
Radu Calinescu
Bernhard Rumpe (Eds.)

 123

LN
CS

 9
27

6

13th International Conference, SEFM 2015
York, UK, September 7–11, 2015
Proceedings

Software Engineering
and Formal Methods

Lecture Notes in Computer Science 9276

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Radu Calinescu • Bernhard Rumpe (Eds.)

Software Engineering
and Formal Methods
13th International Conference, SEFM 2015
York, UK, September 7–11, 2015
Proceedings

123

Editors
Radu Calinescu
Department of Computer Science
University of York
York
UK

Bernhard Rumpe
Software Engineering
Department of Computer Science
RWTH Aachen University
Aachen
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-22968-3 ISBN 978-3-319-22969-0 (eBook)
DOI 10.1007/978-3-319-22969-0

Library of Congress Control Number: 2015946575

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The 13th edition of the International Conference on Software Engineering and Formal
Methods (SEFM) was held in York, UK, during September 7–11, 2015. The confer-
ence brought together researchers and practitioners from academia, industry, and
government to advance the state of the art in formal methods, to facilitate their uptake
in the software industry, and to encourage their integration within practical software
engineering methods and tools.

Authors were invited to submit full research papers describing original research
results, case studies, and tools; and short new ideas/work-in-progress papers describing
new approaches, techniques, and/or tools not fully validated yet. The topics of interest
included the following aspects of software engineering and formal methods:

• Formal requirement analysis, modelling, specification and design
• Abstraction and refinement
• Formal methods for probabilistic verification and synthesis
• Programming languages, program analysis, and type theory
• Formal methods for self-adaptive systems, service-oriented, and cloud computing
• Formal aspects of security and mobility
• Model checking, theorem proving, and decision procedures
• Formal methods for real-time, hybrid, and embedded/cyber-physical systems
• Formal methods for safety-critical, fault-tolerant, and secure systems
• Software architecture and coordination languages
• Software verification and validation
• Component, object, and multi-agent systems
• Formal aspects of software evolution and maintenance
• Formal methods for testing, re-engineering, and reuse
• Light-weight and scalable formal methods
• Tool integration
• Applications of formal methods, industrial case studies, and technology transfer
• Education and formal methods
• Interactive systems and human error analysis
• Formal methods for HCI
• Formal analysis of human behavior

SEFM 2015 received 96 submissions. All submitted papers underwent a rigorous
review process, each paper receiving three reviews. After a careful discussion phase,
the international Program Committee decided to select 17 research papers and six new
ideas/work-in-progress papers. These papers cover a wide variety of topics from areas
where formal methods can be applied to software engineering. They also address a
broad range of application domains.

The conference featured three keynote talks, by Peter OHearn (University College
London and Facebook, UK), Cliff Jones (Newcastle University, UK), and Edward A. Lee

(University of California at Berkeley, USA). Their talks are partially reflected through
invited papers that can be found at the beginning of this volume.

Four international workshops were colocated with SEFM 2015:

• ATSE – 6th Workshop on Automating Test Case Design, Selection and Evaluation
• HOFM – Human-Oriented Formal Methods: From Readability to Automation
• MoKMaSD – 4th International Symposium on Modelling and Knowledge Man-

agement Applications: Systems and Domains
• VERY*SCART: International Workshop on the Art of Service Composition and

Formal Verification for Self-* Systems

We would first like to thank the SEFM 2015 General Chair, Jim Woodcock, for his
support with planning and running the conference. We thank our Program Committee
assistant, Robert Eikermann, for his great assistance with the review process and with
putting the present volume together, the local Organization Committee Simon Foster,
Bob French, Simos Gerasimou, Seyyed Shah, and Chris Walker for taking care of the
local arrangements, the SEFM Steering Committee for their assistance, and the
Workshop Chair Domenico Bianculli for supervising the workshop organization. We
are grateful to EasyChair for the support with the paper submission and reviewing
process, and with the preparation of this volume. We have been able to put together an
exciting technical program that would not have been possible without the excellent
work of the Program Committee and their external reviewers. Finally, we would like to
thank the authors of all submitted papers, our invited speakers, and all the participants
of the conference in York, all of whom contributed to the success of the 2015 edition of
SEFM.

June 2015 Radu Calinescu
Bernhard Rumpe

VI Preface

Organization

Program Committee

Wolfgang Ahrendt Chalmers University of Technology, Sweden
Bernhard K. Aichernig TU Graz, Austria
Dalal Alrajeh Imperial College London, UK
Farhad Arbab CWI and Leiden University, The Netherlands
Luis Barbosa Universidade do Minho, Portugal
Howard Barringer The University of Manchester, UK
Christian Berger Chalmers - University of Gothenburg, Sweden
Domenico Bianculli SnT Centre - University of Luxembourg, Luxembourg
Jonathan P. Bowen Birmingham City University, UK
Mario Bravetti University of Bologna, Italy
Yuriy Brun University of Massachusetts, USA
Tevfik Bultan University of California at Santa Barbara, USA
Benoit Combemale IRISA, Université de Rennes 1, France
Hung Dang Van UET, Vietnam National University, Vietnam
Francisco Durán University of Málaga, Spain
George Eleftherakis The University of Sheffield International Faculty, CITY

College, UK
José Luiz Fiadeiro Royal Holloway, University of London, UK
Mamoun Filali-Amine IRIT, France
Marc Frappier University of Sherbrooke, Canada
Martin Fränzle Carl von Ossietzky Universität Oldenburg, Germany
Hubert Garavel Inria Rhone-Alpes / VASY, France
Stefania Gnesi ISTI-CNR, France
Klaus Havelund Jet Propulsion Laboratory, California Institute of

Technology, USA
Rob Hierons Brunel University, UK
Mike Hinchey Lero, The Irish Software Engineering Research Centre,

Ireland
Falk Howar IPSSE, TU Clausthal, Germany
Michaela Huhn Institut für Informatik, TU Clausthal, Germany
Kenneth Johnson Auckland University of Technology, New Zealand
Gabor Karsai Vanderbilt University, USA
Joost-Pieter Katoen RWTH Aachen University, Germany
Shinji Kikuchi Fujitsu Laboratories Ltd., Japan
Alexander Knapp University of Augsburg, Germany
Martin Leucker University of Lübeck, Germany
Antónia Lopes University of Lisbon, Portugal

Shahar Maoz Tel Aviv University, Israel
Mercedes Merayo Universidad Complutense de Madrid, Spain
Stephan Merz Inria Nancy, France
Mizuhito Ogawa Advanced Institute of Science and Technology, Japan
Fernando Orejas UPC, Spain
Gordon Pace University of Malta, Malta
David Parker University of Birmingham, UK
Corina Pasareanu CMU/NASA Ames Research Center, USA
Anna Philippou University of Cyprus, Cyprus
Sanjiva Prasad Indian Institute of Technology, India
Jakob Rehof University of Dortmund, Germany
Leila Ribeiro Universidade Federal do Rio Grande do Sul, Brazil
Jan Oliver Ringert Tel Aviv University, Israel
Gwen Salaün Grenoble INP, Inria, LIG, France
Augusto Sampaio Federal University of Pernambuco, Brazil
Ina Schaefer Technische Universität Braunschweig, Germany
Gerardo Schneider Chalmers - University of Gothenburg, Sweden
Marjan Sirjani Reykjavik University, Iceland
Martin Steffen University of Oslo, Norway
Jing Sun The University of Auckland, New Zealand
Jun Sun Singapore University of Technology and Design,

Singapore
Giordano Tamburrelli Vrije Universiteit Amsterdam, The Netherlands
Massimo Tivoli University of L’Aquila, Italy
Danny Weyns Linnaeus University, Sweden
Jianjun Zhao Shanghai Jiao Tong University, China

Additional Reviewers

Akroun, Lakhdar
Bessai, Jan
Bhargavan, Karthikeyan
Bodeveix, Jean-Paul
Bousse, Erwan
Dang Duc, Hanh
Do Thi Bich, Ngoc
Foster, Nate
Gu, Zhongxian
Gupta, Ashutosh
Jansen, Christina

Khamespanah, Ehsan
Lachmann, Remo
Madeira, Alexandre
Markin, Grigory
Mendez-Acuna, David
Mohagheghi, Morteza
Nguyen Minh, Hai
Nogueira, Sidney
Peters, Henrik
Plouzeau, Noël
Riely, James

Ringert, Jan Oliver
Sabouri, Hamideh
Savary, Aymerick
Scheffel, Torben
Stümpel, Annette
Swaminathan, Mani
Terauchi, Tachio
Varshosaz, Mahsa
Yan, Dacong
Zuck, Lenore

VIII Organization

Contents

Invited Papers

Reasoning about Separation Using Abstraction and Reification 3
Cliff B. Jones and Nisansala Yatapanage

An Interface Theory for the Internet of Things . 20
Marten Lohstroh and Edward A. Lee

Program Verification

Learning Assertions to Verify Linked-List Programs 37
Jan Tobias Mühlberg, David H. White, Mike Dodds, Gerald Lüttgen,
and Frank Piessens

Verifying Protocol Implementations by Augmenting Existing
Cryptographic Libraries with Specifications . 53

Gijs Vanspauwen and Bart Jacobs

Specification and Verification of Atomic Operations in GPGPU Programs . . . 69
Afshin Amighi, Saeed Darabi, Stefan Blom, and Marieke Huisman

History-Based Verification of Functional Behaviour of Concurrent
Programs . 84

Stefan Blom, Marieke Huisman, and Marina Zaharieva-Stojanovski

Investigating Instrumentation Techniques for ESB Runtime Verification 99
Christian Colombo, Gabriel Dimech, and Adrian Francalanza

Towards Domain Refinement for UML/OCL Bounded Verification 108
Robert Clarisó, Carlos A. González, and Jordi Cabot

Testing

Efficient Testing of Different Loop Paths . 117
Stefan Huster, Sebastian Burg, Hanno Eichelberger, Jo Laufenberg,
Jürgen Ruf, Thomas Kropf, and Wolfgang Rosenstiel

Model-Based Robustness Testing in EVENT-B Using Mutation 132
Aymerick Savary, Marc Frappier, Michael Leuschel,
and Jean-Louis Lanet

http://dx.doi.org/10.1007/978-3-319-22969-0_1
http://dx.doi.org/10.1007/978-3-319-22969-0_2
http://dx.doi.org/10.1007/978-3-319-22969-0_3
http://dx.doi.org/10.1007/978-3-319-22969-0_4
http://dx.doi.org/10.1007/978-3-319-22969-0_4
http://dx.doi.org/10.1007/978-3-319-22969-0_5
http://dx.doi.org/10.1007/978-3-319-22969-0_6
http://dx.doi.org/10.1007/978-3-319-22969-0_6
http://dx.doi.org/10.1007/978-3-319-22969-0_7
http://dx.doi.org/10.1007/978-3-319-22969-0_8
http://dx.doi.org/10.1007/978-3-319-22969-0_9
http://dx.doi.org/10.1007/978-3-319-22969-0_10

On the Testability of Properties Patterns. 148
Simone Hanazumi and Ana C.V. de Melo

Certification

Speed Up Configurable Certificate Validation by Certificate Reduction
and Partitioning . 159

Marie-Christine Jakobs

Formal Analysis of Proactive, Distributed Routing 175
Mojgan Kamali, Peter Höfner, Maryam Kamali, and Luigia Petre

Certification of Distributed Algorithms Solving Problems with Optimal
Substructure . 190

Kim Völlinger and Wolfgang Reisig

Formal Specification and Proof

From Failure to Proof: The PROB Disprover for B and Event-B 199
Sebastian Krings, Jens Bendisposto, and Michael Leuschel

Formalizing a Secure Foreign Function Interface. 215
Adriaan Larmuseau and Dave Clarke

A Formal Study of Backward Compatible Dynamic Software Updates. 231
Jun Shen and Rida A. Bazzi

Testing and Model Checking

Memory Management Test-Case Generation of C Programs Using Bounded
Model Checking . 251

Herbert Rocha, Raimundo Barreto, and Lucas Cordeiro

Techniques for Memory-Efficient Model Checking of C and C++ Code. 268
Petr Ročkai, Vladimír Štill, and Jiří Barnat

NAT2TEST Tool: From Natural Language Requirements to Test Cases
Based on CSP . 283

Gustavo Carvalho, Flávia Barros, Ana Carvalho, Ana Cavalcanti,
Alexandre Mota, and Augusto Sampaio

Planning

Task Planning of Cyber-Human Systems . 293
Roykrong Sukkerd, David Garlan, and Reid Simmons

X Contents

http://dx.doi.org/10.1007/978-3-319-22969-0_11
http://dx.doi.org/10.1007/978-3-319-22969-0_12
http://dx.doi.org/10.1007/978-3-319-22969-0_12
http://dx.doi.org/10.1007/978-3-319-22969-0_13
http://dx.doi.org/10.1007/978-3-319-22969-0_14
http://dx.doi.org/10.1007/978-3-319-22969-0_14
http://dx.doi.org/10.1007/978-3-319-22969-0_15
http://dx.doi.org/10.1007/978-3-319-22969-0_16
http://dx.doi.org/10.1007/978-3-319-22969-0_17
http://dx.doi.org/10.1007/978-3-319-22969-0_18
http://dx.doi.org/10.1007/978-3-319-22969-0_18
http://dx.doi.org/10.1007/978-3-319-22969-0_19
http://dx.doi.org/10.1007/978-3-319-22969-0_20
http://dx.doi.org/10.1007/978-3-319-22969-0_20
http://dx.doi.org/10.1007/978-3-319-22969-0_21

Generating None-Plans in Order to Find Plans . 310
Michał Knapik, Artur Niewiadomski, and Wojciech Penczek

Modelling and Model Transformation

Twitlang(er): Interactions Modeling Language (and Interpreter) for Twitter. . . 327
Rocco De Nicola, Alessandro Maggi, Marinella Petrocchi,
Angelo Spognardi, and Francesco Tiezzi

From Featured Transition Systems to Modal Transition Systems
with Variability Constraints . 344

Maurice H. ter Beek, Ferruccio Damiani, Stefania Gnesi,
Franco Mazzanti, and Luca Paolini

An Extensible Operational Semantics for UML Activity Diagrams 360
Zamira Daw and Rance Cleaveland

Author Index . 369

Contents XI

http://dx.doi.org/10.1007/978-3-319-22969-0_22
http://dx.doi.org/10.1007/978-3-319-22969-0_23
http://dx.doi.org/10.1007/978-3-319-22969-0_24
http://dx.doi.org/10.1007/978-3-319-22969-0_24
http://dx.doi.org/10.1007/978-3-319-22969-0_25

Invited Papers

Reasoning about Separation Using Abstraction
and Reification

Cliff B. Jones(B) and Nisansala Yatapanage

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
Cliff.Jones@ncl.ac.uk

Abstract. Showing that concurrent threads operate on separate por-
tions of their shared state is a way of establishing non-interference. Fur-
thermore, in many useful programs, ownership of parts of the state are
exchanged dynamically. Reasoning about separation and ownership of
heap-based variables is often conducted using some form of separation
logic. This paper examines the issue of separation and investigates the
use of abstraction to specify and to reason about separation in pro-
gram design. Two case studies demonstrate that using separation as an
abstraction is a potentially useful approach.

Keywords: Concurrency · Separation · Ownership · Abstraction

1 Introduction

Concurrent programs are difficult to reason about either formally or informally
because of potential interference between threads; interference can be managed
by separation of the parts of the state accessible to threads; separation arguments
are often complicated by dynamic changes of ownership.

It is useful to distinguish the issues arising in the design of concurrent
programs before fixing on specific notations — clearly, separation/ownership
and interference constitute underlying issues. An obvious demarcation is to
employ Separation Logic to tackle the first set of issues and something like
Rely/Guarantee reasoning for the latter.

It has been shown elsewhere that ‘pulling apart’ the standard rely/guarantee
notation throws light on the issue of interference. In [JHC15], the benefits of
studying issues prior to choosing a notation are discussed. In particular, that
paper takes a new look at specifying and reasoning about interference (the new
presentation is more fully explained in [HJC14]).

In the same spirit, the current paper examines the issue of separation. The
separation of storage into disjoint portions is clearly an issue for concurrent pro-
gram design — when it can be established, it is possible to reason separately
about threads or processes that operate on the disjoint sections. Tony Hoare’s
early attempt to extend his ‘axiomatic basis’ [Hoa69] to parallel programs pro-
vides this insight in [Hoa72]. Hoare shows that pre/post conditions of the code
for separate threads can be conjoined providing the variables used by the threads
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-22969-0 1

4 C.B. Jones and N. Yatapanage

are disjoint. He tackled normal (or ‘scoped’) variables where dynamic ownership
might be controlled by something like monitors.

In comparison to scoped variables, it is more delicate to reason about sepa-
ration over ‘heap’ variables whose addresses are computed by the programs in
which they occur. Furthermore, exchange of ownership of heap addresses between
threads is often disguised by intricate pointer manipulation.

The issues of separation and ownership are certainly handled well by Con-
current Separation Logic [O’H07]. The current paper suggests that some forms
of separation can be specified by using data abstraction. The only novelty with
respect to standard data abstraction/reification is that the representation must
be shown to preserve the separation property of the abstraction.

Two examples are presented here: a simple list reversal algorithm that is
sequential and comes from one of Reynolds’ early papers [Rey02] on Separation
Logic and a concurrent sorting algorithm. In both cases the implementation uses
(separate portions of) heap storage and the ownership of heap cells is exchanged
between threads. It would be possible to object that the examples presented
look like simple data reifications but that is, in fact, the main point. Using data
abstraction, along with the one additional idea that separate abstract variables
can be reified onto a shared data structure, throws light on the concepts of
separation and ownership.

Of course, some notation has to be used for the specifications and requisite
proof obligations but this is well-established and was not devised for concurrency.
The authors happen to use ideas from VDM1 but the same points could be made
in Z or Event-B. In more complicated examples, it is useful to be explicit about
‘framing’ and VDM does offer ways of specifying read and write access to parts
of the state. For framing, the ideas in [Bor00] or ‘dynamic frames’ [Kas11] would
also be options.

The observation that it is possible to tackle some cases of reasoning about
separation by using layers of abstraction is in no way intended to challenge
research on separation logics. However, as with the reported reformulation of
rely/guarantee reasoning, focussing on the issue rather than a specific notation
might give a new angle on notations for separation and/or reduce the need to
develop new logics.

Hints for a top-down development of the list reversal algorithm are sketched
in [JHC15]. The current paper completes the development and fills in details
omitted there — more importantly, it draws out the consequences (cf. Sect. 4)
and adds the more substantial example of concurrent merge sorting in Sect. 3.

2 In-Place List Reversal

As observed in [JHC15], as well as separation being crucial for concurrent pro-
grams, it also has a role in sequential programs. In fact, Separation Logic [Rey02]
was conceived for sequential programs; the development of Concurrent Separa-
tion Logic [O’H07] came later. While Sect. 3 applies the idea of separation as
1 VDM notation is used throughout the current paper; see [Jon90] for details.

Reasoning about Separation Using Abstraction and Reification 5

an abstraction to a concurrent sorting algorithm, this section shows the appli-
cation of the same idea to the development of a sequential program whose final
implementation performs in-place reversal of a sequence.

2.1 Original Presentation

In [Rey02], John Reynolds presented an efficient sequential list reversal algo-
rithm; the fact that the code operates in-place makes it an ideal vehicle for intro-
ducing the idea of using abstraction to handle separation. Interestingly, Reynolds
introduced the problem by starting with the algorithm, shown in Fig. 1. The list
is represented by a value for each item, with the subsequent address containing a
pointer to the next item. The algorithm utilises three pointers (i, j, k), where
i initially points to the start of the list, k is a temporary place-holder and at
termination of the algorithm, j points to the reversed list.

Reynolds used the separating conjunction of Separation Logic to develop a
useful specification of the algorithm from the code. His specification demon-
strates the ability of the separating conjunction operator to hide the details of
the separation, such as showing that the two lists must remain separate and that
they are separate from all other lists. While this is certainly a useful method for
handling the complexities of separation, the following sections show how layered
abstractions can offer a viable alternative.

Fig. 1. Reynolds’ in-place list reversal program in C notation (*n is the C-style pointer
dereference of pointer n).

2.2 Abstract Specification

The notion of reversing a sequence is expressed simply as a recursive function:

rev :Val∗ → Val∗

rev(list) � if list = [] then list else rev(tl list) �̀ [hd list]

The initial step is to develop a program whose state is a pair of lists:

Σ0 = (Val∗ × Val∗)

where the first, referred to as s, is the original list and the second, referred to
as r , should finally contain the reversed list. It is worth observing that the two
fields of Σ0 are implicitly separate — they are ‘scoped’ variables and, unless

6 C.B. Jones and N. Yatapanage

a language allows something like ‘parameter passing by reference’, there is no
debate about a lack of separation.

An operation to compute the reverse of a list can be specified as follows:

post-REVERSE0((s, r), (s ′, r ′)) � r ′ = rev(s)

It is straightforward to develop the abstract program in Fig. 2 (the body of
the while loop is given as a specified operation because its isolation makes the
reification below clearer). The loop preserves the value of rev(s)�̀r ; the standard
VDM proof rule for loops handles termination by requiring that the relation be
well-founded — thus rev(s ′) �̀ r ′ = rev(s) �̀ r ∧ len s ′ < len s.

Fig. 2. Abstract list reversal program.

2.3 Representing Sequences

The program in Fig. 2 is based on abstract sequences and cannot address things
like moving pointers to achieve in-place operation. To show how the list reversal
can occur without moving the data, the abstract state needs to be represented
as a heap:

Heap = Ptr m−→ (Val × [
Ptr

]
)

(In VDM, maps (D m−→ R) are finite constructed functions; the fields of a pair
pr ∈ (Val × [

Ptr
]
) are accessed here2 by index, e.g. pr1; the square brackets

around Ptr indicate that it is optional and that nil /∈ Ptr is a possible value.)
Such a heap might contain information for other threads and/or garbage

discarded by processes. Section 2.4 completes the reification to just such a Heap
but, here, an intermediate step is introduced which shows two scoped variables
each containing a sub-heap that is precisely a sequence representation (Srep).
(Although this intermediate representation could actually be elided, a significant
advantage of its use is that Srep objects are also useful for the development of the
concurrent program in Sect. 3.) One could define Srep using a datatype invariant
but the proofs below benefit from defining the concept inductively as the least
map Srep ⊆ Heap containing:3

{ } ∈ Srep
sr ∈ Srep ∧ p ∈ Ptr ∧ p /∈ dom sr ⇒ ({p �→ (v , start(sr))} ∪ sr) ∈ Srep

2 VDM aficionados would normally employ a ‘record’ construct here but using a pair
and selecting by index reduces the potentially unfamiliar notation in this paper.

3 Of course, Srep and start are mutually recursive but it is clearer to separate their
descriptions.

Reasoning about Separation Using Abstraction and Reification 7

Furthermore, a useful function that defines the start element can be defined over
the recursive construction:

start({ }) = nil
start({p �→ (v , start(sr))} ∪ sr) = p

The state for this intermediate development step contains two Srep objects
which are required to have disjoint domains:4

Σ1 = (Srep × Srep)

where

inv -Σ1((sr , rr)) � sep(sr , rr)

sep :Srep × Srep → B

sep(sr , rr) � dom sr ∩ dom rr = { }

On the Σ1 representation, the specification of the operation corresponding
to the body of the while loop in Fig. 2 is:

pre-STEP1(sr , rr) � sr
= { }
post-STEP1((sr , rr), (sr ′, rr ′)) �

let p = start(sr) in
sr ′ = {p} −� sr ∧ rr ′ = rr ∪ {p �→ (sr(p)1, start(rr))}

Lemma 1. It is necessary to show that STEP1 preserves the invariant of Σ1.

(sr , rr) ∈ Σ1 ∧ pre-STEP1((sr , rr)) ∧ post-STEP1((sr , rr), (sr ′, rr ′)) ⇒
(sr ′, rr ′) ∈ Σ1

The proof is by induction over Srep.5

Proof obligations for data reification are standard in methods such as VDM
(cf. [Jon90, Chap. 8]): retrieve functions are homomorphisms from the represen-
tation back to the abstraction.

retr0 : Σ1 → Σ0

retr0((sr , rr)) � (gather(sr), gather(rr))

The gather function is again defined over the inductive construction of Srep:

gather :Srep → Val∗

gather({ }) = []
gather({p �→ (v , start(sr))} ∪ sr) = [v] �̀ gather(sr)

VDM defines an ‘adequacy’ proof obligation which requires that, for each
abstract state, there exists at least one representation state.
4 So far, separation is a convenience that ensures transferring cells from one sequence
to the other provides unused pointers; the restriction plays a bigger role in Sect. 2.4.

5 The conference version of this paper omits all detailed proofs which are, anyway,
mostly routine — they can be found in the Technical Report [JY15, Appendix].

8 C.B. Jones and N. Yatapanage

Lemma 2. There is at least one representation for each abstract state:

∀s ∈ Val∗ · ∃sr ∈ Srep · gather(sr) = s

The proof of this lemma is by induction on s.

The key commutativity proof for reification shows that the design step models
the abstract specification:

Lemma 3. STEP1 models (under retr0) the abstract STEP0

inv -Σ1(σ1) ∧ pre-STEP0(retr0(σ1)) ∧ post-STEP1(σ1, σ
′
1) ⇒

post-STEP0(retr0(σ1), retr0(σ′
1))

The proof follows from unfolding the defined functions/predicates.

2.4 The Heap

Although the two Srep variables in the preceding section are ‘heap-like’, each
is used like a scoped variable. This section shows that the scoped variables can
be represented in a single heap and that the behaviour on the heap remains as
specified in Sect. 2.3.

This final representation uses a single heap (hp) and two pointers (i , j). The
hp field of Σ2 is essentially the heap underlying Fig. 1.6

Σ2 = (Heap × Ptr × Ptr)

where

inv -Σ2((hp, i , j)) �
∃sr , rr ∈ Srep · sr ∪ rr ⊆ hp ∧ i = start(sr) ∧ j = start(rr)

This is again an exercise in data reification. Here, it is mandatory that sep
holds between the two sub-heaps because their union is used in (sr ∪ rr) ⊆ hp;
the fact that this is not an equality admits the possibility of other information
in the heap. The retrieve function in this case is:

retr1 : Σ2 → Σ1

retr1((hp, i , j)) � (trace(hp, i) � hp, trace(hp, j) � hp)

where:

trace :Heap × Ptr → Ptr -set

trace(hp, p) � if p = nil
then { }
else {p} ∪ trace(hp, hp(p)2)

6 The fact that ‘cells’ contain both data and pointer (rather than them being in loca-
tions n and n+1 as in Fig. 1) is incidental — think of car/cdr in Lisp. Furthermore,
the decision to use Ptr rather than N is deliberate.

Reasoning about Separation Using Abstraction and Reification 9

The definedness of trace for Srep ⊆ Heap follows from inv -Σ2.

Lemma 4. The trace function applied to the start of an Srep returns exactly
the pointers in that Srep; therefore, restricting the domain of a heap containing
an Srep to such a trace yields the original Srep.

sr ∈ Srep ∧ sr ⊆ hp ⇒ trace(hp, start(sr)) � hp = sr

The proof is by induction over Srep.

The adequacy proof obligation for Σ2 is:

Lemma 5. There is at least one representation in Σ2 for each Σ1 state:

∀(sr , rr) ∈ Σ1 · ∃(hp, i , j) ∈ Σ2 · retr1((hp, i , j)) = (sr , rr)

The proof creates a minimal hp that contains exactly the union of sr/rr which
are disjoint.

On Σ2, the specification of the operation corresponding to STEP1 above is:

pre-STEP2((hp, i , j)) � i
= nil
post-STEP2((hp, i , j), (hp′, i ′, j ′)) �

i ′ = hp(i)2 ∧ j ′ = i ∧ hp′ = hp † {i �→ (hp(i)1, j)}
for which the reification proof obligation is:

Theorem 1. STEP2 models (under retr1) the abstract STEP1

inv -Σ2(σ2) ∧ pre-STEP1(retr1(σ2)) ∧ post-STEP2(σ2, σ
′
2) ⇒

post-STEP1(retr1(σ2), retr1(σ′
2))

The proof again follows from unfolding the defined functions/predicates.

Code (in C++) that satisfies post-STEP2 is given in Fig. 3. The final step in
the correctness argument is to note that the loop in Fig. 2 terminates when s = []
and the loop on the representation terminates when i = nil; under retr1/retr0,
these conditions are equivalent.

2.5 Observations

This simple sequential example illustrates how the motto separation is an abstrac-
tion can work in practice. In the abstraction (Σ0) of Sect. 2.2, the two variables
are assumed to be distinct; standard data reification rules apply where that dis-
tinction is obvious; in the step to Σ2, it must be established that the abstraction
of separation holds in the representation as (changing) portions of a shared heap.

A valuable by-product of the layered design is that the algorithm is discussed
on the abstraction and neither the reification step nor its justification are con-
cerned with list reversal as such. This is, of course, in line with the message
of [Wir76].

10 C.B. Jones and N. Yatapanage

Fig. 3. C++ implementation of the list reversal algorithm.

There are some incidental bonuses from the use of VDM: invariants (and the
use of predicate restricted types) effectively provide pre conditions for the func-
tions; use of relational post conditions avoids the need for what are essentially
auxiliary variables to refer to the initial state; and the use of ‘LPF’ [BCJ84] sim-
plifies the construction of logical expressions where terms and/or propositions
can fail to denote.

This example is simple and, in fact, the development presented here is even
clearer than that in an earlier draft. The point is that the important notion of
separation has been tackled without any special notation. Section 3 employs the
same approach on a program that uses parallelism.

3 Mergesort

The preceding list reversal example demonstrates the idea of handling separa-
tion via abstraction in a sequential development. This section applies the same
idea to a concurrent design: the well-known mergesort algorithm which sorts by
recursively splitting lists. At each step, the argument list is divided into two
parts (preferably, but not necessarily, of roughly equal sizes) which are recur-
sively submitted to mergesort ; as the recursion unwinds, the two sorted lists are
merged into a single sorted list.

3.1 Specification

The notion of sorting is easy to specify as a relation:

is-sort :Val∗ × Val∗ → B

is-sort(s, s ′) � ordered(s ′) ∧ permutes(s ′, s)

Reasoning about Separation Using Abstraction and Reification 11

The ordered predicate tests that its argument is an ascending sequence.

ordered :Val∗ → B

ordered(s) � ∀i ∈ {1..len s − 1} · s(i) ≤ s(i + 1)

The permutes predicate tests that its two arguments contain the same elements;
here this is done by comparing the ‘bag’ (‘multiset’) of occurrences:

permutes :Val∗ × Val∗ → B

permutes(s, s ′) � bag-of (s ′) = bag-of (s)

bag-of :Val∗ → (Val m−→ N1)

bag-of (s) � {e �→ card {i ∈ inds s | s(i) = e} | e ∈ elems s}.

3.2 Algorithm

The basic idea of merge sorting can be established with a recursive function
(mergesort defined below). This uses a merge function that selects the minimum
head element from its two argument lists and recurses:

merge :Val∗ × Val∗ → Val∗

merge(s1, s2) �
if s1 = [] ∨ s2 = []
then s1 �̀ s2
else if (hd s1 ≤ hd s2)

then [hd s1] �̀ merge(tl s1, s2)
else [hd s2] �̀ merge(s1, tl s2)

Lemma 6. The merge function has the property that the final list is a permu-
tation of the initial two lists conjoined:

permutes(merge(s1, s2), s1 �̀ s2)

The proof is by nested induction on the lists.

Lemma 7. The merge function also satisfies the property that, if the argument
lists are ordered, so is the resulting merged list:

ordered(s1) ∧ ordered(s2) ⇒ ordered(merge(s1, s2))

The proof is identical in structure to that of Lemma 6.

12 C.B. Jones and N. Yatapanage

The mergesort function itself is defined as follows:

mergesort :Val∗ → Val∗

mergesort(s) �
if len s ≤ 1
then s
else let s1, s2 be st s1 �̀ s2 = s ∧ s1
= [] ∧ s2
= [] in

merge(mergesort(s1),mergesort(s2))

Lemma 8. The mergesort function ensures that the resulting list is both sorted
and a permutation of the initial list:

s ′ = mergesort(s) ⇒ is-sort(s, s ′)

Because of the arbitrary split, the proof uses course-of-values induction on s.

3.3 Representing Sequences

Having dealt with the algorithmic ideas in Sect. 3.2, the method used in Sect. 2.3
can be followed by reifying the abstract sequences into Srep objects as defined
in Sect. 2.3.

The implementation consists of two operations: MSORT1 operates on S1:

S1 = (Srep × Srep),

while the MERGE1 operation uses a state that contains three instances of Srep:

M1 = (Srep × Srep × Srep),

where the three fields are pairwise separate (sep cf. Sect. 2.3). As in Sect. 2.3,
this notion of separation is used here only to simplify the exchange of ownership
of cells between l , r and a. In Sect. 3.4, separation justifies the embedding of
three Srep objects in a single heap.

Turning to the presentation of the (abstract) program, standard sequential
program constructs (e.g. the while loop) were used in Sect. 2.2. This approach
is not followed here because it would be a digression to derive a proof rule
for the (non-tail) recursion needed in MSORT1 (this construct is not covered
in [Jon90]). Instead the recursion in both MERGE1 and MSORT1 is represented
as predicates by ‘quoting post conditions’ (cf. [Jon90, Sect. 9.3]).

post-MERGE1((l , r , a), (l ′, r ′, a ′)) �
l = { } ∧ a ′ = r ∧ l ′ = r ′ = { } ∨
r = { } ∧ a ′ = l ∧ l ′ = r ′ = { } ∨
l
= { } ∧ r
= { } ∧ l(start(l))1 ≤ r(start(r))1 ∧
post-MERGE1(({start(l)} −� l , r , a), (l ′, r ′,ma)) ∧
a ′ = {start(l) �→ (l(start(l))1, start((ma))} ∪ ma ∨

l
= { } ∧ r
= { } ∧ l(start(l))1 > r(start(r))1 ∧
post-MERGE1((l , {start(r)} −� r , a), (l ′, r ′,ma)) ∧
a ′ = {start(r) �→ (r(start(r))1, start((ma))} ∪ ma

Reasoning about Separation Using Abstraction and Reification 13

Lemma 9. MERGE1 preserves separation:

(l , r , a) ∈ M1 ∧ post-MERGE1((l , r , a), (l ′, r ′, a ′)) ⇒ (l ′, r ′, a ′) ∈ M1

The proof of this lemma is obvious from the form of the proof of Lemma 1.

Lemma 10. The operation MERGE1 mirrors the function merge

∀l , r , a, l ′, r ′, a ′ ∈ Srep ·
post-MERGE1((l , r , a), (l ′, r ′, a ′)) ⇒

gather(a ′) = merge(gather(l), gather(r))

Here again, the proof follows that of Lemma 3.

It is necessary to split an Srep into two separate values of that type. The
function split recurses until the argument p is located in the representation:

split :Srep × Ptr → (Srep × Srep)

split(sr , p) �
if p = start(sr)
then ({ }, sr)
else let (l , r) = split({start(sr)} −� sr , p) in

({start(sr) �→ (sr(start(sr))1, start(l))} ∪ l , r)

pre p ∈ dom sr

Lemma 11. The split function yields two instances of Srep that are separate:

sr ∈ Srep ∧ p ∈ dom sr ∧ (l , r) = split(sr , p) ⇒
l ∈ Srep ∧ r ∈ Srep ∧ sep(l , r)

The proof is by induction on sr .

Lemma 12. Under the gather function, concatenation of the two lists produced
by split gives the argument list:

sr ∈ Srep ∧ p ∈ dom sr ∧ (l , r) = split(sr , p) ⇒
gather(l) �̀ gather(r) = gather(sr)

This proof follows the structure of that of Lemma 11.

WhereasMERGE1 is used sequentially (there are no concurrent threads), instances
of MSORT1 are to be run in parallel. The term ‘parallel’ is used in preference to
‘concurrently’ precisely because the instances are executed on separate parts of the
heap.

MSORT1

ext wr sr : Srep
post (sr = { } ∨ sr(start(sr))2 = nil) ∧ sr ′ = sr ∨

∃p ∈ dom sr , l , r ∈ Ptr ·
p
= start(sr) ∧
(l , r) = split(sr , p) ∧
post-MSORT1(l , l ′) ∧ post-MSORT1(r , r ′) ∧
post-MERGE1((l ′, r ′, { }), ({ }, { }, sr ′))

14 C.B. Jones and N. Yatapanage

Theorem 2. The final conclusion is that the operation MSORT1 mirrors the
function mergesort:

post-MSORT1(sr , sr ′) ⇒ gather(sr ′) = mergesort(gather(sr))

which follows from the lemmas.

3.4 The Heap

It is almost as straightforward as in Sect. 2.4 to develop code for MSORT2 and
MERGE2. There is one interesting addition required because of the concurrent
execution of two instances of MSORT2. The invariants follow the same pattern
as with the sequence reversal example — for MERGE2, the representation in the
Heap is:

M2 = (Heap × Ptr × Ptr × Ptr)

where

inv -M2((hp, x , y , z)) �
∃l , r , a ∈ Srep ·

l ∪ r ∪ a ⊆ hp ∧ x = start(l) ∧ y = start(r) ∧ z = start(a)

and the corresponding representation for MSORT2 is simply:

S2 = (Heap × Ptr)

where

inv -S2((hp, p)) � ∃sr ∈ Srep · sr ⊆ hp ∧ p = start(sr)

The respective retrieve functions are:

retr -m1 :M2 → M1

retr -m1((hp, x , y , z)) �
(trace(hp, x) � hp, trace(hp, y) � hp, trace(hp, z) � hp)

retr -s1 :S2 → S1

retr -s1((hp, p))) � (trace(hp, p) � hp)

It is, however, necessary to establish non-interference between the concurrent
threads. This can be done with a simple use of rely/guarantee reasoning:7

rely-MSORT2: p′ = p ∧ trace(hp, p) � hp′ = trace(hp, p) � hp
guar -MSORT2: trace(hp, p) −� hp′ = trace(hp, p) −� hp

The code in Figs. 4 and 5 satisfies the specifications of MERGE2 and MSORT2

respectively; a specific implementation of split is also provided.

7 A suitable formal proof rule is given in Sect. 4.

Reasoning about Separation Using Abstraction and Reification 15

Fig. 4. C++ implementation of MERGE.

Fig. 5. C++ implementation of MSORT.

16 C.B. Jones and N. Yatapanage

3.5 Observations

As in Sect. 2, the approach of viewing separation as an abstraction has benefits.
As in the earlier example, aspects of VDM such as types restricted by predicates
and relational post conditions play a small part in the development of merge sort.
More significant is that the layered development makes it possible to divorce the
reasoning about merging and sorting from details of how the abstract state is
reified onto heap storage.

Although this example has used some aspects of VDM not needed in Sect. 2 —
in particular, quoting post conditions — it is important to remember that these
are long-standing ideas in VDM and are not specific to reasoning about the
separation issue.

4 Discussion

The research reported in this paper is one vector of the ‘Taming Concurrency’
project in which it is hoped to identify and/or to develop apposite notations for
reasoning about the underlying issues that make designing and justifying intri-
cate concurrent programs challenging. In contrast, starting with a fixed notation
might be seen as a version of ‘to a man with a hammer, everything looks like a
nail’. Of course, using existing notation is not precluded but ensuring that the
issues are clear looks to be a prudent starting point.

The Rely/Guarantee (R/G) approach (of which more below) was devised
for reasoning about the issue of interference. The R/G concept has been sub-
stantially recast in [HJC14] and the new version is summarised in [JHC15].
In contrast to the monolithic five-tuple approach of [Jon81,Jon83a,Jon83b] for
R/G specifications, [HJC14] presents separate rely and guar constructs in a
refinement calculus style and shows their algebraic structure.

The current paper is written in the same spirit. Separation is also a key
issue in thinking about parallel programs. One example of the importance of
separation is the way in which storage is allocated between threads in an oper-
ating system. Separation Logic (SL) has a well-crafted collection of operators for
reasoning about separation/ownership and an attractive feature is the pleasing
algebraic properties of the operators.

This paper –with the help of examples previously tackled with SL– explores
the option of reasoning about separation using predicates defined over heaps.
The idea can be summarised with the motto that separation is an abstraction.
A corollary of this point of view is that representations (e.g. of separate scoped
variables into heap representations) have to preserve the separation property of
the abstraction. Other than the twist of viewing separation as an abstraction,
the method of data reification used here is long-established in the literature.

Analogous to the pulling apart of R/G specifications, an alternative view of
SL might lead to different notational ideas than if the notation itself is taken as
the fixed point. Obviously, the fact that it is possible to reason about separation
without the need to use SL itself is not an argument against SL. One huge benefit
of SL is the tool support that has been developed around the notation. These

Reasoning about Separation Using Abstraction and Reification 17

tools support a ‘bottom-up’ approach that is advantageous with legacy software.
The pleasing algebraic relationship between SL operators has been referred to
above. These operators are also able to express some constraints in a succinct
way (e.g. the use of separating conjunction with recursion to state that a chain
of pointers has no loops).

A bonus from the top down approach can be seen in the examples in this
paper: the essence of each algorithm is documented and reasoned about on the
abstraction and this is separated from arguments about the messy details of the
(heap) representations. The hope is that seeing what can be done in a top-down
view using abstraction could prompt new requirements for SL-like notations.
The approach might, conceivably, also control the proliferation against which
Matt Parkinson warns in [Par10].

Separation is, of course, a way of ruling out interference so it is interest-
ing to understand those situations where a user can choose which approach to
adopt. With scoped variables, there is a variety of ways to define the named vari-
ables (frame) of different threads. VDM allows state components to be marked
as having rd/wr access; the keyword notation is rather heavy but serves the
purpose and many alternatives could be considered. In the refinement calcu-
lus presentation of [HJC14,JHC15], write access is made clear but not access
for reading. Section 3.4 above indicates the recording of read/write access to
subsets of heap addresses. (There are, of course, occasions where read:write
clashes require assumptions in the reading process and rely conditions are an
obvious candidate for recording such assumptions.) One approach that is used
with separation logics to handle such access constraints is to employ ‘fractional
permissions’ [Boy03].

Technical connections between R/G and SL are considered in [VP07,Vaf07].
It might also be worth noting one of the Laws in [HJC14]:

[q1 ∧ q2] � (guar g1 • (rely g2 • [q1])) || (guar g2 • (rely g1 • [q2]))

which both handles the general case of interference and rather clearly shows
that the attractive prospect of conjoining the post conditions of parallel threads
can be achieved (only) if their respective guarantee conditions ensure sufficient
separation. This emphasises that complete separation is an extreme case of min-
imising interference.

One last comment on the similarities is that the importance of (data) abstrac-
tion in the proposed way of looking at separation nicely mirrors its key role in
R/G methods [Jon07].

More narrowly, on the content of this paper, alternatives considered by the
authors include:

– It would simplify the notation to separate the Heap into two mappings (one
for the Val and the other for the next Ptr) because it would remove the need
to use subscripts to access the components of the pair.

– In both examples, it would be possible to omit the intermediate representation
and to move directly from the respective abstract states to the general Heap.
As mentioned in Sect. 2.3, the fact that Srep is used in both examples is

18 C.B. Jones and N. Yatapanage

one argument for its separation — the other argument is the divorce of the
algorithm design from the messy heap representation details.

For future work, it would be useful to develop a ‘theory’ of Srep objects.
Another interesting avenue to explore is the extent to which recording the
relationship between a clean abstraction and its representation (given here as
‘retrieve functions’) could be used to generate code automatically from the
abstract algorithm. Finally, the need to reason about both separation and inter-
ference will be discussed in another paper on which the current authors are
working (together with Andrius Velykis) which covers the design of concurrent
implementations of tree and graph representations.

Acknowledgements. The research reported here is supported by (UK) EPSRC ‘Tam-
ing Concurrency’ and ‘TrAmS-2’ research grants. The authors would like to thank
Andrius Velykis and our colleagues Ian Hayes, Larissa Meinicke and Kim Solin from
the (Australian) ARC-funded project ‘Understanding concurrent programs using rely-
guarantee thinking’ for their invaluable feedback.

References

[BCJ84] Barringer, H., Cheng, J.H., Jones, C.B.: A logic covering undefinedness in
program proofs. Acta Informatica 21(3), 251–269 (1984)

[Bor00] Bornat, R.: Proving pointer programs in Hoare logic. In: Backhouse, R.,
Oliveira, J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer,
Heidelberg (2000)

[Boy03] Boyland, J.: Checking interference with fractional permissions. In: Cousot,
R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

[HJC14] Hayes, I.J., Jones, C.B., Colvin, R.J.: Laws and semantics for rely-guarantee
refinement. Technical report CS-TR-1425, Newcastle University, July 2014

[Hoa69] Hoare, C.A.R.: An axiomatic basis for computer programming. Commun.
ACM 12(10), 576–580, 583 (1969)

[Hoa72] Hoare, C.A.R.: Towards a theory of parallel programming. In: Operating
System Techniques, pp. 61–71. Academic Press (1972)

[JHC15] Jones, C.B., Hayes, I.J., Colvin, R.J.: Balancing expressiveness in formal
approaches to concurrency. Formal Aspects Comput. 27, 475–497 (2015)

[Jon81] Jones, C.B.: Development methods for computer programs including a notion
of interference. Ph.D. thesis, Oxford University, June 1981. Printed as: Pro-
gramming Research Group, Technical Monograph 25

[Jon83a] Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings
of IFIP 1983, pp. 321–332. North-Holland (1983)

[Jon83b] Jones, C.B.: Tentative steps toward a development method for interfering
programs. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

[Jon90] Jones, C.B.: Systematic Software Development using VDM, 2nd edn. Prentice
Hall International, Upper Saddle River (1990)

[Jon07] Jones, C.B.: Splitting atoms safely. Theor. Comput. Sci. 375(1–3), 109–119
(2007)

[JY15] Jones, C.B., Yatapanage, N.: Reasoning about separation using abstraction
and reification (including proofs). Technical report CS-TR-1472, Newcastle
University, June 2015

Reasoning about Separation Using Abstraction and Reification 19

[Kas11] Kassios, I.T.: The dynamic frames theory. Formal Asp. Comput. 23(3), 267–
288 (2011)

[O’H07] O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Comput.
Sci. 375(1–3), 271–307 (2007)

[Par10] Parkinson, M.: The next 700 separation logics. In: Leavens, G.T., O’Hearn, P.,
Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 169–182. Springer,
Heidelberg (2010)

[Rey02] Reynolds, J.C.: Separation logic: a logic for shared mutable data structures.
In: Proceedings of 17th LICS, pp. 55–74. IEEE (2002)

[Vaf07] Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis,
University of Cambridge (2007)

[VP07] Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation
logic. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol.
4703, pp. 256–271. Springer, Heidelberg (2007)

[Wir76] Wirth, N.: Algorithms + Data Structures = Programs. Prentice-Hall, Upper
Saddle River (1976)

An Interface Theory for the Internet of Things

Marten Lohstroh and Edward A. Lee(B)

EECS Department, University of California, Berkeley, CA 94720, USA
{marten,eal}@eecs.berkeley.edu

Abstract. This paper uses interface automata to develop an interface
theory for a component architecture for Internet of Things (IoT) appli-
cations. Specifically, it examines an architecture for IoT applications
where so-called “accessors” provide an actor-oriented proxy for devices
(“things”) and services. Following the principles of actor models, an
accessor reacts to input stimuli and produces outputs that can stimulate
reactions in other accessors or actors. The paper focuses on a specialized
form of actor models where inputs and outputs to accessors and actors
are time-stamped events, enabling timing-sensitive IoT applications. The
interaction between accessors and actors via time-stamped events forms
a “horizontal contract,” formalized in this paper as an interface automa-
ton. The interaction between an accessor and the thing or service for
which it is a proxy is a “vertical contract,” also formalized as an inter-
face automaton. Following common practice in network programming,
our vertical contract uses an asynchronous atomic callback (AAC) pat-
tern. The formal composition of these interface automata allows us to
reason about the combination of a timed actor model and the AAC pat-
tern, enabling careful evaluation of design choices for IoT systems.

1 Introduction

Two major fields of research in engineering, one centered around cyber-physical
systems (CPS) and another around computer networks, now focus their atten-
tion on what is on what is believed to be the next big thing after the rise of
the Internet, the Internet of Things (IoT). The vision embodied by this term
appeals to the imagination of many—our environment and virtually anything
in it will turn “smart” by having otherwise ordinary things be furnished with
sensors, actuators, and networking capability, so that we can patch these things
together and have them be orchestrated by sophisticated feedback and control
mechanisms. As Wegner argued in [23], interaction opens up limitless possi-
bilities for things to harness their environment and compensate for a lack of
self-sufficient cleverness. Sensors aside, a connection to the Internet alone allows
a thing to tap into an exceedingly rich environment—unleashing a real potential

M. Lohstroh and E.A. Lee—This work was supported in part by the TerraSwarm
Research Center, one of six centers supported by the STARnet phase of the Focus
Center Research Program (FCRP) a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 20–34, 2015.
DOI: 10.1007/978-3-319-22969-0 2

An Interface Theory for the Internet of Things 21

for making things smarter. To exploit this potential, however, a precise and well-
defined coordination between a vast and heterogeneous collection of interfaces,
protocols, and components is required.

1.1 Accessors

In [10], accessors are proposed to take on the challenge of coordinating inter-
action between networked resources across different domains without imposing
standardized over-the-wire protocols or middleware. Accessors provide a formal
framework based on actors [8] that leverages platform-based design [20] as
a methodology to deal with the heterogeneity that characterizes the IoT. Acces-
sors are essentially proxies for things and services, endowing them with an actor
interface. This interface consists of a set of input and output ports through
which the accessor may receive and send tokens, along with a set of action func-
tions that are triggered when inputs arrive or other relevant events occur. An
actor abstract semantics [13] provides ways to compose accessors with dis-
ciplined and understandable concurrency models, while accessors abstract the
mechanisms by which they provide access to sensor data, control actuators, com-
municate to devices, or outsource computation. Accessors run on a host that,
according to some model of computation (MoC), coordinates communication
with other actors or accessors. More formally, an accessor interfaces two different
MoCs. On the outside, the accessor is coordinated by some actor-oriented MoC,
while on the inside, an interpreter governs the execution of a script that defines
its key functionality.

The overarching goal of accessors is to lift existing functionality implemented
using a heterogeneous collection of scripting languages and network protocols into
a library of reusable components that are amenable to composition on a unify-
ing platform for the development of IoT applications. The focus of this work thus
moves away from protocol-specific APIs and language-specific design patterns and
centers the discussion around the composition semantics of accessors.

1.2 Code Mobility and Trust

An accessor provides access to a thing or service that is not necessarily local to
the host. The host is a microcontroller, mobile device, or server, whereas a thing
is typically a separate piece of hardware, not necessarily proximate to the host,
and a service is possibly cloud based, accessed over the net. The accessor itself is
software that runs on the host, serving as a local proxy for the thing or service.

A well established precedent for such proxies is found in the Web, where a
website serves HTML5 and JavaScript that executes in a browser. The script
is a local proxy for a remote service. The script is mobile code, supplied by
a website, downloaded, and executed on a host (in a browser). It is essential
that browsers be able to execute largely untrusted code, carefully regulating
its access to local resources such as the host file system. Although the security
model is not perfect, after two or so decades of experience, the Web community

22 M. Lohstroh and E.A. Lee

has accumulated a great deal of experience with such untrusted code, and we
can reliably access important services, such as banking, through such proxies.

JavaScript proves to be a well-suited language for such proxies for several
reasons. One key reason is that the core JavaScript language includes no I/O
mechanisms. These must be provided by the host in the form of a context in
which the JavaScript code runs. In a browser, for example, the context provides
functions to manipulate a document and to control how a document is rendered
in the browser window. It also provides functions for soliciting input from a
human user and for accessing remote resources through the network. It does not
provide functions for accessing the local file system or executing command-line
programs on the host. It took many years, but today most of the capabilities pro-
vided by the browser context are standard across browsers, so most JavaScript
programs will work in a similar way in different browsers.

Accessors require a similar hosting mechanism. A host downloads possi-
bly untrusted code and executes it locally. The host, therefore, functions like
a browser, but instead of interfacing humans to network services, it interfaces
physical things to each other (and to network services). For example, an accessor
for a thing may provide output data that is massaged in some computation to
determine an action to be performed by some actuator. To be very specific, an
accessor for your front door lock may provide a notification that the door has
been opened, which could then trigger another accessor to turn on a light.

For accessors, the emphasis is not on rendering information for humans nor on
soliciting input from humans. Hence, the context provided by an accessor host
will not have the same facilities that a browser provides. Nevertheless, there
are strong commonalities. The accessor code is provided by a third party that
often cannot be completely trusted. Authentication, encryption, sandboxing, and
networked interactions are all just as relevant to accessors as to browsers. Hence,
leveraging the decades of experience with browsers is well justified. For this
reason, we focus on JavaScript as the accessor specification language.

1.3 Concurrency

Because accessors are local proxies for things and services that are not neces-
sarily local, concurrency becomes important. Physical things are intrinsically
concurrent, in that any two physical devices act and react at the same time.
They also act and react concurrently with any software that may be interacting
with them. And networked services, of course, are also intrinsically concurrent.
The concurrency model used by accessors therefore becomes a central feature.

JavaScript has an event-based concurrency model, and it typically inter-
acts with its environment asynchronously. For example, when accessing a web
resource, instead of blocking to wait for a response from the server, when the
script queries the server, it provides a callback function or handler to be
invoked when the response arrives. A key feature of JavaScript is that every
function invocation is atomic with respect to every other function invocation.
Hence, unlike interrupt-driven I/O or threads, a callback function does not get

An Interface Theory for the Internet of Things 23

Fig. 1. Accessor in a actor network of actors.

invoked at arbitrary points during the execution of the main program. A func-
tion executes to completion before any other function can begin executing. We
call this pattern of concurrency asynchronous atomic callback (AAC).

The AAC pattern is used extensively in web programming, both on the server
side (as in Node.js (http://nodejs.org) and Vert.x (http://vertx.io)) and on the
client side, in browsers. It has also been used in some other (non-web) applica-
tions such parallel computing (e.g. Active Messages [22]) and embedded systems
(e.g. TinyOS [15]).

The AAC pattern dramatically mitigates the difficulty of concurrent pro-
gramming [11], but at considerable cost. First, it becomes essential to write
code carefully to consist only of quick, small function invocations. Second, it
accentuates the chaos of asynchrony, where achieving coordinated action can
become challenging. The latter problem is particularly important for IoT, where
coordinated physical actions are often needed.

Because of these limitations, several efforts are under way to mix AAC
with other concurrency models. ECMAScript 6, a recent version of JavaScript,
enriches AAC with a cooperative multitasking model, which allows a function to
suspend execution at well-defined points, allowing other functions to be invoked
while it waits for some event. The Vert.x framework enriches AAC with so-called
“verticles” (think “particles”), which can execute in parallel while preserving
rigorous atomicity. Verticles can interact with one another through a publish-
and-subscribe concurrency model or through shared but immutable data struc-
tures. But these are not the only concurrency models that could be usefully
combined with AAC. Click [9], for example, mixes push and pull interactions in
very interesting ways to create very efficient network routers. Ptides [24] lever-
ages synchronized clocks on a network to create coordinated real-time behavior.
Spanner [3] leverages synchronized clocks in a similar way, but for distributed
databases rather than distributed real-time systems. Calvin [18] uses a dataflow
concurrency model for IoT interactions.

In this paper, we advocate separating the AAC style of concurrency, which an
accessor uses to interact with a thing or service, and other styles of concurrency
(publish-and-subscribe, push-pull, timed events, dataflow, etc.), which accessors

http://nodejs.org
http://vertx.io

24 M. Lohstroh and E.A. Lee

use to interact with one another. Following Nuzzo et al. [17] and Benveniste
et al. [2], we formalize the first style as a vertical contract and the second as a
horizontal contract. As illustrated in Fig. 1, the vertical contract defines the
interface between the accessor and the thing or service that it is providing access
to. The horizontal contract defines the interface between the accessor and the
context in which it executes, which can include other actors and accessors. In
fact, the very concept of accessors hinges on this separation of concerns.

This separation of concerns is a generalization of the classical separation
between computation and coordination that was promoted by Gelernter and
Carriero [7] in the 1990s. In the era of the Cloud, ubiquitous computing, and
swarms of smart things, a clear-cut division between computation and coordina-
tion seems no longer attainable, yet an organization in terms of horizontal and
vertical contracts can still facilitate portability and support for heterogeneity.

In this paper, we focus on vertical contracts based on AAC and horizontal
contracts based on discrete events (DE), by which we mean timed events like
those used in Ptides [24] and Spanner [3]. In Fig. 1, a DE director would govern
the interaction between the accessor and the actors (realizing the horizontal
contract), while the accessor internally interacts using AAC with a thing or
service (the vertical contract).

In DE, every input to or output from an accessor has a time stamp, and
the host ensures that events are processed in time-stamp order. DE is more
deterministic than publish-and-subscribe (because of the use of time stamps),
and unlike dataflow, provides a semantic notion of time, which is important for
the “things” in IoT. This paper uses the formal idea of behavioral interfaces [4] to
provide rigor to these contracts. The formalism reveals subtleties in the interplay
between AAC and a timed discrete-event concurrency model.

1.4 Outline

The remainder of this paper is organized as follows. Section 2 gives background
material covering actors, models of computation, interface automata, behavioral
types, and timing and causality. We then introduce a formal model in Sect. 3
and apply it to combining AAC with DE. We draw conclusions in Sect. 4.

2 Background

2.1 Actors

The term “actor” was introduced by Hewitt to describe the concept of autonomous
reasoning agents [8]. The term evolved through the work of Agha and others to
describe a formalized model of concurrency [1]. Agha’s actors each have an inde-
pendent thread of control and communicate via asynchronous message passing.
The term “actor” was also used in Dennis’s dataflow models [6] of discrete atomic
computations that react to the availability of inputs by producing outputs sent to
other actors.

An Interface Theory for the Internet of Things 25

In this paper, the term “actor” embraces a larger family of models of concur-
rency. They are often more constrained than general message passing and do not
necessarily conform with a dataflow semantics. Our actors are still conceptually
concurrent, but unlike Agha’s actors, they need not have their own thread of
control. Unlike Dennis’ actors, they need not be triggered by input data. More-
over, although communication is still achieved through some form of message
passing, it need not be asynchronous.

Actors are components in systems and can be compared to objects, software
components in object-oriented design. In prevailing object-oriented languages
(such as Java, C++, and C#), the interfaces to objects are primarily methods,
which are procedures that modify or observe the state of objects. By contrast,
the actor interfaces are primarily ports, which send and receive data. They do
not imply the same sequential transfer of control that procedures do, and hence
they are better suited to concurrent models.

In this paper, we will focus on a discrete-event actor model, where inputs and
outputs received and sent by actors have time stamps, and actors process these
events in time-stamp order. It is useful in IoT applications to bind these time
stamps to real time when software has an interaction with the outside world.
For example, in Spanner [3], a database query receives a time stamp equal to the
value of the local clock at the machine that receives the query. In Ptides [24], a
sensor measurement receives a time stamp equal to the value of the local clock
of the machine hosting the sensor. By ensuring that events are processed in
time-stamp order, it becomes well-defined how a system should react to these
external stimuli. For example, in a distributed database, a query for the value
of a record and an update to the value of the record are ordered by time stamp,
so the correct response to the query is defined by the relative values of the time
stamps. If the time stamp of the query is less than or equal to the time stamp
of the update, then the correct response is the updated record value. Otherwise,
the correct response is the value before the update.

2.2 Behavioral Interfaces

The notion of contracts is much more useful if the contracts have a formal
encoding and the composition of components can be checked for compliance
with the contracts. Specifically, in our case, the AAC style of concurrency used
in the vertical contract manifests as timed events in the DE horizontal contract.

