z,E)(f0)(z2) = 0. Therefore, value iteration converges to:

f(z10) =
{

(1−v(x))+9 if x�1
9 if 1�x�10 and f(z20) =

{
(5−v(y))+0.5·9 if y�5

0.5·9 if 5�y�10

and hence the minimum expected time for the initial state equals the minimum
of (1−0)+9 and (5−0)+0.5·9, yielding 9.5. Performing controller synthesis we
find this corresponds to waiting until y=5, then performing the action a. If l1
is reached, we immediately perform the action c and reach the target. On the
other hand, if l0 is reached, we repeatedly immediately perform a and, if l1 is
reached, wait until x=9 and then perform the action b reaching the target.

5 Conclusion

We have proposed an algorithm to compute the minimum expected time to
reach a target set in a PTA. The algorithm is formulated as value iteration over
the backwards zone graph of the PTA. We also demonstrate that there is an
effective representation of the value functions in terms of rational simple and
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rational nice functions. However, zones are not sufficient and convex polyhedra
are required. Nevertheless, the Parma Polyhedra Library [3] offers efficient ways
to manipulate convex polyhedra and is commonly used in a variety of real-time
verification problems. For example, methods based on priced zones for TAs and
PTAs, such as [7] and [22], also use convex polyhedra, where similarly zones do
not suffice.

Regarding future work, as well as working on an implementation, we note
that optimisations to the backwards algorithm presented in [8], including first
performing forwards reachability to restrict analysis to the reachable state space,
could be considered here as well. Since policy iteration also converges (see The-
orem 1), we plan to investigate this approach and compare with value iteration.
Extending to linearly-priced PTAs does not appear straightforward, as ratio-
nal simple functions are not sufficient. Likewise, the case of maximum expected
values raises additional issues, since here one relies on minimum probabilistic
reachability, which is more complex to compute using zones and convexity is
lost [21].
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Abstract. The success of a security attack crucially depends on the
resources available to an attacker: time, budget, skill level, and risk
appetite. Insight in these dependencies and the most vulnerable system
parts is key to providing effective counter measures.

This paper considers attack trees, one of the most prominent security
formalisms for threat analysis. We provide an effective way to compute
the resources needed for a successful attack, as well as the associated
attack paths. These paths provide the optimal ways, from the perspec-
tive of the attacker, to attack the system, and provide a ranking of the
most vulnerable system parts.

By exploiting the priced timed automaton model checker Uppaal
CORA, we realize important advantages over earlier attack tree analy-
sis methods: we can handle more complex gates, temporal dependencies
between attack steps, shared subtrees, and realistic, multi-parametric
cost structures. Furthermore, due to its compositionality, our approach
is flexible and easy to extend.

We illustrate our approach with several standard case studies from
the literature, showing that our method agrees with existing analyses of
these cases, and can incorporate additional data, leading to more infor-
mative results.

1 Introduction

Security attacks are a primary concern for business and government organi-
zations, as they are a threat to vital infrastructure, such as internet banking,
power grids, health care and transportation systems. The challenge for secu-
rity engineers is to protect such systems, by providing countermeasures for the
most damaging and most likely attacks. Thus, defense against cyberattacks is
an optimization problem: given the available budget, what are the most effective
countermeasures.

Often security decisions are made informally, e.g. by brainstorming. More
structured approaches are based on spreadsheets and technical standards, like
FMEA [11], the AS/NZS 4360 standard [5], and Factor Analysis of Informa-
tion Risks (FAIR) [6]. Model-based approaches are gaining popularity, such as
the UML-based extension CORAS [1], the ADVISE method [21], and security
extension of the SAE standardized language AADL [17].
c© Springer International Publishing Switzerland 2015
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One of the most prominent model-based security formalisms is attack trees
(ATs), see Figure 1. Much of its popularity comes from its hierarchical, intu-
itive representation of multi-step attack scenarios. A wide range of qualitative
and quantitative analysis methods for attack trees are available, see [20] for an
overview. The most well-known follow a bottom-up approach and propagate val-
ues from the leaves to the top of the tree. Although they are very efficient and
flexible, most current approaches cannot handle temporal and causal dependen-
cies, or shared subtrees. Also, existing approaches do not support realistic cost
structures. Finally, little attention is given to the important issue of attack path
generation and ranking: which steps are taken in the most dangerous attacks?

This paper provides a multi-objective optimization framework for attack
trees. We augment AT leaves with a rich cost structure that consists of vari-
ous components, such as time, skill, and resources. These components can be
dependent, e.g. time can depend on skill level. Our framework supports the
computation of a wide range of security metrics: (1) Attack values. Given an
attack tree, and a quantity of interest, we can compute its value: What is the
minimal time, resources, or skill level needed to complete a successful attack?
What is the maximal damage an attacker can do? (2) Attack paths. Apart from
the value of an attack, it is very useful to know the attack path leading to the
optimal attack. Note that the path is in fact a subtree, since optimal attacks
often carry out several steps need in parallel. (3) Ranking. Apart from computing
the optimal attack values and path, we can also determine the top-10 of worst
attacks, which is very important to determine appropriate counter measures.
(4) Pareto-optimal curves that show trade-offs when multiple objectives conflict.
For instance, what is the minimal time needed to complete a successful attack
within a given budget? What is the maximal damage that can be incurred in
one year?

Technically, our framework is realized via Uppaal CORA: we translate each
attack tree gate and leaf into a priced timed automata (PTA). Together these
form a network of PTAs representing the entire attack tree. This modular app-
roach yields a flexible framework that can easily be extended with future needs,
such as countermeasures. We express our security queries in weighted CTL, and
use the model checker Uppaal CORA [8] to obtain the cost optimal traces that
correspond to optimal attack paths in the AT.

We illustrate our approach with several well-known examples in attack tree
analysis, namely the forestalling release of software [18], obtaining administrator
privileges [19] and a password protected file [25]. We provide the results from two
perspectives: For the attacker, we consider cost and time, and for the attackee,
the incurred damage. Also, we have considered several attacker profiles into
consideration. Our analysis shows that the vulnerable paths in the system are
strongly linked to the skills and risk appetite of attacker. Hence, any security risk
analysis should be multifaceted, taking the potential attackers into consideration.

Related Work. Attack trees; as popularized by Schneier [27], were intro-
duced by Weiss as threat logic trees [30] and by Amoroso as threat trees [3].
Amid several variants studied in literature, they can broadly be classified as
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static [19,23,26] or dynamic [15,24] based on evolution of time. Classically, an
attack tree takes a single parameter such as time or cost [23,27]. Buldas [14] et
al. introduces a multiparameter attack tree consisting of interdependent param-
eters. In [22], Lenin et al., while making a clear distinction between threat and
vulnerability landscape, improve the parallel model [18] by integrating attacker
profiles. A comprehensive overview of attack trees can be found in [20]. Some
other approaches to model the system description and attacker behaviour are
via attack graphs [28] or adversary based security analysis [13,16].

2 Graphical Security Modeling

2.1 Attack Trees

Attack trees (ATs) are an important formalism to model and analyze the security
of complex systems. An attack tree consists of a root, representing the attacker’s
goal. The root is further refined into subgoals via gates, until the subgoals cannot
be refined further and the basic attack steps (BASs) are reached, constituting
the leaves of the attack tree. When subtrees can be shared, ATs can be directed
acyclic graphs, rather than trees.
Gates. Classical attack trees model the propagation of success through AND-
and OR-gates: an AND-gate is a conjunctive composition of child nodes,
indicating that all children need to be successfully attacked for an attacker to
successfully execute the subgoal at hand. Similarly, the OR-gate is a disjunctive
union of child nodes, where an attacker has to execute at least one child node
successfully.

It has been widely recognized that temporal order is crucial in security. There-
fore, the sequential versions of the AND and OR gates, named SAND and SOR,
have been proposed [4,25]. Both represent attacks executed from left to right:
Starting with the the leftmost child, the attacker will only start executing the
next subgoal (i.e., the subsequent child node) after all previous subgoals have
been executed successfully. The SAND gate is successful if all steps are exe-
cuted successfully; the SOR-gate is successful if any of its children is executed
successfully.

Example 1. The attack tree in Figure 1, combined with the values in Table 1,
models the forestalling of the release of some software, adopted from [14]. Here, a
competitor steals a piece of software code and then builds it into his own product,
as modeled by the top-level SAND gate. The OR gate at node Steal code shows
that the code can be stolen in three different ways: via Bribing, a Network Attack
or Physical robbery. Bribing is modeled as a two-step sequential process of first
successfully bribing a programmer and then obtaining the code, represented by a
SAND-gate. Similarly, one can employ a robber who has networking knowledge.
This can lead to two different attack paths modeled through a shared node. One
in which the hired person finds a bug and exploits it to obtain the code via a
network attack, and another path in which he is physically involved in a robbery
after being hired to steal the code. This dependency is again modeled through
a SAND gate.
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Basic Attack Steps. Basic attack steps (BASs) represent individual atomic
steps within a composite attack, and appear as leaves of the AT.

We consider a fixed set of attribute variables Attr = {T, a1, . . . an}. Here,
T is a special attribute, namely the time since the BAS was started. Other
attributes can be skill level, monetary costs, damage, difficulty, etc. We denote
by Val = (R∞

≥0)
n+1 the set of complete valuations of the attributes, and by

Val\t = (R∞
≥0)

n the set of valuations excluding time. For simplicity, we assume
that attribute variables take values in R

∞
≥0; handling other domains is technically

no more complex, but syntactically more cumbersome.
Each BAS is equipped with two preconditions Enable : Val\t → {0, 1} and

CanSucceed : Val → {0, 1} that indicate when the BAS is enabled, and when it
can succeed. Each BAS also has an effect Eff that updates the attribute values
when the BAS is successfully executed. Preconditions are Boolean combinations
over linear equations over Attr. In this way, an attack step that requires (at
least) medium skill level is equipped with the enabling precondition Skill ≥ med
(where med is a suitable constant); and an attack step that takes between 90 and
100 time units for medium-skilled attackers gets a success precondition (Skill =
med) → (90 ≤ T ≤ 100).

The effect Eff : Attr × Val\t → R≥0 → R≥0 is a function that updates
the values for the attributes when this BAS is started. For example, costs
are incurred by the attacker, and damage is incurred by the attacked entity.
These effects are typically time dependent: the longer an attack takes, the
higher the costs and damage. We assume that time dependence is linear, i.e., is
incurred with a fixed rate vi per time unit. Thus, the effect function is given by
Eff(ai, (p1, . . . , pn))(t) = fi+vi ·t, where fi = fi(p1, . . . pn) and vi = vi(p1, . . . pn)
are parameters that depend on the attribute values. The effects are summed to
the existing value of the variable, to obtain the cumulative effect.

Attacker Profiles. An attacker profile is an assignment R : {a1, . . . an} → R≥0

of the non-time attribute variables to concrete values. Thus, we obtain an initial
valuation of the attributes as (0, R(a1), . . . , R(an)).

Example. Consider an burglary that takes between 5 and 10 minutes to exe-
cute for a medium-skilled attacker, between 1 and 2 minutes for a highly

Forestalling release

Steal code Use code in product

Bribing Network attack Physical robbery

Bribe programmer
Programmer

obtains the code

Hire robber having
knowlege in

Computer security

Bug in
computer
system Exploit bug

Robber
breaks into
system

Fig. 1. Attack tree modeling the forestalling of software.
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skilled attacker, and cannot be performed by a low-skilled attacker. All attack-
ers steal 1000 dollars worth of goods if they are successful, but the medium-
skilled attacker also inflicts 500 dollars of property damage in the process.
This BAS can be described using the attribute set Attr = {T,Skill,Damage}.
It has enabling precondition Enable(s, d) = s ≥ med and success condition
CanSucceed(t, s, d) = (s = med ∧ 5 ≤ t ≤ 10) ∨ (s = hi ∧ 1 ≤ t ≤ 2). The effect
is Eff(Damage, (s, d))(t) = 1000 if s = hi, 1500 otherwise and Eff(a, V )(t) = 0
for all a �= Damage (here med and hi are appropriate constants).

Based on the explanation above, attack trees can be defined as follows.

Definition 1 (AT elements). We define the set of AT gate types as Gates =
{AND,SAND,OR,SOR}, the set of BAS information as BAI, where each element
of BAI is a triple (Enable,CanSucceed,Eff) of the functions described above. We
denote Elements = Gates ∪ BAI.

Definition 2 (Attack tree). An attack tree A is a tuple (V,Child,
Top,Attr, R, L), where
– V is a finite set of nodes.
– Child : V → V ∗ maps each node to its child nodes.
– Top ∈ V is the unique top level element, representing the goal of the attacker.
– Attr is the set of attributes.
– R is the attacker profile.
– L : V → Elements is a labelling function that assigns an AT element to each

node in V .

ATs must be well-formed. We define the set of edges of A by E = {(v, w) ∈
V 2 | ∃i . w = (Child(v))i} and Leaves = {v ∈ V | Child(v) = ε}. We require for
each AT that (a) the graph (V,E) is a directed acyclic graph with a unique root
Top ∈ V from which all other nodes are reachable; (b) the labelling function
assigns to each leaf in the tree a value in BAI and to each non-leaf an element
in Gates, i.e., L(v) ∈ BAI iff v ∈ Leaves.

Table 1. Values used for annotating leaves of Figure 1

Attacker Values
BAS Profile Skill Time Cost Cost to company

(in days) (in US $) (in US $)

Bribe a programmer Generic attacker Low 15-20 1500 + 50t 500.000
Generic attacker Med 10-20 1000 + 150t 500.000
Generic attacker High 0-10 500 500.000
Software Engineer Any 0-5 5000 + 100t 500.000

Programmer obtains the code Generic attacker Any 5-15 1000 + 100t 1.000.000
Software Engineer Any 0-5 2000 + 50t 1.000.000

Hire robber with knowledge Any Any 5-15 4000 + 50t 0
of computer security
Bug in Computer system Any Low 15-20 1000 + 50t 0

Any Med 5-10 1000 + 50t 0
Any High 0-5 1000 + 50t 0

Person exploits the bug Any Any 0-5 1000 + 50t 1.000.000
Person breaks into the system Any Any 0-5 2000 + 100t 400.000
Code is completed into product Any Any 5-15 2000 + 50t 100.000
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2.2 Metrics on ATs

Our framework can be used to determine several important security metrics.
(1) (Constrained) attack values. For any of the attributes ai, we can compute
the minimum value along the tree. These values can be affected by constraints
on other attributes. For instance, we can compute the minimum time needed
to complete an attack within a maximum budget and skill level. (2) Pareto
optimal curves. For any pair of attributes, we can compute the minimum value
needed of one attribute given a value of the other. By varying the bound of one
attribute, we can generate curves indicating the relation between these minima.
For instance, there is typically a trade-off between spending more time or more
money; a Pareto curve shows for every budget how much time is needed for the
attack. (3) Attack paths. When computing the minimal value of an attribute that
can complete an attack, we generate a concrete attack path showing the steps
an attacker can take to perform the attack incurring as little of the attribute as
possible. For instance, considering Figure 1, to reach the goal in the minimum
time, we can obtain the attack trace which consists of Hire a robberer, Robberer
breaks into system and Use code in product. (4) Ranking. In addition to the single
minimum of an attribute and a corresponding attack path, we can enumerate
further attacks in increasing value of the attribute. We can, for example, list the
ten cheapest attacks on a given system, or all attack paths that meet a given
time constraint. For example, in Figure 1, with the attributes in Table 1, the
optimal cost is 6000 units and the second best cost is 8500 units.

3 Priced Timed Automata

The Priced Timed Automata Model. Priced timed automata (PTA) [8]
extend timed automata [2], by adding costs to locations and actions. In the
following definition, we denote by Φ(X) the set of all possible boolean predicates
over a set X of clocks.

Definition 3. A priced timed automaton P is a tuple 〈L, l0,X,Act , E, I,
C〉where:

– L is a finite set of locations,
– l0 ∈ L is the initial state,
– X is a set of clock variables,
– Act is a set of actions, also called signals or labels,
– E ⊆ L × Φ(X) × Act × 2X × L gives the set of transitions. Here an edge

〈l, φ, a, λ, l′〉 represents a transition from state l to state l′ taking an action
a. This transition can only be taken when the clock constraint φ over X is
true, and the set λ ⊆ X gives the set of clocks to be reset with this transition,

– I : L → Φ(X) assigns invariants to locations,
– C : L ∪ E → N

n
≥0 assigns cost rates to locations and costs to edges.

Definition 4. A trace of a PTA P = 〈L, l0,X,Act , E, I, C〉 is a sequence of
states and transitions ρ = l0

a0−→
λ0

t0
c0 l1

a1−→
λ1

t1
c1 l2 . . . where:
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– For every i, there is some transition Ti = (li, φi, ai, λi, li+1) ∈ E.
– For every i, ci = C(Ti) + ti · C(li) is the cost incurred in the transition.
– There is an initial clock valuation X0 = 0.
– After every transition, there is a new clock valuation Xi+1 = (Xi+ti)[λi = 0]

obtained by increasing every clock variable in Xi by ti and resetting all clocks
in λi to 0.

– Every clock valuation Xi + t for t < ti satisfies the invariant I(li).
– The clock valuation Xi + ti satisfies φi for every i.

Parallel Composition. The parallel composition operator ‖ allows one to con-
struct a large PTA from several smaller ones. The component PTAs synchronize
their transitions via joint signals. For example, a basic attack step can send a
‘success’ signal to its parent gate, based on which this gate may itself succeed
or wait for signals from its other children. Our models use broadcast signals,
which can be either output, denoted with an exclamation mark (e.g. ‘succ!’),
or input, denoted with a question mark (e.g. ‘succ?’). We require PTAs to be
input-enabled, that is, all input actions of a PTA are enabled at any location,
at any time. Thus, if some PTA performs a transition labeled with an output
action a!, then all receiving PTAs synchronize by taking an a?-labeled transition.
The formal definition can be found in the Uppaal CORA documentation [29], or
in [9].

Queries. We express our security questions in an extension of the Weighted
CTL logic [12], over a PTA whose locations l are decorated with a set of atomic
propositions Prop(l) ⊆ AP . We slightly extend the syntax given by [10]: Rather
than providing a single constraint v ∼ c asking that value v meets bound c,
we need a vector of constraints xi ∼ ci, asking that all values vi meets their
bounds ci.

Definition 5. The syntax of the WCTL logic is given by the following grammar:

WCTL � φ, ψ ::= p | ¬φ | φ ∧ ψ | ∃(φ U∼c ψ) | ∀(φ U∼c ψ)

Where p ∈ AP, c ∈ R
n
≥0, and ∼ ∈ {<,≤,=,≥, >}n.

The semantics of the boolean operators follows the usual conventions. The exis-
tential until operator ∃(φU∼cψ) is true if there exists a trace of the PTA in
which some state sf satisfies ψ, all states before sf satisfy φ, and the total
costs incurred before reaching sf satisfy the relation ∼ c. Note that time is con-
sidered a cost in this notation. The universal until operator is similar, except
that the conditions must hold for every trace. As usual, ∃♦∼cφ is shorthand for
∃(true U∼cφ).

Uppaal CORA. Uppaal CORA is an extension of Uppaal with an additional
variable Cost used for optimal scheduling and cost optimal reachability analysis.
With the inbuilt Best trace option; it can be used to it find an optimal trace [7].
The rate of change of cost is specified as Cost′. Here, the optimal path refers to
the trace with the lowest accumulated costs.
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4 Analyzing Attack Trees via Price Timed Automata

To analyze an attack tree, we provide a compositional semantics in terms of
priced timed automata. That is, we translate each AT element into a PTA and
obtain the PTA for the entire AT by putting together all element PTAs via
the parallel composition operator ‖. Then, we analyze ATs by formulating the
security measures as queries in the logic mWCTL, which is a slightly extended
version of standard weighted computational tree logic that allows us to perform
multi-criterion optimization.

In this way, we obtain a versatile and flexible framework for AT analysis.
Indeed, if one wants to add a new AT element to the framework, one can simply
provide the AT translation, while leaving the rest of the framework unchanged.

4.1 From Attack Trees to Price Timed Automata

Basic Attack Steps. The PTA for a basic attack step v is shown in Figure 2.
This PTA models the attacker’s choice of whether and when to execute basic
attack step, and tracks the time and costs used to do so.

Formally, we convert a BAS S with BAI (Enable,CanSucceed,Eff), given
attacker profile R, into a PTA P (S) = 〈L, l0,X,Act , E, I, C〉 with elements:

– L = {I,A,B, F,D}
– l0 = I
– X = {x}
– Act = {ActS?, succS !, failS !, τ}
– E = {〈I,�,ActS?, ∅, A〉, 〈A,Enable(R), τ, {x}, B〉,

〈B,�, failS !, ∅, F 〉, 〈B,CanSucceed(R), succS !, ∅,D〉}
– I(l) = �

Fig. 2. PTA for a basic attack step. Here v is a unique identifier for the BAS, x is
a clock to track the duration of BAS[v], T min and T max are the minimum and
maximum times, costs is an array keeping track of all accumulated costs, and costs ′ is
an array for variable costs.
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– C(e) =⎧
⎪⎨

⎪⎩

⊕n
i=1 Eff(ai, R)(0) if e = 〈A,Enable(R), τ, {x}, B〉⊕n
i=1(Eff(ai, R)(1) − Eff(ai, R)(0)) if e = B

0 otherwise

Here we slightly abuse the notation so that f(R) denotes the result of apply-
ing f to the valuation obtained from R of all the attributes, and

⊕
denotes the

combination of elements into a vector.
Initially, the BAS waits for an activation signal. As it is received from the

parent, the attacker may begin executing the step by incurring the fixed costs.
The execution of a BAS is bounded by the minimum and maximum time to
complete the attack. While the step is being performed, the variable costs are
incurred. The attack may fail at any time, stop incurring further costs and send
a failure signal to its parents. Otherwise, it succeeds between the minimum and
maximum time constraint for the step and transmits a success signal.

Gates. To model attacker preferences and behavior as illustrated in example 1,
we distinguish between sequential and parallel gates. The automata for the par-
allel AND gate is shown in Figure 3 while the automata for sequential AND gate
is shown in Figure 4.

The gates depicted here have only two children. We can construct PTAs hav-
ing more than two children, however this is cumbersome and requires many more
states. Hence, we express AT gates with multiple children by simply chaining
two-input gates: For example, an AND-gate with inputs A, B, and C can also
be expressed as A ∧ (B ∧ C).

Fig. 3. PTA for parallel AND gate of node v, when child(v) = c1c2.

Note that the semantics of OR and AND gates are identical except that the
behaviours of success and failure are inverted.

The PTAs for these gates begin by waiting for their activation signal, and
activating their children. After this, they wait for one of their children to send a
signal. For an AND gate, receiving a failure signal always leads the gate to emit
its own failure signal, since it is no longer possible for both children to succeed.
Conversely, when an OR gate receives one success signal, it always emits its own
success. When both children of an AND or OR gate have succeeded or resp.
failed, the gate also succeeds or fails.
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The sequential gates operate similarly, but they enforce an ordering on their
children. First the leftmost child is activated, and the gate waits for a signal
from this child. In case of an SAND gate, success of the first child leads to an
activation of the second child, and the success of this child cause the success of
the gate. Failure of either child leads to failure of the gate, possibly before even
activating the second child. The behavior of SOR is similar to sequential AND
with success and failure signals swapped.

Fig. 4. PTA for sequential AND gate of node v, when child(v) = c1c2.

Combining the Nodes. For an attack tree A, the PTA associated with
A is obtained as the parallel composition of the PTAs for all the nodes,
and an additional PTA ATop. If we denote by P (v,A) the PTA corre-
sponding to node v of attack tree A, the total PTA consists of PA =
P (v1, A)||P (v2, A)|| . . . ||P (vn, A)||ATop.

Fig. 5. Automaton for the attack goal Top

The top-level gateTop is associated with a second PTA ATop, shown in Figure 5
that initializes the attack by generating an activation signal for Top. Moreover, it
has a clock xTop that tracks the global time, and observes successful completion
of an attack via its input succ[Top]?. Thus, the location ‘Goal’ indicates that an
attacker has reached the goal.

4.2 Quantitative Analysis of Attack Trees

Given the PTA for an attack tree, we can compute the security metrics as enu-
merated in Section 2.2 as follows:
(Unconstrained) Attack Values and Attack Paths: The Uppaal CORA
program has a built-in method to find an optimum if only one cost needs to
be tracked. Here, we obtain the Optimal accumulated costs through the ‘Best
first’ function built-in Uppaal CORA.
(Constrained) Attack Values and Attack Paths: Optimal attack values
can be obtained by repeatedly querying for the existence of traces reaching the
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attack goal with increasingly tight constraints. When the tightest possible bound
has been obtained, this corresponds to an optimum. Since a positive result for
the query also produces a trace that satisfies it, this procedure also yields an
optimal attack path.

For example, to obtain the minimum time to succeed in the AT in Figure 1
given a cost limit of 10000 (assuming this is the only cost variable), we first query
∃♦xTop≥0,C≤10000(PTop.Goal) to obtain some successful attack and its correspond-
ing time, e.g. Suppose this yields an attack that takes 10 days to complete, then
we perform a new query ∃♦xTop<10,C≤10000(PTop.Goal) to try to find a faster
attack. If no such attack exists, we know that the minimal time to complete an
attack given the budget is 10 days, and we have obtained an attack path that
succeeds in this time and budget.
Ranking: To find different attacks ranked according to their cost, we repeat
the procedure above, each time excluding the attack paths we have already
found. For example, if the attack consisting of BASs 1 and 3 is the fastest
possible attack, the second-fastest is found using the query ∃♦xTop≤T (PTop.Goal ∧
¬(P (v1, A).Success ∧ P (v3, A).Success)) and finding the smallest value for T to
obtain the second-fastest attack. This process can be repeated until the desired
number of optimal attacks has been found.
Pareto Optimal Curves: Pareto optimal curves can be obtained by finding
the optimal attacks subject to an increasing constraint. For example, to find
the curve of minimal time vs. cost, we begin by finding the minimal time to
attack, and computing the lowest-cost attack that meets this time bound. Then,
we compute the minimal time to attack with a smaller budget, and again find
the lowest-cost attack that meets the new time bound. This process is repeated
until no attacks exist that meet the latest budget.

To illustrate, consider again the attack tree in Figure 1. The minimal time
to complete an attack is 5 days, and the lowest-cost attack that meets this time
limits costs $9250. The fastest attack that costs less than $9250 takes 10 days,
and the lowest cost attack that can be performed within 10 days costs $8500.
There is no attack that costs less than $8500. Thus we obtain the pareto curve
shown in Figure 7.

5 Case Studies

We demonstrate our approach through three well-known case studies taken from
the literature. For each case, we analyze optimal attack values such as time and
cost for the attacker, and the minimal damage borne by the company by taking
different attacker profiles. Here, we consider the attacker’s resources (time and
budget), skills, motivation, access to infrastructure, risk appetite, and prefer-
ences as attributes of a rational attacker.

As is often the case in security analysis, it is difficult to obtain precise data,
and our guesses are not intended to reflect reality, but rather to illustrate the
analysis method.
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Table 2. Analysis results for the cracking password protected file.

Profile Criterion Attack Attack Path
value BAS Time Cost

Generic attacker Minimum cost 7250 Dictionary 0 - 15 7250
2nd best min. cost 7250 Brute force 0 - 15 7250
Minimum time 15 Bruteforce 0 - 15 7250
Min. cost to company 0 Guessing 0 - 15 7250

Social Worker Minimum cost 4000 Generic reconnaissance 0 - 0 50
Phone trap Execution 0 - 15 3500

2nd best min. cost 4500 Generic reconnaissance (fails) 0 - 0 500
Physical reconnaissance 0 - 0 500
Key logger local installation 0 - 5 1750
Password intercept 5 - 10 1750

Minimum time 10 Generic reconnaissance (fails) 0 - 0 500
Physical reconnaissance 0 - 0 500
Key logger local installation 0 - 5 1750
Password intercept 5 - 10 1750

Min. cost to company 0 Dictionary 0 - 15 7250

Cost to company
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Fig. 6. Analysis of attacker attributes in all three case studies.
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The attack steps are decorated
with the time required to success-
fully execute the step, as well as fixed
and variable costs incurred by the
attacker. These values are specified
for the different attacked roles and
skills levels. A cost for the attacked
company is also included, but this is
independent of the attacker profile.

Our analysis can provides insight-
ful information about vulnerable
paths and values relevant to risk man-
agers. An input table is provided as
Table 1 for Case study 1 to illustrate
our methodology and we use similar
scale to perform other case studies provided in the paper. The exact values for
other case studies will be provided in a detailed report.

Forestalling release of software. As elaborated in Example 1, the AT in Figure 1
models the forestalling of software from [18]. We consider two attacker profiles:
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A generic attacker and a software engineer. The generic attacker is profit-
motivated and has a high risk appetite, but is not particularly skilled in this type
of attack. The software engineer has better access, skills, equipment, but low risk
appetite. The role of the attacker and the skill level are explicitly included in
the attacker profile, while the other attributes are reflected in the values of time
and cost to perform the step.

Formally, the profile of the generic attacker is defined by RGA(Role) =
‘Generic Attacker′ and RGA(Skill) = ‘Low′. Similarly, the profile for the soft-
ware engineer is RSE(Role) = ‘Software Engineer′ and RSE(Skill) = ‘High′.

Table 1 shows the input parameters. The analysis results are presented as a
Pareto curve in Figure 7, where the generic attacker requires 10 days incurring
a minimum cost of $9250 while a software engineer incurs a cost of $8500, but
can complete the attack in 5 days.

Here, we see that both attack values and the choice of attack path heavily
depend on the attacker profile. In contrast to the generic attacker whose cost
optimal attack trace is to bribe a programmer, a better skilled software engi-
neer exploits a bug in the computer system to steal the code. The minimum time
required to accomplish the attack also heavily depends on which attack steps are
executed and when. While a generic attacker takes 10 days to successfully execute
the attack by physical robbery, a software engineer with insider benefits takes only
5 days to accomplish his goal. Also, there is an attack trace i.e Hire a robber, Rob-
ber breaks into system, Code is completed into product which results in an optimum
Cost to company as $500,000 irrespective of the considered attacker profiles.

Cracking a password protected file. The attack tree depicted in Figure 8 models
an attack on a password protected file. It is taken from [25] and modified to add
SAND and SOR gates. The goal of the attack is to obtain a password. This, can
be done by either performing a brute force attack or taking a multistep approach

Password attack success

Cracking Alternatives

Guessing Dictionary Bruteforce

Password attack

Social Engineering

Email/Phone trap Execution and User trapped

Email trap
Execution

Phone trap
Execution

Key logger

Password InterceptKey logger instal-
lation alternatives

Remote

Generic Re-
connaissance

Payload Crafting Email file
Execution

Physical

Physical Re-
connaissance

Keylogger local
Installation

Fig. 8. Dynamic Attack Tree modelling the attack on password protected file.
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Obtain administrator privileges

Access System Console Obtain administrator password

Enter Computer Centre Corrupt
sys. Admin

Guess Password Look over Sys.
Admin Shoulder

Trojan Horse
SA accountBreak into

Computer Centre Unattended Guest

Obtain password file Encounter Guessable Password

Fig. 9. To obtain administrator privileges.

of trying a password attack. To model different attacker behavior, we take two
attackers profiles into account.

A generic attacker who is a profit-motivated, skilled professional willing to
bear penalties; and a social worker, a popular public figure who is also profit-
motivated, but has a low risk appetite. Table 2 tabulates the optimum attack
values and traces which illustrate that adversarial behavior greatly depends on
his possessed attributes and his perceived goal. While a social worker; being
good in social engineering can crack the password in minimum 10 days through
Physical reconnaissance, he prefers Generic reconnaissance for achieving his goal,
incurring the minimum cost of $4000 US. In contrast, a generic attacker prefers
more technical approaches like Bruteforce in achieving his goal in a minimum
time of 15 days and Dictionary attack by incurring the minimum cost of $7250.

Obtaining administrator privileges. The goal of the attack tree in Figure 9 is
to obtain administrator privileges and has been adopted from [19]. We consider
three different attacker profiles for our analysis.

A generic attacker who is a professional hacker, with high risk appetite and
malicious intentions to disrupt the availability of the system; a script kiddie
fearful by conscience trying to hack just for fun and who has low risk taking
ability; and an insider: a colleague of a system administrator with better access
to the computer center. The insider, knowing system details expects a huge profit
from the attack and is this willing to bear risk to a greater extent. The results
in Figure 6(b) show that the colleague of the system administrator, knowing
the vulnerabilities of the system, can reach the goal with minimal investments.
Having less resources, a juvenile attacker’s optimal cost and time are both higher
than professional generic attacker and the malicious insider. Note that the fastest
attack may not be the cheapest one due to several attack steps being performed
concurrently under different constraints of time and base costs.

Figure 6 provides a succinct representation of these different attack scenar-
ios. We put the attacker objectives as vertices (i.e Minimum cost, Minimal time,
Risk appetite, Cost to company) and the connecting lines are the attacker pro-
files (discussed is the case descriptions). The figure shows a trade-off among
different attack values for the considered attacker profiles which an enterprise
risk manager can use to effectively plan countermeasures.
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6 Conclusion

We have presented a framework of security risk analysis by reducing a multi-
parameter attack tree into priced timed automata. By slightly deviating from
the strict formalism of attack trees by allowing shared subtrees, we preserve the
intuitive representation of attack scenarios while also providing insightful quali-
tative and quantitative information in terms of optimal attack paths and values.
Furthermore, our analysis takes temporal dependencies into account by defining
the semantics of SAND and SOR gates.

As future work, we plan to analyze case studies incorporating realistic values,
and to extend our framework by including success probabilities of basic attack
steps. We see clear parallels between our approach and stochastic games and in
the future we would like to integrate the best of both.
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Abstract. We address the problem of verifying timed properties of
Markovian models of large populations of interacting agents, modelled
as finite state automata. In particular, we focus on time-bounded prop-
erties of (random) individual agents specified by Deterministic Timed
Automata (DTA) endowed with a single clock. Exploiting ideas from
fluid approximation, we estimate the satisfaction probability of the DTA
properties by reducing it to the computation of the transient probability
of a subclass of Time-Inhomogeneous Markov Renewal Processes with
exponentially and deterministically-timed transitions, and a small state
space. For this subclass of models, we show how to derive a set of Delay
Differential Equations (DDE), whose numerical solution provides a fast
and accurate estimate of the satisfaction probability. In the paper, we
also prove the asymptotic convergence of the approach, and exemplify
the method on a simple epidemic spreading model. Finally, we also show
how to construct a system of DDEs to efficiently approximate the average
number of agents that satisfy the DTA specification.

Keywords: Stochastic model checking · Fluid model checking · Deter-
ministic timed automata · Time-inhomogeneous markov renewal pro-
cesses · Fluid approximation · Delay differential equations

1 Introduction

One of the major technological challenges in computer science and engineer-
ing is the design and analysis of large-scale distributed systems, where many
autonomous components interact in an open environment. Examples include the
public and shared transportation in smart cities, the power distribution in smart
grids, and the robust communication protocols of online multimedia services. In
this context, the mathematical and computational modelling plays a crucial role
in the management of such Collective Adaptive Systems (CAS), due to the need
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of understanding and control of their emergent behaviours in open working con-
ditions. The intrinsic uncertainty of CAS can be properly captured by stochastic
models, but the large number of interacting entities always results in a severe
state space explosion, introducing exceptional computational challenges. In par-
ticular, the scalability of the models and of their analysis techniques is a major
issue in the development of stochastic model checking procedures for the verifica-
tion of formal properties. In this context, up to now, the numerical approaches
[24] are deeply hampered by the state space explosion of the large stochastic
models, and the statistical methods based on simulation require a large compu-
tational effort.

A recent line of work tries to address the issue of scalability by exploit-
ing stochastic approximation techniques [10,11], like the Fluid Approximation
[8,9,18]. In this method, a stochastic discrete model is replaced by a simpler
continuous one, whose dynamics is described by a set of differential equations.
In [8], the authors exploit this limit construction to verify properties that asses
the behaviour of a single individual in a collective system, and define a procedure
called the Fluid Model Checking (FMC) [7,25]. This technique is based on the
Fast Simulation Theorem [16], which ensures that in a large population, a single
entity is influenced only by the mean behaviour of the rest of the agents.

In this work, we extend [8] to more complex time-bounded properties specified
by Deterministic Timed Automata endowed with a single clock [1,3,17]. As in
[8,10,13,23], we combine the agent and the DTA specification with a product
construction, obtaining a Time-Inhomogeneous Markov Renewal Process [15].
We then exploit results [6,22], defining the Fluid Approximation of this type of
models as the solution of a system of Delay Differential Equations (DDE) [16].
Other works dealing with the verification of DTA properties are [4,12,14,19].

Main Result. We introduce a new fast and efficient Fluid Model Checking
procedure to accurately approximate the probability that a single agent satisfies
a single-clock DTA specification up to time T . Similarly to [8], the technique is
based of the Fast Simulation Theorem, and couples the Fluid Approximation of
the collective system with a set of Delay Differential Equations for the transient
probability of the Time-Inhomogeneous Markov Renewal Process obtained by
the product construction between the single agent and the DTA specification.

In the paper, we discuss the theoretical aspects of our approach, proving
the convergence of the estimated probability to the true one in the limit of an
infinite population. We also show the procedure at work on a running example
of a simple epidemic process, emphasising the quality of the approximation and
the gain in terms of computational time. Finally, by exploiting the construction
of [10,22], we also show how to define a set of DDEs approximating the mean
number of agents satisfying a single-clock DTA specification up to time T .

Paper Structure. In Sec. 2, we introduce the modelling language, the Fluid
Approximation, the Fast Simulation Theorem, and the DTA specification for
the timed properties. In Sec. 3, we present our FMC procedure, defining the
DDEs for the probability that the single agent satisfies the timed property. In
Sec. 3.1, we adapt our verification technique to compute the mean number of
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agents that meet the DTA requirement. In Sec. 4, we discuss the quality of the
approximation on the epidemic example. Finally, in Sec. 5, we draw the final
conclusions. The proofs of the theoretical results are omitted and can be found
in the extended version available at http://arxiv.org/abs/1506.05909.

2 Background and Modelling Language

Agent Classes and Population Models. A collective system is comprised
of a large number of interacting agents. To describe its dynamics, we define a
population model [10,11] in which the agents are divided into classes, called agent
classes, according to their behaviour.

Definition 1 (Agent Class). An agent class A is a pair (S,E) in which S =
{1, . . . , m} is the (finite) state space and E = {ε1, . . . , εη} ⊆ S × L × S is the
(finite) set of local transitions of the form εi = si

αi−→ s′
i, where si, s

′
i ∈ S are the

initial and arrival states, and αi ∈ L is the unique label of εi, i.e. αi �= αj for
i �= j1.

Intuitively, an agent in class A = (S,E) is a finite state automaton that
can change state by performing the actions in E. Then, assuming that agents
in the same state are indistinguishable, to define the population model, we
rely on the counting abstraction, counting how many agents are in each state
at time t. Hence, for each agent class, we define the collective or count-
ing variables X

(N)
1 (t), . . . , X(N)

m (t) given by X
(N)
j (t) =

∑
k 1{Y

(N)
k (t)=j}, where

Y
(N)
k (t) ∈ {1, . . . , m} is the random variable denoting the state of agent k at

time t, and N =
∑

A

∑
j X

(N)
j is the population size, that we assume constant

in time (cf. also [8]). Then, given n =
∑

A |S|, the state of the population model
is given by the vector X(N)(t) ∈ (R≥0)n that enlists the counting variables of
the agent classes.

Definition 2 (Population Model). A population model X (N) is a tuple
X (N) = (A, T (N),x(N)

0 ), where A = {A1, . . . ,Aν} is the set of agent classes,
as in Definition 1; x(N)

0 = X(N)(0) is the initial state; and T (N) = {τ1, . . . , τ�}
is the set of global transitions of the form τi = (Si, f

(N)
i ,v(N)

i ), where:

– Si = {|s1 α1−→ s′
1, . . . , sp

αp−−→ s′
p|} is the (finite) multi-set of local transitions

synchronized by τi;
– f

(N)
i : (R≥0)n −→ R≥0 is the (Lipschitz continuous) global rate function;

– vi =
∑

αj∈Si
|{|αj |}|(1sj

− 1s′
j
) is the update vector, where |{|αj |}| is the mul-

tiplicity of αi in Si, and 1sj
is the vector equal to 1 on sj and 0 elsewhere.

1 The restriction on the uniqueness of the labels can be dropped (as in [10]) at the
price of heavier notation and combinatorics in the definitions of the rest of the paper.

http://arxiv.org/abs/1506.05909
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Fig. 1. The agent class A (left) and property D (right) of the running example.

When a global transition τi = (Si, f
(N)
i ,vi) is taken, the transitions in Si fire at

the local level, meaning that, for each s
α−→ s′ in Si, an agent moves from s to

s′. Hence, the update vector vi encodes the net change in the state X(N)(t) of
X (N) due to transition τi. Moreover, for the model to be meaningful, whenever
at time t it is not possible to execute τi, because there are not enough agents
available, i.e.

(
X(N)(t) − vi

)
j

< 0 for some j ∈ {1, . . . , n} with n = |X(N)(t)|,
we require the rate function to be zero, i.e. f

(N)
i (X(N)(t)) = 0.

Example. The running example that we consider is a simple SIS model, describ-
ing the spreading of a disease inside a population. All agents belong to the same
agent class A , depicted in Fig. 1, and can be either susceptible (S) or infected (I).
When they are susceptible, they can be infected (inf ), and when they are infected,
they can either pass the infection (pass) or recover (rec). Hence, the state X(N)(t)
of the population model is X(N)(t) = (X(N)

S (t),X(N)
I (t)), and we define 2 global

transitions: τr = ({I
rec−−→ S}, f

(N)
r ) and τi = ({S

inf−−→ I, I
pass−−−→ I}, f

(N)
i ).

The former, τr, mimics the recovery of one entity inside the population, while
τi synchronises two local actions, namely S

inf−−→ I and I
pass−−−→ I, and mod-

els the transmission of the virus from an infected agent to a susceptible one.
Finally, the rate functions depend on the number of agents involved in the tran-
sitions and follow the classical rule of mass action [2]: f

(N)
r (t) = krX

(N)
I (t) and

f
(N)
i (t) = 1

N kiX
(N)
S (t)X(N)

I (t), where kr, ki ∈ R≥0.

Fluid Approximation. The Fluid Approximation [8,9,18] of a population
model X (N) = (A, T (N),x(N)

0 ) is an estimate of the mean behaviour of its agents.
To compute this approximation, we first normalise X (N) by dividing the state
vector X(N)(t) and the initial state x(N)

0 by the population size N , i.e. we define
X̂(N)(t) = X(N)(t)/N and x̂

(N)
0 = x(N)

0 /N . Then, for all transition τi ∈ T (N),
we let f̂

(N)
i (X̂) be the rate function, where we substitute the counting vari-

ables of X(N)(t) with the new normalised counting variables of X̂(t). Moreover,
we assume that for each f̂

(N)
i (X̂), there exist a Lipschitz function fi(X̂) such

that f̂
(N)
i (X̂)/N N→+∞−−−−−→ fi(X̂) uniformly. Finally, in terms of fi(X̂), we define

the drift F(X̂) given by F(X̂) =
∑

τi
vifi(X̂), whose components represent the

instantaneous net flux of agents in each state of the model. Then, given a time
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horizon T < +∞, the Fluid Approximation Φ(t) of X (N) is the unique2 solution
of the system of Ordinary Differential Equations (ODEs) given by

dΦ

dt
(t) = F(Φ(t)), for 0 ≤ t ≤ T,

with Φ(0) = x0. The accuracy of the approximation improves the larger is the
ensemble of agents that we consider, i.e. the larger is N , and is exact in the limit
of an infinite population. Indeed, the following theorem holds true [18].

Theorem 1 (Fluid Approximation). For any T < +∞ and ε > 0,

Prob

{
sup

0≤t≤T
||X̂(N)(t) − Φ(t)||> ε

}
N→+∞−−−−−→ 0.

Fast Simulation. In this paper, we are interested in the behaviour of a (ran-
dom) single agent inside a population. As we have just seen, the dynamics of a
large population can be accurately described by a deterministic limit, the Fluid
Approximation. But when we focus on one single agent in a collective system, we
need to keep in mind that its behaviour in time will always remain a stochastic
process, even in large populations. Nevertheless, the Fast Simulation Theorem
[5,16,20] guarantees that in the limit of an infinite population size, the stochas-
tic process of the single agent senses only the mean behaviour of the rest of the
agents (i.e. there is no need to keep track of all the states of all the other entities
in the population). This means that, when the population size is large enough,
to analyse the dynamics the single agent, we can define the Fluid Approximation
of the population model, and then use its state (i.e. the mean state of the rest
of the agents) to compute the rates of a Time-Inhomogeneous CTMC (ICTMC)
[8] that describes the behaviour of the single agent.

Formally, let Y (N)(t) be the stochastic process that describes the state of the
single agent in the population model X (N) = (A, T (N),x(N)

0 ) with state vector
X(N)(t). By definition, Y (N)(t) is not independent of X(N)(t). Now consider
the normalised model X̂ (N) described by X̂(N)(t), and let Φ(t) be the Fluid
Approximation of X (N). Define the generator matrix Q(N)(x) = (q(N)

ij (x)) of

Y (N)(t) as a function of the normalised counting variables, i.e. ∀ q
(N)
ij (x),

Prob
{

Y (N)(t + dt) = j | Y (N)(t) = i, X̂(N)(t) = x
}

= q
(N)
ij (x)dt.

Notice that Q(N)(x) can be computed from the rates in X (N). Indeed, for i �= j,

q
(N)
ij (x) =

∑

τ∈T

[
|{|i → j ∈ Sτ |}|

Xi

f̂
(N)
τ (X̂)

N

]
,

where |{|i → j ∈ Sτ |}| is the multiplicity of i → j in the transition set Sτ of τ ,
i.e. the number of agents that take such transition according to τ . Furthermore,
2 Existence and uniqueness of Φ(t) are guaranteed by the Lipschitzianity of the fi(X̂).
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as customary, let q
(N)
ii (x) = −∑

j 	=i q
(N)
ij (x). Then, since f̂

(N)
i (X̂)/N N→+∞−−−−−→

fi(X̂), we have that Q(N)(x) → Q(x), where Q(x) is computed in terms of the
Lipschitz limits fi(X̂). Now, define the stochastic processes:

1. Z(N)(t), that describes the state of the process Y (N)(t) for the single agent
in class A , when Y (N)(t) is marginalised from X(N)(t);

2. Z(t), that is the ICTMC, defined on the same state space of Z(N)(t), with
time-dependent generator matrix Q(Φ(t)), i.e. the generator matrix Q(t),
where the Lipschitz limits fi(t) are computed over the components of Φ(t).

Then, the following theorem can be proved [16].

Theorem 2 (Fast Simulation). For any time horizon T < +∞ and ε > 0,

Prob

{
sup

0≤t≤T
||Z(N)(t) − Z(t)||> ε

}
N→+∞−−−−−→ 0.

Example. For the running example, if we consider a population of 1000 agents, i.e
N = 1000, and an initial state x(N)

0 = (900, 100), then the Fluid Approximation
Φ(t) of the population model is the unique solution of the following ODEs:

{
dΦS

dt (t) = −kiΦI(t)ΦS(t) + krΦI(t);
dΦI

dt (t) = +kiΦI(t)ΦS(t) − krΦI(t);
with

{
ΦS(0) = 0.9;
ΦI(0) = 0.1.

