
Certification of Distributed Algorithms Solving
Problems with Optimal Substructure

Kim Völlinger(B) and Wolfgang Reisig

Humboldt-Universität Zu, Berlin, Germany
{kim.voellinger,reisig}@informatik.hu-berlin.de

Abstract. We report work-in-progress on applying the concept of a
certifying algorithm to distributed algorithms. A certifying algorithm
produces not only a result, but also a witness that verifies the result’s
correctness. Certifying variants of numerous (sequential) algorithms have
been developed. However, distributed algorithms behave differently from
sequential algorithms. Consequently, it is challenging to make them cer-
tifying. Our local approach is to make the distributed algorithm com-
pute many local witnesses that together verify the result’s correctness.
We identified problems for which this approach is applicable. Particu-
larly, we hypothesize that for problems with optimal substructure (i.e.,
an optimal solution can be constructed from optimal solutions of its sub-
problems) it is often easy to apply the local approach. As an example,
we give a certifying distributed algorithm for the shortest path problem.

Keywords: Distributed algorithms · Certifying algorithms · Optimal
substructure · Shortest path problem

1 Introduction

A major problem in software engineering is assuring the quality of software.
Well-known methods are testing and formal verification. However, testing does
not cover all inputs and formal verification is often infeasible. Moreover, both
methods are not fault-tolerant: they are completed before the program is deliv-
ered; hence, they cannot deal with failures occurring after delivery. Certifying
algorithms are an alternative: we adapt the underlying algorithm of a program
to protect a user of this program against a faulty algorithm, implementation
and execution. Thus, certifying algorithms are a formal, fault-tolerant method.
Numerous certifying sequential algorithms have been developed. We report work-
in-progress on applying the concept of a certifying algorithm to distributed algo-
rithms.

1.1 Certifying Sequential Algorithms

As an example, we consider the problem of deciding if a graph is bipartite, i.e.
if its vertices can be divided in two classes so that each edge has its vertices in
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 190–195, 2015.
DOI: 10.1007/978-3-319-22969-0 14



Certification of Distributed Algorithms 191

both classes. Assume an algorithm that decides a given graph G is not bipartite.
How can a user of this algorithm be convinced of the result’s correctness? An
odd cycle in G convinces the user: it implies that G is not bipartite. Hence, it
witnesses the result’s correctness.

A certifying algorithm produces a witness for each result, i.e. an artifact
implying the result’s correctness. This implication is the witness property. For
example, a certifying algorithm deciding bipartiteness produces an odd cycle as
a witness if the graph is not bipartite and a bipartition if the graph is. In general,
the user of a certifying algorithm has (1) to understand the witness property, and
(2) to check if the witness is correct, as the witness is computed by an untrusted
algorithm. A certifying algorithm can be accompanied by a certifier to help the
user with (1), and a checker to help the user with (2). A certifier is a proof
checker containing a proof for each witness property. In case of the bipartiteness
example, a certifier contains a proof of the witness property of an odd cycle and
of a bipartition. Note that the certifier can check these proofs at design time.
The checker is an algorithm that checks at runtime if the computed witness is
correct. In case of the bipartiteness example, depending on the result, it checks
if the computed witness is a subgraph and an odd cycle, or a bipartition. Now,
the user has to trust the checker. The rationale is that checking is easier than
constructing. Figure 1 sums up the idea of a certifying algorithm. The certifier
or checker could also reject if the witness does not imply the result’s correctness,
or if the computed witness is not correct.

Fig. 1. A certifying algorithm accompanied by its checker and certifier.

When developing a certifying algorithm, the challenge is to find a witness
whose proof of the witness property is easy and whose checking is simple. There
is always a witness for a correct result, for instance, its computation: in general,
however, its proof of the witness property is difficult and therefore, it is not a
desirable witness.

1.2 Distributed Algorithms

A network is formed by interactive components that are connected by
message-passing channels. Distributing a computation over a network yields
specific problems, such as coordination, communication or synchronization. Dis-
tributed algorithms solve these problems. A distributed algorithm assigns an
algorithm to each component describing the component’s computing and com-
munication. For instance, there are distributed algorithms to elect a leader, find
a consensus or identify a substructure of the network [7]. A distributed algorithm



192 K. Völlinger and W. Reisig

is designed for a specific network class. We assume an asynchronous model, i.e.
no global clock exists. The distributed setting is more complex than the sequen-
tial one [6] Sect. 1.3. Thus, it is worth investigating certification of distributed
algorithms.