Subtle questions arise from these interactions. For example, in the DE model,
an actor fires at a (logical) time, and during the firing it can determine what
input events are present at that time, and for each event that is present, what
its value is. Similarly, while firing, an actor can produce outputs events. In
an AAC model, a callback function is invoked when some condition has been
satisfied, for example a reply has arrived from a remote server. In our model, the
invocation of such a callback is an internal event, in that it is neither a actor
input nor a actor output event. But the handling of such an internal event may
require observing inputs or producing outputs. Suppose that an accessor (with a
DE actor horizontal contract) observes an input in a callback function that was

26 M. Lohstroh and E.A. Lee

triggered by an internal event. What should this mean? Suppose that callback
is executed asynchronously, nondeterministically interleaving its execution with
processing of time-stamped events. What is the semantics of observing an input?
Observing an input in DE only has meaning at a logical time. Under what
conditions should an input event be present? What is the logical time (the time
stamp) of that event?

Similar questions arise if a callback function triggered by an internal event
wishes to produce outputs in the DE world. What should the time stamp of
those events be? If an output depends on an input event, is the timestamp of
that input event then strictly earlier than the timestamp of the output event,
or can they be the same? The purpose of this paper is to develop a formal
framework for reasoning about such alternatives.

Interface automata (IA), proposed by Henzinger and de Alfaro in [4], offer
an attractive approach for defining and composing behavioral interfaces. Inter-
faces are automata with inputs and outputs, and interaction between interfaces
occurs through synchronized actions. Output actions are denoted with an excla-
mation mark, and input actions with a question mark. Internal transitions (also
known as τ -transitions or silent steps), which do not involve input or output, are
interleaved asynchronously across components. When two IA are composed, an
input action in one and an output action in the other are matched by name and
become a shared transition, an internal transition in the resulting composition
automaton. Note that inputs and outputs in the context of IA have no relation
with inputs or output in actor semantics, nor should actions be confused with
events in DE or JavaScript.

Compatibility. Two interfaces A and B are compatible if, when they are com-
posed (i.e., A ⊗ B, which coincides with the composition of I/O automata [16]),
there exists some environment that satisfies the constraints that the composition
automaton imposes. Error states in A ⊗ B are those in which one automaton
produces an output that the other one does not accept as an input. Since the
environment is unable to prevent the automata from reaching these states, the
composition of two interface automata prunes away all error states and all states
from which error states are reachable. Two interface automata are compatible if
the pruned composition, A||B, is not empty. A compelling advantage of the prun-
ing is that the resulting composite interface automaton is relatively compact, in
contrast to the entire product state space.

Refinement. Interface automata feature a refinement relation that acts con-
travariantly on input assumptions and output guarantees; i.e., in a refinement,
the former can only be relaxed and the latter can only be restricted. This rela-
tion is defined as an alternating simulation between components. Since we
do not use refinement relations here, we will say nothing further about them.

Behavioral Types. Lee and Xiong [14] used interface automata to formulate
behavioral type signatures for several directors in Ptolemy II [19]. In their paper,
several examples illustrate the interactions between a producer and consumer
that exchange tokens, mediated by different directors. Their DE automaton has

An Interface Theory for the Internet of Things 27

a key feature that it formally models the constraint that it is illegal for an
actor to get or send tokens (DE events) in between firings. The firings provide
the temporal coherence of the DE model, and by constraining consumption of
inputs and production of outputs to occur during a firing, the time stamps of
those inputs and outputs become unambiguous. We leverage this key feature in
this paper.

2.3 Time and Synchrony

In DE, two events can occur simultaneously. Operationally, this means that they
have the same time stamp and that an actor that observes these events will see
them in the same firing. In AAC, events are invocations of callback functions.
These are mutually exclusive; only one event can occur at a time. Hence, if the
callback functions observe or produce DE events, we need to reconcile these
conflicting properties.

Typical implementations of the AAC pattern have no temporal semantics.
Yet time matters for them. The order in which responses come back from a
remote web server, for example, matters, so the time of arrival of the responses
matters. Programs that interact with things will typically need to exercise some
control over timing, for example in order to estimate the trajectory of a moving
object based on the order in which events are reported by different sensors.
Most JavaScript contexts provide a function setTimeout(f, t) which causes a
callback function f to be invoked after time t. But without temporal semantics,
the time t is an informal notion. There is no assurance, for example, that if
setTimeout(f1, t1) and setTimeout(f2, t2) are called with t1 < t2, that
f1 will be invoked before f2. If these two callback functions produce timed
DE events, then what time stamps should be assigned to those events? A well-
designed combination of AAC and DE would bind the timeout times and the
DE times, giving a much stronger temporal semantics and more controlled and
predictable interaction with things.

Of course, because there is no preemption in JavaScript, the real-time accu-
racy of the timeouts may vary wildly. The DE model, nevertheless, provides a
model of time that is synchronous among all of its components. It is a logical
time, not a physical time. Logical time can be used to guarantee that f1 will
be invoked before f2 if t1 < t2, for example, regardless of when these invoca-
tions occur in real time. More interestingly, if t1 = t2, the DE logical time model
can guarantee that if the two callbacks both produce an output event, then any
downstream observer will see these events simultaneously. Such guarantees make
concurrent programs much more deterministic and understandable.

Moreover, if logical time can be made to closely approximate real time, as
is done in Ptides and Spanner, then it can make the interactions of these pro-
grams with things much more deterministic and understandable. A simple way
to establish a relationship between logical time and physical time is to delay the
processing of any time-stamped event until the local real-time clock matches or
exceeds the logical time of the time stamp. A more sophisticated mechanism,
implemented in Ptides, introduces such delays only where there is an interaction
with the physical world.

28 M. Lohstroh and E.A. Lee

2.4 Causality and Predictable Timing

Consider an accessor that responds to an input event with time stamp t by issuing
a query to an external thing or service that will take some time to respond. Under
the DE MoC, the actor fires at logical time t and consumes the input event. Using
the AAC pattern, this accessor makes the request to the thing or service and
provides a callback function to be invoked later with the response to the query.
The fire method returns immediately, allowing the accessor to function like a
pipeline that can handle a number of requests concurrently. However, because
of unpredictable network delays for example, responses may arrive out-of-order.
Suppose each response to the query causes the accessor to produce a time-
stamped DE event as an output. Should the time stamps of those responses be
required to respect the same order as the input events that triggered the queries?
Should they be required to match the time stamps of those input events? Or be
offset from those time stamps by some fixed constant? In any of these cases,
extra machinery is required to relate the accessor’s output to the input that
triggers the query. Similar problems have been solved in computer architecture
(Tomasulo’s algorithm [21]) and distributed systems (PTIDES safe-to-process
analysis [24]).

An extreme choice is to require the time stamp of an output to match the
time stamp of the input that triggers the query. In this case, the accessor has a
logical zero delay, but the physical delay may be substantial. This choice comes
at the cost of sacrificing the pipelining capability of the component. Worse, the
component may block other components, preventing them from handling events
with time stamps t or greater, because of the DE constraint that events always
be processed in time-stamp order.

A better choice that provides determinism without sacrificing (as much) con-
currency is to require an output to have a time stamp t+ δ, for some fixed offset
δ, for each input that has time stamp t. If δ is at least as large as the worst-case
delay for a response to the query, then no concurrency will be sacrificed.

A third choice is to nondeterministically assign a time stamp to each response,
for example giving it as a time stamp the time-stamp of the most recently han-
dled DE event. This choice results in the order of outputs not necessarily match-
ing the inputs that trigger the queries, but it could nevertheless be useful if the
time stamps are in fact used to represent physical response times. All three of
these choices are available in Ptolemy II [19] using the ThreadedComposite actor
[12]. And all three can be used with accessors that combine AAC with DE. How
should we choose which one to use? The next section offers the beginnings of a
formalism for reasoning about such choices.

3 A Formal Model

Our formalization comprises three interfaces: the DE director, the accessor, and
the JavaScript environment that features AACs. The goal is to model each as
an interface automaton and to check the compatibility of the composition of all

An Interface Theory for the Internet of Things 29

Fig. 2. DE director. Fig. 3. JavaScript (1).

three. If the interfaces are compatible then their composition (denoted by ||) will
be non-empty.

An interface automaton for the DE director is shown in Fig. 2. The automaton
has four inputs: g (get), s (send), fR (return from fire), and fA (fire at), and one
output: f (fire). This director will fire an actor at a given (logical) time t if either
an upstream actor has sent it an input with time stamp t, or the actor has
requested to be fired at logical time t. These events are inserted in an event
queue, sorted by time stamp, and processed by the director when the current
(logical) time corresponds to the time stamp of the event. This bookkeeping
happens internally, so it is not part of the director’s interface. For completeness,
however, we added an internal action q qR; in the initial state that represents
the director consulting the event queue. In any state of the director, an actor
may request a firing at the current (logical) time or some time in the future.
Hence, every state accepts an fA? action.

Figure 2 illustrates a key property of interface automata. In state init, the
automaton does not accept inputs s and g. The assumption is that the environ-
ment will never generate these illegal inputs. Hence, the interface imposes con-
straints on the environment. de Alfaro and Henzinger [5] distinguish interface
theories from component theories in precisely this sense; an interface may impose
constraints on its environment, whereas a component exhibits some behavior (not
necessarily desired behavior) in every environment.

Only after taking the transition to state fire, guarded by action f!, are there
transitions enabled by g? and s? actions. In other words, it is illegal for an
actor to consume inputs or produce outputs when it is not being fired. After
observing an fR? action, meaning the actor has concluded its firing, the director
returns to its initial state where it can consult its event queue to process new
DE events. The composition of the DE director and the accessor formalizes the
horizontal contract. The composition between the accessor and the JavaScript
environment formalizes the vertical contract. All composed together, we obtain
a closed labeled transition system (LTS) describing all possible interactions
through our interfaces. This LTS is amenable to further analysis. For instance,
one could check whether the composition satisfies some LTL property using a
model checker such as SPIN (http://spinroot.com). This, however, is outside the
scope of this paper.

As to the interface automata for the accessor and the JavaScript environment,
we have several options, and we explore two candidate solutions. But first, we list
the primitives of the vertical contract. The accessor host provides a get() and
a send() function in the JavaScript context through which, respectively, actor

http://spinroot.com

30 M. Lohstroh and E.A. Lee

inputs can be read and actor outputs can be sent. Thus, in the IA that models
the JavaScript environment, we have corresponding outputs Jg (JS get) and Js
(JS send). In addition, we define an input Jf (JS fire) to allow the JavaScript
environment to be notified that the director is currently firing. Similarly, we
define an action JfR (JS return from fire) for the JavaScript environment to
notify the accessor that it can now safely end its firing. Finally, the host offers
a function setTimeout(). This primitive allows the accessor implementation to
schedule itself to be fired at some time in the future. For invocations of this
function we define a corresponding output t.

To achieve compatibility between the DE director and the JavaScript envi-
ronment through the accessor, we need to prevent Jg! and Js! actions, which may
be invoked asynchronously in a callback, from triggering the accessor to emit g!
or s! actions before it observes an f? action and after it emits a fR! action. There
are multiple solutions to this puzzle that yield useful behavior.

The first option we explore is to have the JavaScript environment block
on reading actor inputs when the accessor is not currently being fired by the
director. This may occur during a callback that originates from an internal event.
Actor outputs produced during an AAC are queued by the accessor and emitted
during the next firing. The accessor is responsible for requesting a new firing at
the current time upon the occurrence of an AAC.

The second option that we explore is for any AAC to trigger a request for a
firing of the actor, and to suspend until that firing occurs.

3.1 Blocking Inputs and Delayed Outputs

The interface automaton that models our JavaScript environment, illustrated in
Fig. 3, has three states: run, block, and fire. The initial state is run, and in this
state it can either emit a Js! action (invoke send()), observe a Jf? action (a
signal that the accessor is currently fired) or emit a Jg! action (invoke get()).
When Jg! happens, the automaton transitions to the state block in which the
only legal action is Jf?, which enables the transition to fire. In fire, actions Jg!
and Js! guard self loops, meaning that they return immediately. Emitting JfR!
will let the automaton transition back to run. In summary, Js! actions return
immediately, whereas Jg! actions block until the accessor reaches a state that is
synchronous with a firing. During fire, Js! and Jg! are handled immediately. Note
that shared t transitions are excluded from the interface in order to simplify the
example, but their use is described in Sect. 3.2.

The automaton that models the accessor interface, depicted in Fig. 4, is more
complex. For each output of the automata in Figs. 2 and 3 it has a corresponding
input, and for each of their outputs it has a corresponding input. The ports
interfacing with the JavaScript environment are grouped at the bottom of the
figure, the ports interfacing with the DE director on the sides.

The initial state of the IA in Fig. 4 (indicated by a bold outline) is init,
from where it can either observe f! and transition to start or observe Jg? or Js?
(from a callback invoked in the JavaScript execution environment) and transition
to fireAt. From fireAt, an fA! action leads back to init whereas f? enables the

An Interface Theory for the Internet of Things 31

Fig. 4. Accessor (1).

transition to start. The intuition here is that observing f? eliminates the need
to request a new firing. Note that, due to the asynchrony of the AACs, the
automaton has to be accepting Jg? and Js? in every state, and because it is
not receptive, each state must thus be augmented with a (self-)transition that is
guarded by these actions. Ignoring these transitions for a moment, the remainder
of the automaton is no more than a simple linear sequence of actions. First it
gets new actor inputs (g!) and signals to the JavaScript environment that it is
now firing, then it waits until the JavaScript signals JfR!, and finally it sends
any queued outputs (s!) and returns from fire (fR!).

Fig. 5. DE director || Accessor (1) || JavaScript (1).

The composition of the automata from Figs. 2, 3, and 4 is depicted in Fig. 5.1

The automaton is non-empty (and closed), hence the three components are
compatible. Notice that product of the state spaces has size 42, and yet the
composition automaton only has 13 states. This is because illegal states, where
one component outputs an action that is not accepted by another, are pruned
1 This composition was constructed automatically using software written by Yuhong

Xiong over 12 years ago [14].

32 M. Lohstroh and E.A. Lee

Fig. 6. JavaScript (2). Fig. 7. Accessor (2).

away. The LTS in Fig. 5 is not per se intended for human analysis, but it does
show quite neatly how the accessor coordinates the interaction between DE and
JavaScript. The outer states in the diagram correspond to the steps taken in
one iteration in the DE semantics, whereas the inner states deal with AACs by
blocking and issuing firing requests to the DE director.

3.2 Deferred AACs

An alternative solution to the one proposed in Sect. 3.1, is to formulate the
vertical contract such that any AAC that can possibly invoke get() or send()
will be synchronized, regardless of whether it happens to emit a Jg! or Js! action.
The horizontal contract remains the same. Interestingly, this approach results in
a much simpler model. To demonstrate this solution, we need a slightly different
representation of the accessor and the JavaScript environment. Their interface
automata, Figs. 6 and 7 respectively, are very similar to the ones in Figs. 3 and 4,
so we only discuss the differences.

First of all, we include a shared transition t that represents setTimeout().
We assume that any internal event will be caught by the host and that it will
defer (i.e., suspend, not block) the associated AACs until the accessor is fired;
a t! will be triggered to request a new firing if needed. This is realized in our
implementation using the standard CommonJS EventEmitter pattern.

Fig. 8. DE director || Accessor (2) || JavaScript (2).

An Interface Theory for the Internet of Things 33

The interface of the JavaScript environment now only has two states: run
and fire. In either state it can emit t!, but only in fire can it emit Jg! and Js!. As
before, Jg! and Js! are only legal after observing Jf? and before emitting JfR!.

For the same reason as stated in Sect. 3.1, the accessor must accept t? in
any state. Only when observed in init will it be followed by an immediate fA!
action. The t? actions observed in other states will be cached and processed after
completing the firing, upon arriving again in state init.

The composition of the automata from Figs. 2, 6, and 7, is depicted in Fig. 8.
Again, the automaton is non-empty, which shows that the three components are
compatible. We still recognize the same general structure of the LTS shown in
Fig. 5, but the number of states is reduced from 13 to 7.

4 Conclusion

For IoT applications, where networked “things” and services interact with the
physical and information worlds, combinations of concurrency models and mod-
els of timed behavior are essential. We have developed a formal framework based
on interface automata that enables rigorous definition of behavioral interfaces,
and we have shown that this framework enables formal analysis of a combination
of two popular and useful models of computation, both used (usually separately)
for IoT applications. The discrete-event MoC, which models timed concurrent
interactions, is formally modeled in this paper as a horizontal contract between
peer components (actors). In an IoT application, some of these actors will be
“accessors,” which provide access to things and services. The interaction between
the accessor actors and their thing or service is formally modeled as a vertical
contract. Both contracts are represented as interface automata. An automated
tool, previously developed, is used to compose these interface automata to val-
idate compatibility of the contracts and to produce a labeled transition system
representing the overall system behavior. This LTS can be subjected to further
formal analysis, for example using model checking to verify safety conditions.

References

1. Agha, G.A., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor com-
putation. J. Funct. Program. 7(1), 1–72 (1997)

2. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B.,
Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen,
K.G.: Contracts for System Design. Research report RR-8147, November 2012

3. Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. ACM Trans.
Comput. Syst. (TOCS) 31(3), 8:1–8:22 (2013)

4. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE), pp. 109–120.
ACM Press (2001)

5. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In:
Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–
165. Springer, Heidelberg (2001)

34 M. Lohstroh and E.A. Lee

6. Dennis, J.B.: First version data flow procedure language. Report MAC TM61, MIT
Laboratory for Computer Science (1974)

7. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97–107 (1992)

8. Hewitt, C.: Viewing control structures as patterns of passing messages. J. Artif.
Intell. 8(3), 323–363 (1977)

9. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular
router. ACM Trans. Comput. Syst. 18(3), 263–297 (2000)

10. Latronico, E., Lee, E., Lohstroh, M., Shaver, C., Wasicek, A., Weber, A.: A vision
of swarmlets. IEEE Internet Comput. PP(99), 1 (2015)

11. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)
12. Lee, E.A.: ThreadedComposite: a mechanism for building concurrent and parallel

Ptolemy II models. Technical report UCB/EECS-2008-151, EECS Department,
University of California, Berkeley, 7 December 2008

13. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded
hardware and software systems. J. Circuits Syst. Comput. 12(3), 231–260 (2003)

14. Lee, E.A., Xiong, Y.: A behavioral type system and its application in Ptolemy II.
Formal Aspects Comput. 16(3), 210–237 (2003)

15. Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo, A., Brewer, E.,
Culler, D.: The emergence of networking abstractions and techniques in TinyOS.
In: First USENIX/ACM Symposium on Networked Systems Design and Imple-
mentation (NSDI 2004) (2004)

16. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: Proceedings of the Sixth Annual ACM Symposium on Principles of
Distributed Computing, PODC 1987, pp. 137–151. ACM, New York (1987)

17. Nuzzo, P., Sangiovanni-Vincentelli, A., Sun, X., Puggelli, A.: Methodology for the
design of analog integrated interfaces using contracts. IEEE Sens. J. 12(12), 3329–
3345 (2012)

18. Perssson, J.: Open source release of IoT app environment Calvin, 4 June 2015. Eric-
sson Research Blog. http://ericsson.com/research-blog/cloud/open-source-calvin/

19. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org, Berkeley (2014)

20. Sangiovanni-Vincentelli, A., Martin, G.: Platform-based design and software design
methodology for embedded systems. IEEE Des. Test Comput. 18(6), 23–33 (2001)

21. Tomasulo, R.: An efficient algorithm for exploiting multiple arithmetic units. IBM
J. Res. Dev. 11(1), 25–33 (1967)

22. von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active messages: a
mechanism for integrated communication and computation. SIGARCH Comput.
Archit. News 20(2), 256–266 (1992)

23. Wegner, P.: Why interaction is more powerful than algorithms. Commun. ACM
40(5), 80–91 (1997)

24. Zhao, Y., Lee, E.A., Liu, J.: A programming model for time-synchronized distrib-
uted real-time systems. In: Real-Time and Embedded Technology and Applications
Symposium (RTAS), pp. 259–268. IEEE (2007)

http://ericsson.com/research-blog/cloud/open-source-calvin/

Program Verification

Learning Assertions to Verify Linked-List
Programs

Jan Tobias Mühlberg1(B), David H. White2, Mike Dodds3, Gerald Lüttgen2,
and Frank Piessens1

1 iMinds-DistriNet, KU Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
jantobias.muehlberg@cs.kuleuven.be

2 Software Technologies Research Group, University of Bamberg,
96045 Bamberg, Germany

3 Department of Computer Science, The University of York,
Heslington YO10 5GH, UK

Abstract. C programs that manipulate list-based dynamic data struc-
tures remain a challenging target for static verification. In this paper we
employ the dynamic analysis of dsOli to locate and identify data struc-
ture operations in a program, and then use this information to automat-
ically annotate that program with assertions in separation logic. These
annotations comprise candidate pre/post-conditions and loop invariants
suitable to statically verify memory safety with the verification tool Ver-
iFast. By using both textbook and real-world examples on our prototype
implementation, we show that the generated assertions are often dis-
charged automatically. Even when this is not the case, candidate invari-
ants are of great help to the verification engineer, significantly reducing
the manual verification effort.

1 Introduction

Handling dynamically allocated linked-list data structures presents a major chal-
lenge in the static verification of C-like programs. Separation logic [15] has been
proposed as a way to tackle this challenge. It extends Hoare logic with assertions
to describe the structure of the heap and allows for local reasoning through the
frame rule, which informally states that, when reasoning about the behaviour of
a command, it is safe to ignore memory locations not accessed by that command.

A well-known tool that applies separation logic is VeriFast [12], a sound
static verifier for C and Java. It modularly checks via symbolic execution [2]
that each function in a program satisfies its contract, i.e., its pre- and post-
condition, which are given as code annotations in separation logic. Through
the frame rule, a program that passes VeriFast verification is guaranteed not
to have memory safety errors such as buffer overflows or overreads, accesses to
uninitialised memory, dereferences of dangling or null pointers and double frees.

The tool has been successfully applied to industrial verification projects, but
it focuses on speed, expressiveness and error diagnosis rather than automation.
In particular, source code annotations must be provided by a skilled verification
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 37–52, 2015.
DOI: 10.1007/978-3-319-22969-0 3

38 J.T. Mühlberg et al.

engineer so that VeriFast can discharge contracts and invariants automatically.
This limits the tool’s use since it has been estimated that it takes a skilled
verification engineer about one hour to provide the necessary annotations to
verify two lines of source code [16]. Many of the required annotations have little
to do with the functional behaviour to be verified, but instead refer to data
structures, e.g., to ensure that data structure shape is preserved and memory
safety is enforced by a data structure manipulating operation.

In this paper we aim to generate these more trivial annotations for data
structure manipulating code automatically, so as to reduce the burden on the
verification engineer. We do this by utilising information produced as a by-
product of the dynamic analysis tool dsOli (Data Structure Operation Location
and Identification) [21]. dsOli combines machine learning and pattern matching
to automatically locate and identify operations on linked-list data structures in
C programs (Sect. 2) and outputs a set of instantiated operation templates, where
each template describes a data structure operation performed by the program,
e.g., inserting to the front of a singly-linked-list (SLL).

We provide annotation templates that are instantiated and injected into the
program’s source code by selecting appropriate information from a corresponding
instantiated operation template provided by dsOli (Sect. 3). Such information is
made available by a new XML-based dsOli output, which permits extraction of
data structure shape transformations and the responsible source code locations.
Collectively, this enables the generation of the following kinds of annotations
required by VeriFast: function contracts, which specify data structure shape
transformations and the associated memory safety properties; recursive predi-
cates, which describe the recursive shape of data structures such as linked-lists;
in-line annotations, which show where to fold and unfold recursive predicates;
and loop invariants, which specify behavior during list traversal.

In contrast to other approaches for discovering data structure behaviour [1,
13], dsOli does not require the usage of well defined interfaces for data structure
operations. Thus, our approach can detect and annotate operations even if they
are tightly interwoven with other aspects of a program. Moreover, prior knowl-
edge about the program’s structure or behaviour can be used to select “inter-
esting” execution traces for an efficient and effective analysis, while detection
results may alleviate the automated exploration of related program behaviour.

We have implemented our approach in a prototypic tool-chain and use this
to evaluate its utility to the verification engineer by applying it on textbook
and real-world examples (Sect. 4), of which the latter comprises parts of a web-
server [4] and a key-value store [17]. Overall our findings are very encouraging:
our approach is able to automatically generate the vast majority of annotations
required to verify the list manipulating functions of our examples. Thus, a ver-
ification engineer can spend their time on the more intellectually demanding
points of verification rather than having to specify function contracts for data
structure shape and the numerous required auxiliary annotations. While the
generated annotations may not necessarily be discharged automatically by Ver-
iFast, our experience shows that they still encapsulate useful a-priori knowledge
about the data structure under analysis; indeed, they can often be automatically
discharged after few minor manual revisions.

Learning Assertions to Verify Linked-List Programs 39

Related Work. Existing separation logic tools typically generate candidate
invariants by shape analysis [18], such as Space Invader [23], jStar [8], Hip/Sleek [7],
and SLAyer [3]. Invariants are computed by a combination of (forward) symbolic
execution and abstraction at loop heads. A disadvantage of these tools is that
the analysis does not scale and recovers poorly from over-abstraction. To mitigate
this, recent tools have added a forwards-backwards analysis called abduction [6],
which has been studied in the context of VeriFast [19], and counterexample elim-
ination using external solvers [3].

Our approach, which builds upon an improved version of dsOli when com-
pared to [21], differs from these related works in that we do not symbolically
execute the program; rather we generate concrete executions and apply a heuris-
tic machine-learning process to guess candidate invariants. Therefore, we expect
our technique to increase scalability over symbolic execution when being applied
to large programs or in the presence of concurrency. Improvements over the
prior version of dsOli concern functional unit detection (Sect. 2.2), a new out-
put exchange format in XML (Sect. 2.3) and template matching (Sect. 2.3); the
latter has been reimplemented in Prolog, resulting in faster matching and more
expressive templates. Of course, dsOli can only observe behaviour that a pro-
gram exhibits when executing. An extensive set of test cases or techniques such
as dynamic symbolic execution [9] may be used to expose interesting behaviour
to dsOli automatically.

In Guo et al. [10], the problem of generating program invariants for data
structure manipulating programs is addressed by means of static shape analysis
rather than dynamic analysis and machine learning. While Guo et al. focus on
generating invariants that hold for programs pruned of code that has no effect
on shape properties, we produce assertions that are meant to be extended by a
verification engineer with the intent to verify properties of the entire program,
e.g., functional correctness. Our work may benefit from adopting the algorithm
for unfolding and folding back recursive predicates presented in [10].

Active register automata learning [11] is used to determine a protocol for
interaction with a data structure or API in situations where suitable example
interactions may be generated. Closer to our work is specification mining [1], which
generates specifications from arbitrary program executions. However, these
approaches assume that interaction takes place through a well-defined interface
and aim to generate a specification at that level of abstraction, representing, e.g.,
functional correctness. Here, lower level specifications are of interest, with the goal
of proving memory safety properties in the context of VeriFast.

DDT [13] is the closest related work to dsOli and works by exploiting the cod-
ing structure in standard library implementations to identify interface functions
for data structures. As such, it shares similar assumptions with [1] and is thus
not designed for the customised interfaces employed in OS/legacy software and
C programs, or the replicated interfaces that appear due to function in-lining.
In contrast, the machine learning approach of dsOli is more tolerant of how the
code implementing operations is structured (Sect. 2.2).

40 J.T. Mühlberg et al.

Fig. 1. An overview of our approach, which comprises dsOli, the annotation generator
and VeriFast.

2 Data Structure Operation Identification

This section presents dsOli, which is responsible for discovering data structure
operations in C source code. The discovered operations will be passed to our
annotation generator (Sect. 3) which inserts source code annotations suitable for
verifying memory safety properties of the operations. An overview of the tool
chain, including the annotation generator, is given in Fig. 1. We illustrate each
stage of the approach by the running example shown in Fig. 2.

2.1 Instrumentation and Preparation

We consider a dynamic data structure to be a set of objects (instances of C
structs) linked by pointers. To locate and identify operations on data struc-
tures we reconstruct a sequence of points-to graphs 〈G0, . . . , Gn〉 from an execu-
tion of the program under analysis [21]. This reconstruction is enabled by first
instrumenting the program, which results in the runtime capture of program
events such as pointer writes and dynamic memory (de)allocation. The result
of program event i is captured by Gi, where 1 ≤ i ≤ n and G0 is empty. By
default we instrument pointer writes where the unwound target is a struct with
a self-reference; however, instrumentation of user-specified types is also possible.

Formally, a points-to graph G = (V, E) is a directed graph comprising a vertex
set V and an edge set E ⊆ V ×V ×N. Vertices in the graph represent either heap
allocated objects or global/stack allocated objects that contain pointer variables,
while edges represent points-to relationships. The key abstraction presented by
a points-to graph is the grouping of related adjacent memory cells into a single
vertex, i.e., using one vertex to represent a struct object. It is for this reason that
we record the offset within an object at which the pointer originates in the third
element of edge tuples. We require a pointer’s target to be the start address of
an object, and hence we do not record the offset into a target vertex.

Learning Assertions to Verify Linked-List Programs 41

Vertices are added by two means: either a dynamic memory allocation takes
place, or a pointer is written in a non-dynamically allocated variable. It is nec-
essary to include variables of the latter type since, in addition to forming part
of the points-to structure, they commonly represent entry points to data struc-
tures. Every vertex v added to the graph is tagged with an attribute v.eid = i
recording the event i responsible for its creation, and a unique id v.cid that is
used to track the object represented by the vertex over multiple points-to graphs.
A vertex is removed from the graph when a deallocation event occurs, or when
a stack allocated variable leaves scope; the cids used for removed vertices are
never reused. If applicable, a vertex has attributes v.allocLoc and v.freeLoc refer-
ring to the source code location responsible for the dynamic memory allocation
and deallocation, respectively. Lastly, v.ctype records the concrete type of the
object represented by the vertex (i.e., a C type). An edge e also has an attribute
e.eid recording the corresponding event and, additionally, an attribute e.setLoc

recording the source location of the pointer write. Referring to the example of
Fig. 2, Gi and Gj are points-to graphs corresponding to program states before
and after function push() (line 21) has been invoked.

2.2 Trace Segmentation

The identification of a data structure operation is performed by analysing the
change between the points-to graph before and after the operation. Therefore,
the next task is to determine which segments 〈Gi+1, . . . , Gj〉 ⊆ 〈G1, . . . , Gn〉,
where 0 ≤ i < j ≤ n, of the event sequence potentially constitute operations.
Later, the set of segments S specified in terms of points-to graph pairs (Gi, Gj)
will be passed to the classification stage to identify the operations. In our running
example of Fig. 2, the segment (Gi, Gj) captures the behavior of push().

If dsOli operates in user-assisted mode, the user may manually mark the start
and end of data structure operations and have this information used to compute
the segments. Alternatively, if the approach operates on the assumption that
functions will always perfectly encapsulate data structure operations, then the
start and end of functions can be used to compute the segments. Clearly, this
will include segments that do not correspond to data structure operations, but
these will be filtered later by the classification stage.

The final and most interesting operation location approach alleviates the
function encapsulation assumption, i.e., data structure operations may appear
anywhere in the program, e.g., in multiple locations due to in-lining or through
ad-hoc implementations commonly used for low-level optimisation, e.g., device
driver software. To identify such operations we employ the observation that
programs are, by nature, highly repetitive due to function calls and iterative
structures. We exploit this property to identify the functional units of a pro-
gram by their repeated invocation. The key idea is that, although the concrete
addresses being operated on are different in each invocation, the points-to topol-
ogy around those addresses and the sequence of changes remains similar, and
hence recognisable. More details on this approach may be found in [21].

42 J.T. Mühlberg et al.

Fig. 2. An example of the annotation process for the push() operation from the Weiss
Stack Example [20], which employs an SLL with a header node. The left drawing
shows a template being matched to an invocation of push(). Annotations in italics are
constructed automatically from this match as follows: blue (i.e., lines 8–19) recursive
predicates, red (i.e., lines 22 and 23) function contracts and green (i.e., lines 33, 37 and
38) inline annotations.

2.3 Classifying Data Structure Operations

With the set S of segments to hand we may now proceed to classify the behaviour
observed during a segment. The expected behaviour for each data structure
operation of interest is specified via a manually defined operation template.
Templates for standard data structure operations on lists are included in dsOli
by default, but the user can easily add further templates by specifying them in
an XML syntax. For each segment S ∈ S, a match of each operation template is
attempted and is considered a success if a suitable instantiation of the template’s
elements can be found. Successful instantiations are output in XML format to be
used as input for our annotation generator (Fig. 1). If no match is possible for a
segment, then it is ignored as “noise”; such segments either result from non-user
assisted functional unit identification, where the fact that many segments will not
correspond to data structure operations is an expected artifact of dsOli’s machine
learning approach, or incomplete template coverage, in which case additional
templates may be specified by the user.

Learning Assertions to Verify Linked-List Programs 43

Table 1. Operation template attributes exposed to external programs for interpreting
the associated memory transformation. Example values are taken from the template
(Gpre, Gpost) in Fig. 2.

T.dataStructureKind ∈ {SLL,DLL} Example: SLL
– describes the kind of data structure that the template is intended to identify.

T.manipulationKind ∈ {Insert,Remove} Example: Insert
– determines if the template is designed to identify a node being inserted to or
removed from the data structure.

T.manipulationPosition ∈ {FrontDH,Front,Middle,End} Example: FrontDH
– describes the position at which a node is inserted/removed. DH indicates a
dummy-head node, so that the 2nd element in the list is semantically the front.

T.dataStructureNodeType ∈ {v.ttype : v ∈ (VT
pre ∪ VT

post)} Example: Type2
– the abstract type name for all data structure nodes, which will be mapped to a
concrete C struct type after matching is performed.

T.stableVertices ⊂ {v.tid : v ∈ (VT
pre ∪ VT

post)} Example: {E1,B1,B2}
– the set of template vertex “tid”s that represent data structure nodes that remain
unchanged by the operation. These sufficiently define the neighborhood around the
vertex to be inserted/removed such that we may recognise the operation.

T.differenceVertex ∈ {v.tid : v ∈ (VT
pre ∪ VT

post)} Example: A1
– the template vertex tid that represents the data structure node that is added or
removed.

T.linkageOffset ⊂ {o : (v, w, o) ∈ (ET
pre ∪ ET

post)} Example: {Y}
– the set of offsets for pointer(s) that link data structure nodes.

Operation Templates. An operation template T = (GT
pre, G

T
post) is defined

by a pair of graphs that describe the local topological change indicative of the
template attribute T.operationName. In the following, we use superscripts P and
T to distinguish graphs, vertices and edges describing concrete points-to graphs
and template graphs, respectively. To enable automated interpretation of this
topological change, as performed in Sect. 3, we expose additional attributes con-
cerning the template’s intended usage (Table 1). For automation to be successful,
we must constrain our expectation of a linked-list: we define a linked-list to be a
series of nodes all of type DS node type and connected by pointers that always
originate from a node at the same linkage offset, or the same offsets in the case
of DLLs. Currently we only consider operations that insert or remove one node
to or from the list; in other cases there is either nothing to verify as the shape
does not change, or there are multiple insertions/removals which are viewed as
a series of single node changes.

A match against a segment (GP
i , GP

j) ∈ S is performed as follows: GT
pre is

matched on the points-to graph before the segment starts, i.e., GP
i , while GT

post

is matched after the segment on GP
j . An attribute T.overrides lists templates less

specific than T , and this means that if T is matched then it overrides the match
of any template T ′ ∈ T.overrides. This is necessary to exclude, e.g., an SLL tem-
plate matching part of a doubly-linked-list (DLL). The attribute T.templateName

uniquely identifies a template as multiple templates may recognise the same

44 J.T. Mühlberg et al.

operation in different contexts, e.g., differentiating between inserting to the front
of an empty or a non-empty list.

Each template vertex vt has an attribute vt.tid that describes equivalence
between vertices, i.e., if a vertex v in Gpre and a v′ in Gpost have the same
tid, then v and v′ must be matched to the same object in the points-to graphs.
Correspondingly, the element o of some template edge (v, w, o) describes equiv-
alence between offsets and allows one to specify that a set of pointers should all
originate from their respective vertex at the same offset. Lastly, each vt has an
abstract type vt.ttype, which allows vertex matches to be constrained based on C
types. The graphs (GT

pre, G
T
post) in Fig. 2 show a template capable of recognising

inserts to the front of an SLL with a dummy-head node. The mapping between
GT

pre and GT
post enforced via tids is displayed by dotted lines.

Operation Template Matching. An operation template match is performed
by computing match functions m, τ and σ described below. If a solution to all
functions can be found such that the predicates below are satisfied, then the
template T is considered matched and is recorded as ((GP

i , GP
j), T,m, τ, σ) in a

set M used in Algorithm 1 in Sect. 3. The match is phrased as a Prolog program,
and thus we are instantiating a template’s free variables, i.e., the vertices, edges
and abstract types from GT

pre and GT
post with concrete values from the segment’s

points-to graph pair (GP
i , GP

j) ∈ S:

GT
pre = (VT

pre, ET
pre), GT

post = (VT
post, ET

post) (1)

GP
i = (VP

i , EP
i), GP

j = (VP
j , EP

j) (2)

m : {v.tid : v ∈ (VT
pre ∪ VT

post)} → {v.cid : v ∈ (VP
i ∪ VP

j)} (3)

To formalise the matching process, let the template and points-to graphs be
written as in (1) and (2). The injective function m (3) then specifies a match from
the set of template vertex tids to a subset of points-to vertex cids. Additionally,
the injective functions τ , from template types to concrete types, and σ, from
template offsets to concrete offsets, enforce consistency over types and offsets,
respectively. We require that every template edge is mapped to a suitable points-
to edge and that this mapping respects σ. This must be checked for both template
graphs, i.e., for (ET , EP) ∈ {(ET

pre, EP
i), (ET

post, EP
j)}:

∀(vt, wt, ot) ∈ ET ∃(vp, wp, op) ∈ EP :

m(vt.tid) = vp.cid ∧ m(wt.tid) = wp.cid ∧ σ(ot) = op

Note that, since m is injective and each vertex has a unique tid or cid, each
template vertex must be matched to a corresponding points-to vertex. Lastly,
we must ensure that all vertices mapped by m respect τ :

∀(vt, vp) ∈ (VT
pre×VP

i)∪(VT
post×VP

j) : m(vt.tid) = vp.cid ⇒ τ(vt.ttype) = vp.ctype

An example match is shown in Fig. 2, where m and σ are indicated by dashed
lines between graph vertices, τ = {(Type1, struct Node *), (Type2, struct
Node)} and σ = {(X, 0), (Y, 4)}.

Learning Assertions to Verify Linked-List Programs 45

3 Annotation Generation

In this section we discuss our annotation generation approach which is motivated
by our goal of generating function contracts for the data structure operations
discovered by dsOli. In order to fully specify such contracts we will need to
generate recursive predicates, i.e., predicates that describe the recursive nature
of a linked-list’s shape. Further, to automate verification, we generate inline
annotations that specify where to fold and unfold the recursive predicates, and
additionally generate loop invariants that encapsulate behavior during traversals.

The essence of our approach is to take an instantiated operation template,
as presented in Sect. 2.3, and use this to instantiate a number of annotation
templates which we provide for each operation template in our template library.
XML is used as the interchange format between the tools; however, for brevity
we gloss over this and continue employing the mathematical notation intro-
duced in Sect. 2. By summarising over the output of dsOli, it is possible to
specify the annotation generation for any linked-list operation template; thus,
this summarisation removes the necessity to define a one-to-one correspondence
between operation templates and annotation templates. Typically, this process
reduces elements of an operation template instantiation to their correspond-
ing source code locations, or interprets the elements in terms of the template
attributes given in Table 1. For example, the structural change described by a
template is summarised by the attributes T.dataStructureKind, T.manipulationKind

and T.manipulationPosition.
We now present the essence of our algorithm that generates and injects anno-

tations into the source code of the program under analysis (Algorithms 1.I
and II), beginning with the generation of recursive predicates. Our algorithm
relies on a few functions that are not presented in detail: annotate inserts Ver-
iFast annotations into a C file at a source location determined by the helper
functions before, after and atFuncDef while dfTrace performs an intra-
procedural reaching definition analysis on a C file for a given program variable.

Recursive Predicates. Recall that function contracts for data structure manip-
ulating functions employ recursive predicates to describe data structure shape.
Each operation template match found by dsOli provides information about a
particular usage of a struct type in the program. As shown in Algorithm 1.I,
aggregating information from template attributes T.dataStructureNodeType and
T.linkageOffset with that of τ and σ allows us to construct recursive predicates.
These describe linked-list data structures by making explicit, e.g., which struct
field(s) represent linkage(s) in a list and what form the head and tail elements
have. We then complete the predicate definition by adding further field names
from the C source code, which function as placeholders so that a verification
engineer may extend the annotations to model further aspects of the imple-
mentation. To the right of the vertical bar in lines 7 and 9 of Algorithm 1.I
we show the annotation templates predSLLNodes and predSLLDH for an SLL
with a fixed head element; instantiations, highlighted with a grey background,
are shown for our running example. Here, SLLNodes recursively defines the list,

46 J.T. Mühlberg et al.

Algorithm 1. Part I: Recursive predicates
1: generateRecursivePredicates(T, τ, σ, M)
2: switch T.dataStructureKind � Attributes of T are given in Table 1
3: case SLL:
4: let t = τ(T.dataStructureNodeType)
5: let o = σ(T.linkageOffset)
6: let f =getFieldName(t, o)
7: annotate(after(definitionOf(t)), predSLLNodes, t, f)

predicate SLLNodes_Node(struct Node *node, int count) =

node == 0 ? count == 0 : 0 < count

&*& node->Next |-> ?next

// &*& other field chunks...

&*& malloc_block_Node(node)

&*& SLLNodes_Node(next, count-1);

8: if ∃ (, T ′, , τ ′, σ′) ∈ M : T ′.dataStructureKind = SLL ∧
τ ′(T ′.dataStructureNodeType) = t ∧ σ′(T ′.linkageOffset) = o ∧
T ′.manipulationPosition = FrontDH

9: annotate(after(definitionOf(t)), predSLLDH, t, f)
predicate SLL_Node(struct Node *list, int count) =

&*& list->Next |-> ?head

// &*& other field chunks...

&*& malloc_block_Node(list)

&*& SLLNodes_Node(head, count);

else
10: annotate(after(definitionOf(t)), predSLL, t, f)
11: case DLL: ...

while SLL represents a handle for that list. We currently provide such predicate
annotation templates for SLL and DLL data structures with and without head
and tail elements. Note that &*& is VeriFast notation for the separating conjunc-
tion operator ∗, and ?x introduces an existentially quantified logic variable x.

dsOli may identify multiple different access patterns for the same data struc-
ture. For example, there may be functions in a program that always access
elements at the head of a list, making this head element visible, while other
functions modify arbitrary elements of the same list. When generating annota-
tions we always pick the more restrictive option, e.g., a list with a head element,
if at least one operation exposes this characteristic. We expect this to lead to
specifications that more accurately capture program behaviour. This specificity
can be seen in line 8 of Algorithm 1.I, where we check over all template matches
(stored in M) to determine the most restrictive predicate.

Function Contracts. VeriFast employs the concept of permission account-
ing [5]. Thus, our generated function contracts give permission to a single func-
tion, or a group of functions that jointly perform an operation, to access a list
and insert or remove an element of that list. Multiple function contracts may be
generated for one function, specifying that this function performs operations on
multiple lists.

Learning Assertions to Verify Linked-List Programs 47

Algorithm 1. Part II: Function contracts and inline annotations
12: generateContractsAndInline(T, τ, σ, m, Emanipulated)
13: switch T.dataStructureKind

14: case SLL:
15: let t = τ(T.dataStructureNodeType)
16: let f =getFieldName(t, σ(T.linkageOffset))
17: let ciddiff = m(T.differenceVertex)
18: let cidsstable = {m(tid) : tid ∈ T.stableVertices}
19: let e = (v, w, o) ∈ Emanipulated : o = σ(T.linkageOffset)

∧((v.cid = ciddiff ∧ w.cid ∈ cidsstable)
∨(v.cid ∈ cidsstable ∧ w.cid = ciddiff))

20: if v.cid = ciddiff

21: let list = dfTrace(getVariableOnAssignmentRHS(e.setLoc))
22: else
23: let list = dfTrace(getVariableOnAssignmentLHS(e.setLoc))
24: if T.manipulationKind = Insert
25: annotate(atFuncDef(e.setLoc), ContractInsert, list, t)

requires SLL_Node(S, ?n_Node);

ensures SLL_Node(S, n_Node + 1);

26: annotate(before(efirst.setLoc), Open, list, t)
open SLL_Node(S, n_Node);

27: annotate(after(elast.setLoc), CloseInsert, list, t, f)
close SLLNodes_Node(S->Next, n_Node + 1);

close SLL_Node(S, n_Node + 1);

28: else if T.manipulationKind = Remove . . .
29: case DLL: ...

We first describe the simple case, i.e., where all events that transform a data
structure from Tpre to Tpost are located within one function body and where there
are no further operation templates that match events caused by this function. If
the operation is, e.g., “insert one element into a list”, we are able to specify as
a pre-condition that the function requires permission to a list predicate with n
elements of the type mentioned in the template match. The post-condition will
be that the function returns permission to the list with n + 1 elements to the
caller. A concrete example of each can be seen at line 25 of Algorithm 1.II.

To explain Algorithm 1.II we introduce the set Emanipulated that comprises
the points-to edges manipulated during the operation that directly contributed
to breaking apart structures observed in GT

pre and forming those in GT
post:

Emanipulated = {(vp, wp, op) ∈ EP
k : k ∈ (i..j] ∧ (vp, wp, op).eid ∈ (i..j]

∧ ∃(vt, wt, ot) ∈ (ET
pre ∪ ET

post) : m(vt.tid) = vp.cid ∧ σ(ot) = op}
i.e., points-to edges created during the segment, where the source vertices and
offsets of those pointers map to template edges in either GT

pre or GT
post.

The set Emanipulated allows us to determine an entry point to the linked-list
data structure manipulated by an operation. It relies on the computation at
line 19, which locates a stable vertex w that has either an incoming or outgoing

48 J.T. Mühlberg et al.

pointer e at the linkage offset to the difference vertex v. As our analysis requires
the source code to contain no more than one assignment statement per line of
code, we may employ e.setLoc to determine the location of that pointer write,
i.e., the location of the program variable that establishes a points-to relationship
between the difference vertex v and some stable vertex w (see Table 1 for details
on stable and difference vertices). In lines 20 to 23 we perform a reaching defi-
nition analysis to determine the function inputs on which the program variable
referring to w is data dependent. There should be one such input variable, either
a function parameter or a global variable, that is of the type associated with the
SLL predicate and contains an SLLNodes predicate for v. We assume this input
variable to be the entry point to the list that is manipulated by the operation
matched. Finally, at line 25, we insert the annotation template ContractInsert,
with instantiations shown for push() from our running example.

Situations in which an operation spans multiple functions or is interleaved
with another operation, are handled by generating contracts that capture the
requirements and results of the separate event sequences that comprise a match.
A typical example for this would be that the (de)allocation site of the difference
vertex is located outside of the function that performs the insert or remove oper-
ation on the list. In that case, permissions for the detached node are appended
to the contract so as to pass these permissions to the (de)allocation site.

InlineAnnotations. Inline annotations such as loop invariants and open/close
statements make transformations on VeriFast’s symbolic heap explicit and, thus,
provide the proof steps and invariants necessary to automate verification. Algo-
rithm 1.II produces inline annotations at lines 26 and 27 for annotation templates
Open and CloseInsert. As before, instantiations are shown for our running exam-
ple; also consult lines 33, 37 and 38 of Fig. 2 to view these in the context of push().
By consulting the elements of Emanipulated that occurred first and last, efirst, elast ∈
Emanipulated with minimum or maximum value of e.eid respectively, it is possible
to determine the most tightly enclosing source lines at which the operation begins
and ends. In the case of traversals we generate auxiliary lemmas that can be used
to segment the list and re-join the segments in subsequent loop iterations. These
are automatically produced from a special type of operation template, which are
designed to recognise the memory transformation associated with one iteration of
common list traversal implementations.

4 Evaluation

We implemented our approach in a prototypic tool-chain that takes as input C
program source files and outputs annotated C source files, which are then passed
to VeriFast. The annotation generator is based on LLVM/Clang [14] for parsing
and annotating the input program and performing data-flow analyses. Our tool-
chain was applied to two examples from textbooks, which we reuse from [21], and
two examples from real-world open-source projects. We provide the output of
dsOli and the automatically generated annotations for each benchmark program
at http://people.cs.kuleuven.be/∼jantobias.muehlberg/sefm15/.

http://people.cs.kuleuven.be/~jantobias.muehlberg/sefm15/

Learning Assertions to Verify Linked-List Programs 49

The textbook examples, Weiss Stack [20] and Wolf Queue [22], employ SLLs
with a head element. The key difference is that, in the former example, nodes
are always appended and removed at the head position, while the latter example
involves list traversal and insertion at the tail; hence, this later example includes
an auto-generated loop invariant. Our results for these examples are very encour-
aging as all employed data structure manipulating functions could be verified by
VeriFast based on our automatically generated annotations with very few minor
modifications. The generated annotations of Weiss Stack required only one minor
edit (moving a valid open statement by one line). In Wolf Queue, changes were
necessary to correct a variable name in an annotation (“major edit”) and to
introduce new open and close annotations (“added/removed” in Table 2).

For the following two real-world examples, we sliced away code not relating
to functions that were labelled by dsOli to be part of data structure opera-
tions, since currently VeriFast must verify all source code in the source file; an
upcoming release will alleviate this requirement. As a first real-world example,
we extracted a part of the hash table implementation from the Redis key-value
store [17] (dictAddRaw() from src/dict.c). This component inserts a new key
value into a hash bucket, represented by an SLL. The generated annotations
reflect the use of the list, yet additional annotations were required to capture
accessing the nested structs and arrays that contain the hash buckets. Our sec-
ond example originates from the Boa webserver [4]. The analysed component
stores requests in a DLL (src/queue.c), of which we verify the enqueue and
dequeue functions. The latter is challenging as an arbitrary element, passed via
a pointer, is to be removed from the list. Since our operation templates are based
on local changes, sometimes this prevents an association between the removed
element and the list head from being recognised. Nevertheless, the generated
annotations are valid, but they required us to manually supply assertions to
make some linkages explicit.

Table 2 summarises our results for functions in the examples that manipulate
data structures only. We distinguish between the total amount of annotations
required to verify a function (including those covering, e.g., field initialisation
or input validation) vs. their subset that specifies data structure manipulations
only (i.e., those that are in-scope of our analysis). Annotations are quantified in
terms of separating conjuncts, which loosely correspond to lines of annotations
as given in [16]. We also provide an estimate tfix for the time required to correct
the auto-generated annotations.

The runtime of our annotation generator is no more than a few seconds for all
examples. As dsOli remains a prototype tool, its runtime is in the order of tens-
of-minutes and requires a few GBs of RAM; since these factors depend on trace
length and average points-to graph size, shorter, more representative traces can
significantly reduce the requirements. The repetition-based functional unit iden-
tification strategy was employed for the textbook examples, while the real-world
examples assume that functions perfectly encapsulate operations (Sect. 2.2).

Overall our findings are very encouraging, showing that our tool-chain auto-
matically generates the majority of annotations required to verify the list manip-
ulating functions of our examples with the need of few manual revisions. To assess

50 J.T. Mühlberg et al.

Table 2. Annotation results for four sample programs

Numbers of Annotations (given in terms of separation conjuncts)

Example LOC Annot. Annot. Auto- Minor Major Added tfix

req. for for DS generated revision revision Removed in min

verificat. manipul. required required

Weiss stack 36 25 25 25 1 0 0 2

→ Predicates 7 14 14 14 0 0 0

→ push() 14 6 6 6 0 0 0

→ pop() 15 5 5 5 1 0 0

Wolf queue 40 107 102 99 2 1 3 15

→ Predicates 7 65 65 65 0 0 0

→ get() 14 12 7 7 1 0 0

→ put() 19 30 30 27 1 1 3

Redis 31 54 22 21 1 0 1 15

→ Predicates 10 28 16 16 0 0 0

→ dictAddRaw() 21 26 6 5 1 0 1

Boa 29 45 45 28 0 0 17 60

→ Predicates 6 9 9 9 0 0 0

→ enqueue() 9 13 13 8 0 0 5

→ dequeue() 14 23 23 11 0 0 12

the potential benefit of our approach for a verification engineer, Philippaerts
et al. [16] reports that the typical annotation overhead for VeriFast varies between
0.69 and 2.5 lines of annotation per line of code, and a verification engineer will
verify an average of 2.17 lines of C/low-level Java code per hour. Based on this
data we can conclude that our approach has the potential to save a verification
engineer significant time. For our simple, albeit realistic examples we estimate
time savings between 50 % and 80 %; our observation is that the auto-generated
annotations form a skeleton that can be enriched by a verification engineer to
verify functional aspects of a program, such as the ordering of list elements.

5 Conclusions and Future Work

By employing the output of dsOli’s dynamic analysis based on machine learning
and pattern recognition, we showed that it is possible to automatically generate
many candidate annotations for the static verification tool VeriFast, which are
suitable for the automated verification of operations that manipulate list-based
data structures. We observed very promising initial results for verifying memory
safety properties and mainly require manual input from the verification engineer
for control paths not affecting data structures, which are out of scope for our
analysis. In future work we aim to support a greater variety of data structures,
including nested data structures that the next version of dsOli will address.

Learning Assertions to Verify Linked-List Programs 51

Acknowledgements. This research is partially funded by the Research Fund KU
Leuven. The second and fourth authors are supported by DFG grants LU 1748/4-1
and LU 1748/2-1. The third author is supported by DFG grant LU 1748/2-1.

References

1. Ammons, G., Bod́ık, R., Larus, J.R.: Mining specifications. In: POPL 2002, pp.
4–16. ACM (2002)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005)

3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: memory safety for systems-level code.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011)

4. The Boa webserver. http://www.boa.org/. Accessed 2015–06-09
5. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in

separation logic. In: POPL 2005, pp. 259–270. ACM (2005)
6. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis

by means of bi-abduction. SIGPLAN Not. 44(1), 289–300 (2009)
7. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,

size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

8. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In:
OOPSLA 2008, pp. 213–226. ACM (2008)

9. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: PLDI 2005, pp. 213–223. ACM (2005)

10. Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion
synthesis. In: PLDI 2007, pp. 256–265. ACM (2007)

11. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96(1–2), 65–98 (2014)

12. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011)

13. Jung, C., Clark, N.: DDT: design and evaluation of a dynamic program analysis
for optimizing data structure usage. In: MICRO 2009, pp. 56–66. ACM (2009)

14. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis transformation. In: CGO 2004, pp. 75–86. IEEE (2004)

15. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that
alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, pp. 1–19. Springer, Heidelberg (2001)

16. Philippaerts, P., Mühlberg, J.T., Penninckx, W., Smans, J., Jacobs, B., Piessens,
F.: Software verification with VeriFast: industrial case studies. Sci. Comput. Pro-
gram. 82, 77–97 (2014)

17. The Redis key-value store. http://www.redis.io/. Accessed 2015–06-09
18. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.

ACM TOPLAS 24(3), 217–298 (2002)
19. Vogels, F., Jacobs, B., Piessens, F., Smans, J.: Annotation inference for separation

logic based verifiers. In: Bruni, R., Dingel, J. (eds.) FORTE 2011 and FMOODS
2011. LNCS, vol. 6722, pp. 319–333. Springer, Heidelberg (2011)

http://www.boa.org/
http://www.redis.io/

52 J.T. Mühlberg et al.

20. Weiss, M.A.: Data Structures and Algorithm Analysis in C, 2nd edn. Addison-
Wesley, Boston (1997)

21. White, D.H., Lüttgen, G.: Identifying dynamic data structures by learning evolving
patterns in memory. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS
2013). LNCS, vol. 7795, pp. 354–369. Springer, Heidelberg (2013)

22. Wolf, J.: C von A bis Z. Galileo Computing, Germany (2009)
23. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn,

P.W.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

Verifying Protocol Implementations
by Augmenting Existing Cryptographic

Libraries with Specifications

Gijs Vanspauwen(B) and Bart Jacobs

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
{gijs.vanspauwen,bart.jacobs}@cs.kuleuven.be

Abstract. Specifying correct cryptographic protocols has proven to be
a difficult task. The implementation of such a protocol in a lower-level
programming language introduces additional room for errors. While a lot
of work has been done for proving the correctness of high-level (often non-
executable) protocol specifications, methodologies to prove properties of
protocol implementations in a lower-level language are less well-studied.
Such languages however, like the C programming language, are still fre-
quently used to write cryptographic software. We propose a static veri-
fication approach for cryptographic protocol implementations written in
the C programming language. This approach employs our own extended
symbolic model of cryptography which we formalized in VeriFast, a sep-
aration logic-based verifier for C programs. By giving formal contracts
to the primitives of an existing cryptographic library (i.e. PolarSSL), we
were able to prove, besides memory safety, interesting security properties
of a small protocol suite thatdemonstrates the usage of those primitives.

Keywords: Static verification · Verification of C programs · Crypto-
graphic protocols · Symbolic model of cryptography · Cryptographic
libraries

1 Introduction

Cryptographic protocols form the backbone of today’s Internet security. They
provide confidentiality, authentication and data integrity during remote commu-
nication sessions. Specifying correct cryptographic protocols has proven to be a
difficult task. There are numerous examples of proposed protocols which turned
out to be incorrect (see [8] or [16] for example). An infamous example amongst
these is the flaw in the original formulation of the public-key Needham-Schroeder
protocol [15], which was noticed and corrected by G. Lowe [14].

Formal verification is a common means to convince oneself that such flaws
are absent from protocol descriptions. The successful verification of a protocol
does not only give the guarantee that the protocol achieves its goals and that
the description does not contain any flaws, it also forces one to formalize what
properties the protocol tries to establish and how exactly it achieves these. The
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 53–68, 2015.
DOI: 10.1007/978-3-319-22969-0 4

54 G. Vanspauwen and B. Jacobs

strength of the proven properties depends on the chosen model for defining the
semantics of cryptographic computations.

There exist mainly two kinds of models that have been successfully applied:
symbolic models [4,5,10] and computational models [1,2,6,11,13]. In a sym-
bolic model messages are terms of some abstract algebra. These terms can be
constructed through the cryptographic primitive operators or via a pairing oper-
ator, and messages are exchanged over a completely untrusted network in the
presence of an adversary that can construct any message using the same oper-
ators. Dolev and Yao [9] were the first to formalize such a model, so symbolic
models are also referred to as Dolev-Yao models. In a computational model cryp-
tographic primitives are probabilistic algorithms that produce actual bit strings
and an adversary has polynomially bounded resources to perform his attack.
These features allow one to specify and prove properties with a higher security
assurance, but it makes reasoning about protocols more complex.

Whichever model a tool or methodology applies, it must provide a language
to specify protocols. Some tools provide an abstract specification language (e.g.
EasyCrypt [2], ProVerif [5] or CryptoVerif [6]). This abstract language facilitates
reasoning about protocol properties, but the resulting protocol description is not
immediately executable. In other approaches, protocols are implemented in a
programming language and a general-purpose verifier is used to prove properties
about this executable code. Bhargavan et al. [4] for example, write their protocol
implementations in the F# programming language, an ML variant for the .NET
platform. Their invariant-based method uses the F7 type checker, an SMT-based
type checker for refinement types, to prove cryptographic properties. Another
example is the work by Dupressoir et al. [10]. They write protocols in the C
programming language and apply the same invariant-based method in VCC [7],
a general-purpose verifier for C source code. Hybrid approaches have also been
proposed: synthesize code from verified abstract protocol specifications [1] or
extract a model from protocol implementations and verify the model [3].