(1)

The generator Q(Φ(t)) of the ICTMC Z(t) for the single agent, instead, is:

qS,S(t) = −qS,I(t); qS,I(t) = kiΦI(t); qI,S(t) = kr; qI,I(t) = −qI,S(t). (2)

2.1 Timed Properties

We are interested in properties specifying how a single agent behaves in time.
In order to monitor such requirements, we assign to it a unique personal clock,
which starts at time 0 and can be reset whenever the agent undergoes specific
transitions. In this way, the properties that we consider can be specified by a
single-clock Deterministic Timed Automata (DTA)[1,13], which keeps track of
the behaviour of the single agent with respect to its personal clock. Moreover,
since we want to exploit the Fast Simulation Theorem, we restrict ourselves to
time bounded properties and, hence, we assign to the DTA a finite time horizon
T < +∞, within which the requirement must be true.

Definition 3 (Timed Properties). A timed property for a single agent in
agent class A is specified as a single-clock DTA of the form D = D(T ) =
(T,L , c, CC, Q, q0, F,→), where T < +∞ is the finite time horizon; L is the
label set of A ; c is the personal clock; CC is the set of clock constraints, which
are conjunctions of atoms of the form c < λ, c ≤ λ, c ≥ λ or c > λ for λ ∈ Q; Q
is the (finite) set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of final
(or accepting) states; and → ⊆ Q ×L × CC × {∅, {c}} × Q is the edge relation.
Moreover, D has to satisfy:
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– (determinism) for each initial state q ∈ Q, label α ∈ L , clock constraint
c�	 ∈ CC, and clock valuation η(c) ∈ R≥0, there exists exactly one edge
q

α,c��,r−−−−→ q′ such that η(c) |=CC c�	
3;

– (absorption) the final states are all absorbing.

A timed property D is assessed over the time-bounded paths (of total dura-
tion T ) of the agent class A sampled from the stochastic processes Z(N)(t) and
Z(t) defined for the Fast Simulation in Sec. 2. The labels of the transitions of
A act as inputs for the DTA D, and the latter is defined in such a way that it
accepts a time-bounded path σ if and only if the behaviour of the single agent
encoded in σ satisfies the property represented by D. Formally, a time-bounded
path σ = s0

α0,t0−−−→ s1
α1,t1−−−→ . . .

αn,tn−−−−→ sn+1 of A sampled from Z(N)(t) (resp.
Z(t)), with

∑n
j=0 tj ≤ T , is accepted by D if and only if there exists a path

q0
α0−→ q(1)

α1−→ q(2)
α2−→ . . .

αn−−→ q(n+1) of D such that q(n+1) ∈ F . In the path
of D, q(i+1) ∈ Q denotes the (unique) state that can be reached form q(i) ∈ Q

taking the action q(i)
αi,c��,r−−−−−→ q(i+1) whose clock constraint c�	 is satisfied by

the clock valuation η(c) updated according to time ti. In the following, we will
denote by ΣA ,D,T the set of time-bounded paths of A accepted by D.

Example. We consider the following property for the running example: within
time T , the agent gets infected at least once during the Δ = 5 time units that
follow a recovery. To verify such requirement, we use the DTA D = D(T ) rep-
resented in Fig. 1. If we record the actions of the single agent on D, i.e. we
synchronise A and D, when the agent recovers (rec), D passes from state q0 to
q1, resetting the personal clock c. After that, if the agent gets infected (inf)
within 5 time units, the property is satisfied, and D passes from state q1 to q2,
which is accepting. If instead the agent is infected (inf) after 5 units of time,
D moves back to state q0, and we start monitoring the behaviour of the agent
again. In red we highlight the transition that resets the personal clock c in D.

3 Fluid Model Checking of Timed Properties

Consider a single agent of class A = (S,E) in a population model X (N) =
(A , T (N),x(N)

0 ), and a timed property D = D(T ) = (T,L , ΓS , CC, Q, q0, F,→).
Let ΣA ,D,T be the set of time-bounded paths of A accepted by D. Moreover, let
Z(N)(t) and Z(t) be the two stochastic processes defined for the Fast Simulation
in Sec. 2. The following result holds true.

Proposition 1. The set ΣA ,D,T is measurable for the probability measures
ProbZ(N) and ProbZ defined over the paths of Z(N)(t) and Z(t), respectively. 
�
Let P (N)(T ) = ProbZ(N){ΣA ,D,T } and P (T ) = ProbZ{ΣA ,D,T }. In this paper,
we are interested in the satisfaction probability P (N)(T ), i.e. the probability

3 The notation η(c) |=CC c�� stands for the fact that the value of the valuation η(c) of
c satisfies the clock constraint c��.
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that the single agent satisfies property D within time T in X (N). Then, the main
result that we exploit in our Fluid Model Checking procedure is that, when the
population is large enough (i.e N is large enough), P (N)(T ) can be accurately
approximated by P (T ), which is computed over the ICTMC Z(t), whose rates
are defined in terms of the Fluid Approximation Φ(t) of X (N). The correctness
of the approximation relies on the Fast Simulation Theorem and is guaranteed
by the following result.

Theorem 3. For any T < +∞, limN→∞ P (N)(T ) = P (T ). 
�
Moreover, to compute P (T ), we consider a suitable product construction AD =
A ⊗ D, whose state is described by a Time-Inhomogeneous Markov Renewal
Process (IMRP) [15] that we denote by ZAD

(t). In the rest of this section, we
define AD and ZAD

(t), and we show how to compute the satisfaction probability
P (T ) in terms of the transient probability P (T ) of ZAD

(t).

The Product AD. We now introduce the product AD between A and D, whose
state is described by a Time-Inhomogeneous Markov Renewal Process (IMRP)
ZAD

(t) that has rates computed over the Fluid Approximation Φ(t) of X (N).
A Markov Renewal Process (MRP) [15] is a jump-process, where the sojourn

times in the states can have a general probability distribution. In particular, in
the MRP ZAD

(t), we will allow both exponentially and deterministically-timed
transitions, and in the following, we will refer to them as the Markovian and
deterministic transitions, respectively. Since the transition rates of ZAD

(t) will
be time-dependent, ZAD

(t) will be a Time-Inhomogeneous MRP.
To define the product AD = (A , SD, {M, E}, s0,D, FD), let δ1 < . . . < δk be

the (ordered) constants that appear in the clock constraints of D, and extend
the sequence with δ0 = 0 and δk+1 = T . The state space SD of AD is given by
{1, . . . , k + 1} × S × Q. The first element of SD identifies a time region of the
clock c, and we refer to SDi

= {(i, s, q) | s ∈ S, q ∈ Q} as the i-th Time Region
of SD. The rest of AD will be defined in such a way that the agent is in SDi

if
and only if c satisfies δi−1 ≤ η(c) ≤ δi, where η is the valuation of c.

The set M of Markovian transitions of AD is the smallest relation such that

∀ i ∈ 1, . . . , k + 1,
s

α−→ s′ ∈ E ∧ q
α,c��,∅−−−−−→ q′ ∈→ ∧ [δi−1, δi] |= c�	

(i, s, q) α−→ (i, s′, q′) ∈ M , (3)

∀ i ∈ 1, . . . , k + 1,
s

α−→ s′ ∈ E ∧ q
α,c��,{c}−−−−−−→ q′ ∈→ ∧ [δi−1, δi] |= c�	

(i, s, q) α−→ (1, s′, q′) ∈ M . (4)

Intuitively, rule (3) synchronises the local transitions s
α−→ s′ ∈ E of the

agent class A = (S,E) with the transition q
α,c��,∅−−−−−→ q′ ∈→ that has the same

label in D, obtaining a local transition (i, s, q) α−→ (i, s′, q′) ∈ M in AD for each
time region i whose time interval [δi−1, δi] ⊆ [0, T ] satisfies the clock constraint
c�	, meaning that ∀t ∈ [δi−1, δi], t |= c�	. Rule (4), instead, defines the reset
transitions (i, s, q) α−→ (1, s′, q′) ∈ M that reset the personal clock c either within
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the 1st Time Region (when i = 1), or by bringing the agent back to the 1st Time
Region. In the following, we denote by R ⊂ M the set of the reset transitions.

To describe the deterministic transitions of AD, instead, we define a set E of
clock events. Each clock event has the form e = (Ae,Δ, pe), where Ae ⊂ SDi

is
the active set, Δ is the duration, and pe : Ae × SD −→ [0, 1] is the probability
distribution. If the agent enters Ae, that is the sets of states in which e can be
active, a countdown starts from Δ. When this elapses, ei is deactivated and the
agent is immediately moved to a new state sampled from pe((i, s, q), ·) : SD −→
[0, 1], where (i, s, q) ∈ Ae is the state in which the agent is when the countdown
hits zero. Moreover, ei is deactivated also when the agent takes a reset transition.
In AD, we define:

– one clock event ei ∈ E for each time region SDi, i = 2, . . . , k;
–  + 1 clock events e01, e

1
1, . . . , e

�
1 ∈ E for the 1st Time Region, where  is the

number of reset events (1, s, q) α−→ (1, s′, q′) ∈ R defined by (4) with i = 1.

For i > 1, Ai = SDi, Δi = δi − δi−1, and the probability distribution is

pi((i, s, q), (i′, s′, q′)) =

{
1 if i′ = i + 1, s′ = s, q′ = q,

0 otherwise.
(5)

As it is defined, each clock event ei with i > 1 connects each state (i, s, q) ∈ Ai

with (i + 1, s, q) ∈ SDi+1, hence, when the duration Δi of ei elapses, the clock
event moves the agent from its state to the equivalent one in the next time
region. When i = 1, instead, the duration and the probability distribution of
each clock event ej

1, j = 1, . . . , , are defined in the same way as before (i.e.
Δj

1 = δ1 − δ0 = δ1, and pj
1 is given by (5)), but the activation sets are now

subsets of SD1 . Indeed, since each reset transition (1, s, q)
αj−→ (1, s′, q′) ∈ R

initiates the clock, for each of them, we need to define a clock event ej
1, whose

activation set Aj
i is the set of states in SD1 that can be reached by the agent

after it has taken the reset transition (1, s, q)
αj−→ (1, s′, q′). Furthermore, we

have to define an extra clock event e01, with A0
1 = SD1 , Δ0

1 = δ1, and p01 given
by (5), that is the only clock event initiated at time t = 0 (and not by the agent
entering A0

1). Indeed, we require for the initial state s0,D of AD to be one of the
states of the form (1, s, q0), where s ∈ S and q0 is the initial state of D (hence,
s0,D belongs to A0

1). Finally, since the probability distributions pj
1, ∀j, are all

defined as in (5), also the clock events of the 1st Time Region move the agent
from a state to the equivalent one in the next time region (the 2nd), when the
countdown from Δj

1 = δ1 elapses. In the following, we denote by (i, s, q) ���e

(i+1, s, q) the deterministic transition from (i, s, q) ∈ SDi to (i+1, s, q) ∈ SDi+1

encoded by e ∈ E , and by νe,s,q = 1(i+1,s,q) − 1(i,s,q) its update vector. The last
component of AD that we define is the set of final states FD, which is given by
FD = {(i, s, q) ∈ SD | q ∈ F}.

Example. Fig. 2 represents the product AD between the agent class A and the
property D of the running example (Fig. 1). The state (1, I, q1) that cannot be
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1st Time Region
0 ≤ c ≤ 5

2nd Time Region
c ≥ 5

(1, S, q0)

(1, I, q0)

(2, S, q0)

(2, I, q0)

(1, S, q1) (1, S, q2)

(1, I, q2)

(2, S, q1)

(2, I, q1)

(2, S, q2)

(2, I, q2)

inf
rec

inf

inf

rec

inf rec

inf rec

inf rec

Fig. 2. The agent class AD associated with the DTA D of the running example.

reached by the single agent is omitted. The black transitions are the Markovian
transitions without reset; the red transitions are the Markovian transitions that
reset the clock; finally, we define 2 clock events, e01 and e11, with duration Δ =
5 for the 1st Time Region, and the dashed green (resp. blue) transitions are
the deterministic transitions encoded by e01 (resp. e11). In blue, we also highlight
the states that belong to the activation set Ae1

1
(while Ae0

1
is the whole 1st Time

Region). Intuitively, the agent can be found in one of the states belonging to the
1st Time Region whenever its personal clock c is between 0 and 5, i.e. less that 5
time units have passed since t = 0 or since a recovery rec. In a similar way, the
agent is in the 2nd Time Region when the valuation of c is above 5. Moreover,
when the the duration of the clock events elapses (i.e. the countdown from 5 hits
0), the agent is moved from the 1st Time Region to the 2nd Time Region by the
deterministic green and blue transitions, that indeed have duration Δ = 5 and
are initiated at t = 0 or by the reset actions rec, respectively. At the end, the
agent is in one of the final states ((1, S, q2), (1, I, q2), (2, S, q2) or (2, I, q2)) at
time T , if it meets property D within time T , i.e. within T , the agent has been
infected during the 5 time units that follow a recovery. Hence, to verify D, we
will compute the probability of being in one of the final states of AD at time T .

The IMRP ZAD
(t) and the Satisfaction Probability P (T ). Now we show

how to formally define the IMRP ZAD
(t) that describes the state of the product

AD in the mean field regime. In particular, we derive the Delay Differential
Equations (DDE) [15] for the transient probability P (t) of ZAD

(t), in terms of
which we compute the satisfaction probability P (T ).

Let Φ(t) be the Fluid Approximation of the population model X (N). To define
the transient probability P (t) of ZAD

(t), we exploit the fact that, in the case
of an IMRP, we have: dP

dt (t) = M(Φ(t))P (t) + D(Φ(t),P (t)) (cf. [15]). In this
equation, M(Φ(t)) is the generator matrix for the Markovian transitions, and
D(Φ(t),P (t)) accounts for the deterministic events. The elements of M(Φ(t))
are computed following the same procedure that was described in Sec. 2, where
the multiplicity of each transition (i, s, q) α−→ (i, s′, q′) ∈ M in AD is always equal
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to 1 (one single agent) and the Lipschitz limit fα(Φ(t)) of α is that of the rate
of the transition s

α−→ s′ in X (N) from which α was derived (by rules (3) or (4)).
To define the components of D(Φ(t),P (t)), instead, consider any clock event

e = (Ai,Δi, pi) ∈ E , except e01, whose contribute will be computed later on4.
Choose one of the deterministic transitions (i, s, q) ���ei

(i + 1, s, q) encoded
by ei. The agent takes this transition at time t when: (1) it entered Ai ⊆ SDi

at time t − Δi (initiating its personal clock), and (2) it is in state (i, s, q) ∈ Ai

at time t (when the duration of ei elapses). Hence, to compute the term that
corresponds to this transition in D(Φ(t),P (t)), we need to: (1) record the flux of
probability that entered Ai at time t−Δi, and (2) multiply it by the probability
that the agent reaches (i, s, q) ∈ Ai at time t, conditional on the state at which
it entered Ai at t − Δi.

To compute the probability of step (2), we need to keep track of the dynamics
of the agent while the clock event ei is active. For this purpose, let Āi be the
activation set Ai of ei extended to contain an extra state sout = (i, sout, qout),
and let M̄ be the set M of Markovian transitions in AD modified in order
to make the reset transitions that start in Ai finish into sout (i.e. for every
(i, s, q) α−→ (i′, s′, q′) ∈ R ⊂ M, we define (i, s, q) α−→ sout ∈ M̄), and to have sout

absorbing5. Let Gi(Φ(t)) ∈ Matr(|Āi|×|Āi|) be the time-dependent matrix s.t.

(Gi(Φ(t)))(i,s,q),(i,s′,q′) =
∑

(i,s,q)
α−→(i,s′,q′)∈M̄

[
1

Φs(t)
fα(Φ(t))

]
, (6)

where again the Lipschitz limit fα(t) of each α ∈ M̄ is that of the transition s
α−→

s′ in X (N) from which its copy α ∈ M was derived (by (3) and (4)). Moreover,
let the diagonal elements of Gi(Φ(t)) to be defined so that the rows sum up
to zero. Then, we introduce the probability matrix Y i(t), which is computed in
terms of the generator Gi(Φ(t)) according to the following ODEs (see also [8]):

{
dY i

dt (t) = Y i(t)Gi(Φ(t)) − G(Φ(t − Δi))Y i(t), Δi ≤ t ≤ T,
dY i

dt (t) = Y i(t)Gi(Φ(t)), 0 ≤ t ≤ Δi,
(7)

with Y i(0) = I. By definition, (Y i(t))(i,s′,q′),(i,s,q) is the Fluid Approximation of
the probability of step (2), i.e. the probability that the agent, which has entered
Ai in state (i, s′, q′) at time t − Δi, moves (Markovianly) within Ai for Δi units
of time, and reaches (i, s, q) ∈ Ai at time t (exactly when ei elapses).

In terms of the probability matrix Y i(t), we can now define the component
of D(Φ(t),P (t)) that corresponds to the deterministic transition (i, s, q) ���ei

(i + 1, s, q) of the clock event ei ∈ E . This component is the element in posi-
tion ((i, s, q), (i + 1, s, q)) in D(Φ(t),P (t)), we call it Dei,s,q(Φ(t),P (t)), and is
given by
4 If e is one of events of the 1st Time Region, i.e. e = ej

1, for some j = 1, . . . , �, in this
section, we drop the index j to ease the notation, i.e. we write ej

1 = e1 = (A1, Δ1, p1).
5 The absorbing state sout is needed for the probability Y i(t) of step (2) to be well

defined. Indeed, the agent can deactivate ei by taking a reset transition.
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Dei,s,q(Φ(t),P (t)) =
∑

(i,s̄,q̄)∈Ai

⎡

⎣1{i>1}Dei−1,s̄,q̄(Φ(t − Δi),P (t − Δi)) + 1{i=1} ×

×
∑

(i′,s′,q′)
α−→(1,s̄,q̄)∈R

1
Φs′(t)

fα(Φ(t − Δ1))(P (t − Δ1))(i′,s′,q′)

⎤

⎦(Y i(t))(i,s̄,q̄),(i,s,q),

(8)

where (P (t − Δ1))(i′,s′,q′) is the component in position (i′, s′, q′) ∈ SDi′ in the
vector of the transient probability P (t − Δ1) of ZAD

at time t − Δ1. In (8),
for each state (i, s̄, q̄) in the activation set Ai, the quantity inside the squared
brackets is the probability flux that entered (i, s̄, q̄) at time t−Δi. In particular,
when i > 1, Dei−1,s̄,q̄(Φ(t − Δi),P (t − Δi)) accounts for the termination of
clock event ei−1 (i.e. the deterministic transition (i − 1, s̄, q̄) ���ei

(i, s̄, q̄) fired
at time t − Δi). When we consider the 1st Time Region, i.e. i = 1, instead,
each term in the sum over the reset transitions is the flux of probability entering
(1, s̄, q̄) at time t − Δ1 due to a clock reset. Finally, (Y i(t))(i,s̄,q̄),(i,s,q) is again
the probability of reaching (i, s, q) ∈ Ai from (i, s̄, q̄) ∈ Ai in Δi units of time.

All the other off-diagonal elements of D(Φ(t),P (t)) can be computed in a
similar way, while the diagonal ones are defined so that the rows sum up to zero.
Moreover, since at the end D(Φ(t),P (t)) depends on the state of the system
at times t − Δ1, . . . , t − Δk (through the probabilities Y i(t), i = 1, . . . , k), we
write D(Φ(t)) = D(Φ,P ,Δ1, . . . , Δk, t). Then, we define the transient probabil-
ity P (t) of the IMRP ZAD

(t) as the solution of the following system of DDEs:

P (t) =
∫ t

0

M(s)P (t)ds +
∫ t

0

D(Φ,P ,Δ1, . . . , Δk, s)ds + 1t≥Δ1

∑

(s,q)∈S×Q

ye0
1
νe0

1,s,q.

(9)

In (9), the third term is a deterministic jump in the value of P (t) at time t = Δ1,
and represents the contribute of the clock event e01. In such term, the vectors
νe0

1,s,q are the update vectors of the deterministic transitions encoded by e10
(hence, the sum is computed over all such transitions), and the probability ye0

1

is the value at time t = Δ1 of the component in position (s0,D, (1, s, q)) (where
s0,D is the initial state of AD) in the matrix Y e0

1
(t) defined by:

dY e0
1

dt
(t) = Y e0

1
(t)G1(Φ(t)), 0 ≤ t ≤ Δ1,

with G1(Φ(t)) defined as in (6), and Y e0
1
(0) = I. Hence, ye0

1
=(Y e0

1
(Δ1))s0,D,(1,s,q)

is the probability that, starting form s0,D, the agents reaches (1, s, q) ∈ SD1 at
time t = Δ1 (exactly when the deterministic event (1, s, q) ���e0

1
(2, s, q) fires).
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Given the product AD, the IMRP ZAD
(t), and its transient probability P (t),

the following result holds true.

Proposition 2. There is a 1:1 correspondence between ΣA ,D,T and the set
AccPath(AD, T ) of accepted paths of duration T of AD. Hence,

P (T ) = ProbZ{ΣA ,D,T } = ProbZAD
{AccPath(AD, T )} = PFD

(T ),

where ProbZAD
is the probability measure defined by ZAD

, and PFD
(T ) is the sum

of the components of P (T ) corresponding to the final states FD of AD. 
�
In other words, according to Proposition 2, when the population of X (N) is large
enough, PFD

(T ) is an accurate approximation of the probability that a (random)
single agent in X (N) satisfies property D within time T .

Example. For the product AD in Fig. 2, the non-zero off-diagonal entries of
the generator matrix Ge1

1
(Φ(t)) of the clock event e11 are: G(S,q1)(I,q2)(t) =

kiΦI(t); G(S,q2)(I,q2)(t) = kiΦI(t); and G(I,q2)(S,q2)(t) = kr. In terms of
Ge1

1
(Φ(t)), we can define Y e1

1
(t), as in (7), that is then used in the DDEs (9) for

the probability P (t). In this latter set of 9 DDEs (one for each state of AD), we
have:

P (1,S,q1)(t) =

∫ t

0

krP (1,S,q1)(s)ds −
∫ t

0

kiΦI(s)P (1,S,q1)(s)ds +

−
∫ t

0

krY (1,S,q1),(1,S,q1)(s − 5, s)P (1,S,q1)(s)ds.

Remark. The presence of only one clock in D enables us to define AD in such a way
that ZAD

(t) is an IMRP. This cannot be done when we consider multiple clocks
in D. Indeed, in the latter case, the definition of the stochastic process which
describes the state of the product AD is much more complicated, since, when a
reset event occurs, we still need to keep track of the valuations of all the other
clocks in the model (hence, the dynamics between the time regions of AD is not
as simple as in the case of one single clock). In the future, we plan to investigate
possible extensions of our model checking procedure to timed properties with
multiple clocks, also taking into account the results of [19] and [4].

3.1 The Mean Behaviour of the Population Model

It is possible to modify our FMC procedure in order to compute the mean num-
ber of agents that satisfy D. This can be done by assigning a personal clock
to each agent, and monitoring all of them using as agent class the product AD

defined in Sec. 3. In terms of AD, we can build the population model XD, with
AD as the only agent class, and the sum PFD

(T ) of the components correspond-
ing to the final states of AD in the Fluid Approximation Φ(t) of XD computed
at t = T is indeed the mean number of agents satisfying property D within
time T . The construction of XD is not difficult: it follows the procedure of [10],
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Table 1. Mean Relative Error (MeanRelErr), Maximum Relative Error (MaxRelErr),
and Relative Error at final time (RelErr(T)) of the FMC (top) and the Fluid Approx-
imation of the mean behaviour (bottom) for different values of N . The table enlists
also the execution times (in seconds) of the DES (TimeDES) and the approximations
(TimeFMC and TimeFluid), and the speedups (TimeDES divided by the other times).

Fluid Model Checking
N MeanRelErr MaxRelErr RelErr(T) TimeDES TimeFMC Speedup

250 0.0927 6.4512 0.1043 11.0273 0.4731 23.3086

500 0.0204 1.7191 0.0048 44.0631 0.3980 110.7113

1000 0.0118 0.7846 0.0003 170.9154 0.3998 427.5022

Fluid Approximation of the mean behaviour
N MeanRelErr MaxRelErr RelErr(T) TimeDES TimeFluid Speedup

250 0.1127 0.2316 0.0921 105.5647 0.4432 339.7217

500 0.0289 0.3177 0.0289 415.0635 0.4237 979.6165

1000 0.0117 0.2216 0.0117 1547.0340 0.4213 3672.0484

where a little extra care has to be taken just in the definition of the global
transitions of XD. Indeed, if we build for instance the population model XD

of the running example, we need to consider that the infected individual that
passes the virus to an agent in state (1, S, q0) can be now in one of five states:
(1, I, q0), (1, I, q2), (2, I, q0), (2, I, q1) or (2, I, q2). For this reason, we have to
define five Markovian global transition in XD, each of which moves an agent
from (1, S, q0) to (1, I, q0) at a rate that is influenced by the number of indi-
viduals that are in the infected states of AD, recorded in the counting variables
X(1,I,q0)(t),X(1,I,q2)(t),X(2,I,q0)(t),X(2,I,q1)(t) or X(2,I,q2)(t). The same reason-
ing has to be followed for the definition of the infections of the agents in states
(1, S, q1), (1, S, q2), (2, S, q0), (2, S, q1) and (2, S, q2). At the end, as for the single
agent, due to the deterministic events, the Fluid Approximation Φ(t) of XD is
the solution of a system of DDEs similar to (9). The definition of such approx-
imating equations for a population model with exponential and deterministic
transitions is not new [22], but, even if the results are promising (see Sec. 4), to
our knowledge, nobody has yet proven the convergence of the estimation in the
limit N → +∞. We save the investigation of this result for future work.

4 Experimental Results

To validate the procedures of Sec. 3, we performed a set of experiments on
the running example, where we fixed: ki = 1.2, kr = 1, Δ = 5, and an initial
state of the population model with a susceptible-infected ratio of 9:1. As in
Fig. 2, we let the single agent start in the susceptible state, and we considered
three different values of the population size: N = 250, 500, 1000. For each N , we
compared our procedures with a statistical estimate from 10000 runs, obtained
by a dedicated Java implementation of a Discrete Event Simulator (DES). The
errors and the execution times obtained by our FMC procedure (top) and the
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Fig. 3. The satisfaction probability P (T ) = PFD
(T ) obtained by the Fluid Model

Checking (left) and the Fluid Approximation of the mean behaviour (right) in the case
N = 1000. The results are compared with those obtained by the DES.

Fluid Approximation of the mean behaviour (bottom) are reported in Tab. 1.
Regarding the errors, we would like to remark that the Relative Errors (RE) of
both the FMC and the Fluid Approximation reach their maximum in the very
first instants of time, when the true satisfaction probability (i.e. the denominator
of the REs) is indeed really small, but then they decay really fast as the values
of PFD

(t) increase (this can be easily deduced from the values of the mean REs
and the REs at final time). As expected, the accuracy of the approximations
increases with the population size, and is already reasonably good for N = 500.
Moreover, the resolution of the DDEs is computationally independent of N , and
also much faster (approximatively 3 orders of magnitude in the case of the Fluid
for N = 1000) than the simulation based method. Fig. 3 shows the results of the
FMC and the Fluid Approximation in the case N=1000.

5 Conclusions

We defined a fast and efficient FMC procedure that accurately estimates the
probability that a single agent inside a large collective system satisfies a time-
bounded property specified by a single-clock DTA. The method requires the
integration of a system of DDEs for the transient probability of an IMRP, and the
exactness of the estimation is guaranteed in the limit of an infinite population.

Future Work. During the experimental analysis, we realised that, on certain mod-
els and properties, the DDEs (7) can be stiff, and their numerical integration in
MATLAB is unstable (see also [8]). In the future, we want to address this issue
by considering alternative integration methods [21], investigating also numeri-
cal techniques for MRP with time-dependent rates[26]. Furthermore, we plan to
prove the convergence of the Fluid Approximation of Sec. 3.1, and to investi-
gate higher-order estimates as in [10,11]. Finally, we want to extend the FMC
procedure of this paper to validate requirements specified in the logic CSLTA

[17] and DTA properties endowed with multiple clocks (possibly considering the
approximation techniques defined in [19] and [4]).
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Abstract. A nested timed automaton (NeTA) is a pushdown system
whose control locations and stack alphabet are timed automata (TAs).
A control location describes a working TA, and the stack presents a pile of
interrupted TAs. In NeTAs, all local clocks of TAs proceed uniformly also
in the stack. This paper extends NeTAs with frozen local clocks (NeTA-
Fs). All clocks of a TA in the stack can be either frozen or proceeding
when it is pushed. A NeTA-F also allows global clocks adding to local
clocks in the working TA, which can be referred and/or updated from
the working TA. We investigate the reachability of NeTA-Fs showing
that (1) the reachability with a single global clock is decidable, and (2)
the reachability with multiple global clocks is undecidable.

1 Introduction

Recently, modeling and analyzing complex real-time systems with recursive con-
text switches have attracted attention. Difficulty on decidability of crucial prop-
erties, e.g. safety, comes from two dimensions of infinity, an unboundedly large
stack and various types of clocks that record dense time.

Timed automata (TAs) [1] are finite automata with a finite set of clocks, of
which the constant slope is always 1. A special type of a clock is a stopwatch,
which has either 1 or 0 as the constant slope. A stopwatch automaton is a TA
with stopwatches, and surprisingly its reachability becomes undecidable [5].

For a component-based recursive timed system, clocks are naturally classified
into global clocks, which can be updated and observed by all contexts, and local
clocks, which belong to the context of a component and will be stored in the
stack when the component is interrupted. Similar to stopwatches, we introduce
a special type of local clocks, named frozen clocks, whose values are not updated
while their context is preempted and restart update when resumed. Other local
clocks are proceeding. The reachability of a recursive timed systems are inves-
tigated in various models, such as recursive timed automata (RTAs) [2], timed
recursive state machines (TRSMs) [3], and nested timed automata (NeTAs) [4].
Recently, RTAs are extended to recursive hybrid automata (RHA) [7].

Both RTAs [2] and TRSMs [3] adopt timed state machines as a formalization,
which is regarded as a TA with explicit entry and exit states. In both models,
c© Springer International Publishing Switzerland 2015
S. Sankaranarayanan and E. Vicario (Eds.): FORMATS 2015, LNCS 9268, pp. 189–205, 2015.
DOI: 10.1007/978-3-319-22975-1 13
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each timed state machine (TSM) shares the same set of clocks. To guarantee
the decidability of the reachability, RTAs restrict all clocks to be either call-by-
value or call-by-reference, in our terminology frozen or global clocks, respectively.
TRSMs are restricted to be either local or initialized. Local TRSMs restore the
values of all clocks when a pop occurs. Initialized TRSMs reset all clocks to zero
when a push occurs. The clocks in local-TRSMs are regarded as frozen clocks,
while those in initialized-TRSMs are special cases of global clocks.

Similar to stopwatches, frozen clocks significantly affect the decidability of
the reachability, observed by encoding counters with the N-wrapping technique
(Fig. 1 in Section 4.2). The recursive timed systems above either prohibit to
pass values between clocks and stopwatches, or have no stopwatches. Thus, they
avoid the wrapping technique and the reachability remains decidable. Note that
the wrapping technique is avoided if a TA has a single stopwatch (without other
clocks). Interrupt timed automata [6] push such a stopwatch automaton into the
stack, and the single stopwatch restriction preserves the decidable reachability.

This paper investigates the decidability of the reachability of NeTAs with
frozen clocks (NeTA-Fs), which have all three types of clocks. All local clocks
of a TA in a NeTA-F are either frozen or proceeding when the TA is pushed
to the stack. Moreover, global clocks may exchange values with local clocks in
the working TA. We show that (1) the reachability with a single global clock is
decidable, and (2) the reachability with multiple global clocks is undecidable.

NeTA-Fs naturally express interrupt behavior with time as follows. At the
moment of interrupt, the current working component is pushed to the stack (its
local clocks are either proceeding or frozen), and a handler component starts
with the initial setting. When the handler component is finished, the suspended
component is popped from the stack to be resumed. Global clocks together
with local clocks in the working TA work as proceeding clocks to specify time
constraints as well as channels by value passing among components.

The decidability for a NeTA-F with a single global clock is shown by two steps
encoding: (1) to an extension of a dense timed pushdown automaton (DTPDA) [8,
9] with frozen ages (DTPDA-F), and (2) its digitization a snapshot pushdown
systems (snapshot PDS), which is a well-structured pushdown system [10,11]
with a well-formed constraint [9]. Both encoding steps preserve the reachability.
The undecidability of the reachability follows from simulating a Minsky machine
by a NeTA-F with two global clocks, applying the N-wrapping technique [17].

The rest of the paper is organized as follows. Section 2 recalls TAs and
DTPDAs, and then introduces DTPDA-Fs. Section 3 proves the decidability
of the reachability of DTPDA-F with a single global clock. Section 4 presents
NeTA-F, and proves its decidability and undecidability results depending on the
number of global clocks. Section 5 concludes the paper.

2 Dense Timed Pushdown Automata with Frozen Ages

For finite words w = aw′, we denote a = head(w) and w′ = tail(w). The
concatenation of two words w, v is denoted by w.v, and ε is the empty word.
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Let R≥0 and N be the sets of non-negative real and natural numbers, respec-
tively. Let Nω := N ∪ {ω}, where ω is the least limit ordinal. I denotes the set
of intervals, which are (a, b), [a, b], [a, b) or (a, b] for a ∈ N and b ∈ Nω.

Let X = {x1, . . . , xn} be a finite set of clocks. A clock valuation ν : X → R
≥0,

assigns a value to each clock x ∈ X. ν0 represents all clocks in X assigned to 0.
Given a clock valuation ν and a time t ∈ R

≥0, (ν + t)(x) = ν(x) + t, for x ∈ X.
A clock assignment function ν[y ← b] is defined by ν[y ← b](x) = b if x = y, and
ν(x) otherwise. Val(X) is used to denote the set of clock valuation of X.

2.1 Dense Timed Pushdown Automata

Dense timed pushdown automata [8] extend timed pushdown automata with
time update in the stack. Each symbol in the stack is equipped with a local
clock named an age, and all ages in the stack proceed uniformly. An age in each
context is assigned to the value of a clock when a push action occurs. A pop
action pops the top symbol to assign the value of its age to a specified clock.

Note that, by deleting push and pop actions (as well as Γ ) from a DTPDA,
we obtain a timed automaton (TA) [1,12].

Definition 1 (Dense Timed Pushdown Automata). A dense timed push-
down automaton is a tuple A = 〈Q, q0, Γ,X,Δ〉 ∈ A , where

– Q is a finite set of control states with the initial state q0 ∈ Q,
– Γ is finite stack alphabet,
– X is a finite set of clocks, and
– Δ ⊆ Q × Actions × Q is a finite set of actions.

A (discrete) transition δ ∈ Δ is a sequence of actions (q1, ϕ1, q2), · · · , (qi, ϕi, qi+1)
written as q1

ϕ1;··· ;ϕi−−−−−→ qi+1, in which ϕj (for 1 ≤ j ≤ i) is one of the followings,

– Local ε, an empty operation,
– Test x ∈ I?, where x ∈ X is a clock and I ∈ I is an interval,
– Assign x ← I where x ∈ X and I ∈ I,
– Value passing x ← x′ where x, x′ ∈ X.
– Push push(γ, x), where γ ∈ Γ is a stack symbol and x ∈ X, and
– Pop pop(γ, x), where γ ∈ Γ is a stack symbol and x ∈ X.

A transition as a sequence of actions q1
ϕ1;··· ;ϕi−−−−−→ qi+1 prohibits interleaving

time progress. This can be encoded with an extra clock by resetting it to 0 and
checking it still 0 after transitions, and introducing fresh control states.

Given a DTPDA A ∈ A , we use Q(A), q0(A), X(A) and Δ(A) to repre-
sent the set of control states, the initial state, the set of clocks and the set of
transitions, respectively. We will use similar notations throughout the paper.

Definition 2 (Semantics of DTPDA). For a dense timed pushdown automa-
ton 〈Q, q0, Γ,X,Δ〉, a configuration is a triplet (q, w, ν) with q ∈ Q, w ∈
(Γ × R

≥0)∗, and a clock valuation ν on X. Time passage of the stack w + t =
(γ1, t1 + t). · · · .(γn, tn + t) for w = (γ1, t1). · · · .(γn, tn).

The transition relation of a DTPDA consists of time progress and a discrete
transition which is defined by that of actions below.
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– Time progress: (q, w, ν) t−→A (q, w + t, ν + t), where t ∈ R
≥0.

– Discrete transition: (q1, w1, ν1)
ϕ−→A (q2, w2, ν2), if q1

ϕ−→ q2, and one of the
following holds,

• Local ϕ = ε, then w1 = w2, and ν1 = ν2.
• Test ϕ = x ∈ I?, then w1 = w2, ν1 = ν2 and ν1(x) ∈ I holds.
• Assign ϕ = x ← I, then w1 = w2, ν2 = ν1[x ← r] where r ∈ I.
• Value passing ϕ = x ← x′, then w1 = w2, ν2 = ν1[x ← ν1(x′)].
• Push ϕ = push(γ, x), then ν1 = ν2, w2 = (γ, ν1(x)).w1.
• Pop ϕ = pop(γ, x), then ν2 = ν1[x ← t], w1 = (γ, t).w2.

The initial configuration 
0 = (q0, ε, ν0).

Remark 1. For simplicity of the later proofs, the definition of DTPDAs is slightly
modified from the original [8]. Value-passing is introduced; instead push(γ, I)
and pop(γ, I) are dropped, since they are described by (x ← I; push(γ, x)) and
(pop(γ, x);x ∈ I?), respectively.

2.2 DTPDAs with Frozen Ages

A DTPDA with frozen ages (DTPDA-F) is different from Definition 1 at:

– clocks are partitioned into the set X of local clocks (of the fixed number k)
and the set C of global clocks,

– a tuple of ages (for simplicity, we fix the length of a tuple to be k) is pushed
on the stack and/or popped from the stack, and

– each tuple of ages is either proceeding (as in Definition 1) or frozen. After
pushing the tuple, all local clocks are reset to zero.

Definition 3 (DTPDAs with Frozen Ages). A DTPDA with frozen ages
(DTPDA-F) is a tuple D = 〈S, s0, Γ,X,C,Δ〉 ∈ D , where

– S is a finite set of states with the initial state s0 ∈ S,
– Γ is finite stack alphabet,
– X is a finite set of local clocks (with |X| = k),
– C is a finite set of global clocks, and
– Δ ⊆ S × ActionF × S is a finite set of actions.

A (discrete) transition δ ∈ Δ is a sequence of actions (s1, ϕ1, s2), · · · , (si, ϕi, si+1)
written as s1

ϕ1;··· ;ϕi−−−−−→ si+1, in which ϕj (for 1 ≤ j ≤ i) is one of the followings,

– Local ε, an empty operation,
– Test x ∈ I?, where x ∈ X ∪ C is a clock and I ∈ I is an interval,
– Assign x ← I where x ∈ X ∪ C and I ∈ I,
– Value passing x ← x′ where x, x′ ∈ X ∪ C.
– Push push(γ), where γ ∈ Γ ,
– Freeze-Push (F-Push) fpush(γ), where γ ∈ Γ , and
– Pop pop(γ), where γ ∈ Γ .
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Definition 4 (Semantics of DTPDA-F). For a DTPDA-F 〈S, s0, Γ,X,C,Δ〉,
a configuration is a triplet (s, w, ν) with s ∈ S, w ∈ (Γ × (R≥0)k × {0, 1})∗,
and a clock valuation ν on X ∪ C. For w = (γ1, t̄1, f lag1). · · · .(γn, t̄n, f lagn), t-
time passage on the stack, written as w+t, is (γ1, progress(t̄1, t, f lag1), f lag1). · · ·
.(γn, progress(t̄n, t, f lagn), f lagn) where

progress(t̄, t, f lag) =
{

(t1 + t, · · · , tk + t) if flag = 1 and t̄ = (t1, · · · , tk)
t̄ if flag = 0

The transition relation consists of time progress and a discrete transition.

– Time progress: (s, w, ν) t−→D (s, w + t, ν + t), where t ∈ R
≥0.

– Discrete transition: (s1, w1, ν1)
ϕ−→D (s2, w2, ν2), if s1

ϕ−→ s2, and one of the
following holds,

• Local ϕ = ε, then w1 = w2, and ν1 = ν2.
• Test ϕ = x ∈ I?, then w1 = w2, ν1 = ν2, and ν1(x) ∈ I holds.
• Assign ϕ = x ← I, then w1 = w2, ν2 = ν1[x ← r] where r ∈ I.
• Value passing ϕ = x ← x′, then w1 = w2, ν2 = ν1[x ← ν1(x′)].
• Push ϕ = push(γ), then ν2 = ν0, w2 = (γ, (ν1(x1), · · · , νk(xk)), 1).w1

for X = {x1, · · · , xk}.
• F-Push ϕ = fpush(γ), then ν2 = ν0, w2 = (γ, (ν1(x1), · · · ,

νk(xk)), 0).w1 for X = {x1, · · · , xk}.
• Pop ϕ = pop(γ), then ν2 = ν1[x̄ ← (t1, · · · , tk)], w1 = (γ, (t1, · · · , tk),

f lag).w2.

The initial configuration 
0 = (s0, ε, ν0).We use ↪→ to range over these transitions,
and ↪→∗ is the reflexive and transitive closure of ↪→.

Example 1. The figure shows transitions 
1 ↪→ 
2 ↪→ 
3 ↪→ 
4 of a DTPDA-F
with S = {•} (omitted in the figure), X = {x1, x2}, C = {c1}, and Γ = {a, b, d}.
At 
1 ↪→ 
2, the values of x1 and x2 (0.5 and 3.9) are pushed with d, and frozen.
After pushing, value of x1 and x2 will be reset to zero, Then, x2 is set a value
in (1, 2], say 1.7. At 
2 ↪→ 
3, time elapses 2.6, but frozen ages in the top and
third stack frames do not change. The rest (in bold) proceed. At 
3 ↪→ 
4, test
whether the value of x2 is in (4, 6). Yes, then pop the stack and x1, x2 are set to
the popped ages. Last, the value of x1 is set to c1.
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3 Reachability of DTPDAs with Frozen Ages

In this section, we assume |C| = 1, i.e., a DTPDA-F has a single global clock.
We denote the set of finite multisets over D by MP(D), and the union of two
multisets M,M ′ by M 
 M ′. We regard a finite set as a multiset with the
multiplicity 1, and a finite word as a multiset by ignoring the ordering.

3.1 Digiword and Its Operations

Let 〈S, s0, Γ,X,C,Δ〉 be a DTPDA-F, and let n be the largest integer (except
for ω) appearing in Δ. For v ∈ R

≥0, proj(v) = ri if v ∈ ri ∈ Intv(n), where

Intv(n) = {r2i = [i, i] | 0 ≤ i ≤ n} ∪ {r2i+1 = (i, i + 1) | 0 ≤ i < n} ∪ {r2n+1 = (n, ω)}
The idea of the next digitization is inspired by [13–15].

Definition 5. Let frac(x, t) = t − floor(t) for (x, t) ∈ (C ∪ X ∪ Γ ) × R
≥0. A

digitization digi : MP((C ∪ X ∪ Γ ) × R
≥0 × {0, 1}) → MP((C ∪ X ∪ Γ ) ×

Intv(n) × {0, 1})∗ is defined as follows.
For Ȳ ∈ MP((C ∪ X ∪ Γ ) × R≥0 × {0, 1}), let Y0, Y1, · · · , Ym be multisets

that collect (x, proj(t), f lag)’s having the same frac(x, t) for (x, t, f lag) ∈ Ȳ.
Among them, Y0 (which is possibly empty) is reserved for the collection of
(x, proj(t), f lag) with frac(t) = 0 and t ≤ n (i.e., proj(t) = r2i for 0 ≤ i ≤ n).
We assume that Yi’s except for Y0 is non-empty (i.e., Yi = ∅ with i > 0 is omit-
ted), and Yi’s are sorted by the increasing order of frac(x, t) (i.e., frac(x, t) <
frac(x′, t′) for (x, proj(t), f lag) ∈ Ym and (x′, proj(t′), f lag′) ∈ Yi+1).

Note that flag in (x, proj(t), f lag) is always 1 for x ∈ C ∪ X. For Y ∈
MP((C ∪ X ∪ Γ ) × Intv(n) × {0, 1}), we define the projections by prc(Y ) =
{(x, proj(t), 1) ∈ Y } and frz(Y ) = {(x, proj(t), 0) ∈ Y }. We overload the pro-
jections on Ȳ = Y0Y1 · · · Ym ∈ (MP((C ∪X ∪Γ )× Intv(n)×{0, 1}))∗ such that
frz(Ȳ ) = frz(Y0)frz(Y1) · · · frz(Ym) and prc(Ȳ ) = prc(Y0)prc(Y1) · · · prc(Ym).

For a stack frame v = (γ, (t1, · · · , tk), f lag) of a DTPDA-F, we denote a word
(γ, t1, f lag) · · · (γ, tk, f lag) by dist(v). Given a clock valuation ν, we denote a
clock word (x1, ν(x1), f lag) . . . (xn, ν(xn), f lag) where x1 . . . xn ∈ X ∪ C.

Example 2. In Example 1, n = 6 and we have 13 intervals illustrated below.
0 r1 1 r3 2 r5 3 r7 4 r9 5 r11 6 r13

r0 r2 r4 r6 r8 r10 r12

For the configuration 
1 = (•, v4 · · · v1, ν) in Example 1, let Ȳ = dist(v4) 
 . . . 

dist(v1) 
 time(ν) be a word, and Ȳ = digi(Ȳ), i.e.,

Ȳ = {(a, 1.9, 1), (a, 4.5, 1), (b, 6.7, 0), (b, 2.9, 0), (a, 3.1, 1), (a, 5.2, 1), (d, 4.2, 1),
(d, 3.3, 1), (x1, 0.5, 1), (x2, 3.9, 1), (c1, 2.3, 1)}

Ȳ = {(a, r7, 1)}{(a, r11, 1), (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}{(x1, r1, 1), (a, r9, 1)}
{(b, r13, 0)}{(x2, r7, 1), (a, r3, 1), (b, r5, 0)}

prc(Ȳ ) = {(a, r7, 1)}{(a, r11, 1), (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}{(x1, r1, 1), (a, r9, 1)}
{(x2, r7, 1), (a, r3, 1)}

frz(Ȳ ) = {(b, r13, 0)}{(b, r5, 0)}
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A word in (MP((C ∪ X ∪ Γ ) × Intv(n) × {0, 1}))∗ is called a digiword. We
denote Ȳ |Λ for Λ ⊆ Γ ∪C ∪X, by removing (x, ri, f lag) with x �∈ Λ. A k-pointer
ρ̄ of Ȳ is a tuple of k pointers to mutually different k elements in Ȳ |Γ . We refer
the element pointed by the i-th pointer by ρ̄[i]. From now on, we assume that

– the occurrence of (x, ri, 1) with x ∈ C ∪ X in Ȳ is exactly once, and
– a digiword has two pairs of k-pointers (ρ̄1, ρ̄2) and (τ̄1, τ̄2) that point to

only proceeding and frozen ages, respectively. We call (ρ̄1, ρ̄2) proceeding k-
pointers and (τ̄1, τ̄2) frozen k-pointers. We assume that they do not overlap
each other, i.e., there are no i, j, such that ρ̄1[i] = ρ̄2[j] or τ̄1[i] = τ̄2[j].

ρ̄1 and ρ̄2 intend the store of values of the local clocks at the last and one
before the last Push, respectively. τ̄1 and τ̄2 intend similar for F-Push.

Example 3. Ȳ in Example 2 have proceeding 2-pointers (ρ̄1, ρ̄2) (marked with the
numbered overlines and underlines) frozen 2-pointers 2-pointers (τ̄1, τ̄2) (marked
with the numbered double overlines and double underlines).

