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Abstract. Showing that concurrent threads operate on separate por-
tions of their shared state is a way of establishing non-interference. Fur-
thermore, in many useful programs, ownership of parts of the state are
exchanged dynamically. Reasoning about separation and ownership of
heap-based variables is often conducted using some form of separation
logic. This paper examines the issue of separation and investigates the
use of abstraction to specify and to reason about separation in pro-
gram design. Two case studies demonstrate that using separation as an
abstraction is a potentially useful approach.
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1 Introduction

Concurrent programs are difficult to reason about either formally or informally
because of potential interference between threads; interference can be managed
by separation of the parts of the state accessible to threads; separation arguments
are often complicated by dynamic changes of ownership.

It is useful to distinguish the issues arising in the design of concurrent
programs before fixing on specific notations — clearly, separation/ownership
and interference constitute underlying issues. An obvious demarcation is to
employ Separation Logic to tackle the first set of issues and something like
Rely/Guarantee reasoning for the latter.

It has been shown elsewhere that ‘pulling apart’ the standard rely/guarantee
notation throws light on the issue of interference. In [JHC15], the benefits of
studying issues prior to choosing a notation are discussed. In particular, that
paper takes a new look at specifying and reasoning about interference (the new
presentation is more fully explained in [HJC14]).

In the same spirit, the current paper examines the issue of separation. The
separation of storage into disjoint portions is clearly an issue for concurrent pro-
gram design — when it can be established, it is possible to reason separately
about threads or processes that operate on the disjoint sections. Tony Hoare’s
early attempt to extend his ‘axiomatic basis’ [Hoa69] to parallel programs pro-
vides this insight in [Hoa72]. Hoare shows that pre/post conditions of the code
for separate threads can be conjoined providing the variables used by the threads
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-22969-0 1



4 C.B. Jones and N. Yatapanage

are disjoint. He tackled normal (or ‘scoped’) variables where dynamic ownership
might be controlled by something like monitors.

In comparison to scoped variables, it is more delicate to reason about sepa-
ration over ‘heap’ variables whose addresses are computed by the programs in
which they occur. Furthermore, exchange of ownership of heap addresses between
threads is often disguised by intricate pointer manipulation.

The issues of separation and ownership are certainly handled well by Con-
current Separation Logic [O’H07]. The current paper suggests that some forms
of separation can be specified by using data abstraction. The only novelty with
respect to standard data abstraction/reification is that the representation must
be shown to preserve the separation property of the abstraction.

Two examples are presented here: a simple list reversal algorithm that is
sequential and comes from one of Reynolds’ early papers [Rey02] on Separation
Logic and a concurrent sorting algorithm. In both cases the implementation uses
(separate portions of) heap storage and the ownership of heap cells is exchanged
between threads. It would be possible to object that the examples presented
look like simple data reifications but that is, in fact, the main point. Using data
abstraction, along with the one additional idea that separate abstract variables
can be reified onto a shared data structure, throws light on the concepts of
separation and ownership.

Of course, some notation has to be used for the specifications and requisite
proof obligations but this is well-established and was not devised for concurrency.
The authors happen to use ideas from VDM1 but the same points could be made
in Z or Event-B. In more complicated examples, it is useful to be explicit about
‘framing’ and VDM does offer ways of specifying read and write access to parts
of the state. For framing, the ideas in [Bor00] or ‘dynamic frames’ [Kas11] would
also be options.

The observation that it is possible to tackle some cases of reasoning about
separation by using layers of abstraction is in no way intended to challenge
research on separation logics. However, as with the reported reformulation of
rely/guarantee reasoning, focussing on the issue rather than a specific notation
might give a new angle on notations for separation and/or reduce the need to
develop new logics.

Hints for a top-down development of the list reversal algorithm are sketched
in [JHC15]. The current paper completes the development and fills in details
omitted there — more importantly, it draws out the consequences (cf. Sect. 4)
and adds the more substantial example of concurrent merge sorting in Sect. 3.

2 In-Place List Reversal

As observed in [JHC15], as well as separation being crucial for concurrent pro-
grams, it also has a role in sequential programs. In fact, Separation Logic [Rey02]
was conceived for sequential programs; the development of Concurrent Separa-
tion Logic [O’H07] came later. While Sect. 3 applies the idea of separation as
1 VDM notation is used throughout the current paper; see [Jon90] for details.
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an abstraction to a concurrent sorting algorithm, this section shows the appli-
cation of the same idea to the development of a sequential program whose final
implementation performs in-place reversal of a sequence.