1.3 Structure of this Paper

In Sect. 2, we investigate the challenges of making a distributed algorithm cer-
tifying and suggest an approach with local witnesses that together verify the
result’s correctness. We hypothesize that a distributed algorithm can easily be
made certifying if the problem to be solved has optimal substructure. As an
example, we give a certifying distributed algorithm for the shortest path prob-
lem. As a challenge, we describe the minimum spanning tree example. We discuss
related work in Sect. 3 and draw conclusions in Sect. 4.

2 Making Distributed Algorithms Certifying

While non-termination is considered a fault in sequential algorithms, some
distributed algorithms should run continuously, e.g. those that deal with fail-
ures. Certification of non-terminating algorithms is challenging. However, in this
paper, we focus on terminating distributed algorithms. After termination, the
computed global result is distributed over the network such that each compo-
nent holds its local result. The result’s distribution leads to questions such as
should there be a witness for each local result or one witness for the global result;
should there be one checker or several; where is a checker located in the network.
Making a sequential algorithm certifying is challenging, and even more so for a
distributed algorithm.

2.1 Local Approach

Here, our approach is to make a distributed algorithm certifying by making it
compute witnesses that together prove the global result’s correctness. A witness
is local to a component if it only contains information from a bounded area in
the vicinity of this component. Likewise, a checker is local to a component if it
has only knowledge about the topology for a bounded area in the vicinity of this
component. We consider our approach to be local if witnesses and checkers are
local, and if the local witnesses together imply the global result’s correctness.
A (global) certifier holds a proof of this implication – the witness property. Hence,
witnesses are computed and checked distributively at runtime. In contrast, the
proof of the witness property is checked sequentially by the certifier. This is
justified, since it is done once at design time.

We do not expect that every distributed algorithm has a localized certifying
variant. However, we aim to characterize problems for which the local approach
is applicable. So far, problems for which our local approach is applicable include
deciding bipartiteness, the echo algorithm, spanning tree construction, maximal



Certification of Distributed Algorithms 193

independent set construction and shortest path construction. We hypothesize
that a distributed algorithm can easily be made certifying if the problem to be
solved has optimal substructure, i.e. an optimal solution to a problem is con-
structed from optimal solutions of its subproblems. Every problem that can be
solved by dynamic programming has optimal substructure [2].

2.2 Example: Shortest Path Problem

We assume an undirected graph with weighted edges. The length of a path is
the sum of the weights of its edges. We assume one special vertex, the source s.
Computing a shortest path from the source to each vertex is the (single-source)
shortest path problem. The length of a shortest path from the source to a vertex
v is called the distance of v. A function D is a distance function iff D(v) equals
the distance from s to v. In networks, the shortest path problem appears in
distance-vector routing. We model a network as a graph by representing each
component as a vertex and each channel as a weighted edge. Each component
computing its distance from the source is the shortest path problem in networks.

Distance Properties. We characterize a distance function by three properties
that use the problem’s optimal substructure, i.e. a shortest path from s to a
vertex v contains a shortest path from s to one of v’s neighbors. The distance of
v depends on the distances of its neighbors. Let G = (V,E, s) be an undirected,
connected graph with a source s. Let weight : E → R>0 be a function that
assigns each edge a weight. We use the following properties for our certifying
distributed algorithm. A function D : V → R≥0 is a distance function iff [5]:

D(s) = 0 (1)
for each (u, v) ∈ E : D(v) ≤ D(u) + weight(u, v) (2)

for each v ∈ V, v �= s there exists (u, v) ∈ E : D(v) = D(u) + weight(u, v) (3)

Certifying Variant of the Distributed Bellman-Ford Algorithm. The
distributed Bellman-Ford Algorithm [7] solves the shortest path problem in a
network. We assume an undirected, connected network graph whose edges have
each a positive weight. Each component i computes its distance iD to the source.
In addition, each component i computes a local witness iw containing the com-
puted distances of its neighbors. As neighbors send their distances to each other
while running the distributed Bellman-Ford algorithm, a component collects the
distances to all its neighbors. In addition, we assign each component i a local
checker that knows the neighbors of i, the weights of i’s adjacent edges, and
whether i is the source. The local checker of i can check the properties (1)–(3)
for i by help of i’s result iD and witness iw. In addition, it has to check if the wit-
ness iw is consistent with i’s neighborhood, i.e. the witness holds the computed
distances. The certifier holds a proof of the witness property, i.e. together the
local witnesses imply the global result’s correctness.1 To this end, the certifier
1 We aim to formalize this proof with the proof assistant Coq.