Ȳ = {(a, r7, 1)
1
}{(a, r11, 1)

2
, (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}{(x1, r1, 1), (a, r9, 1)

2}
{(b, r13, 0)

1

}{(x2, r7, 1), (a, r3, 1)
1
, (b, r5, 0)

2

}
Ȳ |Γ = {(a, r7, 1)

1
}{(a, r11, 1)

2
, (d, r9, 1)}{(d, r7, 1)}{(a, r9, 1)

2}
{(b, r13, 0)

1

}{(a, r3, 1)
1
, (b, r5, 0)

2

}

Definition 6. For digiwords Ȳ = Y1 · · · Ym and Z̄ = Z1 · · · Zm′ with pairs of k-
pointers (ρ̄1, ρ̄2), (τ̄1, τ̄2), and (ρ̄′

1, ρ̄
′
2), (τ̄

′
1, τ̄

′
2), respectively. We define an embed-

ding Ȳ  Z̄, if there exists a monotonic injection f : [1..m] → [1..m′] such that
Yi ⊆ Zf(i) for each i ∈ [1..m], f ◦ ρ̄i = ρ̄′

i and f ◦ τ̄i = τ̄ ′
i for i = 1, 2.

Definition 7. Let Ȳ = Y0 · · · Ym, Ȳ ′ = Y ′
0 · · · Y ′

m′ ∈ (MP((Γ ∪ C ∪ X) ×
Intv(n)×{0, 1}))∗ such that Ȳ (resp. Ȳ ′) has two pairs of proceeding and frozen
k-pointers (ρ̄1, ρ̄2) and (τ̄1, τ̄2) (resp. (ρ̄′

1, ρ̄
′
2) and (τ̄ ′

1, τ̄
′
2)). We define digiword

operations as follows. Note that except for Mapflag
→ , Mapflag

← , and Permuta-
tion, k-pointers do not change.

– Decomposition Let Z ∈ MP((C ∪ X ∪ Γ ) × Intv(n) × {0, 1}). If Z ⊆ Yj,
decomp(Ȳ , Z) = (Y0 · · · Yj−1, Yj , Yj+1 · · · Ym).

– InsertI Let Z ∈ MP((Γ ∪ C ∪ X) × Intv(n) × {0, 1}) with (x, ri, f lag) ∈ Z
for x ∈ C ∪ X ∪ Γ . insertI(Ȳ , Z) inserts Z to Ȳ such that
⎧
⎨

⎩

either take the union of Z and Yj for j > 0, or put Z at any place after Y0

if i is odd
take the union of Z and Y0 if i is even

– Insertx insertx(Ȳ , x, y) adds (x, ri, 1) to Xj for (y, ri, 1) ∈ Xj, x, y ∈ C∪X.
– Init For Ȳ = Y0 · · · Ym, init(Ȳ ) is obtained by removing all elements (x, ri)

for x ∈ X and updating Y0 with Y0 
 {(xi, r0) | xi ∈ X}.
– Delete delete(Ȳ , x) for x ∈ C∪X is obtained from Ȳ by deleting the element

(x, r) indexed by x.



196 G. Li et al.

– Permutation. Let V̄ = prc(Ȳ ) = V0V1 · · · Vk and Ū = frz(Ȳ ) =
U0U1 · · · Uk′ . A one-step permutation Ȳ ⇒ Ȳ ′ is given by ⇒ = ⇒s ∪ ⇒c,
defined below.
(⇒s) Let{

decomp(Ȳ , Vk) = (Ȳ k
� , Ŷ k, Ȳ k

	 )
decomp(insertI((Ŷ k \ Vk).Ȳ k

	 , Vk), Vk) = (Z̄k
�, Ẑk, Z̄k

	).
For j with 0 ≤ j < k, we repeat to set{

decomp(Ȳ j+1
� .Z̄j+1

� , Vj) = (Ȳ j
� , Ŷ j , Ȳ j

	 )
decomp(insertI((Ŷ j \ Vj).Ȳ

j
	 , Vj), Vj) = (Z̄j

�, Ẑj , Z̄j
	).

Then, Ȳ ⇒s Ȳ ′ = Z̄0
� Ẑ0 Z̄1

� Ẑ1 · · · Z̄k
� Ẑk Z̄k

	.
(⇒c) Assume Vk ⊆ Yi′ . For each (x, r2i+1, f lag) ∈ Vk with x ∈ C ∪ X ∪ Γ

and i < k, we obtain V ′
k by replacing r2i+1 with r2i+2.

{
decomp((Y0 ∪ V ′

k) Y1 · · · (Yi′ \ Vk) · · · Ym, Vk−1) = (Ȳ k−1
� , Ŷ k−1, Ȳ k−1

� )

decomp(insertI(Ȳ
k−1

� .(Ŷ k−1 \ Vk−1), Vk−1), Vk−1) = (Z̄k−1
� , Ẑk−1, Z̄k−1

� ).

For j with 0 ≤ j < k − 1, we repeat to set{
decomp(Ȳ j+1

� .Z̄j+1
� , Vj) = (Ȳ j

� , Ŷ j , Ȳ j
	 )

decomp(insertI(Ȳ
j
	 .(Ŷ j \ Vj), Vj), Vj) = (Z̄j

�, Ẑj , Z̄j
	).

Then, Ȳ ⇒c Ȳ ′ = Z̄0
� Ẑ0 Z̄1

� Ẑ1 · · · Z̄k−1
� Ẑk−1 Z̄k−1

	 .
(ρ̄1, ρ̄2) is updated to correspond to the permutation accordingly, and (τ̄1, τ̄2)
is kept unchanged.

– Rotate For proceeding k-pointers (ρ̄1, ρ̄2) of Ȳ and ρ̄′ of Z̄, let Ȳ |Γ ⇒∗ Z̄|Γ
such that the permutation makes ρ̄1 match with ρ̄. Then, rotateρ̄1 
→ρ̄(ρ̄2) is
the corresponding k-pointer of Z̄ to ρ̄2.

– Mapflag
→ mapfl

→(Ȳ , γ) for γ ∈ Γ is obtained from Ȳ by, for each xi ∈ X,
replacing (xi, rj , 1) with (γ, rj , f l). Accordingly, if fl = 1, ρ̄1[i] is updated to
point to (γ, rj , 1), and ρ̄2 is set to the original ρ̄1. If fl = 0, τ̄1[i] is updated
to point to (γ, rj , 0), and τ̄2 is set to the original τ̄1.

– Mapflag
← mapfl

←(Ȳ , Ȳ ′, γ, ) for γ ∈ Γ is obtained,
(if fl = 1) by replacing each ρ̄1[i] = (γ, rj , 1) in Ȳ |C∪Γ with (xi, rj , 1) for

xi ∈ X. Accordingly, new ρ̄1 is set to the original ρ̄2, and new ρ̄2 is set
to rotateρ̄′

1 
→ρ̄2(ρ̄
′
2). τ̄1 and τ̄2 are kept unchanged.

(if fl = 0) by replacing each τ̄1[i] = (γ, rj , 0) in Ȳ |C∪Γ with (xi, rj , 1) for
xi ∈ X. Accordingly, new τ̄1 is set to the original τ̄2, and new τ̄2 is set
to ρ̄′

2. ρ̄1 and ρ̄2 are kept unchanged.

Remark 2. Permutation intends to describe (nondeterministic) time progress.
The figure shows that, after where Vj+1 shifts is decided, Ȳ j+1

� .Z̄j+1
� describes

the prefix of the destination of Vj+1. Then, the possible destination of Vj is in
Ȳ j+1

� .Z̄j+1
� after the current occurrence of Vj . This range is denoted by Z̄j

	. Note
that Ui’s do not change their positions.
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Time Progress−−−−−−−−−→
Vj Vj+1 Vj+1

︸ ︷︷ ︸
Ȳ j+1

�

︸ ︷︷ ︸
Z̄j+1

�︸ ︷︷ ︸
Z̄j

�

Example 4. We begin with the digiword Ȳ in Example 3, to simulate transitions

1 ↪→∗ 
3 in Example 1.

– fpush(d) is simulated by Ȳ1 = init(map1→(Ȳ , γ)).
Ȳ1 = {(x1, r0, 1), (x2, r0, 1)}{(a, r7, 1)

1
}{(a, r11, 1)

2
, (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}

{(a, r9, 1)
2
, (d, r1, 0)

1

}{(b, r13, 0)
1
}{(a, r3, 1)

1
, (b, r5, 0)

2
, (d, r7, 0)

1

}
– x2 ← (1, 2] is simulated by Ȳ2 = insertI(delete(Ȳ1, x2), (x2, ri).

Ȳ2 = {(x1, r0, 1)}{(a, r7, 1)
1
}{(a, r11, 1)

2
, (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}

{(a, r9, 1)
2
, (d, r1, 0)

1

}{(x2, r3, 1), (b, r13, 0)
1
}{(a, r3, 1)

1
, (b, r5, 0)

2
, (d, r7, 0)

1

}
– Time elapse of 2.6 time units is simulated by Ȳ2 ⇒∗ Ȳ3

Ȳ3 = {(a, r13, 1)
2}{(x2, r9, 1)}{(a, r9, 1)

1
, (d, r1, 0)

1

}{(x1, r5, 1)}{(a, r11, 1)
1
,

(b, r13, 0)
1
}{(a, r13, 1)

2
, (d, r13, 1)}{(c1, r9, 1), (d, r11, 1), (b, r5, 0)

2
, (d, r7, 0)

1

}

3.2 Snapshot Pushdown System

A snapshot pushdown system (snapshot PDS) keeps the digitization of all values
of (global and local) clocks and ages in the top stack frame, as a digiword. It is
associated with a flag, which shows that the last push is either Push (flag = 1)
or F-Push (flag = 0). It contains both proceeding and frozen ages, and only
proceeding ages proceed synchronously to global and local clocks.

We show that a DTPDA-F with a single global clock is encoded into its
digitization, called a snapshot PDS. The keys of the encoding are, (1) when a pop
occurs, the time progress recorded at the top stack symbol is propagated to the
next stack symbol after finding a permutation by matching between proceeding
k-pointers ρ̄2 and ρ̄′

1, and (2) the single global clock assumption allows us to
compare current local clock values with a past one (which is stored in the global
clock), but unable to compare past local clock values.

Definition 8. Let π : 
0 = (q0, ε, ν0) ↪→∗ 
 = (s, w, ν) be a transition sequence
of a DTPDA-F from the initial configuration. If π is not empty, we refer the
last step as λ : 
′ ↪→ 
, and the preceding sequence by π′ : 
0 ↪→∗ 
′. Let
w = vm · · · v1. A snapshot is snap(π) = (Ȳ , f lag(vm)), where

Ȳ = digi(
idist(vi) 
 {(x, ν(x), 1) | x ∈ C ∪ X})
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Let a k-pointer ξ̄(π) be ξ̄(π)[i] = (γ, proj(ti), f lag(vm)) for (γ, ti) ∈ dist(vm).
A snapshot configuration Snap(π) is inductively defined from Snap(π′).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q0, snap(ε)) if π = ε. (ρ̄1, ρ̄2) and (τ̄1, τ̄2) are undefined.
(s′, snap(π) tail(Snap(π′))) if λ is Time progress with Ȳ ′ ⇒∗ Ȳ .

Then, the permutation Ȳ ′ ⇒∗ Ȳ updates (ρ̄′
1, ρ̄

′
2) to (ρ̄1, ρ̄2).

(s′, snap(π) tail(Snap(π′))) if λ is Local,Test,Assign,Value-passing.
(s, snap(π) Snap(π′)) if λ is Push. Then, (ρ̄1, ρ̄2) = (ξ̄(π), ρ̄′

1).
(s, snap(π) Snap(π′)) if λ is F-Push. Then, (τ̄1, τ̄2) = (ξ̄(π), τ̄ ′

1).
(s, snap(π) tail(tail(Snap(π′)))) if λ is Pop.
If flag = 1, (ρ̄1, ρ̄2) = (ρ̄′

2, rotateρ̄′′
1 
→ρ̄′

2
(ρ̄′′

2)); otherwise, (τ̄1, τ̄2) = (τ̄ ′
2, τ̄

′′
2 ).

We refer head(Snap(π′)) by (Ȳ ′, f lag′), head(tail(Snap(π′)) by (Ȳ ′′, f lag′′).
Pairs of proceeding k-pointers of Ȳ , Ȳ ′, and Ȳ ′′ are denoted by (ρ̄1, ρ̄2), (ρ̄′

1, ρ̄
′
2),

and (ρ̄′′
1 , ρ̄′′

2), respectively. Similarly, pairs of frozen ones are denoted by (τ̄1, τ̄2),
(τ̄ ′

1, τ̄
′
2), and (τ̄ ′′

1 , τ̄ ′′
2 ), respectively. If not mentioned, k-pointers are kept as is.

Example 5. In Example 1, 
3 is described by Snap(π) below for an execution
path π = · · · ↪→ 
1 ↪→ 
2 ↪→ 
3 from the initial configuration to 
3.

( {(a, r13, 1)
2}{(x2, r9, 1)}{(a, r9, 1)

1
, (d, r1, 0)

1

}{(x1, r5, 1)}{(a, r11, 1)
1
, (b, r13, 0)

1
}

{(a, r13, 1)
2
, (d, r13, 1)}{(c1, r9, 1), (d, r11, 1), (b, r5, 0)

2
, (d, r7, 0)

2

}, f l = 0 )

( {(a, r7, 1)
1
}{(a, r11, 1)

2
, (d, r9, 1)}{(c1, r5, 1), (d, r7, 1)}{(x1, r1, 1), (a, r9, 1)

2}
{(b, r13, 0)

1

}{(x2, r7, 1), (a, r3, 1)
1
, (b, r5, 0)

2

}, f l = 1 )

( {(a, r7, 1)
1}{(a, r11, 1)

2
, (d, r9, 1)

1
}{(c1, r5, 1), (d, r7, 1)

2
}{(x1, r1, 1)}

{(b, r13, 0)
1

}{(x2, r7, 1), (b, r5, 0)
2

}, f l = 0 )

( {(a, r7, 1)
1}{(a, r11, 1)

2
, (d, r9, 1)

1
}{(c1, r5, 1), (d, r7, 1)

2
}{(x1, r1, 1)}{(x2, r7, 1)},

f l = 1 )

( {(d, r9, 1)
1}{(c1, r5, 1), (d, r7, 1)

2}{(x1, r1, 1)}{(x2, r7, 1)}, f l = 1 )

Definition 9. For a DTPDA-F 〈S, s0, Γ,X,C,Δ〉 with |C| = 1, a snapshot
PDS S is a PDS (ith possibly infinite stack alphabet)

〈S, s0, (MP((C ∪ X ∪ Γ ) × Intv(n) × {0, 1}))∗,Δd〉.
with the initial configuration 〈sinit, {(x, r0) | x ∈ C ∪ X}〉. Then Δd consists of:

Time progress 〈s, (Ȳ , f lag)〉 ↪→S 〈s, (Ȳ ′, , f lag)〉 for Ȳ ⇒∗ Ȳ ′.
Local (s ε−→ s′ ∈ Δ) 〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (Ȳ , f lag)〉.
Test (s x∈I?−−−→ s′ ∈ Δ) If ri ⊆ I and (x, ri, 1) ∈ Ȳ ,

〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (Ȳ , f lag)〉.
Assign (s x←I−−−→ s′ ∈ Δ with x ∈ X) For ri ⊆ I,

〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (insertI(delete(Ȳ , x), {(x, ri, 1)}), f lag)〉.
Assign (s c←I−−−→ s′ ∈ Δ with c ∈ C) For ri ⊆ I,

〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (insertI(delete(Ȳ , c), {(c, ri, 1)}), f lag)〉.
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Value-passing (s
x←y−−−→ s′ ∈ Δ with x ∈ X)

〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (insertx(delete(Ȳ , c), x, y), f lag)〉.
Value-passing (s

c←y−−−→ s′ ∈ Δ with c ∈ C)
〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (insertx(delete(Ȳ , c), c, y), f lag)〉.

Push (s
push(γ)−−−−−→ s′ ∈ Δ; fl = 1) and F-Push (s

fpush(γ)−−−−−−→ s′ ∈ Δ; fl = 0)
〈s, (Ȳ , f lag)〉 ↪→S 〈s′, (init(mapfl

→(Ȳ , γ)), f l)(Ȳ , f lag)〉.
Pop (s

pop(γ)−−−−→ s′ ∈ Δ)
〈s, (Ȳ , f lag)(Ȳ ′, f lag′)〉 ↪→S 〈s′, (mapflag

← (Ȳ , Ȳ ′, γ), f lag′)〉.

Example 6. Following to Example 5, 
3 ↪→ 
4 in Example 1 is described by
Snap(π) ↪→S Snap(π′) with Snap(π′) below for π′ = π ↪→ 
4.

( {(a, r13, 1)
2}{(x2, r9, 1)}{(a, r9, 1)

1}{(x1, r5, 1)}{(a, r11, 1)
1
, (b, r13, 0)

1

}
{(a, r13, 1)

2
, (d, r13, 1)}{(c1, r9, 1), (d, r11, 1), (b, r5, 0)

2

}, f l = 1 )

( {(a, r7, 1)
1}{(a, r11, 1)

2
, (d, r9, 1)

1
}{(c1, r5, 1), (d, r7, 1)

2
}{(x1, r1, 1)}

( {(b, r13, 0)
1

}{(x2, r7, 1), (b, r5, 0)
2

}, f l = 0 )

( {(a, r7, 1)
1}{(a, r11, 1)

2
, (d, r9, 1)

1
}{(c1, r5, 1), (d, r7, 1)

2
}{(x1, r1, 1)}{(x2, r7, 1)},

f l = 1 )

( {(d, r9, 1)
1}{(c1, r5, 1), (d, r7, 1)

2}{(x1, r1, 1)}{(x2, r7, 1)}, f l = 1 )

By induction on the number of steps of transitions, the encoding relation
between a DTPDA-F with a single global clock and a snapshot PDS is observed.
Note that the initial clock valuation of the DTPDA-F to be set ν0 is essential.

Lemma 1. Let us denote 
0 and 
 (resp. 〈q0, w̃0〉 and 〈s, w̃〉) for the initial
configuration and a configuration of a DTPDA-F (resp. its snapshot PDS S).
(Preservation) If π : 
0 ↪→∗ 
, there exists 〈s, w̃〉 such that 〈q0, w̃0〉 ↪→∗

S 〈s, w̃〉
and Snap(π) = 〈s, w̃〉.

(Reflection) If 〈q0, w̃0〉 ↪→∗
S 〈s, w̃〉, there exists π : 
0 ↪→∗ 
 with Snap(π) =

〈s, w̃〉.

3.3 Well-Formed Constraint

A snapshot PDS is a growing WSPDS (Definition 6 in [9]) and ⇓Υ gives a well-
formed constraint (Definition 8 in [9]). Let us recall the definitions.

Let P be a set of control locations and let Γ be a stack alphabet. Different
from an ordinary definition of PDSs, we do not assume that P and Γ are finite,
but associated with well-quasi-orderings (WQOs) � and ≤, respectively. Note
that the embedding  over digiwords is a WQO by Higman’s lemma.

For w = α1α2 · · · αn, v = β1β2 · · · βm ∈ Γ ∗, let w � v if m = n and ∀i ∈
[1..n].αi ≤ βi. We extend � on configurations such that (p,w) � (q, v) if p � q
and w � v for p, q ∈ P and w, v ∈ Γ ∗. A partial function ψ ∈ PFun(X,Y ) is
monotonic if γ ≤ γ′ with γ ∈ dom(ψ) implies ψ(γ) � ψ(γ′) and γ′ ∈ dom(ψ).
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A a well-structured PDS (WSPDS) is a triplet 〈(P,�), (Γ,≤),Δ〉 of a set
(P,�) of WQO states, a WQO stack alphabet (Γ,≤), and a finite set Δ ⊆
PFun(P ×Γ, P ×Γ≤2) of monotonic partial functions. A WSPDS is growing if,
for each ψ(p, γ) = (q, w) with ψ ∈ Δ and (q′, w′) � (q, w), there exists (p′, γ′)
with (p′, γ′) � (p, γ) such that ψ(p′, γ′) � (q′, w′).

Definition 10. For a WSPDS 〈(P,�), (Γ,≤),Δ〉, a pair (Υ,⇓Υ ) of a set Υ ⊆
P ×Γ ∗ and a projection function ⇓Υ : P ×Γ ∗ → (P ×Γ ∗)∪{#} is a well-formed
constraint if, for configurations c, c′,

– c ↪→ c′ implies that c ∈ Υ if, and only if c′ ∈ Υ ,
– c ↪→ c′ implies ⇓Υ (c) ↪→⇓Υ (c′),
– ⇓Υ (c) � c, and
– c � c′ implies either ⇓Υ (c) =⇓Υ (c′) or ⇓Υ (c) = #,

where # is added to P ×Γ ∗ as the least element (wrt �) and Υ = {c ∈ P ×Γ ∗ |
c =⇓Υ (c)}. (# represents failures of ⇓Υ .)

A well-formed constraint describes a syntactical feature that is preserved
under transitions. Theorem 3 in [9] ensures the decidability the quasi-coverability
of a growing WSPDS, and Theorem 5 in [9] lifts it to the reachability when a
growing WSPDS has a well-formed constraint. Theorem 4 in [9] shows the finite
convergence of a P-automaton for the quasi-coverability, which concludes that a
WSPDS with a well-formed constraint holds the decidability of the reachability.

Definition 11. Let a configuration (s, w̃) of a snapshot PDS S. An element in a
stack frame of w̃ has a parent if it has a corresponding element in the next stack
frame. The transitive closure of the parent relation is an ancestor. An element
in w̃ is marked, if its ancestor is pointed by a k-pointer in some stack frame.
We define a projection ⇓Υ (w̃) by removing unmarked elements in w̃. We say
that w̃ is well-formed if ⇓Υ (w̃) = w̃.

The idea of ⇓Υ is, to remove unnecessary elements (i.e., elements not related
to previous actions) from the stack content. Note that a configuration reachable
from the initial configuration by ↪→∗

S is always well-formed. Since a snapshot PDS
is a growing WSPDS with ⇓Υ , we conclude our first theorem from Lemma 1.

Theorem 1. The reachability of a DTPDA-F 〈S, s0, Γ,X,C,Δ〉 is decidable, if
|C| = 1.

4 Nested Timed Automata with Frozen Clocks

4.1 Nested Timed Automata with Frozen Clocks

Definition 12 extends Definition 5 in [4] with the choice that all clocks of an
interrupted TA are either proceeding or frozen. In [4], only the former is allowed.
For simplicity, we assume that each Ai in T shares the same set of local clocks.
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Definition 12 (Nested Timed Automata with Frozen Clocks). A NeTA-
F is a quadruplet N = (T,A0,X,C,Δ), where

– T is a finite set {A0,A1, · · · ,Ak} of TAs, with the initial TA A0 ∈ T . We
assume the sets of states of Ai, denoted by S(Ai), are mutually disjoint, i.e.,
S(Ai) ∩ S(Aj) = ∅ for i �= j. We denote the initial state of Ai by q0(Ai).

– C is a finite set of global clocks, and X is the finite set of k local clocks.
– Δ ⊆ Q × (Q ∪ {ε}) × Actions+ × Q × (Q ∪ {ε}) describes transition rules

below, where Q = ∪Ai∈T S(Ai).

A transition rule is described by a sequence of Actions = {internal, push,
fpush, pop, c ∈ I, c ← I, x ← c, c ← x} where c ∈ C, x ∈ X, and I ∈ I. The
internal actions are Local, Test, Assign, and Value-passing in Definition 1.

Internal (q, ε, internal, q′, ε), which describes an internal transition in the
working TA (placed at a control location) with q, q′ ∈ Ai.

Push (q, ε, push, q0(Ai′), q), which interrupts the currently working TA Ai at
q ∈ S(Ai). Then, a TA Ai′ newly starts. Note that all local clocks of Ai

pushed onto the stack simultaneously proceed to global clocks.
F-Push (q, ε, fpush, q0(Ai′), q), which is the same as Push except that all local

clocks of Ai are frozen.
Pop (q, q′, pop, q′, ε), which restarts Ai′ in the stack from q′ ∈ S(Ai′) after Ai

has finished at q ∈ S(Ai).
Global-test (q, ε, c ∈ I?, q, ε), which tests whether the value of a global clock c

is in I.
Global-assign (q, ε, c ← I, q, ε), which assigns a value in r ∈ I to a global

clock c.
Global-load (q, ε, x ← c, q, ε), which assign the value of a global clock c to a

local clock x ∈ X in the working TA.
Global-store (q, ε, c ← x, q, ε), which assign the value of a local clock x ∈ X

of the working TA to a global clock c.

Definition 13 (Semantics of NeTA-F). Given a NeTA-F (T,A0,X,C,Δ),
the current control state is referred by q. Let ValX = {ν : X → R

≥0} and
ValC = {μ : C → R

≥0}. A configuration of a NeTA-F is an element in (Q ×
ValX × ValC , (Q × {0, 1} × ValX)∗).

– Time progress transitions: (〈q, ν, μ〉, v) t−→ (〈q, ν + t, μ+ t〉, v + t) for t ∈ R
≥0,

where v + t set ν′ := progress(ν′, t, f lag) of each 〈q′, f lag, ν′〉 in the stack.
– Discrete transitions: κ

ϕ−→ κ′ is defined as follows.
• Internal (〈q, ν, μ〉, v)

ϕ−→ (〈q′, ν′, μ〉, v), if 〈q, ν〉 ϕ−→ 〈q′, ν′〉 is in Defini-
tion 2, except for push or pop.

• Push (〈q, ν′, μ〉, v)
push−−−→ (〈q0(Ai′), ν0, μ〉, 〈q, 1, ν〉.v).

• F-Push (〈q, ν′, μ〉, v)
f-push−−−−→ (〈q0(Ai′), ν0, μ〉, 〈q, 0, ν〉.v).

• Pop (〈q, ν, μ〉, 〈q′, f lag, ν′〉.w)
pop−−→ (〈q′, ν′, μ〉, w).

• Global-test (〈q, ν, μ〉, v) c∈I?−−−→ (〈q, ν, μ〉, v), if μ(c) ∈ I.
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• Global-assign (〈q, ν, μ〉, v) c←I−−−→ (〈q, ν, μ[c ← r]〉, v) for r ∈ I.
• Global-load (〈q, ν, μ〉, v) x←c−−−→ (〈q, ν[x ← μ(c)], μ〉, v).
• Global-store (〈q, ν, μ〉, v) c←x−−−→ (〈q, ν, μ[c ← ν(x)]〉, v).

The initial configuration of NeTA-F is (〈q0(A0), ν0, μ0〉, ε), where ν0(x) = 0 for
x ∈ X and μ0(c) = 0 for c ∈ C. We use −→ to range over these transitions.

4.2 Reachability of NeTA-Fs with Multiple Global Clocks

For showing the undecidability, we encode the halting problem of Minsky
machines [16] in a NeTA-F. A Minsky machine M is a tuple (L,C,D) where:

– L is a finite set of states, and lf ∈ L is the terminal state,
– C = {ct1, ct2} is the set of two counters, and
– D is the finite set of transition rules of the following types,

• increment counter di : ct := ct + 1, goto lk,
• test-and-decrement counter di : if (ct > 0) then (ct := ct − 1, goto

lk) else goto lm,
where ct ∈ C, di ∈ D and lk, lm ∈ L.

Example 7. By the N-wrapping technique [17], a Minsky machine can be encoded
into a NeTA-F N = (T,A0, C,Δ), with T = {A0,A1,A2} where

– S(A0) = {q0} and X(A0) = {xf , xp}, S(A1) = {q1} and X(A0) =
{x1, dum1}, and S(A2) = {q2} and X(A0) = {dum2, dum3}, where the
dummyclocksdumi’s are introduced to setk = 2.We introducedifferentnames
of 2 local clocks to clarify the context.

– C = {csys, cv} where csys is a system clock that will be reset to zero when
its value becomes equal to N ; cv is a clock to encode values of two counters
such that μ(cv) = 2−ct1 · 3−ct2 .

Decrementing and incrementing the counter ct1 are simulated by doubling and
halving of the value of the clock cv, respectively, while those for ct2 are simulated
by tripling and thirding the value of clock cv. Zero-test of ct1 is simulated by (1)
multiplying the value of cv by a power of 3, and (2) comparing it with 3. Similar
for ct2. These operations are illustrated in Fig. 1, and formally described below.

Doubling: Initially ν(csys) = 0 and ν(cv) = d with 0 < d < 1. Then the
doubling the value of cv is obtained at the end, as ν(csys) = 0 and ν(cv) = 2d.

q0
cv∈[N,N ]?−−−−−−−→ cv←[0,0]−−−−−→ q0

csys∈[N,N ]?−−−−−−−−→ csys←[0,0]−−−−−−−→ xf←cv−−−−→ f-push−−−−→
q1 q0

cv∈[N,N ]?−−−−−−−→ pop−−→ cv←xf−−−−→ q0
csys∈[N,N ]?−−−−−−−−→ csys←[0,0]−−−−−−−→ q0

Halving: During the halving the value of cv, it will be nondeterministically
stored to xf in a frozen TA. When csys is reset to zero, xf will be popped
to restart. Only if the values of xf and cv coincide (i.e., they reach to N
together), the value of cv becomes d/2 when csys is wrapped twice.
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q0
cv∈[N,N ]?−−−−−−−→ cv←[0,0]−−−−−→ q0

xf←cv−−−−→ cv←[0,0]−−−−−→ f-push−−−−→
q1 q0

csys∈[N,N ]?−−−−−−−−→ csys←[0,0]−−−−−−−→ pop−−→ q0
cv∈[N,N ]?−−−−−−−→ xf∈[N,N ]?−−−−−−−→ cv←[0,0]−−−−−→

q0
csys∈[N,N ]?−−−−−−−−→ csys←[0,0]−−−−−−−→ q0

Tripling: Tripling requires an extra local clock xp in A0.

q0
cv∈[N,N ]?−−−−−−−→ cv←[0,0]−−−−−→ q0

csys∈[N,N ]?−−−−−−−−→ csys←[0,0]−−−−−−−→ xf←cv−−−−→ f-push−−−−→
q1 q0

cv∈[N,N ]?−−−−−−−→ pop−−→ cv←xf−−−−→ xp←[0,0]−−−−−−→ q0
csys∈[N,N ]?−−−−−−−−→ csys←[0,0]−−−−−−−→ xf←cv−−−−→

cv←xp−−−−→ f-push−−−−→ q1 q0
cv∈[N,N ]?−−−−−−−→ pop−−→ cv←xf−−−−→ q0

csys∈[N,N ]?−−−−−−−−→ csys←[0,0]−−−−−−−→ q0

Thirding: Thirding requires an extra TA A2 with a local clock x1 .

q0
cv∈[N,N ]?−−−−−−−→ cv←[0,0]−−−−−→ q0

xf←cv−−−−→ cv←[0,0]−−−−−→ f-push−−−−→
q1 q0

x1←cv−−−−→ cv←[0,0]−−−−−→ f-push−−−−→ q2 q1 q0
csys∈[N,N ]?−−−−−−−−→ csys←[0,0]−−−−−−−→ pop−−→

q1 q0
cv∈[N,N ]?−−−−−−−→ x1∈[N,N ]?−−−−−−−→ cv←[0,0]−−−−−→ q1 q0

csys∈[N,N ]?−−−−−−−−→ csys←[0,0]−−−−−−−→ pop−−→
q0

cv∈[N,N ]?−−−−−−−→ xf∈[N,N ]?−−−−−−−→ cv←[0,0]−−−−−→ q0
csys∈[N,N ]?−−−−−−−−→ csys←[0,0]−−−−−−−→ q0

Theorem 2. The reachability of a NeTA-F (T,A0, C,Δ) is undecidable, if
|C| > 1.

N

csys

cv
d

2d

(a) Doubling d to 2d

N

csys

cv
d

d/2

(b) Halving d to d/2

N

csys
cv d

xp

3d

(c) Tripling d to 3d

N

csys

cv d

d/3

(d) Thirding d to d/3

Fig. 1. Doubling, Halving, Tripling and Thirding the Value of cv

4.3 Reachability of NeTA-F with a Single Global Clock

Let N = (T,A0,X,C,Δ) be a NeTA-F. We define a corresponding DTPDA-F
E(N ) = 〈S, s0, Γ,X,C,∇〉, such that

– S = Γ =
⋃

Ai∈T S(Ai) is the set of all locations of TAs in T , with
– s0 = q0(A0) is the initial location of the initial TA A0 of N .
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– X = {x1, . . . , xk} is the set of k local clocks, and C is the singleton set {c}.
– ∇ is the union

⋃
Ai∈T Δ(Ai)

⋃ G(N )
⋃ H(N ) where

⎧
⎨

⎩

Δ(Ai) = {Local,Test,Assign,Value-passing},
G(N ) = {Global-test,Global-assign,Global-load,Global-store},
H(N ) consists of rules below.

Push q
push(q)−−−−−→ q0(Ai′) if (q, ε, push, q0(Ai′), q) ∈ Δ(N )

F-Push q
fpush(q)−−−−−−→ q0(Ai′) if (q, ε, f -push, q0(Ai′), q) ∈ Δ(N )

Pop q
pop(q′)−−−−→ q′ if (q, q′, pop, q′, ε)) ∈ Δ(N )

Definition 14. Let N be a NeTA-F (T,A0, C,Δ) and let E(N ) be a DTPDA-
F 〈S, s0, Γ,X,C,∇〉. For a configuration κ = (q, ν, μ〉, v) of N such that v =
(q1, f lag1, ν1) . . . (qn, f lagn, νn), �κ� denotes a configuration (q, w(κ), ν ∪ μ) of
E(N ) whereqi ∈ S(Ai) and w(κ) = w1 · · · wn with wi = (qi, νi, f lagi).

Lemma 2.
For a NeTA-F N , a DTPDA-F E(N ), and configurations κ, κ′ of N ,

(Preservation) if κ −→N κ′, then �κ� ↪→∗
E(N ) �κ′�, and

(Reflection) if �κ� ↪→∗
N 
, there exists κ′ with 
 ↪→∗

E(N ) �κ′� and κ −→∗
N κ′.

By this encoding, we have our main result from Theorem 1.

Theorem 3.
The reachability of a NeTA-F (T,A0, C,Δ) is decidable, if |C| = 1.

5 Conclusion

This paper extends nested timed automata (NeTAs) to NeTA-Fs with frozen
local clocks. A NeTA(-F) has a stack whose alphabet consists of timed automata.
By the frozen clocks combined with value passing between clocks, past local clock
values are recorded. The reachability of NeTA-F with 2 global clocks was shown
to be undecidable by simulating the Minsky machine. However, with a single
global clock, the reachability was shown to be decidable, by encoding NeTA-F
to a snapshot PDS, which is a WSPDS with a well-formed constraint [9].
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Abstract. Reversible computing is a paradigm of computation that
extends the standard forward-only programming to reversible program-
ming, so that programs can be executed both in the standard, forward
direction, and backward, going back to past states. In this paper we
present novel quantitative stochastic model for concurrent and coopera-
tsible computations. More precisely, we introduce the class of ρ-reversible
stochastic automata and define a semantics for the synchronization ensur-
ing that this class of models is closed under composition. For this class
of automata we give an efficient way of deriving the equilibrium dis-
tribution. Moreover, we prove that the equilibrium distribution of the
composition of reversible automata can be derived as the product of the
equilibrium distributions of each automaton in isolation.

1 Introduction

Reversible computing is a paradigm of computation which relies on the idea that
programs can be executed both in the standard, forward direction, and back-
ward. In contrast to traditional forward-only computations, reversible executions
may restore a past state by undoing, one by one, all the previously performed
operations. According to [26] a bi-directional execution is any program execution
that carries with it the notion of a runtime choice between forward and back-
ward execution, regardless of the granularity of the execution unit. Although
still not widely used, reversible computing has a growing number of promis-
ing applications. For instance, it has been shown in [4,5] that ideally reversible
computations can be performed without loss of energy. Another application sce-
nario is the improvement of the performance in parallel computations. Indeed,
by assuming the reversibility of the computations we may increase the con-
currency of the systems by allowing the local processors to execute their jobs
asynchronously. In case of data dependence violations, the backward execution
rolls back the processor to the execution point where the dependency viola-
tion occurred. A practical application of this idea is the popular “time warp”
mechanism proposed by Jefferson in [17,18]. Other applications include proces-
sors with speculative executions [11], debugging [8,22], fault detection [7] and
tolerance [27], database transaction rollbacks and quantum computing [25,30]
(see [26] for a survey of these application scenarios). Reversible computing can
be implemented in essentially two ways: the first consists in recording a set of
c© Springer International Publishing Switzerland 2015
S. Sankaranarayanan and E. Vicario (Eds.): FORMATS 2015, LNCS 9268, pp. 206–221, 2015.
DOI: 10.1007/978-3-319-22975-1 14
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checkpoints that store the state of the processor at some epochs of the com-
putation, the second in implementing fully reversible programs where each step
of the computation may be inverted. Janus [33,34] is an example of a time-
reversible programming language and many research efforts have been devoted
to the construction of reversible hardware components.

While the functional analysis of reversible computations has been widely
explored in previous works (see [4,9,20,28]), the quantitative analysis is a topic
that has still to be addressed. For forward-only computations, time-based quan-
titative analysis has been deeply studied especially in the context of systems
in which some aspects are abstracted out and assumed to have a probabilistic
nature (see, e.g.,[2]).

In this paper we focus on the problem of defining quantitative stochastic
models for concurrent and cooperating reversible computations. The stochastic
processes underlying our models are continuous-time Markov processes with a
discrete-state space (i.e., Continuous Time Markov Chains, CTMCs) which is a
common framework for the formal specification and evaluation of quantitative
properties of systems [13,15,29]. We focus on the derivation of the equilibrium
(or steady-state) performance indices, i.e., we aim at computing the probability
of observing the system in a certain state when the time elapsed since the begin-
ning of the computation is long enough (ideally infinite). Indeed, we can imagine
to repeat the computation infinite times, and the equilibrium distribution rep-
resents the probability of observing a certain state under this assumption. For
models with an underlying CTMC the necessary and sufficient condition for the
existence of a unique equilibrium distribution is that the chain is ergodic, i.e.,
its reachability graph is irreducible and the expected time elapsed from a visit
to any state until the next visit to the same state is finite.

Contribution. In this paper we use stochastic automata in the style of [29]
to model reversible processes. We introduce the class of ρ-reversible stochastic
automata and define a semantics for the synchronisation of reversible automata
that ensures that this class of models is closed under composition. For simplic-
ity, we introduce the synchronisation semantics for pairs of automata and then
we discuss how it is possible to extend it to an arbitrary number of automata.
We also address the problem of the computation of the equilibrium distribution.
Indeed, for general Markovian models, the derivation of the equilibrium distri-
bution is known to be time expensive (O(n3) with n being the number of model
states) and prone to numerical stability problems [31] since it requires the numer-
ical solution of a linear system of equations. For the class of reversible automata
we give an efficient way of deriving the steady-state distribution which is also
numerically stable since it involves only the product of floating point numbers.
Even more interestingly, we prove that the equilibrium distribution of the com-
position of reversible automata can be derived as the product of the equilibrium
distributions of each automaton in isolation. In the literature, this property is
known as product-form [3,19].
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Related Work. Formalisms for the description and the analysis of reversible
computations have been proposed in [10,21] and the references therein. The
behavioural analysis of reversible computations has been studied in [9,20,28]
where the authors address the problem of reachability and system equivalences
via bisimulation. In [1] and subsequent papers, the authors propose a quan-
titative evaluation of the energy costs required to allow the system to reach
a steady-state behaviour. Our contribution is more related to formal methods
for the quantitative analysis of reversible computations and the computation
of the equilibrium distribution that, to the best of our knowledge, has still to
be explored. From a theoretical point of view, time-reversibility in CTMCs is
mainly studied in [19] where the author introduces also a class of product-form
models. In [23,24] the authors introduce novel reversibility-based definitions for
Markov chains but, differently from the present work, there is not any notion of
compositionality. With respect to the above mentioned works, here we consider
interacting labelled automata representing reversible computations and define
a synchronisation semantics that is closed with respect to this class of compu-
tations. Moreover, we study their equilibrium distribution which, surprisingly,
is proved to exhibit an unconditional product-form. This is different from the
well-known quasi-reversibility based product-forms studied in [12,19].

Plan of the paper. The paper is organized as follows. Section 2 introduces the
fundamental notions of Markov chain and reversibility. In Section 3 we intro-
duce the definition of stochastic automaton and provide the synchronization
semantics. In Section 4 we present our main theoretical results about reversible
automata, their closure under synchronization and their product-form solution.
Section 5 concludes the paper.

2 Continuous-Time Markov Chains

Let X(t) be a stochastic process taking values into a state space S for t ∈
R

+. X(t) is stationary if (X(t1),X(t2), . . . , X(tn)) has the same distribution as
(X(t1 + τ),X(t2 + τ), . . . , X(tn + τ)) for all t1, t2, . . . , tn, τ ∈ R

+. X(t) satisfies
the Markov property and is called Markov process if the conditional (on both past
and present states) probability distribution of its future behaviour is independent
of its past evolution until the present state.

A Continuous-Time Markov Chain (CTMC) is a Markov process with a dis-
crete state space. A CTMC X(t) is time homogeneous if the conditional proba-
bility P (X(t + τ) = s | X(t) = s′) does not depend upon t, and is irreducible if
every state in S can be reached from every other state. A state in a CTMC is
called recurrent if the probability that the process will eventually return to the
same state is one. A recurrent state is called positive-recurrent if the expected
number of steps until the process returns to it is finite. A CTMC is ergodic if it is
irreducible and all its states are positive-recurrent. We assume that any CTMC
which we deal with is ergodic. A process satisfying all these assumptions pos-
sesses an equilibrium (or steady-state) distribution, that is the unique collection of
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positive numbers π(s) with s ∈ S such that limt→∞P (X(t) = s | X(0) = s′) =
π(s) for all s′ ∈ S.

The transition rate between two states s and s′ is denoted by q(s, s′), with
s �= s′. The infinitesimal generator matrix Q of a Markov process is such that the
q(s, s′)’s are the off-diagonal elements while the diagonal elements are formed
as the negative sum of the non-diagonal elements of each row. The equilibrium
distribution π is the unique row vector of positive numbers π(s) with s ∈ S,
summing to unit and satisfying the system of global balance equations (GBEs):

πQ = 0 . (1)

The solution of system (1) is often unfeasible due to the large number of
states of the CTMC. The analysis of an ergodic CTMC in equilibrium can be
greatly simplified if it satisfies the property that when the direction of time is
reversed the behaviour of the process remains the same.

Given a stationary CTMC, X(t) with t ∈ R
+, we call X(τ − t) its reversed

process. We denote by XR(t) the reversed process of X(t). It can be shown
that XR(t) is also a stationary CTMC. We say that X(t) is reversible if it is
stochastically identical to XR(t), i.e., the process (X(t1), . . . , X(tn)) has the
same distribution as (X(τ − t1), . . . , X(τ − tn)) for all t1, . . . , tn, τ ∈ R

+ [19].
For a stationary Markov process there exists a necessary and sufficient con-

dition for reversibility expressed in terms of the equilibrium distribution π and
the transition rates.

Proposition 1. (Transition rates of reversible processes [19]) A stationary
CTMC with state space S and infinitesimal generator Q is reversible if and
only if for all s, s′ ∈ S with s �= s′,

π(s)q(s, s′) = π(s′)q(s′, s) .

A reversible CTMC X(t) and its dual XR(t) have the same equilibrium
distribution.

The reversed process XR(t) of a Markov process X(t) can always be defined
even when X(t) is not reversible. In [12] the author shows that XR(t) is a CTMC
and its transition rates are defined according to the following proposition.

Proposition 2. (Transition rates of reversed process [12]) Given the stationary
CTMC X(t) with state space S and infinitesimal generator Q, the transition
rates of the reversed process XR(t), forming its infinitesimal generator QR, are
defined as follows: for all s, s′ ∈ S,

qR(s′, s) =
π(s)
π(s′)

q(s, s′) , (2)

where qR(s′, s) denotes the transition rate from s′ to s in the reversed process.

The equilibrium distribution π is the same for both the forward and the reversed
process.
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3 Stochastic Automata

Many high-level specification languages for stochastic discrete-event systems are
based on Markovian process algebras [6,14,15] that naturally supply powerful
composition operators and timed actions whose delay is governed by independent
random variables with a continuous-time exponential distribution. The expres-
sivity of such languages allows the development of well-structured specifications
and efficient analyses of both qualitative and quantitative properties in a single
framework. Their semantics is given in terms of stochastic automata, an exten-
sion of labelled automata with clocks that are exponentially distributed random
variables.

In this paper we consider stochastic concurrent automata with an underly-
ing continuous-time Markov chain as common denominator of a wide class of
Markovian stochastic process algebra. Stochastic automata are equipped with a
composition operator which allows a complex automaton to be constructed from
simpler components. Our model draws a distinction between active and passive
action types, and in forming the composition of automata only active/passive
synchronisations are permitted.

Definition 1. (Stochastic Automaton (SA)) A stochastic automaton P is a
tuple (SP ,AP ,PP ,�P , qP ) where

– SP is a denumerable set of states called state space of P
– AP is a finite set of active types
– PP is a finite set of passive types
– τ denotes the unknown type
– �P ⊆ (SP × SP × TP ) is a transition relation where TP = (AP ∪ PP ∪ {τ})

and for all s ∈ SP , (s, s, τ) /∈�P
1

– qP is a function from �P to R
+ such that ∀s1 ∈ SP and ∀a ∈ PP ,∑

s2:(s1,s2,a)∈�P
qP (s1, s2, a) ≤ 1.

In the following we denote by →P the relation containing all the tuples of
the form (s1, s2, a, q) where (s1, s2, a) ∈�P and q = qP (s1, s2, a). We say that
qP (s, s′, a) ∈ R

+ is the rate of the transition from state s to s′ with type a
if a ∈ AP ∪ {τ}. Notice that this is indeed the apparent transition rate from
s to s′ relative to a [15]. If a is passive then qP (s, s′, a) ∈ (0, 1] denotes the
probability that the automaton synchronises on type a with a transition from s to
s′. Hereafter, we assume that qP (s, s′, a) = 0 whenever there are no transitions
with type a from s to s′. If s ∈ SP , then for all a ∈ TP we write qP (s, a) =∑

s′∈SP
qP (s, s′, a). We say that P is closed if PP = ∅. We use the notation

s1
a
�P s2 to denote the tuple (s1, s2, a) ∈�P ; we denote by s1

(a,r)−−−→P s2 (resp.,

s1
(a,p)−−−→P s2) the tuple (s1, s2, a, r) ∈→P (resp., (s1, s2, a, p) ∈→P ).

1 Notice that τ self-loops do not affect the equilibrium distribution of the CTMC
underlying the automaton. Moreover, the choice of excluding τ self-loops will simplify
the definition of automata synchronisation.
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Table 1. Operational rules for SA synchronisation

sp1

(a,r)−−−→P sp2 sq1

(a,p)−−−→Q sq2

(sp1 , sq1)
(a,pr)−−−−→P⊗Q (sp2 , sq2)

(a ∈ AP = PQ)

sp1

(a,p)−−−→P sp2 sq1

(a,r)−−−→Q sq2

(sp1 , sq1)
(a,pr)−−−−→P⊗Q (sp2 , sq2)

(a ∈ PP = AQ)

sp1

(τ,r)−−−→P sp2

(sp1 , sq1)
(τ,r)−−−→P⊗Q (sp2 , sq1)

sq1

(τ,r)−−−→Q sq2

(sp1 , sq1)
(τ,r)−−−→P⊗Q (sp1 , sq2)

Definition 2. (CTMC underlying a closed automaton) The CTMC underlying
a closed automaton P , denoted XP (t), is defined as the CTMC with state space
SP and infinitesimal generator matrix Q defined as: for all s1 �= s2 ∈ SP ,

q(s1, s2) =
∑

a,r:(s1,s2,a,r)∈→P

r .