2.1 Original Presentation

In [Rey02], John Reynolds presented an efficient sequential list reversal algo-
rithm; the fact that the code operates in-place makes it an ideal vehicle for intro-
ducing the idea of using abstraction to handle separation. Interestingly, Reynolds
introduced the problem by starting with the algorithm, shown in Fig. 1. The list
is represented by a value for each item, with the subsequent address containing a
pointer to the next item. The algorithm utilises three pointers (i, j, k), where
i initially points to the start of the list, k is a temporary place-holder and at
termination of the algorithm, j points to the reversed list.

Reynolds used the separating conjunction of Separation Logic to develop a
useful specification of the algorithm from the code. His specification demon-
strates the ability of the separating conjunction operator to hide the details of
the separation, such as showing that the two lists must remain separate and that
they are separate from all other lists. While this is certainly a useful method for
handling the complexities of separation, the following sections show how layered
abstractions can offer a viable alternative.

Fig. 1. Reynolds’ in-place list reversal program in C notation (*n is the C-style pointer
dereference of pointer n).

2.2 Abstract Specification

The notion of reversing a sequence is expressed simply as a recursive function:

rev :Val∗ → Val∗

rev(list) � if list = [ ] then list else rev(tl list) �̀ [hd list ]

The initial step is to develop a program whose state is a pair of lists:

Σ0 = (Val∗ × Val∗)

where the first, referred to as s, is the original list and the second, referred to
as r , should finally contain the reversed list. It is worth observing that the two
fields of Σ0 are implicitly separate — they are ‘scoped’ variables and, unless
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a language allows something like ‘parameter passing by reference’, there is no
debate about a lack of separation.

An operation to compute the reverse of a list can be specified as follows:

post-REVERSE0((s, r), (s ′, r ′)) � r ′ = rev(s)

It is straightforward to develop the abstract program in Fig. 2 (the body of
the while loop is given as a specified operation because its isolation makes the
reification below clearer). The loop preserves the value of rev(s)�̀r ; the standard
VDM proof rule for loops handles termination by requiring that the relation be
well-founded — thus rev(s ′) �̀ r ′ = rev(s) �̀ r ∧ len s ′ < len s.

Fig. 2. Abstract list reversal program.

2.3 Representing Sequences

The program in Fig. 2 is based on abstract sequences and cannot address things
like moving pointers to achieve in-place operation. To show how the list reversal
can occur without moving the data, the abstract state needs to be represented
as a heap:

Heap = Ptr m−→ (Val × [
Ptr

]
)

(In VDM, maps (D m−→ R) are finite constructed functions; the fields of a pair
pr ∈ (Val × [

Ptr
]
) are accessed here2 by index, e.g. pr1; the square brackets

around Ptr indicate that it is optional and that nil /∈ Ptr is a possible value.)
Such a heap might contain information for other threads and/or garbage

discarded by processes. Section 2.4 completes the reification to just such a Heap
but, here, an intermediate step is introduced which shows two scoped variables
each containing a sub-heap that is precisely a sequence representation (Srep).
(Although this intermediate representation could actually be elided, a significant
advantage of its use is that Srep objects are also useful for the development of the
concurrent program in Sect. 3.) One could define Srep using a datatype invariant
but the proofs below benefit from defining the concept inductively as the least
map Srep ⊆ Heap containing:3

{ } ∈ Srep
sr ∈ Srep ∧ p ∈ Ptr ∧ p /∈ dom sr ⇒ ({p �→ (v , start(sr))} ∪ sr) ∈ Srep

2 VDM aficionados would normally employ a ‘record’ construct here but using a pair
and selecting by index reduces the potentially unfamiliar notation in this paper.