In the end, all of these approaches have as an objective the development of
cryptographic software with high security assurances. However, existing crypto-
graphic libraries are often written in a lower-level programming language (e.g.
the C programming language) and routinely require security patches due to
newly discovered bugs. Even very recently, severe flaws were discovered in dif-
ferent cryptographic libraries (e.g. OpenSSL, GnuTLS, SChannel and Secure-
Transport) that completely broke their security goals. To increase our trust in
these big chunks of security critical software, verification is essential.

In this paper we propose a static verification approach for existing crypto-
graphic protocol implementations written in the C programming language. Our
approach was developed in VeriFast [12], a separation logic-based verifier for C
programs, but can naturally be ported to other similar tools. Initially, VeriFast
did not directly support the verification of protocols. As a first step to overcome
this limitation, we chose to verify protocols within a symbolic model and leave
verifying within a computational model for future work. Since we target existing
implementations in which the bytes calculated by the cryptographic primitives

Verifying Protocol Implementations 55

are visible to the protocol participants, we could not apply a classical symbolic
model. Instead, we started from a classical Dolev-Yao model and extended it in
order to give sensible contracts to the primitives.

The extended symbolic model we propose demands a manual code review.
For this reason we implemented a verified library with a high-level Dolev-Yao
style API on top of the low-level annotated cryptographic primitives. When
writing protocols against this high-level API the manual code review is not
required anymore, since the library implementation contains the code that needs
to be reviewed. In rest of this paper, we explain our extended symbolic model
of cryptography and discuss a methodology to:

– give meaningful and useful formal contracts to the cryptographic primitives
of an existing cryptographic library

– prove security properties of implementations that use those primitives

Concretely, in Sect. 2 we describe our extended symbolic model and discuss which
contracts we propose for the primitives of an existing cryptographic library (i.e.
PolarSSL). Then in Sect. 3 we illustrate how to prove, besides memory safety,
interesting security properties of protocols that are implemented with these prim-
itives. Section 4 describes our library with a simple and high-level Dolev-Yao style
API that illustrates the usability of the proposed contracts, and finally, we give
our conclusions and discuss future work in Sect. 5.

2 Extended Symbolic Model of Cryptography

Before we address our extended symbolic model of cryptography, we need to
discuss the language in which we formalized it. For our cryptographic proofs we
rely on VeriFast [12], a general-purpose verifier for C programs. To check mem-
ory safety and functional correctness with symbolic execution, VeriFast requires
these programs to be annotated with preconditions and postconditions written
in a separation logic-based specification language (isolated from normal code by
special comments //@... or /*@...*@/ and using keyword &*& for the separating
conjunction). This specification language allows to define inductive datatypes,
primitive recursive pure functions over those datatypes, abstract separation logic
predicates, and lemma functions (i.e. pure functions that serve as proofs).

While other general-purpose verifiers could as well be used to employ our
extended symbolic model of cryptography, extracts of definitions and examples
shown are in VeriFast syntax. In the remainder of this text we focus on the
generation of keyed hashes. Complete definitions and all examples (including
symmetric encryption, asymmetric encryption and the generation of hashes or
random values) can be found in the examples/crypto folder of the latest
VeriFast release downloadable on the website http://distrinet.cs.kuleuven.be/
software/VeriFast.

2.1 Cryptographic Terms

We start the discussion of our extended symbolic model of cryptography by defin-
ing the terms of our cryptographic algebra. These terms, which we interchangeably

http://distrinet.cs.kuleuven.be/software/VeriFast
http://distrinet.cs.kuleuven.be/software/VeriFast

56 G. Vanspauwen and B. Jacobs

Listing 1. Definition of the inductive datatype cryptogram t

/*@ inductive cryptogram_t =
| key_cg (int principal, int count)
| hmac_cg(int principal, int count, list<char> pay)
| ...; @*/

call cryptograms1, are instances of the inductive datatype cryptogram t defined
in Listing 1. The first constructor key cg introduces terms that represent keys
for symmetric encryption and keyed hash generation. Parameters principal
and count together serve as unique identifiers for keys (e.g. the 5th key gener-
ated by the 3rd principal). The second constructor introduces terms that repre-
sent keyed hashes. While the first two parameters identify which key was used, the
third parameter represents the payload. The type of this parameter pay suggests
a deviation from standard symbolic models: it has the type list<char> instead
of cryptogram t. So the definition of cryptogram t is not recursive and the
actual bits that were provided to the keyed hash primitive will be recorded in the
corresponding constructor as a character list. Another deviation from standard
symbolic models is that there is no constructor for pairing two cryptograms. In
Sect. 2.4 we discuss how to combine cryptograms.

2.2 Linking Memory Regions to Terms

Since we want to verify executable protocol implementations, we need a way to
link in-memory cryptographic results to their corresponding idealized abstract
terms. To achieve this we introduce the definitions from Listing 2. For each
instance of cryptogram t the pure function chars for cg returns the exact
character representation. Although this declaration has no body, its function
values will be determined by the results of the cryptographic primitives dur-
ing symbolic execution. Linking a memory region to its corresponding term is
then established by an assertion of the form cryptogram p(buffer, len,
cs, cg). The body of the predicate cryptogram p states that buffer points
to a correctly allocated memory region of size len and its contents is cs, the
character representation of the cryptogram cg. Axiom chars for hmac inj
finally, ensures that chars for cg is injective for signed hashes up to collisions
(for each kind of cryptogram such an axiom is added). A collision occurs (i.e.
collision equals true) when different cryptograms of the same kind have an
identical character representation in a specific symbolic execution branch.

2.3 Cryptographic Primitives

One of our goals was to come up with sensible contracts for the primitives
of an existing cryptographic library. We chose the cryptographic primitives
of PolarSSL (recently rebranded to mbed TLS), a simple library that imple-
ments a minimal but complete TLS stack. Instances of the inductive datatype
1 We use this term not only for cyphertexts, but for any value generated by some cryp-

tographic primitive.

Verifying Protocol Implementations 57

Listing 2. Definitions to link cryptographic terms to allocated memory

/*@ fixpoint list<char> chars_for_cg(cryptogram_t cg);

predicate cryptogram_p(char* buffer, int len,
list<char> cs, cryptogram_t cg) =

chars(buffer, len, cs) &*& cs == chars_for_cg(cg) &*& ... ;

lemma void chars_for_hmac_inj(cryptogram_t cg1, cryptogram_t cg2);
requires cg1 == hmac_cg(_, _, _) &*& cg2 == hmac_cg(_, _, _) &*&

chars_for_cg(cg1) == chars_for_cg(cg2);
ensures collision || (cg1 == cg2); @*/

Listing 3. Annotated declaration of sha512 hmac

void sha512_hmac(const char *key, size_t keylen, const char *input,
size_t ilen, char *output, int is384);

/*@ requires [?f1]chars(key, keylen, ?cs_key) &*&
[?f2]chars(input, ilen, ?cs_pay) &*&
chars(output, ?olen, _) &*&

key_id(?p, ?c) &*& ilen >= MIN_INPUT &*&
is384 == 0 ? olen == 64 : is384 == 1 olen == 48; @*/

/*@ ensures [f1]chars(key, keylen, cs_key) &*&
[f2]chars(input, ilen, cs_pay) &*&
cs_key == chars_for_cg(key_cg(p, c)) ?

cryptogram_p(output, olen, ?cs, ?h_cg) &*&
h_cg == hmac_cg(p, c, cs_pay)

:
chars(output, olen, _); @*/

cryptogram t from Listing 1 represent the cryptographic values that are gen-
erated by the primitives of PolarSSL. The complete annotated declaration of the
keyed hash primitive sha512 hmac is shown in Listing 3. It illustrates the usage
of our earlier definitions to specify a contract for a cryptographic primitive. The
contracts for other primitives, although not discussed here, are analogous.

Assertions of the form chars(, ,) in the contract of sha512 hmac record
the required read access for input parameters and write access for output para-
meters. The key id(?p, ?c) assertion2 merely serves to bind the input vari-
ables p and c, and the switch is348 determines if the function calculates keyed
hashes with a size of 48 bytes or 64 bytes. If the provided input buffer key of
size keylen contains the character representation of the term key cg(p,c),
the function sha512 hmac returns the corresponding keyed hash in the out-
put buffer. The content of this output buffer is determined by the assertion
cryptogram p(output,olen,?cs,?h cg) and the postcondition then links
the content of the output buffer to the cryptogram hmac cg(p, c, cs pay),
where cs pay is the content of the input buffer.

2.4 Constructing Messages

A distinguishing feature of our extended symbolic model is the way that cryp-
tographic terms, generated by the primitives, can be composed into messages.
2 Note: p(?x) is VeriFast syntax for ∃x.p(x).

58 G. Vanspauwen and B. Jacobs

Listing 4. Definitions to combine cryptographic terms

/*@ fixpoint list<cryptogram_t> cgs_exposed(list<char> cs);

lemma void cg_exposed(cryptogram_t cg);
requires true;
ensures cgs_exposed(chars_for_cg(cg)) == {cg};

fixpoint bool cgs_exposed_bound(list<char> cs,
list<cryptogram_t> cgs);

lemma void cgs_exposed_to_bound(list<char> cs);
requires true;
ensures true == cgs_exposed_bound(cs, cgs_exposed(cs));

lemma void cgs_exposed_bound_split(list<char> cs,
list<cryptogram_t> cgs, int i);

requires 0 <= i i <= length(cs) &*&
true == cgs_exposed_bound(cs, cgs);

ensures true == cgs_exposed_bound(take(i, cs), cgs) &*&
true == cgs_exposed_bound(drop(i, cs), cgs);

lemma void cgs_exposed_bound_join(
list<char> cs1, list<cryptogram_t> cgs1,
list<char> cs2, list<cryptogram_t> cgs2);

requires true == cgs_exposed_bound(cs1, cgs1) &*&
true == cgs_exposed_bound(cs2, cgs2);

ensures true == cgs_exposed_bound(append(cs1, cs2),
union(cgs1, cgs2)); @*/

Because we are augmenting an existing cryptographic library that works with
character buffers as inputs and outputs to primitives, we cannot hide the char-
acter representation of a term behind the annotated trusted API as in other
approaches [4,10]. Therefore, messages are simply character buffers and we intro-
duce the notion of the set of cryptograms exposed by a list of characters, embod-
ied in the pure function cgs exposed from Listing 4. Axiom cg exposed then
allows one to show this set is the expected singleton for the character represen-
tation of a cryptogram. We use a finite list representation for this set, which
is reasonable as we only consider finite prefixes of protocol runs and only a finite
number of cryptograms can be generated in a finite run.

Since the character representation of cryptograms is exposed by the PolarSSL
API, we want to allow an adversary to split and join these character buffers
at will and perform any other operation on them (giving an adversary more
capabilities than in other symbolic models). For this reason, we introduce the
notion of an upper bound on the set of cryptograms exposed by a list of char-
acters as expressed by cgs exposed bound. Axiom cgs exposed to bound
then enables to show the set of cryptograms exposed by a list of characters
indeed forms an upper bound. Finally, the axioms cgs exposed bound split
and cgs exposed bound join allow to split and join lists of characters while
tracking an upper bound on the cryptograms exposed. Axioms can easily be
added for other operations. In general, for any operation f , an axiom can be
provided that states cgs exposed(f(cs)) ⊆ cgs exposed(cs).

Verifying Protocol Implementations 59

Listing 5. Definitions for specifying invariants on public messages

/*@ predicate network(predicate(cryptogram_t) pub);

lemma void network_init(predicate(cryptogram_t) pub);
requires true;
ensures [_]network(pub) &*& ...;

predicate public_message(predicate(cryptogram_t) pub,
char* chars, int len, list<char> cs) =

chars(chars, len, cs) &*&
[_]foreach(cgs_exposed(cs), pub) &*& ...; @*/

int net_send(void *ctx, const char *buf, size_t len);
/*@ requires [_]network(?pub) &*&

public_message(pub, buf, len, ?cs) &*& ...; @*/
/*@ ensures public_message(pub, buf, len, cs) &*& ...; @*/

int net_recv(void *ctx, char *buf, size_t len);
/*@ requires [_]network(?pub) &*& ... &*&

chars(buf, len, _); @*/
/*@ ensures result <= 0 ?

chars(buf, len, _)
:

result <= len &*&
chars(buf + result, len - result, _) &*&
public_message(pub, buf, result, _); @*/

2.5 Invariants for Public Messages

To show the correctness of a protocol implementation, one needs to specify which
messages are confidential and which can safely be published on the untrusted
network without interfering with the protocol. Those that are safe to publish
are messages constructed and transmitted by honest participants during a valid
protocol run, or messages that are produced by the attacker. Determining these
messages takes the form of an invariant for messages on the network: they can
only expose public cryptograms. We allow one to indirectly define this invariant
for a specific protocol through a publicness predicate with only one parameter of
type cryptogram t. A cryptogram is then public if and only if it satisfies the
assertion in the body of the publicness predicate. One can make use of events
[4,5,16]3 to record protocol progress while defining this publicness predicate.
Note that publicness is a crude measure since a cryptogram should be non-public
even if a single bit is confidential in the protocol at hand.

Listing 5 shows the networking API. We assume that messages are published
on the network only through this API or other similarly annotated APIs. Before
the networking API can be used, it must be initialized with the publicness predi-
cate definition for the protocol at hand. This is done through an invocation of the
function network init where the publicness predicate is passed as an argu-
ment. An assertion of the from []network(pub) then binds that predicate
value in the postcondition of the initialization function. For a specific publicness
3 Events are called event predicates in other approaches, but we call them events here

to avoid confusion with separation logic predicates.

60 G. Vanspauwen and B. Jacobs

Listing 6. Extract from attacker model

/*@ typedef lemma void public_hmac(predicate(cryptogram_t) pub)
(cryptogram_t hmac);

requires hmac == hmac_cg(?p, ?c, ?pay) &*&
length(pay) <= INT_MAX &*&

[_]pub(key_cg(p, c)) &*&
[_]foreach(cgs_exposed(pay), pub) &*& ...;

ensures [_]pub(hmac) &*& ...; @*/

void attacker(...);
/*@ requires [_]network(?pub) &*&

is_public_hmac(?proof, pub) &*& ...; @*/
/*@ ensures is_public_hmac(proof, pub) &*& ...; @*/

predicate, public messages are determined by the predicate public message.
A public message is a memory buffer that contains a list of characters exposing
a set of cryptograms for which each member is public according to the given
publicness predicate. The contracts for the functions from the networking API
then enforce the invariant that only public messages can be sent over the net-
work: the net send function requires a public message and a successful call of
the net recv function returns a public message.

2.6 Attacker Model

Another element of our extended symbolic model is the attacker. As mentioned
earlier, the attacker is able to look inside a public message and see the individual
bytes. This means he can perform any operation on public messages, such as
splitting a public message into two separate messages and joining two messages
at will using the definitions from Listings 4 and 5. This renders our attacker
model more powerful than most other symbolic models [4,10] (e.g. he can split a
nonce in two parts and publish both on the network). Besides these capabilities,
the attacker can call any cryptographic primitive using some bytes he finds on
the network or comes up with himself.

All capabilities of the attacker are encoded as theorems about the publicness
predicate and specifically, without going into details of the VeriFast annota-
tion language, as lemma function type definitions. Definition public hmac in
Listing 6 is an example of such a theorem. The contract of public hmac loosely
states that if the attacker pulled a key and a public message from the network,
the calculated keyed hash of that message must also be public. To verify the
attacker implementation attacker, one needs to write, for each capability the-
orem about the publicness predicate, a lemma function serving as proof. Once
a lemma function is written, VeriFast allows for a witness of its existence to be
generated. For the theorem public hmac and the publicness predicate pub,
this witness is encoded as the assertion is public hmac(?proof, pub). All
capability theorems must be proven before invoking the attacker implementa-
tion. Using these proofs for a specific publicness predicate, VeriFast can verify
the annotated attacker implementation for the corresponding protocol.

Verifying Protocol Implementations 61

Listing 7. Axiom for assuming that a data value is public

/*@ lemma void assume_public_chars(predicate(cryptogram_t) pub,
list<char> cs);

requires true;
ensures [_]foreach(cgs_exposed(cs), pub) &*& ... ; @*/

Listing 8. Axiom to interpret a received message as a keyed hash

/*@ lemma cryptogram_t chars_for_hmac_cg_surj(list<char> cs);
requires true;
ensures result == hmac_cg(_, _) &*&

cs == chars_for_cg(result); @*/

2.7 Handling Data Values

As described in Sect. 2.5, exclusively public messages (i.e. character buffers that
expose only public cryptograms) are allowed on the network. But raw data
buffers containing for example cleartexts, message tags or protocol version num-
bers, are not computed by some cryptographic primitive. So there is no assurance
about which cryptograms are exposed by their contents. Still, protocol partic-
ipants should be able to transmit them over the network. For this reason, we
introduce the axiom assume public chars shown in Listing 7. It allows one
to introduce the assumption that a specific list of characters only exposes public
cryptograms, which is the weakest requirement for data values to send them
on the network. This axiom has to be treated with uttermost care. It must be
invoked only on literal data hardcoded into the program text, user input or
other data that is independent from any secret coin tosses. Unfortunately Veri-
Fast has no support for the kind of taint analysis that is required for checking
this constraint, so it must be checked by hand (which should be straightfor-
ward for well-written code). Additionally, a manual audit must be performed
to ensure that there are no implicit flows from secret bits into the program’s
control flow; i.e., the audit must check that the condition of each if statement,
while statement, or similar statements exposes only public cryptograms.

2.8 Interpreting a Received Public Message

Each protocol defines its own message format and during a protocol run each
received message is parsed according to this format. After parsing a received
message, certain parts need be interpreted as the character representation of
some cryptogram. Therefore we add, for each type of cryptogram, an axiom
analogous to chars for hmac cg surj as shown in Listing 8. Such an axiom
allows to show that a specific list of characters is the character representation of
some cryptogram, without knowing the exact cryptogram. Then, by the contract
of net recv from Listing 5 we know that whichever cryptogram it is, it must
be public. In this way knowledge about the received message can be extracted.

Finally, proofs by induction on cryptograms allow one to prove interest-
ing properties of received messages and protocols. Since cryptogram t is not
defined recursively, proofs by induction have to be supported axiomatically. For

62 G. Vanspauwen and B. Jacobs

this, we assign a level to each cryptogram and cryptograms without payload have
zero as level. For a cryptogram cg with a payload, we add an axiom stating that
the level of a cryptogram exposed by the payload cg is lower than the level of
cg itself. We ensure that this axiom (which is not shown), can only be invoked
on cryptograms that are actually generated (to break cryptographic cycles).

3 Memory Safety and Security Properties

The previous section discussed all the elements of our extended symbolic model of
cryptography and how we encoded it in VeriFast. Here we show how to apply that
model to prove memory safety and interesting security properties of a specific
protocol implementation. To verify a protocol implementation the following steps
(not necessarily in this order) have to be performed:

– Define events to record protocol progress.
– Define the publicness predicate for the protocol.
– Prove theorems about the publicness predicate required to verify the attacker.
– Give a contract to all participants of the protocol.
– Verify the participant implementations.

The rest of this section illustrates these steps with a simple example: an authen-
ticated remote procedure call (RPC) protocol. A protocol transcript for RPC is
given in Fig. 1 where key is assumed to be a secret shared between participants
A and B. This transcript specifies that A first sends an authenticated request to
B and then B sends his authenticated response (prefixed with the request) back.
The actual data exchanged (i.e. request and response) is integrity protected,
but not encrypted.

Fig. 1. Protocol transcript of RPC

Listing 9 shows the definitions for events and the definition of the publicness
predicate of RPC. For convenience, messages are tagged with their sequence
number, and the request and the response messages have a fixed size of LEN
bytes. The two events request and response are defined as bodyless pure
functions with a boolean return value. Event request represents the fact that
principal A wants to send req pay to B and response is the event in which
B wants to send resp pay in response to A’s request. The definition of the
publicness predicate rpc pub uses two more pure functions that have a clear
meaning. Function bad is true for dishonest principals that have compromised
keys (e.g. the attacker) and for a specific key, the function shared with returns
the principal with whom the creator shared the key. Since the exchanged data
is solely integrity protected through a keyed hash, the only constructors of type
cryptogram t that are of interest in the definition of rpc pub, are key cg
and hmac cg. The boolean formula for the constructor key cg states that a

Verifying Protocol Implementations 63

Listing 9. Definitions for Verification of RPC Protocol

/*@ fixpoint bool request(int A, int B, list<char> req_pay);
fixpoint bool response(int A, int B, list<char> req_pay,

list<char> resp_pay);

fixpoint bool bad(int principal);
fixpoint int shared_with(int principal, int count);

predicate rpc_pub(cryptogram_t cg) =
switch (cg)
{

case key_cg(principal, count): return
bad(principal) || bad(shared_with(principal, count));

case hmac_cg(principal, count, cs): return
bad(principal) || bad(shared_with(principal, count)) ||
switch (cs)
{

case cons(c0, cs0): return
c0 == ’1’ ?
request(principal, shared_with(principal, count), cs0)

: c0 == ’2’ ?
response(principal, shared_with(principal, count),

take(LEN, cs0), drop(LEN, cs0))
: false;
case nil: return false;

};
case ...

}; @*/

key is considered public in RPC if the creator of the key or the participant
with whom the creator shared the key is dishonest. According to the constructor
hmac cg there are three cases in which a keyed hash is public in RPC:

1. The key that was used to generate the keyed hash is public.
2. The payload cs of the keyed hash is a tagged message that principal

wanted to send to shared with(principal, count).
3. The payload cs is a tagged message that shared with(principal,

count) wanted to send in response to a request from principal.

The only nontrivial attacker capability for RPC is the one concerning keyed
hashing from Listing 6 and the theorem representing that capability is proven
straightforwardly for the definition of rpc pub. A contract for the implemen-
tation of participant A is then given in Listing 10. This contract expresses that
participant A needs its key, some public request and a buffer to store the response
together with the event that the application wants to send the request. After
successful completion of the protocol, the postcondition ensures that participant
A received a public response and that if neither participant A nor the receiver of
the request are bad, then the event of the receiver wanting to respond with the
received message occurred. We successfully verified the annotated implementa-
tion of both protocol participants (which are not shown).

We implemented and verified several additional protocols against the anno-
tated PolarSSL API. Figure 2 gives an overview of the small verified protocol

64 G. Vanspauwen and B. Jacobs

Listing 10. Implementation of principal A for RPC

void A(char *key, int key_len, char *request, char *response)
/*@ requires [_]network(rpc_pub) &*&

[?f1]cryptogram_p(key, key_len, ?k_cs, ?k_cg) &*&
k_cg == key_cg(?A, ?c) &*&

[?f2]public_message(rpc_pub, request, LEN, ?req_cs) &*&
request(A, shared_with(A, c), req_cs) == true &*&
chars(response, LEN, _); @*/

/*@ ensures [f1]cryptogram_p(key, key_len, k_cs, k_cg) &*&
[f2]public_message(rpc_pub, request, LEN, req_cs) &*&
public_message(rpc_pub, response, LEN, ?resp_cs) &*&
bad(A) || bad(shared_with(A, c)) ||
response(A, shared_with(A, c), req_cs, resp_cs); @*/

{ ... }

suite. The source lines of code (SLOC), annotation lines of code (ALOC), the
ratio of ALOC to SLOC and the verification times (VTime) are given there.
Considering that we are verifying software with complex properties, these ratios
are quite low compared to other software verified with VeriFast (because many
complex definitions and proofs are incorporated in the annotated API). Since
VeriFast sets out to be an interactive verification tool, verification times are
predictable and pretty low in general. However, the verification times for the
protocol implementations shown in Fig. 2 are quite long for VeriFast standards.
The reason for this is that a lot of branching occurs during symbolic execution
due to nested case analyses.

Fig. 2. Metrics of verified protocols using the Polarssl API

4 Dolev-Yao Style API

Using the low-level cryptographic primitives of the PolarSSL API which we aug-
mented with contracts, demands a manual code review as discussed in Sect. 2.7.
Although for well-written protocols this code review should be modest, we pro-
pose here an alternative approach that does not require manual review. For
this reason and to illustrate the usability of our extended symbolic model, we
implemented a verified library with a simple Dolev-Yao style API on top of the
annotated PolarSSL API. When writing protocols against this high-level API
the manual code review is not required, since the verified library implementa-
tion contains the code that needs to be reviewed.

The Dolev-Yao style API provides the same cryptographic functionality and
comes with a Dolev-Yao style attacker implementation that uses only the cryp-
tographic primitives from this high-level API to inspect and construct mes-
sages. To retain our stronger attacker model however, this high-level attacker

Verifying Protocol Implementations 65

Listing 11. Extract from Dolev-Yao style API

struct item;

/*@ inductive item_t =
| data_item(list<char> data)
| pair_item(item_t first, item_t second)
| key_item (int principal, int count)
| hmac_item(int principal, int count, option<item_t> payload)
| ... ;

predicate item_p(struct item *item, item_t i);

predicate world(predicate(item_t) pub); @*/

struct item *create_data_item(char* data, int length);
/*@ requires [?f]world(?pub) &*&

chars(data, length, ?cs) &*& length > 0; @*/
/*@ ensures [f]world(pub) &*&

chars(data, length, cs) &*&
item_p(result, data_item(cs)); @*/

struct item *create_hmac(struct item *key, struct item *payload);
/*@ requires [?f]world(?pub) &*&

item_p(payload, ?pay) &*& item_p(key, ?k) &*&
k == key_item(?principal, ?count); @*/

/*@ ensures [f]world(pub) &*&
item_p(payload, pay) &*& item_p(key, k) &*&
item_p(result, ?hmac) &*&
collision() ?

true
:

hmac == hmac_item(principal, count, some(pay)); @*/

also invokes the lower-level PolarSSL attacker. The actual characters of the val-
ues calculated by the cryptographic primitives are not exposed to the princi-
pals (including the high-level attacker) of a protocol. They are hidden behind
the declared, but not defined, C structure item from Listing 11. The terms of the
cryptographic algebra in our Dolev-Yao style API are items, i.e. members of the
type item t. Notice that this definition is recursive, in contrast to the defini-
tion of cryptogram t from Listing 1. Besides the constructors key item and
hmac item, the constructors data item and pair item are required here to,
respectively, introduce a term from raw data or to combine two terms into one
with a reversible encoding. Indeed, the concatenation of two character buffers is
again a character buffer, but there is no trivial way to combine two instances of
an undefined C structure into one instance.

Like before a predicate (i.e. item p) is used to link an in memory repre-
sentation of a cryptographic term (i.e. an instance of the C structure item)
to the term itself (i.e. an instance of the inductive datatype item t). These
items are simply the messages that can be sent over the network and public
messages are determined by defining a publicness predicate with a single para-
meter of type item t. Once the Dolev-Yao style API is initialized, the pred-
icate world is used to bind the provided publicness predicate. The function

66 G. Vanspauwen and B. Jacobs

Fig. 3. Metrics of verified protocols using the Doley-Yao style API

create data item allows to create a data item from raw bytes. Its contract
specifies that if the input buffer has content cs the resulting item is represented
by the term data item(cs). The function create hmac item is a primitive
to generate a keyed hash. As one can see, the recursive definition of item t
greatly simplifies the specification of a contract for cryptographic primitives.
There is no notion of the character representation of a cryptographic value. The
postcondition of create hmac item simply states that (if no collision occurs),
given a key item and some other item, the returned item is the signed hash of
that other item (i.e. hmac item(principal,count,some(pay))).

Figure 3 gives an overview of the small verified protocol suite we created
using the Dolev-Yao style API. The most interesting element here is the high-
level API implementation. As one can see the ALOC to SLOC ratio is quite high
compared to the other protocol implementations. This is the case because a lot
of complexity (including the verified code that needs to be manually reviewed)
is hidden behind the API. The metrics for the other protocols are comparable
with the ones from Fig. 2 and although also the ALOC to SLOC ratios are
comparable, the annotations themselves are significantly more straightforward.

5 Conclusions and Future Work

In this paper, we described an extended symbolic model of cryptography. This
extended model was the result of our efforts to give sensible and meaningful
contracts to the cryptographic primitives of an existing cryptographic library
(i.e. PolarSSL). We showed the immediate usability of these contract by writing
verified protocols using the annotated cryptographic primitives.

Since the attacker of our extended symbolic model can look at the individ-
ual bytes of cryptographic values generated by the primitives, we argued that
our attacker is more powerful than in a standard symbolic model. However, our
embedding of this extended symbolic model in the VeriFast annotation language,
requires a manual code review for verified protocols. For this reason, we created
a verified Dolev-Yao style library on top of the low-level cryptographic primi-
tives. This library does not only illustrate the usability of our contracts for the
cryptographic primitives of PolarSSL, it also removes the burden of performing
a manual code review from the user since the library itself contains the code
that needs to be reviewed. At this time, we did not create a formal model of our
extended symbolic model of cryptography and prove its soundness. This is left
for future work.

Verifying Protocol Implementations 67

Acknowledgements. The research leading to these results has received funding from
the European Union Seventh Framework Programme [FP7/2007–2013] under grant
agreement n317753, and more precisely from the EU FP7 project STANCE (a Source
code analysis Toolbox for software security AssuraNCE).

This research is also partially funded by the Research Fund KU Leuven, and by
the EU FP7 project NESSoS. With the financial support from the Prevention of and
Fight against Crime Programme of the European Union (B-CCENTRE).

References

1. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Certified computer-aided
cryptography: efficient provably secure machine code from high-level implementa-
tions. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2013, pp. 1217–1230, ACM, New York (2013)

2. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

3. Bhargavan, K., Fournet, C., Corin, R., Zălinescu, E.: Verified cryptographic imple-
mentations for TLS. ACM Trans. Inf. Syst. Secur. 15(1), 3:1–3:32 (2012)

4. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security proto-
col code by typing. In: 37th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2010), pp. 445–456 (2010)

5. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14), pp. 82–96.
IEEE Computer Society Press (2001)

6. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: IEEE Symposium on Security and Privacy, pp. 140–154 (2006)

7. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

8. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commun.
ACM 24(8), 533–536 (1981)

9. Dolev, D., Yao, A.C.: On the security of public key protocols. Technical report,
Stanford, CA, USA (1981)

10. Dupressoir, F., Gordon, A.D., Jurjens, J., Naumann, D.A.: Guiding a general-
purpose C verifier to prove cryptographic protocols. In: Proceedings of the 2011
IEEE 24th Computer Security Foundations Symposium, CSF 2011, pp. 3–17. IEEE
Computer Society Washington, DC (2011)

11. Fournet, C., Kohlweiss, M., Strub, P.-Y.: Modular code-based cryptographic veri-
fication. In: Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security, CCS 2011, pp. 341–350. ACM, New York (2011)

12. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011)

13. Küsters, R., Truderung, T., Graf, J.: A framework for the cryptographic verification
of java-like programs. In: IEEE Computer Security Foundations Symposium, CSF
2012, pp. 198–212. IEEE Computer Society (2012)

68 G. Vanspauwen and B. Jacobs

14. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995)

15. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

16. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J.
Comput. Secur. 6(1–2), 85–128 (1998)

Specification and Verification of Atomic
Operations in GPGPU Programs

Afshin Amighi, Saeed Darabi (B), Stefan Blom, and Marieke Huisman

University of Twente, Enschede, The Netherlands
{a.amighi,s.darabi,s.blom,m.huisman}@utwente.nl

Abstract. We propose a specification and verification technique based
on separation logic to reason about data race freedom and functional cor-
rectness of GPU kernels that use atomic operations as synchronisation
mechanism. Our approach exploits the notion of resource invariant from
Concurrent Separation Logic (CSL) to capture the behaviour of atomic
operations. However, because of the different memory levels in the GPU
architecture, we adapt this notion of resource invariant to these memory
levels, i.e., group resource invariants capture the behaviour of atomic
operations that access locations in local memory, while kernel resource
invariants capture the behaviour of atomic operations that access loca-
tions in global memory. We show soundness of our approach and we
provide tool support that enables us to verify kernels from standard
benchmarks suites.

1 Introduction

General purpose GPU (GPGPU) programming enables programmers to use the
power of massively parallel accelerator devices to solve computationally intensive
problems with a significant speed up. However, massive parallelism also makes
programming more error prone: data races might be difficult to detect, and
moreover ensuring functional correctness becomes a challenge. To address this
issue, different verification techniques for GPGPU programs have been devel-
oped [3,5], based on separation logic and abstraction, respectively. However,
these techniques do not support reasoning about functional properties of kernels
using atomic operations. This paper discusses how the separation logic approach
to reason about GPGPU programs is extended to reason about programs that
use atomics for synchronisation.

GPU programming is based on the notion of kernels. A kernel consists of a
large number (typically hundreds) of parallel threads that all execute the same
instructions. The GPU execution model is an extension of the Single Instruction
Multiple Data (SIMD) model1, in which each thread executes the same instruc-
tion but on different data. For efficiency reasons, threads are grouped into work
groups. Each work group has its own local memory, shared among all threads in
1 To be precise, the GPU execution model is Single Instruction Multiple Thread

(SIMT), which extends SIMD with more flexibility in the control flow.

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 69–83, 2015.
DOI: 10.1007/978-3-319-22969-0 5

70 A. Amighi et al.

the work group. Further, the kernel has a global memory, which is shared among
all threads on the GPU device. Threads within a work group usually synchronise
by barriers. Atomic operations provide asynchronous updates on shared memory
locations (either in global or local memory) and are the only mechanism to sup-
port inter-group synchronisation in GPU programs. Moreover, atomic operations
are also sometimes used for synchronisation within a work group, because they
enable more flexible parallel behaviours than using barriers alone. For example,
the Parallel add example in Sect. 3 and the Histogram example in the Parboil
benchmark [15] benefit from the flexible parallel behaviour of atomic operations.

In earlier work, we used permission-based separation logic to reason about
data race freedom and functional correctness of GPGPU kernels that use barriers
as the only synchronisation construct [5]. This paper extends this logic to reason
about kernels that also use atomic operations. The main idea of our work is to
adapt the notion of resource invariants, as originally introduced for Concurrent
Separation Logic (CSL) by O’Hearn, to reason about the behaviour of atomic
operations w.r.t. the GPU memory hierarchy.

Resource invariants capture the properties of shared memory locations. These
properties only may be violated by a thread that is in the critical section, and
thus has exclusive access to the shared memory locations. Before leaving the
critical section, the thread has to ensure that the resource invariants are re-
established. Because of the GPU memory hierarchy, shared memory locations
can be both in local memory (shared between threads in a single work group)
and in global memory (shared between all threads). Therefore, in our approach
we use group resource invariants that capture the properties for local shared
memory locations, and kernel resource invariants to capture the properties for
global shared memory locations. For each kernel, there always is a single kernel
resource invariant, while for each work group there is a group resource invariant.
However, by parametrising the group resource invariant with the group identifier
gid, this can be specified with a single formula.

Note that we use the term shared memory locations instead of atomic vari-
ables, because the atomicity of a variable may change between different barrier
intervals. Therefore, resource invariants should be re-established when a thread
executes either an atomic operation or a barrier.

To conclude, the main contributions of this paper are:

– a specification and verification technique that adapts the notion of CSL
resource invariants to the GPU memory model and enables us to reason about
data race freedom and functional correctness of GPGPU kernels containing
atomic operations;

– a soundness proof of our approach; and
– a demonstration of the usability of our approach by developing automated

tool support for it2.

The remainder of this paper is organised as follows. After some background
information, Sect. 3 explains how the behaviour of GPGPU kernels with atomic
2 Our implementation supports the OpenCL programming language, but can easily be

extended to other GPGPU programming languages such as CUDA and C++ AMP.

Specification and Verification of Atomic Operations in GPGPU Programs 71

operations is specified. Then, Sect. 4 formalizes our approach, while we conclude
with related and future work in Sects. 5 and 6.

2 Background

This section first gives a short overview of Concurrent Separation Logic, and
then discusses how we use it to reason about GPGPU programs with barriers.

2.1 Atomic Operations in Concurrent Separation Logic

Separation Logic (SL) [13] is an extension of Hoare logic, originally developed to
reason about imperative pointer-manipulating data structures. The basic predi-
cate in classical SL is the points-to predicate x �→ v, meaning x points to a loca-
tion on the heap, and this location contains the value v. These basic points-to
predicates can be combined using the separating conjunction �, which implicitly
asserts disjointness of the locations: φ � ψ holds for a heap h if formulas φ and
ψ hold for disjoint subheaps of h.

O’Hearn introduced CSL as an extension of SL to reason about concurrent
programs [12]. CSL allows one to verify threads in isolation, provided they do
not interfere and operate on disjoint parts of the heap. In order to reason about
programs with simultaneous reads, CSL has been extended with the notion of
fractional permissions to denote the right to either read from or write to a
location [6,7]. The formula Perm(e, π) indicates that a thread holds an access
right π to the heap location e, where any fraction of π in the interval (0, 1) denotes
a read permission and 1 denotes a write permission. Write permissions can be
split into read permissions, while multiple read permissions can be combined into
a write permission. For example, Perm(x, 1/2) � Perm(y, 1/2) indicates that a
thread holds read permissions to access locations x and y, and these permissions
are disjoint. If a thread holds Perm(x, 1/2) � Perm(x, 1/2), this can be merged
into a write permission Perm(x, 1).

Soundness of the logic guarantees that at most one thread at the time can
hold a write permission, while multiple threads can simultaneously hold a read
permission to a location. Thus, any verified program is free of data races.

When locations on the heap are shared, CSL expresses properties about this
shared state as a resource invariant. Typically, a resource invariant captures the
access permission to the shared location, but additionally it can also express
a functional requirement on it. This leads to the following general judgement
in CSL: I � {P} S {Q}, which expresses that (1) shared state is specified
with resource invariant I, (2) if the execution of S terminates, it turns a state
satisfying precondition P into a state satisfying postcondition Q, and (3) I must
be true before the execution, throughout the execution and after the execution.

One safe way to access shared locations is by using atomic operations, written
atomic{S}, which means that body S is executed in one atomic step. To reason
about atomic operations, CSL uses the following proof rule [16]:

emp � {I � P} S {I � Q}
I � {P} atomic{S} {Q} (1)

72 A. Amighi et al.

/∗@ requires Perm(a[gtid],1) ∗∗ Perm(b[gtid],1);
2 ensures Perm(b[gtid],1) ∗∗ b[gtid] = (gtid+1) % gsize; @∗/

kernel void rotate(global int a, global int b){
4 a[gtid]=gtid;

barrier(global){
6 /∗@ requires a[gtid]=gtid;

ensures Perm(a[(gtid+1) % gsize],1/2) ∗∗ Perm(b[gtid],1);
8 ensures a[(gtid+1) % gsize]=(gtid+1) % gsize; @∗/

}
10 b[gtid]=a[(gtid+1) % gsize];

}
Listing 1. An example of a kernel with specifications

where emp is a predicate expressing that there is not any shared location in the
heap, I is the resource invariant, P is a precondition that holds for the executing
thread’s local state before the atomic operation, Q is a postcondition that holds
for the local state of the executing thread after the atomic operation, and S
is the body of the atomic operation accessing the shared state expressed by I.
This rule captures that a thread executing the body of an atomic operation
obtains the associated resource invariant, which provides access to the shared
state. Moreover, it may violate the resource invariant during the execution of
S, but it has to re-establish the resource invariant before finishing the atomic
operation. Section 3 explains how this CSL rule is adapted for GPU programs.

2.2 Reasoning about GPGPU Programs

In earlier work, we used permission-based separation logic to reason about GPU
kernels with barriers [5]. Kernels, work groups, threads, and barriers are specified
and verified modularly w.r.t. their specifications.

We illustrate the approach using the example in Listing 1, which contains a
kernel program annotated with a thread specification, plus a barrier specification
for each barrier3. The specifications use the keywords gtid to denote the global
thread identifier, and gsize to denote the number of threads in each work group,
respectively. A thread specification specifies the permissions a thread should
hold before (keyword requires) and after (keywords ensures) execution, together
with the thread’s functional behaviour. In the example, write permission to
position gtid of both array a and b is required and it is ensured that position gtid
of array b can be written and contains (gtid+1) % gsize. To illustrate the use of
a barrier, the kernel is implemented in a non-standard way: first gtid is assigned
to a[gtid] and then access to the array is rotated by synchronisation on a barrier,
after which the thread reads a[(gtid+1) % gsize]. This rotation is specified with a
barrier specification, which specifies (1) how permissions are redistributed over

3 In our specification language we use ** for star conjunction because of the syntactic
overlap with multiplication.

Specification and Verification of Atomic Operations in GPGPU Programs 73

the threads in the work group, and (2) the functional pre- and postconditions
that must hold before and after execution of the barrier.

There are two ways to specify the redistribution of permissions at a barrier
in a work group. First, one can choose to redistribute all permissions available
to the work group, assuming that each thread loses all permissions at a barrier.
Second, one can force the user to explicitly specify which permissions are lost.
Our original paper and the example use the first approach, which is efficient for
proving data race freedom. In the rest of this paper, we use the second approach,
which is more convenient for functional properties, as it ensures all functional
properties are properly framed [5].

Given a thread specification which is parametrized by gtid, the group specifi-
cation and kernel specification are defined as the universal separating conjunction
of the thread specification over all threads in the same work group and over all
threads in the GPU, respectively. Thus, group and kernel specifications are auto-
matically derived from the thread specifications, and do not have to be explicitly
given. Group specifications capture the resources in global memory that can be
used by the threads in a particular work group, including its pre- and postcon-
dition. Notice that locations defined in local memory are only valid inside the
work group and thus the work group always holds write permissions for these
locations. In the kernel specification, resources that are required from the host
program along with the necessary preconditions and provided postconditions
are specified. An invocation of a kernel by a host program is correct if the host
program transfers the necessary resources and fulfils the kernel preconditions.

3 Specification

This section discusses two examples that illustrate our approach to the specifi-
cation of kernels with atomic operations. The first example uses a single atomic
add; the second example illustrates how we reason about kernels which use both
barriers and atomic operations for synchronisation, and where the atomicity of
a variable may change in different barrier intervals.

3.1 Specification of a Kernel with Parallel Addition

Listing 2 contains an annotated parallel add kernel, where ltid indicates the local
thread identifier. For simplicity, in this first example we assume that we have a
single work group4, later we extend our technique also to multiple work groups.
We first explain the permission specifications, followed by an explanation of the
functional properties (the highlighted annotations).

In Listing 2, each thread atomically adds its contribution (stored in val-
ues[ltid]) to the shared variable x. The requires and ensures clauses express
a single thread’s pre- and postconditions. The precondition specifies that each
thread needs to have read permission on its corresponding index of values. Addi-
tionally, we specify a group resource invariant for the local shared memory
4 The number of work groups is determined in the host code before launching the

kernel.

74 A. Amighi et al.

/∗@ given int cont[gsize];
2 group invariant Perm(x,1)∗∗Perm(cont[*],1/2)∗∗x==(\sum cont[*]);

requires Perm(values[ltid],1/2)∗∗Perm(cont[ltid],1/2)∗∗cont[ltid]==0;
4 ensures Perm(values[ltid],1/2)∗∗Perm(cont[ltid],1/2)∗∗cont[ltid]==values[ltid];@∗/

kernel void gpadd(local int x, local int values){
6 atomic add(x,values[ltid]) /∗@ then { cont[ltid]=values[ltid]; } @∗/; }

Listing 2. Specification of parallel add in a work group.

variable x, which expresses that the thread executing the atomic add opera-
tion has exclusive write access to x. With this specification, it is straightforward
to prove that the program is free of data races, as it is guaranteed that there
is only one thread executing the atomic operation and exclusively accessing the
shared variable.

To reason about functional properties, the specification expresses the accu-
mulative contributions of the threads on the shared variable. To track these
contributions, we use an array cont[], added as a ghost parameter (line 1) to the
kernel5. The idea is that the contribution of each thread (cont[ltid]) is 0 before

it executes and values[ltid] after it finishes, while the invariant
gsize−1∑

i=0

cont[i] = x

is maintained in order to prove that the kernel computes the sum of the val-
ues. To make this work, the thread’s precondition (line 3) states that each tread
obtains a read permission on cont[ltid], in order to be able to use cont in the
specifications. Each thread has to track its contribution towards the total in x
in its own location in the cont array. This is done during the atomic operation
by injecting an assignment statement as ghost code (specified as a then clause,
see line 6). The thread executing atomic−add, first adds values[ltid] to x, and
then executes the injected ghost code, i.e. cont[ltid]=values[ltid]. To achieve
this, the group resource invariant is extended with a half permission on all ele-
ments of cont, written Perm(cont[*],1/2)6. Thus, when thread ltid at the begin-
ning of the atomic body obtains the resource invariants, it has twice a read
permission Perm(cont[ltid],1/2), which can be combined into a single write per-
mission Perm(cont[ltid],1).

3.2 Parallel Addition with Multiple Work Groups

As a next example, we discuss the specification of a kernel with multiple work
groups, which employs both barriers and atomic operations for synchronisation.
This is a common pattern to avoid making global memory access a bottleneck:
first all threads in a work group compute an intermediate result in local memory,
then the intermediate result is combined with the global result in global memory.
5 A ghost variable (a.k.a. as auxiliary variable) is a specification-only variable, which

does not change the control flow of the program and is used only for verification.
6 This is syntactic sugar for universal quantification of the permissions over all the

indices of cont[].

Specification and Verification of Atomic Operations in GPGPU Programs 75

/∗@ given global int sums[ksize]={0}; given local int cont[gsize]={0}, region=0;
2 kernel invariant Perm(r,1)∗∗Perm(sums[*],1/2)∗∗r==(\sum sums[*]);

group invariant Perm(region,1/(gsize+1))∗∗Perm(x,region==0?1:1/2)∗∗
4 Perm(cont[*],1/2)∗∗x==(\sum cont[*]);

requires Perm(region,1/(gsize+1))∗∗Perm(values[gtid],1/2);
6 requires Perm(cont[ltid],1/2)∗∗cont[ltid]==0;

requires ltid==0 ==> Perm(sums[gid],1/2)**sums[gid]==0;
8 ensures Perm(region,1/(gsize+1))∗∗Perm(values[gtid],1/2);

ensures Perm(cont[ltid],1/4)∗∗cont[ltid]==values[gtid];
10 ensures ltid==0 ==> Perm(cont[*],1/4)**Perm(sums[gid],1/2);

ensures ltid==0 ==> sums[gid]==(\sum cont[*]); @∗/
12 kernel void KParallelAdd(local int x, global int values, global int r){

atomic add(x,values[gtid]) /∗@ then { cont[ltid]=values[gtid]; } @∗/;
14 barrier(local)/∗@

requires Perm(region,1/(gsize+1))∗∗region==0}∗∗Perm(cont[ltid],1/4);
16 ensures Perm(region,1/(gsize+1))∗∗region==1;

ensures ltid==0 ==> Perm(cont[*],1/4)**x==(\sum cont[*]);
18 { region=1; } @∗/;

if(ltid==0)
20 atomic add(r,x)/∗@ then { sums[gid]=x; } @∗/; }

Listing 3. Specification of global parallel add.

It is used, for example, in the parallel implementation of BFS in the Parboil
benchmark [15]. The kernel in Listing 3 is an extension of the previous example,
using multiple work groups and a barrier, where ksize denotes the number of
work groups. The kernel is implemented by the following steps: (1) each thread
atomically adds its element of the global array values to its local accumulator, i.e.
a locally shared variable x; (2) all threads within a work group are synchronized
by a barrier (line 14); (3) after all threads have passed the barrier, one thread
per work group (here ltid= 0) adds the work group’s final value of x to a globally
shared variable r (line 20). Eventually, r contains the collective contributions
of all the threads in the kernel. Similar to the single work group example, to
track the contributions at each step, the kernel program uses ghost arrays cont
and sums, with all elements initialized with zero. We use cont to specify the
current value of the local variable x. Similarly, array sums is used to sum up
the total accumulated contributions of the work groups. Updating the local cont
is explained in the previous example. In a similar way, using the ghost code
at line 20, in each work group, the thread with ltid= 0 stores its contribution
(the final value of x) to the global sums[gid], i.e. the index corresponding to the
executing work group from the sums array.

In Listing 3, there are two invariants that are maintained:

1.
gsize−1∑

i=0

cont[i] = x for each work group; and

2.
ksize−1∑

i=0

sums[i] = r for the kernel.

76 A. Amighi et al.

After termination of work group gid, we use the group invariant to conclude
that:

sums[gid] =
gsize×gid+gsize−1∑

i=gsize×gid

values[i].

Hence after termination of all work groups we can prove that:

r =
ksize−1∑

i=0

sums[i] =
ksize−1∑

j=0

(j+1)×gsize−1∑

i=j×gsize

values[i]

Again, we first explain the permission specifications. The permission specifica-
tions for values are similar to the specifications in Listing 2. The barrier divides
the program into regions, and within a region the distribution of permissions
over the threads and the resource invariants does not change. Only when all
threads reach the barrier, permissions may be redistributed. This means in par-
ticular that a variable that is treated as a shared memory variable in one region,
may become unshared in a next region (or vice versa). Thus, resource invariants
often depend on the current barrier region. To keep track of the current barrier
region, we use a ghost variable region initialised at 0 (line 1). Each thread at
all times has read access to this region variable, and whenever all the threads
go through the barrier, the region is updated (see line 18). The group resource
invariant specifies that within region 0 (before the barrier instruction), variable
x is a shared variable in local memory, while in region 1 (after the barrier), x
is not shared any more. So, after the barrier x can be read concurrently by all
the threads within a work group. The kernel resource invariant specifies that r
is a shared variable in global memory, but that only threads with a local thread
identifier 0 are able to correctly update r, because only threads with ltid= 0
can construct a write permission of sums[gid] (see lines 2 and 7) to store the
contributions.

The barrier specification expresses that threads keep read access on region,
and that the value of region is updated to 1. Moreover, the specification asserts
that upon entering the barrier each thread gives up 1/4 permission to access
its contribution element, i.e. cont[ltid]. The barrier redistributes these permis-
sions to the thread with ltid= 0, which ensures that the thread with ltid= 0
has sufficient permissions to frame (\sum cont[*]) in the barrier postcondition.
Notice that when all threads have reached the barrier, all read accesses on region
together (including the group resource invariant) can be combined into a write
permission on region, thus enabling the update of this ghost variable within the
barrier.

Next, we discuss the functional property specifications. As we stated before,
two resource invariants specify the values of the shared variables: (1) the local
shared variable x must always express the accumulation of the contributions
of the threads executing the first atomic operation (line 4), and (2) the global
shared variable r must always express the accumulation of x’s final value in
each work, group which is stored in sums[gid] (line 2). To prove these invariants,
each thread must ensure that it correctly stores its contribution as specified in

Specification and Verification of Atomic Operations in GPGPU Programs 77

line 9. Moreover, the barrier must ensure that the thread with ltid= 0 knows the
final value of x as specified by x==(\sum cont[*]) in the barrier’s postcondition.
Finally, the thread with ltid= 0 must guarantee that the final value of x is stored
in sums[gid] (line 11). Therefore, the verifier can prove that the value of r is the
collective contributions of all the threads in the kernel.

4 Formalisation

The previous section illustrated how we specify permissions and functional prop-
erties of kernel programs in the presence of atomic operations and barriers on
several examples. This section defines the approach formally. Rather than pre-
senting this work on the full language, we will present it for a core kernel pro-
gramming language. In our verification technique barrier divergence is not taken
into consideration, i.e. if threads in a work group arrive at a barrier they all
arrive at the same one. This is a realistic assumption: according to the OpenCL
semantics, the behaviour of programs with barrier divergence is unspecified [11].
Moreover, in our earlier work [5], we proposed syntactical restrictions to deter-
mine whether a kernel programs is free of barrier divergence.

We first introduce syntax and semantics of our core kernel language, and also
formally define the formula language to write the specifications. Then we present
the Hoare logic rules used to reason about kernels with atomics, and we prove
soundness of the proof rules. Finally, we also briefly discuss tool implementation.

4.1 Syntax and Semantics

Programming Language. Fig. 1 presents the syntax for our kernel programming
language, which adapts the Kernel Programming Language (KPL) of [3] by
extending it with atomic operations and changing the barrier statement. For
simplicity, in this language, global and local memory are assumed to be single
shared arrays. There are two local memory access operations: read from location
e1 in local memory (v := rdloc(e1)), and write e2 to location e1 in local memory
(wrloc(e1, e2)). Similarly, read and write operations in global memory are repre-
sented by v := rdglob(e) and wrglob(e1, e2), respectively. W.r.t. to the original
KPL language, barriers are different. As in KPL, a barrier is labelled with a
flag F , which denotes which memories it synchronises. That is, it always acts
both as synchronisation between the threads in a work group and as a memory
fence. Depending on the flag, it is either for local or for global memory. Addi-
tionally, a barrier is labelled with an identifier bid , which is used to distinguish
different barrier instances, and it is extended with a block of statements to be
executed while all threads are in the barrier. Further, we add an atomic block
statement to the language, which a label to denote whether it accesses global or
local shared memory. The (annotated) OpenCL atomic operations can be easily
embedded into this atomic block statement.

The state of a kernel program consists of the state of the global memory, the
states of the local memories and the state of all the threads. On these states,
three steps are possible:

78 A. Amighi et al.

Fig. 1. Syntax for kernel programming language

1. A thread performs a non-atomic statement, see [5] for details of the opera-
tional semantics;

2. A thread atomically performs all statements in an atomic(F){S} block. Its
operational semantics is standard and can be defined easily, similar to [16].

3. All threads in the work group go through the barrier bid : barrier(F){S}. This
can only happen if all threads in a group are waiting to execute S. The effect
on the state is that all statements in S are performed, and all threads in
the group consider bid as performed. The operational semantics of a barrier
without a body is defined in [5]. However, its extension with a body is trivial
as the body is executed atomically.

Note that because barriers are labelled in KPL, any program that exhibits
barrier divergence will block forever and therefore does not terminate.

Formula Language. The specifications of KPL programs can be written using
the following formula language:
E ::= expressions (in first-order logic) over global constants, private variables,

rdloc(E), rdglob(E).

R ::= true | E | LPerm(E, p) | GPerm(E, p) | R1 � R2 | E ⇒ R | �
v:E(v)

R(v)

where we use LPerm(E, p) and GPerm(E, p) as explicitly different permission
statements to specify accesses to local and global memories, respectively. In
addition to the separating conjunction of two resource formulas, we also have
guarded resource formulas, and a universal separating conjunction quantifier,
which quantifies over the set of values v for which E(v) is true. Formalization of
the specification language and validity of the formulas are elaborated in [5].

The behaviour of kernels, work groups, threads, and barriers are defined as
(Kpre ,Kpost ,Krinv), (Gpre , Gpost , Grinv), (Tpre , Tpost), and (Bpre , Bpost), respec-
tively. Note that the user only has to annotate a kernel resource invariant Krinv ,
a group resource invariant Grinv parametrized by group id, a thread’s pre- and

Specification and Verification of Atomic Operations in GPGPU Programs 79

postcondition Tpre and Tpost and barrier’s pre- and postcondition Bbid
pre and Bbid

post .
We can derive the work groups’ pre- and postconditions, i.e. Gpre and Gpost , as
the separating conjunction of the pre- and postconditions of all threads belong-
ing to the work group and the work group’s resource invariant. Similarly, the
kernel’s pre- and postcondition, i.e. Kpre and Kpost , can be derived automat-
ically as the separating conjunction of the pre- and postconditions of all work
groups belonging to the kernel and the kernel’s resource invariant.

4.2 Verification

Since we derive the contracts for work groups and kernels automatically, we can
verify a kernel program by verifying all the threads belonging to a kernel. To
verify a thread T , with body Tbody , the following Hoare triple should be verified,
using the verification rules defined in Fig. 2:

Krinv , Grinv (gid) � {Tpre} Tbody {Tpost}
In addition to the standard rules for sequential compositional, conditionals,

loops, and weakening, Fig. 2 shows the most important Hoare logic rules to reason
about kernel threads. Rule [Assign] describes the updates to the thread’s private
memory. Rules [LRead] and [LWrite] specifies read and write of local memory7.
The rules for global memory are defined similarly, but for space reasons are not
presented here. The rules [LAtomic] for local and [GAtomic] for global
atomic operations are simple instances of the CSL rule using the group resource
invariant and kernel resource invariant, respectively.

The rule [LBarrier] reflects the functionality of the barrier with a flag
indicating that it synchronises local memory. It acts similar to the CSL rule
for the group resource invariant but at the same time it collects resources and
knowledge from all threads and redistributes these resources and knowledge. To
do so it requires that the block S can be executed given the resources provided
by the invariant (Grinv) and all threads in the work group (R(t)). Moreover, it
ensures that all resources are given back (E(t)) and the invariant is re-established
(Grinv). The rule also says that the effect of passing through a barrier on a
thread is to give up resources R(t) and get E(t) in return. Note that there
is a side condition that S, R and E can refer to local memory only, as this
would otherwise potentially create a data race: a local barrier functions as a
memory fence for local memory, thus it can exchange information about local
memory without any difficulties, but no order on global memory is guaranteed.
The [GBarrier] rule is symmetric in the use of local vs. global memory and
invariants. Note that the local/global flag affects memory only. Both uses of the
barrier synchronise the threads within a single work group.
7 L[e] denotes the value stored at location e in the local memory array, and substitution

is as usually defined for arrays, cf. [1]:

L[e][L[e1] := e2] = (e = e1)?e2 : L[e].

80 A. Amighi et al.

Fig. 2. Important Hoare logic rules

4.3 Soundness

Finally, we prove soundness of our verification technique.

Theorem 1. Given a barrier divergence free kernel, for which the thread level
Hoare triples are provably correct. Then every possible execution of the kernel
starting in a state that satisfies the kernel precondition is data race free and ends
in a state that satisfies the kernel postcondition.

Proof. We are given a finite trace of executions.
In this trace every thread tgid,ltid makes a finite number of steps Ngid,ltid,

where atomic blocks and barriers count as one step. Because a Hoare logic proof
of the thread exists, we can find formulas P 0

gid,ltid, · · · , P
Ngid,ltid

gid,ltid that are valid
before, between and after these steps, where P 0

gid,ltid is the precondition of the

thread and P
Ngid,ltid

gid,ltid is its postcondition.

Specification and Verification of Atomic Operations in GPGPU Programs 81

All states σ0, · · · , σN in the finite global trace of N steps can be described
by a function f that maps each global trace position to the positions in the local
threads. We do not know in which order the steps of the threads are executed,
but we know they all start in position 0, so f(0, gid, ltid) = 0. We also know
they end in their last state, so: f(N, gid, tid) = Ngid,ltid.

We claim that before and after every step in the trace the state satisfies a
specific separation logic formula.

∀i = 0, · · · , N : σi |= Krinv � �
gid∈[0..ks)

(
Grinv (gid) � �

ltid∈[0..gs)

P
f(i,gid,ltid)
gid,ltid

)

This claim is proven by induction on i. For i = 0 this is precisely the given
precondition. Assuming that the claim is correct for 0 ≤ i < N , then there are
three cases. If the step is a plain step or an atomic step, by correctness of the
standard CSL Hoare triple used to prove that step, the validity for i+1 follows.