We say that a closed automaton P is ergodic ( irreducible) if its underlying
CTMC is ergodic (irreducible). We denote the equilibrium distribution of the
CTMC underlying P by πP .

The synchronisation operator between two stochastic automata P and Q
is defined in the style of master/slave synchronisation of SANs [29] based on
the Kronecker’s algebra and the active/passive cooperation used in Markovian
process algebra such as PEPA [15,16].

Definition 3. (SA synchronisation) Given two automata P and Q such that
AP = PQ and AQ = PP we define the automaton P ⊗ Q as follows:

– SP⊗Q = SP × SQ

– AP⊗Q = AP ∪ AQ = PP ∪ PQ

– PP⊗Q = ∅
– τ is the unknown type
– �P⊗Q and qP⊗Q are defined according to the rules for −→P⊗Q depicted

in Table 1 where −→P⊗Q contains the tuples ((sp1 , sq1),(sp1 , sq2), a, q) with
((sp1 , sq1),(sp1 , sq2), a)∈�P⊗Q and q = qP⊗Q((sp1 , sq1), (sp1 , sq2), a).

Notice that although we define a semantics for pairwise SA synchronisations,
this can be easily extended in order to include an arbitrary finite number of
pairwise cooperating automata as discussed in Section 4.1. We point out that
the assumption that an automaton obtained by a cooperation does not have
passive types ensures that the resulting automaton has an underlying CTMC
and then we can study its equilibrium distribution.
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4 Reversible Stochastic Automata

In this section we introduce the notion of ρ-reversibility for stochastic automata.
This is defined in the style of the Kolmogorov’s criteria presented in [19]. We
assume that for each forward action type a there is a corresponding backward
type a with τ = τ . Formally · is a bijection (renaming) from TP to TP . In most

of practical cases, · is an involution, i.e., a = a for all a ∈ TP , and hence the
semantics becomes similar to the one proposed in [10]. We say that · respects
the active/passive types of an automaton P if τ = τ and for all a ∈ TP \ {τ} we
have that a ∈ AP ⇔ a ∈ AP (or equivalently a ∈ PP ⇔ a ∈ PP ).

Definition 4. (ρ-reversible automaton) Let P be an irreducible stochastic
automaton, then P is ρ-reversible if ρ : SP → SP is a renaming (permutation)
of the states and · is a bijection from TP to TP that respects the active/passive
typing, such that:

1. q(s, a) = q(ρ(s), a), for each state s ∈ SP ;
2. for each cycle Ψ = (s1

a1
� s2

a2
� . . .

an−1
� sn

an
� s1) in P there exists one cycle

Ψ = (ρ(s1)
an
� ρ(sn)

an−1
� . . .

a2
� ρ(s2)

a1
� ρ(s1)) in P such that:

n∏

i=1

q(si, si+1, ai) =
n∏

i=1

q(ρ(si+1), ρ(si), ai) with sn+1 ≡ s1 .

We say that Ψ is the inverse of cycle Ψ . If ρ is the identity function we
simply say that P is reversible.

Observe that the cycle Ψ is unique. This follows from the fact that, by Defini-
tion 1 of stochastic automaton, there exists at most one transition between any
pair of states with a certain type a ∈ TP . We stress on the fact that this class
of models does not belong to any well-known class of compositional reversible
models including those studied in [12,19].

Example 1. (Reversible Random Number Generators) In the context of concur-
rent simulations, the Time Warp mechanism [17,18] is an optimistic synchroni-
sation protocol which is used to synchronize parallel discrete event simulations
allowing a process to roll back when an event occuring in another process inval-
idates part of its computation. The state of the process depends on a set of
random numbers that are generated by a pseudo Random Number Generator
(RNG). Reversible RNGs allow their state to move both forward and backward
so that if the simulation process is itself reversible, the rollback can be performed
without storing the process state in memory [26]. We can model a reversible RNG
by a simple sequential reversible automaton as shown in Fig. 1 (a). The model
consists of a denumerable set of states s1, s2, . . .. From each state si a random
number is generated causing a synchronising label ai and a transition to state
si+1 with rate rf . In the backward flow, the transition occurs from state si+1 to
si with type bi. Although it must be the case that the pseudo random number
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s1 s2 s3 · · ·

a1,rf

b1,rb

a2,rf a3,rf

b2,rb b3,rb

(a) Infinite state model

s1

· · · s2

s3

a1,rf

bn,rb

b3,rb

an,rf

b1,rb

a2,rf

b2,rb

a3,rf

(b) Finite state model

Fig. 1. Models for RNGs

generated by type ai is the same generated in the backward transition typed bi,
the use of two different types allows the synchronising process to drive the RNG
in the forward or in the backward direction. Conversely, the use of the same type
would have led to a situation in which the simulator process is executing in the
forward direction while the RNG process draws pseudo random numbers in the
backward direction, hence introducing an undesired behaviour. The automaton
is ρ-reversible with ρ being the identity function and ai = bi, bi = ai.

Let us now consider a cyclic RNG in which, in the forward computation, the
state that follows sn is s1 for a given n > 2 as depicted in Fig. 1 (b). In this case,
we have also to consider the cycle s1

a1,rf−−−→ s2 · · · an−1,rf−−−−−→ sn
an,rf−−−→ s1 whose

inverse is s1
bn,rb−−−→ sn · · · b2,rb−−−→ s2

b1,rb−−−→ s1. In order for the rate condition of
Definition 4 to be satisfied, equation rn

f = rn
b must hold, i.e., rf = rb is required.

In other words, the automaton is reversible if the rate of generation of random
numbers is the same in the forward and backward flow.

Example 2. (Reversible computations with checkpoints) Traditional means for
restoring a computation to a previous state involve checkpoints, that are fixed
conditions such that when a checkpoint is reached the computation may decide
to proceed forward to the next checkpoint or backward to the previous one. In
these cases, differently from the model studied in Example 1, the decision about
moving forward or backward is not taken in each model state but only at the
fixed checkpoints. Fig. 2 shows the stochastic automaton underlying such com-
putations. From checkpoint CK1 the computation proceeds forward to states
s1, s2, . . . sn and then reaches checkpoint CK2. At checkpoint CK2 the compu-
tation can move backward to s′

n, . . . , s′
2, s

′
1 and then to CK1. We can show that

the computation is ρ-reversible with ρ(CKi) = CKi, ρ(si) = s′
i, ρ(s′

i) = ρ(si)
and ai = bi, bi = ai for all i. In order for the rate condition of Definition 4 to
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s′
1 s′

2 · · · s′
n

· · · CK1 CK2 · · ·

s1 s2 · · · sn

τ,r1

τ,r2 τ,rn−2 τ,rn

ai,rai

bi,rbi

τ,r0

τ,rn+1

ai+1,rai+1

bi+1,rbi+1

τ,r1 τ,r2 τ,rn−1

τ,rn

Fig. 2. Model for a reversible computation with checkpoint

be satisfied, the following cycle has to be considered:

Ψ = CK1
τ,r0−−→ s1

τ,r1−−→ s2
τ,r2−−→ · · · sn

τ,rn−−−→ CK2

τ,rn+1−−−−→ s′
n

τ,rn−−−→ · · · s′
2

τ,r2−−→ s′
1

τ,r1−−→ CK1 .

The condition is trivially satisfied since the inverse cycle Ψ , under the renaming
function ρ, coincides with Ψ . Moreover, for all si we have q(si, τ) = q(s′

i, τ).

The following theorem provides a necessary condition for ρ-reversibility
expressed in terms of the equilibrium distribution πP and the transition rates.
It is worth of notice the analogies between Theorem 1 and Propositions 1 and 2.

Theorem 1. (Detailed balance equations) If P is ergodic and ρ-reversible then
for each pair of states s, s′ ∈ SP , and for each type a ∈ TP , we have

πP (s)q(s, s′, a) = πP (s′)q(ρ(s′), ρ(s), a) .

Notice that Theorem 1 differs from those proposed in [19,32] in the sense
that in our theorem action types are taken into account.

The next proposition says that the states of an ergodic ρ-reversible automa-
ton have the same equilibrium probability of the corresponding image under ρ.

Proposition 3. (Equilibrium probability of the renaming of a state) Let P be
an ergodic ρ-reversible automaton. Then for all s ∈ SP ,

πP (s) = πP (ρ(s)) .

The class of ρ-reversible automata satisfies the property that any ρ-reversible
automaton can be rescaled allowing one to close the automaton by assigning the
same rate to each passive action with a certain label weighted on its probability,
while maintaining the equilibrium distribution.

Definition 5. (Scaled automaton) Let P be an automaton, a ∈ TP and k ∈ R
+.

The automaton S = P{a · k} is defined as follows:

– SS = SP

– AS = AP and PS = PP if a ∈ AP ∪ {τ}
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– AS = AP ∪ {a} and PS = PP \ {a} if a ∈ PP

– �S = �P

– qS(s1, s2, b) =

{
qP (s1, s2, b) if b �= a

qP (s1, s2, b) · k if b = a

Intuitively, the rescaling of a passive type a with a factor ka should be inter-
preted as if the automaton is synchronising with an event that occurs according
to an independent homogeneous Poisson process with rate ka and hence can be
seen as a way to close an open automaton. The rescaling of an active type b
by a factor kb ≤ 1 should be interpreted as the reduction of the rates of the
transitions with type b due to the fact that a cooperating automaton is ready
to synchronise on b with a state independent probability kb. If kb > 1 we inter-
pret this as a speed up of the active transitions, e.g., because the synchronising
automaton models the fact that one component performs part of the work that
is associated with the synchronising transition.

Since · is a permutation of the labels, we denote by [a] the orbit of type a,

i.e., a ∈ [a], a ∈ [a], a ∈ [a] and so on. When · is an involution then for all a we
have that [a] is either a singleton or contains two types. Notice that if · respects
the active/passive types of P , then for all a we have that the elements of [a] are
either all active or all passive. Notice that [τ ] = {τ}.

Proposition 4. (ρ-reversible scaled automaton) If P is an ergodic ρ-reversible
automaton, then for all a ∈ TP , the automaton P ′ = P{b · k, b ∈ [a]} is also
ρ-reversible. Moreover, πP (s) = πP ′(s) for all states s ∈ SP .

According to Proposition 4 the ergodicity and the equilibrium distribution
of a ρ-reversible automaton does not depend on the rescaling of all the types
belonging to an orbit of · . As a consequence, if the automaton is open and we
close it by rescaling, its equilibrium distribution and ergodicity does not change
with the rescaling factor. Henceforth, we will talk about equilibrium distribution
and ergodicity of open automata in the sense that they are the same for any
closure obtained by rescaling.

The following relationship states that ρ-reversibility for stochastic automata
implies the reversibility of the underlying CTMC when the renaming function ρ
is the identity.

Proposition 5. (CTMC-reversibility) Let P be an ergodic automaton. If P is
ρ-reversible and ρ is the identity function then its underlying CTMC is reversible.

The opposite is, in general, not true.

Example 3. (Automaton ρ-reversibility and CTMC reversibility) Consider the
automaton depicted in Fig. 3 (a). Since it has only one active type a (indeed, in
this case, a = a), the underlying CTMC can be trivially derived and it is identi-
cal to the model in Fig. 3 (a) where the action type a is not present. Since the
CTMC underling the automaton is ergodic, we may construct the time-reversed
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1 3

2 4

a,α

a,γ

a,α/2

a,α/2
a,γ

(a) ρ-reversible automaton

1 3

2 4

α/2

α/2
γ

α

γ

(b) Reversed underlying CTMC

Fig. 3. A ρ-reversible automaton with an underlying non-reversible CTMC.

CTMC displayed in Fig. 3 (b). We notice that the two CTMCs are different and
hence the automaton is not reversible, however we can prove that under the
renaming ρ = {1 → 2, 2 → 1, 3 → 4, 4 → 3} the labelled automaton in Fig. 3 (a)
satisfies the conditions of Definition 4, i.e., it is ρ-reversible.

The following theorems are important to tackle the state space explosion
when studying a network of synchronising automata. Theorem 2 states that the
synchronisation of ρ-reversible automata is still ρ-reversible and therefore net-
works of more than two automata can be defined by combining pairs of automata.
Notice that operator ⊗ among ρ-reversible automata inherits the associativity
from Kronecker’s operator of the Stochastic Automata [29] or from the synchro-
nisation operator of PEPA [15]. Theorem 3 states that the composition of two
ρ-reversible automata has an equilibrium distribution that can be derived by
the analysis of the isolated cooperating automata (i.e., without generating the
joint state space and solving the system of global balance equations). Notice that
this analysis, differently from those based on the concepts of quasi-reversibility
[12,19] and reversibility, does not require a re-parameterisation of the cooperat-
ing automata, i.e., the expressions of the equilibrium distributions of the isolated
automata are as if their behaviours are stochastically independent although they
are clearly not.

Theorem 2. (Closure under ρ-reversibility) Let P and Q be two ρP - and ρQ-
reversible automata with respect to the same function · on the action types.
Then, the automaton P ⊗Q is ρP⊗Q-reversible with respect to the same · , where,
for all (s1, s2) ∈ SP × SQ,

ρP⊗Q(sp, sq) = (ρP (sp), ρQ(sq)) . (3)

Theorem 3 plays a pivotal role in the theory developed in this paper. Indeed,
if we have a set of M cooperating automata the cardinality of the state space may
have the size of the Cartesian product of the state space of each single automaton.
Assuming that each automaton has a finite state space of cardinality N , the joint
state space has, in the worst case, a cardinality of NM . Since the computation
of the equilibrium distribution of a CTMC requires the solution of the linear
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system of global balance equations, its complexity is O(N3M ). In case of ρ-
reversible automata, the steady-state distribution can be computed efficiently
by means of Theorem 1 in linear time on the cardinality of the state space for
each automaton, and hence by Theorem 3 the complexity of the computation of
the joint equilibrium distribution is O(NM).

Theorem 3. (Product-form solution) Let P and Q be two ergodic ρP - and ρQ-
reversible automata with respect to the same function · on the action types, and
let πP and πQ be the equilibrium distributions of the CTMCs underlying P and
Q, respectively. If S = P ⊗Q is ergodic on the state space given by the Cartesian
product of the state spaces of P and Q, then for all (sp, sq) ∈ SP × SQ,

πS(sp, sq) = πP (sp)πQ(sq) . (4)

In this case we say that the composed automaton S exhibits a product-form
solution.

It is worth of stressing on the fact that the cooperating automata are not stochas-
tically independent. Indeed Theorem 3 holds only for the equilibrium distribu-
tion of the joint model, i.e., when t → ∞. This is coherent with the literature on
product-forms of stochastic models, i.e., stochastic independence clearly implies
product-form but the opposite in not true.

Example 4. We consider the model for a reversible computation shown in Fig. 4.
P and Q communicate on an unreliable channel, i.e., a packet sent from P to Q
is recevied by Q with probability p and lost with probability 1 − p. P executes
its computation in the forward (s0 → s1 → s2 → s3 → s4 → s5) or backward
(s5 → s4 → s′

3 → s′
2 → s1 → s0) direction. It has two checkpoints modelled

by states s1 and s4 and the synchronisations with Q occur on the transitions
from s0 to s1 (and its dual from s1 to s0) and from s4 to s5 (and its dual from
s5 to s4). Q moves from s0 to s1 or s2 with a probabilistic choice upon the
synchronisation with type a. Notice that when P is executing in the backward
direction also Q is rolling back because of the synchronising type a. Assume
that the model encodes the result of the computation in state (s5, s4) or (s5, s5)
(where the first component of the state is associated with P and the second
with Q). We aim to compute the equilibrium probability of these two states that
represents the fraction of time that the process spends in the states that encode
the desired result. Notice that a, b, a, b ∈ AP = PQ.

Let us define the involution · as: a = a, b = b. Moreover, let ρP (si) = si

for i = 0, 1, 4, 5 and ρP (si) = s′
i and ρP (s′

i) = si for i = 2, 3, while ρQ(si) is the
identity for all i = 0, . . . , 5. We can prove that P and Q are ρ-reversible with
respect to ρP and ρQ, respectively, and · .

Now we use Theorem 1 to derive the equilibrium distribution of the isolated
automata. Let us consider an abitrary state in P , say s0. We can immediately
derive πP (s1) by using the detail balance equation and we obtain:

πP (s0)λ(1 − p) = πP (s1)μ(1 − p) ,
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b,1

(b) Model for Q

Fig. 4. A model for two communicating programs

which gives πP (s1) = πP (s0)λ/μ. Then, we derive πP (s2) using the detailed bal-
ance equation with s1 and obtain: πP (s2) = πP (s0)λγ1/(μγ2). By Proposition 3
we immediately have πP (s′

2) = πP (s2). Then we derive πP (s′
3) = πP (s3) =

πP (s0)λγ1/(μγ3), πP (s4) = πP (s0)λγ1/(μγ4) and πP (s5) = πP (s0)λγ1β/(μγ4η).
Notice that there may be more than one candidate detailed balance equation
that can be applied to derive the equilibrium distribution of a state, but The-
orem 1 ensures that this can be arbitrarly chosen. It remains to derive πP (s0)
that is computed by normalising the probabilities, i.e.:

πP (s0) =
γ2γ3γ4ημ

βγ1γ2γ3λ + γ1(γ2γ3 + 2(γ2 + γ3)γ4)λη + γ2γ3γ4η(λ + μ)
.

We can apply the same approach to derive the equilibrium distribution of Q,
obtaining:

πQ(s5) = πQ(s2) = πQ(s1) = πQ(s0)
1
2

, πQ(s3) = πQ(s4) = πQ(s0)
α1

2α2
.

and by normalising the probabilities πQ(s0) = 2α2/(2α1 + 5α2). By Theorem 3
we have:

πP⊗Q(s5, s4) + πP⊗Q(s5, s5) = πP (s5)πQ(s4) + πP (s5)πQ(s5) .

Notice that we have not build the joint state space and also that the automata
P and Q are not independent. For example, when Q is in state s2 and P is in
checkpoint s4, Q moves to s5 only if P decides not to roll back to checkpoint s1
and the communication between P and Q is succesfull.

4.1 Synchronisation of an Arbitrary Number of Automata

Since Definition 3 considers only cooperations of two stochastic automata, in this
section we discuss how it is possible to define networks with an arbitrary number of
synchronising ρ-reversible automata. The semantics we refer to when we deal with
multi-way synchronisations is an instance of that presented in [15,29]. Informally,
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the automata synchronise on a set of types L, i.e., the activities with type in L are
carried out only jointly, while those outside are carried out independently. It is
well-known that this synchronisation semantics is associative. It remains to prove
that the results on ρ-reversible automata proposed here, are applicable also for
this multi-way synchronisation semantics.

Let P be a ρ-reversible automaton, and a /∈ TP , then also the automaton
P+a (P−a) is ρ-reversible where P+a (P−a) is identical to P but has active
(passive) type a as self-loop in each state with rate (probability) 1. Moreover,
let b ∈ AP , and let P ∗b be identical to P with the exception that label b is passive
(we are assuming that for all s1 ∈ SP we have

∑
s1∈SP

qP (s1, s2, b) ≤ 1). Then,
assume we want to define a network of ρPi

−reversible automata P1, . . . , PM .
Let · be defined on all the types in ∪M

i=1TPi
, then we can proceed as follows.

Consider the automata P1 and P2 and define the automata P
+ai−aj

1 where ai ∈
PP2 \AP1 , aj ∈ AP2 \PP1 and P+ak−ah

2 , where ak and ah are defined analogously.
Then, the automaton P12 = P

+ai−aj

1 ⊗ P+ak−ah
2 is well-defined according to

Definition 3, is ρ-reversible and by Theorem 3 its steady-state probability is in
product-form. In order to make P12 synchronise with P3 we define P ∗b

12 , for all
b ∈ (PP1 \ AP2) ∪ (PP2 \ AP1) and repeat the procedure for the synchronisation
of P ∗b

12 with P3. Notice that this procedure gives the same semantics of the
master/slave synchronisation of SAN. Here, the advantage of proceeding pairwise
is that we can iteratively apply Theorem 3 to derive the equilibrium distribution
of the joint process very efficiently.

5 Conclusion

In this paper we studied a class of stochastic models, named ρ-reversible
automata, as a novel formalism for the quantitative analysis of reversible com-
putations. Similarly to reversible processes [19], ρ-reversible automata satisfy a
system of detailed balance equations which provide an efficient technique for
the computation of their equilibrium distribution. ρ-reversible automata are
equipped with a synchronisation operator similar to that of [15,29] which is
associative and the class of ρ-reversible automata is closed under the synchro-
nising operator. Moreover, ρ-reversible automata always exhibit a product-form
solution (which is in general different from those known from the literature)
allowing one to compute the joint equilibrium distribution as the product of the
equilibrium distributions of the synchronising sub-components considered in iso-
lation. We prove that the equilibrium distribution of any ρ-reversible stochastic
automaton is insensitive to any ρ-reversible context. Therefore, our theory allows
for the definition of system components whose equilibrium performance indices
are independent of their context.

Acknowledgments. Work partially supported by the MIUR Project CINA: “Com-
positionality, Interaction, Negoziation, Autonomicity for the future ICT society”.
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Abstract. Industrial applications usually require safety and stability
properties. The safety property guarantees that “something bad” never
happens, and the stability property guarantees that “something good”
eventually happens. The analyses of both properties are usually per-
formed in isolation. In this work, we consider analyzing both properties
by a single automatic approach for hybrid systems. We basically merge
analyses of both properties to exploit the knowledge gained from the
analysis of each of them in the analysis of the other. We show how both
analyses can be divided into multiple steps and interlocked such that
both benefit from each other. In fact, we compute single-mode Lyapunov
functions, unroll the hybrid system’s automaton via repeated reacha-
bility queries, and, finally, compute a global Lyapunov function. Each
reachability query is simplified by exploiting the knowledge gained from
the single-mode Lyapunov functions. The final computation of the global
Lyapunov function is simplified by a precise characterization of the reach-
able states and reuses the single-mode Lyapunov functions.

We provide automated tools necessary to link the analyses and report
on promising experiments we performed using our new prototype tool.

Keywords: Hybrid systems · Automatic verification · Stability ·
Safety · Reachability · Lyapunov theory · Geometry · Unrolling

1 Introduction

We present an approach to verify safety and stability properties of hybrid sys-
tems at once. The theory of hybrid systems provides a well-suited and natural
framework for the analysis of interacting discrete and continuous behavior of a
system. Examples are cyber-physical systems like vehicles or chemical processes.
A hybrid system is called safe if some “bad states” cannot be reached, and it is
called (asymptotically) stable if the system converges to some “good states”.

Although there has been a lot of progress in recent time, verifying these types
of properties is hard, especially in industrial applications where typical hybrid
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systems are often large. Consequently, abstractions or compositional frameworks
are used to obtain simplified systems for which safety and stability can be proven
and which are still powerful enough to establish the respective property of the
original system. While the verification of safety and stability is usually done
separately, we propose to integrate both analyses in a symbiotic fashion.

From the safety perspective, we use Lyapunov functions to detect regions
that are guaranteed to be safe. Exploiting these regions helps us to shorten the
reachability analysis. Indeed, if all trajectories eventually enter a safe region,
then there is no need to compute infinite traces of the trajectories.

From the stability perspective, we obtain a more precise description of the
feasible trajectories of a system. By discovering implicit knowledge and making
it explicit, we lower the computational burden to obtain Lyapunov functions.

2 Related Work

Safety and Reachability analysis of hybrid systems has to deal with two
problems: how to tackle the dynamics of the system, and how to represent the
reachable states systematically. Both problems are related since the choice of the
admissible dynamics has an impact on the required operations for post-image
computation. For reachability analysis we will consider systems whose dynamics
are given by linear differential inclusions [13,15,21]. Differential inclusions allows
us to approximate systems with richer dynamics [3,4,11].

For state representation we focus on convex approaches where reachable
states are usually represented by unions of convex sets. Different representa-
tions, like polyhedra [7], template polyhedra [37], zonotopes [15], ellipsoids [21],
and support functions [22], are commonly used. The choice of the representa-
tion has wide influence on the approximations of the underlying sets and on
the efficiency of operations required for reachability analysis. Depending on the
choice of the representation, some operations may be difficult, e. g. zonotopes
and support functions are challenging for intersections with guard sets [2,16].

Recently, the support function-based tool SpaceEx [13] has become popular
for reachability analysis. With respect to reachability, this paper considers the
same class of hybrid automata that SpaceEx can deal with.

Stability analysis of hybrid systems has – in contrast to safety analysis – not
yet received that much attention wrt. automatic proving, and, therefore, only
a few tools are available. A tool by Podelski and Wagner, presented in [31],
proves region stability via the search for a decreasing sequence of snapshots.
Oehlerking et al. [28] implemented a powerful state space partitioning scheme
for linear hybrid systems. The RSolver by Ratschan and She [36] computes
Lyapunov-like functions for continuous systems. Duggirala and Mitra [12] com-
bined Lyapunov functions with searching for a well-foundedness relation for sym-
metric linear hybrid systems. Prabhakar and Garćıa [34] presented a technique
for proving stability of hybrid systems with constant derivatives. YALMIP [23]
and SOSTools [30] are convenient Matlab toolboxes assisting in the manual
search for Lyapunov functions.
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Related theoretical works are the decompositional technique by Oehlerking
and Theel [29] and the work on pre-orders for reasoning about stability by Prab-
hakar et al. [32,33] whose aim is a precise characterization of the soundness of
abstractions for stability properties.

Reach-Avoid problems are related to the investigated problem. In reach-
avoid one is interested in finding a control strategy or initial condition to reach
a certain set of desired states while avoiding another set of undesired states. In
[25] Mitchell and Tomlin propose an exact algorithm for this problem which – like
our algorithm – makes use of level sets. In [1] Abate et al. give a specification of
the corresponding probabilistic problem. However, reach-avoid is an existential
problem, while we ask all trajectories to converge and avoid undesired states.

3 Preliminaries

In this section we give definitions of the hybrid system model, global asymptotic
stability, and Lyapunov functions. Furthermore, we briefly present two tools:
1. Stabhyli [26] which automatically computes Lyapunov functions and thereby
certifies stability and 2. SoapBox [17] which automatically computes reachable
state sets and, thus, allows us to check for (non-)reachable states.

Definition 1. H = (V,M, T ,Flow , Inv , Inits) is a Hybrid Automaton where
– V is a finite set of variables and S = R

|V| is the corr. continuous state space,
– M is a finite set of modes,
– T is a finite set of transitions (m1,G ,U ,m2) where

• m1,m2 ∈ M are the source and target mode of the transition, resp.,
• G ⊆ S is a guard which denotes whether a transition can be taken,
• U : S → S is the update function,

– Flow : M → [S → P(S)] is the flow function which assigns a flow to every
mode. A flow f : S → P(S) assigns a closed subset of S to each x ∈ S,
which can be seen as the right-hand side of a differential inclusion ẋ ∈ f(x),

– Inv : M → P(S) is the invariant function which assigns a closed subset
of the continuous state space to each mode m ∈ M, and therefore restricts
valuations of the variables for which this mode can be active.

– (Init,m) ∈ Inits ⊆ S × M is a closed set of initial (hybrid) states where m
is the discrete state and Init is the continuous state.

A trajectory of H is an infinite solution in form of a function τ(t) = (x(t),m(t))
over time t where x(·) describes the evolution of the continuous variables and
m(·) the corresponding evolution of the modes [27, p.35].

3.1 Checking Stability via Stabhyli

Stabhyli can be used to obtain Lyapunov functions which certify stability of
hybrid systems whose behavior is expressible in forms of polynomials. Stabhyli
can be used to obtain common Lyapunov functions, piecewise Lyapunov func-
tions and performing the (de-)compositional proof schemes presented in [8,29].
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These features are fully automatized and combined with pre- and postprocessing
steps that simplify the design and counteract numerical problems. Furthermore,
in case stability cannot be proven, Stabhyli returns a hint to the user. In the
sequel we sketch the theoretical basis of Stabhyli.

Roughly speaking, stability is a property basically expressing that all tra-
jectories of the system eventually reach an equilibrium point of the sub-state
space and stay in that point forever. Usually, for technical reasons the equilib-
rium point is assumed to be the origin 0 of the continuous state space. This is
not a restriction since a system can always be shifted such that the equilibrium
point is 0 via a coordinate transformation. In the sequel we focus on asymptotic
stability which does not require the origin to be reached in finite time, but only
requires every trajectory to converge. This property is weaker than exponential
stability where the existence of an exponential convergence rate is additionally
required.

In the following we refer to x↓V′ ∈ R
|V′| as the sub-vector of a vector x ∈ R

|V|

containing only values of variables in V ′ ⊆ V.

Definition 2 (Global Asymptotic Stability [27]). Given a hybrid automa-
ton H = (V,M, T ,Flow , Inv) and a set of variables V ′ ⊆ V that are required
to converge to the equilibrium point 0. A continuous-time dynamic system H is
called Lyapunov stable (LS) with respect to V ′ if for all functions x↓V′(·) of H,

∀ε>0 : ∃δ>0 : ∀t ≥ 0 : ||x(0)||<δ ⇒ ||x↓V′(t)||<ε.

H is called globally attractive (GA) wrt. V ′ if for all functions x↓V′(·) of H,

lim
t→∞x↓V′(t) = 0, i. e.,∀ε>0 : ∃t0≥0 : ∀t>t0 : ||x↓V′(t)||<ε,

where 0 is the origin of R
|V′|. If a system is both Lyapunov stable with respect

to V ′ and globally attractive with respect to V ′, then it is called globally asymp-
totically stable (GAS) with respect to V ′.

Intuitively, LS means that trajectories starting δ-close to the origin remains ε-
close to the origin. GA means that for each ε-distance to the origin, there exists
a point in time t0 such that a trajectory always remains within this distance.
It follows that each trajectory is eventually always approaching the origin. This
property can be proven using Lyapunov theory [24]. Lyapunov theory was orig-
inally restricted to continuous systems, but has been lifted to hybrid systems.

Theorem 1 (Discontinuous Lyapunov Functions [27]). Given a hybrid
automaton H = (V,M, T ,Flow , Inv) and a set of variables V ′ ⊆ V that are
required to converge. If for each m ∈ M, there exists a set of variables Vm with
V ′ ⊆ Vm ⊆ V and a continuously differentiable function Vm : S → R such that
1. for each m ∈ M, there exist two class K∞ functions α and β such that

∀x ∈ Inv(m) : α(||x↓Vm
||) ≤ Vm(x) ≤ β(||x↓Vm

||),
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2. for each m ∈ M, there exists a class K∞ function γ such that

∀x ∈ Inv(m) : V̇m(x) ≤ −γ(||x↓Vm
||)

for each V̇m(x) ∈
{〈

dVm(x)
dx

∣∣∣ f(x)
〉 ∣∣∣ f(x) ∈ Flow(m)

}
,

3. for each (m1,G ,U ,m2) ∈ T ,

∀x ∈ G : Vm2(U (x)) ≤ Vm1(x),

then H is globally asymptotically stable with respect to V ′. Each Vm is called a
Local Lyapunov Function (LLF) of m, and the function V(x,m) = Vm(x) is
called the Global Lyapunov Function (GLF).

In Thm. 1,
〈

dV(x)
dx

∣∣∣ f(x)
〉

denotes the inner product of the gradient of V and
a flow function f(x). Please refer to [27, p.43] for the details of K∞ functions.
Throughout the paper we denote by mode constraints the constraints of Type 1
and Type 2 and by transition constraints the constraints of Type 3.

Note 1. For each LF V (local or global), it holds that for any trajectory x(·)
the LF’s value does not increase, i. e., ∀t0, t ≥ 0 : V(x(t0 + t)) ≤ V(x(t0)) (or
∀t0, t ≥ 0 : V(x(t0 + t),m(t0 + t)) ≤ V(x(t0),m(t0)) for the GLF).

Stabhyli generates constraint systems which – using the so called sums-
of-squares method [35] and the S-Procedure [6] – are relaxed to a linear matrix
inequality (LMI). The LMI can then be solved by a semi-definite program (SDP).
For this purpose, we use the numerical solver CSDP [5] is in charge. If the LMI
is feasible, then each solution represents a valid Lyapunov function.

Note 2. Since Stabhyli employs the sums-of-squares method, every computed
Lyapunov function is representable as a sum-of-squares. However, in the follow-
ing we restrict ourselves to quadratic Lyapunov functions as they are sufficient
for many applications.

3.2 Checking Reachability via SoapBox

SoapBox is a tool for reachability analysis of hybrid systems. It is implemented in
Matlab. SoapBox handles hybrid systems with continuous dynamics described
by linear differential inclusions and arbitrary affine maps for discrete updates.
The invariants, guards, and sets of reachable states are given as convex polyhedra.
Internally, the reachability algorithm of SoapBox is based on symbolic orthogo-
nal projections (sops) [17]. Sops extend the half-space representation of polyhedra
(H-polyhedra) such that the operations required for the post-image computation,
including convex hulls, Minkowski sums, affine maps, and intersections, can be
performed efficiently and exactly. Hence, using sops yields tighter overapproxi-
mation than support functions.

A drawback, which sops and support functions have in common, is that
there is no efficient and exact method for deciding subset-relations in general.
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Hence, an exact fix-point check is hard to achieve. However, at least the decision
whether a given set – represented as a sop or by support functions – is contained
in an H-polyhedron or not can be done efficiently.

Although SoapBox is a fully functional model checker handling continuous
and discrete updates of a hybrid system, for our approach it suffices to present
the mode-specific continuous post-image computation provided by the method
Reach(Init,Flow(m), Inv(m),Safe,T ). It expects as input an H-polyhedron rep-
resenting the initial states Init, a differential inclusion Flow(m) describing the
differential inclusion ẋ = Ax + E, where E is an H-polytope modeling the
bounded input, an H-polyhedron representing the invariant Inv(m), an H-poly-
hedron representing the target set1 T , and an H-polyhedron Safe. The method
computes a tight overapproximation of all reachable states on trajectories solving

ẋ(t) = Ax(t) + E, x(0) ∈ Init, ∀t ≥ 0: x(t) ∈ Inv(m),

until either all states leave the invariant or all states have entered the set Safe.
Then, it returns a polyhedral set representing a tight polyhedral overapproxi-
mation of the intersection of the reachable states with the target set T .2

4 Hybrid Stability and Reachability Tool

We present our algorithm that combines safety and stability analysis. We show
how the combination of both analyses mutually simplifies the verification task.

While GAS is defined over trajectories, Thm. 1 argues over states and
searches for LLFs which have to be compatible wrt. the transition constraints.
We observed that, often, we are able to find the LLFs but fail to establish the
necessary compatibility wrt. the transition constraints. Among other reasons,
this may be due to cyclic dependencies imposed by the transitions of the hybrid
automaton.

Our approach is to unroll the hybrid automaton to an equivalent hybrid
automaton for which we can verify GAS via Thm. 1. Here, “equivalence” denotes
that both automata exhibit an identical continuous behavior, i. e., for each tra-
jectory of either automaton there is a trajectory of the other automaton with the
same continuous evolution. Hence, the original hybrid automaton is also GAS.

We define the following notion of the depth of a reachable state. The set
R0 = Inits is the set of all reachable states of depth 0. Given the set Rn of
all reachable states at depth n, we recursively define Rn+1 as the set of all
tuples (xn+1,mn+1) which are reachable from any tuple (xn,mn) ∈ Rn by a
combination of a continuous evolution and a subsequent discrete transition, i. e.,
there exists a flow f ∈ Flow(mn), an instant of time t ≥ 0, and a transition
(mn,G ,U ,mn+1) ∈ T such that for y(t) =

∫ t

0
f(y) dτ it holds y(τ) ∈ Inv(mn)

1 Usually, Reach() handles finite unions of polyhedral target sets at once. For the sake
of simplicity, our presentation is restricted to a single target set.

2 As before, Reach() returns unions of polyhedra, each representing a single traversal
of a target set.
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for all τ ∈ [0, t], y(0) = xn, y(t) ∈ G , and U (y(t)) = xn+1. Clearly, (x,m) is
reachable if and only if there exists some n with (x,m) ∈ Rn.

Our idea is as follows: First we compute for each mode a Lyapunov function,
called a “single-mode Lyapunov Function” (SMLF). Then, starting with R0, we
successively compute the sets Rn. For each mode this reduces to the reachabil-
ity problem of computing the reachset, that is the set obtained by computing
all reachable states in the transition guards and subsequent application of the
respective discrete updates. During each reachset computation, we additionally
assess safety, i. e., we decide whether Unsafe can be reached or not. Moreover, the
SMLFs enable us to compute safe sets which substantially simplify the reachabil-
ity analysis: An appropriate safe set has no intersection with neither the unsafe
set nor any guard of an outgoing transition and it is invariant under the flow.
Thus, we may stop the reachability analysis as soon as a safe set is entered.

If this approach successfully terminates, then it does not only help to ensure
safety, but we also obtain an unrolled (or unfolded) version of the original hybrid
automaton. The unrolled automaton is free of cyclic dependencies. Additionally,
guards are restricted to their intersection with the reachable states. Both facts
enormously simplify the task of establishing compatibility of the SMLFs with
the transition constraints, which finally yields a global Lyapunov function.

4.1 Single-Mode Lyapunov Function Computation

As mentioned above, in the first step, we compute Lyapunov functions for each
mode in isolation. We call a Lyapunov function SMLF, if it satisfies the mode
constraints, but not necessarily the transition constraints of Thm. 1.

Stabhyli can compute Lyapunov functions automatically. To obtain the
single-mode Lyapunov functions, we simply “feed” Stabhyli with a single-mode
automaton Hm for every m ∈ M, where the single-mode hybrid automaton is
defined as Hm = (V, {m}, ∅, {m 
→ Flow(m)}, {m 
→ Inv(m)}, {(Inv(m),m)}).

Computing the single-mode Lyapunov functions certifies that each single-
mode hybrid automaton is GAS. Note that this is not sufficient to conclude that
the full hybrid automaton is GAS. However, we exploit single-mode Lyapunov
function during the following reachability analysis. In a final step, we combine
the single-mode Lyapunov functions with the results of the reachability analyses
to verify GAS of the full hybrid automaton (see Sec. 4.5).

4.2 SafeSet Computation

As in the previous section, we restrict our attention to a single mode m of a
hybrid automaton H. Firstly, we introduce the notion of a level set.

Definition 3 (Level Set). Let V(·) be a Lyapunov function of mode m. For
any s ≥ 0, we call LV,s = {x | V(x) ≤ s} a level set of mode m.

A Lyapunov function assigns a value to any state of the state space, and its values
along any trajectory does not increase. Hence, all trajectories starting in a level
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set will not leave the level set. In general, we call any subset of states which
cannot be left by the continuous trajectories an invariant set (for the formal
definition see Def. 4). This property allows a strong prediction on the future of
the trajectory. However, the prediction does not suffice to establish safety if the
intersection of the invariant set with Unsafe or some guards is not empty, since
then the mode could be unsafe or it could be left by a discrete transition.

V(x) = i

Init

Unsafe

V(x) = g

(a) Safe after entering LV,g

V(x) = i

Init

Unsafe

V(x) = g

(b) Initially safe

Fig. 1. Sketch of safe sets

Definition 4 (Safe Set, Avoid Set, and Invariant Set). Let A and S ′ be
two subset of S such that S ′ ⊂ Inv(m). If for all trajectories x(·) with x(0) ∈ S ′

and for all t ≥ 0 it holds

∀τ (0 ≤ τ ≤ t → x(τ) ∈ Inv(m)) =⇒ ∀τ (0 ≤ τ ≤ t → x(τ) ∈ S ′) (1)
∀τ (0 ≤ τ ≤ t → x(τ) ∈ Inv(m)) =⇒ ∀τ (0 ≤ τ ≤ t → x(τ) �∈ A), (2)

then A is called an avoid set and S ′ is called a safe set for A of a mode m. A
safe set for A is denoted by SafeA.

The set S ′ ⊆ Inv(m) is an invariant set if condition (1) holds.

Clearly, any level set of a mode is also an invariant set of the mode. Furthermore,
any invariant set which has an empty intersection with some avoid set A is
obviously a safe set for A.

Corollary 1. Any level set which has an empty intersection with A is a safe
set for the avoid set A.

Now, the alleviating argument for the reachability analysis is that a certain
set, like Unsafe or a guard, cannot be reached as soon as a safe set for the
respective set is entered.

Following Cor. 1 we aim for maximizing the extent of the level set LV,s =
{x | V(x) ≤ s} for a given avoid set A. Let g < infx∈A V(x) be a strict lower
bound for the values of the Lyapunov function over A. Since all states with a
lower value are guaranteed not to be in A, the set SafeA = LV,g is a safe set for
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Function 1. The Prepare Function
input : A hybrid automaton H, a set Unsafe.
output: A set of LFs LFs, and a prepared version of H.

1 Inits ′, T ′,LFs ← ∅;
// compute Lyapunov functions for each mode in isolation

2 foreach m ∈ H.M do LFs(m) ← computeLF(Flow(m), Inv(m));
3 T ′ ← H.T ; // copy transitions

4 foreach (Init,m) ∈ H.Inits do // separate each initial mode

5 m′ ← copyMode(H,Unsafe,LFs,m); // copy the mode

6 Inits ′ ← Inits ′ ∪ {(Init,m′)} ; // add the new init

// copy each outgoing transition to the new mode

7 foreach (m,G,U ,m2) ∈ T ′ do H.T ← H.T ∪ {(m′,G,U ,m2)};

8 H.Inits ← Inits ′ ; // replace initial states

A. Furthermore, if we find an upper bound i ≥ supx∈Init V(x) with g ≥ i, then A
is unreachable from all initial states, and we can omit the reachset computation
entirely. Both cases are visualized in Fig. 1.

4.3 SafeBox Conversion

In order to use safe sets for trajectory truncation in a polyhedral-based tool
like SoapBox, we generate polyhedral underapproximatons of safe sets. We
shortly describe the idea of our method. Stabhyli generates quadratic Lyapunov
functions. Hence, a level set in our context is a quadric

{
x

∣∣xT V x ≤ c2
}

with
c > 0 and a symmetric matrix V . Projectively principal axis transformation
yields an invertible matrix L and a diagonal matrix E, whose coefficients are
equal to −1, 1, or 0, and sorted in descending order such that Ṽ =

(
V 0
0T −c2

)
=

LẼLT . By Sylverster’s law of inertia, the numbers of negative, positive, and
zero coefficients are uniquely determined. Furthermore, since Ṽ contains the
block matrix −c2, the last coefficient of Ẽ is −1, i. e., Ẽ =

(
E 0
0T −1

)
. This yields

the implication yT E′y ≤ 1 ⇒ yT Ey ≤ 1, where E′ is obtained from E by
replacing all occurrences of −1 by 0. Hence, the cylinder

{
y

∣∣yT E′y ≤ 1
}

over
a lower-dimensional unit sphere is the largest inscribed convex and cylindrical
set of

{
y

∣∣yT Ey ≤ 1
}
. Now, given template H-polyhedra with circumspheres

of arbitrary dimension, it is easy to generate an inscribed H-polyhedron of the
spherical cylinder. For our experiments we used hypercubes and cross-polytopes.
It remains to compute the image of the resulting polyhedra under the inverse
transformation to

(
y
μ

)
= LT

(
x
λ

)
, which is computationally easy but involves non-

trivial insights in projective geometry3 which we had to omit here due to lack
of space (for details see [18,20]).

3 Actually, we use a projective generalization of polyhedra similar to the notion of
projective polyhedra as it has been introduced in [14].
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4.4 Unrolling Algorithm

Func. 1 and Alg. 2 show the unrolling algorithm. Func. 1 is a preparation function
that creates copies of the modes as well as all outgoing edges for each initial
state set. The function copyMode creates a fresh copy of a mode with the same
flow, invariant, SMLF, and unsafe set as the original mode. Alg. 2 is the main
unrolling algorithm. It is executed after the preparation function. It maintains
a job queue which is initialized with the initial state sets. Until the job queue
is empty, it selects a job, computes safe sets and reachsets wrt. Unsafe and the
guards of the outgoing transition. An intersection of the reachset with Unsafe
shows that the hybrid system is unsafe. Intersections with guards are used to
tighten the guards of transitions and are enqueued for further exploration. This
unrolls the hybrid automaton in a breath first manner. If the job queue is empty,
then the unrolling is followed by a post-processing. The post-processing removes
all nodes that are not connected to a mode of the initial set. The result is a
forest of hybrid automata describing the trajectories abstractly. The unrolled
hybrid automaton can be proven stable very efficiently according to Thm. 2. In
fact, since the unrolled hybrid automaton is acyclic, the single-mode Lyapunov
functions computed may be reused.

Algorithm 2. The Unrolling Algorithm
input : A hybrid automaton H, a set Unsafe, and a set of LFs LFs.
output: An unrolled version of H.

1 Jobs ← H.Inits; // start from each initial state set

2 while Jobs �= ∅ do
3 (Init,m) ← pop(Jobs); // select a job

// compute safe sets wrt. unsafe and convert them to safe boxes

4 SafeUnsafe ← convertToBoxes(safeSets(LFs(m), Init,Unsafe(m)));

// compute reachset wrt. unsafe

5 R ← Reach(Init,Flow(m), Inv(m),SafeUnsafe,Unsafe(m));

6 if R �= ∅ then markUnsafe(m,R); // model is unsafe

7 T ′ ← H.T ; // copy transitions

// check reachability of each outgoing transition

8 foreach (m,G,U ,m2) ∈ T ′ do
9 H.T ← H.T \ {(m,G,U ,m2)}; // remove old transition

// compute safe sets wrt. guard and convert them to safe boxes

10 SafeG ← convertToBoxes(safeSets(LFs(m), Init,G));
// compute reachset wrt. guard

11 R ← Reach(Init,Flow(m), Inv(m),SafeG ,G);
12 if R = ∅ then continue; // guard unreachable

13 m′ ← copyMode(H, Unsafe,LFs,m2); // copy the mode

14 H.T ← H.T ∪ {(m,R,U ,m′)}; // add refined incoming transition

// copy each outgoing transitions to the new mode

15 foreach (m2,G2,U2,m3) ∈ T ′ do H.T ← H.T ∪ {(m′,G2,U2,m3)};
16 Jobs ← Jobs ∪{(apply(R,U ),m′)}; // append updated postset
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4.5 Global Lyapunov Function Computation

Now that we have established safety, we verify GAS of the unrolled hybrid
automaton reusing the single-mode Lyapunov functions. Since both automata
are equivalent, this implies GAS of the original hybrid automaton.

Theorem 2 (GAS of an unrolled Hybrid Automaton). Let H be an
unrolled hybrid automaton. If all modes are globally attractive, then so is H.
If all modes are Lyapunov stable and for all transitions (m1,G ,U ,m2) it holds
that

∃c > 0 : ∀x ∈ G : Vm2(U (x)) ≤ c · Vm1(x),

then H is Lyapunov stable. Consequently, H is GAS.

Proof. Follows directly from [27, Thm. 4.1,Remark 4.3].

Since we already have single-mode Lyapunov functions, it remains to show
that for each transition the factor c as used in Thm. 2 actually exists. If this is
successful, then we can conclude that the hybrid automaton is GAS.