3 Of course, Srep and start are mutually recursive but it is clearer to separate their
descriptions.
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Furthermore, a useful function that defines the start element can be defined over
the recursive construction:

start({ }) = nil
start({p �→ (v , start(sr))} ∪ sr) = p

The state for this intermediate development step contains two Srep objects
which are required to have disjoint domains:4

Σ1 = (Srep × Srep)

where

inv -Σ1((sr , rr)) � sep(sr , rr)

sep :Srep × Srep → B

sep(sr , rr) � dom sr ∩ dom rr = { }

On the Σ1 representation, the specification of the operation corresponding
to the body of the while loop in Fig. 2 is:

pre-STEP1(sr , rr) � sr 
= { }
post-STEP1((sr , rr), (sr ′, rr ′)) �

let p = start(sr) in
sr ′ = {p} −� sr ∧ rr ′ = rr ∪ {p �→ (sr(p)1, start(rr))}

Lemma 1. It is necessary to show that STEP1 preserves the invariant of Σ1.

(sr , rr) ∈ Σ1 ∧ pre-STEP1((sr , rr)) ∧ post-STEP1((sr , rr), (sr ′, rr ′)) ⇒
(sr ′, rr ′) ∈ Σ1

The proof is by induction over Srep.5

Proof obligations for data reification are standard in methods such as VDM
(cf. [Jon90, Chap. 8]): retrieve functions are homomorphisms from the represen-
tation back to the abstraction.

retr0 : Σ1 → Σ0

retr0((sr , rr)) � (gather(sr), gather(rr))

The gather function is again defined over the inductive construction of Srep:

gather :Srep → Val∗

gather({ }) = [ ]
gather({p �→ (v , start(sr))} ∪ sr) = [v ] �̀ gather(sr)

VDM defines an ‘adequacy’ proof obligation which requires that, for each
abstract state, there exists at least one representation state.
4 So far, separation is a convenience that ensures transferring cells from one sequence
to the other provides unused pointers; the restriction plays a bigger role in Sect. 2.4.

5 The conference version of this paper omits all detailed proofs which are, anyway,
mostly routine — they can be found in the Technical Report [JY15, Appendix].



8 C.B. Jones and N. Yatapanage

Lemma 2. There is at least one representation for each abstract state:

∀s ∈ Val∗ · ∃sr ∈ Srep · gather(sr) = s

The proof of this lemma is by induction on s.

The key commutativity proof for reification shows that the design step models
the abstract specification:

Lemma 3. STEP1 models (under retr0) the abstract STEP0

inv -Σ1(σ1) ∧ pre-STEP0(retr0(σ1)) ∧ post-STEP1(σ1, σ
′
1) ⇒

post-STEP0(retr0(σ1), retr0(σ′
1))

The proof follows from unfolding the defined functions/predicates.

2.4 The Heap

Although the two Srep variables in the preceding section are ‘heap-like’, each
is used like a scoped variable. This section shows that the scoped variables can
be represented in a single heap and that the behaviour on the heap remains as
specified in Sect. 2.3.

This final representation uses a single heap (hp) and two pointers (i , j ). The
hp field of Σ2 is essentially the heap underlying Fig. 1.6

Σ2 = (Heap × Ptr × Ptr)

where

inv -Σ2((hp, i , j )) �
∃sr , rr ∈ Srep · sr ∪ rr ⊆ hp ∧ i = start(sr) ∧ j = start(rr)

This is again an exercise in data reification. Here, it is mandatory that sep
holds between the two sub-heaps because their union is used in (sr ∪ rr) ⊆ hp;
the fact that this is not an equality admits the possibility of other information
in the heap. The retrieve function in this case is:

retr1 : Σ2 → Σ1

retr1((hp, i , j )) � (trace(hp, i) � hp, trace(hp, j ) � hp)

where:

trace :Heap × Ptr → Ptr -set

trace(hp, p) � if p = nil
then { }
else {p} ∪ trace(hp, hp(p)2)

6 The fact that ‘cells’ contain both data and pointer (rather than them being in loca-
tions n and n+1 as in Fig. 1) is incidental — think of car/cdr in Lisp. Furthermore,
the decision to use Ptr rather than N is deliberate.
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The definedness of trace for Srep ⊆ Heap follows from inv -Σ2.

Lemma 4. The trace function applied to the start of an Srep returns exactly
the pointers in that Srep; therefore, restricting the domain of a heap containing
an Srep to such a trace yields the original Srep.

sr ∈ Srep ∧ sr ⊆ hp ⇒ trace(hp, start(sr)) � hp = sr

The proof is by induction over Srep.