The interesting case is the barrier step, in which all threads of a group are
involved. The Hoare triple for each thread is valid so each thread starts knowing
P (t) � R(t) and ends knowing P (t) � E(t). Because of the correctness of the
standard CSL Hoare triple for the barrier statement S, the change to the state
is from �

t∈[0..gs)

R(t) � Grinv (gid) to �
t∈[0..gs)

E(t) � Grinv (gid), which is precisely

the change in the formulas, so i + 1 is established.
The last statement is precisely the kernel postcondition which proves that

the end state satisfies the kernel postcondition.
A data race happens if: there is an access to a location l in step i1 by thread

t1, followed by an access to the same location in step i2 by thread t2, there
is no memory fence in between these accesses, and one of these accesses is a
write. Suppose that t1 used fraction p1 for the access and thread t2 used fraction
p2. Because one of the accesses is a write, p1 + p2 > 1. Because there is no
memory fence, that is no barrier or atomic in between, at time i1 thread t2 must
have already owned fraction p2. Thus at time i1, fraction p1 + p2 permission for
location l existed, which leads to a contradiction.

4.4 Tool Support

We have implemented tool support for the verification of kernels in the VerCors
tool set [4], whose stable version can be tried online8. The VerCors tool set
compiles programs that are specified in a complex specification language, such
as kernels, into much simpler specified programs and then verifies the latter to
prove that the former are correct. The main compilation target used for kernel
programs is Silver, the intermediate language of the Viper framework [9]. Silver
is a specification language designed along the lines of Implicit Dynamic Frames
[14]. We can then verify these Silver programs with the Silicon tool that is part
of the framework.
8 See http://www.utwente.nl/vercors/.

http://www.utwente.nl/vercors/

82 A. Amighi et al.

For the verification of kernels with atomics, two transformation passes have
been added to the VerCors tool set. The first pass transforms a kernel into an
intermediate form that uses the same barrier and atomic constructs as used in
the kernel programming language used in this section. The second pass replaces
those atomic and barrier constructs with code that mimics the conclusion of
the corresponding proof rules (see Fig. 2) and adds code that encodes that the
premisses of the rule is valid. The replacement ensures that when using a barrier
or atomic proof rule the program is correct. The added code verifies that the
rule is used correctly.

5 Related Work

There is very little related work in this area, as reasoning techniques for GPU
kernels are still relatively fresh. Bardsley et al. propose additional support in
GPUVerify for reasoning about GPU kernels where warps and atomic operations
are used for synchronisation [2]. In GPUVerify the user does not need to add
specifications manually, because the tool internally speculates and refines kernel
specifications [3]. However, GPUVerify is not able to reason about the functional
properties of kernels, it can only prove absence of data races. As future work,
we would like to investigate if GPUVerify could be used to infer some of the
annotations that we need.

Concerning verification of GPU kernels, we should also mention the work
of Li and Gopalakrishnan [10]. They verify CUDA programs by symbolically
encoding thread interleavings. They were the first to observe that to ensure
data race freedom it was sufficient to verify the interleavings of two arbitrary
threads. For each shared variable they use an array to keep track of read and
write accesses, and where in the code they occur. By analysing this array, they
detect possible data races. However, they do not consider atomic operations.

In the verification of (general) concurrent programs synchronized with barri-
ers, Hobor et al. [8] propose a sound extension of CSL for Pthreads-style barriers.
The simplicity of the OpenCL barriers makes our specification simpler. Addi-
tionally, we support barriers in the presence of atomic operations.

6 Conclusion

This paper presented an approach to specify and verify GPGPU programs in
the presence of atomic operations and barriers. The main characteristics of the
approach are that it can be used to prove both data race freedom and func-
tional correctness. To specify the shared memory accesses, the notion of resource
invariant from CSL is lifted to the GPU memory model, distinguishing between
kernel and group resource invariants. An appropriate Hoare logic is proposed
and proven sound to reason about GPGPU programs using atomic operations
and barriers. The approach is illustrated on some examples, and supported by
an implementation in the VerCors tool set.

Specification and Verification of Atomic Operations in GPGPU Programs 83

At the moment, the user still has to write quite a substantial amount of
annotations to make verification work. We will investigate how to make use of
inference techniques for program annotations to reduce this annotation burden.

Acknowledgement. This work is supported by the ERC 258405 VerCors project and
by the EU FP7 STREP 287767 project CARP.

References

1. Apt, K.R.: Ten years of Hoare’s logic: A survey − Part I. ACM Trans. Program.
Lang. Syst. 3, 431–483 (1981)

2. Bardsley, E., Donaldson, A.F.: Warps and atomics: Beyond barrier synchronization
in the verification of GPU kernels. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014.
LNCS, vol. 8430, pp. 230–245. Springer, Heidelberg (2014)

3. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: a ver-
ifier for GPU kernels. In: OOPSLA 2012, pp. 113–132. ACM (2012)

4. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Heidelberg (2014)

5. Blom, S., Huisman, M., Mihelčić, M.: Specification and verification of GPGPU
programs. Sci. Comput. Program. 95(3), 376–388 (2014)

6. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL 2005, pp. 259–270. ACM (2005)

7. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

8. Hobor, A., Gherghina, C.: Barriers in concurrent separation logic. In: Barthe, G.
(ed.) ESOP 2011. LNCS, vol. 6602, pp. 276–296. Springer, Heidelberg (2011)

9. Juhasz, U., Kassios, I.T., Müller, P., Novacek, M., Schwerhoff, M., Summers,
A.J.: Viper: A verification infrastructure for permission-based reasoning, Technical
report, ETH Zurich (2014)

10. Li, G., Gopalakrishnan, G.: Scalable SMT-based verification of GPU kernel func-
tions. In: SIGSOFT FSE 2010, pp. 187–196. ACM (2010)

11. NVIDIA Corporation, CUDA C programming guide, version 5.5 (2013)
12. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoret. Comput. Sci.

375, 271–307 (2007)
13. Reynolds, J.: Separation logic: A logic for shared mutable data structures. In: Logic

in Computer Science, pp. 55–74. IEEE Computer Society (2002)
14. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM Trans. Program.

Lang. Syst. 34(1), 2:1–2:58 (2012)
15. Stratton, J.A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang, L.-W., Anssari, N.,

Liu, G.D., Hwu, W.-M.: Parboil: A revised benchmark suite for scientific and com-
mercial throughput computing, Center for Reliable and High-Performance Com-
puting (2012)

16. Vafeiadis, V.: Concurrent separation logic and operational semantics. Electr. Notes
Theor. Comput. Sci. 276, 335–351 (2011)

History-Based Verification of Functional
Behaviour of Concurrent Programs

Stefan Blom, Marieke Huisman, and Marina Zaharieva-Stojanovski(B)

University of Twente, Enschede, The Netherlands
{s.blom,m.huisman,m.zaharieva}@utwente.nl

Abstract. We extend permission-based separation logic with a history-
based mechanism to simplify the verification of functional properties in
concurrent programs. This allows one to specify the local behaviour of
a method intuitively in terms of actions added to a local history; local
histories can be combined into global histories, and by resolving the
global histories, the reachable state properties can be determined.

1 Introduction

This paper is about verifying functional properties of concurrent programs.
Although crucially important, these properties are notoriously difficult to ver-
ify. A functional property describes what the program is actually expected to
do; thus it needs to be manually specified. Moreover, a practical verification
technique should be modular, which requires specifying the behaviour of every
component (method/thread). Sadly, this causes problems in a concurrent pro-
gram, because any external thread can change the behaviour of the thread that
we describe.

Example 1. We illustrate this problem on a version of the well-known Owicki-
Gries example [16], listed below: two threads are running in parallel, each of them
incrementing the value of a shared location x by 1. Access to x is protected by
the lock lx. If the value of x initially was 0, we would like to prove that at the
end, after both threads have finished their updates, the value of x equals 2.

void main(){
x=0;
incr() || incr();
print(x);

}

void incr(){
lx.lock()
x=x+1;
lx.unlock();
}

Ideally, we want to specify the code thinking only locally. Thus, a postcon-
dition Q of the method incr() would describe that the value of x is increased
by 1, i.e., Q : x == \old(x) + 1 . Unfortunately, this is not possible, because the
expression Q is not stable, i.e., it can be invalidated by other parallal threads.

It seems that the lock lx controls where and when we can express something
about the value of x. We could try to express the behaviour of x via an invariant
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 84–98, 2015.
DOI: 10.1007/978-3-319-22969-0 6

History-Based Verification of Functional Behaviour of Concurrent Programs 85

associated to the lock (as proposed in [16]). However, specifying such an invariant
is not easy, because it must be preserved by the behaviour of all threads.

Our Approach. In this paper we propose an alternative approach for reasoning
about behaviour of concurrent programs, based on using histories. A history is
a process algebra term used to trace the behaviour of a chosen set of shared
locations L. When the client has some initial knowledge about the values of the
locations in L, it initialises an empty global history over L. The global history can
be split into local histories and each split can be distributed to a different thread.
One can specify the local thread behaviour in terms of abstract actions that are
recorded in the local history. When threads join, local histories are merged into
a global history, from where the possible new values of the locations in L can be
derived. Therefore, a local history remembers what a single thread has done, and
allows us to postpone the reasoning about the current state until no thread uses
the history. The approach is based on a variant of permission-based separation
logic [1,4]. As a novelty, we extend the definition of the separating conjunction
(*) to allow splitting and merging histories.

Every action from the history is an instance of a predefined specification
action, which has a contract only and no body. For example, to specify the incr
method, we first specify an action a, describing the update of the location x
(see the code below). The behaviour of the method incr is then specified as an
extension of a local history over L with the action a(1). This local history is used
only by the current thread, which makes history-based specifications stable.

//@ requires true;
//@ ensures x == \old(x)+k;
action a(int k);

//@requires HL;
//@ensures HL· a(1),
void incr(){...};

We reason about the main() method as follows. Initially, the only knowledge
is x == 0. After execution of both parallel threads, a history HL = a(1) || a(1)
is obtained. We can then calculate all traces in HL and conclude that the value
of x is 2. Note that each trace is a sequence of actions, each with a pre- and
postcondition; thus this boils down to reasoning about a sequential program.

Using histories allows modular and intuitive specifications that are not more
complicated than sequential specifications. Reasoning about the history H
involves calculating thread interleavings. However, we do not consider this as
a weakness because: (i) the history abstracts away all unnecessary details and
makes the abstraction simpler than the original program; (ii) the history mech-
anism is integrated in a standard modular program logic, such that histories can
be employed to reason only about parts of the program where modular reasoning
is troublesome; and (iii) we allow the global history to be reinitialised (to be emp-
tied), and moreover, to be destroyed. Thus, the management of histories allows
keeping the abstract parts small, which makes reasoning more manageable.

Contributions. We propose a novel approach to specify and verify behaviour of
coarse-grained concurrent programs that allows intuitive modular specifications.

86 S. Blom et al.

We provide a formalisation of the approach on an object-oriented language with
dynamic thread creation, and integrate it in our VerCors tool set [2]. The tech-
nique has also been experimentally added on top of the VeriFast logic [18].

2 Background

Permission-Based Separation Logic. Our approach is based on permission-
based separation logic (PBSL) [1,15,17], a logic for reasoning about multi-
threaded programs. In PBSL every access to a shared location is associated
with a fractional permission π ∈ (0, 1]. To change a location x, a thread must
hold a write permission to x, i.e., π = 1; to read a location, any read permis-
sion i.e., π > 0, is sufficient. For every newly initialised shared location with a
value v, the current thread obtains a write permission, represented by the pred-
icate PointsTo(x, 1, v). Permissions may be split into fractions and distributed
among threads: PointsTo(x, π1 + π2, v)*-*PointsTo(x, π1, v)*PointsTo(x, π2, v)
(the operator *-* is read “splitting” (from left to right) and “merging” (from
right to left)). Soundness of the logic ensures that a verified program is data-
race free, because the sum of all threads’ permissions for a given location never
exceeds 1.

Locks. To reason about locks, we use the protocol described by Haack et al. [1].
Following the work in [15,16], for each lock they associate a resource invariant
inv , i.e., a predicate that describes the locations that the lock protects. A newly
created lock is still fresh and not ready to be acquired. The thread must first
execute a (specification-only) commit command that transfers the permissions
from the thread to the lock and changes the lock’s state to initialised. Any thread
then may acquire the initialised lock and obtain the resource invariant. Upon
release of the lock, the thread returns the resource invariant back to the lock.

The µCRL Language. To model histories, we use µCRL [9]. µCRL is powerful
and sufficiently expressive for our needs because it allows process algebra terms
parametrised by data. Basic primitives in the language are actions from the set
A, each of them representing an indivisible process behaviour. There are two
special actions: the deadlock action δ and the silent action τ (an action with no
behaviour). Processes {p1, p2, ...} are defined by combining actions and recursion
variables, which may also be parametrised. With ε we denote the empty process.

To compose actions, we have the following basic operators: the sequencing
composition (·); the alternative composition (+); the parallel composition (||);
the abstraction operator (τA′(p)), which renames all occurrences of actions from
the set A′ by τ ; the encapsulation operator (∂A′(p)), which disables unwanted
actions by replacing all occurrences of actions in A′ by δ; the sum operator∑

d:D P (d), which represents a possibly infinite choice over data of type D; and
the conditional operator p � b � q, which describes the behaviour of p if b is true
and the behaviour of q otherwise.

Parallel composition is defined as all possible interleavings between two
processes: p1 || p2 = (p1 � p2)+(p2 � p1)+(p1 | p2). The left merge (�) operator

History-Based Verification of Functional Behaviour of Concurrent Programs 87

class Counter {
2 int x;

//@pred inv = Perm(x,1,v);
4 Lock lx = new Lock/∗@<inv>@∗/();

6 //@accessible {x};
//@assignable {x};

8 //@requires k>0;
//@ensures x=\old(x)+k;

10 //@action inc(int k);

12 //@requires Hist(L,π,R,H) ∗ x ∈ L
//@ensures Hist(L,π,R,H·inc(1))

14 void incr(){
lx.lock();

16 /∗Hist(L,π,R,H)∗Perm(x,1,v)∗/
//@ action inc(1){

18 /∗Hist(L,π, R, H)∗APerm(x,1,v)∗/
x = x+1;

20 /∗Hist(L,π,R,H)∗APerm(x,1,v+1)∗/
//@ }

22 /∗Hist(L,π,R,H·inc(1))∗Perm(x,1,v+1)∗/
lx.unlock();

24 /∗Hist(L.π,R,H·inc(1))∗/
}

26 }

class Client{
28 Thread t1; Thread t2;

30 void main(){
Counter c = new Counter();

32 /∗PointsTo(c.x,1,0)∗/
t1 = new Thread(c);

34 t2 = new Thread(c);
/∗PointsTo(c.x,1,0)∗/

36 //@ crHist({c.x}, c.x==0);
/∗Perm(c.x,1,0)∗Hist({c.x},1,c.x==0,ε)∗/

38 //@ c.lock.commit();
/∗Hist({c.x},1,c.x==0,ε)∗/

40 t1.fork(); // t1 calls c.incr();
/∗Hist({c.x},1/2,c.x==0,ε)∗/

42 t2.fork(); // t2 calls c.incr();
/∗Hist({c.x},1/4,c.x==0,ε)∗/

44 t1.join();
/∗Hist({c.x},1/2,c.x==0, c.inc(1))∗/

46 t2.join();
/∗Hist(c.x,1,c.x==0, c.inc(1)||c.inc(1))∗/

48 //@ reinit({c.x}, c.x==2);
/∗Hist({c.x},1,c.x==2,ε)∗/

50 }
}

Listing 1. The Counter example

defines a parallel composition of two processes where the initial step is always
the first action of the left-hand operator, while with the communication merge
(|) operator, the first step is a communication between the first actions of each
process: a · p1 | b · p2 = a | b · (p1 || p2). The result of a communication between
two actions is defined by a function γ : A × A �→ A, i.e., a | b = γ(a, b).

3 Modular History-Based Reasoning

In this section we discuss informally our approach, illustrating it on a Java-like
variant of the Owicki-Gries example, see Listing 1.

The classical approach is to associate the lock lx with a resource invariant
inv = PointsTo(x, 1, v) [1,15]. However, the PointsTo predicate stores both
access permission to x and the information about the value of x. Therefore, in
the incr method, after releasing the lock, all information about the value of x is
lost, and describing the method’s behaviour in the postcondition is problematic.
Therefore, our approach aims to separate permissions to locations from their val-
ues (the functional properties). While a resource invariant stores permissions to
locations, the values of these locations are treated separately by using a history.

A history refers to a set of locations L (we call it a history over L) and is used
to record all updates made to any of the locations in L. The same location can not
appear in more than one existing history simultaneously. A history is represented
by a predicate Hist(L, 1, R,H), which contains the complete knowledge about
the values of the locations in L. The predicate R captures the knowledge about
these values in the initial state, i.e., the state when no action has been recorded

88 S. Blom et al.

in the history. Further, H is a µCRL process [9] that represents the history of
updates over locations in L. The second parameter in the Hist predicate is used
to make it a splittable predicate: a predicate Hist(L, π,R,H), where π < 1
contains only partial knowledge about the behaviour of L.

Creating a History. A history over L is created by the specification command
crhist(L,R), where R is a predicate over locations in L that holds in the current
state. This command requires a full PointsTo(l, 1, v) predicate for each loca-
tion l ∈ L, converts it to a new Perm(l, 1, v) predicate, and produces a history
predicate Hist(L, 1, R, ε). The Perm(l, 1, v) predicate has essentially the same
meaning as PointsTo(l, 1, v); however, it indicates that there also exists a his-
tory that refers to l, and any change of l must be recorded in this history. In
this way we prevent existence of more than one history over the same location.

In Listing 1, the resource invariant is defined using the Perm (instead of
PointsTo) predicate (line 3). Thus, the lock stores the permission to x only, while
independently there exists a history that records all updates to x. The client
creates a history over a single location x in line 36. After the permissions are
transferred to the lock (line 38), the client still keeps the full Hist predicate.
This guarantees that the value of x is stable even without holding any access
permission to x.

Splitting and Merging Histories. The history may be redistributed among
parallel threads by splitting the predicate Hist(L, π,R,H) into two predicates
Hist(L, π1, R,H1) and Hist(L, π2, R,H2), where H = H1 || H2 and π = π1 +π2.
The basic idea is to split H such that H1 = H and H2 = ε. However, if we later
merge the two histories, we should know at which point H was split. Concretely,
if we split H, and then one thread does an action a, and the other thread an
action b, after merging the histories, the result should be a history H · (a || b).

To ensure proper synchronisation of histories, we add synchronisation barri-
ers. That is, given two history predicates with histories H1 and H2, and actions
s1 and s2 such that γ(s1, s2) = τ , we allow one to extend the histories to H1 · s1
and H2 · s2. We call s1 and s2 synchronisation actions (we usually denote them
with s and s). When threads join (a thread can join at most once in the program),
all partial histories over the same set of locations L are merged.

In Listing 1 the Hist predicate is split when the client forks each thread
(lines 40 and 42). Thus both threads can record their changes in parallel in
their own partial history. Note that in this example there is no need of adding a
synchronisation barrier, because we split the history when it is still empty. We
illustrate synchronisation barriers later in Example 2.

Recording Actions. We extend the specification language with actions. An
action is defined by a name and parameters, and is equipped with a specification:
a pre- and postcondition; an accessible clause which defines the footprint of the
action, i.e., a set of locations that are allowed to be accessed within the action;
and an assignable clause, which specifies the locations allowed to be updated.

Listing 1 shows a definition of an action inc (lines 6–10), which represents an
increment of the location x by k. Note that the action contract is written in a pure

History-Based Verification of Functional Behaviour of Concurrent Programs 89

JML language [13], without the need to explicitly specify permissions, as they
are treated separately. In particular, action contracts are used to reason about
traces of histories, which (as discussed above) are actually sequential programs.

We can associate a program segment sc with a predefined action, by using
the specification command action a(v){sc}, see lines 17–21 in Listing 1. We call
sc an action segment. In the prestate of the action segment, a history predicate
Hist(L, π,R,H) is required, which captures the behaviour of a’s footprint loca-
tions, i.e., ∀l ∈ footprint(a).l ∈ L. At the end of the action segment, the action
is recorded in the history, see line 22 in Listing 1. For this, it is necessary that
the action segment implements the specification of the action a.

Restrictions within an Action. An action must be observed by the environmental
threads as if it is atomic. Thus, it is essential that within the action segment the
footprint locations of the action are stable, i.e., they can not be modified by any
other thread. To ensure this, we impose several restrictions on what is allowed in
the action segment (a formal definition is given in Sect. 4). In the prestate of the
action a, we require that the current thread has a positive permission to every
footprint location of a, which must not be released within the action segment.
Concretely, within an action segment, we allow only a specific subcategory of
commands. This excludes lock-related operations (acquiring, releasing or com-
mitting a lock), forking or joining threads. Nested actions are also forbidden in
order to prevent a thread to record the same action twice.

In this way, two actions may interleave only if they refer to disjoint sets of
locations, or if their common locations are only readable by both threads. It
might be possible to lift some of these restrictions later; however, this would
probably add extra complexity to the verification approach, while we have not
yet encountered examples where these restrictions become problematic.

Updates within an Action. If a history H over l exists, the access permission
to l is provided by the Perm(l, π, v) predicate (instead of PointsTo(l, π, v)).
Every update to l must then be part of an action that will be recorded in H.
Thus, the Perm(l, π, v) predicate is “valid” only within an action segment with a
footprint that refers to l. To this end, within the action segment, the Perm(l, π, v)
predicates are exchanged for predicates APerm(l, π, v). Thus, our logic allows a
thread to access a shared location when it holds an appropriate fraction of either
the PointsTo or the APerm predicate (see lines 17–21 in Listing 1).

Reinitialisation and Destroying. When a thread has the full Hist(L, 1, R,H)
predicate, it has complete knowledge of the values of the locations in L, and the
locations are then stable. The Hist predicate remembers a predicate R that was
true in the previous initial state σ of the history, while the history H stores the
abstract behaviour of the locations in L after the state σ. Thus, it is possible to
reinitialise the Hist predicate, i.e., reset the history to H = ε and update the R
to a new predicate R′ that holds over the current state. Thus, reasoning about
the continuation of the program will be done with an initial empty history.

The specification command reinit(L,R′) converts the Hist(L, 1, R,H) pred-
icate to a new Hist(L, 1, R′, ε). Reinitialisation is successful when the new prop-

90 S. Blom et al.

class ComplexCounter {
2

int data; int x; int y;
4

//@pred invx=Perm(x,1,v)∗Perm(data,1/2,u);
6 //@pred invy=Perm(y,1,v)∗Perm(data,1/2,u);

8 Lock lockx=new Lock/∗@<invx>@∗/();
Lock locky=new Lock/∗@<invy>@∗/();

10

/∗@ accessible {x, data};
12 @ assignable {x};

@ ensures x = \old(x) +data;
14 @ action addx();

16 @ accessible {y, data};
@ assignable {y};

18 @ ensures y = \old(y) +data;
@ action addy();

20

@ accessible {data};
22 @ assignable {data};

@ requires k>0;
24 @ ensures data = \old(data) +k;

@ action inc(int k);
26

@ accessible {data};
28 @ assignable {data};

@ ensures data = \old(data)+n;
30 @ proc p(int n) = inc(1).p(n−1)� n>0 �ε;

@∗/

32 //@ requires Hist(L, π,R,H) ∗ data,x ∈ L
//@ ensures Hist(L, π,R,H·addx())

34 void addX(){
lockx.lock();

36 //@ action addx(){
x=x+data;

38 //@ }
lockx.unlock();

40 }
//@ requires Hist(L, π,R,H) ∗ data,y ∈ L

42 //@ ensures Hist(L, π,R,H·addy())
void addY(){

44 locky.lock();
//@ action addy(){

46 y=y+data;
//@ }

48 locky.unlock();
}

50 //@ requires Hist(L, π,R,H) ∗ data ∈ L
//@ ensures Hist(L, π,R,H·p(n))

52 void incr(int n){
if (n>0){

54 lockx.lock(); locky.lock();
//@ action inc(1){

56 data++;
//@ }

58 lockx.unlock(); locky.unlock();
incr(n−1);

60 }
}

62 }

Listing 2. Complex Counter example

erty R′ can be proven to hold after the execution of any trace w from the set
of traces in H, i.e., ∀w ∈ Traces(w).{R}w{R′}. As stated above, each trace is a
sequence of specified actions and thus, can be seen as a sequential program.

In Listing 1, the history is reinitialised at line 48. The new specified predicate
over the location x is: x == 2. Notice that at this point, the client does not hold
any permission to access x. However, holding the full Hist predicate is enough
to reason about the current value of x.

Finally, the history may be destroyed using the dsthist(L) specification com-
mand. The Hist(L, 1, R, ε) predicate and the Perm(l, 1, v) predicates for all l ∈ L
are exchanged for the corresponding PointsTo(l, 1, v) predicates. Thus, this will
allow the client to create a history predicate over a different set of locations.

Example 2. We illustrate our approach on a more involved example, with recur-
sive method calls and a location protected by two different locks. The class
ComplexCounter (Listing 2) contains three fields: data, x and y. A lock lockx
protects write access to x and read access to data, while locky protects write
access to y and read access to data. Both locks together protect write access
to data.

Methods addX () and addY () increase respectively x and y by data, while
the recursive method incr(n) increments data by n. The synchronised code in
methods addX (), addY () and incr(n) is associated with a proper action. We
also specify a recursive process p, line 30. The contract of the incr(n) method

History-Based Verification of Functional Behaviour of Concurrent Programs 91

class Client{
2 ThreadX tx; ThreadY ty;

void main(){
4 ComplexCounter c=new ComplexCounter();

tx = new ThreadX(c); ty = new ThreadY(c);
6 /∗ PointsTo(c.data,1,0)∗PointsTo(c.x,1,0)∗PointsTo(c.y,1,0) ∗/

//@ crHist(L, R); //create history
8 /∗ Perm(c.data,1,0)∗Perm(c.x,1,0)∗Perm(c.y,1,0)}∗Hist(L,1,R,ε) ∗/

//@ c.lockx.commit();
10 //@ c.locky.commit();

/∗Hist(L,1,R,ε)∗/ //split history
12 /∗Hist(L,1/2,R,ε) ∗ Hist(L,1/2,R,ε)∗/

tx.fork(); // tx calls c.addx();
14 /∗Hist(L,1/2,R,ε)∗/

c.incr(10);
16 /∗Hist(L,1/2,R,p(10))∗/ //split history

/∗Hist(L,1/4,R,p(10)) ∗ Hist(L,1/4,R,p(10))∗/ //sync. barrier
18 /∗Hist(L,1/4,R,p(10)·s)) ∗ Hist(L,1/4,R,p(10)·s))∗/ //sync. barrier

ty.fork(); // ty calls c.addy();
20 /∗Hist(L,1/4,R,p(10)·s))∗/

c.incr(10);
22 /∗Hist(L,1/4,R,p(10)·s· p(10))∗/

tx.join(); ty.join(); //merge
24 /∗Hist(L,1,R,p(10)·s· p(10) || addx() || s·add(y)) ∗/

//@ reinit(L, 10<=c.x+c.y<=40);
26 /∗Hist(L,1,10<=c.x+c.y<=40,ε)∗/

}
28 } // L={c.data,c.x,c.y} R=c.data==0 ∧ c.x==0 ∧c.y==0

Listing 3. Complex Counter example - the Client class

shows that the contribution of the current thread is not an atomic action, but a
process that can be interleaved with other actions. The contract of the process
must correspond to the contracts of the actions it is composed of.

Listing 3 presents a Client class that creates a ComplexCounter object c and
shares it with two other parallel threads, t1 an t2. The client thread updates
c.data (lines 15, 21), while the threads t1 and t2 update the locations c.x and
c.y (lines 13, 19). We want to prove that in the Client , at the end after both
threads have terminated, the statement 10 ≤ c.x + c.y ≤ 40 holds.

The final values of c.x and c.y depend on the moment when c.data has been
updated. Thus, the history should trace the updates of all locations, c.x, c.y and
c.data. Each thread instantiates actions that refer to different sets of locations,
but all actions are recorded in the same history. When the threads terminate, the
client has the complete knowledge of all values, in the form of a process algebra
term H = p(10) · s ·p(10) || addx() || s ·add(y) (line 24). By reasoning about the
history H (see Sec. 4), we can prove that the property R′ = 10 ≤ c.x + c.y ≤ 40
holds in the current state, and reinitialise the history to Hist(L, 1, R′, ε).

When reasoning about the process H, its definition is expanded by applying
the axioms of process algebra and unfolding it until the result is a guarded
process. Then, all parallel compositions are replaced by defined processes. To
perform this, the user has to specify all parallel compositions that might occur
(for more details we refer to [3]).

92 S. Blom et al.

Fig. 1. Language syntax

Complex Data Structures. Our technique is also suitable to reason about more
complex coarse-grained data structures (e.g. lists, sets). Shortly, method con-
tracts of the data structure can be expressed in terms of histories over a ghost
field that represents the structure, while a class invariant [21] can ensure that
the ghost field corresponds to the actual structure. For an example of reasoning
about a concurrent Set data structure we refer to [3].

4 Formalisation

We formalise our approach on a Java-like language. Java uses fork(start) and
join primitives to allow modeling various scenarios that are not supported by
the simpler parallel operator ||. Our system is based on Haack’s formalisation of
PBSL [1] to reason about Java-like programs.

Language Syntax. Figure 1 combines the syntax of our programming and spec-
ification language. Apart from the special actions (δ, τ), we allow: synchronisa-
tion actions s ∈ SAct and update actions a(v) ∈ UAct. The definition of classes,
fields, methods etc. are standard. We often use l to denote a location (instead
of writing v.f), and L for set of locations. Thread classes are a special type of
classes with a single run method. In addition to the usual definition, values can
also be fractional permissions. These are represented symbolically: 1 denotes a
write permission, while split(π) denotes a fraction π

2 . The language also defines
actions (act), which only have a specification; and processes (proc), which have
a specification and a body, defined as a proper process expression.

To reason about histories, we use the predicates Hist and APerm, and the spec-
ification commands: crhist(L,R), dsthist(L), reinit(L,R) and action v.a(v){sc},

History-Based Verification of Functional Behaviour of Concurrent Programs 93

where sc is a special subcategory of commands allowed within an action segment.
This subcategory includes only calls to methods whose body has the form sc.
Commands t.fork() and t.join() are used to start or join a thread t respectively.
After forking a thread object t, the receiver obtains the Join(t) predicate, which
is a required condition for joining the thread t. This ensures that a single thread
is started and joined only once in the program.

To reason about locks, we use the predicates e.fresh() and e.initialized() and
the v.commit() command (as discussed in Sect. 2). Every object may be used
as a lock. Locations protected by the lock are specified by a predicate inv , with
a default definition inv = true. Each client object may optionally pass a new
definition for inv as a class parameter when creating the lock object.

Semantics of Histories. A histories H is a µCRL proces algebra term. The
set of actions is: A = UAct∪ SAct∪ {τ, δ}, while the communication function is:

γ(a, b) =

{
τ if a, b ∈ SAct define a synchronisation barrier
⊥ otherwise

The semantics of H is defined in terms of its traces. We use the standard single
step semantics H

a→ H ′ for H moving in one step to H ′, extended to:

H
ε⇒ H H

a⇒ H ′ ⇔ H
τ→∗ a→ τ→∗

H ′, for a �= τ H
aw⇒ H ′ ⇔ H

a⇒ w⇒ H ′

The global completed trace semantics of a term H is defined as:

Traces(H) = {w | ∂SAct(τFAct(H)) w⇒ ε},

where FAct is the set of finished actions: FAct = {a ∈ SAct | ∀b ∈ A.γ(a, b) =⊥}.

Operational Semantics. We model the state as: σ = Heap × ThreadPool ×
LockTable× InitHeap×HistMap. The first three components are standard, while
all history-related specification commands operate only over the last two.

– h ∈ Heap = ObjId ⇀ Type× (FieldId ⇀ Value) represents the shared memory,
where each object identifier is mapped to its type and its store, i.e., the values
of the object’s fields: We use Loc = ObjId × FieldId.

– tp ∈ ThreadPool = ThrId ⇀ Stack(Frame) ×Cmd defines all threads operating
on the heap. The local memory of each thread is a stack of frames, each
representing the local memory of one method call: f ∈ Frame = Var ⇀ Val.

– lt ∈ LockTable = ObjId ⇀ free � ThrId defines the status of all locks. Locks
can be free, or acquired by a thread:

– hi ∈ InitHeap = Loc ⇀ Val (initial heap), maps every location for which a
history exists to its value in the initial state of the history.

– hm ∈ HistMap = Set(Loc) ⇀ Action stores the existing histories: it maps a
set of locations L to a sequence of actions over L. An action is represented
by a tuple act = ActId × Val, composed of the action identifier and action
parameters. Two histories always refer to disjoint sets of locations: ∀L1, L2 ∈
dom(hm). L1∩L2 = ∅. This is ensured by the logic because creating a history
over l consumes the full PointsTo predicate.

94 S. Blom et al.

Fig. 2. Operational semantics, σ � σ′.

Figure 2 shows the operational semantics for the commands in our language.
For a thread pool tp = {t1, ...tn}, where ti = (si, ci), we write (t1, s1, c1).
(tn, sn, cn). A stack with a top frame f is denoted as f · s. With [[e]]hs we denote
the semantics of an expression e, given a heap h and a stack s. With nil we
denote an empty sequence, while A++S appends the element A to a sequence S.
The function defaultVal maps types to their default value, initStore maps objects
to their initial stores. With body(o.m) = cm(x0, x) we define that cm is the
body of the method m, where x0 is the method receiver, and x are the method
parameters.

The crhist(L,R) command copies the value of each l ∈ L from the Heap to
the InitHeap, and extends the domain of HistMap with the set L, while dsthist(L)
is the opposite: it removes the related entries from HistMap and InitHeap. The
command action o.a(v){sc} extends the related history with a new action A =
(o.a, v).Finally, with the reinit(L,R) command, the related history sequence in
HistMap is emptied, and the values of l ∈ L are copied from Heap to InitHeap.
There is no rule for the command v.commit(); operationally this is a no-op.

Resources. Our reasoning system is based on the concept of resources [1]. This
means that we do not reason directly over the global state, but over a partial
abstraction of the state, i.e., a resource. Intuitively, a resource describes how the
thread that we reason about views the program state.

A resource R is a tuple (h, hi,P,Ph,J ,L,F , I,H,A), where each compo-
nent abstracts part of the state: (i) h represents the (partial) heap, containing
only locations for which R has a positive permission; (ii) hi is the (partial) ini-
tial heap, contains only locations for which R has a positive history fraction;
(iii) P ∈ Loc �→ [0, 1] is a permission table that defines the permission that
R has for a given location; (iv) Ph ∈ Loc �→ [0, 1] is a history fraction table

History-Based Verification of Functional Behaviour of Concurrent Programs 95

Fig. 3. Semantics of formulas R = (h, hi,P,Ph,J ,L,F , I,H,A)

that for a location l defines the fraction owned by R for the history predicate
referring to l; (v) J ⊆ ObjId keeps the set of threads that can be joined; (vi)
L ∈ ObjId �→ Set(ObjId) abstracts the lock table, mapping each thread to the set
of locks that it holds; (vii) F ⊆ ObjId keeps a set of fresh locks; (viii) I ⊆ ObjId
keeps a set of initialised locks; ix) H: Set(Loc) �→ Action × bool abstracts the
history map, marking every action with a boolean flag to indicate whether it is
owned by R; and x) A ⊆ Loc stores locations referred by an action in progress.

Resources owned by different threads should be compatible, written R1#R2.
For example, R1#R2 ensures that the sum of permissions to the same location
in R1 and R2 does not exceed 1, or the same action from the history map is not
owned by both R1 and R2. When threads join, their associated resources are
joined into a resource R1*R2. For the definition of both # and * we refer to [3].

Semantics of Formulas. Figure 3 presents the semantics of formulas. With
R; s |= F we denote that the formula F is valid with respect to a resource
R and a stack s. The predicate Hist(L, π,R,H) is valid when: the resource R
contains at least a fraction π of the related history; R holds over the values
from the initial heap, and filter(H(o, f)) belongs to Traces(H). The function
filter(H(o, f)) returns the subsequence of the sequence H(o, f) with only those
actions owned by R, i.e., the actions marked with the flag true. The predicate
APerm(e.f, π, e′) states that R contains at least permission π for the location
e.f , and that there exists an action in progress that refers to e.f .

Proof Rules. Figure 4 presents the most relevant proof rules. We use �iFi to
abbreviate a separation conjunction over all formulas Fi. Rules [ReadH] and
[WriteH] state that accessing a location is allowed if an action is in progress,
while [Read] and [Write] can only be used when there is no history maintained for
the accessed location. The [Action] rule describes that if the action implementa-
tion satisfies the action’s contract, the action will be recorded in the history. The
premise in the [Reinit] rule requires that the Hoare triple {R}w{R′} holds for
every trace w ∈ Traces(H), where w is a sequential program. [SplitMergeHist]
and [Sync] define how history predicates can be exchanged for each other.

96 S. Blom et al.

Fig. 4. Selected set of proof rules

Soundness. We define correctness of our system (see [3] for the proof sketch):

Theorem 1. Let {F}c{G} be derivable, and let σ �� σ′ If R is a resource that
abstracts the program state σ and R, s |= F , then for any R′ such that abstracts
σ′, R′, s′ |= G.

Tool Support. We have integrated our technique in VerCors [2], a tool for ver-
ifiying concurrent programs written in languages such as Java and C annotated
with separation logic-based specifications. To verify programs with histories, the
tool checks: (i) whether each action segment satisfies the contract of the action;
(ii) whether every trace of a history H satisfies its contract (see the [Reinit] rule,
Fig. 4). For this step we use a linearisation-based technique [8] that requires
unfolding H only until it is in a guarded form from which (with the help of user
specification) the contract of H can be proved. We give more detail in [3].

5 Conclusions and Related Work

This paper extends permission-based separation logic with histories, i.e., a mech-
anism that allows one to reason about functional behaviour of coarse-grained
concurrent programs, while providing simple and intuitive method specifications.
We have added support for the approach to the VerCors tool set [2].

Related Work. Jacobs and Piessens extend the Owicki-Gries technique to allow
modular reasoning about functional properties [11]. Their logic allows one to
augment the client program with auxiliary code that is passed as an argument

History-Based Verification of Functional Behaviour of Concurrent Programs 97

to methods. Additionally, a concrete invariant property should be specified that
remains stable under the updates of all threads; however, choosing this invariant
is often difficult. Another similar approach are Concurrent Abstract Predicates
(CAP) [6], which extend separation logic with shared regions. A specification of a
shared region describes possible interference, in terms of actions and permissions
to actions. These permissions are given to client threads to allow them to execute
the predefined actions according to a hardcoded usage protocol. A more advanced
logic is the extension of this work to iCAP (Impredicative CAP) [19], where a
CAP may be parametrised by a protocol defined by the client. Compared to
these approaches, we believe that histories allow more natural specifications,
where there is no need of specifying complex invariants or protocols.

Strongly related to our work is the recently proposed prototype logic of Ley-
Wild and Nanevski [14], the Subjective Concurrent Separation Logic (SCSL).
They extend PBSL with the subjective separating conjunction operator, �, which
splits and merges a heap such that the contents of a given location may also be
split: l �→ a⊕b is equivalent to l �→ a� l �→ b. The user specifies a partial commu-
tative monoid (PCM), (U,⊕,0), with a commutative and associative operator
⊕ that combines the effect of two threads. To solve the Owicki-Gries example,
a PCM (N,+, 0) is chosen: local contributions are combined with the + oper-
ator. However, if we extend this example with a third parallel thread that for
example multiplies the shared variable by 2, we expect that the choice of the
PCM will become troublesome. With our approach, in a way we use a PCM
where contributions of threads are expressed via histories, and these threads
effects are combined by the process algebra operator ||. This makes our app-
roach easily applicable to various examples (including the one described above).
Moreover, our method is also suited to reason about programs with dynamic
thread creation.

Closely related to our approach is the work on linearisability [20], where lin-
earisation points roughly correspond to our action specifications. Using lineari-
sation points allows one to specify a concurrent method in the form of sequential
code, which is inlined in the client’s code (replacing the call to the concurrent
method). In a similar spirit, Elmas et al. [7] abstract away from reasoning about
fine-grained thread interleavings, by transforming a fine-grained program into a
corresponding coarse-grained program. The idea behind the code transformation
is that consecutive actions are merged to increase atomicity up to the desired
level. Recently, a more powerful form of linearisation has been proposed, where
multiple synchronisation commands can be abstracted into one single linearisa-
tion action [10]. It might be worth investigating if these ideas carry over to our
approach, by adding different synchronisation actions to the histories.

Recently, some promising parameterisable logics have been introduced [5,12]
to reason about multithreaded programs. The concepts that they introduce are
very close to our proof logic. Reusing such a framework will simplify the formal-
isation and justify soundness of our system, as well as show that the concept
of histories is applicable in other variations of separation logic. However, to the
best of our knowledge, in their current form, these frameworks are not directly
applicable to our language as they do not support dynamic thread creation.

98 S. Blom et al.

References

1. Amighi, A., Haack, C., Huisman, M., Hurlin, C.: Permission-based separation logic
for multithreaded Java programs (2014). CoRR abs/1411.0851

2. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Heidelberg (2014)

3. Blom, S.C.C., Huisman, M., Zaharieva-Stojanovski, M.: History-based verification
of functional behaviour of concurrent programs. Technical report 25866, Centre for
Telematics and Information Technology, University of Twente (2015)

4. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL, pp. 259–270. ACM (2005)

5. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL, pp. 287–300 (2013)

6. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 504–528. Springer, Heidelberg (2010)

7. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: POPL (2009)
8. Groote, J., Ponse, A., Usenko, Y.: Linearization in parallel pCRL. J. Logic Alge-

braic Program. 48(12), 39–70 (2001)
9. Groote, J.F., Reniers, M.A.: Algebraic process verification. In: Handbook of

Process Algebra, Chapter 17, pp. 1151–1208. Elsevier (2001)
10. Hemed, N., Rinetzky, N.: Brief announcement: contention-aware linearizability. In:

PODC 2014 (2014)
11. Jacobs, B., Piessens, F.: Expressive modular fine-grained concurrency specification.

In: POPL, pp. 271–282 (2011)
12. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,

D.: Iris: monoids and invariants as an orthogonal basis for concurrent reasoning.
In: POPL 2015 (2015)

13. Leavens, G., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D.R., Müller, P.,
Kiniry, J., Chalin, P.: JML Reference Manual, February 2007

14. Ley-Wild, R., Nanevski, A.: Subjective auxiliary state for coarse-grained concur-
rency. In: POPL (2013)

15. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comp. Sci.
375(1–3), 271–307 (2007)

16. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: an axiomatic
approach. Commun. ACM 19(5), 279–285 (1976)

17. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: 17th
IEEE Symposium on LICS, pp. 55–74. IEEE Computer Society (2002)

18. Smans, J., Jacobs, B., Piessens, F.: VeriFast for Java: a tutorial. In: Clarke, D.,
Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Programming. LNCS,
vol. 7850, pp. 407–442. Springer, Heidelberg (2013)

19. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg
(2014)

20. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg
(2010)

21. Zaharieva-Stojanovski, M., Huisman, M.: Verifying class invariants in concurrent
programs. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411,
pp. 230–245. Springer, Heidelberg (2014)

http://arxiv.org/abs/1411.0851

Investigating Instrumentation Techniques
for ESB Runtime Verification

Christian Colombo1(B), Gabriel Dimech2, and Adrian Francalanza1

1 Department of Computer Science, University of Malta, Msida, Malta
{christian.colombo,adrian.francalanza}@um.edu.mt

2 Ricston Ltd., Mosta, Malta
gabriel.dimech@ricston.com

Abstract. Enterprise Service Buses (ESBs) are highly-dynamic compo-
nent platforms that are hard to test for correctness because their con-
nected components may not necessarily be present prior to deployment.
Runtime Verification (RV) is a potential solution towards ascertaining
correctness of an ESB, by checking the ESB’s execution at runtime, and
detecting any deviations from the expected behaviour. A crucial aspect
impinging upon the feasibility of this verification approach is the runtime
overheads introduced, which may have adverse effects on the execution of
the ESB system being monitored. In turn, one factor that bears a major
effect on such overheads is the instrumentation mechanism adopted by
the RV setup. In this paper we identify three likely (but substantially
different) ESB instrumentation mechanisms, detail their implementation
over a widely-used ESB platform, assess them qualitatively, and empiri-
cally evaluate the runtime overheads introduced by these mechanisms.

1 Introduction

Enterprise Service Buses (ESBs). [4] are software platforms used to stream-
line the communication across various components within an enterprise, ranging
from legacy systems, locally housed databases, third-party off-the-shelf applica-
tions, to cloud services. They abstract away from complications associated with
differing communication protocols/data formats and component distributions,
by providing a message-oriented middleware that handles the necessary format
translations and message routing. This enables the enterprise administrator to
organise these components into a Service-Oriented Architecture (SOA) [15,17]
where one can focus on the enterprise application logic.

Despite their merits, component systems running on ESBs are still hard to
build correctly. ESBs are inherently dynamic so as to handle the changing needs
of an enterprise over an uninterrupted period of operation. For instance, new
components may be added at runtime, others may be disconnected or replaced, or
even duplicated so as to improve aspects such as throughput and fault-tolerance.

The research work disclosed in this publication is partially funded by the Master it!
Scholarship Scheme (Malta).

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 99–107, 2015.
DOI: 10.1007/978-3-319-22969-0 7

100 C. Colombo et al.

This dynamicity has a ripple effect on the internal workings of the resp. middle-
ware, whereby the destination of messages may need to be determined at run-
time. Moreover, ESB communication is intrinsically asynchronous so as to make
the architecture scalable; this means that one has also to contend with message
reordering, which introduces another layer of unpredictability. These aspects
substantially diminish the effectiveness of commonly used pre-deployment tech-
niques for ascertaining correctness, e.g., testing and static analysis.

Runtime Verification (RV). [11] is a technique that allows a system to be veri-
fied post-deployment : using software entities called monitors, it analyses system
runtime events and checks whether they adhere to (or violate) a predefined cor-
rectness specification. Since checks are performed at runtime, RV may potentially
use information that is not necessarily known before execution commences, such
as the components currently connected to the ESB, the resp. execution inter-
leaving of these (concurrent) components, and the order of messages received
(together with their resp. payloads). This allows the analysis to be more pre-
cise and tractable, thereby circumventing the limitations of the pre-deployment
verification techniques discussed above.

A determining criteria for whether such a verification technique is feasible in
practice is the level of runtime overheads induced by the RV setup, which should
be kept below some acceptable threshold. More specifically, the runtime checks
carried out by the monitors, together with the additional machinery required to
extract and report the system events of interest, has a computational burden on
the execution of the system being analysed in terms of the additional computa-
tional resources required; this typically results in performance degradation of the
system itself, once it starts competing with the RV setup over scarce resources.

Instrumentation — the mechanism by which the monitors are hooked on to the
system so as to extract events and analyse them — is a fundamental ingredient
of any RV setup, affecting aspects such as the observability of system events
and the maintainability of the setup. Importantly, instrumentation can usually
be introduced in a variety of ways, each carrying varying effects on the level of
overheads induced. The choice of an appropriate instrumentation strategy for
RV does not, however, depend solely on the induced overheads. In this paper,
we focus on the following instrumentation criteria:

Efficiency [16]. Instrumenting software naturally introduces an overhead in two
respects: the amount of extra resources used, and the extent to which this
impacts the user experience, e.g., longer response time. Although resource
consumption, by itself, may not lead directly to service degradation (namely
due to the availability of excess resources), it is generally still interesting to
measure resource consumption for the eventuality of an increase of load on
the system. In the context of RV, instrumentation efficiency affects directly
runtime overheads of the technique.

Level of abstraction [12,13]. Choosing the right level of abstraction dictates
how understandable and easy it is to express the instrumentation points of
interest. In general, lower abstraction levels give better access to the inter-
nals of the system, at the expense of usability and maintainability, since it

Instrumentation Techniques for ESB Runtime Verification 101

requires an understanding of how the system works at that level of abstrac-
tion. Since RV relies on the user to specify points of interest, selecting a level
of abstraction familiar to the user affects the usability of the RV framework.

Expressiveness [13] (flexibility in [12]). The instrumentation (join) points
available — sub-classified into structural (e.g., a method or a class variable)
and temporal (e.g., before the method is called or after the method returns)
— affect what can be observed. In the case of layered architectures such
as ESBs, this is (in part) linked to the abstraction level chosen, since the
points of interest available at a lower level may have no corresponding point
of interest at a higher level. Expressiveness may inhibit the possibility of
certain checks being carried out at runtime.

Coupling (combining/extending flexibility [16] and portability [12]).
The level of coupling refers to the bond between the weaving mechanism
and the system being weaved. This has implications on maintainability (e.g.,
whether the weaving mechanism can be changed without affecting the sys-
tem, or whether the system requires recompilation upon instrumentation
modification) and reusability (e.g., whether the same weaving approach can
be applied to other systems). In dynamic RV settings, this affects whether
correctness criteria may be feasibly altered at runtime.

Finding the right balance across these criteria is not an easy task as some of
them are in direct conflict. In the context of this work targetting RV setups for
ESBs, we assume that efficiency is given a higher priority than the other criteria
and it is down to the RV specifier to leverage a balance between the other
criteria so as to attain adequate levels of overhead. In Sect. 2 we present three
RV instrumentation alternatives for ESBs and evaluate their resp. advantages
wrt. the software instrumentation criteria above. Through a series of empirical
investigations over a typical ESB case study, in Sect. 3 we analyse the resp.
runtime overheads introduced by each of the instrumentation methods identified
in Sect. 2, and compare gains and losses wrt. the other instrumentation criteria.
Our findings may thus be used as a guiding principle by an RV instrumentor
when leveraging a feasible RV setup over any ESB setting.

2 Design

There are various ESB solutions used in industry [2,9,18,20] all sharing similar
architectures and core concepts [4]. Our study focusses on one of the open source
solutions, namely Mule ESB, with a considerable market share (i.e., 16 % [8]).
Mule ESB is organised over three layers: (1) a domain-specific language (DSL)
layer (configuration layer), which allows users to connect remote components via
(XML) configuration scripts [7]; (2) a Java source code layer which is compiled
from the XML specification, and thirdly, (3) a layer of protocols (e.g., HTTP)
over which components communicate. These layers present various options for
choosing an instrumentation strategy. In this study, we consider one strategy
per layer, and evaluate them against the backdrop of the criteria presented in
the Introduction.

102 C. Colombo et al.

Fig. 1. The three approaches of generating weavers

Fig. 2. Event interception through XML and Java weaving (left), proxy (right)

Configuration layer strategy. This is the level of abstraction a typical Mule user
is accustomed to, since the events exposed are the high level events expressed
within the application specification. These are then instrumented as shown in
Fig. 1(a) by a custom XML weaver, generating an ESB configuration which,
once compiled, intercepts relevant events and relays them to a dedicated verifier
component (see Fig. 2(left)). This strategy induces a high level of coupling: mod-
ifying the application configuration (which is expected to happen regularly, e.g.,
update the components connected or adding new features to the ESB) requires
re-weaving, i.e., the process shown in Fig. 1(a) would have to be repeated.

Source layer strategy. The Mule ESB is implemented in Java and this strategy
exposes all the internal workings of the ESB. As a result, it provides the highest
level of expressivity amongst the three approaches. The flip-side of this is that
the RV specifier requires knowledge of how the ESB is implemented at source
level, something a regular ESB user may not have. An important consideration is
that this instrumentation strategy is not affected by changes in the application
configuration (i.e., the instrumentation process depicted in Fig. 1(b) does not
involve XML configurations); rather, instrumentation is affected by software

Instrumentation Techniques for ESB Runtime Verification 103

Table 1. Comparing strategies: good (↑), bad (↓), and in-between (∼).

Abstraction Expressivity Low coupling

Configuration layer ∼ ∼ ↓
Source layer ↓ ↑ ∼
Protocol layer ↑ ↓ ↑

updates to the ESB implementation. However, ESB software updates occur less
frequently than application reconfigurations.

Protocol layer strategy. This strategy intercepts system events as communica-
tion messages on the bus, and thus sits at a higher abstraction level than the
other approaches1. Instrumentation can even be implemented as a proxy (see
Fig. 1(c)), leaving the application configuration or the ESB implementation unaf-
fected, thus requiring the lowest level of coupling. The price paid for this auton-
omy is expressivity: limiting interceptions to communication messages means
that internal states/events may not be visible from this abstraction level. From
the specifier’s perspective, identifying events of interest is similar to the config-
uration layer strategy where one specifies inbound/outbound endpoints whose
messages should be reported to the monitor. The only difference is that inter-
nal component events are not available from this external perspective. To avoid
programming the proxy manually, we chose to automatically generate a proxy
from the specified events (as shown in Fig. 1(c)) which is able to intercept and
relay relevant events at runtime (see Fig. 2(right)).

Table 1 summarises the characteristics of the three strategies thus far. Each
strategy has its strengths and weaknesses, reflecting the trade-offs discussed
above. Note that we do not give a verdict on the efficiency aspect of the resp.
instrumentation techniques at this stage; this is investigated in more depth in
the next section.

3 Performance Evaluation

The instrumentation strategies of Sect. 2 exhibit different characteristics that
affect the type of properties monitored and their resp. ease of monitoring. For
instance, certain properties cannot be monitored at certain levels of abstraction,
whereas a verification technology that is not Java-based would disadvantage
instrumentation strategies that are close to the Mule source implementation. In
what follows, we normalise these differences (e.g., by limiting our experiments to
properties referring to events expressible in any instrumentation strategy) and
focus on various quantitative measures for assessing the overheads introduced
by each strategy.
1 As the communication mechanism is itself layered, there are a number of levels of

abstraction possible. However, we choose to work at the most abstract level possible,
i.e., Mule messages.

104 C. Colombo et al.

Fig. 3. ESB performance metrics

3.1 Case Study

We employ a third-party, medium-sized ESB application2 that was not purposely
built with our experiments in mind, but for which various loads could be applied.
The application listens for changes made in the ‘Opportunities’ table within a
cloud-based service (Salesforce Customer Relationship Management (CRM) [6]).
Each time this table is updated, the ESB is notified and triggers a request to
retrieve the full details of the update via a web service request. Subsequently, the
ESB transforms the received data into canonical format and routes the message
based on its content: If the opportunity is ‘Won’, the message is routed to an
external Business Process Management (BPM) application, Activity Workflow
Engine, which will allow the account manager to approve the opportunity. If the
opportunity is ‘Lost’, then the BPM process is not invoked but persisted either
in database or file system depending on the postal address.

The expected (correct) behaviour described above was formalised in terms of
a finite state machine and we used RV to ensure that the ESB behaviour complies
2 https://github.com/jdeoliveira/esb-bpm-example.

https://github.com/jdeoliveira/esb-bpm-example

Instrumentation Techniques for ESB Runtime Verification 105

to the specification, e.g., ensuring that a ‘Won’ opportunity is followed by a
corresponding valid message. To this end, first, we used message timestamps to
determine the order in which messages were sent out. Secondly, we used message
contents to identify the kind of message and verify that it is handled accordingly.

3.2 Results

Runtime overheads introduced by RV tools are typically measured in terms of
the additional CPU and memory used by the resp. monitored system; see [1].
CPU and memory usage statistics for varying request loads are reported in the
top row of Fig. 3, for both the base-line (unmonitored system) and the resp.
instrumentation strategies presented in Sect. 2. Whilst CPU and memory usage
trends give insight into the performance of the system, we also calculated over-
heads in terms of message latency and message throughput as these are more
indicative of the service deterioration experienced by the end users in asynchro-
nous, message-based component systems. The results are reported in the bottom
row of Fig. 3.

Every measure attests that ESB Source Layer instrumentation yields the
lowest overheads. Whereas, in the case of CPU usage, these overheads seem
marginally better than the Protocol Layer instrumentation, a major discrep-
ancy can be observed between the Source Layer instrumentation and the other
strategies in the case of memory consumption; in fact, the memory consumed
by the former instrumentation is remarkably close to that of the baseline. These
results are also confirmed by the bottom graphs of Fig. 3: for both message
latency and throughput there is a pronounced discrepancy between Source Layer
instrumentation overheads and the overheads introduced by other instrumenta-
tion strategies. We also note, however, that in every case the Protocol Layer
instrumentation performs better than the Configuration Layer instrumentation.

Although Source Layer instrumentation yields the lowest overheads, it is by
no means a silver bullet. As summarised in Table 1, adequate installation requires
sufficient knowledge of the source-level ESB implementation; this level of exper-
tise cannot usually be expected from ESB administrators, who are mainly con-
cerned with operations at the business logic tier and thus mainly operate in terms
of XML configuration scripts. Source Layer instrumentation may also pose main-
tenance problems when new Mule implementation updates are installed, which
may affect the definition of the correctness specifications being monitored for
that rely on state variables and methods from the previous implementation; in
Table 1 this is summarised as medium coupling. In cases where the specifier does
not possess adequate knowledge of the ESB implementation internals, and the
properties to be monitored for can be suitably expressed, Protocol Layer instru-
mentation may constitute a good compromise amongst the various strategies.
Although the overheads introduced are higher, its low coupling also means that
the system instrumented with the resp. RV setup would be easier to maintain.

106 C. Colombo et al.

4 Conclusion

We have identified and studied three potential instrumentation strategies that
may be adopted when setting up an RV framework over ESBs. Our contributions
are:

– We provide a proof-of-concept implementation for each instrumentation
method over Mule [7], an industry-strength ESB distribution.

– We evaluate each instrumentation method wrt. a series of criteria typically
applied to evaluate software instrumentation (see Table 1).

– We asses the overheads introduced by each method, in terms of system per-
formance, Fig. 3.

Related Work: We are aware of two main bodies of work which apply runtime
verification to ESBs. Psiuk et al. [17] propose an RV framework for ESB systems
implemented using the JBI specification (e.g., ServiceMix and OpenESB) using
AspectJ as instrumentation, while Kruger et al. [10] apply runtime verification
to a Mule ESB using Spring AOP. In both cases, the focus was not perfor-
mance or the choice of the instrumentation approach but rather the design of
the architecture, from the specification of the properties, to monitor synthesis,
to instrumentation, and effective monitoring.

Future Work: Due to the inherent nature of ESBs, the instrumentation used
in our study is asynchronous [3,14,19], where the execution of the individual
ESB components generating the events is independent to that of the monitor.
Although asynchronous monitoring yields lower overheads than its synchronous
counterpart [3], it may result in late detections. It is worth investigating the
applicability of hybrid techniques such as [3,5] over ESBs so as to attain timely
detections. Independently to this, it is worthwhile verifying whether the results
obtained in our study can be replicated over (i) other ESB implementations
other than Mule (ii) other ESB case-studies.