5 Benchmarking

In this section we present four benchmarks and compare the time needed for ver-
ification of their respective properties. The benchmark set contains one example
where we verify stability and safety (actually, it is part of a case study on par-
allel composition of hybrid systems), two examples with more complex discrete
behavior for which we only verify pure stability properties,4 and one example for
which it is impossible to prove stability without further reachability analysis.
Example 1: The Velocity Controller (VC) – visualized in Fig. 2 – is part
of the Advanced Driver Assistance System (ADAS) presented and analyzed in
[9,10,19]. The ADAS consists of two concurrent controllers (as well as helper
components) that cooperatively achieve the following objectives: (o1) maintain
a centrifugal force comfortable for a driver, (o2) bring and then keep the car
on the center of its lane, (o3) control the speed whereby also considering driver
requests for a certain speed value. The VC contributes to Objective (o1) and
Objective (o3).

The model has three modes: one mode with a constant acceleration, one
mode with a constant deceleration and one mode doing the fine tuning via a PI
controller. The VC’s task is to drive the current velocity of the vehicle velcur to
a desired velocity velgoal. This desired velocity is given by an external input that
might be updated discretely. The verification task is to show that

– velcur converges to velgoal,
– if velcur − velgoal ≤ −3 initially holds then always holds velcur − velgoal ≤ 3,
– if velcur−velgoal∈ [−3,−2] initially holds then always holds velcur−velgoal ≤ 2,

4 Note that the unrolling algorithm performs a complete reachability analysis. Hence,
extending the examples by an unsafe set is rather trivial.
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Decl

˙velcur = −3

4 ≤ velcur − velgoal ≤ 50

Norm

˙velint =velcur − velgoal
˙velcur = − 0.0075 · velint

− 0.052 · (velcur − velgoal)

−6 ≤ velcur − velgoal ≤ 6

Accl

˙velcur = 3

−50 ≤ velcur − velgoal ≤ −4

5.8 ≤ velcur − velgoal ≤ 6

4 ≤velcur − velgoal ≤ 5
/velint := 0 −6 ≤ velcur − velgoal ≤ −5.8

−5 ≤velcur − velgoal ≤ −4
/velint := 0

Fig. 2. The Velocity Controller [9]

Emergency Brake Act
v̇ = −t − 2.5

ẋ = 0
ṫ = 1

15 ≤ v ≤ 40
0 ≤ t ≤ 2.5

Emergency Brake Full
v̇ = −5
ẋ = 0
ṫ = 0

15 ≤ v ≤ 40
t = 2.5

Service Brake Act
v̇ = −t − 1.2

ẋ = 0
ṫ = 0.5

5 ≤ v ≤ 20
0 ≤ t ≤ 1.3

Service Brake Full
v̇ = −2.5
ẋ = 0
ṫ = 0

5 ≤ v ≤ 20
t = 1.3

Normal
v̇ = −0.001x − 0.052v

ẋ = v
ṫ = 0

−15 ≤ v ≤ 15
−500 ≤ x ≤ 500

Accelerate
v̇ = 1.5
ẋ = 0
ṫ = 0

−20 ≤ v ≤ −5

t = 2.5∧
15 ≤ v ≤ 40

15 ≤ v ≤ 16∧
0 ≤ t ≤ 2.5∧

t := 0

15 ≤ v ≤ 16∧
0 ≤ t ≤ 2.5∧

t := 0

18 ≤ v ≤ 20∧
0 ≤ t ≤ 1.3∧

t := 0

t = 1.3∧
5 ≤ v ≤ 20

5 ≤ v ≤ 11∧
0 ≤ t ≤ 1.3∧

x := 0

18 ≤ v ≤ 20∧
t = 1.3∧
t := 0

5 ≤ v ≤ 11∧
t = 1.3∧
x := 013 ≤ v ≤ 15∧

−500 ≤ x ≤ 500∧
t := 0 −15 ≤ v ≤ −14∧

−500 ≤ x ≤ 500

−6 ≤ v ≤ −5∧
−500 ≤ x ≤ 500∧

x := 0

Fig. 3. The Automatic Cruise Controller [27]

– if velcur − velgoal∈ [−2, 0] initially holds then always holds velcur − velgoal ≤ 1.
The later three are safety properties and restrict the peak-overshoot. For the ver-
ification, all properties are considered under the assumption that velgoal remains
constant once set.
Example 2: The Automatic Cruise Controller (ACC) regulates the veloc-
ity of a vehicle. Fig. 3 shows the controller as an automaton. The task of the
controller is to approach a user-chosen velocity – here the variable v represents
the velocity relative to the desired velocity. The ACC is a bit more complex than
the VC as it has two different brakes: a service break for minor corrections and
an emergency break for huge differences. Both brakes have an activation phase,
in which the deceleration is continuously increased.
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Fourth Quadrant
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ẏ = −0.6
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ẋ = −0.1 · x
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Negative X
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ẏ = −0.1 · y
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ẋ = −0.1 · x
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Positive X

ẋ = −0.6
ẏ = −0.1 · y
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Fig. 4. The Simple Planar Spidercam

Example 3: The Spidercam is a movable robot equipped with a camera used
at sport events. The robot is connected to four cables. Each cable is attached to
a motor that is placed in a corner high above the playing field of a sports arena.
By winding and unwinding the cables, the spidercam is able to reach nearly any
position in the three-dimensional space above the playing field. Fig. 4 shows a
very simple model of such a spidercam in the plane. The target is to stabilize
the camera at a certain position. The continuous variables x and y denote the
distance relative to the desired position on the axis induced by the cables. In the
model, we assume a high-level control of the motor engines, i. e., the movement
is on x and y axes instead of a low-level control of each individual motor.
Example 4: The Artificial Example is a model (see Fig. 5a) which cannot
be proven stable without further reachability information. The reason is that the
guard of the transition from mode Turbo Fast to Wait does not restrict values
of x. Thus, näıvely generating constraints due to Thm. 1 leads to the following
snippet of constraints

∀x, t : x ∈ [−100, 100] ∧ t ∈ [0, 5] ⇒ 0 < VWait(x, t)
∀t : t ∈ [0, 5] ⇒ VTurbo Fast(0, t) = 0

∀x : VWait(0.9x + 0.1, 0) ≤ VTurbo Fast(x, 5).
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Obviously, no such VWait, VTurbo Wait exist. On the other hand, due to the
unrolling, we can conclude that the transition may only be taken with x ∈
[10.1, 38.9] which allows us to replace the last constraint by

∀x : x ∈ [10.1, 38.9] ⇒ VWait(0.9x + 0.1, 0) ≤ VTurbo Fast(x, 5),

and, indeed, for x ≥ 10 the Lyapunov function value may not increase.5 The
unrolled automaton is sketched in Fig. 5b.

Results

Tab. 1 shows, in order, the depth of the unrolled hybrid automaton and the time
needed to compute the SMLFs, the safe sets, the inscribed polygon (hypercube
and cross-polytope), the reachability information, and, in the last column, the
total runtime.6 Since SoapBox is written in Matlab and our current proto-
type tool runs SoapBox for each reachset computation, we have included two
times: with and without the time for the Matlab reinitialization (once for each
computation).

Table 1. Detailed Computation Times

Depth Stabhyli SafeSet BoxConvert SoapBox Total Time
w/o Matlab w/ Matlab

Exm. 1 3 0.39s 0.16s 2.4s 14.6s 17.55s 41.55s
Exm. 2 6 0.82s 1s 57.2s 39.6s 98.62s 350.62s
Exm. 3 5 2.14s 580.3s 11s 1098.7s 1692.14s 4408.14s
Exm. 4 8 1.65s 5.67s 0.06s 10.04s 17.42s 65.42s

In Tab. 2 we compare the runtime of the proposed approach with the runtime
of Stabhyli searching for a common Lyapunov function, Stabhyli searching
for a piecewise Lyapunov function, and Stabhyli using the decompositional
approach. We can conclude that although the proposed unrolling technique is
not the fastest, its runtime is comparable to the runtime of the decompositional
approach and may handle examples that other approaches cannot handle. Fur-
thermore, if a benchmark exposes a safety property, too (like the VC), then
additional time is required to verify the safety properties which nullifies the
advantage of the shorter runtime.

5 Note that the update increases x in case the transition is taken with x < 10.
This would render the system non-LS (cf. Def. 2). However, reachability informa-
tion reveals that no such trajectory exists.

6 An Intel c© CoreTM i7-3770T CPU with 2.50GHz and 8GB of RAM (in single-core
mode) was used to run the benchmarks.
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Wait

ẋ = −0.1x
ṫ = 1

−100 ≤ x ≤ 100
0 ≤ t ≤ 5

Active

ẋ = −0.1x
ṫ = 0

−100 ≤ x ≤ 100

Turbo Fast

ẋ = −0.1x − 0.5
ṫ = 1

0 ≤ x ≤ 100
0 ≤ t ≤ 5

Turbo Slow

ẋ = −0.1x − 0.2
ṫ = 1

0 ≤ x ≤ 100
0 ≤ t ≤ 5

t = 5/t := 0

20 ≤ x ≤ 100

t = 5/
x := 0.9x+ 1.0, t := 0

10 ≤ x ≤ 20

t = 5/
t := 0

t := 0

(a) unmodified

active_1

turbo_fast_1 turbo_slow_1

active_2active_3

turbo_fast_2 turbo_slow_2

active_4active_5

wait_3

wait_5

wait_2

wait_4

wait_1*

(b) unrolled

Fig. 5. An Artificial Example

6 Summary

Table 2. Comparison of Computation Times

Stabhyli Stabhyli Stabhyli Unrolling
(common) (piecewise) (decomp.)

Exm. 1 X 0.21s 22.29s 17.55
Exm. 2 X 1.70s 112.99s 98.62
Exm. 3 1.37s 6.97s X 1692.14
Exm. 4 X X X 17.42

We have presented an approach
to verify both, safety and stabil-
ity properties of hybrid systems. In
contrast to the simple approach of
verifying the properties separately,
we merge the verification procedures
such that it makes either verification
task simpler. Our approach allows
us to exploit the knowledge that is gained during the verification of one prob-
lem in the verification of the other one. From the safety perspective, we use
the fact that level sets – which are obtained from Lyapunov functions – reveal
subsets of the state space which are known to be safe. We stop the reachability
analysis as soon as the safe set is entered. From the stability perspective, we
use an unrolled version of the hybrid system’s automaton – which is obtained
by repeated reachset computations – to have a more precise characterization of
the feasible trajectories. Obtaining Lyapunov functions for this unrolled hybrid
automaton reduces the computational effort. It allows us to find LFs for systems
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where the system’s representation contains implicit information that is needed
to successfully prove stability.

In the future we plan to investigate sufficient and necessary termination cri-
teria for the unrolling algorithm. Even if it turns out that termination of the
unrolling algorithm will fail on a particular automaton, we believe that the
presented techniques still can fruitfully be applied to parts of the automaton.
Reachability analysis profits from safe sets even when the stability of the over-
all automaton cannot be established. Additionally, knowledge gained by partial
reachability computations on sub-components of the automaton helps us to relax
the transition constraints for the computation of the GLF. However, the useful-
ness of our approach has already been shown by some promising experiments
(see Sec. 5).
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Abstract. We propose automated techniques for the verification and
control of probabilistic real-time systems that are only partially observ-
able. To formally model such systems, we define an extension of prob-
abilistic timed automata in which local states are partially visible to
an observer or controller. We give a probabilistic temporal logic that
can express a range of quantitative properties of these models, relating
to the probability of an event’s occurrence or the expected value of a
reward measure. We then propose techniques to either verify that such
a property holds or to synthesise a controller for the model which makes
it true. Our approach is based on an integer discretisation of the model’s
dense-time behaviour and a grid-based abstraction of the uncountable
belief space induced by partial observability. The latter is necessarily
approximate since the underlying problem is undecidable, however we
show how both lower and upper bounds on numerical results can be gen-
erated. We illustrate the effectiveness of the approach by implementing
it in the PRISM model checker and applying it to several case studies,
from the domains of computer security and task scheduling.

1 Introduction

Guaranteeing the correctness of complex computerised systems often needs to
take into account quantitative aspects of system behaviour. This includes the
modelling of probabilistic phenomena, such as failure rates for physical compo-
nents, uncertainty arising from unreliable sensing of a continuous environment,
or the explicit use of randomisation to break symmetry. It also includes real-time
characteristics, such as time-outs or delays in communication or security proto-
cols. To further complicate matters, such systems are often nondeterministic
because their behaviour depends on inputs or instructions from some external
entity such as a controller or scheduler.

Automated verification techniques such as probabilistic model checking have
been successfully used to analyse quantitative properties of probabilistic, real-
time systems across a variety of application domains, including wireless com-
munication protocols, computer security and task scheduling. These systems
are commonly modelled using Markov decision processes (MDPs), if assuming
c© Springer International Publishing Switzerland 2015
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a discrete notion of time, or probabilistic timed automata (PTAs), if using a
dense model of time. On these models, we can consider two problems: verifi-
cation that it satisfies some formally specified property for any possible reso-
lution of nondeterminism; or, dually, synthesis of a controller (i.e., a means to
resolve nondeterminism) under which a property is guaranteed. For either case,
an important consideration is the extent to which the system’s state is observ-
able to the entity controlling it. For example, to verify that a security protocol
is functioning correctly, it may be essential to model the fact that some data
held by a participant is not externally visible, or, when synthesising a controller
for a robot, the controller may not be implementable in practice if it bases its
decisions on information that cannot be physically observed.

Partially observable MDPs (POMDPs) are a natural way to extend MDPs in
order to tackle this problem. However, the analysis of POMDPs is considerably
more difficult than MDPs since key problems are undecidable [24]. A variety of
verification problems have been studied for these models (see e.g., [1,3,11]) and
the use of POMDPs is common in fields such as AI and planning [8], but there
is limited progress in the development of practical techniques for probabilistic
verification in this area, or exploration of their applicability.

In this paper, we present novel techniques for verification and control of prob-
abilistic real-time systems under partial observability. We propose a model called
partially observable probabilistic timed automata (POPTAs), which extends the
existing model of PTAs with a notion of partial observability. The semantics of
a POPTA is an infinite-state POMDP. We then define a temporal logic, based
on [27], to express properties of POPTAs relating to the probability of an event
or the expected value of various reward measures. Nondeterminism in a POPTA
is resolved by a strategy that decides which actions to take and when to take
them, based only on the history of observations (not states). The core problems
we address are how to verify that a temporal logic property holds for all possible
strategies, and how to synthesise a strategy under which the property holds.

In order to achieve this, we use a combination of techniques. First, we develop
a digital clocks discretisation for POPTAs, which extends the existing notion for
PTAs [20], and reduces the analysis to a finite POMDP. We define the conditions
under which properties in our temporal logic are preserved and prove the cor-
rectness of the reduction. To analyse the resulting POMDP, we use grid-based
techniques [23,29], which transform it to a fully observable but continuous-space
MDP and then approximate its solution based on a finite set of grid points. We
use this to construct and solve a strategy for the POMDP. The result is a pair
of lower and upper bounds on the property of interest for the original POPTA.
If the results are not precise enough, we can refine the grid and repeat.

We implemented these methods in a prototype tool based on PRISM [19], and
investigated their applicability by developing three case studies: a non-repudiation
protocol, a task scheduling problem and a covert channel prevention device (the
NRL pump). Despite the complexity of POMDP solution methods, we show that
useful results can be obtained, often with precise bounds. In each case study,
nondeterminism, probability, real-time behaviour and partial observability are all
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crucial ingredients to the analysis, a combination not supported by any existing
techniques or tools.

Related Work. POMDPs are common in fields such as AI and planning, and
have many applications [8]. They have also been studied in the verification com-
munity, e.g. [1,3,11], establishing undecidability and complexity results for var-
ious qualitative and quantitative verification problems. Work in this area often
also studies related models such as Rabin’s probabilistic automata [3], which
can be seen as a special case of POMDPs, and partially observable stochas-
tic games (POSGs) [12], which generalise them. More practically oriented work
includes: [15], which proposes a counterexample-driven refinement method to
approximately solve MDPs in which components have partial observability of
each other; and [10], which synthesises concurrent program constructs, using a
search over memoryless strategies in a POSG. Theoretical results [6] and algo-
rithms [9,14] have been developed for synthesis of partially observable timed
games. In [6], it is shown that the synthesis problem is undecidable and, if the
resources of the controller are fixed, decidable but prohibitively expensive. The
algorithms require constraints on controllers: in [9], controllers only respond to
changes made by the environment and, in [14], their structure must be fixed in
advance. We are not aware of any work for probabilistic real-time models.

An extended version of this paper, with proofs, is available as [26].

2 Partially Observable Markov Decision Processes

We begin with background material on MDPs and POMDPs. Let Dist(X) denote
the set of discrete probability distributions over a set X, δx the distribution that
selects x ∈ X with probability 1, and R the set of non-negative real numbers.

Definition 1 (MDP). An MDP is a tuple M=(S, s̄, A, P,R) where: S is a set
of states; s̄ ∈ S an initial state; A a set of actions; P : S×A → Dist(S) a
(partial) probabilistic transition function; and R : S×A → R a reward function.

Each state s of an MDP M has a set A(s) def= {a ∈ A | P (s, a) is defined} of
enabled actions. If action a ∈ A(s) is selected, then the probability of moving to
state s′ is P (s, a)(s′) and a reward of R(s, a) is accumulated in doing so. A path
of M is a finite or infinite sequence ω = s0a0s1a1 · · · , where si ∈ S, ai ∈ A(si)
and P (si, ai)(si+1)>0 for all i ∈ N. We write FPathsM and IPathsM, respectively,
for the set of all finite and infinite paths of M starting in the initial state s̄.

A strategy of M (also called a policy or scheduler) is a way of resolving the
choice of action in each state, based on the MDP’s execution so far.

Definition 2 (Strategy). A strategy of an MDP M=(S, s̄, A, P,R) is a func-
tion σ : FPathsM→Dist(A) such that σ(s0a0s1 . . . sn)(a)>0 only if a ∈ A(sn).

A strategy is memoryless if its choices only depend on the current state, finite-
memory if it suffices to switch between a finite set of modes and deterministic
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if it always selects an action with probability 1. The set of strategies of M is
denoted by ΣM.

When M is under the control of a strategy σ, the resulting behaviour is
captured by a probability measure Prσ

M over the infinite paths of M [18].

POMDPs. POMDPs extend MDPs by restricting the extent to which their
current state can be observed, in particular by strategies that control them. In
this paper (as in, e.g., [3,11]), we adopt the following notion of observability.

Definition 3 (POMDP). A POMDP is a tuple M=(S, s̄, A, P,R,O, obs)
where: (S, s̄, A, P,R) is an MDP; O is a finite set of observations; and obs :
S → O is a labelling of states with observations. For any states s, s′ ∈ S with
obs(s)=obs(s′), their enabled actions must be identical, i.e., A(s)=A(s′).

The current state s of a POMDP cannot be directly determined, only the corre-
sponding observation obs(s) ∈ O. More general notions of observations are some-
time used, e.g., that depend also on the previous action taken or are probabilistic.
Our analysis of probabilistic verification case studies where partial observation
is needed (see, e.g., Sec. 5) suggests that this simpler notion of observability
will often suffice in practice. To ease presentation, we assume the initial state is
observable, i.e., there exists ō ∈ O such that obs(s)=ō if and only if s=s̄.

The notions of paths, strategies and probability measures given above for
MDPs transfer directly to POMDPs. However, the set ΣM of all strategies for
a POMDP M only includes observation-based strategies, that is, strategies σ
such that, for any paths π = s0a0s1 . . . sn and π′ = s′

0a0
′s′

1 . . . s′
n satisfying

obs(si) = obs(s′
i) and ai = a′

i for all i, we have σ(π) = σ(π′).
Key properties for a POMDP (or MDP) are the probability of reaching a

target, and the expected reward cumulated until this occurs. Let O denote the
target (e.g., a set of observations of a POMDP). Under a specific strategy σ, we
denote these two properties by Prσ

M(FO) and E
σ
M(FO), respectively.

Usually, we are interested in the optimal (minimum or maximum) values
Propt

M (FO) and E
opt
M (FO), where opt ∈ {min,max}. For a MDP or POMDP M:

Prmin
M (FO) def= infσ∈ΣM

Prσ
M(FO) E

min
M (FO) def= infσ∈ΣM

E
σ
M(FO)

Prmax
M (FO) def= supσ∈ΣM

Prσ
M(FO) E

max
M (FO) def= supσ∈ΣM

E
σ
M(FO)

Beliefs. For POMDPs, determining the optimal probabilities and expected
rewards defined above is undecidable [24], making exact solution intractable. A
useful construction, e.g., as a basis of approximate solutions, is the translation
from a POMDP M to a belief MDP B(M), an equivalent (fully observable) MDP,
whose (continuous) state space comprises beliefs, which are probability distribu-
tions over the state space of M. Intuitively, although we may not know which of
several observationally-equivalent states we are currently in, we can determine
the likelihood of being in each one, based on the probabilistic behaviour of M.
A formal definition is given below.

Definition 4 (Belief MDP). Let M=(S, s̄, A, P,R,O, obs) be a POMDP. The
belief MDP of M is given by B(M)=(Dist(S), δs̄, A, PB, RB) where, for any beliefs
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b, b′ ∈ Dist(S) and action a ∈ A:

PB(b, a)(b′) =
∑

s∈S b(s) ·
(∑

o∈O∧ba,o=b′
∑

s′∈S∧obs(s′)=o P (s, a)(s′)
)

RB(b, a) =
∑

s∈S R(s, a) · b(s)

and ba,o is the belief reached from b by performing a and observing o, i.e.:

ba,o(s′) =

{ ∑
s∈S P (s,a)(s′)·b(s)

∑
s∈S b(s)·(∑s′′∈S∧obs(s′′)=o P (s,a)(s′′)) if obs(s′)=o

0 otherwise.

The optimal values for the belief MDP equal those for the POMDP, e.g. we have:

Prmax
M (FO) = Prmax

B(M)(FTO) and E
max
M (FO) = E

max
B(M)(FTO)

where TO = {b ∈ Dist(S) | ∀s ∈ S. (b(s)>0 → obs(s) ∈ O)}.

3 Partially Observable Probabilistic Timed Automata

In this section, we define partially observable probabilistic timed automata (POP-
TAs), which generalise the existing model of probabilistic timed automata
(PTAs) with the notion of partial observability from POMDPs explained in
Sec. 2. We define the syntax of a POPTA, explain its semantics (as an infinite-
state POMDP) and define and discuss the digital clocks semantics of a POPTA.

Time and Clocks. As in classical timed automata [2], we model real-time
behaviour using non-negative, real-valued variables called clocks, whose values
increase at the same rate as real time. Assuming a finite set of clocks X , a clock
valuation v is a function v : X→R and we write R

X for the set of all clock
valuations. Clock valuations obtained from v by incrementing all clocks by a
delay t ∈ R and by resetting a set X ⊆ X of clocks to zero are denoted v+t and
v[X:=0], respectively, and we write 0 if all clocks are 0. A (closed, diagonal-free)
clock constraint ζ is either a conjunction of inequalities of the form x�c or x�c,
where x ∈ X and c ∈ N, or true. We write v |= ζ if clock valuation v satisfies
clock constraint ζ and use CC (X ) for the set of all clock constraints over X .

Syntax of POPTAs. To explain the syntax of POPTAs, we first consider the
simpler model of PTAs and then show how it extends to POPTAs.

Definition 5 (PTA syntax). A PTA is a tuple P=(L, l,X ,A, inv , enab, prob, r)
where:
– L is a finite set of locations and l ∈ L is an initial location;
– X is a finite set of clocks and A is a finite set of actions;
– inv : L → CC (X ) is an invariant condition;
– enab : L×A → CC (X ) is an enabling condition;
– prob : L×A → Dist(2X ×L) is a probabilistic transition function;
– r=(rL, rA) is a reward structure where rL : L → R is a location reward

function and rA : L×A → R is an action reward function.
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A state of a PTA is a pair (l, v) of location l ∈ L and clock valuation v ∈
R

X . Time t ∈ R can elapse in the state only if the invariant inv(l) remains
continuously satisfied while time passes and the new state is then (l, v+t). An
action a is enabled in the state if v satisfies enab(l, a) and, if it is taken, then
the PTA moves to location l′ and resets the clocks X ⊆ X with probability
prob(l, a)(X, l′). PTAs have two kinds of rewards: location rewards, which are
accumulated at rate rL(l) while in location l and action rewards rA(l, a), which
are accumulated when taking action a in location l. PTAs equipped with reward
structures are a probabilistic extension of linearly-priced timed automata [5].

Definition 6 (POPTA syntax). A partially observable PTA (POPTA) is a
tuple P = (L, l,X ,A, inv , enab, prob, r,OL, obsL) where:
– (L, l,X ,A, inv , enab, prob, r) is a PTA;
– OL is a finite set of observations;
– obsL : L → OL is a location observation function.

For any locations l, l′ ∈ L with obsL(l)=obsL(l′), we require that inv(l)=inv(l′)
and enab(l, a)=enab(l′, a) for all a ∈ A.

The final condition ensures the semantics of a POPTA yields a valid POMDP:
recall states with the same observation are required to have identical available
actions. Like for POMDPs, for simplicity, we also assume that the initial location
is observable, i.e., there exists ō ∈ OL such that obsL(l)=ō if and only if l=l.

The notion of observability for POPTAs is similar to the one for POMDPs,
but applied to locations. Clocks, on the other hand, are always observable. The
requirement that the same choices must be available in any observationally-
equivalent states, implies the same delays must be available in observationally-
equivalent states, and so unobservable clocks could not feature in invariant or
enabling conditions. The inclusion of unobservable clocks would therefore neces-
sitate modelling the system as a game with the elapse of time being under the
control of a second (environment) player. The underlying semantic model would
then be a partially observable stochastic game (POSG), rather than a POMDP.
However, unlike POMDPs, limited progress has been made on efficient compu-
tational techniques for this model (belief space based techniques, for example,
do not apply in general [12]). Even in the simpler case of non-probabilistic timed
games, allowing unobservable clocks requires algorithmic analysis to restrict the
class of strategies considered [9,14].

Encouragingly, however, we will later show in Sec. 5 that POPTAs with
observable clocks were always sufficient for our modelling and analysis.

Restrictions on POPTAs. At this point, we need to highlight a few syntactic
restrictions on the POPTAs treated in this paper. Firstly, we emphasise that
clock constraints appearing in a POPTA, i.e., in its invariants and enabling
conditions, are required to be closed (no strict inequalities) and diagonal-free
(no comparisons of clocks). This is a standard restriction when using the digital
clocks discretisation [20] which we work with in this paper.

Secondly, a specific (but minor) restriction for POPTAs is that resets can only
be applied to clocks that are non-zero. The reasoning behind this is outlined later
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Fig. 1. Examples of partially observable PTAs (see Examples 1 and 2).

in Example 2. Checking this restriction can easily be done when exploring the
discrete (digital clocks) semantics of the model – see below and Sec. 4.

Semantics of POPTAs. We now formally define the semantics of a POPTA P,
which is given in terms of an infinite-state POMDP. This extends the standard
semantics of a PTA [27] (as an infinite MDP) with the same notion of observ-
ability we gave in Sec. 2 for POMDPs. The semantics, [[P]]T, is parameterised by
a time domain T, giving the possible values taken by clocks. For the standard
(dense-time) semantics of a POPTA, we take T = R. Later, when we discretise
the model, we will re-use this definition, taking T = N. When referring to the
“standard” semantics of P we will often drop the subscript R and write [[P]].

Definition 7 (POPTA semantics). Let P=(L, l,X ,A, inv , enab, prob, r,OL,
obsL) be a POPTA. The semantics of P, with respect to the time domain T, is
the POMDP [[P]]T=(S, s̄,A ∪ T, P,R,OL×T

X , obs) such that:
– S = {(l, v) ∈ L×T

X | v |= inv(l)} and s̄ = (l,0);
– for (l, v) ∈ S and a ∈ A ∪ T, we have P ((l, v), a) = μ if and only if:

• (time transitions) a ∈ T, μ = δ(l,v+a) and v+t |= inv(l) for all 0�t�a;
• (action transition) a ∈ A, v |= enab(l, a) and for (l′, v′) ∈ S:

μ(l′, v′) =
∑

X⊆X∧v′=v[X:=0] prob(l, a)(X, l′)

– for any (l, v) ∈ S and a ∈ A ∪ T, we have R((l, v), a) =
{

rL(l)·a if a ∈ T

rA(l, a) if a ∈ A
– for any (l, v) ∈ S, we have obs(l, v) = (obsL(l), v).

Example 1. Consider the POPTA in Fig. 1(a) with clocks x, y. Locations are
grouped according to their observations, and we omit enabling conditions equal
to true. We aim to maximise the probability of observing o5. If locations were
fully observable, we would leave l when x=y=1 and then, depending on whether
the random choice resulted in a transition to l1 or l2, wait 0 or 1 time units, respec-
tively, before leaving the location. This would allow us to move immediately from
l3 or l4 to l5, meaning observation o5 is seen with probability 1. However, in the
POPTA, we need to make the same choice in l1 and l2 since they yield the same
observation. As a result, at most one of the transitions leaving locations l3 and l4
is enabled, and the probability of observing o5 is thus at most 0.5.
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Digital Clocks. Since the semantics of a POPTA (like for a PTA) is an infinite-
state model, for algorithmic analysis, we first need to construct a finite represen-
tation. In this paper, we propose to use the digital clocks approach, generalising
a technique already used for PTAs [20], which in turn adapts one for timed
automata [16]. In short, this approach discretises a POPTA model by trans-
forming its real-valued clocks to clocks taking values from a bounded set of
integers.

For clock x ∈ X , let kx denote the greatest constant to which x is compared
in the clock constraints of POPTA P. If the value of x exceeds kx, its exact value
will not affect the satisfaction of any invariants or enabling conditions, and thus
not affect the behaviour of P. The digital clocks semantics, written [[P]]N, can be
obtained from Defn. 7, taking T to be N instead of R. We also need to redefine
the operation v+t, which now adds a delay t ∈ N to a clock valuation v ∈ N

X :
we say that v+t assigns the value min{v(x)+t,kx+1} to each clock x ∈ X .

Under the restrictions on POPTAs described above, the digital semantics of
a POPTA preserves the key properties required in this paper, namely optimal
probabilities and expected cumulative rewards for reaching a specified observa-
tion. This is captured by the following theorem (the proof is available in [26]).

Theorem 1. If P is a closed, diagonal-free POPTA which resets only non-zero
clocks, then, for any set of observations O of P and opt ∈ {min,max}, we have:

Propt
[[P]]R

(FO) = Propt
[[P]]N

(FO) and E
opt
[[P]]R

(FO) = E
opt
[[P]]N

(FO).

The proof relies on showing probabilistic and expected reward values agree on the
belief MDPs underlying the POMDPs representing the dense time and digital
clocks semantics. This requires introducing the concept of a belief PTA for a
POPTA (analogous to a belief MDP for a POMDP) and results for PTAs [20].

Example 2. The POPTA P in Fig. 1(b) demonstrates why our digital clocks
approach (Thm. 1) is restricted to POPTAs which reset only non-zero clocks. We
aim to minimise the expected reward accumulated before observing o3 (rewards
are shown in Fig. 1(b) and are zero if omitted). If locations were fully observable,
the minimum reward would be 0, achieved by leaving l immediately and then
choosing a1 in l1 and a2 in l2. However, if we leave l immediately, l1 and l2
are indistinguishable (we observe (o1,2, (0)) when arriving in both), so we must
choose the same action in these locations, and hence the expected reward is 0.5.

Consider the strategy that waits ε ∈ (0, 1) before leaving l, accumulating a
reward of ε. This is possible only in the dense-time semantics. We then observe
either (o1,2, (ε)) in l1, or (o1,2, (0)) in l2. Thus, we see if x was reset, determine if
we are in l1 or l2, and take action a1 or a2 accordingly such that no further reward
is accumulated before seeing o3, for a total reward of ε. Since ε can be arbitrarily
small, the minimum (infimum) expected reward for [[P]]R is 0. However, for the
digital clocks semantics, we can only choose a delay of 0 or 1 in l. For the former,
the expected reward is 0.5, as described above; for the latter, we can again pick
a1 or a2 based on whether x was reset, for a total expected reward of 1. Hence
the minimum expected reward for [[P]]N is 0.5, as opposed to 0 for [[P]]R.
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4 Verification and Strategy Synthesis for POPTAs

We now present our approach for verification and strategy synthesis for POPTAs
using the digital clock semantics given in the previous section.

Property Specification. First, we define a temporal logic for the formal spec-
ification of quantitative properties of POPTAs. This is based on a subset (we
omit temporal operator nesting) of the logic presented in [27] for PTAs.

Definition 8 (Properties). The syntax of our logic is given by the grammar:

φ ::= P��p[ψ]
∣∣ R��q[ρ] ψ ::= α U�t α

∣∣ α Uα

α ::= true
∣∣ o

∣∣ ¬o
∣∣ ζ

∣∣ α ∧ α
∣∣ α ∨ α ρ ::= I=t

∣∣ C�t
∣∣ Fα

where o is an observation, ζ is a clock constraint, � ∈ {�, <,�, >}, p ∈ Q∩[0, 1],
q ∈ Q�0 and t ∈ N.

A property φ is an instance of either the probabilistic operator P or the expected
reward operator R. As for similar logics, P��p[ψ] means the probability of path
formula ψ being satisfied is �p, and R��q[ρ] the expected value of reward operator
ρ is �q. For the probabilistic operator, we allow time-bounded (α U�t α) and
unbounded (α Uα) until formulas, and adopt the usual equivalences such as
Fα ≡ true Uα (“eventually α”). For the reward operator, we allow I=t (location
reward at time instant t), C�t (reward accumulated until time t) and Fα (the
reward accumulated until α becomes true). Our propositional formulas (α) are
Boolean combinations of observations and clock constraints.

We omit nesting of P and R operators for two reasons: firstly, the digital clocks
approach that we used to discretise time is not applicable to nested properties
(see [20] for details); and secondly, it allows us to use a consistent property
specification for either verification or strategy synthesis problems (the latter is
considerably more difficult in the context of nested formulas [4]).

Definition 9 (Property semantics). Let P be a POPTA with location obser-
vation function obsL and semantics [[P]]. We define satisfaction of a property φ
from Defn. 8 with respect to a strategy σ ∈ Σ[[P]] as follows:

[[P]], σ |= P��p[ψ ] ⇐⇒ Prσ
[[P]]({ω ∈ IPaths [[P]] | ω |=ψ}) � p

[[P]], σ |= R ��q[ ρ ] ⇐⇒ E
σ
[[P]](rew (ρ)) � q

Satisfaction of a path formula ψ by path ω, denoted ω |= ψ and the random
variable rew (ρ) for a reward operator ρ are defined identically as for PTAs. Due
to lack of space, we omit their formal definition here and refer the reader to [27].
For a propositional formula α and state s = (l, v) of [[P]], we have s |= o if and
only if obsL(l)=o and s |= ζ if and only if v |= ζ. Boolean operators are standard.

Verification and Strategy Synthesis. Given a POPTA P and property φ, we
are interested in solving the dual problems of verification and strategy synthesis.
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Definition 10 (Verification). The verification problem is: given a POPTA P
and property φ, decide if [[P]],σ |= φ holds for all strategies σ∈Σ[[P]].

Definition 11 (Strategy synthesis). The strategy synthesis problem is: given
POPTA P and property φ, find, if it exists, a strategy σ∈Σ[[P]] such that [[P]],σ |= φ.

The verification and strategy synthesis problems for φ can be solved similarly, by
computing optimal values for either probability or expected reward objectives:

Prmin
[[P]] (ψ) = infσ∈Σ[[P]] Pr

σ
[[P]](ψ) E

min
[[P]] (ρ) = infσ∈Σ[[P]] E

σ
[[P]](ρ)

Prmax
[[P]] (ψ) = supσ∈Σ[[P]]

Prσ
[[P]](ψ) E

max
[[P]] (ρ) = supσ∈Σ[[P]]

E
σ
[[P]](ρ)

and, where required, also synthesising an optimal strategy. For example, verifying
φ=P�p[ψ ] requires computation of Prmin

[[P]] (ψ) since φ is satisfied by all strategies
if and only if Prmin

[[P]] (ψ)�p. Dually, consider synthesising a strategy for which
φ′=P�p[ψ ] holds. Such a strategy exists if and only if Prmin

[[P]] (ψ)�p and, if it does,
we can use the optimal strategy that achieves the minimum value. A common
practice in probabilistic verification to simply query the optimal values directly,
using numerical properties such as Pmin=?[ψ ] and R max=?[ ρ ].

As mentioned earlier, when solving POPTAs (or POMDPs), we may only be
able to under- and over-approximate optimal values, which requires adapting the
processes sketched above. For example, if we have determined lower and upper
bounds p� � Prmin

[[P]] (ψ) � p�. We can verify that φ=P�p[ψ ] holds if p� � p or
ascertain that φ does not hold if p � p�. But, if p� < p < p�, we need to refine our
approximation to produce tighter bounds. An analogous process can be followed
for the case of strategy synthesis. The remainder of this section therefore focuses
on how to (approximately) compute optimal values and strategies for POPTAs.

Numerical Computation Algorithms. Approximate numerical computation
of either optimal probabilities or expected reward values on a POPTA P is per-
formed with the sequence of steps given below, each of which is described in more
detail subsequently. We compute both an under- and an over-approximation. For
the former, we also generate a strategy which achieves this value.

(A) We modify POPTA P, reducing the problem to computing optimal values
for a probabilistic reachability or expected cumulative reward property [27];

(B) We apply the digital clocks discretisation of Sec. 3 to reduce the infinite-state
semantics [[P]]R of P to a finite-state POMDP [[P]]N;

(C) We build and solve a finite abstraction of the (infinite-state) belief MDP
B([[P]]N) of the POMDP from (B), yielding an over-approximation;

(D) We synthesise and analyse a strategy for [[P]]N, giving an under-
approximation;

(E) If required, we refine the abstraction’s precision and repeat (C) and (D).

(A) Property Reduction. As discussed in [27] (for PTAs), checking P or R
properties of the logic of Defn. 8 can always be reduced to checking either a prob-
abilistic reachability (P��p[Fα]) or expected cumulative reward (R��q[Fα]) prop-
erty on a modified model. For example, time-bounded probabilistic reachability
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(P��p[F�t α]) can be transformed into probabilistic reachability (P��p[F (α∧y�t)])
where y is a new clock added to the model. We refer to [27] for full details.

(B) Digital Clocks. We showed in Sec. 3 that, assuming certain simple restric-
tions on the POPTA P, we can construct a finite POMDP [[P]]N representing P by
treating clocks as bounded integer variables. The translation itself is relatively
straightforward, involving a syntactic translation of the PTA (to convert clocks),
followed by a systematic exploration of its finite state space. At this point, we
also check satisfaction of the restrictions on POPTAs described in Sec. 3.

(C) Over-approximation. We now solve the finite POMDP [[P]]N. For simplic-
ity, here and below, we describe the case of maximum reachability probabilities
(the other cases are very similar) and thus need to compute Prmax

[[P]]
N

(FO). We first
compute an over-approximation, i.e. an upper bound on the maximum probabil-
ity. This is computed from an approximate solution to the belief MDP B([[P]]N),
whose construction we outlined in Sec. 2. This MDP has a continuous state
space: the set of beliefs Dist(S), where S is the state space of [[P]]N.

To approximate its solution, we adopt the approach of [29] which computes
values for a finite set of representative beliefs G whose convex hull is Dist(S).
Value iteration is applied to the belief MDP, using the computed values for beliefs
in G and interpolating to get values for those not in G. The resulting values give
the required upper bound. We use [29] as it works with unbounded (infinite hori-
zon) and undiscounted properties. There are many other similar approaches [28],
but these are formulated for discounted or finite-horizon properties.

The representative beliefs can be chosen in a variety of ways. We follow [23],
where G = { 1

M v | v ∈ N
|S| ∧ ∑|S|

i=1 v(i)=M}, i.e. a uniform grid with resolution
M . A benefit is that interpolation is very efficient, using a process called trian-
gulation [13]. A downside is that the grid size is exponential M .

(D) Under-Approximation. Since it is preferable to have two-sided bounds,
we also compute an under-approximation: here, a lower bound on Prmax

[[P]]
N

(FO).
To do so, we first synthesise a finite-memory strategy σ∗ for [[P]]N (which is often
a required output anyway). The choices of this strategy are built by stepping
through the belief MDP and, for the current belief, choosing an action that
achieves the values returned by value iteration in (C) above – see for example [28].
We then compute, by building and solving the finite Markov chain induced by
[[P]]N and σ∗, the value Prσ∗

[[P]]
N

(FO) which is a lower bound for Prmax
[[P]]

N

(FO).

(E) Refinement. Finally, although no a priori bound can be given on the error
between the generated under- and over-approximations (recall that the basic
problem is undecidable), asymptotic convergence of the grid based approach is
guaranteed [29]. In practice, if the computed approximations do not suffice to
verify the required property (or, for strategy synthesis, σ∗ does not satisfy the
property), then we increase the grid resolution M and repeat steps (C) and (D).
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5 Implementation and Case Studies

We have built a prototype tool for verification and strategy synthesis of POPTAs
and POMDPs as an extension of PRISM [19]. We extended the existing modelling
language for PTAs, to allow model variables to be specified as observable or hid-
den. The tool performs the steps outlined in Sec. 4, computing a pair of bounds
for a given property and synthesising a corresponding strategy. We focus on POP-
TAs, but the tool can also analyse POMDPs directly. The software, details of all
case studies, parameters and properties are available online at:

http://www.prismmodelchecker.org/files/formats15poptas/

We have developed three case studies to evaluate the tool and techniques, dis-
cussed in more detail below. In each case, nondeterminism, probability, real-time
behaviour and partial observability are all essential aspects required for analysis.

The NRL Pump. The NRL (Naval Research Laboratory) pump [17] is designed
to provide reliable and secure communication over networks of nodes with ‘high’
and ‘low’ security levels. It prevents a covert channel leaking information from
‘high’ to ‘low’ through the timing of messages and acknowledgements. Com-
munication is buffered and probabilistic delays are added to acknowledgements
from ‘high’ in such a way that the potential for information leakage is minimised,
while maintaining network performance. A PTA model is considered in [21].

We model the pump as a POPTA using a hidden variable for a secret value
z ∈ {0, 1} (initially set uniformly at random) which ‘high’ tries to covertly com-
municate to ‘low’. This communication is attempted by adding a delay of h0 or
h1, depending on the value of z, whenever sending an acknowledgement to ‘low’.
In the model, ‘low’ sends N messages to ‘high’ and tries to guess z based on the
time taken for its messages to be acknowledged. We consider the maximum prob-
ability ‘low’ can (either eventually or within some time frame) correctly guess
z. We also study the expected time to send all messages and acknowledgements.
These properties measure the security and performance aspects of the pump.
Results are presented in Fig. 2 varying h1 and N (we fix h0=2). They show that
increasing either the difference between h0 and h1 (i.e., increasing h1) or the
number N of messages sent improve the chance of ‘low’ correctly guessing the
secret z, at the cost of a decrease in network performance. On the other hand,
when h0=h1, however many messages are sent, ‘low’, as expected, learns nothing
of the value being sent and at best can guess correctly with probability 0.5.

Task-graph Scheduler. Secondly, we consider a task-graph scheduling problem
adapted from [7], where the goal is to minimise the time or energy consumption
required to evaluate an arithmetic expression on multiple processors with differ-
ent speeds and energy consumption. We extend both the basic model of [7] and
the extension from [27] which uses PTAs to model probabilistic task execution
times. A new ‘low power’ state to one processor, allowing it to save energy when
not in use, but which incurs a delay when waking up to execute a new task. This
state is entered with probability sleep after each task is completed. We assume
that the scheduler cannot observe whether the processor enters this lower power

http://www.prismmodelchecker.org/files/formats15poptas/
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Fig. 2. Analysing security/performance of the NRL pump: (a) Maximum probability
of covert channel success; (b) Maximum expected transmission time.

state, and hence the model is a POPTA. We generate optimal schedulers (min-
imising expected execution time or energy usage) using strategy synthesis.

Non-repudiation Protocol. Our third case study is a non-repudiation proto-
col for information transfer due to Markowitch & Roggeman [25]. It is designed
to allow an originator O to send information to a recipient R while guaran-
teeing non-repudiation, that is, neither party can deny having participated in
the information transfer. The initialisation step of the protocol requires O to
randomly select an integer N in the range 1, . . . , K that is never revealed to R
during execution. In previous analyses [22,27], modelling this step was not pos-
sible since no notion of (non-)observability was used. We resolve this by building
a POPTA model of the protocol including this step, thus matching Markowitch
& Roggeman’s original specification. In particular, we include a hidden variable
to store the random value N . We build two models: a basic one, where R’s only
malicious behaviour corresponds to stopping early; and a second, more complex
model, where R has access to a decoder. We compute the maximum probability
that R gains an unfair advantage (gains the information from O while being able
to deny participating). Our results (see Table 1) show that, for the basic model,
this probability equals 1/K and R is more powerful in the complex model.

Experimental Results. Table 1 summarises a representative set of experimen-
tal results from the analysis of our three case studies. All were run on a 2.8 GHz
PC with 8GB RAM. The table shows the parameters used for each model (see
the web page cited above for details), the property analysed and various statistics
from the analysis: the size of the POMDP obtained through the digital clocks
semantics; number of observations; number of hidden values (i.e., the maximum
number of states with the same observation); the grid size (resolution M and
total number of points); the time taken; and the results obtained. For compari-
son, in the rightmost column, we show what result is obtained if the POPTA is
treated as a PTA (by making everything observable).

On the whole, we find that the performance of our prototype is good, espe-
cially considering the complexity of the POMDP solution methods and the fact
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Table 1. Experimental results from verification/strategy synthesis of POPTAs.

Case study
(parameters)

Property
Verification/strategy synthesis of POPTA

PTA
result

States Num. Num. Res. Grid Time Result
([[P]]N) obs. hidd. (M) points (s) (bounds)

pump
(h1 N)

16 2
Pmax=?[F guess]

243 145 3 2 342 0.7 [0.940, 0.992] 1.0
16 2 243 145 3 40 4,845 4.0 [0.940, 0.941] 1.0
16 16 1,559 803 3 2 2,316 16.8 [0.999, 0.999] 1.0

pump
(h1 N D)

8 4 50

Pmax=?[F
�Dguess]

12,167 7,079 3 2 17,256 11.0 [0.753, 0.808] 1.0
8 4 50 12,167 7,079 3 12 68,201 36.2 [0.763, 0.764] 1.0
16 8 50 26,019 13,909 3 2 38,130 52.8 [0.501, 0.501] 1.0
16 8 100 59,287 31,743 3 2 86,832 284.8 [0.531, 0.532] 1.0

scheduler
basic

(sleep)

0.25
Rmin=?[F done]
(exec. time)

5,002 3,557 2 2 6,447 3.2 [14.69, 14.69] 14.44
0.5 5,002 3,557 2 2 6,447 3.1 [17.0, 17.0] 16.5
0.75 5,002 3,557 2 4 9,337 3.1 [19.25, 19.25] 18.5

scheduler
basic

(sleep)

0.25
Rmin=?[F done]
(energy cons.)

5,002 3,557 2 4 9,337 3.1 [1.335, 1.335] 1.237
0.5 5,002 3,557 2 2 6,447 3.1 [1.270, 1.270] 1.186
0.75 5,002 3,557 2 2 6,447 3.2 [1.204, 1.204] 1.155

scheduler
prob

(sleep)

0.25
Rmin=?[F done]
(exec. time)

6,987 5,381 2 2 8,593 5.8 [15.00, 15.00] 14.75
0.5 6,987 5,381 2 2 8,593 5.8 [17.27, 17.27] 16.77
0.75 6,987 5,381 2 4 11,805 5.0 [19.52, 19.52] 18.77

scheduler
prob

(sleep)

0.25
Rmin=?[F done]
(energy cons.)

6,987 5,381 2 4 11,805 5.3 [1.335, 1.335] 1.3
0.5 6,987 5,381 2 2 8,593 5.0 [1.269, 1.269] 1.185
0.75 6,987 5,381 2 2 8,593 5.8 [1.204, 1.204] 1.155

nrp
basic
(K)

4

Pmax=?[F unfair ]

365 194 5 8 5,734 0.8 [0.25, 0.281] 1.0
4 365 194 5 24 79,278 5.9 [0.25, 0.25] 1.0
8 1,273 398 9 4 23,435 4.8 [0.125, 0.375] 1.0
8 1,273 398 9 8 318,312 304.6 [0.125, 0.237] 1.0

nrp
complex

(K)

4

Pmax=?[F unfair ]

1,501 718 5 4 7,480 2.1 [0.438, 0.519] 1.0
4 1,501 718 5 12 72,748 14.8 [0.438, 0.438] 1.0
8 5,113 1,438 9 2 16,117 6.1 [0.344, 0.625] 1.0
8 5,113 1,438 9 4 103,939 47.1 [0.344, 0.520] 1.0

that we use a relatively simple grid mechanism. We are able to analyse POPTAs
whose integer semantics yields POMDPs of up to 60,000 states, with experi-
ments usually taking just a few seconds and, at worst, 5-6 minutes. These are, of
course, smaller than the standard PTA (or MDP) models that can be verified,
but we were still able to obtain useful results for several case studies.