The adequacy proof obligation for Σ2 is:

Lemma 5. There is at least one representation in Σ2 for each Σ1 state:

∀(sr , rr) ∈ Σ1 · ∃(hp, i , j ) ∈ Σ2 · retr1((hp, i , j )) = (sr , rr)

The proof creates a minimal hp that contains exactly the union of sr/rr which
are disjoint.

On Σ2, the specification of the operation corresponding to STEP1 above is:

pre-STEP2((hp, i , j )) � i 
= nil
post-STEP2((hp, i , j ), (hp′, i ′, j ′)) �

i ′ = hp(i)2 ∧ j ′ = i ∧ hp′ = hp † {i �→ (hp(i)1, j )}
for which the reification proof obligation is:

Theorem 1. STEP2 models (under retr1) the abstract STEP1

inv -Σ2(σ2) ∧ pre-STEP1(retr1(σ2)) ∧ post-STEP2(σ2, σ
′
2) ⇒

post-STEP1(retr1(σ2), retr1(σ′
2))

The proof again follows from unfolding the defined functions/predicates.

Code (in C++) that satisfies post-STEP2 is given in Fig. 3. The final step in
the correctness argument is to note that the loop in Fig. 2 terminates when s = [ ]
and the loop on the representation terminates when i = nil; under retr1/retr0,
these conditions are equivalent.

2.5 Observations

This simple sequential example illustrates how the motto separation is an abstrac-
tion can work in practice. In the abstraction (Σ0) of Sect. 2.2, the two variables
are assumed to be distinct; standard data reification rules apply where that dis-
tinction is obvious; in the step to Σ2, it must be established that the abstraction
of separation holds in the representation as (changing) portions of a shared heap.

A valuable by-product of the layered design is that the algorithm is discussed
on the abstraction and neither the reification step nor its justification are con-
cerned with list reversal as such. This is, of course, in line with the message
of [Wir76].
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Fig. 3. C++ implementation of the list reversal algorithm.

There are some incidental bonuses from the use of VDM: invariants (and the
use of predicate restricted types) effectively provide pre conditions for the func-
tions; use of relational post conditions avoids the need for what are essentially
auxiliary variables to refer to the initial state; and the use of ‘LPF’ [BCJ84] sim-
plifies the construction of logical expressions where terms and/or propositions
can fail to denote.

This example is simple and, in fact, the development presented here is even
clearer than that in an earlier draft. The point is that the important notion of
separation has been tackled without any special notation. Section 3 employs the
same approach on a program that uses parallelism.

3 Mergesort

The preceding list reversal example demonstrates the idea of handling separa-
tion via abstraction in a sequential development. This section applies the same
idea to a concurrent design: the well-known mergesort algorithm which sorts by
recursively splitting lists. At each step, the argument list is divided into two
parts (preferably, but not necessarily, of roughly equal sizes) which are recur-
sively submitted to mergesort ; as the recursion unwinds, the two sorted lists are
merged into a single sorted list.

3.1 Specification

The notion of sorting is easy to specify as a relation:

is-sort :Val∗ × Val∗ → B

is-sort(s, s ′) � ordered(s ′) ∧ permutes(s ′, s)
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The ordered predicate tests that its argument is an ascending sequence.

ordered :Val∗ → B

ordered(s) � ∀i ∈ {1..len s − 1} · s(i) ≤ s(i + 1)

The permutes predicate tests that its two arguments contain the same elements;
here this is done by comparing the ‘bag’ (‘multiset’) of occurrences:

permutes :Val∗ × Val∗ → B

permutes(s, s ′) � bag-of (s ′) = bag-of (s)

bag-of :Val∗ → (Val m−→ N1)

bag-of (s) � {e �→ card {i ∈ inds s | s(i) = e} | e ∈ elems s}.

3.2 Algorithm

The basic idea of merge sorting can be established with a recursive function
(mergesort defined below). This uses a merge function that selects the minimum
head element from its two argument lists and recurses:

merge :Val∗ × Val∗ → Val∗

merge(s1, s2) �
if s1 = [ ] ∨ s2 = [ ]
then s1 �̀ s2
else if (hd s1 ≤ hd s2)

then [hd s1] �̀ merge(tl s1, s2)
else [hd s2] �̀ merge(s1, tl s2)

Lemma 6. The merge function has the property that the final list is a permu-
tation of the initial two lists conjoined:

permutes(merge(s1, s2), s1 �̀ s2)

The proof is by nested induction on the lists.