194 K. Völlinger and W. Reisig

holds a proof for the following implications: if the properties (1)–(3) are fulfilled
for each component, they are fulfilled for the network graph; if the properties are
fulfilled for the network, the computed distance of each component is correct.

As an example, we discuss witnesses and their checking for the network graph
shown in Fig. 2 with a as source. The local checker is a trusted part of its com-
ponent. Every component holds its local witness after running the certifying
distributed Bellman-Ford algorithm. For instance, the local witness of compo-
nent e contains the computed distances bD and cD. The local checker of e knows
that b and c are the neighbors of e, that their associated edge weights are 8
and 1 and that e is not the source. For checking, e’s checker gets e’s result and
witness. It confirms that b and c agree on the computed distances contained in
e’s witness. For property (1), e’s checker has nothing to check since e is not the
source. Due to property (2), it has to check if eD ≤ bD + 8 and eD ≤ cD + 1. For
property (3), it has to check whether one of these two inequalities is fulfilled as
an equality, and, indeed, eD = cD + 1.

Fig. 2. Network in which every component holds its local witness after running the
certifying distributed Bellman-Ford algorithm with a as source.

2.3 Challenge: Minimum Spanning Tree Problem

The minimum spanning tree (MST) problem has optimal substructure. The algo-
rithm of Gallager, Humblet and Spira (GHS) [3] is a well-known, difficult dis-
tributed algorithm that computes an MST for an injectively weighted network
graph. We aim to find a certifying variant of the GHS. We expect the certify-
ing GHS to be different from the certifying Bellman-Ford algorithm: not every
component should compute a witness; instead all the components belonging to
an already computed minimum spanning subtree should compute one witness.
However, it is not yet clear if we can apply our local approach. Kor et al. show
in [4] that a distributed verification of an MST by its result and without witnesses
is not or not much easier than the distributed construction of an MST.

3 Related Work

Literature offers more than 100 certifying algorithms; several examples are
described in [5]. However, none of them is a distributed algorithm. Some tech-
niques for making a distributed algorithm self-stabilizing share similarities to our



Certification of Distributed Algorithms 195

local approach. The idea of self-stabilization is that a system in a faulty state
stabilizes itself to a correct state. To this end, the components of a system have
to detect that the system’s state is faulty whereby local detection is desired [1].
In contrast, we separate the checking from the computation, rely on witnesses,
and integrate the proofs of the witness properties.

4 Conclusion and Future Work

A certifying distributed algorithm protects its user against a faulty algorithm,
implementation and execution. Therefore, it should be considered as a method
for engineering distributed software systems. It is suggested to combine certifying
algorithms with other formal methods, such as proving the witness property
with a proof assistant, or verifying the checker program. We demonstrated an
approach that yields a localized certification in a distributed system, i.e. local
witnesses that prove the global result’s correctness. We presented a certifying
variant of a distributed algorithm solving the shortest path problem for which
we used the optimal substructure of this problem.

With our local approach, a component can only be certain of its result’s
correctness, if all checkers accept. However, some local results may be correct
even if the global result is not. We aim to allow a component to check its result’s
correctness more independently. Furthermore, certification of non-terminating
algorithms poses new questions such as what the result is; when to produce a
witness; or when to check a witness.

References

1. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local
checking and global reset (Extended abstract). In: Tel, Gerard, Vitányi, Paul M.B.
(eds.) WDAG 1994. LNCS, vol. 857, pp. 326–339. Springer, Heidelberg (1994)

2. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, Cambridge (2001)

3. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

4. Kor, L., Korman, A., Peleg, D.: Tight bounds for distributed MST verification.
In: Schwentick, T., Dürr, C. (eds.) 28th International Symposium on Theoretical
Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 9, pp. 69–80. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2011)

5. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying Algorithms.
Comput. Sci. Rev. 5, 119–161 (2011)

6. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for Indus-
trial and Applied Mathematics, Philadelphia (2000)

7. Raynal, M.: Distributed Algorithms for Message-Passing Systems. Springer, Berlin
(2013)


	Certification of Distributed Algorithms Solving Problems with Optimal Substructure
	1 Introduction
	1.1 Certifying Sequential Algorithms
	1.2 Distributed Algorithms
	1.3 Structure of this Paper

	2 Making Distributed Algorithms Certifying
	2.1 Local Approach
	2.2 Example: Shortest Path Problem
	2.3 Challenge: Minimum Spanning Tree Problem

	3 Related Work
	4 Conclusion and Future Work
	References