The values in the rightmost column of Table 1 illustrate that the results
obtained with POPTAs would not have been possible using a PTA model, i.e.,
where all states of the model are observable. For the pump example, the PTA
gives probability 1 of guessing correctly (‘low’ can simply read the value of the
secret). For the scheduler example, the PTA model gives a scheduler with better
time/energy consumption but that cannot be implemented in practice since the
power state is not visible. For the nrp models, the PTA gives probability 1 of
unfairness as the recipient can read the random value the originator selects.

Another positive aspect is that, in many cases, the bounds generated are
very close (or even equal, in which case the results are exact). For the pump and
scheduler case studies, we included results for the smallest grid resolution M
required to ensure the difference between the bounds is at most 0.001. In many
cases, this is achieved with relatively small values (for the scheduler example, in
particular, M is at most 4). For nrp models, we were unable to do this when K=8
and instead include the results for the largest grid resolution for which POMDP
solution was possible: higher values could not be handled within the memory
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constraints of our test machine. We anticipate being able to improve this in the
future by adapting more advanced approximation methods for POMDPs [28].

6 Conclusions

We have proposed novel methods for verification and control of partially observ-
able probabilistic timed automata, using a temporal logic for probabilistic, real-
time properties and reward measures. We developed techniques based on a digital
clocks discretisation and a belief space approximation, then implemented them
in a tool and demonstrated their effectiveness on several case studies.

Future directions include more efficient approximation schemes, zone-based
implementations and development of the theory for unobservable clocks. Allow-
ing unobservable clocks, as mentioned previously, will require moving to partially
observable stochastic games and restricting the class of strategies.
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Abstract. Decidability results for hybrid automata often exploit subtle
properties about dimensionality (number of continuous variables), and
interaction between discrete transitions and continuous trajectories of
variables. Thus, the decidability results often do not carry over to parallel
compositions of hybrid automata, even when there is no communication
other than the implicit synchronization of time. In this paper, we show
that the reachability problem for concurrently running planar, monotonic
hybrid automata is decidable. Planar, monotonic hybrid automata are
a special class of linear hybrid automata with only two variables, whose
flows in all states are simultaneously monotonic along some direction in
the plane. The reachability problem is known to be decidable for this
class. Our concurrently running automata synchronize with respect to
a global clock, and through labeled discrete transitions. The proof of
decidability hinges on a new observation that the timed trace language of
a planar monotonic automaton can be recognized by a timed automaton,
and the decidability result follows from the decidability of composition of
timed automata. Our results identify a new decidable subclass of multi-
rate hybrid automata.

1 Introduction

Hybrid automata [6] model the interaction between a discrete controller and a
physical environment. Such automata have finitely many control locations, mod-
eling the state of the discrete controller, and real-valued variables that evolve
continuously with time, modeling the state of the physical environment. They
exhibit hybrid behavior where control location changes influence the values of
the real-valued variables and the physical laws governing their evolution. The
safety verification of such systems can often be reduced to the reachability prob-
lem, wherein one asks if a certain state/set of states can be reached during an
execution that starts from some initial state.

The reachability question for hybrid automata is in general undecidable [7], and
special classes of decidable hybrid automata have been identified [2–4,7,8,11,13].
Small variations to the decidable classes are known to make the reachability prob-
lem undecidable [1,3,7,10,13]. The reason for this is because the decidability
c© Springer International Publishing Switzerland 2015
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results exploit subtle properties about dimensionality (number of continuous vari-
ables in the hybrid automaton), and the interaction between the discrete transi-
tions and the continuous dynamics of the variables. One consequence of this is that
the reachability problem is often undecidable for parallel compositions of decidable
automata. This is true even when the concurrently running automata do not com-
municate other than the implicit synchronization of time [5].

In this paper, we show that the reachability problem is decidable for paral-
lel compositions of planar monotonic linear hybrid systems. Planar monotonic
linear hybrid systems are hybrid systems with the following restrictions — the
automaton has only two real-valued variables; the flows (continuous dynamics
with time) of the variables are given by linear functions, and all the constraints
describing the invariants, guards, and resets are linear functions; the flow in every
control location is monotonic in some direction on the plane and the variables
are reset on discrete transitions that either change this monotonic direction, or
are labeled through actions that are used for communication between automata.
The reachability problem for the subclass of the automata with no resets is
known to be decidable [11].

Our proof proceeds as follows. For a planar monotonic linear hybrid system
H, let us consider TReachH to be the set of triples (x, t, y) such that there is an
execution starting at x that reaches y at time t, and the variables are never reset
along this execution. Our first observation is that TReachH is expressible in the
first order theory of linear arithmetic. This requires us to adapt the decidability
proof for reachability presented in [11] to consider timed reachability and rep-
resentation in the theory of reals; the challenge in proving such an expressivity
result is that executions of such automata can have an unbounded number of
discrete transitions. One consequence of this is that the set of times at which
one can reach a polyhedron P2 when starting from a polyhedron P1 can also be
expressed in the theory of linear arithmetic. Since this theory is o-minimal [12],
this means that this set of times can be expressed as a finite union of inter-
vals. We use this conclusion to argue that the timed trace language of H (the
sequence of visible synchronizable actions along with the time when they hap-
pen) can be generated by a timed automaton. Hence the parallel composition of
planar monotonic linear hybrid automata is timed trace language equivalent to
the parallel composition of timed automata, which can be effectively constructed
from the component planar monotonic linear hybrid automata. Since the reacha-
bility question can be reduced to the emptiness of the timed trace language, our
decidability result follows from the fact that the emptiness of the timed trace
language of timed automata can be decided [2].

Our proof is inspired by ideas presented in [9] where a new decidability
proof for initialized rectangular hybrid automata is obtained by viewing such
an automaton as the parallel composition of 1-dimensional systems. Our proof
and the results in [9] suggest a method to lift decidability results for low dimen-
sional systems to higher dimensional systems. For example, one consequence of
our results is the identification of new decidable subclass of multi-rate automata
that we call phased multi-rate automata; reachability for the general class of
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multi-rate automata is known to be undecidable [7]. Our result is proved by
demonstrating that phased multi-rate automata can be seen as the parallel com-
position of planar monotonic linear hybrid systems.

2 Preliminaries

Notations. Q, R, and R≥0 are, respectively, the set of rational, real, and non-
negative real numbers. Given u ∈ R

n, we use ui to denote the i-th component of
u. Given u ∈ R

n and v ∈ R
m, we use u◦v to denote the concatenation of u with v

in R
n+m. Given two sets U ⊆ R

n and V ⊆ R
m, U◦V = {u◦v |u ∈ U,v ∈ V }. For

any two functions f1 ∈ [A1 → R
n] and f2 ∈ [A2 → R

m], their Cartesian product
f1 × f2 maps (a1, a2) to f1(a1) ◦ f2(a2). For any two functions f1 ∈ [A1 → 2R

n

]
and f2 ∈ [A2 → 2R

m

], f1 ⊗ f2 maps (a1, a2) to f1(a1) ◦ f2(a2). Given a function
f ∈ [A → B] and A′ ⊆ A, we denote the restriction of f to A′ by f [A′] and the
image of A′ under f , that is, {f(a) | a ∈ A′}, by f(A′). Finally, idA denotes the
identity function on A.

Polyhedral Sets. Let Poly(Rn), OpenPoly(Rn) and BOpenPoly(Rn), respectively,
denote the set of all polyhedral sets, open polyhedral sets and bounded open
polyhedral sets in R

n. We refer to R
2 as the plane, and any polyhedral set in R

2

is called a planar polyhedral set. Recall that a polyhedral set P is the set of all
points x satisfying a finite set of linear constraints {u1 · x+ b1 �1 0, . . . ,uk · x+
bk �k 0}. where �i ∈ {<,≤}, ui ∈ R

n and bi ∈ R. When the polyhedral set P
is planar, we denote the lines corresponding to the constraints ui · x+ bi = 0 as
Lines(P ).

An n-dimensional rectangular set is a polyhedral set which can be expressed
as the cross product of intervals I1 × . . .× In. The set of all rectangular sets and
open rectangular sets of dimension n are denoted as Rect(Rn) and OpenRect(Rn),
respectively. In addition, PBOpenRect(Rn) is the set of all partially bounded
rectangular sets, that is, rectangular sets I1 × . . . × In, where for every i ∈
{1, . . . n}, either Ii = (−∞,∞) or Ii is bounded.

3 Linear Hybrid Systems

Hybrid automata [6] are a popular formalism for modeling systems with mixed
discrete continuous behaviors. The discrete behavior is captured by a finite state
automaton, and the continuous behavior is captured by a finite set of continu-
ously evolving variables.

Definition 1. A linear hybrid system or a linear hybrid automaton H, is a
tuple (Loc, dim,Act, Inv,Flow,Edge, Init,Final), where
– Loc is a finite non-empty set of (discrete) locations.
– dim is the dimension of the hybrid system H and represents the number of

continuous variables of the system. R
dim is referred to as the continuous

state-space.
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– Act is a finite non-empty set of actions which does not contain a special
symbol τ or the elements of R≥0.

– Inv ∈ [
Loc → Poly

(
R

dim
)]

maps each location q to a polyhedral set as the
invariant of q.

– Flow ∈ [
Loc → Q

dim
]

maps each location q to a vector as the flow in q.
– Edge ⊆ Loc × Loc × (Act ∪ {τ}) × Poly

(
R

2dim
)

is a finite set of edges. Each
e ∈ Edge is a tuple (q1, q2, l, r) where

• q1 ∈ Loc is the source of e.
• q2 ∈ Loc is the destination of e.
• l ∈ Act ∪ {τ} is the label of e.
• r ∈ Poly

(
R

2dim
)

is the reset of e and captures a binary relation on the
continuous state-space.

An edge labelled by an element of Act is called a visible edge, and that labelled
by τ is called an invisible or a silent edge. We denote the different elements
of e by Src(e), Dest(e), Lab(e), and Reset(e), respectively.

– Init ∈ [
Loc → Poly

(
R

dim
)]

maps each location q to a polyhedral set repre-
senting the initial continuous states in q.

– Final ∈ [
Loc → Poly

(
R

dim
)]

maps each location q to a polyhedral set repre-
senting the final continuous states in q.

We require that for all q ∈ Loc, Init(q) ⊆ Inv(q) and Final(q) ⊆ Inv(q).

We denote the different elements of Hη respectively by Locη, dimη, Actη, Invη,
Flowη, Edgeη, Initη and Finalη. From now on, a hybrid system will refer to
a linear hybrid system. Finally, we require that all constants used in H are
rationals.

3.1 Semantics

An execution of a hybrid system H starts in an initial state (p,u), where u ∈
Init(p), and evolves through a sequence of continuous and discrete transitions. In
any state (q,v), a continuous transition corresponds to a continuous evolution
of v using the rate Flow(q) while remaining within the invariant Inv(q); the
location q does not change. On the other hand, a discrete transition from a state
(q,v) to a state (q′,v′) labelled by l is allowed if there is an edge (q, q′, l, r)
such that (v,v′) ∈ r. Formally, the semantics of a linear hybrid system H is
defined by the transition system �H� = (S,Sin,Sfin,→), where S = Loc × R

n is
the set of states, Sin = {(q,v) | q ∈ Loc,v ∈ Init(q)} is the set of initial states,
and Sfin = {(q,v) | q ∈ Loc,v ∈ Final(q)} is the set of final states (note that
Sin,Sfin ⊆ S). Finally, →⊆ S × (Act ∪ {τ} ∪ R≥0) × S is the union of discrete

and continuous transitions that are defined as follows (we use s
l→ s′ to denote

(s, l, s′) ∈→):

– Discrete: (q,v) l→ (q′,v′) if v ∈ Inv(q), v′ ∈ Inv(q′), and there exists e ∈
Edge such that q = Src(e), q′ = Dest(e), l = Lab(e), and (v,v′) ∈ Reset(e).

– Continuous: (q,v) t→ (q′,v′) if q = q′, t ∈ R≥0, v′ = v + t · Flow(q) and
∀t′ ∈ [0, t] • v + t′ · Flow(q) ∈ Inv(q).
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Path, Execution and Execution Fragment. A path of the hybrid system H
is a sequence π = e1, e2, . . . , ek such that for every j, Dest(ej) = Src(ej+1). An
execution fragment of H is a sequence σ = (q0,v0)a0(q1,v1)a1 . . . (qm−1,vm−1)
am−1(qm,vm), such that (qi,vi)

ai−→ (qi+1,vi+1), for 0 ≤ i < m. We call m the
length of σ, and is denoted |σ|. Let σs(i) denote the i-th state, namely, (qi,vi),
and σa(i) denote the i-th label, namely, ai. Let σ[i, j] denote the sequence from
(qi,vi) to (qj ,vj), namely, (qi,vi)ai(qi+1,vi+1) . . . (qj−1,vj−1)aj−1(qj ,vj). The
duration of σ, denoted Duration(σ), is given by

∑
0≤i<|σ|,σa(i)∈R≥0

σa(i). It taken
to be 0 when the summation is over an empty set. We call the execution fragment
σ an execution of H if σs(0) is an initial state and σs(|σ|) is a final state. Let
Exec(H) denote the set of all executions of H.

Reachability Problem. The reachability problem asks, given a linear hybrid
system H, is Exec(H) non-empty, i.e., is there an execution fragment of H from
an initial state to a final state.

Timed Trace. A timed trace corresponding to an execution fragment is an
alternating sequence of times (between consecutive visible transitions) and visi-
ble actions. First, we define a splitting of an execution. A splitting of an execution
σ is a finite sequence of execution fragments σ0 ◦σ1 ◦σ2 ◦ . . .◦σk such that there
exists a sequence of indices 0 ≤ i0 ≤ i1 ≤ i2 ≤ . . . ≤ ik = |σ|, where σ0 = σ[0, i0],
and for all 1 ≤ j ≤ k, σj = σ[ij−1, ij ]. A visible splitting of σ is a splitting
σ = σ0 ◦ σ1 ◦ σ2 ◦ . . . ◦ σk such that for all 0 ≤ i < |σ0|, σa

0 (i) �∈ Act and for
all 1 ≤ j ≤ k, σa

j (i) ∈ Act if and only if i = 0. A timed trace of σ, denoted
TimedTrace(σ), is the sequence t0a1t1 . . . aktk in (R≥0 · Act)∗ · R≥0, such that
σ = σ0◦σ1◦. . .◦σk is a visible splitting of σ, for 0 ≤ i ≤ k, ti = Duration(σi), and
for 1 ≤ i ≤ k, ai = σa

i (0) is the unique visible action in σi. We define the timed
language of H, denoted TimedTrace(H), to be {TimedTrace(σ) |σ ∈ Exec(H)}.
Furthermore, we call two hybrid systems A and B timed language equivalent
(denoted by A ∼tt B) if TimedTrace(A) = TimedTrace(B).

3.2 Special Subclasses of Linear Hybrid Automata

In this section, we present two subclasses of linear hybrid automata, namely,
timed automata and planar monotonic linear hybrid automata. The decidability
of the composition of the automata from the latter class is investigated in the
paper, and the decidability proof reduces the reachability problem to that of
timed automata.

Timed Automata. A timed automaton is a special type of linear hybrid
automaton in which all the variables evolve at a constant rate of 1 in every
location. The variables are referred to as clocks. The initial values of the clocks
are 0. The resets are given by a pair of guard and zero sets. The guard is a
rectangular set which specifies an enabling condition for the edge, and the zero
set specifies a subset of the clocks that are reset to 0 with the remaining clock
values unaltered during the discrete transition.
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Definition 2. A timed automaton H with n clocks is a linear hybrid system of
dimension n with the following conditions:
– Flow maps each location to 1n.
– Init maps each location to either the empty set or {0n}.
– for every edge e ∈ Edge, there exists a guard Guard(e) ∈ Rect(Rn) and a zero

set Zero(e) ⊆ {1, . . . , n} such that Reset(e) = {(u, v)|u ∈ Guard(e) ∧ ∀i ∈
{1, . . . , n} • [(i ∈ Zero(e) ⇒ vi = 0) ∧ (i /∈ Zero(e) ⇒ vi = ui)]}.

– Inv,Final ∈ [Loc → Rect(Rn)].

Planar Monotonic Linear Hybrid System. The main result of the paper
is to show that the reachability problem of parallel compositions of a class of
two dimensional linear hybrid systems called planar monotonic linear hybrid
systems is decidable. Planar Monotonic Linear Hybrid Systems were introduced
in [11] and their reachability problem was shown to be decidable. A planar
monotonic linear hybrid system is a two dimensional system such that all the
flows are “monotonic”, that is, all the flow vectors have a positive projection on
some direction vector. There are no jumps in the system, that is, upon a discrete
transition, the values of the continuous states remain the same. We present below
a definition of planar monotonic linear hybrid systems which is slightly more
general than the original version. In particular, we allow strong resets on edges,
wherein the values of the continuous variables are non-deterministically reset to
a polyhedral set. Strong resets essentially disengage the continuous states before
and after the discrete transition. Also, we allow the flow vectors to be monotonic
with respect to different direction vectors; however, we require strong resets on
the edges whose source and target have different direction vectors. Further, we
require that the edges with visible actions are also strongly reset.

Definition 3. A planar monotonic linear hybrid system (PMHS for short) H
is a linear hybrid system with the following constraints:
– H is 2 dimensional.
– Inv ∈ [

Loc → OpenPoly
(
R

2
)]

.
– Init,Final ∈ [

Loc → BOpenPoly
(
R

2
)]

.
– H is monotonic, that is, there exists a monotonicity function Mon ∈[

Loc → Q
2
]
that maps each location q to a direction f such that f ·Flow(q) >

0.
– For every e ∈ Edge, one of the following is true:

1. There exists Guard(e) ∈ OpenPoly(Rn) such that Reset(e) = {(x, x)|x ∈
Guard(e)}. This means that in order to traverse an edge, the current
values of the variables must satisfy a guard Guard(e), and the values of
variables before and after traversing e are the same. We call e an identity
reset edge.

2. There exist Guard(e),Target(e) ∈ BOpenPoly(Rn) such that Reset(e) =
Guard(e) × Target(e). This means that in order to traverse an edge, the
current values of variables must satisfy a guard Guard(e) (same as the
previous case), but the values of variables after traversing e are reset to
some values satisfying the reset Target(e). We call e a strong reset edge.
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– For every e ∈ Edge, if Lab(e) �= τ (a visible edge) or Mon(Src(e)) �=
Mon(Dest(e)) (monotonicity function changes), then e must be a strong reset
edge.

We define the polyhedral sets associated with a PMHS H, denoted P(H), to
consist of polyhedral sets Inv(q), Init(q) and Final(q) for every location q, and
the sets Guard(e) and Target(e) appearing in the reset Reset(e) for every edge
e. The set of lines associated with H, denoted LH, is Lines(P(H)). We call a
planar linear hybrid system H simple if no three distinct lines in LH intersect
at a common point. We will assume that the planar linear hybrid systems are
simple.

Fig. 1. Thermostat Example

Example 1. Consider the example of a thermostat
shown in Figure 1. There are two locations: ON
and OFF. It has one variable x that keeps track
of temperature. When thermostat is off, tempera-
ture decreases with constant rate 2, and when it
is on, temperature increases with constant rate 3.
If thermostat is off and temperature is less than
19, we can turn it on by moving to location ON. Similarly, if the thermostat is
on and temperature is above 21, we can turn it off by moving back to location
OFF. When thermostat is off, temperature must always be above 18, and when
it is on, temperature must always be below 22. This thermostat is an example
of a PMHS. If we add an additional variable that behaves like a clock, then the
automaton is monotonic.

3.3 Parallel Composition of Linear Hybrid Automata

The parallel composition of two linear hybrid automata corresponds to executing
the two automata simultaneously with the restriction that they synchronize on
common labels, that is, a transition labelled by a common label occurs only if
both the automata execute a discrete transition labelled by the common label.

Definition 4. For two linear hybrid systems HA and HB, their parallel compo-
sition HA ‖ HB is a linear hybrid system HC which is defined as follows:
– LocC = LocA × LocB
– dimC = dimA + dimB
– ActC = ActA ∪ ActB
– InvC = InvA ⊗ InvB

– FlowC = FlowA × FlowB
– InitC = InitA ⊗ InitB
– FinalC = FinalA ⊗ FinalB

– EdgeC is the set of edges ((p1, p2), (q1, q2), l, r) which satisfy the following:
P1 : If l ∈ ActA ∩ ActB, then ∃r1, r2 • (p1, q1, l, r1) ∈ EdgeA ∧ (p2, q2, l, r2) ∈

EdgeB ∧ r = r1 × r2
P2 : If l /∈ ActB, then p2 = q2 ∧ ∃r1 • r = r1 × id

R
dimB ∧ (p1, q1, l, r1) ∈ EdgeA

P3 : If l /∈ ActA, then p1 = q1 ∧∃r2 • r = id
R

dimA × r2 ∧ (p2, q2, l, r2) ∈ EdgeB
P1 represents edges in both HA and HB such that their labels are in the

common alphabet of HA and HB. P2 (P3) represents edges in HA (HB) such
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that their labels are not in the alphabet of HB (HA). Note that when l = τ , the
premises of both P2 and P3 hold.

Lemma 1 (Miller [9]). For any linear hybrid automata H1, H′
1, H2, and H′

2

if H1 ∼tt H′
1 and H2 ∼tt H′

2 then H1 ‖ H2 ∼tt H′
1 ‖ H′

2.

Lemma 2 (Alur et al. [2]). For any finite set of timed automata T1, . . . , Tn,
reachability problem for T1 ‖ . . . ‖ Tn is decidable in PSPACE.

4 Timed Language Equivalence of PMHS and Timed
Automata

Before presenting our decidability result for reachability in Section 5, we present
the key idea that enables this decidability result to go through, namely, that the
timed language of any PMHS is equivalent to that of a timed automaton that
can be effectively constructed.

Theorem 1. The timed language of a PMHS H is equivalent to the timed lan-
guage of a timed automaton TA(H) computable from H in EXPSPACE.

We will now sketch the ideas behind the proof of Theorem 1. Consider any
execution σ of PMHS H. The timed automaton TA(H) will “simulate” this exe-
cution σ of H by an execution σ′ such that the strong reset transitions taken in σ
and σ′ are the same, in the same order, and at the same times. Since every visible
transition of H is a strong reset transition, this ensures that TimedTrace(σ) is
the same as TimedTrace(σ′). Now if TA(H) simulates (in this manner) all execu-
tions of H, and if TA(H) only has such executions, then the timed languages of
H and TA(H) are the same. The executions of the timed automaton TA(H) will
only consist of a sequence of strong reset transitions of H. If a strong reset edge
e2 is taken immediately after a strong reset edge e1, then TA(H) will ensure that
the time elapsed between taking e1 and e2 is the same as the duration of some
reset-free execution fragment of H that starts in some state in Target(e1) and
ends in some state in Guard(e2). Notice, that this will immediately guarantee
that the executions of TA(H) “simulate” (in the sense outlined above) execu-
tions of H. The automaton TA(H) will maintain such constraints by having a
clock variable that measures the time between successive transitions, and having
locations that remember the last strong reset edge taken.

Before giving a formal definition, we introduce some concepts that will help
us describe TA(H) precisely. Given a PMHS H, let us denote by REdge(H), the
strong reset edges of H. We say that H is a reset-free PMHS, if REdge(H) = ∅.
For any PMHS H = (Loc, dim,Act, Inv,Flow,Edge, Init,Final) and Init′,Final′ ∈[
Loc → BOpenPoly

(
R

2
)]

, we define ResetFree(H, Init′,Final′) to be the PMHS
(Loc, dim,Act, Inv,Flow,Edge′, Init′,Final′), where Edge′ = Edge \ REdge(H).
Finally, for a PMHS H, DReach(H) will denote the durations of all the exe-
cutions of H, i.e., DReach(H) = {t | ∃σ ∈ Exec(H). t = Duration(σ)}.
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Definition 5. For a PMHS H = (Loc, dim,Act, Inv,Flow,Edge, Init,Final),
define the timed automaton TA(H) to be (Loc′, dim′ = 1,Act, Inv′,Flow′,Edge′,
Init′,Final′) where

– Loc′ = REdge(H) ∪ {qInit, qFinal},
– For every q ∈ Loc′, Inv′(q) = R, Flow′(q) = 1, Init′(q) = {0} if q = qInit and

∅ otherwise, and Final′(q) = R if q = qFinal and ∅ otherwise,
– Edge′ is the set of all edges e′ such that Zero(e′) = {1} (clock is always

reset), (Src(e′),Dest(e′)) ∈ (Loc′\{qFinal})×(Loc′\{qInit}) and the following
conditions hold:
1. If Dest(e′) ∈ REdge(H) then Lab′(e′) = Lab(Dest(e′)) and if Dest(e′) =

qFinal then Lab′(e′) = τ .
2. Guard(e′) = DReach(ResetFree(H, Init′,Final′)), where

• If Src(e′) = qInit then Init′ = Init. If Src(e′) ∈ REdge(H) then
Init′(p) = Target(Src(e′)), if p = Dest(Src(e′)), Init′(p) = ∅ other-
wise.

• If Dest(e′) = qFinal then Final′ = final. If Dest(e′) ∈ REdge(H)
then Final′(p) = Guard(Dest(e′)) if p = Src(Dest(e′)), and
Final′(p) = ∅ otherwise.

Definition 5 formalizes the intuition outlined at the beginning of this section,
and so, its timed language is equivalent to the timed language of H. However,
to finish the proof of Theorem 1, we still need to establish two facts. First, the
automaton outlined above is a timed automaton only if the guards in the above
definition are “nice” sets; in particular they need to be finite unions of intervals 1.
Second, to argue that TA(H) can be effectively constructed from H, we need to
show that the transition guards can be computed. These two requirements do
indeed turn out to be true, and is established in Lemma 3.

Lemma 3. Given a reset-free PMHS H, the set DReach(H) is computable and
is a finite union of intervals.

The proof of Lemma 3 relies on the following key lemma. Define a timed
reachability predicate for an automaton H as TReachq1,q2

H = {(u, t,v) | ∃σ ∈
Exec(H), σs(0) = (q1,u), σs(|σ|) = (q2,v),Duration(σ) = t}.

Lemma 4. For a reset-free PMHS H and q1, q2 ∈ Loc, there is a first order
logic formula ϕq1,q2

H (x, τ,y) over (R,+, <) such that (v, t, v′) ∈ TReachq1,q2
H iff

ϕq1,q2
H (v/x, t/τ, v′/y) holds. Further, ϕq1,q2

H is only existentially quantified and
its length is bounded by an exponential in the size of H.

Proof. (Sketch.) The proof builds upon the results in [11], where it is shown that
the problem of point-to-point and region-to-region reachability is decidable for
the class of reset-free PMHS. Below we present briefly an overview of the proof
in [11], and highlight the changes in extending it to prove the current lemma.
1 Typically, the guards in a timed automaton are intervals. But transitions with finite

unions of intervals as guards can be thought of as a set of finitely many nondeter-
ministic transitions on intervals.
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The first step in [11] is to divide the state-space of H into regions where each
region is such that if it intersects with a guard or an invariant of H, then it is
contained in it. The maximal set of such regions can be uniquely determined
for H and effectively computable. A tree is constructed which has as nodes sub-
sets of edges of the regions. The children together capture the set of all states
reached from the states in the parent by a “region-execution” — executions
which remain within a single region. The main technical challenge lies in com-
puting the children, since the number of mode switches in a region-execution
between two edges of a region is not bounded. The challenging case is when
the hybrid system restricted to the region has cycles. Hence, the problem is
reduced to computing the reachable set of a hybrid automaton restricted to a
region whose underlying graph is strongly connected. Here, it is shown that the
following property P holds, that is, the reach set can be characterized by states
reached by certain “executions” with bounded number of mode switches which
can potentially violate the invariants and guards. The reach set can then be
computed by a finite number of state-space exploration steps. More importantly,
the monotonicity property of the flows ensures that the height of the tree is
bounded, when the initial and final regions are bounded. And a final region is
reachable if and only if one of the trees with root corresponding to an edge of
the initial region, contains a node which has an edge of the final region.

In this paper, we extend the proof to compute the predicate ϕq1,q2
H (x, τ,y).

Note that if node N2 is a descendant of N1, then there is an execution from every
state in N1 to some state in N2. Our main idea is to extend the information along
an edge in the tree to capture a ternary relation consisting of tuples (u, t,v) such
that there is a region execution from u on node N1 to node v on its child N2 of
duration t. Our main observation is that the boundedness property in P holds
even when we require the executions to be of equal duration. More precisely, v
can be reached from u by a region-execution of duration t if and only if there
exists a certain “execution” with bounded number of mode switches from u
to v of duration t potentially violating the invariants and guards. Further, we
show that this predicate can be captured as an existentially quantified first-order
logic formula over (R,+, <) with only conjunctions. The predicate ϕq1,q2

H (x, τ,y)
is then constructed by composing the predicates corresponding to the edges.

Next, we provide an upper bound on the length of ϕq1,q2
H (x, τ,y). Let n be the

size of the input representation of H. Note that the number of constraints used
in the description of the invariants and guards is at most n. Hence, the number
of regions associated with it is at most 2n, and the number of nodes in the tree
is linear in the number of regions and is bounded by O(2n) [11]. If L is a bound
on the length of the predicate corresponding to an edge, then the length of the
predicate ϕq1,q2

H (x, τ,y) is bounded by O(L2n). L is bounded by a polynomial in
the size of the automaton. Hence, ϕq1,q2

H (x, τ,y) is bounded by 2O(n).
We now complete the proof of Lemma 3 (and therefore, Theorem 1). Recall

that the first order theory of (R,+, <) is o-minimal [12]. Therefore, any set
defined by a first order formula with one free variable in this structure is a
finite union of intervals [12]. Finally, the theory of (R,+, <) has a PSPACE
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quantifier elimination procedure for existentially quantified formulas (formulas
with no quantifier alternation), and hence, the intervals in the finite union are
computable. Now since DReach(H) = ∃x,y. ∨q1,q2 ϕq1,q2

H (x, τ,y), we have estab-
lished Lemma 3. Further, since, the length of the formula ϕq1,q2

H is at most
exponential in the size of H, DReach(H) can be computed in EXPSPACE, and
hence TA(H) can be computed in EXPSPACE.

5 Main Result

The timed trace equivalence of PMHS with timed automata (Theorem 1) allows
us to prove the following main result of this paper.

Theorem 2. The following problem is decidable in EXPSPACE: Given hybrid
automata H1,H2, . . . ,Hk such that each Hi is either a PMHS or an initialized
rectangular hybrid automaton, is Exec(H1 ‖ H2 ‖ . . . ‖ Hk) empty?

Proof. (Proof Sketch). Theorem 1 shows that any PMHS H is equivalent to
the timed language of a timed automaton TA(H) which can be constructed
in EXPSPACE. Similarly, Miller [9] showed that any initialized rectangular
hybrid automaton is also timed language equivalent to a timed automaton, con-
structible in PSPACE. Hence, for each Hi, we can construct a timed automaton
TA(Hi) such that Hi ∼tt TA(Hi). From Lemma 1, H1 ‖ H2 ‖ . . . ‖ Hk ∼tt

TA(H1) ‖ TA(H2) ‖ . . . ‖ TA(Hk). Note that the latter is a composition of k
timed automata. Therefore, from Lemma 2, the reachability problem, namely, if
Exec(TA(H1) ‖ TA(H2) ‖ . . . ‖ TA(Hk)), is empty, is decidable in PSPACE.
Equivalently, the emptiness of Exec(H1 ‖ H2 ‖ . . . ‖ Hk), is decidable in
EXPSPACE.

The above theorem, in particular, implies that the control state reachability
problem is decidable for the composition of PMHS.

6 A Decidable Class of Multi-rate Automata

A multi-rate automaton is a generalization of timed automaton, where the con-
tinuous variables need not flow at rate 1. The reachability problem for general
multi-rate automata is known to be undecidable [1,7]. In this section we identify
a new subclass of multi-rate automata with a decidable reachability problem.
The decidability result will be a consequence of our main result (Theorem 2).
We begin by recalling what a multi-rate automaton is.

Definition 6. A multi-rate automaton of dimension n is a linear hybrid system
H with the restriction that
– Inv ∈ [Loc → OpenRect(Rn)],
– Init maps each location to either the empty set or {0n},
– Final ∈ [Loc → PBOpenRect(Rn)], and
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– for each edge e ∈ Edge, there exists a guard Guard(e) ∈ PBOpenRect(Rn)
and a zero set Zero(e) ⊆ {1, . . . , n} such that Reset(e) = {(u, v)|u ∈
Guard(e) ∧ ∀i ∈ {1, . . . , n} • [(i ∈ Zero(e) ⇒ vi = 0) ∧ (i /∈ Zero(e) ⇒
vi = ui)]}.

In the above definition, we assume that variables reset on an edge are reset to
0. However, this condition can be relaxed to one where the variables are reset
to any value in a bounded interval without affecting the decidability results. We
make the simplifying assumption to make the presentation and notation simpler.

We identify a special subclass of multi-rate automata that we call phased
multi-rate automata. Phased multi-rate automata are such that every execution
of the machine can be divided into “phases”. Each phase begins with a discrete
transition that resets some set of variables, and every other discrete transition
in the phase, leaves the continuous variables unchanged. In addition, during a
phase, after the first transition, the flow of at most one variable can change. We
will show that the reachability problem for such automata is decidable. Before
defining this class, we introduce some definitions and notations that we will need.

Affected and Used Variables. Consider a multi-rate automaton H of dimension
n and an edge e of H. We will say that a variable i ∈ {1, . . . n} is affected by
edge e, if either (a) i is reset, i.e., i ∈ Zero(e), or (b) i’s flow changes after taking
the edge, i.e., Flow(Src(e))i �= Flow(Dest(e))i. The set of variables affected by
e will be denoted by affect(e). A variable i is used by edge e if either (a) i
is affected by e, i.e., i ∈ affect(e), or (b) i appears in either Inv(Src(e)) or
Inv(Dest(e)), i.e., Ii or I ′

i not equal to (−∞,∞), where Inv(Src(e)) = I1×. . .×In

and Inv(Dest(e)) = I ′
1 × . . . × I ′

n, or (c) variable i appears in Guard(e), i.e.,
Ii �= (−∞,∞), where Guard(e) = I1 × . . . × In. The set of variables used by e is
denoted by use(e).

Phase Consistency. Consider a path π = e1, e2, . . . ek of H. A phase of π is a pair
(i, j) ∈ {0, 1, . . . k +1}2 with i < j such that (a) if i > 0 then Zero(ei) �= ∅, (b) if
j < k + 1 then Zero(ej) �= ∅, and (c) for all �, i < � < j, Zero(e�) = ∅. In other
words, (i, j) is a phase if ei and ej are successive reset edges in π. In the definitions
that follow, we will find it convenient to take Zero(e0) = Zero(ek+1) = {1, . . . n}.
The path π is phase consistent for phase (i, j) if there is a variable xij ∈ {1, . . . n}
such that (a) xij ∈ Zero(ei) ∩ Zero(ej), (b) for all i < � < k, affect(e�) ⊆ {xij}
and use(e�) ⊆ Zero(ei), and (c) use(ej)\Zero(ej) ⊆ Zero(ei). When this happens,
xij is said to be the phase variable of π in (i, j). We will say π is phase consistent
if it is phase consistent for every phase (i, j).

Definition 7. A phased multi-rate automaton (PMA) of dimension n is multi-
rate automaton H with the following restrictions.
– For every edge e of H, if |affect(e)| > 1 then affect(e) ⊆ Zero(e). In other

words, if more than one variable is affected, then all affected variables are
reset.

– Every path π of H is phase consistent with respect to every phase.



268 P. Prabhakar et al.

Theorem 3. Reachability problem for phased multi-rate automata is decidable.

Phased multi-rate automata are incomparable to the class of initialized multi-
rate automata. Recall that in an initialized multi-rate automaton, a variable must
be reset if its flow changes. This is not required in a phased multi-rate automaton
as the phase variable can change its flow repeatedly without being reset. On the
other hand, in phased multi-rate automata, the phase variable must be reset
at the start and end of a phase; there is no analogous restriction in initialized
multi-rate automata.

Fig. 2. Water Tank Example

Example 2. Figure 2 shows an
example of a water tank system.
Here, we have two tanks and one
hose. The hose could be on or off,
and it could point to tank 1 or
tank 2. Water is added at a con-
stant rate to a tank when hose
is on and pointing to that tank.
Also, both tanks are leaking at
a constant rate. One can turn
the hose on and off at any time.
However, to move the hose from
tank 1 to tank 2, the tank 1 must have a sufficiently high level of water, and
tank 2 must have a low level; similar constraints are required to be satisfied
when moving the hose from tank 2 to tank 1. The level in a tank is considered
“sufficiently high” if the level is between almost full (AF ) and full (F ), and it is
low if it is between almost low (AL) and low (L). Observe that such a system is
not initialized as the rate of change of level in a tank can change due to turning
the hose on and off. However, it is a PMA as such changes to flow without resets
are allowed. This automaton has the slightly more general form of resets where
a variable can be reset to any value in a bounded set.

7 Conclusion

Our main result proved that the reachability problem is decidable for the paral-
lel composition of a collection of planar monotonic linear hybrid systems. Our
proof extends the observations in [11] to first showing that timed reachability
(and not just reachability) is decidable by reducing it to the theory of linear
arithmetic. This result allows us to conclude that the planar monotonic linear
hybrid automata are timed trace equivalent to timed automata. Finally, our
decidability result for concurrent planar monotonic linear hybrid systems fol-
lows from the decidability of the emptiness problem for timed trace language
of concurrent timed automata. One consequence of our results is that it identi-
fies a new decidable subclass of multi-rate automata, namely, phased multi-rate
automata. Our results present a general technique of lifting decidability results
for low dimensional systems to hybrid automata with many continuous variables.
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A future direction of research would be to see if this idea can be applied to other
decidable planar hybrid automata, i.e., automata with 2 variables.
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Abstract. In this paper we propose a framework of Assume / Guarantee
contracts for schedulability analysis. Unlike previous work address-
ing compositional scheduling analysis, our objective is to provide sup-
port for the OEM / supplier subcontracting relation. The adaptation of
Assume / Guarantee contracts to schedulability analysis requires some
care, due to the handling of conflicts caused by shared resources. We
illustrate our framework in the context of Autosar methodology now
popular in the automotive industry sector.

1 Introduction and Related Work

The focus of this work is the integration phase of a design process, where soft-
ware components are allocated to a hardware platform. We consider scenarios

Fig. 1. Exemplary Integration Scenario using Resource Segregation

like the following. The bottom part of Figure 1 shows a target platform that is
envisioned by, say, an Original Equipment Manufacturer (OEM). It consists of
two processing nodes (CPU1 and CPU2). Suppose the OEM wants to implement
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two applications, characterized by contracts C1 and C2, on this architecture and
delegates their actual implementation to two different suppliers. Both applica-
tions share a subset of the resources of the target platform, e.g. tasks τ2 and τ4
are executed on CPU2 after integration. Furthermore, we assume the system spec-
ification C shown in Figure 1 to be available from previous design phases. While
some components together with their (local) contracts may also be known (e.g. in
case of reuse), the OEM generally has to negotiate proper specifications with the
suppliers, in our case the two contracts C1 and C2. In doing so, the scheduling
of the software components delegated to each supplier must yield a satisfac-
tory scheduling at system integration time, meaning that timing constraints are
met given the performance characteristics of the computing and communication
resources, even though the two designs compete for shared resources.

Quoted verbatim from [17] by Insup Lee et al.:1 Real-time systems could ben-
efit from component-based design, only if components can be assembled without
violating compositionality on timing properties. When the timing properties of
components can be analyzed compositionally, component-based real-time systems
allow components to be developed and validated independently and to be assembled
together without global validation. [17] develops a model of scheduling interface
collecting the workloads, resources, and scheduling policy, addressing the above
quoted objectives. Specific classes of hard real-time system scheduling prob-
lems are considered, namely periodic models and bounded-delay models. This
group of authors has further developed the same track with the same techniques,
making increasingly large classes of scheduling problems amenable for composi-
tional analysis. This significant body of work is nicely summarized in the tutorial
paper [3] and implemented through the CARTS tool for compositional analysis
of real-time systems [14]. One interesting application case concerns the schedul-
ing of ARINC partitions [10]. Compositional schedulability analyses have been
proposed on top of the UPPAAL tool [5,6] with mixed scheduling policies and
probabilistic evaluations. In a different direction, Lothar Thiele and co-workers
have developed for real-time scheduling an algebraic framework called the Real-
Time Calculus (RTC) [13,21,22]. Components of the RT Calculus are linear
transfer functions in the max-plus algebra and interface behaviors are expressed
as arrival curves, which specify lower and upper bounds for event arrivals. [20,21]
considers real-time interfaces where assumptions and guarantees are expressed
by means of arrival curves on inputs and outputs, respectively. Refinement of
such interfaces is characterized and a parallel composition is defined; adaptive
interfaces are proposed in which arrival curves are propagated throughout the
network of components, compositionally. The above very elegant model cap-
tures timing and precedence constraints but does not consider conflicts due to
shared resources. A blending of this model with timed automata is studied in [11]
together with a mapping of RTC-based real-time interfaces to timed automata.
The work [12] applies and develops similar techniques for distributed heteroge-
neous time-triggered automotive systems.
1 The reader is referred to this paper for further discussion on related work from the

real-time scheduling community. We discuss here the references that are directly
relevant to our work.
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Our work in this section has its roots in [15,16,18,19], which in turn are based
upon the ideas underlying the interfaces for control and scheduling proposed in
[1,2,23]. Contrary to these scheduling interfaces, we consider multiple resources
and take task precedences into account. Our aim is different from the previous
set of references and complements it nicely. In our work we assume that a proce-
dure performing global scheduling analysis is available, so our focus is not on spe-
cific classes of schedulability analyses. Our aim is rather to lift such procedures to
a contract framework supporting OEM-supplier relations in a supply chain. We
first provide support for decomposing a system-level scheduling contract into sub-
contracts for suppliers, while guaranteeing safe system integration—this is differ-
ent from the objectives of previous compositional schedulability studies. Second,
our contract framework provides support for fusing different viewpoints on the sys-
tem using contract conjunction. The model of scheduling components is presented
in Section 2. Scheduling components capture implementations and environments
for our scheduling contracts, developed in Section 3. Our approach is illustrated in
Section 4 by an example in the context of the Autosar methodology.

2 Scheduling Components

2.1 Our Approach: Building on Top of Assume/Guarantee
Contracts

Recall that Assume/Guarantee contracts (A/G-contracts) are pairs of assump-
tion and guarantees: C = (A,G). In the basic A/G-contract framework [4], A
and G are assertions, i.e., sets of traces for system variables.2 Components cap-
turing legal implementations or environments of contracts are also modeled by
assertions. Component E is a legal environment for C if E ⊆ A and compo-
nent M is an implementation for C if A×M ⊆ G. In this writing, ⊆ is simply
set inclusion and component composition × is by intersection of sets of traces
(assuming that the underlying set of system variables is universal and thus fixed):
A×M =def A∩M . One key notion of A/G-contracts is saturation: Contracts
(A,G) and (A,G ∪ ¬A), where ¬ is set complement, possess identical sets of
legal environments and implementations, so we consider them equivalent. The
second one is called saturated and is a canonical form for the class of equivalent
contracts. Also, MC = G ∪ ¬A is the maximal implementation for this con-
tract. Thus, we need the operations ∪ and ¬, or at least we need the operation
(A,G) → G∪¬A, which is to be interpreted as “A entails G”. Then for C and C ′

two saturated contracts, refinement C ′ � C holds iff A′ ⊇ A and G′ ⊆ G hold.
The result of the composition C1 ⊗ C2 of two saturated contracts, is a contract
((A1 ∩ A2) ∪ ¬(G1 ∩ G2), G1 ∩ G2).

Thus, as a first step, we need the counterpart of assertions for our schedul-
ing component framework, with the associated algebra. Ingredients of scheduling
problems are: tasks with their precedence conditions reflecting data dependencies
and resource allocation. The sets of timed traces we are interested in are those

2 These are typically specified using modeling tools such as Simulink/Stateflow.
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satisfying the scheduling constraints, plus quantitative properties such as period,
deadline conditions, etc. We call the resulting model concrete scheduling com-
ponents. Unfortunately, no rich algebra with the requested operators ⊆,×,∪,¬
exists for concrete scheduling components.

By abstracting away part of the description of task activities in traces, we
slightly abstract concrete scheduling components to so-called abstract ones. The
idea is that we keep only what is essential for capturing interactions of schedul-
ing problems, namely: 1) trigger and release events for tasks, and 2) busyness of
resources. The abstraction map binds each concrete scheduling component to its
abstraction and we will show that this binding is faithful with respect to com-
position and refinement. The framework of abstract scheduling components is
simple enough so we manage to equip it with the wanted operations ⊆,×,∩,∪,¬.
A/G-contracts for abstract scheduling components follow then easily. The rest
of this section is devoted to the introduction of concrete and abstract scheduling
components. Then we study the relation between them.

2.2 Concrete Scheduling Components

For our model of scheduling components we assume the following:

– A slotted model of real-time, in which the real line R+ is divided into succes-
sive discrete time slots of equal duration. Successive slots are thus indexed
by using natural numbers 1, 2, 3, . . . , n, . . . ∈ N.

– An underlying set T of tasks, generically denoted by the symbol τ . To
describe events of interest for tasks, we consider the following alphabets:
The control alphabet Σc = {i , o, io , aw , sl} collects the trigger, completion,
trigger-and-completion, awake, and sleeping events, for a task; this alphabet
describes the triggering and completion of tasks; since we follow a slotted
model of time, triggering and completion can occur within the same slot,
which is indicated by the event io ; The busyness alphabet Σb = {∗,⊥} col-
lecting the busy and idle events; this alphabet indicates, for a task τ , its
status busy/idle at a given time slot. On top of these alphabets, we build:

Στ =def { (c, b) ∈ Σc × Σb | c=sl ⇒ b=⊥} (1)

reflecting that task τ can only be busy when it is not sleeping. The status
of a task τ in each time slot is expressed by using alphabet Στ .
In addition, each task τ comes equipped with a pair (pt(τ), pc(τ)) ∈ P×P
of trigger and completion ports, where P is an underlying set of ports. For
T a set of tasks, we will consider the set PT =def

{
pt(τ), pc(τ) | τ ∈ T

}
.