References

1. 1st international competition of software for runtime verification (2014). http://
rv2014.imag.fr/monitoring-competition

2. Barnett, M., Schulte, W.: Spying on components: a runtime verification technique.
In: SAVCBS, pp. 7–13. OOPSLA (2001)

3. Cassar, I., Francalanza, A.: On synchronous and asynchronous monitor instrumen-
tation for actor-based systems. In: FOCLASA, vol. 175, pp. 54–68. EPTCS (2014)

4. Chappell, D.A.: Enterprise Service Bus: Theory in Practice. O’Reilly Media,
Sebastopol (2004)

5. Colombo, C., Pace, G.J.: Fast-forward runtime monitoring — an industrial case
study. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 214–228.
Springer, Heidelberg (2013)

6. Cusumano, M.: Cloud computing and SaaS as new computing platforms. Commun.
ACM 53(4), 27–29 (2010)

http://rv2014.imag.fr/monitoring-competition
http://rv2014.imag.fr/monitoring-competition

Instrumentation Techniques for ESB Runtime Verification 107

7. David D’Emic, J.D., Romero, V.: Mule in Action. Manning Publications Co.,
Greenwich (2014)

8. Gopal, J., more: Guide To Enterprise Integration (2014). http://www.dzone.com/
research/guide-to-enterprise-integration

9. Ibsen, C., Anstey, J.: Camel in Action. Manning Publications Co., Greenwich
(2010)

10. Krüger, I.H., Meisinger, M., Menarini, M.: Interaction-based runtime verification
for systems of systems integration. J. Log. Comput. 20(3), 725–742 (2010)

11. Leucker, M., Schallhart, C.: A brief account of runtime verification. JLAP 78(5),
293–303 (2009)

12. Mahrenholz, D., Spinczyk, O., Schroder-Preikschat, W.: Program instrumentation
for debugging and monitoring with AspectC++. In: ISORC, pp. 249–256 (2002)

13. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: Disl: a
domain-specific language for bytecode instrumentation. In: AOSD, pp. 239–250.
ACM (2012)

14. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP
runtime verification framework. STTT 4, 249–289 (2011)

15. Papazoglou, M., van den Heuvel, W.J.: Service oriented architectures: approaches,
technologies and research issues. VLDB 16(3), 389–415 (2007)

16. Popovici, A., Alonso, G., Gross, T.: Just-in-time aspects: efficient dynamic weaving
for Java. In: AOSD, pp. 100–109. ACM (2003)

17. Psiuk, M., Bujok, T., Zielinski, K.: Enterprise service bus monitoring framework
for SOA systems. IEEE Trans. Serv. Comput. 5(3), 450–466 (2012)

18. Rademakers, T., Dirksen, J.: Open-Source ESBs in Action. Manning Publications
Co., Greenwich (2008)

19. Roşu, G., Havelund, K.: Rewriting-based techniques for runtime verification. ASE
12(2), 151–197 (2005)

20. Siriwardena, P.: Enterprise Integration with WSO2 ESB. Packt Publishing Ltd.,
Birmingham (2013)

http://www.dzone.com/research/guide-to-enterprise-integration
http://www.dzone.com/research/guide-to-enterprise-integration

Towards Domain Refinement for UML/OCL
Bounded Verification

Robert Clarisó1(B), Carlos A. González2, and Jordi Cabot1,3

1 Universitat Oberta de Catalunya, Barcelona, Spain
rclariso@uoc.edu

2 AtlanMod team (Inria, Mines Nantes, LINA), Nantes, France
carlos.gonzalez@mines-nantes.fr

3 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. Correctness of UML class diagrams annotated with OCL
constraints can be checked using bounded verification, e.g. SAT solvers.
Bounded verification detects faults efficiently but, on the other hand,
the absence of faults does not guarantee a correct behavior outside the
bounded domain. Hence, choosing suitable bounds is a non-trivial process
as there is a trade-off between the verification time (faster for smaller
domains) and the confidence in the result (better for larger domains).
Unfortunately, existing tools provide little support in this choice.

This paper presents a technique that can be used to (i) automat-
ically infer verification bounds whenever possible, (ii) tighten a set of
bounds proposed by the user and (iii) guide the user in the bound selec-
tion process. This approach may increase the usability of UML/OCL
bounded verification tools and improve the efficiency of the verification
process.

1 Introduction

Software systems can be described at a high level of abstraction using graphical
diagrams such as UML class diagrams. In order to increase their precision and
expressiveness, these models can be annotated with textual constraints written
in the Object Constraint Language (OCL).

UML/OCL models may contain defects [12], e.g. inconsistent or redundant
integrity constraints. Checking the correctness of a UML/OCL model is a com-
plex problem, and in general, undecidable [4]. A popular strategy among ver-
ification tools for UML/OCL [10] is bounded verification: limiting the search
space to a finite domain, e.g. by defining a maximum population for each class
and restricting the potential values of attributes. This allows an efficient and
automatic analysis without compromising the expressiveness of the modeling
language. However, in return the results of the analysis are only meaningful
within the defined bounds.

Unfortunately, current tools provide little support in the choice of bounds.
Inadequate bounds will cause the analysis to miss defects (if they are too narrow)
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 108–114, 2015.
DOI: 10.1007/978-3-319-22969-0 8

Towards Domain Refinement for UML/OCL Bounded Verification 109

Fig. 1. Typical flow with a bounded verification tool and the role of bound tightening

Fig. 2. UML/OCL class diagram used as example

or to become too slow to be practical (if they are too wide). In this paper, we
present a technique that can assist users of UML/OCL bounded verification
tools to effectively set the boundaries of the search space. This approach starts
from a set of initial bounds and takes advantage of all implicit and explicit
constraints in the model to tighten those bounds as much as possible. To this
end, an efficient technique called interval constraint propagation, which does not
require solving the verification problem, is used to discard unproductive values
from domain bounds (see Fig. 1). We report the performance gains using the
USE model validator plug-in [11] as the bounded verification tool.

Example 1. Let us consider the class diagram from Fig. 2 describing the rela-
tionship between machines and parts. Graphical constraints such as associa-
tion end multiplicities define constraints on the valid populations for classes and
associations, e.g. there are 4 parts per machine. OCL invariants define additional
restrictions on these populations and the domains of attributes. For instance, the
invariants in the example require serial numbers to be unique (UniqueSerial)
and at least one machine of each type to be non-idle (Availability).

These constraints can be used to automatically infer bounds without any user
intervention, e.g. invariant Availability imposes a lower bound of 1 for classes
Cutter and Grinder, of 8 for class Part and 8 for association Uses. However, this
inference is most effective when used to refine partial bound information provided
by a designer. For instance, just by assuming a limit of 10 serial numbers, we

110 R. Clarisó et al.

Table 1. Definition of the CSP used to tighten verification bounds

Vars (V) Domains (D) Constraints (C)

A variable cl
for each class

Potential number of objects
in class cl, either [0,∞) or a
user-provided domain

– UML: generalizations, association end
multiplicities, class multiplicities
– OCL: all invariants
– Correctness property under analysis, e.g.
no redundant invariants

A variable as
for each asso-
ciation

Potential number of links in
association as ([0,∞) or a
user-provided domain

– UML: association end multiplicities
– OCL: invariants containing navigations
through association as

A variable at
for each at-
tribute

Potential values of attribute
at, e.g. [0, 1] for boolean,
(−∞,∞) for integers or a
user-provided domain

– OCL: invariants accessing the value of
attribute at

A variable
auxe for each
subexpression
e in each OCL
constraint

Potential values of the ex-
pression e. Non-basic types
are abstracted, e.g. collec-
tions are abstracted as inte-
gers encoding their size

– A constraint establishing the value of e
in terms of the values of its subexpressions
– Correctness property under analysis, e.g.
the root expression of each invariant must
evaluate to 1 (all invariants must be true)

can infer that there is exactly 1 Cutter and 1 Grinder, between 8 and 10 parts
and at most 8 links among machines and parts.
Paper Organization: Section 2 describes the bound tightening method and
Sect. 3 presents experimental results. Section 4 covers the related work. Finally,
conclusions and future work are presented in Sect. 5.

2 Bound Tightening Procedure

The inputs of our procedure will be a UML/OCL model, a correctness property
to be checked and a set of bounds for bounded verification. These initial bounds
may be unconstrained (i.e. infinite) or finite bounds proposed by the designer.
From this input, the output will be a set of refined bounds. These improved
bounds can then be relayed to a bounded verification solver, which can take
advantage of the reduced search space to perform verification more efficiently.

The computation of tightened bounds is performed in two steps:

– Abstraction: We consider all implicit and explicit constraints from the UML/
OCL model and abstract those that involve search space boundaries. This
abstraction is formalized as a Constraint Satisfaction Problem (CSP), i.e. a
finite set of variables V , the set of domains D of potential values for each
variable and the set of constraints C over the variables in V .

– Propagation: the constraints in the CSP are used to remove unfeasible values
from the domains of variables, a process known as integer bound propagation
[5]. In this paper, we will use the hybrid integer-real Interval arithmetic Con-
straint solver (IC) from the ECLiPSe Constraint Programming System [2]. The

Towards Domain Refinement for UML/OCL Bounded Verification 111

Table 2. Analysis of OCL invariants from Example 1

OCL expression (e) Size constraint (e.c)

e1.attr domain(e.v) ⊆ domain(attr)
e1 → exists(e2) (0 ≤ e.v ≤ 1) ∧ ((e1.v = 0 ∨ e2.v = 0) → (e.v = 0)) ∧

((e2.v = 1) → (e.v = (e1.v ≥ 1))) ∧ e1.c ∧ e2.c

e1 → isUnique(e2) (0 ≤ e.v ≤ 1) ∧ ((e.v = 0) → (e1.v ≥ 2)) ∧
(domain size(e2.v) ≥ e1.v) ∧ e1.c ∧ e2.c

Type :: allInstances() e.v = num obj(Type)
e1 and e2 (e.v = min(e1.v, e2.v)) ∧ e1.c ∧ e2.c

IC solver can handle both integral and real variables and it provides powerful
interval constraint propagation capabilities.

Given that propagation is a feature provided by most off-the-shelf CSP
solvers, we will focus our presentation on the abstraction phase. This step builds
upon two previous works from the literature: the definition of a CSP encoding for
UML/OCL models [6] and the work on size abstraction for OCL properties [17].

In particular, we modify the CSP encoding from [6] such that (a) OCL con-
straints are not directly encoded in the CSP but rather abstracted as size con-
straints and (b) instead of finding a particular solution to the CSP we tighten
the initial bounds. Table 1 describes the overall structure of the CSP computed
in this phase, defined in terms of its variables, domains and constraints.

The abstraction of OCL constraints is similar to [17] but it has been extended
to cover further OCL constructs and consider the domain of attributes. Fur-
thermore, the goal of the abstraction is not checking properties that only need
size-related information as in [17], but to accelerate the verification of arbitrary
properties. Table 2 details this abstraction, i.e. the last row of Table 1, for the
OCL invariants in Example 1. The first column represents the OCL subexpres-
sion e being abstracted and the second column shows the size constraint e.c
derived from the analysis of e. This size constraint is expressed with the help of
an auxiliary variable e.v abstracting the “size” of expression e, e.g. the number
of elements in a collection or the length of a string.

Example 2. Let us revisit the model from Example 1. The following constraints
on the population of classes and associations can be derived from UML constructs
(top 4, using [6]) and OCL invariants (bottom 3, using Table 2):

AbstractMachine = Cutter + Grinder Inheritance
Uses ≤ Part ∗ AbstractMachine Association

Uses = 4 ∗ AbstractMachine Association end
Uses ≤ Part Association end

112 R. Clarisó et al.

Part ≤ domain size(Serial) Invariant UniqueSerials

Cutter ≥ 1 Invariant Availability

Grinder ≥ 1 Invariant Availability

3 Experimental Results

In this section, we evaluate the speedup achieved by bound tightening in the
bounded verification process. To this end, we consider strong satisfiability, i.e.
checking if there is a valid instance that populates each non-abstract class.
Results are measured on the SAT-based USE model validator plug-in [11].

For our experiments, we have used two UML/OCL models: “Teams” (5
classes, 3 associations, 6 attributes and 6 invariants) and “Company” (6 classes,
8 associations, 21 attributes, 16 invariants). For the sake of representativity,
we have defined two versions of each model, one which is strongly satisfiable
(sat) and one which is not (unsat). For each one, different sets of initial bounds
(number of objects and links and ranges for attributes) have been considered.

Table 3 summarizes the results obtained in an Intel Core i7 3 Ghz with 8 Gb
RAM. Each entry describes the experiment (model, verification bounds and
sat/unsat), and the execution time in seconds for USE with the original bounds
(USE) and for USE with bound tightening (Tight). Finally, we measure the
speedup in the execution time (Spd, 1 if no change, higher is better).

In all models, the overhead of tightening is less than 1 s. Regarding verifi-
cation time, the effect of bound tightening is most noticeable in models where
verification is most complex. There, significant reductions can be achieved with
some examples running 50 times faster.

4 Related Work

Bounded verification is a popular strategy for analyzing UML/OCL models
[1,6,11,16]. Several techniques can be used to accelerate it: parallelization (use
several solvers running in parallel over different parts of the formula or the

Table 3. Experimental results (timeout set at 10.000 s)

CPU time

Experiment USE Tight Spd

Team-small-sat 1,8s 2,5s x0,76

Team-mid-sat 3,7s 7,3s x0,50

Team-large-sat 5,8s 7,3s x0,79

Team-small-unsat 0,8s 1,4s x0,50

Team-mid-unsat 2,0s 2,9s x0,69

Team-large-unsat 7,6s 5,0s x1,53

CPU time

Experiment USE Tight Spd

Company-small-sat 258,4s 20,5s x11,54

Company-mid-sat 100,4s 61,3s x1,64

Company-large-sat 1.479,5s 258,5s x5,94

Company-small-unsat 904,7s 17,9s x50,42

Company-mid-unsat 4.452,5s 2087,2s x2,13

Company-large-unsat timeout 4426,1s –

Bounds: [1,N] objects, [1,2*N] links. Small (N=5), Mid (N=10) and Large (N=15).

http://st.inf.tu-dresden.de/files/general/OCLByExampleLecture.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh302/oclnotes.pdf

Towards Domain Refinement for UML/OCL Bounded Verification 113

domains), slicing (partition the problem into independent components that can
be analyzed separately) and bound reduction (reduce the size of the verification
bounds).

In the context of UML/OCL verification, [14,15] describe slicing techniques
to partition class diagrams and ParAlloy [13] studies the parallel verification of
Alloy models. Considering UML class diagrams without OCL, [3,8] study the
potential interactions among association multiplicities to detect situations where
multiplicities can be strengthened or are unsatisfiable. However, this paper is the
first work addressing bound reduction for the verification of UML/OCL models.

In other fields, there are related approaches to bound reduction. In static
program analysis, the most related one is TACO [9], a tool for the verification
of JML-annotated Java programs. Meanwhile, in the model checking of hybrid
systems, Domain reduction abstraction [7] partitions the input domains into
equivalence classes with the same behavior.

5 Conclusions

The bounded verification of UML/OCL models can be accelerated by assisting
designers in the selection of verification bounds, a task which currently lacks
adequate support. The proposed method abstracts the UML/OCL model as a
constraint satisfaction problem. Then, interval constraint propagation is used to
tighten the analysis bounds. Smaller bounds can reduce the verification time.

This approach can be used in different ways: as a preprocessing stage before
verification or as part of an interactive process to guide the choice of bounds.
As future work, we plan to investigate heuristics regarding the best order for
selecting bounds, i.e. one that reduces the number of choices and maximizes the
amount of information that can be inferred automatically by bound propagation.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Softw. Syst. Model. 9(1), 69–86 (2010)

2. Apt, K.R., Wallace, M.: Constraint Logic Programming using ECLiPSe. Cam-
bridge University Press, New York (2007)

3. Balaban, M., Maraee, A.: Simplification and correctness of UML class diagrams –
focusing on multiplicity and aggregation/composition constraints. In: Moreira, A.,
Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol.
8107, pp. 454–470. Springer, Heidelberg (2013)

4. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class diagrams.
Artif. Intell. 168(1–2), 70–118 (2005)

5. Bordeaux, L., Katsirelos, G., Narodytska, N., Vardi, M.Y.: The complexity of inte-
ger bound propagation. J. Artif. Intell. Res. (JAIR) 40, 657–676 (2011)

6. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. J. Syst. Softw. 93, 1–23 (2014)

7. Choi, Y., Heimdahl, M.: Model checking software requirement specifications using
domain reduction abstraction. In: ASE 2003, pp. 314–317. IEEE (2003)

114 R. Clarisó et al.

8. Feinerer, I., Salzer, G., Sisel, T.: Reducing multiplicities in class diagrams. In:
Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp.
379–393. Springer, Heidelberg (2011)

9. Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: Taco: efficient SAT-based
bounded verification using symmetry breaking and tight bounds. IEEE Trans.
Softw. Eng. 39(9), 1283–1307 (2013)

10. González, C.A., Cabot, J.: Formal verification of static software models in MDE:
a systematic review. Inf. Softw. Tech. 56(8), 821–838 (2014)

11. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 415–431. Springer, Heidelberg (2012)

12. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas
with OCL constraints. ACM TOSEM 21(2), 13:1–13:41 (2012)

13. Rosner, N., Galeotti, J.P., Lopez Pombo, C.G., Frias, M.F.: ParAlloy: towards a
framework for efficient parallel analysis of alloy models. In: Frappier, M., Glässer,
U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp.
396–397. Springer, Heidelberg (2010)

14. Seiter, J., Wille, R., Soeken, M., Drechsler, R.: Determining relevant model ele-
ments for the verification of UML/OCL specifications. In: DATE 2013, pp. 1189–
1192. EDA Consortium (2013)

15. Shaikh, A., Clarisó, R., Wiil, U.K., Memon, N.: Verification-driven slicing of
UML/OCL models. In: ASE 2010, pp. 185–194. ACM (2010)

16. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying
UML/OCL models using Boolean satisfiability. In: DATE 2010, pp. 1341–1344.
IEEE (2010)

17. Yu, F., Bultan, T., Peterson, E.: Automated size analysis for OCL. In: FSE 2007,
pp. 331–340. ACM (2007)

Testing

Efficient Testing of Different Loop Paths

Stefan Huster(B), Sebastian Burg, Hanno Eichelberger, Jo Laufenberg,
Jürgen Ruf, Thomas Kropf, and Wolfgang Rosenstiel

Department of Computer Science, University of Tübingen,
Sand 14, 72076 Tübingen, Germany

{huster,burg,eichelberger,laufenberg,ruf,kropf,rosenstiel}
@informatik.uni-tuebingen.de

Abstract. Loops can represent an infinite number of possible execution
paths and therefore purse a major challenge for current static analysis
frameworks and test input generators. In this paper, we introduce a new
loop exploration algorithm to examine different iteration orders (i.e. loop
paths) in order to test distinct loop behaviour. To reduce the complexity
of testing all possible combinations of iterations, we introduce a criterion
to group different paths into equivalence classes and show how to specif-
ically generate test cases that cover the different equivalence classes. We
demonstrate how this approach helps to achieve higher coverage rates
and helps to find software failures that are not discovered by current
test case generation frameworks.

Keywords: Loop exploration · Dependency analysis · Test case
generation

1 Introduction

Testing is a commonly used technique to ensure software correctness. Usually,
testing is used in combination with code coverage metrics to identify which parts
of the software have been addressed by a given test suite. But the generation
of good test suites may be very labour intensive. Based on improvements in
constraint-solving, automatic test case generation became very popular. Corre-
sponding frameworks achieve high code coverage rates. But loops may represent
an infinite number of possible execution paths to cover and are a major challenge
for those frameworks [1].

This challenge has been addressed by different approaches. One class of
approaches try to express the loop as a numerical target function to find a path
through the loop in order to reach a predefined code position. Other approaches
try to summarise loop iterations and loop paths in order to create general input
and output constraints. All of them have special requirements on the loop struc-
ture (see Sect. 2 ‘Related Work’). None of them is designed to test different loop
iteration orders in general to cover a loop. A corresponding example is given in
Listing 1.1. This example uses a loop to delivers messages from a string array

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 117–131, 2015.
DOI: 10.1007/978-3-319-22969-0 9

118 S. Huster et al.

0 //Input: String [] signals;

1 bool msgForA = false , msgForB = false , msgForAll = false;

2 for (int i = 0; i < signals.Length; i++) {

3 if(signals[i]. StartsWith("-")) {

4 if(signals[i]. Length < 2)

5 { throw new Exception("Invalid Signal"); }

6 String receiverId = signals[i];

7 // Toggle on/off receivers

8 if (receiverId.Contains("A"))

9 { msgForA = !msgForB; }

10 if (receiverId.Contains("B"))

11 { msgForB = !msgForB; }

12 if (receiverId.Contains("!"))

13 { msgForAll = !msgForAll; }

14 } else {

15 // Deliver messages

16 if (msgForA || msgForAll)

17 { messagesA.Add(signals[i]);}

18 if (msgForB || msgForAll)

19 { messagesB.Add(signals[i]);}

20 }

21 }

Listing 1.1. Case Study 1: String Array Signal Parser (C#)

to different receivers. Each receiver can be switched on or of by sending a cor-
responding control signal. Therefore, current frameworks, like Microsoft Pex,
use loop unwinding in combination with code coverage criteria to address this
loop. But the only coverage criteria that sufficiently ensures the coverage of dif-
ferent iteration orders is path coverage applied on the unwound loop body. In
this work, we introduce a new loop exploration algorithm to examine different
iteration orders. Each iteration represents one way to execute the loop body
without repeating it. A loop path combines different iterations and represents
one possible way to execute the loop. We use two techniques in order to examine
efficiently different loop paths: (1) We test only those loop paths orders combin-
ing iterations which affect each other, such that the previous iteration modifies a
relevant variable which is read by the consecutive iteration. (2) When combining
iterations to loop paths, we group iterations into equivalence classes which exe-
cute the same statements to modify these relevant variables. Based on these two
techniques, we specifically combine a bounded number of iterations to loop paths
which cover a high diversity of loop behaviour. We will show that this technique
is more efficient than first generating test cases covering all different iterations
orders and then filtering them to avoid executing the same code multiple times.

Our approach contains the following main contributions in order to improve
software quality and test coverage:

Efficient Testing of Different Loop Paths 119

– We reduce the number of required test cases compared to bounded path cov-
erage by generating equivalence classes.

– We detect more possible software failures by explicitly covering different loop
iteration orders, instead of only trying to achieve full branch coverage.

The remainder of this paper is structured as follows: Sect. 2 describes related
work and currently used techniques to handle loops. Section 3 introduces our
loop exploration algorithm. Section 4 presents the results of several case studies.
Section 5 concludes and presents future work.

2 Related Work and Techniques

This paper discusses a new algorithm to explore loops. In general, loop explo-
ration algorithms are part of a surrounding framework, e.g. test case generators,
and are used in combination with code coverage metrics. A good overview of dif-
ferent approaches for loop handling is given by Xiao et al. in [1]. They distinguish
between four classes of techniques to handle loops:

Bounded techniques [2–7] limit either the maximum number of inspected iter-
ations or define an input range in order to make the whole search space finite.
A commonly used bounded technique is loop unwinding. This technique is very
easy to use and always applicable. Hence, it is used by many tools and frame-
works (as fall-back-technique), e.g. PathCrawler [8], PEX [3] or ESC/Java [5].
In combination with dynamic symbolic execution frameworks [9], loop unrolling
can be used to cover different loop paths.

Search-guiding heuristics [10,11] attempt to guide symbolic execution to
focus on exploring paths that are more likely to achieve certain objectives faster,
e.g. when iterations must be repeated several times before a certain branch can
be covered. These heuristics are particularly useful to prevent a path exploration
from being stuck in an infinite loop path. This technique requires representing
the loop as a numerical target function to decide which path leads to the search
objective. But these target functions cannot be determined automatically for
every kind of loop. For example, the challenge of the loop in Listing 1.1 is to
find the right order of input parameters. This behaviour cannot be represented
as a linear numerical function and therefore this loop cannot be analysed sys-
tematically by search-guiding heuristics. Additionally, these heuristics are used
to search one path through the loop rather than generating multiple different
paths, e.g. to test different possible loop iterations and distinct loop behaviour.
Both techniques are commonly used for test case generation, usually in combi-
nation with some code coverage metrics. But the most commonly used coverage
metrics are not suitable to explore iteration orders. Branch coverage can only
determine whether a branch was executed or not, but cannot be used to identify
which iteration orders have been tested. On the other hand, loop coverage only
documents whether a loop has been executed once or more than once, but not
which loop sequences has been executed. To test different iteration orders suffi-
ciently, we need to achieve path coverage on an unwound loop body. This would

120 S. Huster et al.

Fig. 1. A high level illustration of the presented methodology

cause an exponential growth of test cases relative to the number of embedded
control structures.

The remaining two techniques are more commonly used in software verifi-
cation frameworks. Loop summarisation [12–15] covers different possible loop
paths using loop invariants or universally valid input and output constraints.
These constraints are based on loop induction variables whose symbolic value
are related to the current iteration count. Latest approaches are even able to find
these variables automatically and to generate corresponding conditions using sta-
tic analysis or dynamic execution. These techniques only detect loop variables
which are modified by a constant value or by a linear function in each iteration.
This is not the case for the example presented in Listing 1.1. Defining suit-
able loop invariants manually, as required by ESC/Java [5], is a complex task,
therefore rarely used in practice.

The fourth class of loop handling techniques is abstraction. Abstraction [16,
17], as the name suggests, uses an abstracted model of program states. This
model is a more compact representation of different loop states and therefore
easier to analyse. Corresponding techniques are most commonly used by model
checking frameworks rather than test case generation frameworks.

In summary, many different approaches exist which are suitable for a large
number of challenges caused by program loops. To the best of our knowledge,
there are no algorithms suitable for exploring loop paths that cover multiple
iteration orders including their control structures as in Listing 1.1. This work
fills this gap by introducing a new algorithm similar to bounded loop unwinding
in combination with path coverage, making both more applicable to complex
loop structures.

3 Methodology

We start this section with a high level introduction to our methodology based on
the illustration in Fig. 1 and continue with a more detailed description of each
single step. At the end of this section in 3.3, we present more information about
the implementation details of critical aspects and define surrounding conditions.
The presented algorithm can be divided into two high level steps: (1) Generate
possible iterations and (2) combine these iterations to loop execution paths. The
first step uses static code analysis to extract possible single iterations, i.e. the
set of possible paths to execute the loop body. In the second step we combine

Efficient Testing of Different Loop Paths 121

Fig. 2. Illustration of the call graph representing the loop body of Listing 1.1

single iterations to loop execution paths. To avoid the well-known complexity
problems for achieving full path coverage, we combine only iterations that affect
each other. Two iterations affect each other iff the first iteration modifies a
variable that is read by the subsequent one. Considering Fig. 1, the iteration 1
affects iteration 2, yet iteration 2 does not affect iteration 1. To even further
reduce the number of required test cases, we group iterations into equivalence
classes that use the same statements to modify a variable, read by a subsequent
iteration. Thereby we create equivalence classes for loop paths that execute the
same sequence of relevant variable modifications. Consider Fig. 1, the two loop
paths covering the iteration order 3 − 1 and 3 − 4 − 1 are part of the same
equivalence class, because the iteration 4 does not modify any variable read by
any following iteration. The result of this step is a test set covering one loop
path from each equivalence class.

3.1 Generating and Analysing Possible Iterations

We generate possible iterations i ∈ Il by combining different basic blocks of the
loop body Sl from loop l. A basic block represents an ordered set of statements
that are always executed consecutively. We start by building a control flow graph
CFG(SL) = (V ;E) representing the loop body Sl to identify basic blocks and
to examine which basic blocks can be executed in one iteration. A control flow
graph is defined by a set of vertices V and a set of directed edges E. Each
vertex v ∈ V represents one basic block in Sl. Each edge e = (vj ; vk;φ) ∈ E
represents the possible control flow from the basic block vj to the basic block
vk iff the path constraint φ is fulfilled. We add an artificial exit-node ve to the
control flow graph and connect this node to nodes representing basic blocks that
terminate the loop, e.g. because they execute a return or a break statement.
We will use the code from Listing 1.1 as example to describe our methodology.
We use the syntax v(n) to refer to the basic block in line n, i.e. v(9) refers to
msgForA=!msgForA. The syntax φ(n) refers to the constraint in line n, i.e. φ(4)
refers to the condition signals[i].Length < 2. Figure 2 illustrates the control
flow graph for the loop body in Listing 1.1. The node labels indicate the line of
the corresponding basic block. To analyse the effects of one iteration on following
ones, we need to know which variables are read and modified by each iteration.
One iteration affects later iterations iff it modifies one or more variables that are

122 S. Huster et al.

read by the following iterations. We analyse the set of read RR(v) and modified
RM (v) variables for each basic block v ∈ V . The set of read variables RR(v)
combines variables read by v and by the path constraints from the root node
v0 to v:

⋃v0→∗v
e Φe. Based on this information we can already determine which

iterations should be executed consecutively. We know for example that it is a
good idea to first test an iteration covering the basic block v(9) and then an
iteration covering the basic block v(17). The reason for this is, that the basic
block v(9) modifies the variable msgForA which is read by φ(16). Evidently, it
is useless to execute an iteration that covers basic block v(16) multiple times
without executing v(17) or v(18), since v(16) does not modify any variables.

But we do not know yet how often, i.e. in how many different iteration orders,
each basic block needs to be covered. This depends on the set of variables that
are modified by that basic block. Variables whose value is relative to the iteration
order have a special role. We denote such variables as loop variables.

Definition 1. Loop Variables. A variable r ∈ R is a loop variable r̊ ∈ R̊,
ff its value depends on the iteration order. In this case, there is an assign-
ment A(̊r, bi) = (̊r ← b(i)) in iteration i, assigning the value b(i) to r̊ and
∃b(i) | b(in) �= b(im) i ∈ I, n �= m.

Based on the set of modified variables, we distinguish between different types
of basic blocks and assign different weights W(v) to them to indicate how often
a basic block needs to be covered. We assign W(v) = ∞ to basic blocks that
modify a loop variable which is read by a different basic block. Basic blocks
with an infinite weight must be covered in any possible combination of itera-
tions in which the modified loop variable may affect later iterations. We assign
W(v) = 1 to basic blocks that modify variables whose assigned value is con-
stant regarding the iteration order. These basic blocks must be covered only
once previous to each basic block that reads one of the modified variables. We
assign W(v) = 0 to basic blocks that do not modify any variable that is read by
other basic blocks. These basic blocks must be covered only once, independent
from the executed sequence of iterations. In our example, we assign amongst
other following weights: W(v(9)) = ∞, because the value msgForB may change
in every iteration, W(v(5)) = 0 because no variable is modified.

After we have analysed all basic blocks, we can combine different basic blocks
to possible loop iterations. A single iteration i ∈ I is defined as an ordered set of
basic blocks i = (v0, . . . , vn) and represents one possible way to execute the loop
without repetition. The recursive Algorithm 1 GenIterations(i, CGF) gener-
ates possible iterations. It takes as input the control flow graph of the loop body
(CFG) and an initialised iteration ĩ that will be completed by the algorithm.
We use the syntax i[j] to select the j-th basic block and i[|i|−1] to select the last
basic block of i. The algorithm starts with the loop entry point ĩ = {v0}. We iter-
atively add reachable basic blocks to ĩ as long as their combined path constraint
can be satisfied. The path constraint is checked by executing symbolically the
combined code of all basic blocks [18,19] based on the Microsoft SMT solver Z3
[20]. This step is required to avoid the combination of basic blocks that can never

Efficient Testing of Different Loop Paths 123

Algorithm: GenIterations(̃i, CGF)

begin
I ← ∅;

foreach vj ∈ V | e = (̃i[|̃i| − 1], vj) ∈ E do
t̃ ← i ∪ vj ;
if ¬Check(φ(t̃)) then continue ;
if vj is exit node or if vj equals v0 then I ← I ∪ {t̃};
else I ← I ∪ GenIterations(t̃, CGF);

end

end
return I

Algorithm 1. Algorithm to generate possible iterations

be executed in the same iteration. We indicate this check in Algorithm 1 by call-
ing the function Check(φ(i)) which returns true iff their is a variable assignment
that fulfils all path constrains. For this check we handle each variable which
is not declared in i as free variable. We discuss details of the implementation
from our symbolic execution steps in more detail in Sect. 3.3. Finally, we need to
analyse which iterations may be used as first iteration, because not every path
constraint can be fulfilled within the first iteration. For this test we consider the
symbolic value of each variable when entering the loop. This is done by symbol-
ically executing the code leading to the examined loop in combination with each
generated iteration ij . We refer to this code as environment Σl of loop l and to
this test as the predicate Check(Σl, φ(i))). This predicate is true iff there is a
variable assignment that would execute all basic blocks in i. In our example only
those iterations i ∈ I covering v(17) and v(18) cannot be used as first iteration,
because msgForA, msgForB and msgForAll is false in Σl.

3.2 Generating Loop Path and Test Cases

Based on the set of possible iterations, we can start to combine those iterations
to loop path p ∈ P . A loop path is an ordered set of iterations p = (ii, . . . , ij)
and represents one possible loop execution. We use the syntax p[j] to select the
j-th iteration of p and p[0] to select the first iteration. The generation process
of loop paths is listed in Algorithm 2. Its arguments are one current loop path
p̃, the set of possible iterations I, the maximum length of the generated loop
paths bmax and the loop environment Σl. The algorithm is called on each i ∈ I
with p̃ = {i}. The generation of loop paths starts with the last iteration ij and
iteratively adds iterations i ∈ I to the front of p (line 4). We use this direction
to avoid adding iterations multiple times which have no effect on subsequent
iterations. Instead we only want to add those iterations which use different basic
blocks to modify variables that are read by consecutive iterations. We group
the set of possible iterations into equivalence classes I/ ∼R. Iterations in one
equivalence class [i]∼R

use the same basic blocks to modify variables that are
read by the consecutive iteration. Equivalence classes are calculated in relation
to the set of variables R = RR(i) read by the consecutive iteration i:

124 S. Huster et al.

Algorithm: GenLoopPath(p̃, I, bmax,Σl)

begin
1 P ← ∅;
2 foreach i∼ ← [i] ∼RR(p̃[0]) do
3 if (i′ ← GetUncoveredNonEndIteration(p̃, i∼)) = ∅ then continue ;
4 p̃′ ← i′ ∪ p̃;
5 if |p̃′| < bmax then P ← P ∪ GenLoopPath(p̃′, I, bmax, Σl);
6 if Check(Σl, φ(p̃[0])) then P ← P ∪ p̃′;

end

end
return P

Algorithm 2. Generation of loop path

i ∼R i′|i, i′ ∈ I :⇔ {vj ∈ i|RM (vj) ∩ R} = {vj ∈ i′|RM (vj) ∩ R} (1)

We refer to the shared set of basic blocks, used by every iteration i∼ ∈ [i]∼R
to

modify any variable r ∈ R by V ([i]∼R
). In line 2 we start to iterate the equivalence

classes in i∼ ∈ [i] ∼RR(p̃[0]). In line 3, we call the function GetUncoveredNon-
EndIteration to select an iteration from i∼ to extend p̃. This function selects an
iteration that does not terminate the loop iteration (∃e = (i[|i| − 1], Exit) ∈ E)
based on the following rules: If the maximum weight of all basic blocks v ∈
V (i ∼R) is ∞ we select the iteration by random since we must cover these basic
blocks in all possible combinations. If the maximum weight of all basic blocks
v ∈ V (i ∼R) is 1, we check whether the following iteration p̃[0] is part of the same
equivalence class. If this is not the case, we can select an iteration by random
in order to test the constant modification of the referenced variable. Otherwise
we do not need to cover the modification based on the same assignment twice
and we return ∅. If the maximum weight of all basic blocks v ∈ V (i ∼R) is 0,
we do not need to cover any iteration in i∼. This is because these iterations
do not modify any variable referenced by p̃[0]. These iterations will be executed
either in combination with different subsequent iterations or as the last iteration
based on the initial call for each i ∈ I. The rest of the algorithm is rather
simple. In line 5 the algorithm checks whether the current created loop paths
has already achieved the maximum length before we recursively search longer
loop paths. In line 6 we check whether the current created loop path starts with
an iteration that can be executed as the first iteration, before we add the loop
path to the return value P . The last step of our methodology is to translate the
generated loop paths into test cases. We use symbolic execution considering Σl

and each p ∈ P to find a variable assignment that covers each basic block of
p. By covering different equivalence classes we test the same loop behaviour as
using path coverage.

Theorem 1. Testing one loop path from each equivalence class tests the same
possible effects of a loop on the program as tested by achieving full path coverage
on the bmax-times unwound loop code.

Efficient Testing of Different Loop Paths 125

Proof. The semantic of a loop can been seen as a relation between input and
output variables. This relation is defined by the sequence of modifications applied
to each variable. Testing distinct loop semantic is therefore equivalent to testing
different sequences of variable manipulation. Let us assume there exists a loop
path ṗ with the length |p| ≤ bmax which executes an order of statements to
modify a variable ṙ that is not covered by any p ∈ P . Then there must exist
at least one iteration order i̇j → i̇j+1 ∈ ṗ as well that is not covered by any
p ∈ P . More precisely, i̇j must execute the basic block v̇ that modifies ṙ by
assigning a new value b, and i̇j+1 must read ṙ. We know that there exists at
least one p ∈ P that covers i̇j+1. The reason for this is that I is defined as the
set of all possible iterations including i̇j+1 and we start the generation of loop
paths for each p̃ = i ∈ I. But if there exists a p ∈ P that covers i̇j+1, i̇j must
be part of any equivalence class regarding i̇j+1 which is considered in line 2 of
Algorithm 2. Since the combination of all equivalence classes encloses all ı ∈ I.
Because i̇j modifies ṙ, the max weight of all basic blocks in i̇j is either ∞ or
1. In the second case we also know that i̇j �= i̇j+1, because otherwise the value
of r would be same after i̇j and i̇j+1. We know also, that i̇j must not exit the
loop, because otherwise ṗ would be infeasible. Therefore, we know that we select
one iteration covering v̇ by calling GetUncoveredNonEndIteration in line 3 of
Algorithm 2. Either because the maximum weight of i̇j is ∞ or because the
maximum weight is 1 and i̇j �= i̇j+1. This is a conflict to the assumption that
i̇j → i̇j+1 is not covered by any p ∈ P . �

3.3 Implementation Details and Surrounding Conditions

The presented approach needs to be applied from the innermost to the outermost
loops in order to handle nested loops. Furthermore, it needs be applied from the
beginning to the end of a method to ensure that the loop context Σl is always
loop free. We limit the length of the analysed loop path by the value of bmax.
Our experiments have shown that the value of bmax should not be smaller than
two or the maximum number of visited branches within the loop body Sl in a
single iteration. In our example, the maximum number of covered branches in
one iteration is 4 when executing the basic blocks v(6), v(9), v(11) and v(13).

We have implemented our methodology as a prototype to analyse struc-
tured loops of single threaded C# programs. We have chosen C# due to a
number of characteristics: (1) C# makes it very easy to handle method calls
when analysing modifications of referenced variables. Since we only need to
consider the return value and parameters that are explicitly marked as out-
or ref-reference. (2) Unlike with C or C++, we do not need to analyse pointer
arithmetic, which would be infeasible with respect to our requirements. (3) There
already are a number of analysis frameworks like Pex that we could use to imple-
ment our prototype. However, we think the principle of the proposed method
can be applied as well to single threaded code written in other languages and
even to unstructured loops. But this would require a new implementation of each
analysis step and of the symbolic execution.

126 S. Huster et al.

We use symbolic execution in several analysis steps, e.g. to analyse which
basic blocks can be executed within one iteration, or to find test vectors to cover
the generated loop paths. In our prototype implementation, we have realised
these steps by using Microsoft Pex as our symbolic execution framework. To
utilise Pex, we translate the code fragment γ that we want to test into a new
C# method γ′. Variables which are not declared in γ are added as method
argument to γ′ and thereby handled as free variables. We apply Pex to γ′ and
check whether Pex finds a variable assignment that covers all relevant branches.

4 Case Studies

We demonstrate our methodology based on four case studies. Our approach aims
to test the same loop behaviour as the combination of loop unwinding and full
path coverage. Therefore, we compare the size of the generated test suites with
the number of distinct combination of iterations: Σbmax

i=1 |I|i. We also compare
our results with those achieved using Microsoft Pex, the most powerful test
case generate for C# we know of. Thereby we compare different aspects of the
generated test suites: (1) The number of generated test cases. (2) The quality of
the generated test suite, i.e. does the test suite execute the iteration order that
triggers the software failure? (3) The efficiency of the test suite. How many test
cases cover different iteration effects, i.e. how many iteration orders fulfil the
criteria RM (ij) ∩ RR(ik) �= ∅, j < k, i ∈ I? Our approach is designed to create
only iterations which fulfil this criterion. Furthermore, we present the percentage
of test case reduction compared to the number of test cases required for full
path coverage and the number of test cases required without using equivalence
classes as additional optimisation in our methodology. The results of all three
case studies is listed are Table 1.

4.1 Case Study 1: String Array Signal Parser

The first case study is the loop listed in Listing 1.1. Our methodology discovers 13
different possibilities to execute the loop body. We bound the length of generated
loop paths to a maximum of bmax = 4. Even when we ignore the iteration that
executes the exception, there exists 124 + 123 + 122 + 12 different possibilities
to combine those iterations to loop paths. Therefore, we would need 22620 test
cases to achieve full path coverage on the 4-times unwinded loop body. Pex
generates 22 test cases to cover the loop, but executes only 1 combination of
iterations that affect each other. These test cases cover all branches within the
loop body, but of course not all possible iteration orders. Pex does not cover the
execution order v(11) and v(9). This execution order is particularly important
because its execution discovers the failure in line 9, where we read the value
msgForB instead of msgForA to toggle the message receiver A. Pex only executes
the order v(9), v(11). But executing these two basic blocks in that order does
not discover the failure because at the beginning msgForB has the same value as
msgForA. Furthermore, the test suite generated by Pex is not very efficient since

Efficient Testing of Different Loop Paths 127

Table 1. Results from our case studies

Pex Our approach

Case

study

Number of

distinct com-

binations
(Unwinding)
(NDC)

Number
of test
cases

Number of
test cases
covering
different
iteration
effects

Execute
failure

Number of
test cases
not using
equiv-
alence
classes
(NEC)

Number of
test cases
and reduc-
tion vs.
NDC and
NEC

Execute
failure

1 22.620
(bmax = 4)

22 1 No 284 97 NDC:99 %
NEC:66 %

Yes

2 7.380
(bmax = 4)

12 0 No 92 51 NDC:99 %
NEC:45 %

Yes

3 340
(bmax = 4)

13 7 No 48 26 NDC:93 %
NEC:46 %

Yes

4 156
(bmax = 2)

4 0 No 108 76 NDC:52 %
NEC:30 %

Yes

it contains 6 different test cases to execute the basic blocks v(17) and v(19) a
multiple times in a row. Other example for the ineffectiveness are triggering the
exception twice and executing the first if-alternative 3 time in a row but without
executing v(17) or v(19). But this does not discover any new loop behaviour,
because they do not modify any variable that is referenced by any other iteration.
Our methodology generates 97 test cases. Thereby we cover the execution order
v(11), v(9) which is the iteration order that triggers the error in line 9. The
reduction from 22.620 to 97 test cases is based upon two facts. First, we only
combine iterations that affect each other. Second, we group possible iterations
into equivalence classes. Without using equivalence classes, our methodology
would require 284 test cases. This means that using equivalence classes reduces
the number of required test cases by 66 %.

4.2 Case Study 2: Modified String Array Signal Parser

The second case study is a modified version of the loop in Listing 1.1. We have
replaced the if-statements in line 10 and 12 by else-if-statements, and the call
to the contains-method by a call to the equals-method. For this example, Pex
generates a test suite with 12 test cases. These test cases do not cover all branches
of the loop body and do not execute any iteration order where one iteration may
affects its successor. Therefore, the generated test suite does not trigger the
described failure. Our approach detects 9 different iterations in this example.
This means their exist 7.380 different possibilities to combine those iterations
when unwinding the loop 4 times. We generate a test suite with 51 test cases
when using equivalence classes and 92 without. In both cases, our test suite
executes the iteration order that triggers the failure in line 9. Evidently, using
equivalence classes reduces the number of required test cases for this example
by 45 %.

128 S. Huster et al.

1 bool cascade = false , inValue = false;

2 String currentValue ="";

3 List <String > values = new List <String >();

4 for (int i = 0; i < s.Length; i++) {

5 char c = s[i];

6 if (c ==’\\’ && !cascade) { cascade = !cascade; }

7 else if (c ==’’’ && !cascade) { inValue = !inValue; }

8 else if (c ==’,’)

9 { values.Add(currentValue); currentValue ="";}

10 else { currentValue += c; }

11 cascade = false;

12 }

Listing 1.2. Case Study 3: String Parser (C#) (Input: String s)

4.3 Case Study 3: String Parser

The third case study is the string parser presented in Listing 1.2. This parser
extracts values enclosed by single quotes and separated by commas. We use a
back-slash as the cascade sign to allow the usage of single quotes within the
extracted value. The failure of this listing can be found in line 7. The comma
should only separate two values if the current value has been completed by
a unescaped single quote. Therefore, the correct if-condition should be c=’,’
&& !inValue. This value could be detected when executing the if-consequences
in line 6, 11 and 7 in the given order. The test suite generated with Pex contains
13 test cases, and 7 test cases execute iterations that affect each other. But none
of these test cases executes the iteration order that triggers the described failure.
Our approach detects 4 different possibilities to execute the loop body, which
leads to 340 different possibilities to combine those 4 iterations when unwinding
the loop a maximum number of 4 times. The generated test suite contains 26
test cases using equivalence classes and 48 without. Therefore, using equivalence
classes carries an optimisation of 46 %. Altogether, this means a reduction of
93 % compared to the number of possible loop paths. The test suite generated
by our approach covers as well the iteration order that triggers the bug.

4.4 Case Study 4: Best Fit Optimisation

The fourth case study is given in Listing 1.3 and is a C# implementation of the
best-fit optimisation algorithm. This algorithm can be used to approximate a
solution for the cutting-stock problem. Our implementation distributes a number
of pieces onto a number of raw material bars such that the number of bars used
is minimised. This case study has been included from a real world application for
its presence of nested loops. We represent pieces by their length which is given
as a double-value. A bar is represented by the Bar-class which is defined by the
bar length, also known as the raw material length, and a list of added pieces.
The best fit algorithm adds each piece to the bar with the smallest sufficient
material length available. If no corresponding bar is available a new one will be

Efficient Testing of Different Loop Paths 129

1 void BFIT(ref List <Bar > bars , List <double > pieceLengths ,

double rawLength) {

2 foreach (double pl in pieceLengths) {

3 double minRest = double.MaxValue;

4 int bestIndex = -1, i = 0;

5 foreach (Bar bar in bars) {

6 double rest = bar.GetRestLength () - pl;

7 if (rest > 0 && rest < minRest)

8 { minRest = rest; bestIndex = i; }

9 }

10 if(bestIndex >= 0){ bars[bestIndex]. AddPiece(pl); }

11 else {

12 Bar nBar = new Bar(rawLength); bars.Add(nBar);

13 nBar.AddPiece(pl);

14 }

15 }

16 }

Listing 1.3. Case Study 4: Best fit optimisation (C#)

created. There exist 12 possible iterations, i.e. 156 distinct combinations when
unwinding each loop a maximum number of 2 times. The failure of this listing
can be found after line 8. At this location the loop counter i must be increased
to store the correct index for the current bestIndex in line 8. This failure would
be triggered if line 8 is executed multiple times. Pex creates a test suite with 4
test cases. None of them triggers the described failure. In order to cover this loop
sufficiently, our method requires 76 test cases when using equivalence classes and
108 without. Despite the lower number of internal loop states compared to the
previous case studies, our approach achieves a reduction of 52 % compared to
the number of possible combinations. In this example, using equivalence classes
carries an optimisation of 30 %. In both ways, the generated test suites contain
the iteration order that triggers the failure.

5 Conclusion and Future Work

We have presented a new algorithm to explore loops and to create test cases for
exploring distinct loop behaviour. Our algorithm specifically combines a bounded
number of iterations to loop paths. To reduce the number of test cases, we com-
bine only those iterations which affect each other. Furthermore, we group those
iterations into equivalence classes, which use the same basic blocks to modify
the variables referenced by the consecutive iteration. Thereby, we efficiently test
distinct loop iteration orders. By proving Theorem 1 in Sect. 3, we have shown
that our methodology covers the same loop behaviour as full path coverage when
using the same bounds for loop unwinding. Compared to the number of required
test cases when testing all possible iteration orders, our algorithm examines the
same behaviour but requires less test cases. Furthermore, we have shown how the
presented algorithm is able to build this reduced test suite explicitly rather than

130 S. Huster et al.

filtering a large set of pre-generated test cases. As the results of our experiments
confirm, this makes our strategy more efficient compared to the usage of test
case generators aiming for full path coverage. Compared to full path coverage,
we could reduce the size of the required test suits in the first three case studies
by more than 90 % and in the fourth case study by more than 50 %. The usage
of equivalence classes alone provides in our case studies at least a reduction of
30 %. We have also compared our approach with the test case generation frame-
work Pex. The results have shown that the presented methodology is able to
cover different iteration orders more efficiently. Thereby, we could generate test
cases that trigger the software failure in each example. The test suites created
by Pex do not trigger any of these failures. Altogether, we can say that the pre-
sented methodology is a good alternative to testing loops, especially when other
techniques like loop summarisation are not applicable. The presented approach
is suitable to test loops using complex control structures in their loop body e.g.
to realise different loop states like in our parser examples. Our methodology is
not suitable to explicitly cover predefined branches, i.e. branches guarded by
conditions that require a certain number iterations which exceeds the predefined
unwinding bound bmax. For this kind of loops, our weapon of choice should be
approaches using search-guided heuristics.

Our methodology is a good extension to existing techniques but not suitable
to replace them all. Therefore, future work should address the implementation
of the presented methodology into existing frameworks like Pex, which already
uses different loop exploration algorithms. Within this frameworks, our approach
could be used as a fall-back technique when loop unwinding is required. Further-
more, our algorithm could be combined with search-guided heuristics to cover
basic blocks that we might not cover today because their guards require more
loop iterations than our predefined limit bmax.

References

1. Xiao, X., Li, S., Xie, T., Tillmann, N.: Characteristic studies of loop problems
for structural test generation via symbolic execution. In: Proceedings of 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2013), November 2013

2. Liu, T., Nagel, M., Taghdiri, M.: Bounded program verification using an SMT
solver: a case study. In: 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation (ICST), pp. 101–110. IEEE (2012)

3. Godefroid, P., Levin, M.Y., Molnar, D.A., et al.: Automated whitebox fuzz testing.
In: NDSS, vol. 8, pp. 151–166 (2008)

4. D’silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 27(7), 1165–1178 (2008)

5. Cok, D.R., Kiniry, J.R.: ESC/Java2: uniting ESC/Java and JML. In: Barthe, G.,
Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) CASSIS 2004. LNCS,
vol. 3362, pp. 108–128. Springer, Heidelberg (2005)

6. Blanc, R., Kuncak, V., Kneuss, E., Suter, P.: An overview of the Leon verification
system: verification by translation to recursive functions. In: Proceedings of the
4th Workshop on Scala, p. 1. ACM (2013)

Efficient Testing of Different Loop Paths 131

7. Francis, K., Stuckey, P.J.: Loop untangling. In: O’Sullivan, B. (ed.) CP 2014.
LNCS, vol. 8656, pp. 340–355. Springer, Heidelberg (2014)

8. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005)

9. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing.
SIGPLAN Not. 40(6), 213–223 (2005). DirectedTesting

10. Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: Fitness-guided path explo-
ration in dynamic symbolic execution. In: IEEE/IFIP International Conference on
Dependable Systems Networks, DSN 2009, pp. 359–368, June 2009

11. Obdržálek, J., Trt́ık, M.: Efficient loop navigation for symbolic execution. In: Bul-
tan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 453–462. Springer,
Heidelberg (2011)

12. Godefroid, P., Luchaup, D.: Automatic partial loop summarization in dynamic
test generation. In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis, ISSTA 2011, pp. 23–33. ACM, New York (2011)

13. Donaldson, A.F., Haller, L., Kroening, D., Rümmer, P.: Software verification using
k -induction. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 351–368.
Springer, Heidelberg (2011)

14. Tsitovich, A., Sharygina, N., Wintersteiger, C.M., Kroening, D.: Loop summariza-
tion and termination analysis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 81–95. Springer, Heidelberg (2011)

15. Louhichi, A., Ghardallou, W., Bsaies, K., Jilani, L.L., Mraihi, O., Mili, A.: Verifying
while loops with invariant relations. Int. J. Crit. Comput.-Based Syst. 5(1), 78–102
(2014)

16. Kroning, D., Groce, A., Clarke, E.: Counterexample guided abstraction refinement
via program execution. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004.
LNCS, vol. 3308, pp. 224–238. Springer, Heidelberg (2004)

17. Kroening, D., Weissenbacher, G.: Verification and falsification of programs with
loops using predicate abstraction. Formal Aspects Comput. 22(2), 105–128 (2010)

18. Godefroid, P., de Halleux, P., Nori, A.V., Rajamani, S.K., Schulte, W., Tillmann,
N., Levin, M.Y.: Automating software testing using program analysis. IEEE Softw.
25(5), 30–37 (2008)

19. Lee, G., Morris, J., Parker, K., Bundell, G.A., Lam, P.: Using symbolic execution
to guide test generation. Softw. Test. Verification Reliab. 15(1), 41–61 (2005)

20. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

Model-Based Robustness Testing in Event-B
Using Mutation

Aymerick Savary1,2, Marc Frappier1(B), Michael Leuschel3,
and Jean-Louis Lanet2

1 Université de Sherbrooke, Sherbrooke, Canada
{aymerick.savary,marc.frappier}@usherbrooke.ca

2 Université de Limoges, Limoges, France
jean-louis.lanet@unilim.fr

3 University of Düsseldorf, Düsseldorf, Germany
leuschel@cs.uni-duesseldorf.de

Abstract. Robustness testing aims at finding errors in a system under
invalid conditions, such as unexpected inputs. We propose a robust-
ness testing approach for Event-B based on specification mutation and
model-based testing. We assume that a specification describes the valid
inputs of a system. By applying negation rules, we mutate the precondi-
tion of events to explore invalid behaviour. Tests are generated from the
mutated specification using ProB. ProB has been adapted to efficiently
process mutated events. Mutated events are statically checked for sat-
isfiability and enability using constraint satisfaction, to prune the tran-
sition search space. This has dramatically improve the performance of
test generation. The approach is applied to the Java Card bytecode ver-
ifier. Large mutated specifications (containing 921 mutated events) can
be easily tackled to ensure a good coverage of the robustness test space.

Keywords: Robustness testing · Specification mutation · Model-based
testing · Vulnerability analysis · Intrusion testing · Event-B · ProB

1 Introduction

Functional testing aims at finding errors in the functionality of a system, e.g.,
testing that the correct outputs are produced for correct inputs. In contrast,
robustness testing aims at finding errors in a system under invalid conditions,
such as unexpected inputs. Various strategies can be used for system specifica-
tion. A specification may describe the behaviour for valid inputs only, for instance
by using preconditions and postconditions. In that case, an input that does not
satisfy the precondition is considered as invalid. A specification may describe
the behaviour for all possible inputs, detailing error messages to be produced in
case of invalid inputs. In that case, robustness testing coincide with functional
testing, because the specification covers both valid and invalid inputs.

Model-based testing (MBT) aims at generating tests from a specification.
When the analysis of a specification can be automated, MBT can automate the
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 132–147, 2015.
DOI: 10.1007/978-3-319-22969-0 10

Model-Based Robustness Testing in Event-B Using Mutation 133

production of tests and provide systematic coverage of the test space at a reason-
able cost. Formal specification languages are particularly suitable for automated
MBT. Yet, few systems are formally specified in practice. Automated MBT can
become an incentive for using formal specifications if the coverage obtained is
better than manually derived tests, at a comparable cost. However, if the specifi-
cation considers only valid inputs, then automated MBT cannot exercise a good
coverage of invalid inputs, because the specification is not built for that, and test
generation techniques typically only cover valid input sequences. In that particu-
lar case, model-based functional testing is unable to adequately cover robustness
testing.

In this paper, we propose a mutation-based approach to deal with model-
based robustness testing. Mutation testing has been typically applied to pro-
grams to evaluate the adequacy of tests. A good set of tests should identify
faults in mutated programs. We take a different view-point and use specifica-
tion mutation to identify invalid behaviour and then apply automated MBT on
mutated specifications to generate tests for robustness testing of an implementa-
tion. In particular, we focus on the mutation of preconditions, by providing a set
of rules for computing the negations of a precondition. The advantages are two-
fold. First, the behaviour for valid inputs can often be abstracted and simplified;
for robustness testing, there is no need to describe these cases in detail, because
they are not part of the test objective. A specification built for robustness testing
does not need to be detailed enough to prove the correctness of an implemen-
tation. This helps in reducing the cost of building a formal specification. For
instance, in this work we are targeting robustness testing of the Java Card byte-
code verifier (JCBCV) [12]. We do not need to build a complete specification of
the JCBCV in order to generate tests for invalid bytecode programs. We simply
need to focus on the conditions that characterize valid bytecode programs, and
by negation, we obtain the conditions of invalid bytecode programs. In other
words, a specification built for robustness testing can be much simpler than a
specification built to describe the full functional behaviour of a system. Second,
the mutation process allows us to provide fine grain invalid conditions in order
to ensure good coverage of invalid inputs. A model checker can then be used to
exercise these fine grain negated conditions and select tests for very specific con-
ditions. We use ProB [10] for that purpose. For instance, the condition A = B,
where A and B are sets, can be negated in various ways: A is empty and B is
not, A is strictly included in B, A and B are disjoint, A and B are not disjoint,
etc. A MBT technique will provide test criteria in order to decide which cases
should be covered. In our approach, we use negation rules to build mutants that
identify these cases, so that we can reuse a model checker on the mutants to
exercise the desired test cases. This provides a greater level of automation and
simplifies the construction of model-based test generation tools. Moreover, we
ensure that the test cases are disjoint and that mutants always generate invalid
traces, thus no unnecessary tests are generated. This is especially important for
embedded systems like Java Cards.

Our approach is particularly interesting for penetration testing, which is a
special kind of robustness testing; it aims at finding security faults. For instance,

134 A. Savary et al.

a JCBCV checks that a Java Card application satisfies the security constraints
specified in the Java virtual machine (JVM) specification. The JVM specification
prescribes a precondition and a postcondition for each bytecode instruction.
Robustness testing aims at checking that a JCBCV will reject invalid bytecode
programs. If a JCBCV accepts an invalid bytecode program, then a vulnerability
has been identified in the JCBCV. Such vulnerabilities may be exploited to define
attacks on Java-based smart cards.

The rest of this paper is structured as follows. Section 2 provides an overview
of our robustness test generation approach. Section 3 describes the Event-B
model of the JCBCV used for our case study. Section 4 describes our approach
for mutating Event-B specifications and negating predicates of the Event-
B language. Section 5 describes the improvements made to ProB in order to
efficiently carry out model-based test generation. Section 6 describes the appli-
cation of our approach to the case study and compares the results with a previous
version of this work presented in [15]. Section 7 compares our approach with sim-
ilar work in MBT and mutation testing. Section 8 concludes this paper with an
appraisal of our work and an outlook on future work.

2 Overview of the Approach

2.1 The Event-B Method

Event-B [1] is a state-based, event-driven modelling notation. Event-B mod-
els are developed through stepwise refinement. An Event-B model is composed
of two parts, a static part composed of contexts and a dynamic part composed
of machines. A context defines constants and constraints on its constants called
axioms. A machine has state variables, invariants, which describe properties of
state variables, and events. An event is composed of a guard and an action. An
event can be triggered when its guard is satisfied; the execution of the event’s
action can modify the machine state. One must prove that each event execu-
tion preserves the machine invariants. Event-B refinement allows for behaviour
refinement (i.e., reducing non-determinism, guard strengthening, event split-
ting/merging, and introduction of new events) and for data refinement (i.e.,
adding new state variables and replacing state variables).