Lemma 7. The merge function also satisfies the property that, if the argument
lists are ordered, so is the resulting merged list:

ordered(s1) ∧ ordered(s2) ⇒ ordered(merge(s1, s2))

The proof is identical in structure to that of Lemma 6.
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The mergesort function itself is defined as follows:

mergesort :Val∗ → Val∗

mergesort(s) �
if len s ≤ 1
then s
else let s1, s2 be st s1 �̀ s2 = s ∧ s1 
= [ ] ∧ s2 
= [ ] in

merge(mergesort(s1),mergesort(s2))

Lemma 8. The mergesort function ensures that the resulting list is both sorted
and a permutation of the initial list:

s ′ = mergesort(s) ⇒ is-sort(s, s ′)

Because of the arbitrary split, the proof uses course-of-values induction on s.

3.3 Representing Sequences

Having dealt with the algorithmic ideas in Sect. 3.2, the method used in Sect. 2.3
can be followed by reifying the abstract sequences into Srep objects as defined
in Sect. 2.3.

The implementation consists of two operations: MSORT1 operates on S1:

S1 = (Srep × Srep),

while the MERGE1 operation uses a state that contains three instances of Srep:

M1 = (Srep × Srep × Srep),

where the three fields are pairwise separate (sep cf. Sect. 2.3). As in Sect. 2.3,
this notion of separation is used here only to simplify the exchange of ownership
of cells between l , r and a. In Sect. 3.4, separation justifies the embedding of
three Srep objects in a single heap.

Turning to the presentation of the (abstract) program, standard sequential
program constructs (e.g. the while loop) were used in Sect. 2.2. This approach
is not followed here because it would be a digression to derive a proof rule
for the (non-tail) recursion needed in MSORT1 (this construct is not covered
in [Jon90]). Instead the recursion in both MERGE1 and MSORT1 is represented
as predicates by ‘quoting post conditions’ (cf. [Jon90, Sect. 9.3]).

post-MERGE1((l , r , a), (l ′, r ′, a ′)) �
l = { } ∧ a ′ = r ∧ l ′ = r ′ = { } ∨
r = { } ∧ a ′ = l ∧ l ′ = r ′ = { } ∨
l 
= { } ∧ r 
= { } ∧ l(start(l))1 ≤ r(start(r))1 ∧
post-MERGE1(({start(l)} −� l , r , a), (l ′, r ′,ma)) ∧
a ′ = {start(l) �→ (l(start(l))1, start((ma))} ∪ ma ∨

l 
= { } ∧ r 
= { } ∧ l(start(l))1 > r(start(r))1 ∧
post-MERGE1((l , {start(r)} −� r , a), (l ′, r ′,ma)) ∧
a ′ = {start(r) �→ (r(start(r))1, start((ma))} ∪ ma
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Lemma 9. MERGE1 preserves separation:

(l , r , a) ∈ M1 ∧ post-MERGE1((l , r , a), (l ′, r ′, a ′)) ⇒ (l ′, r ′, a ′) ∈ M1

The proof of this lemma is obvious from the form of the proof of Lemma 1.

Lemma 10. The operation MERGE1 mirrors the function merge

∀l , r , a, l ′, r ′, a ′ ∈ Srep ·
post-MERGE1((l , r , a), (l ′, r ′, a ′)) ⇒

gather(a ′) = merge(gather(l), gather(r))

Here again, the proof follows that of Lemma 3.

It is necessary to split an Srep into two separate values of that type. The
function split recurses until the argument p is located in the representation:

split :Srep × Ptr → (Srep × Srep)

split(sr , p) �
if p = start(sr)
then ({ }, sr)
else let (l , r) = split({start(sr)} −� sr , p) in

({start(sr) �→ (sr(start(sr))1, start(l))} ∪ l , r)

pre p ∈ dom sr

Lemma 11. The split function yields two instances of Srep that are separate:

sr ∈ Srep ∧ p ∈ dom sr ∧ (l , r) = split(sr , p) ⇒
l ∈ Srep ∧ r ∈ Srep ∧ sep(l , r)

The proof is by induction on sr .