– An underlying set R of resources, generically denoted by the symbol r.
A resource can be either available or busy with executing a given task at
a given time slot. Resources can run in parallel. Each resource r ∈ R is
assigned the alphabet Σr ⊆ T ∪ {0} of the tasks it can run, where the
special symbol 0 indicates that r is idle.
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Definition 1. A concrete scheduling component is a tuple M = (K,L), where:

– K = (T,R, ρ) is the sort of M, where: T ⊆ T is the set of tasks, R ⊆ R
is the set of resources, and ρ : T → R, the resource allocation map, is a
partial function satisfying τ ∈ Σρ(τ).
Say that tasks τ1 and τ2 are non-conflicting if they do not use the same
resource: τ1 ‖K τ2 if ρ(τ1) is undefined, or ρ(τ2) is undefined or ρ(τ1) �= ρ(τ2).

– For τ1, τ2 ∈ T , say that τ1 precedes task τ2, written τ1−→◦ τ2, if the completion
port of τ1 coincides with the start port of τ2: pc(τ1) = pt(τ2).
We require that this relation is cycle free and we denote by � the partial
order on T obtained by taking transitive closure of −→◦ and we call � the
precedence order.
The dual order between ports will also be needed: for p1, p2 ∈ PT , say that
p1 precedes p2, written p1−→� p2, if there exists τ ∈ T such that p1 = pt(τ)
and pc(τ) = p2; relation −→� is cycle free if so was −→◦ and, with no risk of
confusion, we also denote by � the precedence order on PT generated by −→� .

– L ⊆ Σω
T is the language of M, where ΣT =def T → Στ , and Aω denotes the

set of all infinite words over alphabet A. Due to the decomposition (1) of Στ ,
every word w ∈ L can be equivalently seen as a pair of words w = (wc, wb)
describing the control and busyness history of w.

Since a word w∈L yields a history for each task, it induces, by picking the
resource running that task, a corresponding resource word wR, such that

wR is the tuple collecting the wr for r ∈ R, such that, for every slot
n: wr(n) = {τ ∈ T | ρ(τ) = r and w(τ, n) = (c, b) satisfies b = ∗} (2)

i.e., wr(n) returns the set of tasks that resource r runs at slot n. This set is not
a singleton if and only if a conflict occurs at slot n regarding resource r.

Whenever convenient, we will denote by TK or TK the set of tasks of sort K,
and similarly for the other constituents of a sort. The events of a task τ will be
denoted by iτ , oτ , etc. For w a word of Σω

K , T ′ ⊆ T , and R′ ⊆ R, we denote by

wT ′
the T ′-word of w, and by wR′

the R′-word of w, (3)

obtained by projecting w to the sub-alphabet ΣT ′ and projecting the induced
word wR to the sub-alphabet ΣR′ , respectively.

Definition 2 (Semantics of concrete scheduling components). Call
behavior of sort K any infinite word w ∈ Σω

T satisfying the following three
scheduling conditions:

1. For each task τ ∈ T , the control word wc belongs to the language
(sl∗.(io+i.aw∗.o))ω, where a∗ =def ε+a+a.a+a.a.a+ . . . is the Kleene clo-
sure starting at the empty word. Informally, the two events i and o alternate
in w, with i occurring first; io is interpreted as the immediate succession of
two i and o events at the same time slot.
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2. τ1 � τ2 implies that, for every n≥1, the nth occurrence of event oτ1 must
have occurred in w strictly before iτ2 (in words, τ2 can only start after τ1 has
completed);

3. w is non-conflicting: for any two conflicting tasks τ1 and τ2 belonging to
T (cf. Definition 1), it never happens that wτ1 and wτ2 are non-idle at the
same time slot.

The semantics of M is the sub-language [[M]] ⊆ L consisting of all behaviors of
K belonging to L. Say that M is schedulable if [[M]] �= ∅.
Due to the above Condition 2, tasks related by precedence conditions possess
identical logical clocks—in particular, if they are specified periodic, their periods
must be equal. This is not required for tasks not related by precedence conditions.

Comment 1. The pair M = (K,L) can be seen as the specification of a global
scheduling problem. The sort K fixes the set of tasks and their precedence condi-
tions, the set of resources, and the allocation of tasks to resources. The language
L can serve to specify additional aspects of this scheduling problem, including
task durations and/or minimum time interval between successive activation calls
for a task. Semantics [[M]] can be seen as the maximally permissive solution of
the scheduling problem stated by M.

Definition 3. Say that M1 and M2 are composable if their allocation maps ρ1
and ρ2 coincide on T1 ∩T2 and the relation −→◦ 1 ∪ −→◦ 2 on T1 ∪T2 is cycle free.
If M1 and M2 are composable, their composition M1 ×M2 =def ((T,R, ρ), L)
is defined as follows:

T = T1 ∪ T2 , R = R1 ∪ R2 , ∀τ∈T : ρ(τ) = if τ ∈ T1 then ρ1(τ) else ρ2(τ)
L = pr−1

T→T1
(L1) ∩ pr−1

T→T2
(L2)

where prT→Ti
, i = 1, 2, denotes the projection from T to Ti and pr−1 is its

inverse.

Of course, the key to understand the meaning of composition × is the construc-
tion of the semantics [[M1 ×M2]]. In the following lemma, for M = ((T,R, ρ), L)
a scheduling component, we identify its semantics [[M]] (which is a language)
with the scheduling component ((T,R, ρ), [[M]]). This gives a meaning to the
expression [[M1]] × [[M2]].

Lemma 1. If M1 and M2 are composable, then [[M1 ×M2]] = [[ [[M1]] × [[M2]] ]].

As announced in the introductory discussion of Section 2, the model of concrete
scheduling components is too complex and detailed as a model of components
on top of which contracts can be built. We are unable to define the operations
we need on components, particularly ⊆ and ∪¬ (in turn, parallel composition ×
was easy to define as we have seen). The notion of abstract scheduling component
we develop in the forthcoming section will overcome these difficulties. Abstract
scheduling components capture the architecture aspect of Figure 1, namely: ports
carrying start and completion events of tasks, and resources—tasks themselves
are, however, ignored.
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2.3 Abstract Scheduling Components

Definition 4. An abstract scheduling component is a language M ⊆ Vω, where
V =def

( {
0, 1

}P ) × ( ∏
r∈R Σr

)
.

Recall that Σr is the alphabet of tasks that can be executed by resource r, see
the beginning of Section 2.2. Symbol “1” indicates the occurrence of an event at
the considered port. Abstract scheduling components come equipped with the
following algebra:

– The Boolean algebra ∩,∪,¬, and the inclusion ⊆ on sets;
– A parallel composition by intersection: M1 × M2 =def M1 ∩ M2.

Thus, abstract scheduling components offer all the algebra required for a uni-
verse of components on top of which A/G-contracts can be built. It is therefore
interesting to map concrete to abstract scheduling components.

Recall that, for K = (T,R, ρ) a sort, we denote by PT =def pt(T )�pc(T ) ⊆ P
the set of ports used by T , see the beginning of Section 2.2. Then, we set

VK =def

( {
0, 1

}PT
) × (∏

r∈R Σr

)
(4)

Definition 5 (Mapping concrete to abstract scheduling components).
Each concrete scheduling component M = (K,L) is mapped to a unique abstract
scheduling component [[M]]A called its abstract semantics, defined as follows:

1. Pick any behavior w ∈ [[M]], see Definition 2;
2. Denote by πT (w) the word over {0, 1}PT obtained from w as follows. For every

p ∈ PT , define •p =
{
τ ∈ T | pc(τ) = p

}
and p• =

{
τ ∈ T | pt(τ) = p

}
, the

sets of anterior and posterior tasks of p. The nth event of p is put nondeter-
ministically after the n−1st event of p, when or after every task belonging to
•p has completed for the nth time in w, and strictly before every task belonging
to p• has started for the nth time in w. If •p=∅, then the first condition is not
considered and similarly if p•=∅.

3. Denote by πR(w) the word over alphabet
∏

r∈R Σr defined as follows: For
every time slot n and every resource r ∈ R, set
πR(w)(r, n) = τ if and only if w(τ, n) = (c, b) satisfies b = ∗ and ρ(τ) = r.
This part of word πR(w) represents the “positive history” of w, i.e., the use
of the resources belonging to R by tasks belonging to T ; We complement
πR(w) by describing the “negative history” of w, consisting of a description
of all the possibilities left, for tasks not belonging to T , in using resources
from R:

in all slots of πR(w)(r, n) that are still idle, we set πR(w)(r, n) =
τ ′ where τ ′ ∈ Σr, τ

′ �∈ T is chosen nondeterministically.
Then, with reference to the sort K = (T,R, ρ) of M, we set:

ηK(w) =def (πT (w), πR(w) ) ∈ Vω
K
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Fig. 2. Showing a concrete behavior of M (left, with reference to Figure 1) and a corre-
sponding abstract behavior of [[M]]A (right), by using P =

{
i1, o1, o2, o3

}
as underlying

alphabet of ports. On the second diagram, blanks figure the slots left free for any exter-
nal task to run on the referred resource. The yellow rectangles indicate the room for
nondeterministic choices; bounds of these rooms are figured by pointing arrows; where
such arrow is missing, the corresponding rectangle is unbounded on that side.

4. Finally, we define
[[M]]A =def pr−1

Vω→Vω
K

( {
ηK(w)i

∣∣ w ∈ [[M]]
} ) ⊆ Vω

where the quantification ranges overw ∈ [[M]] and all instances of nondetermin-
istic choices in step 2, and prVω→Vω

K
denotes the projection, from Vω to Vω

K .

Step 2 is sound since w is a behavior in the sense of Definition 2. Step 2 is
the key step since it transforms a max-plus type of parallel composition (every
task waits for all its preceding tasks having completed before starting) into a
dataflow connection where data are communicated through the shared ports.
The data communicated are the events carried by the ports. These events occur
nondeterministically after all preceding tasks have completed for the nth time
and before all succeeding tasks start for the nth time.

Step 3 complements the actual history of each task of M by an explicit
description of all possibilities that are left to other scheduling components in
using resources shared with M. The reason for doing this is that this allows to
capture the interleaved use of shared resources by different components, by a
simple parallel composition by intersection.

The above construction is illustrated in Figure 2. When hiding the tasks
sitting inside the boxes, the architecture shown on Figure 1 is a dataflow rep-
resentation of [[M]]A: in interpreting this figure, one should consider that each
task is free to start any time after it has received its triggering event, and free
to wait for some time before emitting its completion event.

Lemma 2. The mapping M → [[M]]A satisfies the following properties: 1)
Schedulability is preserved in that [[M]] �= ∅ if and only if [[M]]A �= ∅; 2) For
every r �∈ R, the set

{
v(r)

∣∣ v ∈ [[M]]A
}
is the free language (T − T )ω.

The special property 2) is not preserved under the Boolean set algebra. There-
fore, the mapping M → [[M]]A is not surjective.
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2.4 Faithfulness of the Mapping

Consider two concrete scheduling components M1 and M2, where Mi = (Ki, Li)
and Ki = (Ti, Ri, ρi). It is difficult and generally undecidable to compare their
abstract semantics: [[M1]]A ⊆ [[M2]]A. We will, however, need such checks in
the sequel. We thus propose some effective sufficient conditions ensuring the
inclusion of abstract semantics.

Lemma 3. The following conditions on the pair (M′,M) imply [[M′]]A ⊆ [[M]]A:

1. There exists a surjective total map ψ : T ′ → T , such that:
(a) For every τ ∈ T : pt(τ) = minψ(τ ′)=τ pt(τ ′) and pc(τ) = maxψ(τ ′)=τ

pc(τ ′), where min andmax refer to the order�′ generated by the precedence
relation −→◦ on ports ofM′, see Definition 1;

(b) The following holds, for every 4-tuple of tasks (τ ′
1, τ

′
2, τ1, τ2) ∈ T ′2 × T 2:

ψ(τ ′
1)=τ1 and ψ(τ ′

2)=τ2
′
together entail τ ′

1 ‖′
τ ′
2 ⇒ τ1 ‖ τ2.

2. For each task τ ∈ T , there exists an injective total map χτ : Στ →⊎
τ ′ ∈ ψ−1(τ) Στ ′ , where the Στ ′ are copies, for each referred task τ ′, of the

alphabet defined in (1); set χ =def

⊎
τ ∈ T χτ . The language L is defined

through some temporal property Timing Prop on the events from alphabet⊎
τ ∈ T Στ , and, replacing, in Timing Prop, every event e by its image χ(e)

defines a language L′′ such that L′′ ⊇ L′.

Say that M′ � M when the above three conditions hold.

Observe that Conditions 1 involve only the sorts K1 and K2 of M1 and M2.
Condition 2 formalizes the situation in which the language L2 is specified through
timing properties relating certain events of interest for tasks of M2 (duration
between trigger and completion, end-to-end duration when traversing a set of
successive tasks, etc.). The considered events are then mapped to some events of
M1 and the timing property remains the same or is strengthened. The following
results hold:

Lemma 4. If M1 and M2 are composable, then [[M1 ×M2]]A = [[M1]]A×[[M2]]A.

Lemma 5. Let (A,G) be a composable pair of concrete scheduling components
such that RA = ∅. Then, the following formulas define a concrete scheduling
component M = ((T,R, ρ), L) such that [[M]]A = [[G]]A ∪ ¬[[A]]A :

T = TA ∪ TG , R = RG , ρ(τ) = if τ ∈ TA then ρA(τ),
L = pr−1

T→TG
(LG) ∪ pr−1

T→TA
(¬LA)

3 Scheduling Contracts

As recommended in Section 2.1, we first define what components are, and then
we define contracts. Regarding components, the notations used here refer to
the operations ⊆,∩,∪,¬,× introduced for abstract scheduling components in
Section 2.3.
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Definition 6 (Scheduling contracts). A scheduling contract is a pair C =
(A,G) of abstract scheduling components, called the assumptions and the guar-
antees.

The set EC of the legal environments for C collects all abstract scheduling
components E with non-empty semantics such that E ⊆ A. The set M

C
of

all implementations of C consists of all abstract scheduling components M with
non-empty semantics such that A×M ⊆ G.

Each scheduling contract can be put in its equivalent saturated form
C=(A,G∪¬A), possessing the same sets of legal environments and implementa-
tions. Scheduling contract C is compatible if and only if A �= ∅ and consistent if
and only if G ∪ ¬A �= ∅. Say that scheduling contract C = (A,G) is schedulable
if A ∩ G �= ∅.
The background theory of A/G-contracts applies. Note that A∩G = A∩(G∪¬A),
hence checking schedulability does not require the contract to be saturated. The
justification of this notion of schedulability for contracts is given in the next
section.

In practice the designer will specify scheduling contracts using concrete, not
abstract, scheduling components:

Definition 7 (Concrete scheduling contracts). Call concrete scheduling
contract (or concrete contract) a pair C = (A,G) of composable concrete
scheduling components called its assumptions and guarantees.

See Definition 3 for the notion of composability. To contrast with concrete con-
tracts, we will sometimes call abstract scheduling contracts, or abstract con-
tracts, the scheduling contracts of Definition 6. The mapping from concrete to
abstract scheduling components developed in Section 2.3 allows mapping con-
crete scheduling contracts to abstract ones:

C = (A,G) �→ C(A,G) =def ([[A]]A, [[G]]A)
Say that C is consistent, compatible, schedulable, or in saturated form, if so is
C(A,G).

Lemma 6 (Checking for contract refinement). The following conditions
imply refinement C(A,G) �

(∧
j∈J C(Aj ,Gj)

)
: for every j ∈ J , Aj is compos-

able with G and the following two conditions hold: Aj ×G � Gj and Aj � A.

3.1 Getting Sub-contracts in the AUTOSAR Development Process

In this section we develop techniques in support of the following design steps,
which are advocated by the Autosar methodology [7,8]:

Process 1 (AUTOSAR Development Process)

1. Start with a top-level, system wide, contract. At this level, only func-
tions are considered whereas computing resources are ignored. Functions
are abstracted as systems of tasks with their precedence constraints.
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2. To prepare for subcontracting to different suppliers, decompose this func-
tional top-level contract into functional sub-contracts.

3. At this step the computing resources are now taken into account. Perform
system wide (global) schedulability analysis, thus inferring resource budgets.

4. Derive resource aware sub-contracts and submit them to the supplier.

This process is rather informal. It is thus tempting to interpret the above tasks
as refinement steps, for scheduling contracts. With this in mind, Steps 1 and 2
exhibit no particular difficulty. Step 3, however, raises a problem. Adding the
consideration of resources to a resourceless contract cannot be a refinement step.
This can be seen from Lemma 3, which gives sufficient conditions for concrete
contract refinement: referring to this lemma, there is no way that the resulting
contracts C′ = (A′,G′) can refine C since [[A′]]A ⊇ [[A]]A is not possible when
resources are added, from A to A′. This is no surprise in fact, since one cannot
independently add shared resources to different contracts, and at the same time
expect to be able to develop independently.

Of course, from a theoretical standpoint, there is an easy solution to this prob-
lem. One could argue that not considering resources and budgeting them from
the very beginning is a mistake and cannot work. Following this argument we
would need to consider resources already in the top-level contracts, and address
budgeting right from the beginning. Unfortunately, this is in total disagreement
with the Autosar approach, which advocates at early stages the specification of
software architectures consisting of software components, regardless of resources.

To overcome this difficulty, our approach is: 1) to precisely characterize the
“illegal” development steps we perform that violate contract refinement, and
2) to precisely identify the resulting risks for later system integration. To this
end we will use the weaker notion of port-refinement, for concrete contracts.
Decompose the alphabet V introduced in Definition 4:

V =
( {

0, 1
}P ) × ( ∏

r∈R Σr

)
= VP × VR

For M = ((T,R, ρ), L) a concrete scheduling component, define

[[M]]P =def prVP
(
[[Mρ/ε]]A

)
, where Mρ/ε =def ((T, ∅, ε), L)

and ε is the allocation map with empty domain. In words, we first ignore the
possible conflicts due to shared resources (replacing M by Mρ/ε), we then take
the abstract semantics [[Mρ/ε]]A, and we finally project the resulting abstract
semantics over the ports only (taking prVP (...)). [[M]]P captures the scheduling
aspect of M while discarding the resource aspect of it. Observe that [[M]]P

contains the language obtained by projecting [[M]]A over the ports; this inclusion
is generally strict. For C = (A,G) a concrete scheduling contract, define

[[C]]P =def ([[A]]P , [[G]]P) the port-contract associated with C

Despite the boldface notation used, port-contracts are abstract contracts. For C
and C′ two concrete contracts, say that
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C′ port-refines C, written C′ �P C if [[C′]]P � [[C]]P .

We will restrict the illegal steps of Process 1 to the following situation, which does
not contradict the Autosar methodology. Assume, from early design stages on,
prior knowledge of the following property about a given set T of tasks—this does
not require detailed knowledge of the computing resources:

Definition 8 (T-closed contracts). Say that a set T ⊂ T of tasks is segre-
gated if the set R of all resources partitions as follows: R = R ∪ R,R ∩ R = ∅,
and T ⊆ ΣR whereas T − T ⊆ ΣR. For any segregated set of tasks T , say that
concrete contract C = (A,G) is T-closed if TG ⊆ T and TA ∩ T = ∅.
If C = (A,G) is T-closed, then ρG(TG) ∩ ρA(TA) = ∅ holds. Illegal steps are
performed on T-closed contracts only. An illegal step consists in replacing T-
closed contract C by another T-closed contract C′ port-refining it: C′ �P C.

Port-refinement being not a refinement, replacing C by C′ won’t ensure that
any implementation of C′ meets the guarantees of C under any legal environment
for C′—it should ensure this if it was a true refinement. Still, the following result
holds, which precisely bounds the risks at system integration time:

Lemma 7. Let be C′ �P C satisfying the following conditions: C and C′ are
T-closed for a same segregated set T of tasks, C′ is schedulable, [[A′]]P = [[A]]P ,
A and A′ both have their tasks pairwise non-conflicting, and G is resourceless.
Then: ∅ �= A×G′ � G.

Lemma 7 expresses that G′ is an implementation of C′ that, when put in the
context of the most permissive environment of C, meets the guarantee G and
is schedulable. That G is met will remain valid for any legal environment of C
and any implementation of C′. Schedulability, however, is only ensured by the
most permissive environment of C and implementation of C′. This restriction is
not surprising since schedulability is a liveness property whereas A/G-contracts
support only safety properties.

We are now ready to explain how the Autosar development process (Pro-
cess 1) can be made safe by implementing the illegal development steps safely.

Process 2 (AUTOSAR Development Process Made Safe) We assume a
segregated subset T of tasks.

1. Start with a top-level, T-closed, contract Cfunc
top = (Atop, Gtop). At this level,

only functions are considered while computing resources are ignored. Func-
tions are abstracted as systems of tasks with their precedence constraints.
The top-level contract may be the conjunction of several viewpoints, and/or
it may be specified by means of requirement tables.

– Comment : No change with respect to Process 1 besides T-closedness.
2. To prepare for subcontracting to different suppliers, decompose the above

functional contract Ctop into functional, resource agnostic, sub-contracts in
such a way that

Cfunc
ref = (Aref ,Gref) = × i∈I Ci satisfies

{
Atop ×Gref � Gtop

Aref � Atop
(5)
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where the Ci are T-closed subcontracts for the different suppliers. In addi-
tion, we require that Aref and Atop possess identical sets of tasks, i.e., map
ψ of Lemma 3 is the identity. By Lemma 6, (5) ensures C func

ref � C func
top . So

far resources were not considered.
– Comment : No change so far, with respect to Process 1, besides nam-

ing contracts and making refinement step precise through (5). The first
two steps make no reference to semantics, meaning that no scheduling
analysis is required, cf. Comment 1. From the next step on, this process
deviates from Process 1.

3. At this step the computing resources are now taken into account. Allocate a
resource to each task of Aref and Gref , in such a way that all tasks of Aref

are pairwise non-conflicting, see Definition 1. Precedence constraints between
tasks are not modified. This yields a resource aware T-closed contract Cres

ref

such that

Cres
ref = (Ares

ref ,G
res
ref ) �P Cfunc

ref (6)

Since Ares
ref is free of conflict, only Gres

ref requires a non-trivial scheduling anal-
ysis, which result is specified through the semantics [[Gres

ref ]], cf. Comment 1.
At this point, resources have been globally budgeted and scheduling analysis
globally performed.

– Comment : This is the illegal step, which is protected by Lemma 7.
4. Continue by decomposing contract Cres

ref into resource aware sub-contracts
Cres

i , following the architecture specified in Step 2, in such a way that⊗
i∈I C

res
i � C res

ref . The results of the next section can be used for this.

4 An Example in the Context of AUTOSAR

To illustrate the practical use of the framework of scheduling contracts in
Autosar, we consider as an example an excerpt of an exterior light management
system for an automobile.3 Regarding modeling methodology and notations, we
will be using both concrete contracts (for the specification of contracts at early
steps of the design) and abstract contracts (when using the contract algebra).
We will use the symbols C and C to distinguish between them. The duration of
the time slot is 1μs.

Step 1 of Process 2: In this step a view of the Virtual Functional Bus System
is created. It shows how the system functions interact regardless of any network
topology or deployment across multiple ECUs. Step 1 of Process 2 is performed
by considering resourceless contracts for this Virtual Functional Bus (VFB)
view. All contracts created in this step have to be T-closed to prepare for the
later steps where resources are added. In these contracts, functions provided
by software components, are represented by means of tasks with precedence
constraints. Typical constraints imposed by the language of contracts would be

3 A case-study from the German SPES2020 project
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Fig. 3. Virtual Functional Bus (VFB) architecture

latency intervals, synchronization of events and event models. Figure 3 shows the
VFB architecture of the exterior light management. The system shall control
the brake lights in accordance with the driver pressing the brake pedal. The
TurnLights component controls the direction indicator lights according to the
position of the turn signal lever and the warn lights button. The system shall
also implement an emergency stop signal, where warn lights flash in case of
severe braking.

The graphical notations in Figure 3 distinguishes pure data flows (the dashed
lines) from control flows (the solid lines), where the latter may also carry data
items.

The languages LA and LG of a (concrete) scheduling contract can be speci-
fied by means of the Autosar timing extensions [9]. The concept of observable
events allows to derive sorts of scheduling components, as well as ports of their
tasks. Precedence order −→◦ follows from the interconnection of ports of software
components.

To avoid heavy textual notations, in the following we denote by the expression
δ(X,Y) the latency between occurrence of an event at port X and occurrence of an
event at port Y. Further S(X, T, J) denotes a periodic event model for occurrences
of events at port X, where T is the period and J is the jitter. We will also write
S(X, T ), if J = 0. We use boolean operators to combine such expressions.

In the case-study there is a maximum allowed latency between brake sensing
and activating the brake lights. The same applies to flashing the warn lights in
case of an emergency brake situation. The resulting top-level contract for the
VFB is as follows:

Ctop = (Atop,Gtop) =

(S(ext pedal, 20ms) ∧
S(trig TL, 20ms)

,
δ(ext pedal, ext brake lamp) ≤ 25ms∧
δ(ext pedal, ext rear di lamp) ≤ 60ms

)

Atop makes explicit an assumption about the frequency of sensor samples of the
brake pedal position. These assumptions were not part of the requirements.4

Step 2 of Process 2: Assuming that components BrakeLights and TurnLights

are implemented by two different suppliers, we propose sub-contracts specifying

4 It is actually not uncommon that some critical assumptions are implicit in require-
ments documents, which may, at times, become a problem.
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a time budgeting for them. Thereby a clear assignment of responsibilities to
the suppliers is achieved. This activity is step 2 of Process 2. In our case two
subcontracts are specified:

CBL =
(

S(ext pedal, 20ms) ,
δ(ext pedal, ext brake lamp) ≤ 25ms∧
δ(ext pedal, emcy) ≤ 5ms

)

CTL =
(S(emcy, 20ms, 5ms)∧

S(trig TL, 20ms) , δ(emcy, ext rear di lamp) ≤ 50ms

)

These contracts are still resourceless. To ensure that CBL and CTL are correct
with respect to the top-level contract, we must prove the refinement

CBL ⊗ CTL � Ctop

This can be performed by invoking Lemma 6.

Steps 3 and 4 of Process 2: The next step in the Autosar methodology
consists in developing system and sub-system views, where the network topol-
ogy and deployment of software components to ECUs is defined. Resource aware
contracts are now considered. A resource is allocated to each task of the con-
tracts defined for the VFB description. Precedence constraints between tasks
are not modified. If tasks of the assumption are pair-wise non-conflicting (see
Definition 1), this yields a resource aware T-closed contract, that port-refines the
contract of the VFB.

Fig. 4. Deploying VFB on computing and communication resources.

For the example, the VFB view is further refined and then deployed as the
architecture shown in Figure 4. The blue dashed boxes denote the previous
components BrakeLights and TurnLights from the architecture shown on Figure 3.
The brown boxes labeled CBE, CAN and RIE, indicate resources allocated to
tasks. Deployment is driven by the separation of the sensing and control parts



Contracts for Schedulability Analysis 285

from the actuation part. In addition to allocating resources, execution budgets
are specified per task. Mirroring the decomposition of the VFB description,
the contract of the system view is the composition of the resource aware sub-
contracts CBL′ and CTL′ . Since contracts created in this step and in previous
steps 1 and 2 are T-closed, Lemma 7 applies and we can bound the risks for later
system integration.

5 Conclusion

We have developed a framework of Assume / Guarantee contracts for schedu-
lability analysis. The methodological step of Autosar suggesting a transition
from a Virtual Function Bus view, which is independent of the target platform,
to a system view where network topology and deployment across ECUs is con-
sidered, was particularly challenging. A strict contract based approach offering
independent development was not feasible, since task scheduling is a resource
allocation problem, which, by essence, can only be solved globally. However,
our approach allows to properly bound the development steps of the Autosar
methodology that do not comply with the rules of contract based design, while
avoiding risks at system integration with a clear and limited additional disci-
pline regarding resource segregation. Within resource segregated subsystems,
our contract framework enables compositional reasoning about scheduling of
applications distributed over several resources.
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Abstract. Deterministic timed automata are strictly less expressive
than their non-deterministic counterparts, which are again less expres-
sive than those with silent transitions. As a consequence, timed automata
are in general non-determinizable. This is unfortunate since determin-
istic automata play a major role in model-based testing, observability
and implementability. However, by bounding the length of the traces in
the automaton, effective determinization becomes possible. We propose
a novel procedure for bounded determinization of timed automata. The
procedure unfolds the automata to bounded trees, removes all silent tran-
sitions and determinizes via disjunction of guards. The proposed algo-
rithms are optimized to the bounded setting and thus are more efficient
and can handle a larger class of timed automata than the general algo-
rithms. The approach is implemented in a prototype tool and evaluated
on several examples. To our best knowledge, this is the first implemen-
tation of this type of procedure for timed automata.

1 Introduction

The design of modern embedded systems often involves the integration of inter-
acting components I1 and I2 that realize some requested behavior. In early stages
of the design, I1 and I2 are high-level and partial models that allow considerable
implementation freedom to the designer. In practice, this freedom is reflected in
the non-deterministic choices that are intended to be resolved during subsequent
design refinement steps. In addition, the composition of two components involves
their synchronization on some shared actions. Typically, the actions over which
the two components interact are hidden and become unobservable to the user.
It follows that the overall specification I = I1 || I2 can be a non-deterministic
partially observable model. However, for many problems such as model-based
testing, observability, implementability and language inclusion checking, it is
desirable and in certain cases necessary to work with the deterministic model.

Many embedded systems must meet strict real-time requirements. Timed
automata (TA) [3] are a formal modeling language that enables specification of

c© Springer International Publishing Switzerland 2015
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complex real-time systems. In contrast to the classical automata theory, deter-
ministic TA (DTA) are strictly less expressive than the fully observable non-
deterministic TA (NTA) [3,12,17], whereas the latter are strictly less expressive
than TA with silent transitions (eNTA) [5]. This strict hierarchy of TA with
respect to determinism and observability has an important direct consequence
- NTA are not determinizable in general. In addition, due to their complexity,
it is rarely the case that exhaustive verification methods are used during the
design of modern embedded systems. Lighter and incomplete methods, such as
model-based testing [16] and bounded model checking [8] are used in practice in
order to gain confidence in the design-under-test and effectively catch bugs.

In this paper, we propose a procedure for bounded determinization of eNTA.
Given an arbitrary strongly responsive1 eNTA A and a bound k, our algorithm
computes a DTA D(A) in the form of a timed tree, such that every timed trace
consisting of at most k observable actions is a trace in A if and only if it is a trace
in D(A). It provides the basis for effectively implementing bounded refinement
checking and test case generation procedures.

Our concrete motivation behind determinizing the model was induced by our
previous model-based testing approach [2]. This approach uses fault-based tech-
niques for the test generation and needs to perform language-inclusion between
correct and faulty timed automata models. The language inclusion is imple-
mented via SMT-solving and relies on deterministic models. Thus, the deter-
minization enables the processing of a wider class of models and the restriction
to bounded traces does not pose a problem, as testing only considers finite traces.

The proposed algorithms are performed in three steps: (1) we unfold the orig-
inal automaton into a finite tree and rename the clocks in a way that only needs
one clock reset per transition, (2) we remove the silent transitions from the tree,
(3) we determinize it. Our determinization procedure results in a TA description
which includes diagonal [9] and disjunctive constraints. Although non-standard,
this representation is practical and optimized for the bounded setting – it avoids
costly transformation of the TA into its standard form and exploits efficient
heuristics in SMT solvers that can directly deal with this type of constraints.
In addition, our focus on bounded determinization allows us to consider models,
such as TA with loops containing both observable and silent transitions with
reset, that could not be determinized otherwise. We implemented the procedure
in a prototype tool and evaluated it on several examples. To our best knowledge,
this is the first implementation of this type of procedure for timed automata.

Running Example. The different steps of the algorithms will be illustrated
on a running example of a coffe-machine shown in Figure 1. After inserting a
coin, the system heats up for zero to three seconds, followed by a beep-tone
indicating its readyness. Alternatively, if there is no coffee or water left, the beep
might occur after exactly two seconds, indicating that the refunding process
has started and the coin will be returned within four seconds. Heating up and
graining the coffee together may only take between one and two seconds. Then

1 In model-based testing, strong responsiveness is the requirement that there are no
silent loops, otherwise the tester cannot distinguish between deadlocks and livelocks.
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Fig. 1. Running example

the brewing process starts and finally the machine
releases the coffee after one second of brewing.
There is no observable signal indicating the transi-
tion from graining to brewing, thus this transition
is silent.

The rest of the paper is structured as fol-
lows: First, we give the basic definitions and nota-
tion of TA with silent transitions (Section 2).
Then, we illustrate the first step of our procedure,
the bounded-unfolding of the automaton and the
renaming of clocks (Section 3). This is followed by the second step, the removal
of silent transitions (Section 4) and the final step, our determinization app-
roach (Section 5). Section 6 summarizes the complexity of the different steps. In
Section 7 we evaluate our prototype implementation and in Section 8 we address
related work. Finally, in Section 9 we conclude our work. Complete proofs of the
propositions and theorems can be found in our technical report [15].

2 Timed Automata with Silent Transitions

A timed automaton is an abstract model aiming at capturing the real-time
behaviour of systems. It is a finite automaton extended with a set of clocks
defined over R≥0, the set of non-negative real numbers. We may represent
the timed automaton by a graph whose nodes are called locations, which are
defined through a set of upper bounds put on the clock values. These bounds
are restricted to non-negative integer values. While being at a location, all clocks
progress at the same rate. The edges of the graph are called transitions. Each
transition may be subject to constraints, called guards, put on clock values in
the form of integer inequalities. At each such transition an action occurs and
some of the clocks may be reset. The actions take values in some finite domain
denoted by Σ. Here we are dealing with the class of timed automata with an
extended set of actions including also silent actions, denoted by ε. hese are inter-
nal actions that are non-observable from the outside, and we distinguish them
from the actions that are not silent and called observable actions. We call a TA
without silent transitions fully-observable.

Let X be a finite set of clock variables. A clock valuation v(x) is a function
v : X → R≥0 assigning a real value to every clock x ∈ X . We denote by V the set
of all clock valuations and by 0 the valuation assigning 0 to every clock. For a
valuation v and d ∈ R≥0 we define v+d to be the valuation (v+d)(x) = v(x)+d
for all x ∈ X . For a subset Xrst of X , we denote by v[Xrst] the valuation such that
for every x ∈ Xrst, v[Xrst](x) = 0 and for every x ∈ X \ Xrst, v[Xrst](x) = v(x).
A clock constraint ϕ is a conjunction of predicates of the form x ∼ n, where
x ∈ X , n ∈ N and ∼ ∈ {<,≤,=,≥, >}. Given a clock valuation v, we write
v |= ϕ when v satisfies ϕ. We give now a formal definition of (non-deterministic)
timed automata with silent transitions.
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Definition 1 (eNTA). A (non-deterministic) timed automaton with silent
transitions A is a tuple (Q, qinit, Σε,X , I,G, T ,Qaccept), where Q is a finite set
of locations and qinit ∈ Q is the initial location; Σε = Σ ∪ {ε} is a finite set
of actions, where Σ are the observable actions and ε represents a silent action,
that is a non-observable internal action; X is a finite set of clock variables;
I : L → LI is a mapping from locations to location invariants, where each loca-
tion invariant li ∈ LI is a conjunction of constraints of the form true, x < n
or x ≤ n, with x ∈ X and n ∈ N; G is a set of transition guards, where
each guard is a conjunction of constraints of the form x ∼ n, where x ∈ X ,
∼ ∈ {<,≤,=,≥, >} and n ∈ N; T ⊆ Q × Σε × G × P (X ) × Q is a finite set
of transitions of the form (q, α, g,Xrst, q

′), where q, q′ ∈ Q are the source and
the target locations; α ∈ Σε is the transition action; g ∈ G is the transition
guard; Xrst ⊆ X is the subset of clocks to be reset; Qaccept ⊆ Q is the subset of
accepting locations.

Example 1. For the eNTA illustrated in Figure 1 we have Q = {q0, . . . , q4},
qinit = q0, Σε = {ε, coin, beep, refund , coffee}, X = {x}, I(qi) = true|qi ∈ Q,
G = {0 < x < 3, x = 2, x < 4, 1 < x < 2, x = 1}, Qaccept = {q0}. T is the set
containing all transitions, e.g. the transition from q2 to q3, with α = ε (thus, it
is a silent transition), g = 1 < x < 2 and Xrst = {x}.

The semantics of an eNTA A is given by the timed transition system [[A]] =
(S, sinit,R≥0, Σε, T, Saccept), where S = {(q, v) ∈ Q × V | v |= I(q)}; sinit =
(qinit,0); T ⊆ S×(Σε∪R≥0)×S is the transition relation consisting of timed and
discrete transitions such that: Timed transitions (delay): ((q, v), d, (q, v+d)) ∈ T ,
where d ∈ R≥0, if v + d |= I(q); Discrete transitions (jump): ((q, v), α, (q′, v′)) ∈
T , where α ∈ Σ, if there exists a transition (q, α, g,Xrst, q

′) in T , such that: (1)
v |= g; (2) v′ = v[Xrst] and (3) v′ |= I(q′); Saccept ⊆ S such that (q, v) ∈ Saccept

if and only if q ∈ Qaccept.
A finite well-behaving run ρ of an eNTA A is a finite sequence of alternating

timed and discrete transitions, that ends with an observable action, of the form
(q0, v0)

d1−→ (q0, v0 + d1)
τ1−→ (q1, v1)

d2−→ · · · dn−→ (qn−1, vn−1 + dn) τn−→ (qn, vn),
where q0 = qinit, v0 = 0, τi = (qi−1, αi, gi,Xrst(i), qi) ∈ T and αi ∈ Σ. In this
paper we consider only finite and well-behaving runs. A run ρ is accepting if
the last location qn is accepting. The run ρ of A induces the timed trace σ =
(t1, α1), (t2, α2), . . . , (tn, αn) defined over Σε, where ti = Σi

j=1di. From the latter
we can extract the observable timed trace, which is obtained by removing from
σ all the pairs containing silent actions while taking into account the passage of
time. A TA is called deterministic if it does not contain silent transitions and
whenever two timed traces are the same then they are induced by the same run.
Otherwise, the TA is non-deterministic. The language accepted by an eNTA A,
denoted L(A), is the set of observable timed traces induced by all accepting
runs of A. Note, that the restriction to well-behaving runs is compatible with
the definition of the language of the automaton, where silent actions that occur
after the last observable action on a finite run are ignored. As a consequence,
a location with in-going edges consisting of only silent transitions cannot be an
accepting location.
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3 k-Bounded Unfolding of Timed Automata

Given an eNTA A which is strongly responsive, its k-prefix language Lk(A) ⊆
L(A) is the set of observable timed traces induced by all accepting runs of A
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Fig. 2. Unfolding and clock renaming

which are of observable length
bounded by k. That is,

Lk(A) = {w ∈ L(A) | |w| ≤ k}. (1)

By unfolding A and cutting it at
observable level k, the resulting TA,
Uk(A), satisfies

L(Uk(A)) = Lk(A). (2)

Uk(A) is in the form of a finite
tree, where each path that starts at
the root ends after at most k observ-
able transitions, and we may also fur-
ther cut A by requiring that all leaves
are accepting locations. Note, that
if we reach in Uk(A) a copy of an

accepting location q of A by a silent transition then it will not be marked as an
accepting location (but another copy might be marked as an accepting location
if reached by an observable transition).

Figure 2(a) shows the unfolding of the coffee-machine up to observable depth
three. The left branch is longer than the right, as it contains a silent transition.

3.1 Renaming the Clocks

Every unfolded timed automaton can be expressed by an equivalent timed
automaton that resets at most one clock per transition. This known normal
form [4] crucially simplifies the next stages of our algorithm, where we do not
need to bother with multiple clock resets in one transition. The basic idea is to
substitute the clocks from the original automaton by new clocks, where multiple
old clocks reset at the same transition are replaced by the the same new clock, as
they measure the same time until they are reset again. The substitution of the
clocks works straight forward: At each path from the root, at the i-th observable
transition, a new clock xi is introduced and reset, and if this transition is fol-
lowed by l > 0 silent transitions then new clocks xi,0, . . . , xi,l−1 are introduced
and reset. A clock x that occurs in a guard is substituted by the new clock that
was introduced in the transition where the last reset of x happened, or by x0 if it
was never reset. Let τi and τj be two transitions on the same path in the original
automata at observable depth i, j, s.t. i < j. Furthermore, a clock x appearing in
the guard of τj , is reset before in τi, but is not reset on any transition in between
τi and τj . Then, xi is introduced and reset at τi and the original clock variable x
is substituted by xi in the guard of τj . Figure 2(b) illustrates the clock renaming
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applied to the coffee machine. In the guards of the two beep-transitions starting
at q1, x is replaced by x1, since the last reset of x in the original automata was
at depth one, while in the coffee-transition from q3 it is replaced by x2,0, as x
was reset in the first silent transition after depth two.

4 Removing the Silent Transitions

In this section we give an algorithm that removes the silent transitions from the
eNTA A, which is in the form of a finite tree with renamed clocks. Thus, at
each level i there will be a single clock xi reset on all transitions of that level.
Algorithm 1 shows the workflow and Figure 3 illustrates the general idea.
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gs+1Silent Trans.
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Bypass

qs−1 qs−1

q′
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Fig. 3. Bypassing the silent transition

Algorithm 1. Removing the Silent Transitions
Input: A ∈ eNTAk in the form of a tree of observable depth k with renamed clocks
Output: O(A) ∈ NTAk, such that L(O(A)) = L(A)
1: while there are silent transitions do
2: Find first (from root) silent transition τs,0 from qs to qs,0
3: Set lower bound to the silent transition
4: Create bypass transition with enabling guard
5: Augment transitions from qs,0 with taken guard
6: Update guards on paths from qs,0
7: Remove τs,0
8: end while

We remove the silent transitions one at a time, where at each iteration we
remove the first occurrence of a silent transition on some path from the root,
until no silent transitions are left (e.g. we can pick a path and move one-by-
one all its silent transitions, then move to another path, and so on). So, let τs,0

be such a first silent transition found by Line 2 of the algorithm, leading from
location qs to location qs,0 with guard gs,0 and reset of clock xs,0. Let qs be
reached from location qs−1 with an observable transition τs and with guard gs.
The case where qs is the initial location is simpler, as it does not require building
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a bypass transition. In order to remove the silent transition τs,0 after forming a
transition that bypasses it, several steps are carried out, that will be explained
in detail in the following subsections. First, we set an auxilliary lower bound on
the clock that is reset on the silent transition by updating the guard (Line 3).
Then, we create the bypass transition using an enabling guard eg(τs,0) which
represents the upper bound until when the silent transition τs,0 is enabled (Line
4). In Line 5 we construct a taken guard tg(τs,0) that ensures that the transitions
from qs,0 come after the necessary delay that is forced by the silent transition.
The taken guard is added to all transitions leaving qs,0. Finally, in Lines 6–7,
we remove the silent transition τs,0 and update all future guards referring to the
deleted clock xs,0.
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q5q6
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{x1}

beep
x1 = 2
{x2}
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{x2}

refund
x1 < 4

{x3}

coffee
2 < x1 < 3
∧ 1 < x1

{x3}

Fig. 4. Fully observable
non-deterministic TA

Setting a Lower Bound to the Silent Tran-
sition. We set a lower bound to the silent tran-
sition by augmenting the guard gs,0 of τs,0 to be
g′

s,0 = gs,0 ∧ (0 ≤ xs), where xs is the clock
that is reset on the transition τs that precedes the
silent transition. This additional constraint per def-
inition always evaluates to true, but it is used in
the next step to compute the unary constraints of
the enabling guard. The guard of the silent transi-
tion in Figure 2 (b) after setting the lower bound is
1 < x1 < 2 ∧ 0 ≤ x2.

Creating a Bypass with the Enabling Guard.
The enabling guard eg(τs,0) guarantees that each

clock’s constraint that was part of the silent transition is satisfied at some non-
negative delay and that these constraints are satisfied simultaneously, thus at
some point during the bypass transition the silent transition would have been
enabled as well. We describe here how the enabling guards are defined for strict
inequalities, as shown in the upper part of Table 1. The other cases are dealt
similarly, as seen in the table, and the constraint xi = ni is treated as ni ≤
xi ≤ ni. For every pair of a lower bound constraint mi < xi and an upper
bound constraint xj < nj , where i 
= j and xi, xj 
= xs (xs is the clock that is
reset at τs), that appear in g′

s,0 we form the enabling guard binary constraint
xj − xi < nj − mi as shown in the first line of Table 1.

The next two lines consider constraints that involve the clock xs, where xs

will be removed as it is the clock that will be reset on the bypass and is considered
of value 0. Note, that for each upper bound constraint xj < nj we use the lower
bound constraint 0 ≤ xs that was added in the previous step of the algorithm
to compute the enabling guard unary constraint xj < nj , which guarantees that
at the time of the bypass xj does not pass its upper bound constraint of the
silent transition. An example of such a unary constraint is marked in red in
the transition from q1 to q3 in Figure 4. The silent transition in the original
automaton could not have been enabled if x1 had already been higher than two
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Table 1. Enabling guard constraints

Silent Trans. Constraints Clock Reset Enabling Guard Constraint

(mi < xi) ∧ (xj < nj) xs xj − xi < nj − mi

(ms < xs) ∧ (xj < nj) xs xj < nj − ms

(mi < xi) ∧ (xs < ns) xs mi − ns < xi

(mi ≤ xi) ∧ (xj < nj) xs xj − xi < nj − mi

(mi < xi) ∧ (xj ≤ nj) xs xj − xi < nj − mi

(mi ≤ xi) ∧ (xj ≤ nj) xs xj − xi ≤ nj − mi

(mi = xi) ∧ (xj = nj) xs xj − xi = nj − mi

after the beep-transition, thus the bypass can also only be enabled while x1 is
smaller than two. The running example does not contain any binary constraints.

To create the bypass, we split the paths through qs in the original automaton
A into two. Those that do not take the silent transition τs,0 continue as before
from qs−1 to qs and then to some location different from qs,0. The paths that
went through τs,0 are directed from qs−1 to qs,0 and then continue as before. The
bypass τ ′

s from qs−1 to qs,0 has the same observable actions as those of τs, the
same new clock reset xs, and the guard g′

s which is the guard gs of τs augmented
with the enabling guard eg(τs,0) (see Figure 3). Figure 4 shows the removal of
the silent transition illustrated on the coffee-machine. The transition from q1 to
q3 is the bypass and the transition from q1 to q2 is the original transition. Since
the silent transition was the only transition leaving q2, q2 does not contain any
outgoing transitions anymore, once the bypass is generated.

Augmenting the Taken Guard. For each transition from qs,0 to qs+1 we
augment its guard gs+1 by forming g′

s+1 = gs+1 ∧ tg(τs,0) (see Figure 3), where
tg(τs,0) is the taken guard. tg(τs,0) is composed of a single constraint: 0 ≤ xs,0,
where xs,0 is the clock that is reset at the silent transition τs,0. In the next
stage of the algorithm of updating the future guards it will be transformed
into the conjunction of the lower bound constraints mi < xi or mi ≤ xi that
appear in g′

s,0. These constraints make sure that we spend enough time at qs,0

before moving to the next locations, as if we had taken the silent transition. The
constraint is also used for synchronization of the future guards in the next step.
In Figure 4, the red-marked part of the guard from transition q3 to q6 shows the
taken guard that has already been updated from 0 ≤ x2,0 to 1 < x1.