2.2 Overview of Robustness Test Generation

Figure 1 provides an overview of the robustness test generation process. It takes
as input an Event-B project which contains a set of refinements and a set of
contexts. In this paper, we focus on the mutation of machines. We assume that
this input model describes the valid traces of the system. Our approach generates
invalid traces of this model by mutating its events. An Event-B model that
refines another model inherits all events of the model it refines. In order to have
all events in a single model, the first step is to merge these refinements into
a single model that contains all events. This flattened model is then analyzed

Model-Based Robustness Testing in Event-B Using Mutation 135

by the model mutator to generate mutants for each event. A mutant event is
obtained by negating the guard of an event. Negation rewrite rules are applied
to the guard of an event. A negation rule can produce several mutants, thus an
event can be mutated into several mutants. The mutant events are added to the
original model, so that the final mutant model contains both the original events
and their mutants. The mutant model is then analyzed with the constraint-
based checker of ProB to generate traces of the mutant model. Coverage in
MBT is typically decomposed into data coverage criteria and structural coverage
criteria. Our data coverage criteria are determined by the negation rules. Each
mutant event identifies an invalid case to cover. Structural coverage is ensured
by our breadth-first search algorithm in ProB. A test consists of a trace of
the form [e1, . . . , en, en+1], where ei with i ∈ 1..n is a valid event, and en+1 is
a mutant event which denotes an invalid event. A mutant event is contained
in at most one trace (unreachable mutants appear in no trace), in order to
minimize the number of tests generated. No false negatives are generated, that
is, each generated trace should be rejected by the system under test (SUT).
Each test considers a specific test case for a given event. For robustness testing
of most systems, there is no need to include more than one invalid event in a test,
because the first invalid event should be detected by the SUT and rejected. If it
is not possible to observe that an invalid input was rejected immediately after
it was submitted, then additional events may be added after the invalid event.
However, this requires a specification that covers both valid and invalid cases,
which is more time consuming to build, but it does provide a better coverage
than our approach, which aims at automating robustness testing with the least
specification effort. Our algorithm uses a breadth-first search to generate traces
of the mutant Event-B model. The search is bounded by a maximal depth.

Fig. 1. Overview of the robustness test generation process

3 Formal Model of the Bytecode Verifier

The JCBCV is a complex system and we model it using stepwise refinement to
deal with complexity. We do not model the bytecode verifier itself, but the byte-
code instructions. A trace of our model represents the byte array of a method.
To simplify the test generation, we always generate a static method with three

136 A. Savary et al.

parameters whose types are set to byte, short and reference. We use some pre-
determined classes, called TestClassA, TestClassB and TestClassC , which are
modelled in an Event-B context.

3.1 Java Card Instruction Sets

We partition Java Card instructions, called JCInstructions, into four sets.

1. Return: instructions that exit a method,
2. Branching : branching instructions,
3. FieldAccess: instructions for reading or writing object fields,
4. Linear = JCInstructions \Return \Branching : instructions that do no branch

or return.

Our model covers JCInstructions\Branching\FieldAccess, for a total of 62 byte-
code instructions, using 66 events. Branching instructions (41) require a more
complex control structure that we plan to add in the near future. Field access
instructions (32) are not difficult to model; we simply need to add a model of
objects to take these instructions into account.

3.2 The Refinements

Our model is decomposed into seven layers of refinement. Each model introduces
a new concept and defines abstract instructions which are successively refined.
Concrete instructions corresponding to bytecode instructions are introduced only
in the final level. The first level represents the return concept. It introduces two
abstract instructions, one that denotes linear instructions and one that denotes
returning instructions. A state variable programRunning is initialized to true
and set to false by a return instruction. A guard prevents instructions to be exe-
cuted after a return. The second refinement introduces variable stackSize, whose
value is bounded by constantMaxStackSize, and defines an abstract instruction
for each type of stack size update. The third refinement introduces guards to
check that enough elements or enough space is available in the stack. The fourth
refinement introduces the stack itself, whose elements are java types, not java
values. The inheritance tree on types is also introduced. The fifth refinement
deals with local variables, which represent either method parameters or method
local variables. The sixth refinement deals with object initialization and the
constant pool. The seventh refinement introduces the concrete instructions.

3.3 The State Model

The Java Card Inheritance Tree. Java Card types can be represented by a
semilattice, with an artificial Top element and type compatibility can be checked
using this semilattice. Two types are compatible if their least upper bound is
not Top. Figure 2 represents the semilattice. The interfaces and arrays of refer-
ences are not currently taken into account. The darker elements are only usable

Model-Based Robustness Testing in Event-B Using Mutation 137

Fig. 2. Java Card semilattice

for type inference. The lighter elements represent concrete Java types. Type
unknownType is used to represent memory access violations like stack overflow.
Type unInitLocalVar denotes values of uninitialized local variables.

The stack in a specification of valid inputs only would be modeled as partial
function stack ∈ 0 ..MaxStackSize −1 �→TYPES . Such a model is inadequate to
represent stack overflows or stack underflows, since a model checker like ProB

will not find elements outside a valid stack. The mutation of the invariant could
potentially solve such problems, but it is hard to derive a general rule that would
properly manage all types of Event-B variable. Instead, we decided to manually
change this type to an appropriate value that models invalid cases, that is, stack
domain si extended to −4 ..MaxStackSize − 1. We have determined by analysis
of the bytecode language that at least 4 negative index positions are needed to
generate stack underflow attacks (e.g., instruction swap).

Object initialization involves four instructions. Since we use a bread-first
search to generate traces, tests that require an initialized object are longer to
generate. To simplify this, we use a single event to represent these four instruc-
tions of initialization.

4 Event-B Specification Mutation

4.1 Mutation of an Event-B Machine

An Event-B machine contains several parts. The mutation process only alters
the list of events of a machine, by adding new events which are mutations of

138 A. Savary et al.

existing events. Let M.E, M.V , M.I respectively denote the set of events, the
set of variables and the set of invariants of machine M .

M.V := M.V ∪ {eutExecuted}
M.I := M.I ∪ {eutExecuted ∈ BOOL}
M.E := M.E ∪

⋃

e∈M.E

mutate(e)

Variable eutExecuted is added to control the generation of tests. It ensures that
an invalid event has been added to the trace. It is initialised to FALSE in the
initialisation event of M .

4.2 Mutation of an Event

An event of an Event-B machine has the following general form.

Event e =̂ any . . . , vi , . . .
where . . . , grdj : fj , . . .
then . . . , actk : wk := tk , . . .
end

The “any” part introduces local variables vi of the event, which represent event
parameters. The “where” part introduces the guard of the event, which consists
of a list of labeled formula grdi : fi, where grdi is the label of formula fi. The
formula of the list are implicitly conjoined to make the event’s guard. Guards
are also used to type the local variables.

A mutation of an event is computed as follows. Only a subset of the guard’s
formula are negated; these formula are manually tagged by the specifier by
adding suffix “ t” at the end of their label. The tagged formula are conjoined
into a single formula ft, and untagged formula are also conjoined to form a sec-
ond formula fu. The choice of the formula to negate depends on the problem at
hand and the test objectives. A mutant event computed by mutate(e) has the
following form, where f ′

t is a negation of ft. We define in the next section how
f ′
t is computed.

Event e =̂ any . . . , vi , . . .
where grdt : f ′

t ,
grdu : fu
grdeut : eutExecuted = FALSE

then acteut : eutExecuted := TRUE
end

The guard of a mutant event is composed of the untagged formulas left unchanged
and a negation of the tagged formulas. The actions of the original event are
replaced with SKIP , which leaves the state unchanged. This choice is as good as
any other state modification, since we assume that the specification only deals
with valid inputs. Moreover, we do not extend a trace ending with an invalid
event, as discussed in Sect. 2.2.

Model-Based Robustness Testing in Event-B Using Mutation 139

4.3 Negation of a Formula

We say that f ′ is a negation of a formula f iff it satisfies one of the following
two constraints.

f ′ ⇒ ¬f (1) f ′ ⇒ ¬WD(f) (2)

Constraint (1) says that when f ′ holds, ¬f holds. Thus, a negation f ′ is not
equivalent to ¬f ; it can be stricker. Constraint (2) caters for partial operators
of the Event-B language. Event-B uses a two-value logic. To ensure that
each formula has a meaning, Event-B contains proof obligations that must be
discharged for each formula that uses a partial operator. For instance, to make
sure that x = y ÷ z is well-defined, one must prove that z �= 0. Thus, such a
predicate involving a partial operator is typically used within a formula of the
form z �= 0 ⇒ x = y ÷ z, so that the well-definedness proof can be discharged.
Predicate WD(f) holds when formula f is well-defined, that is, all operators
used in f are called within their domain of definition. By negating it, we ensure
that we test partial operators for undefinedness.

A negation f ′ denotes a robustness test case of f . By controlling the form
of f ′, we determine the data coverage criteria of our MBT approach. The nega-
tions of a formula f for constraint (1) are computed using a set of rewrite rules
of the form neg(f) � {f ′

1, . . . , f
′
n}, where neg(f) is an inductively defined oper-

ator. A single rule is defined for each connective and predicate of the Event-B
language. To ensure coherence and completeness of the negation process, one
should prove for each rule that the set of negations is equivalent to ¬f (i.e.,
¬f ⇔ f ′

1 ∨ . . . ∨ f ′
n). To ensure that test cases are disjoint and to minimize

the set of tests generated, one should also prove for each rule that negations
are mutually disjoint (i.e.,

∧
i�=j ¬(f ′

i ∧ f ′
j)). We have defined negation rules for

each predicate and logical connective of the Event-B language. We provide
below a few illustrative examples. For the sake of concision, we use the following
convention: all connectives are lifted point-wise to sets, such that, for instance,
f ∧ neg(g), with neg(g) = {g1, . . . , gn}, denotes {f ∧ g1, . . . , f ∧ gn}.

neg(p1 ∧ p2) � (neg(p1) ∧ p2) ∪ (p1 ∧ neg(p2)) ∪ (neg(p1) ∧ neg(p2))
neg(p1 ∨ p2) � neg(p1) ∧ neg(p2)
neg(∀x · p) � ∃x · neg(p)

neg(i1 < i2) � {i1 = i2} ∪ {i1 > i2}
neg(i1 ≤ i2) � {i1 > i2}
neg(e ∈ E) � {e �∈ E}

neg(E1 ⊂ E2) � {E1 �= ∅ ∧ E2 = ∅} ∪ {E1 = ∅ ∧ E2 = ∅} ∪
{E1 �= ∅ ∧ E1 = E2} ∪ {E2 �= ∅ ∧ E2 ⊂ E1} ∪
{E1 ∩ E2 �= ∅ ∧ E1 �⊆ E2 ∧ E2 �⊆ E1} ∪
{E1 �= ∅ ∧ E2 �= ∅ ∧ E1 ∩ E2 = ∅}

The negation rule for conjunction generates all possible subsets of negated con-
juncts. The negation rule for strict subset inclusion generates all cases

140 A. Savary et al.

considering disjointness and emptiness of operands. This last rule illustrates
the importance of proving coherence, completeness and disjointness. Model find-
ers like ProB and Alloy are quite useful to debug negation rules on discrete
structures like sets, relations and functions.

The negation rules for well-definedness are of two kinds. The rules for connec-
tives, predicates and total operators simply propagate well-definedness negation
to their operands, e.g.,

negWD(p1 ∧ p2) � negWD(p1) ∪ negWD(p2)

The following rules cater for the partial operators of Event-B.

negWD(i1 ÷ i2) � negWD(i1) ∪ negWD(i2) ∪ {i2 = 0}
negWD(f(x)) � negWD(f) ∪ negWD(x) ∪ {x �∈ dom(f)}

negWD(min(E),max(E), inter(E)) � negWD(E) ∪ {E = ∅}

The rules for terms which are either constants or variables terminate the recur-
sion defining negWD with negWD(symbol) � ∅. Rules for well-definedness nega-
tion are complementary to rules for negation. For instance,

neg(z �= 0 ⇒ x = y ÷ z) = {z �= 0 ∧ x �= y ÷ z}

whereas
negWD(z �= 0 ⇒ x = y ÷ z) = {z = 0}.

5 Model-Based Testing Algorithm Improvements
and Performance

In MBT one wants to generate traces and values which satisfy a certain cover-
age criterion. There are two ways this coverage can be achieved systematically:
using model checking or using a constraint-based approach. In this paper we
have used the constraint-based approach: it can deal much better with con-
stants which have many possible values and with events whose parameters have
many possible values (like the Java Card instructions). Driven by this case study,
the performance of the constraint-based test generation has been considerably
improved, and the algorithm has been made more intelligent by using statically
computed enabling and feasibility information. This can both considerably speed
up the test generation algorithm and provide better user feedback. Indeed, often
the algorithm can terminate earlier, as the algorithm is not trying to cover infea-
sible events, and then provide the user with informative feedback that certain
events can definitely never be covered.

Model-Based Robustness Testing in Event-B Using Mutation 141

Fig. 3. Sample run of the MBT Algorithm

5.1 Feasibility Analysis

In this case study one has a very large number of events: events corresponding
to the original bytecode instructions (66) and their mutations (921). It is to be
expected that many mutants cannot ever be covered, and a first improvement
lies in detecting as many of the uncoverable events before starting the MBT
algorithm proper. This is done by the feasibility analysis, which calls the ProB

constraint solver to check for every event with guard G whether it can find a
solution for the axioms, invariant and G. If no such solution exists, then the
event is marked as infeasible and ignored in the main MBT algorithm below.
If a solution was found, the invariant of the machine admits a state where the
guard G of the event is true; whether such a state can actually be reached is
precisely the task of the main MBT algorithm. If a time-out occurs, then the
event is considered potentially feasible and not ignored in main MBT algorithm.

5.2 Enabling Analysis

Our enabling analysis for MBT computes two types of information for every
event e:

– enable(e): the set of events f that can go from disabled to enabled after
executing e in states that satisfy the invariant. The ProB constraint solver
solves the constraint ¬Grdf ∧Inv∧BAe∧Grd′

f , where BAe is the before-after
predicate of e and Grdf , Grd′

f are respectively the guard of f applied to the
before state and the after state. In case of a time-out it is assumed that f is
in enable(e). We extend the function enable for paths p to be either Events
if p = [] and equal to enable(last(p)) otherwise.

– feasibleAfter(e): the set of events f that can be enabled after executing e.
The constraint solver solves the constraint Inv ∧ BAe ∧ Grd′

f . In case of a
time-out it is assumed that f is in feasibleAfter(e). We again extend the
function feasibleAfter for paths p to be either Events if p = [] and equal to
feasibleAfter(last(p)) otherwise.

In the absence of time-outs, we have that enable(e) ⊆ feasibleAfter(e).

5.3 Main MBT Algorithm

The constraint-based test generation algorithm implemented within ProB is a
breadth-first algorithm, which maintains a list of paths (aka sequences of events)

142 A. Savary et al.

which are feasible, i.e., for which ProB has found a solution for the constants,
initialisation and parameters of all involved events. Figure 3 shows a sample of
such paths; the paths ending with a newly covered event (shown in blue) are
tests; the other paths have not yet been useful in covering new events, but may
be extended into paths which cover new target events.

To not distract from the essentials, we present a simplified version of the
algorithm in Fig. 4. The full algorithm, can also deal with target predicates in
addition to target events.

The breadth-first algorithm gives priority to generating new test cases: for a
given depth, it will first try to cover new target events (by appending a target
event t to existing paths p of length depth). For example, when reaching depth
3 in Fig. 3, we would first try [e1, e2, e3, e4] (provided e4 ∈ enable(e3)) and then
[e1, e2, e2, e4] (provided e4 ∈ enable(e2)). Only after all candidates p ← t of a
given length have been processed, will it generate paths which end with an event
e that has already been covered. In Fig. 3 this would be [e1, e2, e3, e1] (provided
e1 ∈ feasibleAfter(e3)) and [e1, e2, e3, e2] and so on. Note that the use of the
auxiliary variable target′ in line 16 of Fig. 4 is to avoid checking an event e a
second time (in case we generated a new test case for it in line 9). For efficiency,
the user can also specify certain events to be final; the algorithm will never try
to extend a path ending with a final event. For example, if e3 were declared
final we would not attempt any path extending [e1, e2, e3]. In our case study, the
target events are the mutants, and all mutants events are also declared final.

6 Experimentation and Comparison

In [15], an earlier version of this robustness testing approach is described. This
paper improves on [15] in the following ways. First, it speeds up the mutation
process. In [15], mutants were generated using the Rodin platform. One mutant
model was generated for each mutant of an event, since ProB could not be
efficiently used on a large model containing all mutants. This could not scale
up as we tried to cover more bytecode instructions in our tests. The model
used in [15] covered 12 instructions of the Java Card bytecode language. We
are now taking into account 62 bytecode instructions using 66 events. It takes
24 hours using Rodin to build the environment for all 921 mutant models gener-
ated from these 66 events. Rodin being based on Eclipse, it generates an internal
representation of each Event-B model, which is very time consuming for large
models. In the new approach, we directly use ProB to produce a single mutant
model containing all mutant events. The 921 mutant events are now generated in
10 min. Negation rules can produce mutants who are unreachable, either because
their guard is unsatisfiable or because it can never be reached from the initial
state. These unreachable mutants were dramatically slowing down the MBT
process of ProB. We have estimated that the approach presented in [15] would
take 2 years to analyze the 921 mutant models. With the new approach, a model
containing all mutant events can be analyzed for MBT in 45 mins. It generates
223 tests (one for each reachable mutant).

Model-Based Robustness Testing in Event-B Using Mutation 143

Fig. 4. MBT Algorithm using enabling analysis

We are also proposing a new Event-B model that takes into account more
features of the Java Card bytecode language. We use a semilattice of types to
cater for type hierarchy. We also take into account operand stack underflows
and access to local variables outside a method’s frame. This leads us to identify
guidelines for modelling in Event-B in the context of robustness testing. Typ-
ing of Event-B variables must be adapted to cater for invalid access. Finally,
we have added new negation rules in order to get 100 % coverage with respect
to a manually derived set of tests for the JCBCV and to cater for quantifiers
in first-order logic. In particular, we take into account the well-definedness of
expressions with partial operators (e.g., function application outside its domain,
like a division by zero).

The following example shows the modelling of instruction aload 3 that pushes
the local variable (localVariables) at index 3 (prm index = 3) on the stack. Event
parameter push 1 is used as an alias to represent the element, which is a Java
type, to push. The guards to mutate (2, 5 and 8) are tagged with t. The
other guards do not need to be mutated, since they represent execution control
information rather than the functional behaviour of the instruction.

Event aload 3 R07 =̂
any

prm index
push 1

where
grd1 : programRunning = TRUE
grd2 t : stackSize < MaxStackSize

144 A. Savary et al.

grd3 : push 1 ∈ TYPES
grd4 : prm index ∈ dom(localVariables)
grd5 t : prm index ≤ MaxLocalVariablesIndex
grd6 : push 1 = localVariables(prm index)
grd7 : prm index = 3
grd8 t : referenceTypes �→ push 1 ∈ Lattice

then
act1 : stackSize := stackSize + 1
act2 : stack := stack ∪ {stackSize �→ push 1}

end

We illustrate below two mutations (amongst 11) of instruction aload 3. We only
show the mutated parts.

Event aload 3 EUT 47 =̂
...
where

grd1 : ...
grd2 t : stackSize = MaxStackSize
grd eut : eutExecuted = FALSE

then
act eut : eutExecuted := TRUE

end

Event aload 3 EUT 53 =̂
...
where

grd1 : ...
grd2 t : stackSize = MaxStackSize
grd8 t : referenceTypes �→ push 1 /∈ Lattice
grd eut : eutExecuted = FALSE

then
act eut : eutExecuted := TRUE

end

These two mutants generate the following two tests.

1. [INIT, aconst null, astore(3), aconst null, aload 3 EUT 47, return]
2. [INIT, aload 3 EUT 53, return]

The first trace does a stack overflow with MaxStackSize = 1. The second one
pushes an uninitialized local variable on the stack and does a stack overflow with
MaxStackSize = 0, which exercises two faults.

The 223 generated tests were executed on the JCBCV provided by Oracle
in the Java Card SDK [13]. It failed on three tests, which are all related to
implicit type conversion on local variables. In the Java Card specification, a
distinction is made between byte and short, but Oracle’s implementation of
the JCBCV permits these implicit castings in these cases, which indeed, do
not cause potential security vulnerability. In [15] a subset of these tests for only

Model-Based Robustness Testing in Event-B Using Mutation 145

twelve instructions were executed on five Java Cards and most of the tests failed;
one fault was exploitable. Oracle’s JCBCV is typically not used on Java Cards,
because it is too big to be embedded in a smart card. It is used for offline
verification before loading bytecode programs on a card.

7 Related Work

MBT has been extensively studied (e.g., [3,4,11,16,17]) for extended state
machines and automata. These notations use a more basic type system, com-
pared to (so called) model-based notation like Z, B, ASM, and Alloy, and thus
use different test criteria than ours. MBT has been applied to model-based nota-
tion on a lesser extent, and mostly for functional testing [18]. Our work seems to
be the first to address robustness testing using mutation by negation. As already
discussed in the introduction, functional MBT cannot cater for robustness test-
ing, unless invalid cases are modelled in detail, which requires significantly more
resources to build formal specifications. In [14], ProB is used to generate func-
tional tests using B specifications; no data coverage criteria are used; structural
coverage is less specific than the one used in this paper. In [6], mutations tar-
geting typical syntactical errors are applied to ASM specifications, in order to
derive robustness tests. However, syntactical errors may generate both valid and
invalid tests, when the mutation does not affect the valid behaviour. In [8],
Alloy is used for applying classical functional MBT techniques and test criteria
for Java programs. Functional MBT has also been applied to Circus for data-flow
coverage [5] using specification traces.

Mutation testing has been extensively studied for programs (e.g., [2,7,9]), in
order to evaluate the quality of test suites. Mutation rules are designed for basic
programming data structures. Mutation testing for extended timed-automata is
used in [3] to detect faults in a car alarm. Mutation rules are guided by typical
modelling errors on automata transitions and guards, including simple negation.

8 Conclusion

Robustness testing aims at finding errors in a system under invalid conditions,
such as unexpected inputs. We have proposed a robustness testing approach
for Event-B based on specification mutation using guard negation and model-
based testing using ProB. Data coverage criteria are described by the negation
rules and structural coverage criteria are driven by the constraint-based checking
of ProB, which was optimized to rapidly exclude unfeasible mutants. These
enhancements allow our approach to scale up to large Event-B specifications
containing hundreds of events. The approach has been applied to type checking
of Java Card programs for a subset of 61 bytecode instructions generating more
than 900 mutants.

We plan to extend our Event-B model of the Java Card language to deal
with branching instructions and object field access. We are also currently working
on the negation of Event-B contexts, which will allow us to generate, using

146 A. Savary et al.

ProB, complex class file structures to test structural verifications. Scaling up is
also an issue in this problem, since the Java Card specification contains a large
number of constraints on class files with complex interrelated data structures.

One lesson learned in this case study is that modelling for robustness testing
is different than modelling for proving the correctness of an implementation. On
the one hand, some invariants must be relaxed in order to cover invalid cases
and guards must be manually tagged to identify what should be negated. On the
other hand, a robustness specification can be simpler to build than a complete
functional specification for implementation correctness proof.

Acknowledgements. This research was supported in part by NSERC (Natural Sci-
ences and Engineering Research Council of Canada).

References

1. Abrial, J.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
2. Agrawal, et al.: Design of Mutant Operators for the C Programming Language.

Technical report, Software Engineering Research Center, Purdue University (1989)
3. Aichernig, B.K., Lorber, F.: Model-based Mutation Testing with Timed Automata.

Technical report IST-MBT-2013-02, TU Graz, pp. 1–21 (2013)
4. Bouquet, F. et al.: A subset of precise UML for model-based testing. In: 3rd Inter-

national Workshop on Advances in Model-based Testing, pp. 95–104. ACM (2007)
5. Cavalcanti, A., Gaudel, M.-C.: Data flow coverage for circus-based testing. In:

Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411, pp. 415–429.
Springer, Heidelberg (2014)

6. Gargantini, A.: Using model checking to generate fault detecting tests. In:
Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 189–206. Springer,
Heidelberg (2007)

7. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

8. Khurshid, S., Marinov, D.: TestEra: specification-based testing of java programs
using SAT. Autom. Softw. Eng. 11(4), 403–434 (2004)

9. Kim, S., Clark, J., McDermid, J.: The Rigorous Generation of Java Mutation
Operators Using HAZOP. University of York, Technical report (1999)

10. Leuschel, M., Butler, M.: Prob: an automated analysis toolset for the b method.
Int. J. Softw. Tools Technol. Transfer 10(2), 185–203 (2008)

11. Mikucionis, M., Larsen, K.G., Nielsen, B.: T-UPPAAL: Online model-based testing
of real-time systems. In: 19th Automated Software Engineering (ASE2004), pp.
396–397 (2004)

12. Oracle Corporation: Java Card 3 Platform Virtual Machine Specification
13. Oracle Corporation: Java Card SDK
14. Satpathy, M., Butler, M., Leuschel, M., Ramesh, S.: Automatic testing from formal

specifications. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp.
95–113. Springer, Heidelberg (2007)

15. Savary, A., Frappier, M., Lanet, J.-L.: Detecting vulnerabilities in java-card byte-
code verifiers using model-based testing. In: Johnsen, E.B., Petre, L. (eds.) IFM
2013. LNCS, vol. 7940, pp. 223–237. Springer, Heidelberg (2013)

Model-Based Robustness Testing in Event-B Using Mutation 147

16. Shafique, M., Labiche, Y.: A systematic review of state-based test tools. Int. J.
Softw. Tools Technol. Transfer 17(1), 59–76 (2015)

17. Utting, M., Legeard, B.: Practical Model Based Testing: A Tools Approach.
Kaufmann, Morgan (2007)

18. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Software Testing Verification and Reliability 22(5), 297–312 (2012)

On the Testability of Properties Patterns

Simone Hanazumi(B) and Ana C.V. de Melo

Department of Computer Science, University of São Paulo, São Paulo, Brazil
{hanazumi,acvm}@ime.usp.br

Abstract. The specification pattern system (SPS) provides a simple
methodology to specify program properties that can be used during soft-
ware testing and verification. The testability concept establishes a con-
nection between temporal properties and program traces to show which
properties classes can actually be verified to reach a success/fail verdict.
In this paper, we combine the SPS with the testability concept, showing
that properties specified with certain patterns in global and local scopes
are testable for programs with finite executions. This result implies that
any property that is specified using this set of SPS patterns and scopes
will receive a success/fail verdict when it is verified against a finite exe-
cution program by a model checker. In addition, we can analyze the pro-
gram and property traces that are obtained in the verification process to
extract data that can guide us in the test cases generation.

Keywords: Program specification · Software testing · Formal
verification

1 Introduction

Property specification is an important mechanism to verify whether a program
behaves according to its specification [1]. However, it is a difficult task: one
should choose the most suitable formal specification language for one’s project,
and, after the choice of a language, one must deliver properties specifications that
are correct and, most importantly, they must be understandable to programmers
that are implementing the system code. To simplify the task of property spec-
ification, Dwyer et al. [2] proposed a set of property patterns and scopes that
can be used to derive several types of system properties. Each pattern is com-
bined with a scope to provide a property formula. These formulas are written
in different formal languages, including linear temporal logic (LTL), and regular
expressions [3]. The set of these combinations of patterns and scopes are called
Specification Pattern System (SPS). Although the SPS formulas are useful for
property specification, no formal proof of their correctness is given [3].

The testability concept [4,5] uses the relations between property specification
traces and the implementation under test (IUT) traces to guarantee that the
property will provide either a fail or a weak-pass verdict (i.e. at least one trace of
the program will satisfy the property). These results (verdict and traces analysis)
can be used for program verification and test cases generation. Assuring that the
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 148–155, 2015.
DOI: 10.1007/978-3-319-22969-0 11

On the Testability of Properties Patterns 149

SPS formulas are testable, we have that all properties derived from the SPS are
also testable. Previous works have shown that some SPS formulas in the global
program scope are testable [4,6]. But no other work has confirmed that these
results could be extended to the SPS formulas for local scopes.

In the present work, we give a formal proof of the correctness of certain
SPS formulas, written in LTL [1,7]. In addition, we extended the testability
results for SPS local scopes. It means that not only properties regarding the
whole computation are testable, but also properties whose validity is restrained
to well defined portions of the program. Hence, we reinforce the role of SPS
in simplifying properties specification, and, by connecting the SPS with the
testability concept we reinforce its use in practice for software validation and
verification.

2 Background

The linear temporal logic (LTL) [1,7] is largely used in formal verification theory
to represent programs expected behavior through properties. A brief overview
of LTL operators and semantics is given in Appendix A.

Specification patterns [2] are formalism independent specification abstrac-
tions defined for finite state verification. The purpose of the SPS is to assist
practitioners in mapping descriptions of system behavior into their formalism of
choice (e.g. LTL), improving the transition of these formal methods to practice.
To define a property using the SPS, one must define first its scope, followed by
the corresponding pattern [2,8].

Scope. It is the extent of the program execution over which the pattern must
hold, and is determined by specifying a starting and an ending state or event for
the pattern. We have five scopes: (i) global, or the whole program execution; (ii)
before the occurrence of state/event R; (iii) after the occurrence of state/event L;
(iv) between the occurrences of states/events L and R; (v) after the occurrence
of state/event L until the occurrence of state/event R.

Pattern. It is a specification abstraction that can be used to represent program
states/events expected behaviors within a scope. The patterns we use in our work
are: (i) absence of state/event P ; (ii) existence of state/event P ; (iii) universality
of state/event P, or the occurrence of P throughout the scope; (iv) precedence,
i.e., a state/event P preceded by a state/event T; (v) response, i.e., a state/event
P is followed by a state/event T.

Table 1 presents the LTL formulas for the SPS existence pattern. For the
complete set of formulas, please refer to [3].

3 Testable Properties

Considering a finite test execution σ and a property that is represented by a
temporal formula ϕ. We can conclude that ϕ is testable if we can reach a
success/fail verdict by analyzing it in the context of a relation between the

150 S. Hanazumi and A.C.V. de Melo

Table 1. SPS - LTL formulas for the existence pattern [3]

Pattern Scope LTL formula

Existence (P) Global ♦(P)

Before R ¬RW(P ∧ ¬R)

After L �¬L ∨ ♦(L ∧ ♦P)

Between L and R �(L ∧ ¬R → (¬RW(P ∧ ¬R)))

After L-Until R �(L ∧ ¬R → (¬RU (P ∧ ¬R)))

set of executions satisfying ϕ and the set of (finite or infinite) executions that
could be produced by continuations of σ [4,5]. Naming the set of ϕ execution
sequences as Tr(ϕ) and the set of the implementation under test (IUT) execution
sequences as Tr(IUT), we can have four relations between Tr(ϕ) and Tr(IUT):
R1: Tr(IUT) ⊆ Tr(ϕ); R2: Tr(ϕ) ⊆ Tr(IUT); R3: Tr(ϕ) = Tr(IUT); R4:
Tr(ϕ) ∩ Tr(IUT) = ∅.

In previous works [4,6], it was established that for programs with finite exe-
cution, the safety, guarantee and recurrence properties are testable if we consider
these properties in the global scope. This means that the SPS patterns that cor-
respond to the safety (absence, universality, precedence), guarantee (existence)
and recurrence (response) properties can be used to derive testable properties
within the global scope [6].

4 Extending the Testable Properties

The safety, guarantee and recurrence properties derived from SPS formulas in
the global scope are testable, but can we extend this result to the other scopes?
To answer this research question, we conducted a study to verify whether the
formulas for local scopes preserve the properties testability. The result of this
study is that all the formulas for the remaining SPS scopes can derive testable
properties.

4.1 Correctness of the Results

To extend the testability results for the SPS formulas in local scopes and prove
the correctness of the achieved results, we have analyzed each formula according
to the LTL semantics (Appendix A). The analysis was done to show that each
formula for a local scope corresponds to its respective property class (safety,
guarantee, recurrence). Since the safety, guarantee and recurrence properties
classes are testable, we can conclude that if the SPS formulas for local scopes
match them semantically, then they are testable. To illustrate our approach, we
present a proof sketch for a SPS formula.

Proposition 1. The safety property represented by the absence pattern is pre-
served in the before R scope. LTL formula: ♦R → (¬P U R).

On the Testability of Properties Patterns 151

Proof. Consider a sequence σ of states s0, s1, . . . sn, where s0 is the initial state
and sn is the final state of the program execution. Then, we have:

(σ, 0) � ♦R → (¬P U R) therefore if (σ, 0) � ♦R then (σ, 0) � (¬P U R)

Using this statement, we can analyze each part of the implication as follows:

Case 1. (σ, 0) � ♦R iff (σ, k) � R for some k, 0 ≤ k ≤ n. This expression
deals only with the occurrence of R, which limits the scope. Thus we can assume
that R occurs at position k;

Case 2. (σ, 0) � ¬P U R iff ∃k, 0 ≤ k ≤ n, s.t. (σ, k) � R and ∀i, 0 ≤
i < k, (σ, i) � ¬P . This expression states that ¬P holds from the start of the
computation until the moment R occurs (R is not included in the considered
interval).

Analyzing both parts of the implication, we have that if R occurs at k, 0 ≤ k ≤ n,
then ¬P occurs ∀i, 0 ≤ i < k. Hence, P never happens until the occurrence of R,
and the safety property is preserved in this scope. Since this is a safety property,
we can conclude that it is also testable.

Results. In the study, we wrote the proof sketches for all the remaining for-
mulas corresponding to a pattern (absence, universality, existence, precedence
and response) in a local scope. The approach used to write the proof sketches is
the same approach we used for the absence pattern in the before R scope. The
following theorems summarize the results we got from the proof sketches.

Theorem 1. The safety property represented by the universality, absence and
precedence patterns is preserved in all SPS scopes.

Theorem 2. The guarantee property represented by the existence pattern is
preserved in all SPS scopes.

Theorem 3. The recurrence property represented by the response pattern is
preserved in all SPS scopes.

To illustrate how we can use properties in local scopes, we use the example
of a train door controller [9]. It simulates a train door operation when the train
departs from a station and arrives at the next station. The methods are: (i)
Start: the train departs; (ii) Alarm: the emergency button is pressed; (iii)
Safe: the train can proceed the trip safely; (iv) Stop: the train arrives at the
next station; (v) Open: the doors are opened; (vi) Close: the doors are closed.
The scenarios that we want to check in this example are:

Open → Close → Start → Alarm → Stop
Open → Close → Safe → Start → Stop
Open → Close → Safe → Start → Open → Alarm → Stop

Using the model checker Java PathFinder (JPF) [10], we can check proper-
ties concerning to this train door controller example [11]. For instance, suppose
that we want to check the property: there is at least one occurrence of Alarm

152 S. Hanazumi and A.C.V. de Melo

Fig. 1. Automaton representation of the property

between the Start and Stop events. This is a guarantee property and can be
specified using the existence pattern in the between scope (Table 1). Replacing L,
P and R by Start, Alarm and Stop respectively, we have the following property
specification: �(Start ∧ ¬Stop → (¬Stop W (Alarm ∧ ¬Stop))).

The automaton representation of the property is presented in Fig. 1. The
ellipses with a thick border are accepting states, while the state with a dashed
border is a rejecting state. The negation is represented by the symbol ‘!’ and the
conjunction by ‘&’. The initial state is marked by a dashed arrow.

Submitting this property to JPF, a fail verdict is reached due to the second
scenario, where there is no occurrence of Alarm between Start and Stop.

Listing 1.1. JPF Partial Output - Fail Verdict
1 JavaPathfinder v7.0 (rev 1155+) - (C) RIACS/NASA Ames Research Center
2 == system under test
3 train.Controller.main()
4 ====================================== search started: 03/15/15 10:17 PM
5 == error 1
6 property.SPSListener
7 == snapshot #1
8 ###
9 ### Traversed Automaton Edges ##########

10 (Node 1, !Start , Node 1)
11 (Node 1, Start , Node 0)
12 (Node 0, !Alarm & !Stop , Node 0)
13 (Node 0, Alarm , Node 2)
14 (Node 2, Stop , Node 1)
15 (Node 0, Stop , Node 3)
16 ### Edges Coverage 75.00
17 == results
18 error #1: property.SPSListener "Property Violation"
19 =================================== search finished: 03/15/15 10:17 PM

Besides the fail verdict, we can observe which automaton edges were covered
during the verification process. Here, one edge is represented by the node that
is the source of the arrow, the edge label, and the node that is the target of
the arrow. The coverage reached is 75 %. Comparing to the automaton of Fig. 1,
we can see that only edges (Node 2, !Stop, Node 2) and (Node 3, true,
Node 3) were not covered. If we want them to be covered, we should create
other scenarios and submit it again to verification or generate test cases. To
achieve a success verdict with this property, we should include in the second
scenario a call to Alarm between Start and Stop and JPF would account for
different edges (see Appendix B).

On the Testability of Properties Patterns 153

5 Concluding Remarks

In this paper we described the process of extending the testability concepts for
the SPS patterns in local scopes. During this process, besides proving that a
broader range of SPS formulas can be used to derive testable properties, we
also give a formal validation of the SPS formulas concerning to the LTL rep-
resentation. By extending the number of SPS formulas that can derive testable
properties, we increase the possibilities of specifying properties that will pro-
vide a success/fail verdict when checked against a finite-execution program with
a model checker. In addition, by verifying this properties we can get property
and program traces coverage, and analyze this information to understand the
program behavior and generate complementary test cases [11].

A tool support for the property specification and verification has been already
provided [11]. Future work includes the extension of these results for other pat-
terns (e.g. precedence chain) and for programs with infinite execution.

Acknowledgments. This project has been funded by the State of São Paulo Research
Foundation (FAPESP) - Processes: 2011/01928-1, 2012/23767-2, 2013/22317-6.

A Linear Temporal Logic (LTL)

The linear temporal logic (LTL) [1,7] is largely used in formal verification theory
to represent programs expected behavior through properties. Given a model σ
and temporal formulas ϕ and γ, an inductive definition for the notion of a
temporal formula ϕ holding at a position j ≥ 0 in σ, denoted by (σ, j) � ϕ
(satisfaction relation), is presented below.

(σ, j) � ϕ ⇔ sj � ϕ, i.e.,
ϕ is evaluated locally using the interpretation given by sj

(σ, j) � ¬ϕ ⇔ (σ, j) � ϕ
(σ, j) � ϕ ∨ γ ⇔ (σ, j) � ϕ or (σ, j) � γ
(σ, j) � ©ϕ ⇔ (σ, j + 1) � ϕ (Next operator)
(σ, j) � ϕ U γ ⇔ for some k ≥ j, (σ, k) � γ, and for every i s.t. j ≥ i > k,

or (σ, i) � ϕ (Until operator)

Additional temporal operators can be defined as follows:

♦ϕ = True U ϕ (Eventually operator)
�ϕ = ¬♦¬ϕ (Always/Henceforth operator)
ϕ W γ = �ϕ ∨ (ϕ U γ) (Weak Until operator)

B JPF - New Example

Here, consider the same scenarios and the same property of the example pre-
sented in Sect. 4:

154 S. Hanazumi and A.C.V. de Melo

�(Start ∧ ¬Stop → (¬Stop W (Alarm ∧ ¬Stop)))

To achieve a success verdict with this property, we should include in the
second scenario of the example a call to Alarm between Start and Stop. Then,
JPF will proceed with the verification normally, and we could see a slight change
in the automaton edges coverage since the paths that would be traversed in this
case might be different from the previous example.

Listing 1.2. JPF Partial Output - Success Verdict
1 JavaPathfinder v7.0 (rev 1155+) - (C) RIACS/NASA Ames Research Center
2 == system under test
3 train.Controller.main()
4 ====================================== search started: 03/15/15 10:26 PM
5 ###
6 ### Traversed Automaton Edges ##########
7 (Node 1, !Start , Node 1)
8 (Node 1, Start , Node 0)
9 (Node 0, !Alarm & !Stop , Node 0)

10 (Node 0, Alarm , Node 2)
11 (Node 2, Stop , Node 1)
12
13 ### Edges Coverage 62.50
14 Property Satisfied
15 == results
16 no errors detected
17 ===================================== search finished: 03/15/15 10:26 PM

Comparing to the previous output (Listing 1.1), the coverage is 62.50 %
since the edge (Node 0, Stop, Node 3) was not traversed due to the no occur-
rence of property violation. If a 100 % coverage was desirable, other scenarios
and the generation of complementary test cases should be considered.

References

1. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems -
Specification. Springer, New York (1992)

2. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of ICSE 1999, pp. 411–420. ACM, New
York (1999)

3. Specification Patterns: March 2015. http://patterns.projects.cis.ksu.edu/
4. Nahm, R., Grabowski, J., Hogrefe, D.: Test case generation for temporal properties.

Technical report, Bern University (1993)
5. Falcone, Y., Fernandez, J.-C., Jéron, T., Marchand, H., Mounier, L.: More testable

properties. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS,
vol. 6435, pp. 30–46. Springer, Heidelberg (2010)

6. Hanazumi, S., de Melo, A.C.V.: A classification of test purposes based on testable
properties. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha,
A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol.
9155, pp. 418–430. Springer, Heidelberg (2015)

7. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, Cambridge (2008)

8. Salamah, S., Gates, A.Q., Roach, S., Mondragon, O.: Verifying pattern-generated
LTL formulas: a case study. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,
p. 200. Springer, Heidelberg (2005)

http://patterns.projects.cis.ksu.edu/

On the Testability of Properties Patterns 155

9. Zoppi, E., Braberman, V., de Caso, G., Garbervetsky, D., Uchitel, S.: Contrac-
tor.net: inferring typestate properties to enrich code contracts. In: Proceedings of
TOPI 2011, pp. 44–47. ACM, New York (2011)

10. Java PathFinder: March 2015. http://babelfish.arc.nasa.gov/trac/jpf/
11. Hanazumi, S., de Melo, A.C.V., Păsăreanu, C.S.: From testing purposes to formal

JPF properties. In: Java PathFinder Workshop. ACM (2014)

http://babelfish.arc.nasa.gov/trac/jpf/

Certification

Speed Up Configurable Certificate Validation
by Certificate Reduction and Partitioning

Marie-Christine Jakobs(B)

University of Paderborn, Paderborn, Germany
marie.christine.jakobs@upb.de

Abstract. Before execution, users should formally validate the correct-
ness of software received from untrusted providers. To accelerate this val-
idation, in the proof carrying code (PCC) paradigm the provider delivers
the software together with a certificate, a formal proof of the software’s
correctness. Thus, the user only checks if the attached certificate shows
correctness of the delivered software.

Recently, we introduced configurable program certification, a generic,
PCC based framework supporting various software analyses and safety
properties. Evaluation of our framework revealed that validation suf-
fers from certificate reading. In this paper, we present two orthogo-
nal approaches which improve certificate validation, both reducing the
impact of certificate reading. The first approach reduces the certificate
size, storing information only if it cannot easily be recomputed. The
second approach partitions the certificate into independently checkable
parts. The trick is to read parts of the certificate while already checking
read parts. Our experiments show that validation highly benefits from
our improvements.

1 Introduction

Software produced by unknown, untrusted providers is executed on our devices.
To increase the trust into these software products, we should verify their cor-
rectness. Unfortunately, verification of industrial software takes a considerable
amount of resources, e.g. time. Thus, verification is not applicable to down-
loaded software which should be executed instantly. To overcome this problem
proof carrying code (PCC) [14] was introduced. The idea of PCC is that the
code producer does the costly verification resulting in a safety proof, while the
consumer simply checks the producer’s safety proof attached to the code.

Recently, we introduced a generic PCC framework named configurable pro-
gram certification [12] which is built on the configurable program analysis (CPA)
framework [7]. In contrast to most PCC approaches, our framework is con-
figurable to the specific analysis task. Figure 1 depicts the overall process of
our framework. First, the producer selects an analysis appropriate to prove the

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 159–174, 2015.
DOI: 10.1007/978-3-319-22969-0 12

160 M.-C. Jakobs

Fig. 1. Overview of configurable program certification

desired safety property ϕ. The selected analysis is given by a CPA in which the
abstract domain of the analysis as well as its execution are described. Then, the
producer performs a reachability analysis on program P steered by the CPA.
This analysis produces an abstraction, a set of reachable abstract states. If the
abstraction can be used to prove safety of program P w.r.t. property ϕ, the
abstraction becomes the certificate and is sent to the consumer together with
the program. Receiving, a possibly corrupted certificate C ′ and program P ′, the
consumer validates that certificate C ′ witnesses safety of program P ′ w.r.t. ϕ.
To be compatible with the analysis, the consumer derives its validation con-
figuration, the configurable certificate validator (CCV) [12], from the analysis
configuration (CPA).1 Next, the validation algorithm, steered by the CCV and
performed on program P ′ and certificate C ′, checks if C ′ overapproximates the
behavior of P ′ and if C ′ is safe w.r.t. property ϕ.

We proved that configurable program certification is tamper-proof, i.e. valida-
tion fails with output no if the received program P ′ does not fulfill the property ϕ.
Moreover, we showed that configurable program certification is relative complete
which means that validation will succeed with output yes if certificate C ′ wit-
nesses P ′’s safety, program and certificate are not corrupted (P = P ′, C = C ′)
and the producer run the reachability analysis on P to get certificate C.

Evaluation [12] of the configurable program certification on various analyses
and programs revealed that certificate reading takes at least 20 % of the vali-
dation time. The reason is that certificates can become much larger than the
program, a problem tackled by many specific PCC approaches, e.g. [1,5,13,15].
In the following, we present two orthogonal techniques to reduce the impact of
certificate reading in our generic PCC framework. The first approach reduces the
size of the certificate, storing information only if it cannot easily be recomputed.
It is based on the ideas of [1,2,17] but supports further analysis techniques. The
second approach partitions the certificate into essentially independently check-
able parts and reads parts of the certificate while checking already read parts.
For both techniques we prove that they are still tamper-proof and study under
which conditions they remain relative complete. Moreover, we experimentally

1 Note, that the consumer adopts the CPA’s definition of abstract domain and coverage
check but uses its own, trusted or even verified implementation.

Speed Up Configurable Certificate Validation by Reduction and Partitioning 161

Fig. 2. Program ABSVALADD, its CFA and ARG constructed for analysis RD of
ABSVALADD started in e0 = (l0, {(a, ?), (b, ?), (r, ?)})

demonstrate the advantages of our two techniques and their combination over
the original approach, thereby looking at various analyses and programs.

2 Background

2.1 Programming Language and Its Semantics

For the sake of presentation, we restrict the programming language to a simple
imperative language which is limited to assignments and assume statements on
integer variables.2 Following the program notation used in Configurable Software
Verification [7], a program is a control flow automaton (CFA) P = (L,GP , l0),
which consists of a set L of locations, a set GP ⊆ L×Ops×L of control flow edges
and a program entry location l0 ∈ L. The set Ops contains all possible operations
of a program and V is the set of program variables – all variables which occur in
an operation op of an edge (·, op, ·) ∈ GP . Figure 2 shows our example program
ABSVALADD, its CFA and an abstract reachability graph (ARG) explained later.
The CFA contains four assignment edges, one for each assignment, and two
assume edges per if statement, reflecting the two evaluations of the condition.

The semantics of a program P = (L,GP , l0) is defined in terms of a labeled
transition system T (P) = (C,GP ,→) described by the set C of concrete states,
the labels GP (the control flow edges of program P) and a transition relation
→⊆ C × GP × C. We write c

g→ c′ for (c, g, c′) ∈→. A concrete state c assigns
to the program counter pc a location c(pc) ∈ L and to any program variable
v ∈ V a value c(v), either an integer value or ⊥C (any value/not initialized).

A transition c
(l,op,l′)−−−−−→ c′ is part of the transition relation iff c(pc) = l and

c′(pc) = l′ and either op is an assume statement, the variable values stay the
same, ∀v ∈ V : c(v) = c′(c), and op evaluated under c returns true or op is an
assignment, op ≡ x := expr, the value of variable x is updated to the evaluation
of expr under c, c′(x) = c(expr), and for all other variables the values stay

2 Our implementation in CPAchecker [8] supports programs written in C.

162 M.-C. Jakobs

the same, ∀v ∈ V \ {x} : c(v) = c′(c). A concrete state is reachable from an
initial set of states I ⊆ C in program P , denoted by c ∈ ReachP (I), iff a path
c0

g0→ c1 · · · gn−1→ cn exists s.t. c0 ∈ I, cn = c and ∀0 ≤ i < n : ci
gi→ ci+1. Finally,

we are interested in program safety w.r.t. a set of initial states I ⊆ C and a
property ϕ ⊆ C, a set of safe states. A program P is safe if it can only reach
safe states when started in a state ci ∈ I, formally ReachP (I) ⊆ ϕ.

2.2 Configurable Program Analysis [7]

In configurable program certification [12] the producer uses configurable program
analyses (CPAs) [7] for verification. A CPA is a customized, abstract interpret-
ation based program analysis. The CPA’s abstract domain and transfer function,
a function computing the abstract successors, describe the abstract interpreter.
Furthermore, to determine the analysis technique, e.g. dataflow analysis or model
checking, a CPA defines a merge operator (when and how to combine abstract
states) and a stop operator (when to finish exploration of an abstract state). We
extend the CPA definition of [7] by a safety check. Hence, a CPA for a program
P and a safety property ϕ ⊆ C is a five-tuple A = (D,�,merge, stop, safeϕ)
containing.

1. An abstract domain D = (C, E , �·�) consisting of a set C of concrete states, a
semi-lattice E = (E,	,⊥,
,�) on a set of abstract states E, where � is called
join operator, and a concretization function �·� : E → 2C which assigns every
abstract state e ∈ E its meaning. For soundness of the CPA A the abstract
domain must fulfill the following properties:

�	� = C and �⊥� = ∅ (1a)

∀e, e′ ∈ E : e
 e′ =⇒ �e� ⊆ �e′� and ∀e, e′ ∈ E : �e� ∪ �e′� ⊆ �e � e′� (1b)

We extend
 to sets of abstract states and write S1
 S2 iff S1, S2 ⊆ E and
∀e ∈ S1∃e′ ∈ S2 : e
 e′.

2. A transfer function �⊆ E ×GP ×E defining the abstract semantics3. Based
on the control flow edges GP it computes the abstract successors. For sound-
ness of the CPA it must comply to the following requirement:

∀e ∈ E, g ∈ GP : {c′ | c ∈ �e� ∧ c
g→ c′} ⊆

⋃

(e,g,e′)∈�
�e′�, (2)

3. A merge operator merge: E × E → E, a total function specifying how the
information of two abstract states is to be combined. For soundness its result
must be at least as abstract as its second operand:

∀e, e′ ∈ E : e′
 merge(e, e′), (3)

3 More formally, we have one transfer function per program, i.e., a function �P .
Following [7] we omit P here, and assume it to be clear from the context, both as
parameter to � and as input to the algorithms.

Speed Up Configurable Certificate Validation by Reduction and Partitioning 163

4. A total termination check operator stop : E×2E → B examining if an abstract
state is covered by a set of abstract states and ensuring that

∀e ∈ E,S ⊆ E : stop(e, S) =⇒ �e� ⊆
⋃

e′∈S

�e′�, (4)

5. A total safety check safeϕ : 2E → B determining whether a set of abstract
states S is safe w.r.t. a property ϕ and guaranteeing that

∀S ⊆ E : safeϕ(S) =⇒
⋃

e∈S

�e� ⊆ ϕ. (5)

We demonstrate the CPA concept with a reaching definitions analysis [16]
for our example program ABSVALADD and safety property ϕRD = {c|c(a) = ⊥C}
(input variable a not overwritten).

Example 1. A reaching definitions analysis computes for every program location
and any program variable v the potential definition points of v. Abstract states
are pairs (l, R) of location l ∈ L and a set of definitions R ⊆ V × {(L × L)∪?}.
A definition is a pair of variable and a definition point (l, l′) ∈ L × L (definition
on an edge (l, ·, l′)) or ? (undefined). The boxes in Fig. 2 are examples for such
abstract states. An abstract state e′ = (l′, R′) is more abstract than e = (l, R),
e
 e′, iff l = l′ and R ⊆ R′. The transfer function �RD computes successors
of (l, R) for CFA edges starting in l. An assume edge g = (l, expr, l′) changes
the location, (l, R)

g→ (l′, R). An assignment g = (l, v := expr, l′) updates the
location and replaces the definitions for v in R by (v, (l, l′)), (l, R)

g→ (l′, R′)
where R′ = {(var, d) | (var, d) ∈ R ∧ var �= v} ∪ {(v, (l, l′))}. The termination
check operator stop

RD
(e, S) = ∃e′ ∈ S : e
 e′ checks if e is covered by a state

in S. The safety check safeRD,ϕRD
(S) = ∀(·, R) ∈ S : ¬∃(a, d) ∈ R : d �= ? proves

that any abstract state contains only definition point ? for variable a. Like any
dataflow analysis the information at same locations is combined, merge

RD
(e, e′) =

(l, R ∪ R′) if e = (l, R) and e′ = (l, R′) and merge
RD

(e, e′) = e′ otherwise.

A CPA only defines the abstract interpreter and how to steer the meta reach-
ability analysis (CPA algorithm [7]). The CPA algorithm shown in Algorithm 1
is slightly adapted to our extended CPA concept. For an input CPA A for a
program P and property ϕ the CPA algorithm computes abstraction reached,
an overapproximation of the reachable state space (the certificate in configurable
program certification [12]). In line 11 it returns the abstraction and whether this
abstraction is safe w.r.t. ϕ. In line 5 it tries to combine e′ with an already
explored state. If the exploration results of different branches are integrated,
merge(e′, e′′) will return e′′′ �= e′′. In this case, stop(e′, reached) typically returns
true in line 9. The boxes in Fig. 2 show the abstraction reached returned by CPA
algorithm for initial abstract state e0 = (l0{(a, ?), (b, ?), (r, ?)}) and CPA RD for
program ABSVALADD.

In practice, the tool CPAchecker [8] does not only compute the abstraction
reached, but also an abstract reachability graph (ARG), which we require for our

164 M.-C. Jakobs

Algorithm 1. CPA algorithm [7]

Input: CPA A = ((C, (E,�,⊥,�,�), �·�),�,merge, stop, safeϕ), e0 ∈ E
Output: abstraction (the reachable abstract states), flag if abstraction is safe
1 waitlist:={e0}; reached:={e0};
2 while waitlist �= ∅ do
3 pop e from waitlist;
4 for each e′, e′′ with (e, ·, e′) ∈� ∧e′′ ∈ reached do
5 enew := merge(e′, e′′);
6 if enew �= e′′ then
7 waitlist := (waitlist ∪ {enew}) \ {e′′};
8 reached := (reached ∪ {enew}) \ {e′′};

9 if ¬stop(e′, reached) then
10 waitlist := waitlist ∪ {e′}; reached := reached ∪ {e′};

11 return (reached, safeϕ(reached))

optimization techniques. An ARG RA,P = (N,GR, root) for a CPA A for a
program P consists of a set of abstract states N ⊆ EA (the elements of the
abstraction reached), a set of edges GR ⊆ N ×GP ×N labeled by program edges
and a root ∈ N , the initial abstract state e0 or the state e ∈ reached in which
e0 was merged into in line 5. An edge between two nodes exists if the nodes
are (in)directly connected by the transfer function (indirectly due to merges
in line 5 or (partial) coverage determined in line 9). Figure 2 shows the ARG
constructed for initial abstract state e0 = (l0, {(a, ?), (b, ?), (r, ?)}), CPA RD and
program ABSVALADD. For the sake of readability the edges are only labeled by
operations. The dashed line does not belong to the ARG and will be explained
later. Furthermore, if CPAchecker returns true (property proven) using CPA A

for P and initial abstract state e0, it will guarantee the following well-formedness
criteria for the constructed ARG RA,P which we require later.

Rootedness. The root covers the initial state e0, e0
 root.
Reachability. For every node e a path from root to e exists.
Soundness. All transfer function successors e′ of an ARG node e and a CFA

edge g are covered by e’s ARG successors. If e′ was added in line 10 while
considering (e, g, e′) ∈�, e′ becomes a successor of e which may be replaced
due to merges. An edge (e, g, e′′) s.t. e′
 e′′ must exist. In the second case
e′ is covered in line 9, a subset S of the explored states (indegree≥ 1 or root)
exists s.t. stop(e′, S). Node e gets connected to all states e′′′ ∈ S. Due to
merges states of S may be replaced resulting in S′ � S. For any e′′ ∈ S′

an edge (e, g, e′′) must exist and indegree of e′′ > 1 or e′′ = root. Formally,
∀e ∈ N, g ∈ GP : (e, g, e′) ∈�A =⇒ (∃(e, g, e′′) ∈ GR ∧ e′
A e′′) ∨ ∃S ⊆
EA : S
A {e′′ | (e, g, e′′) ∧ indegree(e′′) > 1 ∨ e′′ = root} ∧ stop(e′, S).

Safety. The ARG nodes N provably represent safe states, safeϕ,A(N) = true.

So far, we gave an overview of configurable program certification, explained a
program’s semantics and how to verify its safety. The next section describes our

Speed Up Configurable Certificate Validation by Reduction and Partitioning 165

first improvement of the configurable program certification which reduces the
certificate size.

3 Certificate Reduction

Our first approach intends to reduce the certificate’s size, thereby decreasing
the certificate reading effort. The certificate size is dictated by the abstraction
reached, the set of abstract states computed by the CPA algorithm. Based on
the key observation that some of the abstract states stored in the certificate are
recomputed during validation and can be eliminated from the certificate, we will
reduce the number of abstract states in the certificate. In particular, we try to
eliminate those abstract states e′ which are direct successors of other states e
in the certificate because these states e′ are recomputed while checking that the
certificate overapproximates the program’s behavior. In our example abstraction
(the boxes in Fig. 2), the abstract states (l1, . . .), (l2, . . .), (l4, . . .) and (l5, . . .)
are direct successors of their predecessor in the ARG and should be removed.

A reduced certificate stores a subset of the abstraction reached and the size of
the abstraction reached which prevents the consumer from recomputing too many
abstract successors in case of certificate/program change. From the consumer’s
view, a reduced certificate is a set S of abstract states plus a natural number n.

Definition 1. Let A be a CPA. A reduced certificate rCA is a pair of a set of
abstract states and a natural number, rCA = (S, n) ∈ 2EA × N.

Consider reduced certificate rCRD = ({(l3, {(a, ?), (b, ?), (r, (1, 3)), (r, (2, 3)))}}, 2)
for our example. Adding the top state 	RD yields an abstraction which is not
safe. Adding any other state (l, ·) �= 	RD results in an abstraction which does
not cover those reachable states of ABSVALADD which consider program locations
l′ s.t. l′ �= l3 and l′ �= l. Thus, we must define when a reduced certificate is valid.

Definition 2. Let P ′ be a program, e0 an initial abstract state and ϕ a property.
A reduced certificate rCA = (S, n) is valid for P ′ and ϕ if the set of abstract
states S can be extended to a full certificate CA s.t.

1. S ⊆ CA ⊆ EA, |CA| = n and CA is safe w.r.t. ϕ,
2. CA overapproximates P ′’s reachable states, ReachP ′(�e0�) ⊆ ⋃

e∈CA
�e�.

Next, we describe how the producer constructs the reduced certificate. With
regard to later parallelization, we do not want to impose a validation order on the
abstract states in the certificate. Thus, we keep all abstract states ec which (par-
tially) cover at least two successors of states in the abstraction. These states ec

are the states with more than one incoming edge in the well-formed ARG, nodes
(l3, . . .), (l6, . . .) for our example. Additionally, we store the root of the ARG
to easily check that the initial abstract state is covered. In a well-formed ARG
nodes ed �= root with indegree≤ 1, have exactly one incoming edge (e′, g, ed) s.t.
exists (e′, g, e′′) ∈� and e′′
 ed. In this case recomputing the successor of e′

and edge g gives us a more precise result e′′. Thus, we improve our basic idea and

166 M.-C. Jakobs

Algorithm 2. Validation algorithm for reduced certificates

Input: CCV CA = ((C, (E,�,⊥,�,�), �·�),�, stop, safeϕ), initial abstract state
e0 ∈ E, reduced certificate pCA = (S, n) ∈ 2EA × N

Output: Boolean indicator, if reduced certificate rCA is valid.
1 if ¬stop(e0, S) then
2 return false;
3 waitlist:= S; reached:= S;
4 while waitlist �= ∅ ∧ |reached| ≤ n do
5 pop e from waitlist;
6 for each e′ with (e, ·, e′) ∈� do
7 if ¬stop(e′, S) ∧ e′ /∈ reached then
8 waitlist := waitlist ∪ {e′};reached := reached ∪ {e′};

9 return safeϕ(reached) ∧ |reached| ≤ n;

eliminate all nodes ed. Consequently, the producer constructs certificate (S, n)
from the well-formed ARG RA,P = (N,GR, root), setting abstraction size n to
|N | and adding to set S the root and all nodes with indegree greater one. For
our example, this gives us reduced certificate rC ′

RD
= ({(l0, {(a, ?), (b, ?), (r, ?)}),

(l3, {(a, ?), (b, ?), (r, (1, 3)), (r, (2, 3))}), (l6, {(a, ?), (b, ?), (r, (4, 6)), (r, (5, 6))})}, 7),
which contains only three of the seven states in the abstraction. Note that we
call sets of abstract states S ⊆ N consistent with ARG RA,P = (N,GR, root) if
S contains at least root and all nodes with indegree greater one.