Lemma 12. Under the gather function, concatenation of the two lists produced
by split gives the argument list:

sr ∈ Srep ∧ p ∈ dom sr ∧ (l , r) = split(sr , p) ⇒
gather(l) �̀ gather(r) = gather(sr)

This proof follows the structure of that of Lemma 11.

WhereasMERGE1 is used sequentially (there are no concurrent threads), instances
of MSORT1 are to be run in parallel. The term ‘parallel’ is used in preference to
‘concurrently’ precisely because the instances are executed on separate parts of the
heap.

MSORT1

ext wr sr : Srep
post (sr = { } ∨ sr(start(sr))2 = nil) ∧ sr ′ = sr ∨

∃p ∈ dom sr , l , r ∈ Ptr ·
p 
= start(sr) ∧
(l , r) = split(sr , p) ∧
post-MSORT1(l , l ′) ∧ post-MSORT1(r , r ′) ∧
post-MERGE1((l ′, r ′, { }), ({ }, { }, sr ′))
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Theorem 2. The final conclusion is that the operation MSORT1 mirrors the
function mergesort:

post-MSORT1(sr , sr ′) ⇒ gather(sr ′) = mergesort(gather(sr))

which follows from the lemmas.

3.4 The Heap

It is almost as straightforward as in Sect. 2.4 to develop code for MSORT2 and
MERGE2. There is one interesting addition required because of the concurrent
execution of two instances of MSORT2. The invariants follow the same pattern
as with the sequence reversal example — for MERGE2, the representation in the
Heap is:

M2 = (Heap × Ptr × Ptr × Ptr)

where

inv -M2((hp, x , y , z )) �
∃l , r , a ∈ Srep ·

l ∪ r ∪ a ⊆ hp ∧ x = start(l) ∧ y = start(r) ∧ z = start(a)

and the corresponding representation for MSORT2 is simply:

S2 = (Heap × Ptr)

where

inv -S2((hp, p)) � ∃sr ∈ Srep · sr ⊆ hp ∧ p = start(sr)

The respective retrieve functions are:

retr -m1 :M2 → M1

retr -m1((hp, x , y , z )) �
(trace(hp, x ) � hp, trace(hp, y) � hp, trace(hp, z ) � hp)

retr -s1 :S2 → S1

retr -s1((hp, p))) � (trace(hp, p) � hp)

It is, however, necessary to establish non-interference between the concurrent
threads. This can be done with a simple use of rely/guarantee reasoning:7

rely-MSORT2: p′ = p ∧ trace(hp, p) � hp′ = trace(hp, p) � hp
guar -MSORT2: trace(hp, p) −� hp′ = trace(hp, p) −� hp

The code in Figs. 4 and 5 satisfies the specifications of MERGE2 and MSORT2

respectively; a specific implementation of split is also provided.

7 A suitable formal proof rule is given in Sect. 4.
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Fig. 4. C++ implementation of MERGE.

Fig. 5. C++ implementation of MSORT.
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3.5 Observations

As in Sect. 2, the approach of viewing separation as an abstraction has benefits.
As in the earlier example, aspects of VDM such as types restricted by predicates
and relational post conditions play a small part in the development of merge sort.
More significant is that the layered development makes it possible to divorce the
reasoning about merging and sorting from details of how the abstract state is
reified onto heap storage.

Although this example has used some aspects of VDM not needed in Sect. 2 —
in particular, quoting post conditions — it is important to remember that these
are long-standing ideas in VDM and are not specific to reasoning about the
separation issue.

4 Discussion

The research reported in this paper is one vector of the ‘Taming Concurrency’
project in which it is hoped to identify and/or to develop apposite notations for
reasoning about the underlying issues that make designing and justifying intri-
cate concurrent programs challenging. In contrast, starting with a fixed notation
might be seen as a version of ‘to a man with a hammer, everything looks like a
nail’. Of course, using existing notation is not precluded but ensuring that the
issues are clear looks to be a prudent starting point.