Table 2. Update rules for future guards after removing the silent transitions

Silent Trans. Constr. Future Constr. Replaced Constr.

mi < xi, {xs,0} ms+j < xs,0 or ms+j ≤ xs,0 mi + ms+j < xi

mi ≤ xi, {xs,0} ms+j < xs,0 mi + ms+j < xi

mi ≤ xi, {xs,0} ms+j ≤ xs,0 mi + ms+j ≤ xi

xi < ni, {xs,0} xs,0 < ns+j or xs,0 ≤ ns+j xi < ni + ns+j

xi ≤ ni, {xs,0} xs,0 < ns+j xi < ni + ns+j

xi ≤ ni, {xs,0} xs,0 ≤ ns+j xi ≤ ni + ns+j

xi = ni, {xs,0} xs,0 ∼ ns+j xi ∼ ni + ns+j
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Updating the Future Guards. The removal of the silent transition τs,0

enforces updating of the guards in the paths that start at qs,0 and that refer
to the clock xs,0, that is reset on the silent transition. The most simple case is
when the the silent transition guard g′

s,0 contains an exact constraint xi = ni,
because then any future constraint of the form xs,0 ∼ l can be replaced by
xi ∼ ni + l. So, let us assume that the silent transition does not contain an exact
constraint. The rules for updating the future guards are summarized in Table 2.
Note, that an equality constraint xs,0 = ns+j in a future guard may be treated
as ns+j ≤ xs,0 ≤ ns+j .

Let gs+1, . . . , gs+p be the ordered list of guards of consecutive transitions
τs+1, . . . , τs+p along a path that starts at qs,0. Then, if gs+j contains the con-
straint ms+j < xs,0, it is replaced by the conjunction of constraints mi +ms+j <
xi, for each constraint mi < xi that appear in g′

s,0. Similarly, for upper bound
constraints. In Figure 4, one future guard was updated in the transition from q3
to q6: The original guard of this transition was x2,0 = 1 (where x2,0 was reset
on the silent transition) and the guard of the silent transition was 1 < x1 < 2.
Thus, according to the update rules, the updated future guard is 2 < x1 < 3
(written in black), conjuncted with the taken guard (marked in red).

q0start q1 q2 q3

ε
1 < x0 < 2
{x0,1}

α
x0,1 = 2
{x1}

α
x0,1 = 4
{x2}

q1start q2 q3

α
3 < x0 < 4
{x1}

α
5 < x0 < 6 ∧ x1 = 2
{x2}

Fig. 5. Guard synchronization

These rules ensure that each future con-
straint on the clock xs,0 separately conforms
to and does not deviate from the possible
time range of the silent transition. Yet, we
need to satisfy a second condition: that along
each path that starts at qs,0 these future
occurrences of xs,0 are synchronized. This is
achieved by augmenting the future guards
with constraints of the form that appear in

Table 3. No transition in our running example needs synchronization, hence we
use a different example: the upper automaton in Figure 5 shows one silent tran-
sition followed by two observable transitions. Using only the previous update
rules when removing the silent transition, the first observable transition might
occur between three and four seconds, and the second one between five and six
seconds. If the first transition occurs after three seconds and the second one after
six, this would not conform to the original automaton which required exactly two
seconds between them. Thus, applying the last synchronization rule of Table 3,
the constraint x1 = 4 − 2 is conjuncted to the second guard. The lower automa-
ton in Figure 5 illustrates the synchronization. Note, we do not need a bypass
transition here, since the silent transition starts in the initial state.

Removing the Silent Transition. Finally, we can safely remove the silent
transition τs,0 from qs to qs,0 after forming the bypass from qs−1 to qs,0 with the
necessary modifications to the transition guards.

Theorem 1 (Silent Transitions Removal). L(O(A)) = L(A).
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Table 3. Synchronization constraints for future guards after removing silent transitions

Constr. of gs+j Constr. of gs+i, {xs+i}, i < j Sync. Constr. of gs+j

ms+j < xs,0 xs,0 < ns+i or xs,0 ≤ ns+i ms+j − ns+i < xs+i

ms+j ≤ xs,0 xs,0 < ns+i ms+j − ns+i < xs+i

ms+j ≤ xs,0 xs,0 ≤ ns+i ms+j − ns+i ≤ xs+i

xs,0 < ns+j ms+i < xs,0 or ki ≤ xs,0 xs+i < ns+j − ms+i

xs,0 ≤ ns+j ms+i < xs,0 xs+i < ns+j − ms+i

xs,0 ≤ ns+j ms+i ≤ xs,0 xs+i ≤ ns+j − ms+i

xs,0 = ns+j xs,0 = ns+i xs+i = ns+j − ns+i

5 Determinization
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Fig. 6. (a) Modified guards added to future tran-
sitions (b) determinization via disjunction

Existing determinization algo-
rithms (as e.g. applied in [18])
create the powerset of all tran-
sitions to be determinized, and
build one transition for each
subset in the powerset. We
propose an alternative app-
roach, that reduces the amount
of locations and transitions
in the deterministic automata,
by shifting some complexity
towards the guards. Our moti-
vation is the use of SMT solvers

for verifying the timed automata models. The larger guards can be directly con-
verted into SMT-LIB formulas, and thus should not pose a problem.

The approach works under the following prerequisites: After the removal of
the silent transitions the timed automaton A is in the form of a tree of depth k.
At each level i the same new clock xi is reset on each of the transitions of that
level. This is the only clock reset on this level, and no clock is ever reset again.

The basic idea behind the determinization algorithm is to merge all transi-
tions of the same source location and the same action via disjunction, and to
push the decision which of them was actually taken to the following transitions.
The postponed decision which transition was actually taken can be solved later
on by forming diagonal constraints (as in zones) that are invariants of the time
progress, and are conjuncted to immediately following transitions. Note that
the distinction between accepting and non-accepting locations increases com-
plexity slightly: the determinization of transitions leading to accepting locations
and transitions leading to non-accepting locations can not be done exclusively
by disjunction of their guards. We therefore need to add an accepting and a
non-accepting location to the deterministic tree, and merge all transitions lead-
ing to non-accepting locations and all transitions leading to accepting locations
separately. To ensure determinism for these transitions, we conjunct the negated
guard of the accepting transition to the guard of the non-accepting transition.
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Algorithm 2. Guard-Oriented Determinization
Input: A ∈ NTAk in the form of a tree of depth k with renamed clocks
Output: D(A) ∈ TAk, such that L(D(A)) = L(A)
1: P ← {(Qinit, 0)}
2: while P �= ∅ do
3: Pick (qi, i) ∈ P ; P ← P\(qi, i)
4: for each α ∈ Σ do
5: if ∃ τ1(qi, α, g1, {xi+1}, q1) �= τ2(qi, α, g2, {xi+1}, q2) then
6: gacc ← false; g¬acc ← false
7: Add new locations qacc, q¬acc

8: for each transition τi(qi, α, gi+1, {xi+1}, qi+1) do
9: g′ ← gi+1

10: for each clock xj in gi+1 do
11: g′ ← g′[xj := xj − xi+1]
12: end for
13: for each transition τi+1(qi+1, β, gi+2, {xi+2}, qi+2) do
14: Add τacc(qacc, β, (gi+2 ∧ g′), {xi+2}, qi+2)
15: Add τ¬acc(q¬acc, β, (gi+2 ∧ g′), {xi+2}, qi+2)
16: Remove τi+1

17: end for
18: if accepting(qi+1) then gacc ← gacc ∨ gi+1 end if
19: if ¬accepting(qi+1) then g¬acc ← g¬acc ∨ gi+1 end if
20: Remove τi and qi+1

21: end for
22: Add transition τacc(qi, α, gacc, {xi+1}, qacc)
23: Add transition τ¬acc(qi, α, (g¬acc ∧ ¬gacc), {xi+1}, q¬acc)
24: end if
25: end for
26: for each transition τi(qi, α, gi+1, {xi+1}, qi+1) do
27: P ← P ∪ (qi+1, i + 1)
28: end for
29: end while

A pseudo-code description is given in Algorithm 2. The determinization is
done in several steps applied to every location q with multiple outgoing tran-
sitions with the same action (Line 5), starting at the initial location (Line 1).
Let qi be such a location with multiple α transitions (Line 8). First, we add an
accepting and a non-accepting location qacc, q¬acc replacing the target locations
of the multiple α transitions (Line 7). Then, for each τi in the α transitions with
guard g from qi to qi+1, let g′ be the result of subtracting the clock xi+1 that is
reset on τi from all clocks that appear in g (Lines 9-12). Next, g′ is conjuncted
to the guards of each transition τi+1 that follows τi and the source location of
τi+1 is set to either qacc or q¬acc, depending on whether qi+1 is accepting or not.
Transitions leaving q¬acc are additionally copied to qacc, in case the guards of α
transitions overlap. (Lines 14,15). Note that g′ evaluates to true in every branch
below τi if τi was enabled, thus the conjunction does not change the language
of the automaton. Figure 6(a) illustrates the conjunction of the modified guards
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on our running example, marked in red. Note that the determinization did not
involve any accepting locations, thus there was no splitting into qacc and q¬acc.
Next, all the α-transitions from q leading to accepting locations are merged into
a transition leading to qacc (Line 22) and all others into a transition leading
to q¬acc(Line 23), by disjuncting their guards (Lines 18,19). The guard of the
transition leading to q¬acc is conjuncted to the negation of the other guard, to
ensure determinism (Line 23). Finally, all merged τi and their target locations
can be removed (Line 20). Figure 6(b) shows the determinized coffee-machine.

Theorem 2 (Determinization). The determinization algorithm constructs a
deterministic timed automaton D(A) such that L(D(A)) = L(A).

6 Complexity

Bounded Unfolding. We unfold the timed automaton A into a tree and cut
it when reaching observable level k. Let us assume that the tree is of depth K,
K ≥ k, and of size N = O(dK), with d ≥ 1 representing the approximate out-
degree of the vertices in the graph of A. Since the analysis of the SMT solvers
for different applications requires the exploration of all the transitions in the
unfolded graph of A, the unfolding stage of our algorithm does not necessarily
increase the overall time complexity of the algorithm.

Removing Silent Transitions. Our algorithm does not increase the size of the
tree since we only substitute the silent transitions by the bypass transitions. We
do add, however, constraints. The number of enabling-guard constraints that we
add to each bypass transition is of order O(K2). Each updated future constraint
is of order O(K) (including on-the-fly simplification, so that each clock has at
most one lower and one upper bound), and each future transition may be updated
at most O(K) times. Hence, the updating step is also of order O(K2), and the
complexity of the whole algorithm is O(NK2). Note, we do not need to transform
the diagonal constraints introduced in the algorithm into unary constraints, nor
do they introduce problems in the next algorithm of determinization.

Determinization. decreases the size of the unfolded automaton, if non-deter-
minism exists. The complexity gain can be exponential in the number of locations
and transitions, but is lost by a proportional larger complexity in the guards.

7 Implementation and Experimental Results

The algorithms were implemented in Scala (Version 2.10.3) and integrated into
the test-case generation tool MoMuT::TA2, providing a significant increase in
the capabilities of the tool. MoMuT::TA provides model-based mutation test-
ing algorithms for timed automata [2], using UPPAAL’s [14] XML format as
input and output. The determinization algorithm use the SMT-solver Z3 [10] for

2 https://momut.org/?page id=355

https://momut.org/?page_id=355
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Fig. 7. The four timed automata used in Study 1 and Study 2

checking satisfiability of guards. All experiments were run on a MacBook Pro
with a 2.53 GHz Intel Core 2 Duo Processor and 4 GB RAM.

The implementation is still a prototype and further optimizations are planned.
One already implemented optimization is the ”on-the-fly” execution of the
presented algorithms, allowing the unrolling, clock renaming, silent transition
removal and determinization in one single walk through the tree. The combined
algorithm does not suffer from the full exponential blow-up of the unfolding: if the
automaton contains a location that can be reached via different traces, yet with
the same clock resets, the unfolding splits it into several, separately processed,
locations, while the on-the-fly algorithm only needs to process it once.

The following studies compare the numbers of locations and the runtimes of
a) the silent transition removal, b) a standard determinization algorithm that
works by splitting non-deterministic transitions into several transitions that con-
tain each possible combination of their guards, c) the new determinization algo-
rithm introduced in Section 5 and d) its on-the-fly version.

Study 1. The first example, taken from Diekert et al. [11], is the timed automa-
ton illustrated in Fig. 7 (a), which cannot be determinized. We then added
another α-transition (Fig. 7 (b)), which causes non-determinism after removing
the silent transition. The test results are shown in Table 4 (before and after
modification).

Table 4. Runtime and number of locations for the automata of Fig. 7 (a) (first three
rows) and Fig. 7 (b) (last three rows)

Depth Number of locations Runtime (sec.)

unfolded std. det. new det. on-the-fly ε-removal std. det. new det. on-the-fly

2 8 7 7 7 0.1 0.3 0.1 0.1
5 78 63 63 63 0.4 0.5 0.4 0.2
9 1,278 1,023 1,023 1,023 16,011.2 6.7 7.2 1.0

2 9 8 8 8 0.2 0.2 0.2 0.1
5 177 135 84 63 0.8 0.9 1.3 0.7
9 8,361 4,364 3,609 1,023 20,969.0 71.2 88.3 9.6
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Study 2. The second example is taken from Baier et al. [4] and is illustrated in
Fig. 7(c). We modified the automaton by adding a silent transition (Fig. 7(d)).
Table 5 shows the results of the two determinization approaches.

Table 5. Runtime and number of locations for the automata of Fig. 7 (c) (first three
rows) and Fig. 7 (d) (last three rows)

Depth Number of locations Runtime (sec.)

unfolded std. det. new det. on-the-fly ε-removal std. det. new det. on-the-fly

2 5 5 4 4 - 0.1 0.1 0.1
5 11 10 8 8 - 0.2 0.3 0.1
10 21 21 16 16 - 0.3 0.3 0.1
25 51 50 38 38 - 0.5 0.9 0.2
50 101 100 76 76 - 0.7 391.6 0.3

2 5 5 4 4 0.1 0.1 0.1 0.01
5 24 26 8 8 0.2 2.1 0.4 0.3
10 140 661 16 16 0.5 1,945.1 2.1 0.5

Study 3. This study is part of a model of an industrial application: it is based on
a car alarm system that was already used as an example in our work on model-
based mutation testing from timed automata (see [2] for the whole model). In
this evaluation, we introduced a silent transition that adds a non-deterministic
delay of up to two seconds before the timer of the alarm starts, and our results
are given in Table 6. We were able to perform the removal of silent transitions
and the guard-oriented determinization up to depth 12, and the location-oriented
determinization up to depth 8.

As expected, the studies confirm that the complexity of the different algo-
rithms depends vastly on the input models. For the current paper we picked two
small examples that were introduced in previous papers on determinization and
one example that was an industrial use case in a previous project. Our next step
will be a stronger evaluation on a larger case study. The tool and the current
examples are available3.

8 Related Work

The main inspiration to our work comes from [5] and [4]. Bérard et al. [5] show
that silent transitions extend the expressive power of TA and identify a sub-class
of eNTA for which silent transitions can be removed. By restricting our selves to
the bounded setting, we can remove silent transition of all strongly-responsive
eNTAs. In addition, our approach for removing silent transitions preserves diag-
onal constraints in the resulting automaton, thus avoiding a potential exponen-
tial blow-up in the size of its representation (see [9] for the practical advantages
of preserving diagonal constraints in TA). Baier et al. [4] propose a procedure

3 https://momut.org/?page id=394

https://momut.org/?page_id=394
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Table 6. Runtime and number of locations for the Car Alarm System [2], modified by
adding a silent transition causing a 0-2 seconds delay.

Depth Number of locations Runtime (sec.)

unfolded std. det. new det. on-the-fly ε-removal std. det. new det. on-the-fly

2 8 8 8 8 0.108 0.2 0.1 0.0
5 153 139 83 81 0.4 1.0 0.8 0.2
8 2,062 1,973 757 739 4.1 129.0 11.6 0.9
12 78,847 - 14,009 13,545 10,592.3 - 4,832.1 10.2

for translating NTA to infinite DTA trees, and then identify several classes of
NTA that can be effectively determinized into finite DTA. In contrast to our
work, their procedure works on the region graph, which makes it impractical
for implementation. In addition, we also allow in our determinization procedure
disjunctive constraints which results in a more succint representation that can
be directly handled by the bounded model checking tools. Both [5] and [4] tackle
non-determinism and observabilty in TA from a general theoretical perspective.
We adapt the ideas from these papers and propose an effective procedure for the
bounded determinization of eNTA.

Wang et. al [18] use timed automata for language inclusion. Their procedure
involves building a tree, renaming the clocks and determinization of the tree.
Contrary to our work, they do not restrict themselves to the bounded setting,
thus taking the risk that their algorithm does not terminate for some classes
of timed automata. Also, they use the ”standard” determinization method that
involves splitting non-deterministic transitions into a possibly far larger set of
deterministic transitions, whereas we join them into one transition.

Krichen and Tripakis [13] produce deterministic testers for non-deterministic
timed automata in the context of model-based testing. They restrain the testers
to using only one clock, which is reset upon receiving an input. The testers
are sound, but not in general complete and might accept behavior of the sys-
tem under test that should be rejected. Bertrand et al. [7] develop a game-
based method for determinization of eNTA which generates either a language
equivalent DTA when possible, or its approximation otherwise. A similar app-
roach is proposed in [6] in the context of model-based testing, where it is shown
that their approximate determinization procedure preserves the tioco relation.
In contrast to our approach, which is language preserving up to a bound k, and
thus appropriate for bounded model checking algorithms, determinization in the
above-mentioned papers introduces a different kind of approximation than ours.

9 Conclusion

The bounded setting allows the handling of a larger class of TA and in a more
efficient way than in the unbounded setting. The extension from standard unary
constraints to diagonal and disjuncive constraints has a practical reason: it is
more efficient to let the SMT solvers deal with them than to translate them into
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standard form. In this paper a novel procedure was presented, which transforms
bounded, non-deterministic and partially-observable TA into deterministic and
fully-observable TA with diagonal and disjunctive constraints. The procedure
includes an algorithm for removing the silent transitions and a determinization
algorithm. It was implemented, tested and integrated into a model-based test
generation tool. Recently [1] we investigated ways of pruning the determinized
tree, to reduce the state space of the unfolding. These appoaches look promising
for applying the presented work to test-case generation in industrial studies.
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E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 310–325.
Springer, Heidelberg (2014)

https://goo.gl/YTjjnF


A Score Function for Optimizing the Cycle-Life
of Battery-Powered Embedded Systems

Erik Ramsgaard Wognsen1(B), Boudewijn R. Haverkort2, Marijn Jongerden2,
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Abstract. An ever increasing share of embedded systems is powered
by rechargeable batteries. These batteries deteriorate with the number
of charge/discharge cycles they are subjected to, the so-called cycle life.
In this paper, we propose the wear score function to compare and evalu-
ate the relative impact of usage (charge and discharge) profiles on cycle
life. The wear score function can not only be used to rank different usage
profiles, these rankings can also be used as a criterion for optimizing the
overall lifetime of a battery-powered system.

We perform such an optimization on a nano-satellite case study
provided by the company GomSpace. The scheduling of the system is
modelled as a network of (stochastic) weighted timed games. In a stochas-
tic setting, exact optimization is very expensive. However, the recently
introduced Uppaal Stratego tool combines symbolic synthesis with
statistical model checking and reinforcement learning to synthesize near-
optimal scheduling strategies subject to possible hard timing-constaints.
We use this to study the trade-off between optimal short-term dynamic
payload selection and the operational life of the satellite.

1 Introduction

Battery-powered devices are ubiquitous: Satellites, pacemakers, sensor networks,
laptops, tablets, smartphones, etc. Electric cars are also becoming popular. But
while batteries provide portable power, they only do this for a limited period of
time, be it a day or several years. Primary (non-rechargeable) batteries by defi-
nition need replacement when they run out, but even secondary (rechargeable)
batteries deteriorate with time and use. This is due to various unwanted chem-
ical reactions which accompany the desired reactions that bind and release the
chemically stored energy. Predicting this wear is important for battery-powered
systems. For those systems that are not easily serviceable, such as unmanned
spacecraft and sensors embedded in bridges and buildings, predicting the wear
on secondary batteries is a central part of predicting the total system lifetime.
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318490 (SENSATION — Self Energy-Supporting Autonomous Computation).

c© Springer International Publishing Switzerland 2015
S. Sankaranarayanan and E. Vicario (Eds.): FORMATS 2015, LNCS 9268, pp. 305–320, 2015.
DOI: 10.1007/978-3-319-22975-1 20



306 E.R. Wognsen et al.

For serviceable systems, prediction can be part of calculating the maintenance
cost of the complete battery-powered system.

As part of design space exploration, a system designer may propose a set
of possible system designs that use the battery differently. To help evaluate
these designs, he or she may consult battery documentation and data sheets
but will often find that the manufacturer has only included limited performance
and endurance data. Another option is therefore to test the proposed designs in
experiments with physical batteries. However, these tests can be prohibitively
slow and expensive, even with accelerated testing techniques that wear out the
battery faster at artificially high temperatures.

To greatly reduce the effort required for this part of the design space explo-
ration, we propose a scoring function that takes as input a battery usage profile
(state-of-charge time-series) obtained from system simulation, for example. To
be able to analyze complicated workloads that cannot easily be decomposed
into alternating phases of discharging and full recharging, we analyze the usage
profile in the frequency domain. The advantage of our approach is that we pro-
vide a fully model-based evaluation approach for the performance and lifetime
of battery-powered systems.

We demonstrate the feasibility of our approach on a nano-satellite case study,
provided by the company GomSpace, in which we examine the trade-off between
short-term dynamic payload selection and the operational life of the satellite.
We do this by combining the wear score function with a timed automata-based
system model, which is then subjected to near-optimization using reinforcement
learning as provided by the new tool Uppaal Stratego.

This paper is organized as follows. Section 2 introduces the Uppaal Strat-
ego tool, Section 3 introduces batteries and battery degradation, Section 4
introduces our wear score function, and Section 5 puts it all together in our
case study. Section 6 discusses limitations and assumptions, Section 7 considers
related work, and Section 8 concludes.

2 Uppaal Stratego

For the model-based evaluation we will use (weighted and stochastic) timed
automata (and games), exploiting the tool Uppaal Stratego [2] being a novel
branch of the Uppaal tool suite that allows to generate, optimize, compare and
explore consequences and performance of strategies synthesized for stochastic
priced timed games (SPTG) in a user-friendly manner. In particular, Uppaal
Stratego comes with an extended query language (see Appendix A), where
strategies are first class objects that may be constructed, compared, optimized
and used when performing (statistical) model checking of a game under the
constraints of a given synthesized strategy.

To illustrate the features of Uppaal Stratego, let us look at the example in
Fig. 1, providing an “extended” timed automata model of a small task with two
phases. In the first phase the task must choose between two treatments indicated
by the location A and U differing in time (up to 100 time-units respectively 50



A Score Function for Optimizing the Cycle-Life 307

Fig. 1. A small task with two phases.

time-units) and cost-rate (3 respectively 10). Similarly, in the second phase, the
task must choose between two treatments indicated by locations B and V again
differing in time and cost-rate. Whereas the choice of treatment in the two phases
is up to the task to control (indicated by the solid transitions), the actual time of
the treatment is left to an uncontrollable environment (indicated by the dashed
transitions). In one scenario, the objective of the task is to make choices that will
ensure a given completion time regardless of a possible antagonistic environment.
Under this interpretation, Fig. 1 represents a timed game. However, it may also
be seen as a stochastic priced timed game (SPTG), assuming that the duration
of the uncontrollable treatments are chosen by uniform distributions, and the
objective of the control strategy is to optimize the expected completion time, or
the expected completion cost (e.g. the cost-rate c’==3 in location A indicates
that the cost variable c grows with rate 3 in this location).

We are interested in synthesizing strategies for various objectives. For exam-
ple, the query strategy Opt = minE(c) [<=200]: <> Task.End will provide
(by learning) the strategy Opt that minimizes the expected completion cost.
The relativized query E[<=200; 1000] (max: c) under Opt estimates this
expected cost to be 200.39. Figure 2(a) summarizes 10 random runs according to
Opt, indicating that only cheap treatments (A and B) are chosen. Now, assume
that the task must be completed before 150 time-units. From Fig. 2(a) the strat-
egy Opt clearly does not guarantee this. However, we can generate the most per-
missive (non-deterministic) strategy Safe that guarantees this bound using the
query strategy Safe = control: A<> Task.End and time<=150. Unfortu-
nately, this has a high expected completion cost of 342.19, but the learning
query strategy OptSafe = minE(c) [<=200]: <> Task.End under Safe

Fig. 2. (a) Runs under Opt. (b) Runs under OptSafe.
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Fig. 3. Overview of Uppaal Stratego

will provide a sub-strategy OptSafe optimizing the expected completion cost
– here found to be 279.87 – subject to the constraints of Safe. Figure 2(b)
summarizes 10 random runs according to SafeOpt, indicating that only the
treatment U is never chosen. Model checking confirms that treatment B may
only be chosen in case the first phase is completed before 50 time-units by the
unsatisfiable query E<> Task.B and time>=51 and Task.x==0 under Safe.

As shown in the overview Fig. 3 Uppaal Stratego will abstract a SPTG
P into a timed game (TGA) G by simply ignoring prices and stochasticity in
the model. Using G, Uppaal Tiga may now be used to (symbolically) synthe-
size a (most permissive) strategy σ meeting a required safety or (time-bounded)
liveness constraint φ. The TGA G under σ (denoted G|σ) may now be subject
to additional (statistical) model checking. Similarly, the original STGA P under
σ may be subject to statistical model checking. Now using reinforcement learn-
ing we may synthesize near-optimal strategies that minimizes (maximizes) the
expectation of a given cost-expressions cost. In case the learning is performed
from P|σ, we obtain a sub-strategy σo of σ that optimizes the expected value
of cost subject to the hard constraints guaranteed by σ. Finally, given σo, one
may perform additional statistical model checking of P|σo.

3 Battery Concepts

Electrochemical cells release chemically stored energy as electrical energy. In pri-
mary cells, the chemical reaction that enables this process irreversibly changes
the chemical composition of the battery. However, in secondary cells, the reaction
can be reversed, converting electrical energy back to chemical energy. Batteries
consist of one or more electrochemical cells. When more severals cells are present,
they can be connected in series for increased voltage, or in parallel for increased
capacity, or a combination of connections for a combination of the properties.
Small variations among the connected cells affect the performance and degrada-
tion of the overall battery and complicate charging and discharging procedures.
Batteries can in turn be connected into battery packs with the same challenges.
In this paper, we limit our attention to (single) batteries consisting of only one
electrochemical cell.
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Fig. 4. Illustration of key battery concepts: State of charge (SOC), depth of discharge
(DOD), discharge and recharge phases, and cycle.

Fig. 4 illustrates the fundamental battery concepts. The first one is state
of charge (SOC). Using a car analogy, a full tank corresponds to 100% SOC,
and an empty tank corresponds to 0%. Driving speed and acceleration/break-
ing patterns affects wind and rolling resistance, and therefore the distance it is
possible to travel with a given amount of fuel. Similarly for batteries, the load
on the battery affects the amount of energy it can release before running dry.
This is due to the rate/capacity effect [5]. (Note however, that the in the car,
the energy stored is directly proportional to the amount of fuel in the tank. In
the battery, the released energy itself varies with use.) Furthermore, a battery
that runs dry is not really empty because the recovery effect [5] means that it
will slowly regain some charge while resting. Last but not least, a battery can
be charged above the design capacity if a higher voltage is applied (at the cost
of faster wear of the battery).

Since both an empty and a full battery are not easily defined in practical
usage, we refer to the battery datasheets to define the SOC. The battery is full
when it is charged at the design charge voltage. The battery has reached a 0%
SOC when it has delivered the nominal capacity. Some batteries are used for
backup power and spend most of their lifetime near full SOC. In this work, we
are interested in secondary batteries used in the typical cycling between charging
and discharging.

A cycle in a system means returning to a state it has visited before. For a
battery, it could, for example, be discharging a fully charged battery and then
recharging it to its full capacity. Depth of discharge (DOD) = 1−SOC is
another basic battery concept. It is often used in discussion of battery wear, and
it is often used in the sense of maximal DOD. For example, “cycling at 80%
DOD” means to repeatedly discharge to 80% DOD and recharge to 0% DOD (=
100% SOC).

The chemical reactions that store and release energy are, unavoidably, accom-
panied by other, unwanted chemical reactions and processes that slowly destroy
the reactants or the electrodes. The main performance consequence is that with
time and use, the capacity of the battery fades.
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The rate of deterioration depends, among other things, on the maximal DOD
reached, the rate of charge and discharge, temperature, dwelling at high and low
SOC, and overcharging [3]. The maximal DOD that is discharged to is especially
important, and can be the only focus of battery manufacturers’ datasheets. For
example, one battery is expected to reach end-of-life (80% capacity remaining)
after 350 cycles at 100% DOD, 1000 cycles at 50%, and 1700 cycles at at 25%1.
This kind of data can be good enough for simple workloads and system designs,
but is not enough for advanced workloads, which motivates our approach.

4 The Wear Score Function for SOC-Profiles

In the discussion of battery powered systems with complicated workloads, the
definition of a cycle from Section 3 often falls short because it is too precise.
Consider, for example, a fully charged battery (100% SOC) that is discharged
to 20%, recharged to 90%, discharged again to 20%, then recharged to 100%.
According to the precise definition, this trajectory from 100% to 100% is one
cycle, but from a battery application point of view, it is very close to being two
cycles in the sense of “discharge-then-recharge”.

Not only is this very likely usage of a battery difficult to discuss, but it is also
unlikely that a battery data sheet will say anything about the expected battery
lifetime for this type of load. To circumvent this issue, we propose to examine
SOC profiles in the frequency domain. Using the discrete Fourier transform, we
convert the SOC profile (time-series) into a frequency spectrum containing all
component frequencies and their magnitudes. The discrete Fourier transform
is computed by the Fast Fourier transform (FFT) algorithm, which outputs a
sequence of complex numbers. The moduli (absolute values) of these numbers
correspond to the magnitudes of the component frequencies. If the SOC profile
is a sequence S = s1s2 . . . sn of SOC values sampled at frequency f , its score is

wsf(S, f) =
2f

n

�n/2�∑

i=0

i|F(S)i|2 (1)

where |F(S)i| is the modulus of the ith element of the output of the FFT
function on S. The input consists only of real numbers, i.e., complex numbers
with imaginary part zero. Therefore, only the first half of the FFT output (below
the Nyquist frequency) is relevant to us. Hence, the sequence is summed up to
index �n/2�, and the multiplied by 2 to account for the frequencies lost above
the Nyquist frequency. The fraction fi

n (distributed inside and outside the sum)
is the frequency corresponding to the FFT magnitude at index i. The outside
fraction 2f

n does not affect ordering of scores, but it does bring them into a
comfortable order of magnitude.

The wear score function is devised such that an SOC profile with a lower
wear score is better for the longevity of the battery. Fig. 5 illustrates four dif-
ferent SOC profiles as well as their scores and intermediate results of the score
1 http://www.gomspace.com/documents/gs-ds-batteries.pdf

http://www.gomspace.com/documents/gs-ds-batteries.pdf
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Fig. 5. Four example SOC profiles and their scores.

calculation. The FFT-like plots in fact show the magnitudes of the SOC oscil-
lations at the component frequencies fi

n for i = 0, . . . , �n/2� (not to be confused
with the sampling frequency, f). Each value is thus an element in the sequence
2fi
n |F(S)|2, with modulus, exponentiation, and multiplication applied element-

wise on the sequence. The wear score is the sum of this sequence. In the plot,
the frequency axes are truncated to zoom in on the interesting harmonics.

Comparing profiles A and B, we see discharging to the same DOD (50%), but
a doubling of the charge rate, discharge rate, the number of cycles that can be
completed in the same time frame, and finally, the score. The same applies when
comparing C and D. In these two simple comparisons, the score is proportional to
the number of cycles/time, which conforms with the general idea that a battery
can sustain a fixed number of cycles at a given DOD.

Comparing profiles B and C, we see that the same amount of charge is deliv-
ered — equivalent to three full capacities discharged in six hours. However, profile
C discharges to twice the DOD while delivering this charge. This also increases
the score because a higher DOD wears out the battery faster, even when the
same charge is delivered. This matches what [3] cites as Symon’s [7] Premise 2:
“The charge life of the cell will always [. . . ] be greater than [the rated charge life]
when the battery is cycled less deeply.” In other words, shallow DOD cycling
improves the total amp-hour throughput in the lifetime of a battery.

The above examples serve only to test the wear score function on simple
workloads, like those found in battery datasheets. The strength of the wear
score function is however its ability to accept arbitrarily complicated workloads,
including those mentioned at the beginning of this section. To demonstrate this,
we turn to the nano-satellite case study in Section 5.

5 Nano-satellite Case Study

Our use case concerns the GOMX-3 satellite built by the company GomSpace. It
is a nano-satellite with a volume of only three liters. Its purpose is two-fold. One
subsystem tracks commercial aircraft, and two other subsystems are used to test
improved forms of satellite-to-ground and satellite-to-satellite communication.
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Fig. 6. The GOMX-3 nano-satellite

5.1 System Description

As you can see in Fig. 6, the satellite is covered in solar panels, and four differ-
ent types of antennas for radio communication are attached. On the inside, it
packs circuitry for all the radios, reaction wheels and magnetic coils for attitude
(orientation) control, a main computer, and a battery.

The ADS-B system continuously tracks aircraft to assist ground-based sys-
tems, such as those in Europe and North America that cannot “see” the air-
craft over the Atlantic Ocean. The UHF radio is the tried and tested means for
receiving commands from the ground station and sending measurements back.
The X-band radio is for experimenting with higher throughput ground commu-
nication. The L-band radio is for testing satellite-to-satellite communication.

Due to the locations of the antennas on the satellite body, only one of them
can be pointed towards its target at a time (using the attitude control system).
Therefore, for each orbit the satellite makes around the Earth, a single type of
communication is chosen, referred to as an orbit type. An orbit takes 90 minutes.

The four radios on the satellite consume a lot of energy, and the small number
of solar panels can only generate a limited amount of energy. The challenge is,
therefore, to do the most useful work with the available energy. Useful work can
be seen from different perspectives. From a short-term perspective, the focus is
on the number of experiments done in a short time-frame such as a week. But
as we know from Section 3, the battery wears out with use. So from a long-term
perspective, more work done every week means that the battery, and therefore
the satellite, will last fewer weeks. We model the aspects of the case relevant for
assessing battery wear and mission utility to study this trade-off as follows.

5.2 Satellite Model

The satellite is modelled in Uppaal. The battery SOC is represented with a sim-
ple floating point percentage value using the declaration double soc = 80.0;.
The initial value is set to 80% SOC to represent the energy lost during the launch
and the storage period until the launch. The energy harvested from the solar pan-
els, and the energy consumed by the subsystems and radios is represented by
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Fig. 7. Timed automaton describing the four orbit/experiment types. The controller
only has influence over the solid edges; the dashed edges represent the environment.

Fig. 8. Stochastic timed automaton controlling the L-band experiment window.

each orbit having and a net energy balance such as +2.50 or −20.19 percentage
points SOC.

The automaton shown in Fig. 7 encodes the orbit types and energy balance.
The initial, central location is the one from which experiments are chosen. It is
urgent (marked by the rounded ‘U’), which means that the choice must be made
without delay. Edges in the automaton can have guards, which are conditions
that must be satisfied to take a transition involving that edge. The Nominal and
Communication (UHF) orbit types collect more energy than they consume, so
these edges may always be chosen and have no guards. The X-band and L-band
edges may only be taken when enough energy is available (e.g., soc > 3.05).
The L-band experiment additionally can only be performed in specific time win-
dows as indicated in the guard with Lband_status == NOW. The global variable
Lband_status is controlled by a separate automaton, presented below.

Each of the four edges also has an update statement. Each edge (1) resets
the clock t, (2) calls the function s which samples the SOC for use in the score
calculation, (3) increments the relevant orbit type counter (which is used in the
utility function), and (4) updates the SOC according to the energy balance of
the relevant orbit type. For the two orbits with energy surplus, the cap func-
tion returns the minimum of its argument and 100.0, to prevent overcharging
the batteries. In practice, this is achieved by disconnecting solar panels. Each
experiment location has the invariant t <= orbit, and each edge returning to
the central choice location has the guard t == orbit, ensuring that each orbit
takes the orbit time, 90 minutes.

The arrival of the experiment windows for the L-band experiment are con-
trolled by the automaton in Fig. 8. The time spent in the ‘Wait’ location follows
an exponential probability distribution. Its rate λ is chosen such that the mean
time between arrivals is two days (32 orbits). Once it is triggered, the automaton
will spend ten orbits in the ‘Soon’ location, and then five orbits in the ‘Now’
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Fig. 9. Example simulation run of the system under no strategy: All nondeterministic
choices are resolved using a uniform probability distribution. Note that increments of
n_Lband only occur during the experiment window (the second step on the “staircase”)
and that it is accompanied by a large drop in state of charge.

Fig. 10. Simulation of a strategy that minimizes the battery wear score. No L-band
experiments are performed.

Fig. 11. Simulation of a strategy that maximizes the number of L-band experiments.

Fig. 12. Simulation of a strategy that minimizes 0.2*score - 0.8*n_Lband.
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location, wherein the L-band orbits are possible. The purpose of the ‘Soon’ loca-
tion is to give the reinforcement learning (see Section 5.3) the option of reacting
to the upcoming experiment window.

An example simulation run of the system is shown in Fig. 9. The solid curve
shows the evolution of the SOC between 0 and 100%. The solid “staircases”
show the value of the variable Lband_status, as set in Fig. 8. The low step
corresponds to the ‘Soon’ location, and the high step to the ‘Now’ location. The
dashed line shows the accumulated number of L-band experiments performed,
scaled by five to make the value more easily readable.

In addition to the two automata for the orbit type and the experiment win-
dow, the overall system model contains a separate automaton for calculating the
wear score. This automaton waits until the end of the predefined system simula-
tion period (16 days), and then calculates the score using (1) on the SOC samples
taken by the orbit automaton’s s function. Once the wear score has been calcu-
lated, the boolean done is set. Thus, the linear temporal logic (LTL) property
“<> done” can be used as the requirement for the runs used in optimization.

5.3 Learning and Optimization

We use Uppaal Stratego’s “minimize expected value” query as follows:
strategy s = minE( . . . expression . . . ) [<=nn*orbit]: <> done

The expression to minimize is our cost function. The first choice of cost function
could be just the wear score. Fig. 10 shows a simulation run of the system under a
strategy that minimizes the expected value of the score. The simulation is gener-
ated with the query simulate 1 [<=nn*orbit+1] {soc, Lband_status*5,

100, n_Lband*5} under s. The strategy almost always chooses the Nominal
orbit because this orbit has the smallest effect on the SOC and will thus wear
out the battery the least. The score is a low 0.003. But none of the L-band
experiments are performed, so this is probably a bad strategy. It does not help
if the battery will last for 15 years if nothing useful is done in those years!

In another extreme, we maximize the number of L-band experiments done.
In the example simulation in Fig. 11, 18 L-band experiments were performed,
and the sharp changes in SOC result in the high (bad) wear score of 73.5.

In between these two extremes, we might choose a cost function that com-
bines the two previous in a weighted sum, e.g., 0.2*score - 0.8*n_Lband. The
number of L-band experiments is subtracted rather than added because mini-
mizing -n_Lband maximizes n_Lband. As we see in Fig. 12, the strategy has
learned to choose the battery (wear) friendly Nominal orbit in waiting periods,
save up energy with the Communication orbit just before the experiment win-
dow, and then do only a few L-band experiments, rather than almost depleting
the battery as in Fig. 11. In this simulation, the number of L-band experiments
was 13, and the wear score was 33.7.

The simulations discussed above only illustrate the strategies. To examine
them more systematically, we find the mean value of the score from a number
of runs (here, 25000) under the given strategy (here, s) with the query:

E[<=nn*orbit+1; 25000] (max: score) under s
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iments done. The number next to each point is the parameter p in the expression being
minimized, p *score/6 - (1 − p) *n_Lband.

We do this for both the score and n_Lband on a whole family of strategies2

parameterized by p ∈ [0, 1]:
strategys_p= minE(p*score/6- (1 − p)*n_Lband)[<=nn*orbit]:<>done

Fig. 13 shows the Pareto-like frontier corresponding to this family of strate-
gies. Note that the score axis is flipped such that the top right corner holds
the most desirable values. The plot shows how improving one objective hurts
the other. But going from p = 0 to p = 0.1 improves the wear score while only
impacting the number of experiments minimally. Finding the largest number
of experiments for p = 0.2 is unexpected. It is possible that the strategy that
achieves this result is learned in a part of the state space that is, ironically, less
likely to be explored thoroughly for the single objective optimization at p = 0.

6 Discussion of the Wear Score Function

Our score function is generic rather than tailored for a specific battery technology
or application domain. We can see this, for example, when we consider the two
profiles B and C in Section 4: The score doubles with a doubled DOD. The

2 The strategies are learned and evaluated using the command line version of
Uppaal, verifyta with the learning parameters --learning-method 2 --filter 2

--good-runs 1000 --total-runs 1000 --runs-pr-state 500 --eval-runs 500.
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tendency in this is correct, but the wear may not be directly proportional to
the DOD. To more exactly predict battery lifetime, the approach will have to
be targeted to a specific battery technology.

However, obtaining wear data from battery manufacturers’ datasheets can be
very challenging. Petricca et al. [6] report that “from an extensive survey of more
than 100 datasheets of commercial battery of different chemistries, sizes, energy
and form factors, we did not find a single datasheet that report information
about the following characteristics altogether in the same document: battery
behavior due to constant current, pulse current, and aging effects.”

However, we speculate that with enough data available for fitting, the fol-
lowing generalized form of (1), parameterized on p and q, could be relevant.

wsf ′(S, f) =
2fp

n

�n/2�∑

i=0

i|F(S)i|q (2)

Moreover, it seems to be not very well studied what happens when batteries
are used in ways that are not simply repeating “charge fully, then immediately
discharge to some depth”. Drouilhet and Johnson [3] mention dwell time at low
and high states of charge as a contributor to wear, implying that a medium SOC
could be good for battery life. Similarly, the end of charge voltage, which also
affects the SOC to which the battery is charged, is said to influence battery life3.
Here, the DC component of the Fourier transform could be relevant to explore
even though it is ignored in (1) and (2) due to being multiplied by zero.

We are starting work on experimental validation of the wear function with
newly bought measurement equipment, and we are also interacting with battery
manufacturers about this. Reporting on the results of this is future work.

Temperature is another wear factor that could be interesting to try to include.
The correlation between temperature and wear is possibly complicated and the
effect of temperature and charge/discharge rates may not be possible to consider
separately. In this paper, we assume a constant temperature for the battery.

6.1 Limitations

Using a discrete Fourier transform imposes some limitations on the score func-
tion. The score is relevant for battery technologies for which charge and discharge
rates can be considered to have symmetric effects on wear. With some technolo-
gies, this is not always the case for high currents, see, e.g., [1]. Drouilhet and
Johnson [3] also cite a work saying that high charge rates at low and intermediate
SOC may increase battery life, but they do not consider the evidence conclusive.

For our score function, we assume that the proposed SOC profile is to be
repeated indefinitely. Therefore it should start and end at the same SOC to
prevent an assumed discrete jump between SOCs when the profile is repeated.
We also assume that the profile is of a short duration wherein the battery wear

3 http://batteryuniversity.com/learn/article/how to prolong lithium based batteries

http://batteryuniversity.com/learn/article/how_to_prolong_lithium_based_batteries


318 E.R. Wognsen et al.

can be ignored, i.e., the capacity remains close to constant. Such a profile could
be on the order of weeks rather than months or years.

The sampling/simulation parameters f and n are chosen according to the
speed of changes in the SOC. The sampling frequency f should be large enough
that the oscillations of interest are slower than the Nyquist frequency f/2. Higher
harmonics are negligible at realistic uses of batteries because they would not
support sustained high currents (changes in SOC), which in turn give rise to
strong high frequency harmonics. The sampling window n/f affects the lowest
observable frequency, which is its reciprocal f/n. The lowest observable frequency
should be low enough to observe the oscillations of interest. The score depends
on the sampling parameters, so for now it only makes sense to compare scores
calculated with the same parameters.

7 Related Work

Drouilhet and Johnson [3] in the context of energy storage describe a battery
life prediction method that takes into account DOD and discharge rate. They
propose a function for each of these to which manufacturer data can be fit-
ted. Combining the two expressions, the effective discharge affecting the battery
with respect to wear can be computed from a user-prescribed discharge profile
consisting of a series of discharge events. The battery is seen as having a fixed
charge life (lifetime Ampere-hour throughput until end-of-life), but relative to
“effective” discharge, which depends on DOD and discharge rate. They apply
their method to a case study of peak shaving in an Alaskan village powered by
wind energy. By predicting the lifetime of different sizes of NiCd and VRLA
batteries, they find the most cost effective battery technology and size for the
given application. In our approach, we try to generalize from the focus on simple
workloads wherein each discharge is followed by a full recharge.

Petricca et al. [6] describe an electrical circuit model of capacity fading due
to cycling, as well as the increase of the internal resistance due to cycling. What
is needed to build the model is manufacturer’s data on capacity fading due to
cycling at different temperatures and discharges rates (C-rates), and data on
increase of the internal resistance at a reference discharge rate and for various
DODs. It is questionable whether this data is always available to the user. As
mentioned in Section 6, the authors had a hard time obtaining it. The capacity
loss is based on an equation that takes as input the number of cycles. Again
we encounter the concept of cycles that only works for simple workloads, where
each discharge phase starts at 100% SOC.

Guena and Leblanc [4] in the context of backup power experimentally exam-
ine how DOD affects the cycle life of lithium-metal-polymer batteries. They test
at 0.6%, 50%, 60%, 70%, 80%, and 100% DOD and find that reduced DOD
improves cycle life and total charge throughput. This matches our expectations.
They also test micro cycling (to 0.6% DOD) and find it to have no effect on
cycle life, i.e., the micro cycled cell had the same capacity fade as one with a
float charge (no cycling). Unfortunately the sample sizes are too small to say
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anything conclusive (one cycled cell compared to three floating cells), and more
information would be interesting to have.

8 Conclusion

In this paper we have presented the wear score function, which ranks battery
usage profiles according to their relative impact on the cycle life of the battery.
The score function takes into account the workload characteristics that influence
the cycle life the most: charge rate, discharge rate, and depth of discharge. The
key strength of the score function is that it is not limited to standard regular
charge-discharge profiles, but it allows comparison of complex workload profiles.
This makes it a very useful tool in the design of battery powered devices, as
we have shown in the GOMX-3 nano-satellite case study. In the case study, we
have integrated the wear score function into an automata-based model of the
satellite as a stochastic timed game. The wear score function is however suited
for use with any system modelling formalism and field of application.

In its current form the wear score function allows ranking usage profiles and
optimizing. The scores, however, may not be directly proportional to the actual
battery life. We expect that the score function can be tailored to a specific
battery type. However, in order to do this much experimental data is needed.
Obtaining such data, and fitting the score function to match the real cycle life,
is part of the future work.
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A Appendix

Query Language of Uppaal Stratego

Uppaal Stratego allows for strategy assignment “strategy S =” and strat-
egy usage “under S”, using strategy identifiers S. In particular, the queries of
Uppaal Stratego allow for constructing (and binding) strategies that guar-
antee safety or reachability objectives, or that optimize (minimize or maximize)
the expected value of a given expression (within a given bound on time, steps or
chosen cost). Constructed (and bound) strategies may now be used to relativize
the queries already used in Uppaal, Uppaal Tiga and Uppaal Smc.

Table 1. A non-comprehensive list of different types of now supported queries. NS
(non-deterministic), DS (deterministic) and SS ( stochastic ) are used to signify the
type of the strategy allowed in the given situation.
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