We now explain how reduced certificates like rC ′
RD

are validated. Similar to
the configurable program analysis, we use a meta algorithm (Algorithm 2) which
is configured by a configurable certificate validation (CCV) CA derived from the
analysis configuration (CPA A). Basically, the CCV is the CPA configuration
without the merge operator. Given a reduced certificate (S, n), Algorithm 2 first
tries to complete the set S to an overapproximation of program P ′’s state space.
In line 1 it checks that S covers at least the initial program states given by e0.
Thereafter, in line 3–8 it iteratively increases its current approximation reached
until it is closed under abstract successor computation or too large. In lines 4–8
for every element in reached its successors are computed once and if one is not
covered by reached – assuming that S is sufficient to check coverage – it is added
to the approximation reached. Finally, it checks if the approximation is safe and
returns whether a safe, overapproximating completion was found.

Like any PCC approach our reduced certificate approach must be tamper-
proof, i.e., it must not accept unsafe programs P ′. Since certificates which are
valid for P ′ and ϕ guarantee this property, our validation of a reduced certificate
must not accept invalid certificates. This is stated by Theorem 1 which we proved.

Theorem 1 (Soundness). If Algorithm 2 executed with program P ′, initial
abstract state e0, CCV CA = (D,�, stop, safeϕ) and reduced certificate rCA =
(S, n) returns true, then rCA is valid for P ′ and ϕ.

Speed Up Configurable Certificate Validation by Reduction and Partitioning 167

To ensure that our reduced certificate approach works properly, it must be rela-
tive complete, i.e., validation must accept any certificate (S, n) for program P
which is generated from well-formed ARG RA,P = (N,GR, root) s.t. S is consis-
tent with RA,P and n = |N |.

Like in [12], we cannot guarantee relative completeness for any validation
configuration (CCV). Its operators may be too inexact, e.g. during analysis oper-
ator stop need not detect that elements in reached are covered by this set. Next,
we explain the five properties a CCV must ensure for relative completeness. If
the producer does not delete any node from the abstraction, Algorithm 2 will
behave like the certificate validator in [12] which considers the complete abstrac-
tion. Hence, the CCV must ensure the two relative-completeness properties from
[12]. Operator stop is (1) consistent with partial order, ∀S ⊆ EE , e, e′ ∈ EE :
e
 e′ ∧ e′ ∈ S ⇒ stop(e, S), and (2) monotonic w.r.t. sets of abstract states,
∀S, S′ ⊆ EE , e ∈ EE : S
 S′ ∧ stop(e, S) =⇒ stop(e, S′). The remaining
three properties are needed because we removed abstract states e from the cer-
tificate which cannot be recomputed directly, i.e., in the ARG e has exactly
one incoming edge (e′, g, e) and e is more precise than the transfer successor
of e′ and g. A more precise state is recomputed. The recomputed abstrac-
tion can become more precise. Thus, (3) the safety check must be monotonic,
∀S, S′ ⊆ EE : S
 S′ ∧ safeϕ(S′) =⇒ safeϕ(S). If we recomputed a state e′

which is more precise than the deleted state e, we want to stop exploration
of e′ in validation if we stopped exploration of e in the analysis. We need
that (4) operator stop is monotonic w.r.t. abstract states, ∀S ⊆ EE , e, e′ ∈
EE : e
 e′ ∧ stop(e′, S) =⇒ stop(e, S). Also, if we add e′ for exploration,
it should not give us more abstract successors than e. We demand that (5)
the transfer function is monotonic, ∀e, e′ ∈ EE , g ∈ GP : (e, g, e′′) ∈� ∧
e
 e′ =⇒ ∃(e′, g, e′′′) ∈� ∧e′′
 e′′′. Many implemented analyses fulfill
(1)–(5) but (1), (2) and (4) may be a problem for highly optimized analysis,
see [12].

We call a configurable certificate validator (CCV) satisfying properties (1)–
(5) well-behaving. Given a well-behaving CCV, our reduced certificate approach
becomes relative complete. This is stated by Theorem 2 which we proved.

Theorem 2 (Relative Completeness). If the CPA algorithm executed with
CPA A, program P and initial abstract state e0 returns (N, true) and constructs
well-formed ARG RA,P = (N,GR, root), the generated certificate rCA = (S, |N |)
ensures that S is consistent w.r.t. RA,P and the derived CCV CA is well-behaving,
then Algorithm 2 executed with CA, program P ′ = P , e0 and rCA returns true.

4 Certificate Partitioning

The second, orthogonal approach uses the observation that each step executed
to check that a certificate overapproximates a program’s behavior, the major
effort in validation, considers a small subset of the certificate. With this insight
we divide our (reduced) certificate into disjoint parts and check a part as soon

168 M.-C. Jakobs

as it is read and all previously read parts are checked. We no longer wait until
the complete certificate is read and hide reading time behind validation time.

A partitioned certificate consists of a set of certificate parts. A part (Sin, Senb)
contains the elements Sin ⊆ reached of the part and a set Senb of external
neighbors, i.e., those states in reached \ Sin which cover abstract successors of
states considered by the part. Additionally, the size n of the abstraction reached
is saved in the partitioned certificate. The size n prevents the consumer from
recomputing too many abstract successor in case of certificate/program change.

Definition 3. Let A be a CPA. A partitioned certificate pCA is a pair of a
set of parts, tuples of two sets of abstract states, and a natural number, pCA =
(TS×S , n) ∈ 22

E
A×2EA × N.

Again, not all partitioned certificates are valid. Since validation of a partitioned
certificate can be reduced to validation of a reduced certificate – first read the
complete certificate and then consider the whole certificate–, we will define a
valid partitioned certificate based on the definition of a valid reduced certificate.

Definition 4. Let P ′ be a program, e0 an initial abstract state and ϕ a prop-
erty. A partitioned certificate pCA = (TS×S , n) is valid for P ′ and ϕ if reduced
certificate rCA = (

⋃
(S,·)∈TS×S

S, n) is valid for P ′ and ϕ.

The partitioned certificate is constructed from an ARG. First, we fix the set Nsub

of abstract states we want to store. We use the states of the reduced certificate –
root and nodes with indegree>1 – if we combine our two approaches and all ARG
nodes otherwise. Since ARG nodes which are not in Nsub are treated in the same
partition as their single predecessor, we associate them with the closest ancestor
in Nsub. From now on, we consider all nodes e in Nsub as super nodes which
contract e and all nodes associated with e. Note that only neighbors of super
nodes may become external neighbors. To identify neighbors of super nodes, we
build an overlay graph consisting of nodes Nsub and edges (n, n′) for which an
ARG path n, n0, n1, . . . , nm, n′ from n to n′ exists s.t. all intermediate nodes ni

are not part of Nsub. If Nsub contains all ARG nodes, the overlay graph is in
principal the ARG. Next, we formally define an overlay graph.

Definition 5. Let RA,P = (N,GR, root) be an ARG. The overlay graph of RA,P

induced by subset Nsub ⊆ N is a three-tuple O(RA,P , Nsub) = (Nsub, GO, root)
with edges GO = {(n, n′) | n, n′ ∈ Nsub ∧∃n0n1 . . . nm : n0 = n∧nm = n′ ∧∀0 ≤
i < m : (ni, ·, ni+1) ∈ GR ∧ (ni /∈ Nsub ∨ i = 0)}.
To assign the abstract states in Nsub to one of the certificate parts, we compute
a disjoint partition PA = {p1, . . . , pn} of Nsub s.t. n ≥ 2 and each element pi has
nearly the same size. Partition element pi contains the abstract states of part
i. The dashed line in Fig. 2 gives us a partitioning of our example. So far, we
randomly assign states to partition elements pi. In future, we want to compute
balanced graph partitionings [3] of overlay graphs to determine PA. Since we
can use the overlay graph to identify the external neighbors of each part i – every
successor of an edge (n, n′) which starts but does not end in pi (n ∈ pi, n

′ /∈ pi) –,
we have everything at hand to construct our partitioned certificate.

Speed Up Configurable Certificate Validation by Reduction and Partitioning 169

Algorithm 3. Validation algorithm for partitioned certificates

Input: CCV CA = ((C, (E,�,⊥,�,�), �·�),�, stop, safeϕ), initial abstract state

e0 ∈ E, partial, partitioned certificate pCA = (TS×S , n) ∈ 22EA×2EA × N

Output: Boolean indicator, if partial, partitioned certificate pCA is valid.
1 waitlist:= ∅; reached:= ∅;
2 for each (Sin(pi), Senb(pi)) ∈ TS×S do
3 waitlist:= waitlist ∪ Sin(pi); reached:= reached ∪ Sin(pi);
4 while waitlist �= ∅ ∧ |reached| ≤ n do
5 pop e from waitlist;
6 for each e′ with (e, ·, e′) ∈� do
7 if ¬stop(e′, Sin(pi) ∪ Senb(pi)) ∧ e′ /∈ reached then
8 reached := reached ∪ {e′}; waitlist := waitlist ∪ {e′};

9 if ¬stop(e0,⋃(S,·)∈TS×S
S) then

10 return false;
11 return safeϕ(reached) ∧ |reached| ≤ n ∧⋃(·,S)∈TS×S

S ⊆ ⋃(S′,·)∈TS×S
S′;

Definition 6. Let O(RA,P , Nsub) = (Nsub, GO, root) be an overlay graph of
ARG RA,P = (N,GR, root) for CPA A and PA = {p1, . . . , pn} a partition of
Nsub. The partitioned certificate constructed from O(RA,P , Nsub) and PA is
pCA(O(RA,P , Nsub), PA) = (TS×S , |N |), where TS×S =

⋃
pi∈PA{(pi, {n | n′ ∈

pi ∧ n /∈ pi ∧ (n′, n) ∈ GO})}.
If we consider the partitioning shown in Fig. 2 and store all ARG nodes, we get
partitioned certificate pCRD = ({({(l0, . . .), (l1, . . .), (l2, . . .)}, {(l3, . . .)})
({(l3, . . .), (l4, . . .), (l5, . . .), (l6, . . .)}, {})}, 7).

Partitioned certificates like pCRD are also validated by a meta algorithm
(Algorithm 3) which is again configured by a CCV. Note that Algorithm 3 only
shows certificate validation. We assume that certificate reading is executed con-
currently, parts are read in the same order in which they are considered in line 2
and the ith iteration of the for loop starts after the ith part is read. Algorithm 3
tries to complete the partition elements to an abstraction reached which overap-
proximate program P ′’s state space. Line 9 checks that the initial states given
by e0 are covered. In lines 4–8 each part is extended until either too many states
are recomputed or it is closed under successor computation assuming that the
external neighbors do not have successors. If all part extensions are closed under
successor computation, their combination reached is also closed under successor
computation. But since external neighbors may have successors, we must ensure
in line 11 that successors of external neighbors are checked in a different part.
Finally, we report if reached is known to be a safe overapproximation.

As before, our partitioned certificate approach must be tamper-proof, i.e., it
must not accept unsafe programs P ′. Since certificates which are valid for P ′ and
ϕ guarantee that P ′ is safe w.r.t. ϕ, our validation of a partitioned certificate
must reject invalid certificates. This is declared by Theorem 3 which we proved.

170 M.-C. Jakobs

Theorem 3 (Soundness). If Algorithm 3 executed with program P ′, initial
abstract state e0, CCV CA = (D,�, stop, safeϕ) and partitioned certificate pCA =
(TS×S , n) returns true, then pCA is valid for P ′ and ϕ.

Again, to ensure that our partitioned certificate approach works properly, its
validation must be relative complete, i.e., validation must accept any partitioned
certificate for program P which is generated from a well-formed ARG RA,P and
a partition of a set Nsub s.t. Nsub is consistent with RA,P . Since partitioned
certificate validation (Algorithm 3) behaves like reduced certificate validation
(Algorithm 2) if the certificate contains the only part (Nsub, ∅), our partitioned
certificate approach must use well-behaving CCVs to become relative complete.
This is stated by the following theorem which we proved.

Theorem 4 (Relative Completeness). If the CPA algorithm executed with
CPA A, program P and initial abstract state e0 returns (N, true) and constructs
well-formed ARG RA,P = (N,GR, root), Nsub is consistent with RA,P and the
derived CCV CA is well-behaving, then Algorithm 3 executed with CA, program
P ′ = P , e0 and certificate pCA = pCA(O(RA,P , Nsub), PA) constructed from
overlay graph O(RA,P , Nsub) and arbitrary partition PA of Nsub returns true.

5 Experiments

In our experiments, we study the gain of our two optimization approaches and
their combination. Hence, we compare their reduction of the consumer’s valida-
tion effort and their certificate sizes with the original approach from [12].

For the evaluation, we selected 13 different CPAs to cover a broad range
of characteristics, but disregarding if the CPAs are used in PCC. Our CPAs
used one of six domains: the reaching definitions domain from our example, a
value domain which provides for a variable v a concrete value or any value,
a sign domain which assigns to a variable v one of the six abstract values
> 0,≥ 0, < 0,≤ 0,= 0, any value, and an interval domain which abstracts
variable values by a range of possible values, plus the two combined domains
reaching definitions/value and sign/interval. Six of our CPAs were dataflow ana-
lysis, our coarsest analyses, computing one abstract state per location. To get
finer analyses, named join-equal analyses, we used the combined domains and
built two CPAs which merge abstract states only if the element for the second
domain is the same. Five CPAs apply model checking, our finest analysis, which
never combines abstract states. We disregarded a model checking CPA for the
reaching definitions domain because it mostly timed out.

We integrated our approaches into CPAchecker [8] (r13726) and evaluated
them on the subcategory control flow integer of the SV-COMP [6]4. For every
program and CPA, we chose for the analysis the fastest exploration order and
excluded those combinations which timed out after 15 min. For each combination
we also looked at different partition sizes (10, 100, 1000 and 10000) and chose the

4 https://svn.sosy-lab.org/trac/cpachecker/browser/Benchmarks/trunk/c r445.

https://svn.sosy-lab.org/trac/cpachecker/browser/Benchmarks/trunk/c

Speed Up Configurable Certificate Validation by Reduction and Partitioning 171

Fig. 3. Experimental Results: Improvements against analysis and original approach

size with the best performance which was often 10 or 100. Our experiments were
performed on a Intel R© CoreTMi7-2620M @ 2.70 GHz running a 64 bit Ubuntu
12.04 LTS5 with 3600 MB RAM. The Java version was OpenJDK 7u55. For
reexecution run CPAchecker’s benchmark script on CertificationPartial
Evaluation.xml and CertificationInterleavedEvaluation.xml.

Figure 3 shows our experimental results, the average of 10 runs. For each
type of analysis it provides a subfigure plotting the validation time (complete
validation time including possible reading time) of each analysis program combi-
nation against the respective analysis time (time for CPA algorithm). Speed up
X means analysis time is X-times validation time. Note, since the analysis time
is independent of the certification technique, validation times for same program
CPA combinations are related to the same analysis times. The last subfigure
compares the certificate sizes. For each optimized validation approach and each
program analysis combination, it shows the fraction of the number of states in
optimized certificate divided by the number of states in original certificate.

5 Ubuntu was executed in the virtual machine Virtual Box version 4.3.8 r92456 running
on a 64 bit Windows 7 Professional machine with 6 GB RAM.

172 M.-C. Jakobs

Our first observation is that the combination of the two optimizing approaches
is the fastest. For all analyses the optimized approaches reduce the certificate
reading time. Model checking and sometimes also join-equal analyses also benefit
from an acceleration of the coverage check stop(e′, S). Our implemented coverage
check considers for coverage of e′ only states with the same location. In data flow
analyses (at most) one such state exists in the certificate while in model check-
ing and join-equal analyses multiple of these states may exist and typically only
some of them cover e′. Experiments show that reducing the number of states to
be considered (not stored in the certificate because will be recomputed, not part
of current partition) improves performance a lot.

In contrast to execution time, the certificate reduction approach provides the
smallest certificates, often 25 % of the original size. Since the partitioning app-
roach stores approximately one direct successor beyond the partition boundary
per state in each partition, its certificates are circa twice as large. Mostly, the
certificates of the combined approach are smaller than the original certificates.
Thus, the combined approach is the best option for performance optimization.

6 Conclusion

We presented two orthogonal approaches to improve the performance of the con-
figurable certification framework, a framework supporting lots of analyses. Both
approaches tackled the problem of large certificates, a typical PCC problem.
The first removes easily recomputable elements from the certificate. The second
splits certificates into independent parts and checks read parts while reading the
remaining parts. For both approaches we proved that they remain tamper-proof.
We also showed that for relative completeness we only require CPAs from which
well-behaving CCVs can be deduced. Finally, our experiments demonstrated
that the combination of the two presented approaches performs best.

Related Work. Lots of PCC approaches reduce the certificate size, e.g. [9,
13,15]. Below, we focus on reduction approaches which, like us, target on an
abstraction, a set of reachable states. Two orthogonal trends exist: reducing
the size of the states [5,10,11,18] or reducing the number of stored states [1,
2,4,5,17]. Our approaches follow the second trend which we consider in more
detail next.

To the best of our knowledge, approaches like [1,2,4,5,17] which reduced
the number of stored states apply only dataflow like analyses and compute one
(abstract) state per program location. All of them still merge states and thus
require a certain exploration order during validation. Lightweight bytecode veri-
fication [17] keeps backward target states. Similarly, [2] store states with outgoing
backward edges. Abstraction-Carrying Code [1] saves states which are updated
after their successors are considered by the exploration. [4,5] store a subset of
states plus a reconstruction strategy. Furthermore, validation in [4,5] may need
more than a single pass over the program, [4] use a certified checker and [5] also
reduces the size of the states by weakening the computed solution. Our app-
roach does not merge, which simplified the validator, and is independent of the

Speed Up Configurable Certificate Validation by Reduction and Partitioning 173

exploration order, which eased the combination of our two approaches. More-
over, storing and considering in the validation’s coverage check only states which
cover others is important for the performance of our approach on finer analyses
like e.g. model checking which are not supported by the previous approaches.
These aspects come with the cost of adding more states to the certificate but for
dataflow like analyses our guarantees are as good as in literature, our approaches
also require a single pass over the program, i.e. consider each program edge at
most once.

Search-carrying code (SCC) [19] is the only PCC approach we are aware of
which partitions its certificate. SCC does not store explored states but remem-
bers the state space exploration in form of a search script. Like us, [19] partitions
the reachability graph obtained by the explicit model checker. In contrast to us,
they obtain a partial search script per partition and use it for parallel validation.

Future Work. We plan to experiment with different partitioning heuristics and
want to evaluate if these heuristics produce smaller partitioned certificates than
random assignment. Moreover, we want to parallelize the validation algorithm.
We also think about a distributed partitioning approach in which we want to
read and check every partition on a different machine.

References

1. Albert, E., Arenas, P., Puebla, G., Hermenegildo, M.V.: Reduced certificates for
abstraction-carrying code. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS,
vol. 4079, pp. 163–178. Springer, Heidelberg (2006)

2. Amme, W., Möller, M.A., Adler, P.: Data flow analysis as a general concept for the
transport of verifiable program annotations. Theor. Comput. Sci. 176(3), 97–108
(2007). COCV 2006

3. Andreev, K., Räcke, H.: Balanced graph partitioning. In: SPAA 2004, pp. 120–124.
ACM (2004)

4. Besson, F., Jensen, T., Pichardie, D.: Proof-carrying code from certified abstract
interpretation and fixpoint compression. Theor. Comput. Sci. 364(3), 273–291
(2006). applied Semantics

5. Besson, F., Jensen, T., Turpin, T.: Small witnesses for abstract interpretation-
based proofs. In: De Nicola, R. (ed.) ESOP 2007 (ETAPS). LNCS, vol. 4421, pp.
268–283. Springer, Heidelberg (2007)

6. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg
(2014)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007)

8. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software ver-
ification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 184–190. Springer, Heidelberg (2011)

9. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: ESEC/FSE 2013, pp. 389–399. ACM (2013)

174 M.-C. Jakobs

10. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 17–32. Springer,
Heidelberg (2007)

11. Dräger, K., Kupriyanov, A., Finkbeiner, B., Wehrheim, H.: SLAB: a certifying
model checker for infinite-state concurrent systems. In: Esparza, J., Majumdar, R.
(eds.) TACAS 2010 (ETAPS). LNCS, vol. 6015, pp. 271–274. Springer, Heidelberg
(2010)

12. Jakobs, M.C., Wehrheim, H.: Certification for configurable program analysis. In:
SPIN 2014, pp. 30–39. ACM (2014)

13. Necula, G., Lee, P.: Efficient representation and validation of proofs. In: LICS 1998,
June 1998, pp. 93–104 (1998)

14. Necula, G.C.: Proof-carrying code. In: POPL 1997, pp. 106–119. ACM (1997)
15. Necula, G.C., Rahul, S.P.: Oracle-based checking of untrusted software. In: POPL

2001, pp. 142–154. ACM (2001)
16. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,

Heidelberg (2004)
17. Rose, E.: Lightweight bytecode verification. J. Autom. Reasoning 31(3–4), 303–334

(2003)
18. Seo, S., Yang, H., Yi, K., Han, T.: Goal-directed weakening of abstract interpreta-

tion results. TOPLAS 29(6), 1–39 (2007)
19. Taleghani, A., Atlee, J.M.: Search-carrying code. In: ASE 2010, pp. 367–376. ACM

(2010)

Formal Analysis of Proactive,
Distributed Routing

Mojgan Kamali1(B), Peter Höfner2,3, Maryam Kamali4, and Luigia Petre1

1 Åbo Akademi University, Turku, Finland
{mojgan.kamali,lpetre}@abo.fi

2 NICTA, Sydney, Australia
3 University of New South Wales, Sydney, Australia

4 University of Liverpool, Liverpool, UK

Abstract. As (network) software is such an omnipresent component of
contemporary mission-critical systems, formal analysis is required to pro-
vide the necessary certification or at least formal assurances for these sys-
tems. In this paper we focus on modelling and analysing the Optimised
Link State Routing (OLSR) protocol, a distributed, proactive routing
protocol. It is recognised as one of the standard ad-hoc routing protocols
for Wireless Mesh Networks (WMNs). WMNs are instrumental in crit-
ical systems, such as emergency response networks and smart electrical
grids. We use the model checker Uppaal for analysing safety properties
of OLSR as well as to point out a case of OLSR malfunctioning.

1 Introduction

Routing is at the centre of network communication, which in turn, is part of
the backbone for numerous safety-critical systems. Examples are networks for
telecommunication systems, for emergency response, or for electrical smart grids.
In these and other examples, the communication is often truly distributed, with-
out depending on any central entity (router) for coordination. Another important
characteristics of these networks is that the network topology can change: in the
case of emergency networks nodes might just fail; in case of telecommunication
systems nodes such as laptops and mobile phones can move within the network,
and even enter or leave a network. In this paper we focus on distributed routing
mechanisms in such wireless networks; due to their wide-spread usage in critical
systems, we aim at a formal model, which paves the way for a formal analysis.

A routing protocol enables node communication in a network by dissemi-
nating information enabling the selection of routes. In this way, nodes are able
to send data packets to arbitrary (previously unknown) destinations in the net-
work. Shortcomings in the routing protocol immediately decrease the perfor-
mance and reliability of the entire network. Due to the possibility of topology
changes information has to constantly be updated to maintain the latest routing
information within the network. In this paper we focus on such self-organising
wireless multi-hop networks which provide support for communication without
relying on a wired infrastructure. They bear the benefit of rapid and low-cost
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 175–189, 2015.
DOI: 10.1007/978-3-319-22969-0 13

176 M. Kamali et al.

network deployment. The Optimised Link State Routing (OLSR) protocol [4], a
proactive routing protocol, is identified as one of the standard routing protocol
for Wireless Mesh Networks (WMNs) by the IETF MANET working group.1

By distributing control messages throughout the network, proactive protocols
maintain a list of all destinations together with routes to them.

Traditionally, common methods used to evaluate and validate network proto-
cols are test-bed experiments and simulation in ‘living lab’ conditions. Such an
analysis is usually limited to very few topologies [7]. In such experiments not only
the routing protocol is simulated, but also all other layers of the network stack.
When a shortcoming is found, it is therefore often unclear whether the limitation
is a consequence of the routing protocol chosen, or of another layer, such as the
underlying link layer. In this paper, we abstract from the underlying link layer;
hence a shortcoming found is definitely a problem of the routing protocol.

Another problem with specifications in general and with the description of
OLSR in particular is that specifications are usually given in English prose.
Although this makes them easy to understand, it is well known that textual
descriptions contain ambiguities, contradictions and often lack specific details. As
a consequence, this might yield different interpretations of the same specification
and to different implementations [9]. In the worst case, implementations of the
same routing protocol are incompatible.

One approach to address these problems is using formal methods in general
and model checking in particular. Formal methods provide valuable tools for
the design, evaluation, and verification of WMN routing protocols; they comple-
ment alternatives such as test-bed experiments and simulation. These methods
have a great potential on improving the correctness and precision of design and
development, as they produce reliable results. Formal methods allow the formal
specification of routing protocols and the verification of the desired behaviour
by applying mathematics and logics [3]. In this way, stronger and more general
assurances about protocol behaviour can be achieved.

In this paper we present a concise and unambiguous model for the OLSR
protocol. The model is based on extended timed automata as they are used by
the model checker Uppaal. As a consequence we report also on results of applying
model checking techniques to explore the behaviour of OLSR. Model checking
(e.g. [3]) is a powerful approach used for validating key correctness properties in
finite representations of a formal system model.

The paper is structured as follows: in Sect. 2, we overview the OLSR protocol
and in Sect. 3 we shortly discuss the Uppaal model of OLSR based on RFC 3626 [4].
Section 4 is the core of our paper where we present the results of our analysis. We
review related work in Sect. 5 and propose future research directions in Sect. 6.

2 Optimized Link State Routing—An Overview

The Optimised Link State Routing (OLSR) protocol [4] is a proactive routing
protocol particularly designed for Wireless Mesh Networks (WMNs) and Mobile
1 http://datatracker.ietf.org/wg/manet/charter/.

http://datatracker.ietf.org/wg/manet/charter/

Formal Analysis of Proactive, Distributed Routing 177

Ad hoc Networks (MANETs). The proactive nature of OLSR implies the benefit
of having the routes available at time needed. The underlying mechanism of this
protocol consists in the periodic exchange of messages to establish routes to pre-
viously unknown destinations, and to update routing information about known
destinations. OLSR works in a completely distributed manner without depend-
ing on any central entity. The protocol minimises flooding of control messages
in the network by selecting so-called Multipoint Relays (MPRs). Informally, an
MPR takes over the communication for a set of nodes that are one-hop neigh-
bours of this node; these one-hop neighbours receive all the routing information
from the MRPs and hence do not need to send and receive routing information
from other parts of the network.

Nodes running OLSR are not restricted to any kind of start-up synchronisa-
tion. Every node broadcasts a HELLO message every 2 s and detects its direct
neighbour nodes by receiving these messages. Since HELLO messages contain
information about all one-hop neighbours of the originator, receiving nodes can
establish routes to their two-hop neighbours, too. HELLO messages traverse only
one wireless link (a single hop), and are not forwarded by any node.

After receiving HELLO messages from direct neighbours, every node selects
a particular one-hop neighbour, its MPR, and selected MPRs are aware of those
nodes that have selected them as an MPR. MPRs broadcast Topology Control
(TC) messages every 5 s to build and update topological information. These mes-
sages are retransmitted (forwarded) through the entire network by MPRs. This
means that if a node is not an MPR and receives TC messages, it processes those
messages, but will not forward them. Every TC message contains the routing
information provided by the originator. While receiving control messages from
other nodes, every node updates its routing table according to the information
received. After broadcasting and forwarding control messages via nodes, routes
to all reachable destinations should be established by all nodes. Nodes can use
the established routes to send data packets through the network.

Information stemming from HELLO messages is considered valid for 6 s (three
times the interval between sending HELLO messages); information from TC mes-
sages for 15 s (three times the interval between sending TC messages). Routing
table entries are marked as invalid if these times have passed.

More details about OLSR can be found in its specification [4]; a concrete
example of OLSR running on a topology of 5 nodes can be found in [13].

3 Modelling OLSR in Uppaal

Uppaal [1,15] is a well-established model checker for modelling, simulating and
verifying real-time systems. It is designed for systems that can be modelled as
networks of (extended) timed automata. We use Uppaal for the following reasons:
(i) it provides two synchronisation mechanisms: broadcast and binary synchro-
nisation; (ii) it provides common data structures, such as structs and arrays,
and a C-like programming language—these features are used to model routing
tables and update-operations on such tables; last, but not least, (iii) Uppaal

178 M. Kamali et al.

provides mechanisms and tools for considering timed variables—this is needed
since OLSR highly depends on on-time broadcasting of control messages. In the
remainder, we describe Uppaal to the extent needed in this paper.

3.1 Uppaal’s Timed Automata

The modelling language of Uppaal extends timed automata with various features,
such as types and data structures [1]. A system state is defined as the value of
all local and global variables. Every automaton can be presented as a graph with
locations (nodes) and edges between these locations together with guards, clock
constraints, updates and invariants. Clocks are variables that evaluate to real
numbers and that are used in order to measure the time progression.

Each location may have an invariant, and each edge may have a guard, a
synchronisation label, and/or an update of some variables. Guards on transitions
are used to restrict the availability (enabledness) of transitions. Synchronisation
happens via channels; for every channel a there is one label a! to identify the
sender, and a? to identify receivers. Transitions without a label are internal; all
other transitions use one of the two following types of synchronisation [1].

In binary handshake synchronisation, one automaton that has an edge with
a !-label synchronises with another automaton with the edge having a ?-label.
These two transitions synchronise only when both guards hold in the current
state. When the transition is taken, both locations will change, and the updates
on transitions will be applied to the variables; first the updates will be done on
the !-edge, then the updates occur on the ?-edge. When having more than one
possible pair, the transition is selected non-deterministically [1].

In broadcast synchronisation, one automaton with an !-edge synchronises
with several other automata that all have an edge with a relevant ?-label. The
initiating automaton is able to change its location, and apply its update if and
only if the guard on its edge is satisfied. It does not need a second automaton
to synchronise with. Matching ?-edge automata must synchronise if their guards
evaluate to true in the current state. They will change their location and update
their states. First the automaton with the !-edge updates its state, then the other
automata follow. When more than one automaton can initiate a transition on
an !-edge, the process of choosing occurs non-deterministically [1].

Uppaal’s verifier uses Computation Tree Logic (CTL) (e.g. [6]) to model
system properties. CTL offers two types of formulas: state formulas and path
formulas. State formulas describe individual states of the model, while path for-
mulas quantify over paths in the model. A path contains an (infinite) sequence
of states. In this paper we employ the path quantifier A and the temporal opera-
tor G. Aφ means that the formula φ holds for all paths starting from the current
state. Gφ means all future states (including the current one) satisfy φ. Formulas
combine the path quantifies and the temporal operators, e.g. AGφ holds if φ
holds on all states in all paths originating from the current state. This is also
denoted as A[]φ in Uppaal [1].

Formal Analysis of Proactive, Distributed Routing 179

isconnected(sip,ip)

(nextmsg()!=NONE)&&
idle[ip]

isconnected(sip,ip)

imsg[ip]!

sip:IP

dip:IP

sip:IP

addmsg(msgglobal)addmsg(msgglobal)

create_add_packet(ip,dip)

htc[sip]?

packet[ip][dip]?
msgglobal=msglocal[0],
deletemsg()

pkt[sip][ip]?

Fig. 1. The Queue automaton.

3.2 A Uppaal Model of OLSR

We now present an overview of our OLSR model. The model is described in
detail in [13] and can be downloaded at hoefner-online.de/sefm15/. We model
OLSR in Uppaal as a parallel composition of identical processes describing the
behaviour of single nodes of the network. Each of these processes is itself a
parallel composition of two timed automata, Queue and OLSR.

The Queue automaton (depicted in Fig. 1) has been chosen to store incoming
messages from other (directly connected) nodes. In other words, it denotes the
input buffer of a node. The received messages are buffered and then, in turn, send
to the OLSR automaton for processing. Both actions on the top of Fig. 1 receive
messages from other nodes in the network while the action on the lower right of
Fig. 1 receives data messages from the same node. Messages can only be received
if a node ip is connected to the sender sip. The channel htc[sip] receives a
broadcasted message (HELLO or TC) from sip and stores the message to a local
data queue, using the function addmsg. Both pkt and packet are handshake
synchronisations and handle data messages travelling through the network and
new messages injected by a client, respectively. Whenever the message-handling
routine OLSR is ready to handle a message (idle[ip]), a message is moved from
the message queue to OLSR, using the channel imsg.

OLSR models the complete behaviour of the routing protocol as described
in [4]. It consists of 14 locations and 36 transitions precisely modelling the
broadcasting and handling of the different types of messages. OLSR is busy while
sending messages, and can accept a new message from Queue only once it has
completely finished handling a message. Whenever it is not processing a mes-
sage and there are messages stored in Queue, Queue and OLSR synchronise on
the channel imsg[ip], transferring the relevant data from Queue to OLSR. The
automaton uses a local data structure to model the routing table of a node.
Routing tables provide all information required for delivering packets. A routing
table rt is an array of entries, one entry for each possible destination. An entry
is modelled by the data type rtentry:

http://hoefner-online.de/sefm15/

180 M. Kamali et al.

typedef struct {
IP dip; //destination address
int hops; //distance (number of hops) to the destination dip
IP nhopip; //next hop address along the path to the destination dip
SQN dsn; //destination dip sequence number

} rtentry;

IP denotes a data type for all addresses and SQN a data type for sequence num-
bers. OLSR uses sequence numbers to check whether received messages are new
or have already been processed. In our model, integers are used for these types.

The predicate isconnected[i][j] denotes a node-to-node communication,
i.e., the nodes are in transmission range of each other. Communication between
nodes happens via channels. The broadcast channel htc[ip] models the prop-
agation of HELLO and TC messages where a message can be received by all
one-hop neighbours. Each node has a broadcast channel, and every node in
the range may synchronise on this channel. We also use the binary channel
packet[i][j] to model the unicast sending of a data packet from i to j; this
packet is generated by the user layer.

To model rigorous timing behaviour, we define 3 different clocks for every
OLSR automaton: t hello and t tc are used to model on-time broadcasting
HELLO and TC messages, and t send models the time consumption for sending
messages. According to the specification of OLSR, Hello messages are sent every
2000 ms. Considering a sending time of 500 ms (in our model time sending =
500), nodes have to broadcast a new message 1500 ms after the last message
was successfully distributed. For each OLSR automaton, we use two clock arrays
t reset rt and t reset rt topo of size N (the number of nodes in the network)
to indicate the expiry time of one-hop and two-hop neighbours, and the expiry
time of nodes which are more than two hops away, respectively.

To provide a realistic network set up, we model each node to send its first
HELLO message non-deterministically between [0, time between hello). After-
wards, whenever t hello reaches time between hello, OLSR resets t hello and
t send to 0 before the HELLO message is broadcast.

Nodes receiving a HELLO message, update their routing tables for the orig-
inator of the message, learn about their two-hop neighbours and select their
MPRs and MPR selectors using the functions updatehello, updatetwohop and
setmpr, respectively. Furthermore, t reset rt is reset for originator of the mes-
sage and its one-hop neighbours, which shows that new information has been
received and this information is valid for 6000 ms.

After MPR nodes have been selected, each of them prepares for broadcasting
TC messages to the connected nodes. TC messages are sent every 5000 ms. When
t tc reaches time between tc, t tc and t send are reset to 0. Then, a TC
message is generated by createtc function and is broadcast to other nodes.

While transferring a TC message from Queue, t reset rt topo is reset to
0 for the originator of the message and its MPR selectors, and if the message
is considered for processing, the routing table is updated for the TC genera-
tor and its MPR selectors, using updatetc and updatemprselector functions,
respectively.

Formal Analysis of Proactive, Distributed Routing 181

If the receiver is an MPR then the TC messages can be forwarded. For-
warding messages also takes time in our model, namely time sending. We note
that OLSR might have to broadcast different messages at the same time. As an
example, at some point a HELLO, a TC and maybe a TC to be forwarded are
supposed to be broadcast; the sending time time sending is counted only once
and these messages are broadcast simultaneously. We consider this behaviour
in our model as well. The full model, showing all details, is available online at
hoefner-online.de/sefm15/.

4 Analysis

We analyse properties of the OLSR protocol in two different settings. First, we
assume static network topologies, and then we allow changes in the network.
The first series of experiments focuses on three properties:

(1) route establishment for all topologies up to 5 nodes;
(2) packet delivery in all topologies up to 5 nodes;
(3) route optimality in topologies of up to 7 nodes.

We will show that OLSR does not always find optimal routes and propose a
modification of OLSR that addresses this problem.

For the second series of experiments we assume dynamic network topologies
where an arbitrary link fails. We focus on another property:

(4) the route discovery time, i.e., we investigate the time during which there is
no guaranteed packet delivery.

After analysing the route discovery time, we propose a modification that shortens
this time; this modification will be analysed as well (Property (5)).

Due to the proactive nature of OLSR, our Uppaal model is pretty complex
and contains several clocks, next to a complex data structure. As a consequence,
state space explosion is a problem for our experiments. To address this problem,
we apply different techniques supported by Uppaal to minimise the state space of
our system model [5,16,17]. In particular, our model makes use of priority chan-
nels. By this we can order ‘internal actions’, i.e., actions that are running on a
single node, and that are independent of other nodes and hence the order of the
actions does not matter. For Properties (1), (2), (4) and (5), we give the highest
priority to channels of node a1 and the lowest priority to channels of node a5.

We also take into account symmetries of topologies, i.e., in case two topologies
are isomorphic (up to renaming of nodes), we only analyse one. As a consequence
we can reduce the number of experiments, by assuming, for Properties (1)–(5),
that the originator is always the same node, denoted by OIP1, and the destination
is always DIP1.

For the experiments we use the following set up: 3.2 GHz Intel Core i5, with
8 GB memory, running the Mac OS X 10.9.5 operating system. For all experi-
ments we use Uppaal 4.0.13.

http://hoefner-online.de/sefm15/

182 M. Kamali et al.

4.1 Static Topologies

Set Up. In this first series of experiments, we define another automaton, called
Tester1, which injects a data packet to OIP1 to be delivered at destination
DIP1. It is depicted in Fig. 2. It provides a local clock clk, which is used for
invariants and guards. The location-invariant clk <= 3*time_between_tc in
combination with the transition-guard clk >= 3*time_between_tc guarantees
that the packet is injected at time point 3*time_between_tc; hence a couple
of control messages (HELLO and TC) have already been sent and most of the
routes should have been established. The packet is injected to node OIP1 via the
channel packet[OIP1][DIP1].

clk<=3*time_between_tc

clk>=3*(time_between_tc)

final

packet[OIP1][DIP1]!

drop_link

Fig. 2. The Tester1 automaton.

The first property we are going to analyse (Property 1) is route establishment.
It states that if the packet has been injected (Tester1 is in location final), and
all messages have been handled by all nodes (emptybuffers()) then OLSR
has established a route between OIP1 and DIP1. This safety property using the
Uppaal syntax is expressed as

A[] ((Tester1.final && emptybuffers()) imply

node(OIP1).rt[DIP1].nhopip != 0) (1)

Remember that the CTL formula A[]φ is satisfied iff φ holds on all states along
all paths. The variable node(OIP1).rt represents the routing table of the orig-
inator node OIP1 and node(OIP1).rt[DIP1].nhopip expresses the next hop for
the destination DIP1; if the next hop is not 0 a route is established.

The second property, packet delivery, is that if a packet is injected to the
system, it is eventually delivered to the destination DIP1. In Uppaal this can be
expressed as

A[] ((Tester1.final && emptybuffers()) imply

node(DIP1).delivered != 0) (2)

Here, node(DIP1).delivered indicates whether the injected data packet is received
by the destination DIP1. Property 2 is stronger than Property 1 in the sense that
the route is not only established, but it must be correct and used. Moreover this
property implies loop freedom of OLSR, meaning that no packet is sent in cycles
forever, without ever reaching the final destination.

The first two experiments are performed for all topologies up to five nodes,
up to isomorphism and renaming. There are 444 of such topologies.

Formal Analysis of Proactive, Distributed Routing 183

The third property, route optimality, checks if OLSR establishes optimal
routes, after broadcasting, forwarding and processing TC messages. In our exper-
iments we measure optimality with regards to shortest routes. Since we have full
control over the topologies we are running the experiments with, we can deter-
mine the shortest possible route. We investigate this property for a ring topology
of 7 nodes, as shown in Table 1.2 Property 3 is expressed as

A[] ((Tester1.final && node(OIP1).a != 0) imply

node(OIP1).rt[DIP1].hops == 3) (3)

Here, node(OIP1).a != 0 indicates whether OIP1 has sent its packet to the next
node along the path to DIP1; node(OIP1).rt[DIP1].hops shows the number of
hops from the originator OIP1 to the destination DIP1 which must be equal to 3.
We also checked Property 3 on all topologies up to 5 nodes. The results, however,
are not of real interest, since not much can go wrong w.r.t. shortest routes. As
a consequence we picked topologies of size 7 to analyse route optimality.

Results. To analyse and verify OLSR, we evaluate Properties (1) and (2) in all
network topologies up to 5 nodes. Property (1) is satisfied for all these networks:
when the Tester1 is in location final, node OIP1 has established a route to
node DIP1. This property confirms the propagation of HELLO and TC messages
and also the correctness of the MPR selection mechanism. Hence, node OIP1 is
ready to send data packets to node DIP1.

As mentioned before, Property (2) is stronger than Property (1). It models
that all nodes have the information about all other nodes in the network, to
deliver their data packets. In theory, the originator node OIP1 could have a
routing table entry for the destination node DIP1, stating that it should send a
packet to its immediate next neighbour along the path to the destination DIP1;
the next node itself might have no information about the destination DIP1, so
all packets for the destination DIP1 stemming from the originator OIP1 would
be lost. However, Property (2) is also satisfied for all topology up to size 5: all
nodes have updated their routing tables in the network; therefore, they are able
to deliver data packets to the arbitrary destination node DIP1.

While performing the analysis of Properties (1) and (2), we also performed
some statistics: the Uppaal verifier analysed in average 1868996 states for each
experiment; the largest one has 5314328 states, and the median is 1688368.
Exploring these state spaces took on average 56 min.

Property (3), which analysis route optimality in topologies of size 7, is not
satisfied. This proves that OLSR is not always able to find optimal routes.

Table 1 illustrates this phenomenon with an example found by Uppaal. In
this example, Tester1 synchronises with the Queue of node a1, which is the
originator OIP1 of the packet. The packet is intended for node a5. At some
point, a5 broadcasts a TC message (here indicated by TC5) to its neighbours
a4 and a6. While a4 forwards the message to a3, a6 is busy working on other
2 There are too many topologies of that size, so we cannot analyse all topologies.

184 M. Kamali et al.

Table 1. Establishment of non-optimal routes in a 7 node topology

Step 1: Broadcast TC Step 2: Forward TC

a1

a2
a3

a4

a5
a6a7

TC5

TC5

a1

a2
a3

a4

a5
a6a7

TC5

TC5

TC5TC5

Step 3: Update a1.rt[5] Step 4: Drop TC5

a1

a2
a3

a4

a5
a6a7

TC5

TC5

TC5TC5

TC5

a1

a2
a3

a4

a5
a6a7

TC5TC5TC5

stuff and the message is kept in the message queue of a6. The TC message is
forwarded subsequently via nodes a3 and a2 (Table 1: Step 2). As a consequence,
node a1, updates its routing table entry for node a5 (Table 1: Step 3). When a1
receives TC5 via node a7, it has already updated its table for this node, and
drops this message, since it has seen TC5 before. (Table 1: Step 4). By dropping
this message a1 misses out the chance TC5 to establish a shorter route. Similar
examples are found for other routing protocols for WMNs [18].

Dropping a message with the same sequence number follows the specification:

“if there exists a tuple in the duplicate set, where:
D addr == Originator Address,
AND
D seq num == Message Sequence Number
then the message has already been completely processed and MUST not be
processed again.” [RFC3626, page 17]

This text snippet, copied from the RFC, shows that our model reflects the
intention of OLSR; any message which is received and has already been handled
(same sequence number) should be dropped. The idea is that the first mes-
sage received must have travelled via the optimal path, which is not the case.
A simple solution to this problem is to compare the potentially new route versus
the routing table, in case the sequence numbers are the same. To reduce message
flooding the message is only forwarded if the routing table is updated, i.e., if the
hop count is strictly smaller.

Formal Analysis of Proactive, Distributed Routing 185

4.2 Dynamic Topologies

Set Up. In the second series of experiments, we investigate the behaviour of
OLSR after an arbitrary link is removed. Removing a link reflects a change in
the topology. We define an automaton, called Tester2 and depicted in Fig. 3,
which drops the link between the two nodes id_1 and id_2. We assume that
the link breaks after 3*(time between tc + time sending) (in our model at
15000 ms), a time when all nodes have received information about all other nodes
in the network (all routing tables have been updated for all nodes). Upon link
breakage there is no connectivity between these two nodes; yet, each of them
has the information about the other one. The packet, which should be sent from
OIP1 to DIP1 is injected later on. By this we can analyse how quickly OLSR
recovers from topology changes.

clk<=3*(time_between_tc + time_sending) clk<=7*(time_between_tc + time_sending)

clk>=3*(time_between_tc + time_sending)

deliverytest

drop(id_1, id_2)
clk>=7*(time_between_tc + time_sending)
packet[OIP1][DIP1]!

drop_link

Fig. 3. The Tester2 automaton.

Based on RFC 3626 (see box below), the information about one-hop and
two-hop neighbours of a node is valid for 3*REFRESH INTERVAL, which equals
6000 ms; information about nodes which are more than two hops away from
that node is valid for 3*TC INTERVAL, that equals 15000 ms.

“NEIGHB HOLD TIME = 3*REFRESH INTERVAL
TOP HOLD TIME = 3*TC INTERVAL” [RFC3626, page 64]

This means information about one-hop and two-hop neighbours of a node is not
available any longer if their corresponding clocks in the routing table have not
been refreshed during 6000 ms; this indicates the breakage of a link. Also, if a
node has not received TC messages from other MPR nodes for more than 15 s,
information about those nodes is removed from the table.

We consider one desirable property of this protocol which indicates whether
or not the injected packet is delivered at the destination if one link has been
removed. In Uppaal syntax this safety property can be expressed as

A[] ((Tester2.delivery && emptybuffers()) imply

node(DIP1).delivered != 0) (4)

After the topology has been changed and the packet has been injected, the
automaton Tester2 is in location delivery. If then the message buffers are
empty (similar to the experiments described before) then we check if the packet
has been delivered. (node(DIP1).delivered != 0).

186 M. Kamali et al.

Results. Property (4) is only satisfied for those topologies up to 5 nodes where
the dropped link is not critical. In our model, a link is said to be critical if after
link breakage there is no other link from that node to the other nodes along the
path to the destination to be substituted with the broken one.

This experiment shows that the recovery in these topologies takes around
20 s (between 15000–35000 ms), which is a long period; in particular since we
only consider networks of small size. As a consequence, this means that only
after 35 s, the packet can certainly be delivered. The reasons for this long period
are as following:

– After a link break occurred, some nodes might broadcast control messages
(HELLO or TC) with incorrect (old) information, since nodes have not reset
their tables for those nodes affected by link breakage. Based on RFC 3626,
nodes reset their tables for the nodes from whom no control message is received
after 6 and 15 s, respectively.

– At the time a link breaks, there are usually messages in the queue which need
to be processed. These messages contain again out-dated information. So, the
routing table is updated for the originator and one-hop neighbours of the
message when receiving a HELLO, and for the originator and MPR selectors
of the messages originator upon receiving a TC, even if the link does not exist
anymore.

– Even when some nodes learn about the link breakage and reset the corre-
sponding information in the routing table, it needs time to distribute this
new knowledge.

Modifications. A solution to decrease the long recovery time of OLSR is
to reduce NEIGHB HOLD TIME and TOP HOLD TIME to 2*REFRESH INTERVAL and
2*TC INTERVAL, respectively. To verify our proposal, we consider Property (5).
This property states that refreshing routing tables in our proposed timing helps
to reduce the recovery time.

A[] ((Tester3.delivery && emptybuffers()) imply

node(DIP1).delivered != 0) (5)

Similarly as for Property (4), Property (5) is satisfied for all topologies up to
5 nodes where the dropped link is not a critical link. After 25000 ms, the packet
is definitely delivered at the destination. Therefore, it is feasible to reduce the
recovery time of OLSR about 10000 ms (the difference between 35000 and 25000)
using our proposed timing.

An alternative solution would be the introduction of error messages. As soon
as a link break is identified, an error message should be sent to MPRs to inform
the nodes and to correct the information in the routing tables as soon as possible.
This modification would be in the same spirit as error messages used for other
routing protocols, such as the AODV routing protocol. However, the analysis of
this improvement is left for future work.

Formal Analysis of Proactive, Distributed Routing 187

5 Related Work

While modelling and verifying protocols is not a new research topic, attempts to
analyse routing protocols for dynamic networks are still rather new and remain
a challenging task. Model checking techniques have been applied to analyse pro-
tocols for decades, but there are only a few papers that use these techniques in
the context of mobile ad-hoc networks, e.g. [2]. In the area of WMNs, Uppaal
has been used to model and analyse the routing protocols AODV and DYMO,
see [7,8,10]. However, to the best of our knowledge, our study is the first aiming
at a formal model of OLSR core functionality considering time variables.

Clausen et al. [4] specify the OLSR protocol in English prose. This paper is
the official description currently standardised by the IETF. Jacquet et al. [12]
also provide a high-level description of OLSR describing the advantages of this
protocol, when compared to the others. However, none of these papers provide
a formal model or a formal analysis of the protocol.

Steele and Andel [20] provide a study of OLSR using the model checker Spin
[11]. They design a model of OLSR in which Linear Temporal Logic (LTL) is used
to analyse the correct functionality of this protocol. They verify their system for
correct route discovery, correct relay selection, and loop freedom. Due to state
space explosion their analysis is limited to four node topologies only. When
taking symmetries into account they analyse 17 topologies. Moreover, a timing
analysis is not possible by Spin. Hence the model given by Steele and Andel
abstracts from timing; as we have shown analysing OLSR with time variables
reveales more shortcomings.

Fehnker et al. [8] describe a formal and rigorous model of the Ad hoc On-
Demand Distance Vector (AODV) routing protocol in Uppaal; the model is
derived from a precise process-algebraic specification that reflects a common
and unambiguous interpretation of the RFC [19]. Their model is also a network
of timed automata and they analyse network topologies up to 5 nodes. However,
in their original analysis they abstract from time, which was added later on [10].
Although the two protocols AODV and OLSR behave differently, we use the same
modelling techniques and experiments as for AODV, to make the comparison
study of these two protocols feasible for our future work.

Kamali et al. [14] use refinement techniques for modelling and analysing wire-
less sensor-actor networks. They prove that failed actor links can be temporarily
replaced by communication via the sensor infrastructure, given some assump-
tions. They use an Event-B formalisation based on theorem proving and their
proofs are carried out in the RODIN tool platform. There is a strong similarity
between the nature of the distributed OLSR protocol and the nature of distrib-
uted sensor-based recovery. However, the tools employed for analysis in the two
frameworks are different in nature (model checking vs. theorem proving). Our
decision to use Uppaal is based on the fact that it provides modelling means
for time constraints and fully automatic reasoning. The treatment of time in
Event-B is still incipient, involving a rather different perspective of treating
variables as continuous functions of time.

188 M. Kamali et al.

6 Conclusions and Outlook

In this paper we have provided a formal analysis for the distributed and proac-
tive routing protocol OLSR. Our analysis is performed using the model checker
Uppaal. We have provided a Uppaal model which is in accordance with the OLSR
standard. It models all core functionalities, including sophisticated timers. To
validate our model we compared our model with examples found in the literature.

Using Uppaal we were able to find shortcomings of the protocol: in some cases,
an optimal route for message delivery cannot be established and the recovery
time in case of link breakage is huge. For both shortcomings we have sketched
improvements that can easily be implemented. A more careful analysis for link
breaks on critical paths is left for future work.

We see these results as the starting point for further research. First, our
analysis is restricted to small networks (of 5 and 7 nodes), due to the nature
of model checking. Wireless Mesh Networks draw their strength from employing
potentially dozens (maybe hundreds) of nodes. Hence, we need to extend our
analysis to larger networks. This can be achieved by working with statistical
model checking, where simulation concepts are combined with model checking
to establish the statistical evidence of satisfying hypotheses. While this does not
guarantee a correct result w.r.t. the hypothesis, the probability of error can be
made vanishingly small. Another approach suitable to deal with larger networks
is that of theorem-proving, where, e.g. we can prove the required system prop-
erties as invariants for all systems (of all sizes) that verify certain assumptions.

Second, our model for the proactive, distributed OLSR can be generalised
to distributed control. The latter is a concept with high relevance for systems
where, e.g. self-repairing is important, as it can enable the independence of
the system from central coordinators. Even maintaining proactively the optimal
communication routes, as OLSR does, is instrumental in this. The applicability
of distributed control to critical systems such as emergency response networks
or smart electrical grids is very relevant, as these are complex systems, for which
global solutions cannot be provided.

Acknowledgements. This researchbelongs to theAcademyofFinlandFResCoproject
(grant number 263925, FResCo: High-quality Measurement Infrastructure for Future
Resilient Control Systems). NICTA is funded by the Australian Government through
the Department of Communications and the Australian Research Council through the
ICT Centre of Excellence Program.

References

1. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

2. Chiyangwa, S., Kwiatkowska, M.: A timing analysis of AODV. In: Steffen, M.,
Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 306–321. Springer,
Heidelberg (2005)

Formal Analysis of Proactive, Distributed Routing 189

3. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging. Commun. ACM 52(11), 74–84 (2009)

4. Clausen, T., Jacquet, P.: Optimized link state routing protocol (OLSR). RFC 3626
(Experimental) (2003). http://www.ietf.org/rfc/rfc3626

5. David, A., H̊akansson, J., Larsen, K.G., Pettersson, P.: Model checking timed
automata with priorities using DBM subtraction. In: Asarin, E., Bouyer, P. (eds.)
FORMATS 2006. LNCS, vol. 4202, pp. 128–142. Springer, Heidelberg (2006)

6. Emerson, E.A.: Temporal and Modal Logic. Handbook of Theoretical Computer
Science (vol. B): Formal Models and Semantics. MIT, Cambridge (1995). pp. 995–
1072

7. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Modelling and analysis of AODV in UPPAAL. In: 1st International Workshop on
Rigorous Protocol Engineering, Vancouver, pp. 1–6 (2011)

8. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012)

9. van Glabbeek, R., Höfner, P., Portmann, M., Tan, W.L.: Sequence numbers do not
guarantee loop freedom —AODV can yield routing loops—. In: Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM 2013), pp. 91–100. ACM
(2013)

10. Höfner, P., McIver, A.: Statistical model checking of wireless mesh routing proto-
cols. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp.
322–336. Springer, Heidelberg (2013)

11. Holzmann, G.J.: The model checker spin. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

12. Jacquet, P., Mühlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., Viennot, L.:
Optimized link state routing protocol for ad hoc networks. In: Multi Topic Con-
ference, 2001, IEEE INMIC 2001, pp. 62–68. IEEE (2001)

13. Kamali, M., Kamali, M., Petre, L.: Formally analyzing proactive, distributed rout-
ing. Technical report. 1125, TUCS - Turku Centre for Computer Science (2014)

14. Kamali, M., Laibinis, L., Petre, L., Sere, K.: Formal development of wireless sensor-
actor networks. Sci. Comput. Program. 80, Part A(0) 80, 25–49 (2014)

15. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. (STTT) 1(1), 134–152 (1997)

16. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Compact data structures
and state-space reduction for model-checking real-time systems. Real-Time Syst.
25(2–3), 255–275 (2003)

17. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In:
FCT, pp. 62–88 (1995)

18. Miskovic, S., Knightly, E.W.: Routing primitives for wireless mesh networks:
design, analysis and experiments. In: Conference on Information Communications
(INFOCOM 2010), pp. 2793–2801. IEEE (2010)

19. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc On-Demand Distance Vector
(AODV) Routing. RFC 3561 (Experimental) (2003). http://www.ietf.org/rfc/
rfc3561

20. Steele, M.F., Andel, T.R.: Modeling the optimized link-state routing protocol for
verification. In: SpringSim (TMS-DEVS), pp. 35:1–35:8. Society for Computer Sim-
ulation International (2012)

http://www.ietf.org/rfc/rfc3626
http://www.ietf.org/rfc/rfc3561
http://www.ietf.org/rfc/rfc3561

Certification of Distributed Algorithms Solving
Problems with Optimal Substructure

Kim Völlinger(B) and Wolfgang Reisig

Humboldt-Universität Zu, Berlin, Germany
{kim.voellinger,reisig}@informatik.hu-berlin.de

Abstract. We report work-in-progress on applying the concept of a
certifying algorithm to distributed algorithms. A certifying algorithm
produces not only a result, but also a witness that verifies the result’s
correctness. Certifying variants of numerous (sequential) algorithms have
been developed. However, distributed algorithms behave differently from
sequential algorithms. Consequently, it is challenging to make them cer-
tifying. Our local approach is to make the distributed algorithm com-
pute many local witnesses that together verify the result’s correctness.
We identified problems for which this approach is applicable. Particu-
larly, we hypothesize that for problems with optimal substructure (i.e.,
an optimal solution can be constructed from optimal solutions of its sub-
problems) it is often easy to apply the local approach. As an example,
we give a certifying distributed algorithm for the shortest path problem.

Keywords: Distributed algorithms · Certifying algorithms · Optimal
substructure · Shortest path problem

1 Introduction

A major problem in software engineering is assuring the quality of software.
Well-known methods are testing and formal verification. However, testing does
not cover all inputs and formal verification is often infeasible. Moreover, both
methods are not fault-tolerant: they are completed before the program is deliv-
ered; hence, they cannot deal with failures occurring after delivery. Certifying
algorithms are an alternative: we adapt the underlying algorithm of a program
to protect a user of this program against a faulty algorithm, implementation
and execution. Thus, certifying algorithms are a formal, fault-tolerant method.
Numerous certifying sequential algorithms have been developed. We report work-
in-progress on applying the concept of a certifying algorithm to distributed algo-
rithms.

1.1 Certifying Sequential Algorithms

As an example, we consider the problem of deciding if a graph is bipartite, i.e.
if its vertices can be divided in two classes so that each edge has its vertices in
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 190–195, 2015.
DOI: 10.1007/978-3-319-22969-0 14

Certification of Distributed Algorithms 191

both classes. Assume an algorithm that decides a given graph G is not bipartite.
How can a user of this algorithm be convinced of the result’s correctness? An
odd cycle in G convinces the user: it implies that G is not bipartite. Hence, it
witnesses the result’s correctness.