The Rely/Guarantee (R/G) approach (of which more below) was devised
for reasoning about the issue of interference. The R/G concept has been sub-
stantially recast in [HJC14] and the new version is summarised in [JHC15].
In contrast to the monolithic five-tuple approach of [Jon81,Jon83a,Jon83b] for
R/G specifications, [HJC14] presents separate rely and guar constructs in a
refinement calculus style and shows their algebraic structure.

The current paper is written in the same spirit. Separation is also a key
issue in thinking about parallel programs. One example of the importance of
separation is the way in which storage is allocated between threads in an oper-
ating system. Separation Logic (SL) has a well-crafted collection of operators for
reasoning about separation/ownership and an attractive feature is the pleasing
algebraic properties of the operators.

This paper –with the help of examples previously tackled with SL– explores
the option of reasoning about separation using predicates defined over heaps.
The idea can be summarised with the motto that separation is an abstraction.
A corollary of this point of view is that representations (e.g. of separate scoped
variables into heap representations) have to preserve the separation property of
the abstraction. Other than the twist of viewing separation as an abstraction,
the method of data reification used here is long-established in the literature.

Analogous to the pulling apart of R/G specifications, an alternative view of
SL might lead to different notational ideas than if the notation itself is taken as
the fixed point. Obviously, the fact that it is possible to reason about separation
without the need to use SL itself is not an argument against SL. One huge benefit
of SL is the tool support that has been developed around the notation. These
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tools support a ‘bottom-up’ approach that is advantageous with legacy software.
The pleasing algebraic relationship between SL operators has been referred to
above. These operators are also able to express some constraints in a succinct
way (e.g. the use of separating conjunction with recursion to state that a chain
of pointers has no loops).

A bonus from the top down approach can be seen in the examples in this
paper: the essence of each algorithm is documented and reasoned about on the
abstraction and this is separated from arguments about the messy details of the
(heap) representations. The hope is that seeing what can be done in a top-down
view using abstraction could prompt new requirements for SL-like notations.
The approach might, conceivably, also control the proliferation against which
Matt Parkinson warns in [Par10].

Separation is, of course, a way of ruling out interference so it is interest-
ing to understand those situations where a user can choose which approach to
adopt. With scoped variables, there is a variety of ways to define the named vari-
ables (frame) of different threads. VDM allows state components to be marked
as having rd/wr access; the keyword notation is rather heavy but serves the
purpose and many alternatives could be considered. In the refinement calcu-
lus presentation of [HJC14,JHC15], write access is made clear but not access
for reading. Section 3.4 above indicates the recording of read/write access to
subsets of heap addresses. (There are, of course, occasions where read:write
clashes require assumptions in the reading process and rely conditions are an
obvious candidate for recording such assumptions.) One approach that is used
with separation logics to handle such access constraints is to employ ‘fractional
permissions’ [Boy03].

Technical connections between R/G and SL are considered in [VP07,Vaf07].
It might also be worth noting one of the Laws in [HJC14]:

[q1 ∧ q2] � (guar g1 • (rely g2 • [q1])) || (guar g2 • (rely g1 • [q2]))

which both handles the general case of interference and rather clearly shows
that the attractive prospect of conjoining the post conditions of parallel threads
can be achieved (only) if their respective guarantee conditions ensure sufficient
separation. This emphasises that complete separation is an extreme case of min-
imising interference.

One last comment on the similarities is that the importance of (data) abstrac-
tion in the proposed way of looking at separation nicely mirrors its key role in
R/G methods [Jon07].

More narrowly, on the content of this paper, alternatives considered by the
authors include:

– It would simplify the notation to separate the Heap into two mappings (one
for the Val and the other for the next Ptr) because it would remove the need
to use subscripts to access the components of the pair.

– In both examples, it would be possible to omit the intermediate representation
and to move directly from the respective abstract states to the general Heap.
As mentioned in Sect. 2.3, the fact that Srep is used in both examples is
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one argument for its separation — the other argument is the divorce of the
algorithm design from the messy heap representation details.

For future work, it would be useful to develop a ‘theory’ of Srep objects.
Another interesting avenue to explore is the extent to which recording the
relationship between a clean abstraction and its representation (given here as
‘retrieve functions’) could be used to generate code automatically from the
abstract algorithm. Finally, the need to reason about both separation and inter-
ference will be discussed in another paper on which the current authors are
working (together with Andrius Velykis) which covers the design of concurrent
implementations of tree and graph representations.
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