A certifying algorithm produces a witness for each result, i.e. an artifact
implying the result’s correctness. This implication is the witness property. For
example, a certifying algorithm deciding bipartiteness produces an odd cycle as
a witness if the graph is not bipartite and a bipartition if the graph is. In general,
the user of a certifying algorithm has (1) to understand the witness property, and
(2) to check if the witness is correct, as the witness is computed by an untrusted
algorithm. A certifying algorithm can be accompanied by a certifier to help the
user with (1), and a checker to help the user with (2). A certifier is a proof
checker containing a proof for each witness property. In case of the bipartiteness
example, a certifier contains a proof of the witness property of an odd cycle and
of a bipartition. Note that the certifier can check these proofs at design time.
The checker is an algorithm that checks at runtime if the computed witness is
correct. In case of the bipartiteness example, depending on the result, it checks
if the computed witness is a subgraph and an odd cycle, or a bipartition. Now,
the user has to trust the checker. The rationale is that checking is easier than
constructing. Figure 1 sums up the idea of a certifying algorithm. The certifier
or checker could also reject if the witness does not imply the result’s correctness,
or if the computed witness is not correct.

Fig. 1. A certifying algorithm accompanied by its checker and certifier.

When developing a certifying algorithm, the challenge is to find a witness
whose proof of the witness property is easy and whose checking is simple. There
is always a witness for a correct result, for instance, its computation: in general,
however, its proof of the witness property is difficult and therefore, it is not a
desirable witness.

1.2 Distributed Algorithms

A network is formed by interactive components that are connected by
message-passing channels. Distributing a computation over a network yields
specific problems, such as coordination, communication or synchronization. Dis-
tributed algorithms solve these problems. A distributed algorithm assigns an
algorithm to each component describing the component’s computing and com-
munication. For instance, there are distributed algorithms to elect a leader, find
a consensus or identify a substructure of the network [7]. A distributed algorithm

192 K. Völlinger and W. Reisig

is designed for a specific network class. We assume an asynchronous model, i.e.
no global clock exists. The distributed setting is more complex than the sequen-
tial one [6] Sect. 1.3. Thus, it is worth investigating certification of distributed
algorithms.

1.3 Structure of this Paper

In Sect. 2, we investigate the challenges of making a distributed algorithm cer-
tifying and suggest an approach with local witnesses that together verify the
result’s correctness. We hypothesize that a distributed algorithm can easily be
made certifying if the problem to be solved has optimal substructure. As an
example, we give a certifying distributed algorithm for the shortest path prob-
lem. As a challenge, we describe the minimum spanning tree example. We discuss
related work in Sect. 3 and draw conclusions in Sect. 4.

2 Making Distributed Algorithms Certifying

While non-termination is considered a fault in sequential algorithms, some
distributed algorithms should run continuously, e.g. those that deal with fail-
ures. Certification of non-terminating algorithms is challenging. However, in this
paper, we focus on terminating distributed algorithms. After termination, the
computed global result is distributed over the network such that each compo-
nent holds its local result. The result’s distribution leads to questions such as
should there be a witness for each local result or one witness for the global result;
should there be one checker or several; where is a checker located in the network.
Making a sequential algorithm certifying is challenging, and even more so for a
distributed algorithm.

2.1 Local Approach

Here, our approach is to make a distributed algorithm certifying by making it
compute witnesses that together prove the global result’s correctness. A witness
is local to a component if it only contains information from a bounded area in
the vicinity of this component. Likewise, a checker is local to a component if it
has only knowledge about the topology for a bounded area in the vicinity of this
component. We consider our approach to be local if witnesses and checkers are
local, and if the local witnesses together imply the global result’s correctness.
A (global) certifier holds a proof of this implication – the witness property. Hence,
witnesses are computed and checked distributively at runtime. In contrast, the
proof of the witness property is checked sequentially by the certifier. This is
justified, since it is done once at design time.

We do not expect that every distributed algorithm has a localized certifying
variant. However, we aim to characterize problems for which the local approach
is applicable. So far, problems for which our local approach is applicable include
deciding bipartiteness, the echo algorithm, spanning tree construction, maximal

Certification of Distributed Algorithms 193

independent set construction and shortest path construction. We hypothesize
that a distributed algorithm can easily be made certifying if the problem to be
solved has optimal substructure, i.e. an optimal solution to a problem is con-
structed from optimal solutions of its subproblems. Every problem that can be
solved by dynamic programming has optimal substructure [2].

2.2 Example: Shortest Path Problem

We assume an undirected graph with weighted edges. The length of a path is
the sum of the weights of its edges. We assume one special vertex, the source s.
Computing a shortest path from the source to each vertex is the (single-source)
shortest path problem. The length of a shortest path from the source to a vertex
v is called the distance of v. A function D is a distance function iff D(v) equals
the distance from s to v. In networks, the shortest path problem appears in
distance-vector routing. We model a network as a graph by representing each
component as a vertex and each channel as a weighted edge. Each component
computing its distance from the source is the shortest path problem in networks.

Distance Properties. We characterize a distance function by three properties
that use the problem’s optimal substructure, i.e. a shortest path from s to a
vertex v contains a shortest path from s to one of v’s neighbors. The distance of
v depends on the distances of its neighbors. Let G = (V,E, s) be an undirected,
connected graph with a source s. Let weight : E → R>0 be a function that
assigns each edge a weight. We use the following properties for our certifying
distributed algorithm. A function D : V → R≥0 is a distance function iff [5]:

D(s) = 0 (1)
for each (u, v) ∈ E : D(v) ≤ D(u) + weight(u, v) (2)

for each v ∈ V, v �= s there exists (u, v) ∈ E : D(v) = D(u) + weight(u, v) (3)

Certifying Variant of the Distributed Bellman-Ford Algorithm. The
distributed Bellman-Ford Algorithm [7] solves the shortest path problem in a
network. We assume an undirected, connected network graph whose edges have
each a positive weight. Each component i computes its distance iD to the source.
In addition, each component i computes a local witness iw containing the com-
puted distances of its neighbors. As neighbors send their distances to each other
while running the distributed Bellman-Ford algorithm, a component collects the
distances to all its neighbors. In addition, we assign each component i a local
checker that knows the neighbors of i, the weights of i’s adjacent edges, and
whether i is the source. The local checker of i can check the properties (1)–(3)
for i by help of i’s result iD and witness iw. In addition, it has to check if the wit-
ness iw is consistent with i’s neighborhood, i.e. the witness holds the computed
distances. The certifier holds a proof of the witness property, i.e. together the
local witnesses imply the global result’s correctness.1 To this end, the certifier
1 We aim to formalize this proof with the proof assistant Coq.

194 K. Völlinger and W. Reisig

holds a proof for the following implications: if the properties (1)–(3) are fulfilled
for each component, they are fulfilled for the network graph; if the properties are
fulfilled for the network, the computed distance of each component is correct.

As an example, we discuss witnesses and their checking for the network graph
shown in Fig. 2 with a as source. The local checker is a trusted part of its com-
ponent. Every component holds its local witness after running the certifying
distributed Bellman-Ford algorithm. For instance, the local witness of compo-
nent e contains the computed distances bD and cD. The local checker of e knows
that b and c are the neighbors of e, that their associated edge weights are 8
and 1 and that e is not the source. For checking, e’s checker gets e’s result and
witness. It confirms that b and c agree on the computed distances contained in
e’s witness. For property (1), e’s checker has nothing to check since e is not the
source. Due to property (2), it has to check if eD ≤ bD + 8 and eD ≤ cD + 1. For
property (3), it has to check whether one of these two inequalities is fulfilled as
an equality, and, indeed, eD = cD + 1.

Fig. 2. Network in which every component holds its local witness after running the
certifying distributed Bellman-Ford algorithm with a as source.

2.3 Challenge: Minimum Spanning Tree Problem

The minimum spanning tree (MST) problem has optimal substructure. The algo-
rithm of Gallager, Humblet and Spira (GHS) [3] is a well-known, difficult dis-
tributed algorithm that computes an MST for an injectively weighted network
graph. We aim to find a certifying variant of the GHS. We expect the certify-
ing GHS to be different from the certifying Bellman-Ford algorithm: not every
component should compute a witness; instead all the components belonging to
an already computed minimum spanning subtree should compute one witness.
However, it is not yet clear if we can apply our local approach. Kor et al. show
in [4] that a distributed verification of an MST by its result and without witnesses
is not or not much easier than the distributed construction of an MST.

3 Related Work

Literature offers more than 100 certifying algorithms; several examples are
described in [5]. However, none of them is a distributed algorithm. Some tech-
niques for making a distributed algorithm self-stabilizing share similarities to our

Certification of Distributed Algorithms 195

local approach. The idea of self-stabilization is that a system in a faulty state
stabilizes itself to a correct state. To this end, the components of a system have
to detect that the system’s state is faulty whereby local detection is desired [1].
In contrast, we separate the checking from the computation, rely on witnesses,
and integrate the proofs of the witness properties.

4 Conclusion and Future Work

A certifying distributed algorithm protects its user against a faulty algorithm,
implementation and execution. Therefore, it should be considered as a method
for engineering distributed software systems. It is suggested to combine certifying
algorithms with other formal methods, such as proving the witness property
with a proof assistant, or verifying the checker program. We demonstrated an
approach that yields a localized certification in a distributed system, i.e. local
witnesses that prove the global result’s correctness. We presented a certifying
variant of a distributed algorithm solving the shortest path problem for which
we used the optimal substructure of this problem.

With our local approach, a component can only be certain of its result’s
correctness, if all checkers accept. However, some local results may be correct
even if the global result is not. We aim to allow a component to check its result’s
correctness more independently. Furthermore, certification of non-terminating
algorithms poses new questions such as what the result is; when to produce a
witness; or when to check a witness.

References

1. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local
checking and global reset (Extended abstract). In: Tel, Gerard, Vitányi, Paul M.B.
(eds.) WDAG 1994. LNCS, vol. 857, pp. 326–339. Springer, Heidelberg (1994)

2. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, Cambridge (2001)

3. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

4. Kor, L., Korman, A., Peleg, D.: Tight bounds for distributed MST verification.
In: Schwentick, T., Dürr, C. (eds.) 28th International Symposium on Theoretical
Aspects of Computer Science (STACS 2011). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 9, pp. 69–80. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany (2011)

5. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying Algorithms.
Comput. Sci. Rev. 5, 119–161 (2011)

6. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for Indus-
trial and Applied Mathematics, Philadelphia (2000)

7. Raynal, M.: Distributed Algorithms for Message-Passing Systems. Springer, Berlin
(2013)

Formal Specification and Proof

From Failure to Proof: The ProB Disprover
for B and Event-B

Sebastian Krings(B), Jens Bendisposto, and Michael Leuschel

Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany

{krings,bendisposto,leuschel}@cs.uni-duesseldorf.de

Abstract. The ProB disprover uses constraint solving to find counter-
examples for B proof obligations. As the ProB kernel is now capable
of determining whether a search was exhaustive, one can also use the
disprover as a prover. In this paper, we explain how ProB has been
embedded as a prover into Rodin and Atelier B. Furthermore, we com-
pare ProB with the standard automatic provers and SMT solvers used
in Rodin. We demonstrate that constraint solving in general and ProB
in particular are able to deal with classes of proof obligations that are
not easily discharged by other provers and solvers. As benchmarks we
use medium sized specifications such as landing gear systems, a CAN
bus specification and a railway system. We also present a new method
to check proof obligations for inconsistencies, which has helped uncover
various issues in existing (sometimes fully proven) models.

1 Introduction and Motivation

Both the B-method [1] and its successor Event-B [2] are state-based formal
methods rooted in set theory. They are used for the formal development of
software and systems that are correct by construction. This usually involves
formal proofs of different properties of the specification.

In former work [23] we described a disprover based on using ProB’s con-
straint solver to automatically find counter-examples for given proof obligations
and thus saving the user from spending time in a futile interactive proof attempt.
Say that we have to prove that the goal G is a logical consequence of the hypothe-
ses H1, . . . , Hn. The ProB disprover then tries to find a solution for the formula
H1 ∧ . . . ∧ Hn ∧ ¬G. If it can find a solution, the proof cannot succeed and the
solution is a counter-example.

In [23] we already made the observation that in some cases, namely if we
neither encounter infinite sets nor deferred sets1 whose cardinality is unbounded,
the absence of a counter-example is actually a proof. We thus suggested as future
work to implement an analysis that checks if the absence of a counter-example is

Parts of this research have been sponsored by the EU funded FP7 project 287563
(ADVANCE) and by an industrial project funded by Alstom.

1 Deferred sets are sets which are not given upfront by enumerating their elements.

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 199–214, 2015.
DOI: 10.1007/978-3-319-22969-0 15

200 S. Krings et al.

a valid proof. This work has been finalized in the last year: ProB now keeps track
of infinite enumeration, in particular the scope in which an infinite enumeration
has occurred and whether a solution has been found or not. This enables our
technique to detect if the search for a counter-example was exhaustive, i.e., we
can now use ProB as a prover. Note that we go beyond the suggested future
work of [23]: we allow variables with an infinite domain to occur, as long as they
do not have to be enumerated exhaustively. We have also improved the core
algorithm of [23] in various ways, by allowing to focus on selected hypotheses
and by providing a way to detect inconsistencies in the hypotheses or potential
bugs in the disprover. In this paper we have also conducted a thorough empirical
evaluation, comparing our constraint-based proof with existing provers for B and
Event-B. This study shows that the constraint-based proof fares surprisingly well
for a variety of case studies.

2 Constraint-Based Proof Technique

In the following section we describe how ProB can be used as a prover inside
Rodin [3] and Atelier B [12]. First, we provide a short introduction to the
constraint solving capabilities of ProB in Sect. 2.1. Further technical details
regarding ProB’s kernel can be found in [21,22] or [20]. Following, Sect. 2.2 will
outline how ProB was embedded into Rodin’s proof architecture. Section 2.3
will explain the integration of ProB into Atelier B. Afterwards, in Sect. 2.4 we
will show how ProB can be used to detect inconsistencies in the model.

2.1 ProB’s Constraint Solving Kernel

The ProB constraint solver is based on CLP(FD)-style constraint-propagation
[11], i.e., the variables of a B specification are annotated with possible values
(e.g., in the form of intervals for integer variables). This information is propa-
gated from one variable to another, e.g., if we know that x is in the range 0..8
and the predicate x = y + 2 holds, then y must be in the range −2..6. As a last
resort, ProB enumerates undetermined variables when no further propagation
is possible. While doing so, the solver tracks where and why enumeration occurs.
It is able to distinguish between safe and unsafe enumerations, i.e., if all possible
values of a variable have to be tried out or if a single solution is sufficient. This
is done by observing the context2 in which an enumeration occurs. Exhaustive
enumeration can then be detected individually for each variable and later be
transferred to the whole constraint if possible. Let us look at a few example
constraints, where we suppose all free variables to be existentially quantified:

– i ∈ {1, 2, 1024, 2048} ∧ i > 2 �? i mod 2 = 1
Here, we have the two hypotheses i ∈ {1, 2, 1024, 2048} and i > 2 and we
want to prove that i mod 2 = 1 is a logical consequence. Hence, we would
construct the formula i ∈ {1, 2, 1024, 2048} ∧ i > 2 ∧ ¬(i mod 2 = 1) and try

2 This includes quantification, negation and arbitrarily nested combinations of them.

From Failure to Proof: The ProB Disprover for B and Event-B 201

to find solutions for i. For this formula, ProB finds two solutions (i = 1024
and i = 2048) and no infinite enumeration has occurred (ProB has narrowed
down the interval of i to 3..2048 before enumeration has started). As such,
we can conclude that G ≡ i mod 2 = 1 is not a logical consequence of the
hypotheses H1 ≡ i ∈ {1, 2, 1024, 2048} and H2 ≡ i > 2.

– i ∈ {1, 2, 1024, 2048} ∧ i > 2 �? i mod 2 = 0
For the opposite of the goal, i.e., i mod 2 �= 1 or equivalently i mod 2 = 0,
we construct the formula i ∈ {1, 2, 1024, 2048} ∧ i > 2 ∧ ¬(i mod 2 = 0). In
this case ProB finds no solution and no infinite enumeration has occurred.
As such, we have proven that i mod 2 = 0 follows logically from i ∈
{1, 2, 1024, 2048} ∧ i > 2.

– i > 20 �? i mod 2 = 1
If we want to prove that (i mod 2 = 1) is a logical consequence of i > 20,
we construct the formula i > 20 ∧ ¬(i mod 2 = 1). ProB finds a solution
(i = 22), but infinite enumeration has occurred in the sense that the possible
values of i lie in the interval 22..∞. However, in this context this is not an
issue, as a solution has been found. As such, we can conclude that i mod 2 = 1
is not a logical consequence of i > 20.

– i > 20 �? (i mod 2 = 0 ∨ i mod 1001 �= 800)
Finally, if we want to prove that (i mod 2 = 0 ∨ i mod 1001 �= 800) is a
logical consequence of i > 20, we get the formula i > 20 ∧ ¬(i mod 2 =
0 ∨ i mod 1001 �= 800). Here ProB finds no solution, but an “enumeration
warning” is produced. Indeed, the constraint solver has narrowed down the
possible solutions for i to the interval 801..∞, but with the default search
settings no solution has been found. Here, we cannot conclude that i mod 2 =
0 ∨ i mod 1001 �= 800 is a logical consequence of i > 20. Indeed, i = 1801 is a
counter-example.3

2.2 Integration into Rodin for Event-B

When working on a proof obligation, Rodin keeps track of two sets of hypotheses:
the set of all available hypothesis for the target goal and a user-selected subset.
The idea is to be able to reduce the search space of the automatic provers by
excluding irrelevant hypotheses. In the case of the ProB prover we could, for
instance, get rid of hypotheses that are irrelevant for the proof but contain
variables over infinite domains, deferred sets or complicated constraints.

This approach cannot lead to false positives, because limiting the number
of available hypothesis cannot render a formerly unprovable sequent provable.
However, disproving while omitting hypotheses can lead to false negatives if the
hypotheses are too weak for a proof. For instance, say the goal G is i mod 2 = 1
and the hypotheses are i ∈ {1, 2, 3} (H1) and i �= 2 (H2). ProB will not find a
counter-example for H1 ∧ H2 ∧ ¬G but it will find a (false) counter-example for
H1 ∧ ¬G.

Figure 1 outlines how the disprover proceeds in more detail:
3 Which ProB can find if we enlarge the default search space, e.g., by adding i < 10000

as additional constraint.

202 S. Krings et al.

1. We first try to solve the predicate H1 ∧ ... ∧ Hm ∧ ¬G, i.e., the negated
goal together with all available hypotheses. If we find a solution, we report
the proof obligation as unprovable and insert the counter-example inside the
Rodin proof tree. If no counter-example is found and search was exhaustive,
the initial sequent is proven, because no counter-example exists.

2. If the constraint solver is unable to prove or disprove the predicate in step 1,
we reduce the number of hypotheses to the user-selected hypotheses and again
look for a counter-example. The three possible outcomes are:
– A contradiction is detected with the reduced set of hypotheses. This is still

a valid proof, as removing hypotheses can only introduce further counter-
examples but not remove them.

– If we find a solution, we report a possible counter-example, but leave the
proof obligation status as unknown. However, we do not interfere with the
ongoing proof effort, as the proof obligation might still be provable using
all hypotheses.

– Otherwise we return without a result (status is unknown).

not(Goal)

ProB
Constraint

Solver

No solution found
(not exhaustive)

Hypotheses

Selected
Hypotheses

ProB
Constraint

Solver

Constraint
Propagation

Enumeration
Tracking

DISPROOF

Counter-example

PROOF

No solution found
(exhaustive)

UNKNOWN

No solution found
(not exhaustive)

Counter-example

Fig. 1. Disproving algorithm

2.3 Integration into Atelier B for Classical B

The integration of ProB into Atelier B is closer to the original implementation of
the disprover explained in [23].4 Within Atelier B a proof obligation is translated
into a B machine, where all hypotheses are put into the properties clause and
the assertions clause contains an implication of the form SelHyp ⇒ Goal. Here,
Goal is the proof goal, and SelHyp are the selected hypotheses. The latter are
empty if prob(0) is called from Atelier B and contain all hypotheses H1 which
have a variable in common with Goal if prob(1) is called. When prob(2) is
called, Atelier B recursively adds all further hypotheses which have variables in
common with H1. The selection algorithm is the same that is used for the other
Atelier B provers (e.g., pp(0), pp(1), pp(2)). It is also possible to specify a
time-out t in milliseconds: prob(n|t). Once the machine is constructed, Atelier
B calls the command line version of ProB, which tries to find a counter-example
4 This work was conducted in a joint project with ClearSy (Lilian Burdy, Etienne

Prun) and funded by Alstom (Fernando Mejia).

From Failure to Proof: The ProB Disprover for B and Event-B 203

to SelHyp ⇒ Goal and writes the result to an intermediate file. The possible
result values are very similar to above:

– no counter-example exists: the proof obligation is proven,
– no counter-example found (with reason being either time-out, deferred sets

used or enumeration warning): the proof obligation status is unknown,
– counter-example found: the proof obligation status is still unknown, but not

provable from the selected hypotheses.

2.4 Inconsistency Detection

After the algorithms outlined in Sects. 2.2 and 2.3 return a proof, a second phase
can be triggered as outlined in Fig. 2: We try to find a proof for the negation of
the goal. This time, we send H1∧ ...∧Hm∧G to the constraint solver. The result
allows us to decide, whether the goal predicate G played a role in the original
proof. If the negated goal can be proven as well, we detected a contradiction
in the hypotheses. Contradicting hypotheses might occur due to an error in the
model, in particular if they are detected at the root of the proof tree.5 Hence,
the user should be notified if they occur in a successful proof.

If contradicting hypotheses or disproven obligations have been found, ProB
can afterwards compute the unsat core in order to provide smaller counter-
examples and ease understanding of shortcomings in the underlying model. This
helped us to identify the cause of several bugs in the Stuttgart 21 model and in
one of the published landing gear case studies (see Sect. 3.2).

Furthermore, this two-phase analysis can be used to detect bugs in ProB: if
the search for a counter-example fails to explore certain cases, it might be inde-
pendent of the goal. Hence, we can detect if ProB correctly spots contradictions
using crafted sequents. In fact, we did detect an error in a prototypical optimi-
sation (common-subexpression elimination), which we did not use in this paper.
We could even go further and apply other provers to the unsat core generated
by ProB in order to validate a proof effort by a second toolchain.

not(Goal)

ProB
Constraint

Solver

Hypotheses

ProB
Constraint

Solver

PROOF

No solution found
(exhaustive)

NORMAL PROOF

No solution found
(not exhaustive)

Counter-exampleGoal

INCONSISTENCY
WARNING

No solution found
(exhaustive)

...

Fig. 2. Inconsistency detection

5 Deeper within a proof, contradicting hypotheses can occur “naturally”.

204 S. Krings et al.

3 Empirical Evaluation and Comparison

In this section, we compare ProB to several other provers available for the
Rodin platform [3], i.e., Rodin’s automatic tactic and the SMT plug-in [14,15].

Our evaluation leads us to the following conclusions:

– In many cases ProB can discharge proof obligations that cannot be discharged
by other provers. Each additional obligation that is discharged actually saves
time and money.

– None of the provers can be replaced by the others.
– The performance of a prover is influenced by the surrounding tactic, including

other provers. While the influence of a tactic on ProB is only marginal, it is
quite strong for other provers.

3.1 Experimental Setup

For our experiments, we have used Rodin 3.1, version 2.1.0 of the Atelier B
provers plugin and version 1.2.1 of the SMT plugin, with the bundled version
2.4.1 of CVC3 and the bundled development version of veriT. We have used
a timeout of 5 s for each SMT solver, run in succession. ProB was used in
version 1.5.1-beta1, connected through the disprover plugin version 3.0.8. Again,
a timeout of 5 s was used for each constraint solving attempt with a maximum
of two attempts per proof obligation (see Fig. 1). We used a global timeout of
25 s for a whole tactic.

All benchmarks were run on a MacBook Pro featuring a 2.6 GHz i7 CPU
and 8 GB of RAM. We did not run proof attempts in parallel to avoid issues
due to hyper-threading or scheduling. We developed an evaluation plugin6 for
the Rodin platform that applies the user- or pre-defined proof tactics to selected
proof obligations.

We used the following combined tactics as they represent closely what can
be utilized by end-users:

– The automatic tactic that comes with Rodin. It applies a number of rewriting
rules and decision procedures to the proof tree. For instance, it checks if the
goal is included in the set of hypotheses and thus discharged. The automatic
tactic is applied until a fixpoint is reached or the process times out. This is
the “Default Auto Tactic” of Rodin where the calls to PP and ML have been
removed.

– In a second step, we used this tactic in its original state, i.e., with the PP and
ML provers from Atelier B enabled.

– The SMT plugin [14,15] applies two different SMT solvers (veriT [10] and
CVC3 [7]) to the original goal. We used the default SMT tactic that calls PP
and ML as well.

6 See https://github.com/wysiib/ProverEvaluationPlugin for sources and instruc-
tions.

https://github.com/wysiib/ProverEvaluationPlugin

From Failure to Proof: The ProB Disprover for B and Event-B 205

– Finally, we add ProB to the tactic as well. It is applied to the goal before
the other provers.

In addition we benchmarked the provers alone, i.e. without tactics. This gives
us a better picture of the individual power of each prover.

– PP and ML from Atelier B together,
– SMT plugin on its own, using both veriT and CVC3, and
– ProB alone.

We used the following models for our benchmarks:

– Answers to the ABZ-2014 landing gear case study [9]. Beside our own ver-
sion [18], we also used the three models by Su and Abrial [26], a model
by André, Attiogbé and Lanoix [4], as well as a model by Mammar and
Laleau [24].

– A model of the Stuttgart 21 Railway station interlocking by Wiegard, derived
from Chap. 17 of [2] with added timing and performance modeling.

– A model of a controller area network (CAN) bus developed by Colley.
– A formal development of a graph coloring algorithm by Andriamiarina and

Méry. The graphs to be colored are finite, but unbounded and not fixed in the
model.

– A model of a pacemaker by Méry and Singh [25].

The models were selected so as to cover a variety of use cases. The landing
gear model [18] contains mainly enumerated sets; hence we suspected ProB to
perform well. We included several other versions of the case study to investigate
how modelling style influenced prover performance. On the other end of the
spectrum, the graph coloring model uses only deferred sets. Hence, we expected
ProB not to perform well, as finite enumeration is not possible. The other
models were expected to lie in between those extremes. We do not claim that
our selection is representative. Indeed, we could have selected more models using
(mostly) deferred sets; but this would have just confirmed that ProB’s prover
is disabled for proof obligations involving deferred sets.

For raw data and additional visualizations see http://www.stups.hhu.de/
ProB/index.php5/Sefm2015. Rodin is available on http://www.event-b.org. The
provers are available from update sites included in Rodin.7

3.2 Results

The benchmark results for the tactics can be found in Tables 1 and 2 and
Figs. 3, 4 and 5, while the results for the provers alone are in Table 3 and part (b)
of Fig. 3. Table 1 shows the total number of proof obligations discharged, as well
as the percentage of proof obligations discharged using ML/PP together with
SMT and in the last column the percentage discharged by using these two proof
tactics together with the ProB disprover. Each Venn diagram shows how many
7 For a standalone version of ProB see http://www.prob2.de.

http://www.stups.hhu.de/ProB/index.php5/Sefm2015
http://www.stups.hhu.de/ProB/index.php5/Sefm2015
http://www.event-b.org
http://www.prob2.de

206 S. Krings et al.

Table 1. Benchmark results: Discharged Event-B proof obligations

Model # POs Tactic
alone

+ML/PP +ML/PP+
SMT

+ML/PP+
SMT+ProB

Landing gear system 1,
Su et al.

2328 2022 2190 2303 2306

Landing gear system 2,
Su et al.

1188 817 915 1169 1173

Landing gear system 3,
Su et al.

341 134 152 205 262

CAN bus, Colley 534 289 398 403 388

Graph coloring,
Andriamiarina et al.

254 122 166 170 169

Landing gear
system, Hansen
et al.

74 64 65 67 74

Landing gear
system, Mammar
et al.

433 218 297 381 397

Landing gear
system, Andre et al.

619 180 214 319 450

Pacemaker,
Neeraj Kumar Singh

370 258 354 364 369

Stuttgart 21
interlocking,
Wiegard

202 37 33 97 147

Table 2. Benchmark results: Event-B Average Runtimes (in seconds/po)

Model Tactic
alone

+ML/PP +ML/PP+
SMT

+ML/PP+
SMT+ProB

Landing gear system 1, Su et al. 0.23 0.35 0.3 0.55

Landing gear system 2, Su et al. 0.34 0.64 0.74 0.79

Landing gear system 3, Su et al. 8.29 9.71 11.08 6.01

CAN bus, Colley 5.29 5.93 6.03 7.13

Graph coloring, Andriamiarina et al. 1.48 2.56 7.44 8.04

Landing gear system, Hansen et al. 0 2.1 2.7 0.2

Landing gear system, Mammar et al. 1.68 2.02 2.05 2.39

Landing gear system, Andre et al. 11.64 11.89 11.92 7.01

Pacemaker, Neeraj Kumar Singh 0 0.1 0.04 0.4

Stuttgart 21 interlocking, Wiegard 11.7 13.26 13.2 9.84

From Failure to Proof: The ProB Disprover for B and Event-B 207

Table 3. Results of running provers alone (without pre-processing by Rodin)

Model # POs ML/PP SMT ProB

prove disprove

Landing gear system 1, Su et al. 2328 1396 1477 2311 0

Landing gear system 2, Su et al. 1188 341 567 1176 0

Landing gear system 3, Su et al. 341 99 146 290 0

CAN bus, Colley 534 481 282 276 0

Graph coloring, Andriamiarina et al. 254 90 97 0 0

Landing gear system, Hansen et al. 74 70 59 74 0

Landing gear system, Mammar et al. 433 227 257 400 0

Landing gear system, Andre et al. 619 189 268 567 5

Pacemaker, Neeraj Kumar Singh 370 356 224 354 0

Stuttgart 21 interlocking, Wiegard 202 51 44 125 2

proof obligations are discharged by which prover. Table 2 shows the runtimes of
the different provers for all proof obligations and for discharged proof obligations
individually. Note that for the Stuttgart 21 model and the Andre et al. model,
ProB found several unprovable proof obligations, i.e., errors in the model as
can be seen in Table 3. E.g., for Stuttgart 21 ProB found a counter-example for
two proof obligations, while it found five counter-examples in the landing gear
model. This is very useful feedback to the developer of the model, and the initial
purpose of the ProB disprover.

The diagram in Fig. 3 shows the gain of using ProB in addition to the other
decision procedures. Compared to the SMT Tactic, adding ProB leads to an
additional 304 (238+1+11+54) proof obligations being discharged. However, due
to the time consumption by ProB, 47 (35+7+5) proof obligations cannot be
discharged anymore. With a higher time-out, these could again be proven. The
second diagram in Fig. 3 shows how the individual provers alone contribute: Each

35
760

238

0

9

4034

628

1

4

11
54 7

5

33

22

Autotactic (4141) +ML/PP (4784)

+ML/PP+SMT (5478) +ML/PP+SMT+ProB (5735)

(a) Tactics

192
166

43

361

2581

631

2000

ML/PP (3300) SMT (3421)

ProB (5573)

(b) Provers alone

Fig. 3. Visualization of the full benchmark results

208 S. Krings et al.

of them has a set of proof obligations that cannot be solved by any of the others
(192 for ML/PP, 43 for SMT and 2000 for ProB).

Except for the graph coloring algorithm ProB performs surprisingly well.
The graph coloring algorithm uses unbounded sets, meaning that some of the
proof obligations cannot be proven using constraint solving and enumeration.

As can be seen in Table 1, adding ProB improves the results of automatic
proving for all other models. In some cases, such as the landing gears, the
improvement is substantial (cf., Fig. 4). The reason for the rather big improve-
ment is that these models only use enumerated sets, booleans and integers as
base types. In these cases ProB can produce elaborate case distinctions, com-
bined with constraint solving to narrow down the search space. This type of
proof is not supported by the classical provers ML and PP. Generally, the proof
obligations that pose problems to ProB are certain well-definedness proof oblig-
ations. For instance, function application requires to proof that the parameter
is in the domain of the function. Usually this leads to expensive enumeration of
the possible parameter values.

For some of the models, using ProB slows down the prove process. As shown
in Table 2 ProB’s runtime is above average for some proof obligations, while it
considerably speeds up other proof attempts. We suspect that this is due to the
multiple constraint solver calls ProB performs on different sets of hypotheses
as shown in Fig. 1. Also, ProB is looking for proofs and counter-examples. This
often means that ProB will continue the computation, even after it has realized
that no proof is possible (in the hope of finding a counter-example).

It is also interesting to note that, on their own, the ML and PP provers do not
fare quite so well as in Table 1: they require pre-processing and tactic support to
be fully effective: See Table 3 containing the results without any pre-processing.

All models except the Landing Gear System by Mammar et al. show the same
behavior: The rate of discharged proof obligations drops significantly if Rodin’s
default tactics are not applied. Adding SMT solvers or ProB does not replace
the tactics either.

In contrast, the model by Mammar et al. shows the opposite behavior: with-
out pre-processing, more proof obligations can be discharged. This is probably
due to the timeouts leaving less time for the actual prover, if we include a pre-
processing phase. In future, we want to examine whether better pre-processing
can improve the performance of the ProB disprover.

The same effect can be observed in Table 4. Here, the performance of the
provers on different kinds of proof obligations is given. For most kinds, ProB
does perform quite well when compared to ML/PP and the SMT solvers, espe-
cially for guard strengthening proofs, theorem proofs and well-definedness proofs.
For feasibility and finiteness proof obligations, on the other hand, ProB fares
less well.

Unexpected Performance of SMT. To our surprise, the SMT solvers did
not perform as well as we expected when compared to ProB. For certain kinds
like guard strengthening or initialization in Table 4, the SMT solvers prove less
proof obligations than ML/PP or ProB. We suspect that this is due to the
translation from Event-B to SMT-LIB:

From Failure to Proof: The ProB Disprover for B and Event-B 209

Table 4. Performance of provers on different kinds of proof obligations

Kind of PO # POs ML/PP SMT ProB

Feasibility of non-det. action 59 53 (89.8 %) 40 (67.8 %) 44 (74.6 %)

Guard strengthening 300 27 (9.0 %) 13 (4.3 %) 258 (86.0 %)

Invariant preservation 4938 2877 (58.3 %) 3111 (63.0 %) 4488 (90.9 %)

Action simulation 153 118 (77.1 %) 108 (70.6 %) 134 (87.6 %)

Theorem 97 13 (13.4 %) 29 (29.9 %) 66 (68.0 %)

Well definedness 779 200 (25.7 %) 109 (14.0 %) 570 (73.2 %)

6326 3288 (52.0 %) 3410 (53.9 %) 5560 (87.9 %)

– The λ-based approach [14,15] does not support sets of sets. Thus, a whole
class of proof obligations cannot be solved by it. Therefore, the SMT plugin
uses the second approach presented in [14,15] as the default:

– The ppTrans approach [19] translates set theory to predicate calculus. The
resulting SMT-LIB problem is then enriched by the predicate calculus version
of certain set-theoretic axioms.

Newer releases of SMT-Solvers like CVC4 [5] support finite sets natively
as an extension to the SMT-LIB language [27]. Thus, certain classes of proof
obligations could be passed to the SMT-Solvers directly instead using one of the
approaches mentioned above. We assume that this would increase the number
of proof obligations that could be discharged successfully. In summary, while
the SMT plugin has been very successful, we recommend critically examining
the current SMT-LIB translation and believe there is scope for considerable
improvement by using an alternate translation.

Inconsistency in Hypothesis Detection. The inconsistency detection of
Sect. 2.4 found also various contradictions in the theorems (at lower refinement
levels) of the Stuttgart 21 model. It also highlighted an issue in the first devel-
opment of the ABZ landing gear from [26]. The ProB disprover was flagging,
e.g., the proof obligation treat hndl up 112/inv1/INV in the machine LPN4 as

16
651

183

0

7

3357

405

1

1

8
50 7

1

7

5

Autotactic (3435) +ML/PP (3833)

+ML/PP+SMT (4444) +ML/PP+SMT+ProB (4662)

(a) Tactics

8
5

27

197

2112

630

1879

ML / PP (2322) SMT (2774)

ProB (4818)

(b) Provers alone

Fig. 4. Visualization of the benchmark results. Part 1: Landing gear systems

210 S. Krings et al.

13
13

1

0

1

288

85

0

0

0
0 0

3

22

0

Autotactic (289) +ML/PP (398)

+ML/PP+SMT (403) +ML/PP+SMT+ProB (388)

(a) Colley, CAN Bus

5
62

48

0

1

29

0

0

0

3
4 0

0

0

0

Autotactic (37) +ML/PP (33)

+ML/PP+SMT (97) +ML/PP+SMT+ProB (147)

(b) Wiegard, Stuttgart 21

1
24

0

0

0

102

43

0

3

0
0 0

0

4

17

Autotactic (122) +ML/PP (166)

+ML/PP+SMT (170) +ML/PP+SMT+ProB (169)

(c) Andriamiarina and Mèry, Graph Col-
oring Algorithm

0
10

6

0

0

258

95

0

0

0
0 0

1

0

0

Autotactic (258) +ML/PP (354)

+ML/PP+SMT (364) +ML/PP+SMT+ProB (369)

(d) Singh, Pacemaker

Fig. 5. Visualization of the benchmark results. Part 2: Miscellaneous models

containing a contradiction in the hypothesis. The ProB unsat core algorithm
found out the following root cause:

close_EV = FALSE & open_EV = FALSE & door = op2cl &
((open_EV = FALSE & close_EV = FALSE) => door = cl)

The seen context LPNC0 contains the axiom partition(D, {cl}, {cl2op},
{op2cl}, {op}).8 The first line comes from the guard of the event
treat hndl up, the second line is the invariant inv1 from LPN4. In other words,
the disprover has detected that this event can never be executed given the invari-
ant. A similar issue was detected for several other events.9

When (not) to Use the ProB Disprover. In summary, we present the
following insights on when to use the ProB disprover (+) and when not to (−):

+ Used solely as a disprover, ProB can prevent futile interactive proof
attempts. This is always worthwhile.

+ The inconsistency detection is very useful for finding subtle modelling errors.
8 For technical reasons this axiom is not yet included in the unsat core; partition

axioms are never removed from the core by the current algorithm.
9 In LPN4 of [26]: treat hndl up 122, treat hndl up 132, treat hndl dn 112,
treat hndl dn 122, treat hndl dn 132.

From Failure to Proof: The ProB Disprover for B and Event-B 211

+ On models such as the ABZ landing gear models (Fig. 4), which rely heavily
on enumerated sets, booleans and/or bounded integers as base types, ProB
performs very well.

+ The Stuttgart 21 model shows that explicit data, e.g., track layouts or time
tables, can often be used effectively by ProB. Often, this results in a proof
by an elaborate case distinction.

+ ProB performs reasonably well on unbounded intervals, when interval rea-
soning can be applied. This occurs for example in the lower refinement levels
of the ABZ case study models or the pacemaker model.

– As soon as the proof goal references deferred sets (e.g., in the graph coloring
model), no proof can be done by construction of the disprover (see Fig. 1).

– When unbounded datastructures are used, ProB cannot exhaustively enu-
merate cases and is much less powerful. This happens for example in the
CAN bus model, that represents a buffer as an unbounded partial function
from N to Z.

4 Discussion and Conclusion

One motivation for the experiments conducted in this paper was the empirical
evaluation of our constraint solver, more precisely its capability to detect incon-
sistencies (a successful proof with the disprover requires finding a contradiction
without enumerating unbounded variables; see Fig. 1). Finding inconsistencies is
important for many other features of ProB, e.g., detecting disabled events dur-
ing animation. Furthermore, it is useful for constraint-based validation, such as
deadlock checking [17], where it avoids the constraint solver exploring infeasible
alternatives. In the context of model-based testing, it enables ProB to detect
uncoverable alternatives, and not spend time trying to find test cases for them.

An important issue is the soundness of the ProB disprover. In [8] we have
presented the various measures we are taking to validate ProB’s results in gen-
eral. In addition, we have developed an SMT-LIB [6] importer for ProB and
have applied our disprover to a large number of SMT-LIB benchmarks, check-
ing that no “false theorems” are proven. For this paper, we have also double
checked many of the proof obligations which were only provable by ProB, to
ensure that they are indeed provable. As the Venn diagrams in Figs. 4 and 5 show,
a large number of proof obligations can be proven by two or even three different
provers. As the three provers rely on completely different technologies and have
been developed by independent teams, we can have a very high confidence that
those proof obligations are indeed provable.

We have demonstrated that constraint-based proof in general, and ProB
in particular, is capable of discharging proof obligations that currently cannot
be proven using Rodin’s auto tactic and the SMT solvers. Our prover typically
deals well with a different kind of proof obligations than the other provers, and
is thus an orthogonal extension rather than a replacement. Rodin’s auto tactic
performs well in the realm of set theoretic constructs and relational expressions,
some of which cannot be easily represented in the SMT syntax. SMT on the other

212 S. Krings et al.

hand performs well on arithmetic expressions, where the auto tactics often fail.
ProB finally covers predicates over enumerated sets, explicit data and explicit
computations and has a good support for integer arithmetic over finite domains.

However, for models which make heavy use of deferred sets, such as the graph
coloring algorithm model, the ProB disprover can currently mainly play its role
as disprover. More precisely, for any proof obligation which involves deferred sets
and where no precise value of the cardinality of the deferred set is known, the
disprover can only return either a counter-example or the result “unknown”.

In future, we plan to improve the treatment of deferred sets in ProB, and to
have the constraint solver determine the cardinalities of those sets while solving.

We also plan to conduct experimental evaluations for ProB within Atelier B,
and compare with efforts such as [13] or the BWare project [16]. First results on
industrial case studies within Alstom are already very promising.

We think that the ProB Disprover is a valuable extension to the existing
set of provers, because it can increase the number of proof obligations that are
automatically discharged, thus saving time and money. Overall, the outcome
of the empirical evaluation was a positive surprise, as ProB’s main domain of
application is finding concrete counter-examples, not discharging proof obliga-
tions. In particular, the fact that the number of discharged proof obligations
(5573 in Fig. 3 (b)), for the models under consideration, is better than that of
the two SMT solvers of the SMT plugin (3421 in Fig. 3 (b)) was completely
unexpected.

Acknowledgements. We would like to thank the various developers for giving us
access to their Event-B models, and for discussions and feedback: Jean-Raymond
Abrial, Andre, Attiogbe, John Colley, Régine Laleau, Luis-Fernando Mejia, Lanoix,
Amel Mammar, Dominique Méry, Neeraj Kumar Singh, Wen Su.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, New York (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, New York (2010)
3. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-

ronment for Event-B. In: Liu, Z., Kleinberg, R.D. (eds.) ICFEM 2006. LNCS, vol.
4260, pp. 588–605. Springer, Heidelberg (2006)

4. André, P., Attiogbé, C., Lanoix, A.: Modelling and analysing the landing gear
system: a solution with Event-B/Rodin. http://www.lina.sciences.univ-nantes.fr/
aelos/softwares/LGS-ABZ2014/index.php. Solution to ABZ-2014, Accessed: 17
March 2014

5. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

6. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (2010)

http://www.lina.sciences.univ-nantes.fr/aelos/softwares/LGS-ABZ2014/index.php
http://www.lina.sciences.univ-nantes.fr/aelos/softwares/LGS-ABZ2014/index.php

From Failure to Proof: The ProB Disprover for B and Event-B 213

7. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

8. Bendisposto, J., Krings, S., Leuschel, M.: Who watches the watchers: Validating the
prob validation tool. In: Proceedings of the 1st Workshop on Formal-IDE, EPTCS
XYZ, 2014, Electronic Proceedings in Theoretical Computer Science (2014)

9. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Heidelberg (2014)

10. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-Solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol.
5663, pp. 151–156. Springer, Heidelberg (2009)

11. Carlsson, M., Ottosson, G.: An open-ended finite domain constraint solver. In:
Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292. Springer, Heidelberg
(1997)

12. ClearSy. Atelier B, User and Reference Manuals. Aix-en-Provence, France (2009).
http://www.atelierb.eu/

13. Conchon, S., Iguernelala, M.: Tuning the Alt-Ergo SMT solver for B proof oblig-
ations. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp.
294–297. Springer, Heidelberg (2014)

14. Déharbe, D.: Automatic verification for a class of proof obligations with SMT-
solvers. Proceedings ASM 2010, 217–230 (2010)

15. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for rodin. In: Derrick,
J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E.
(eds.) ABZ 2012. LNCS, vol. 7316, pp. 194–207. Springer, Heidelberg (2012)

16. Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The BWare project: building a
proof platform for the automated verification of B proof obligations. In: Ait Ameur,
Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 290–293. Springer,
Heidelberg (2014)

17. Hallerstede, S., Leuschel, M.: Constraint-based deadlock checking of high-level
specifications. TPLP 11(4–5), 767–782 (2011)

18. Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-
tion of the ABZ landing gear system using ProB. In: Boniol, F., Wiels, V., Ait
Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 66–79. Springer,
Heidelberg (2014)

19. Konrad, M., Voisin, L.: Translation from set-theory to predicate calculus. Technical
report, ETH Zurich (2011)

20. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation
to data validation: the prob constraint solver 10. In: Boulanger, J.-L. (ed.) Formal
Methods Applied to ComplexSystems: Implementation of the B Method, Chap.
14, pp. 427–446. Wiley ISTE, Hoboken (2014)

21. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805. Springer, Heidelberg (2003)

22. Leuschel, M., Butler, M.: ProB: An automated analysis toolset for the B method.
Software Tools for Technology Transfer (STTT) 10(2), 185–203 (2008)

23. Ligot, O., Bendisposto, J., Leuschel, M.: Debugging Event-B Models using the
ProB Disprover Plug-in. In: Proceedings AFADL 2007, June (2007)

24. Mammar, A., Laleau, R.: Modeling a landing gear system in Event-B. In: Boniol,
F., Wiels, V., Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp.
80–94. Springer, Heidelberg (2014)

25. Méry, D., Singh, N.K.: Formal specification of medical systems by proof-based
refinement. ACM Trans. Embed. Comput. Syst. 12(1), 15:1–15:25 (2013)

http://www.atelierb.eu/

214 S. Krings et al.

26. Su, W., Abrial, J.-R.: Aircraft landing gear system: approaches with Event-B to
the modeling of an industrial system. In: Boniol, F., Wiels, V., Ait Ameur, Y.,
Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 19–35. Springer, Heidelberg
(2014)

27. Weissenbacher, G., Kröning, D., Rümmer, P.: A proposal for a theory of finite sets,
lists, and maps for the smt-lib standard. In: Proceedings of the 7th International
Workshop on Satisfiability Modulo Theories, SMT 2009 (2009)

Formalizing a Secure Foreign Function Interface

Adriaan Larmuseau(B) and Dave Clarke

Uppsala University, Uppsala, Sweden
{adriaan.larmuseau,dave.clarke}@it.uu.se

Abstract. Many high-level functional programming languages provide
programmers with the ability to interoperate with untyped and low-
level languages such as C and assembly. Research into the security of
such interoperation has generally focused on a closed world scenario, one
where both the high-level and low-level code are defined and analyzed
statically. In practice, however, components are sometimes linked in at
run-time through malicious means. In this paper we formalize an oper-
ational semantics that securely combines MiniML, a light-weight ML,
with a model of a low-level attacker, without relying on any static checks
on the attacker. We prove that the operational semantics are secure by
establishing that they preserve and reflect the equivalences of MiniML.
To that end a notion of bisimulation for the interaction between the
attacker and MiniML is developed.

Keywords: Language interoperation · Full abstraction · Bisimulation

1 Introduction

Modern software systems consist of numerous interoperating components written
in different source languages. Such language interoperation is usually achieved
through a foreign function interface (FFI) that details how data is exchanged and
how functions are called across the language boundary between the source lan-
guage and the foreign language. A FFI, however, introduces an explicit security
risk: if the abstractions of the source language are not preserved in the foreign
language, programs in the foreign language may be able to obtain confidential
information or break the integrity of the program in the source language [1].

Preserving language abstractions is commonly formalised through a notion
of full abstraction: if two source language terms t1 and t2 are contextually equiv-
alent, indistinguishable to all source language contexts, then the terms must
also be indistinguishable to all foreign language contexts that they interact with
through the FFI and vice versa. Full abstraction thus preserves the abstractions
of the source language in its interactions with the foreign language, ensuring that
the programmer need only reason about the abstractions of the source language.
Full abstraction does not, however, protect a programmer from writing insecure
programs. That concern must be addressed in the design of the source language.

This paper introduces MiniML+ a formal model for a fully abstract FFI
between a source language MiniML, a light-weight ML featuring references,
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 215–230, 2015.
DOI: 10.1007/978-3-319-22969-0 16

216 A. Larmuseau and D. Clarke

tuples and recursion and a machine-level language such as assembly or C. The
foreign language is not explicated in the model. It is instead simplified to an
attacker model MiniMLa that captures all the threats to full abstraction that a
machine-level language may pose. To establish the security result we prove that
an MiniML program set within MiniML+ preserves and reflects the equivalences
of the original MiniML program. Because direct proofs over contextual equiva-
lence are difficult we develop notions of bisimulation that coincide with contex-
tual equivalence over MiniML and MiniML+. Full abstraction is then established
by systematically relating the states of both notions of bisimulation.

This paper is an extension of our previous work on a formal model for a
low-level memory protection mechanism [9]. In contrast to the basic λ-calculus
addressed in that work, this paper considers a more complex source language,
featuring references and non-trivial data types, and contributes a more complete
formal model that considers in detail the exchange of data structures and mem-
ory locations. The introduced formal model differs from previous formalisms
such as Matthews’ and Findler’s multi-language semantics [10] in that it is less
abstract. In contrast to multi-language semantics where the concrete details of
function calls and data exchange are left to the implementation, our model pro-
vides insight into how to implement these mechanisms in a secure fashion.

The remainder of this paper is organized as follows. Firstly the paper provides
an overview of the source language MiniML and the attacker model MiniMLa

(Sect. 2). The paper describes the secure FFI formalism MiniML+ (Sect. 3) and
provides a proof of full abstraction (Sect. 4). Finally the paper presents related
work (Sect. 5) and concludes (Sect. 6).

2 The Interoperating Languages

The secure FFI combines MiniML (Sect. 2.1) and an attacker model MiniMLa

for a low-level language such as assembly or C (Sect. 2.2). The terms, types
and contexts of MiniML are typeset in a black font, in contrast the terms and
contexts of the attacker model MiniMLa are typeset in a bold red font.

2.1 The Source Language MiniML

The source language is MiniML: an extension of the typed λ-calculus featuring
constants, references, tuples and recursion. The syntax is as follows.

t ::=v | x | (t1 t2) | 〈t i∈1 ..n
i 〉 | op t1 t2 | t .i | if t1 t2 t3 | ref t

| let x = t1 in t2 | t1 := t2 | t1 ; t2 | fix t | !t | hash t
| letrec x : τ = t1 in t2

op ::= + | − | ∗ | < | > | ==
v ::= 〈v i∈1 ..n

i 〉 | unit | li | n | (λx : τ.t) | true | false
τ ::= Bool | Int | Unit | τ1 → τ2 | Ref τ | 〈τ i∈1 ..n

i 〉
E ::= [·] | E t | v E | op E t | op v E | E .i | ...

Formalizing a Secure Foreign Function Interface 217

Here n indicates the syntactic term representing the number n, the letrec
operator for recursive expressions is syntactic sugar for a let-term combined
with a fix operator and E is a Felleisen-and-Hieb-style evaluation context with
a hole [·] that lifts the basic reduction steps to a standard left-to-right call-
by-value semantics [2]. The operands op apply only to booleans and integers.
Locations li are an artefact of the dynamic semantics that do not appear in the
syntax used by programmers. The locations are tracked at run-time in a store
μ ::= ∅ | μ, li = v, which is assumed to be an ideal store: it never runs out of space.
Allocating new locations is done deterministically l1, l2, .., ln. The term hash t
maps a location to its index: li �→ i, similar to how Java’s .hashCode method
converts references to integers. The reduction and type rules are standard and
are thus omitted. The interested reader can find the full formalisation of the
semantics in an accompanying technical report [8].

Contextual Equivalence. The secure FFI aims to preserve the contextual equiva-
lences of MiniML. A MiniML context C is a MiniML term with a single hole [·],
two MiniML terms are contextually equivalent if and only if there is no context
C that can distinguish them. Contextual equivalence is formalised as follows.

Definition 1. Contextual equivalence (�) is defined as:

t1 � t2
def
= ∀C . C [t1]⇑ ⇐⇒ C [t2]⇑

where ⇑ denotes divergence, t1 and t2 are closed terms and neither the terms
and the contexts feature explicit locations li as they are not part of the static
semantics. Note that two contextually equivalent MiniML terms t1 and t2 have
the same type τ as a context C observes the same typing rules as the terms.

Two MiniML terms 1 and 2 are, for example, not contextually equivalent
as a context C = (if ([·] == 1) Ω true), where Ω is a diverging term, can
distinguish them. MiniML’s λ-terms, in contrast, introduce many equivalences.
There is no context C, for example, that can distinguish the following terms.

(λx : Int.(+ x x)) (λx : Int.(∗ 2 x)) (Ex-1)

The equivalences over the locations of MiniML are a little more complex. Due
to the deterministic allocation order and the inclusion of the hash operation, a
context can observe the number of locations as well as their indices. The following
two terms, for example, are not contextually equivalent.

let x = ref true in let x = ref true in (Ex-2)
let y = ref true in x let y = ref true in y

As the context C = (if (hash[·] == 1) Ω true) can distinguish both terms.
Locations when kept secret, however, can still produce equivalences as a context
C cannot contain a location li unless it is shared at run-time. The following two
terms, for example, are thus contextually equivalent.

let x = ref false in 1 let x = ref true in 1 (Ex-3)

218 A. Larmuseau and D. Clarke

2.2 The Attacker Model MiniMLa

A malicious machine-level attacker can break the abstractions of a MiniML pro-
gram that it interoperates with in two ways. Firstly the attacker can break
the abstractions of MiniML by inspecting and manipulating the internal state
of a running MiniML program. An attacker can achieve this by either reading
and writing to references shared through the FFI (a documented vulnerability
in Java’s JNI [13]) or by abusing low-level privileges to inspect the memory
directly. Secondly, when interoperating a MiniML program will not only share
terms over the FFI, but also receive terms. The attacker can take advantage of
this by passing terms that do not adhere to the typing rules of MiniML.

Our attacker model incorporates both these threats to full abstraction. The
attacker model is formalised as a language MiniMLa that is derived from MiniML
by removing typing safety and incorporating reflection. Removing type safety is
achieved by both removing the type checking rules as well as adding a new term
wr that captures non reducible expressions such as the following one.

E[if v t2 t3] −→ E[wr] where v = true or v = false

Reflection is added to MiniMLa by means of a syntactical equality testing oper-
ator modulo α-equivalence ≡α. Given two terms t1 and t2, the term t1≡αt2
will thus only reduce to true if t1 and t2 are syntactically equal in all
aspects but the names assigned to the variables.

Contextual Equivalence or Lack Thereof. The addition of reflection in MiniMLa

through the α-equivalence testing operator, renders the abstractions and source
level restrictions of MiniML obsolete [15]. Consider, for example, the equivalent
λ-terms of Ex-1 in Sect. 2.1. The following MiniMLa context:

C = (if ((λy.(∗ 2 y)) ≡α [·]) Ω true)

distinguishes them due to the ≡α operator’s ability to inspect the syntax of
MiniML terms. A similar context C can thus be built for the contextually
equivalent terms of Ex-3 and for every other pair of contextually equivalent
terms outside of α-equivalent terms.

3 The MiniML+-Calculus: A Secure FFI

The MiniML+-calculus models the interoperation between MiniML and MiniMLa

in a manner that secures the MiniML program from the MiniMLa attacker
(Sect. 3.1). The MiniML+-calculus introduces new syntax (Sect. 3.2), new seman-
tics (Sect. 3.3), new typing rules (Sect. 3.4), a modified notion of type soundness
(Sect. 3.5) and definition of contextual equivalence (Sect. 3.6).

3.1 Overview

To formalise a secure interoperation between the attacker and the source lan-
guage the MiniML+-calculus applies the following three insights.

Formalizing a Secure Foreign Function Interface 219

Separated Program States. Preserving full abstraction when faced with a machine
level attacker has been achieved by employing memory isolation mechanisms that
prevent the attacker from directly accessing the memory of the program being
secured [11]. To that end the program state P is split into two sub-states: the
attacker state A and the secured program state M that incorporates the MiniML
program. Formally a program P is defined as: P = A || M.

Call Stacks. To ensure that the program state is separable, the combined lan-
guage must encode the interaction between both languages. To do so each state
is extended with a call stack. The secure state M encodes this call stack as a
type annotated stack of evaluation contexts Σ ::= E : τ → τ ′ | ε, where E
denotes a sequence of evaluation contexts E that represent the continuation of
computation when a call to the attacker returns and are thus only to be filled in
by input originating from the attacker. The stack of evaluation contexts is type
annotated. In MiniML+ these annotated types are incorporated into dynamic
type checks to ensure that the input from the attacker does not break the type
safety of the original MiniML program.

In contrast the attacker encodes the call stack through a sequence of contexts
C not a sequence of evaluation contexts E. An evaluation context E is derived
from call-by-value semantics, which limits the hole [·] to certain sub-terms. The
evaluation context E is thus a less powerful threat to full-abstraction than the
context C, where the hole can be anywhere. More specifically, for each possible
pair of terms t1 and t2 received from the MiniML program there exists a
context C of the form: (if (t1 ≡α[·]) Ω true) that can distinguish them.

Reference Objects. To ensure that the state of the MiniML program is isolated
from any kind of inspection by the attacker, the terms of MiniML programs that
introduce equivalences/abstractions: namely λ-terms and locations, should not
be shared directly with attacker. Instead, those terms are shared by providing
the attacker with reference objects, objects that refer to the original terms of the
program in MiniML. These reference objects, have two purposes. Firstly they
mask the contents of the original term and secondly they enable MiniML+ to
keep track of which locations or λ-terms have been shared with the attacker. The
MiniML+-calculus models reference objects for λ-terms and locations through
names nf

i and nl
i respectively. Both names are tracked in the secure state

through a map N that records not only the associated term but also the associated
type, thus enabling MiniML+ to perform run-time type checks on the attackers
interactions with these names. Formally N is defined as.

N ::= � | N,nf
i �→ (t, τ) | N,nl

i �→ (t, τ)

A name nf
i is created deterministically every time a λ-term is shared between

the secure state and the attacker. The name nf
1 refers to the first shared λ-term,

the name nf
2 refers to the second shared λ-term (even if it is the exact same

λ-term as the first one) and so forth. In contrast the index i of the name nl
i

will correspond to the index of the location it refers to (nl
i �→ li). This is because

220 A. Larmuseau and D. Clarke

the hash operation in MiniML allows a MiniML context/attacker to observe the
index of the location, as illustrated in Ex-2 of Sect. 2.1. This observational power
should thus not be taken away from the attacker in MiniML+.

Note that the names nf
i and nl

i are terms of the MiniMLa-calculus but
not of MiniML. Also note that we don’t compile or translate the λ-terms and
locations into these names. They simply serve as a sharing mechanism, enabling
the MiniML+-calculus to mask and track the locations and λ-terms shared by
the MiniML program with the MiniMLa attacker.

3.2 Syntax

While basic values such as numbers and booleans can simply be converted to the
correct representation when exchanged, no such conversion is possible for λ-terms
and locations li. As detailed in Sect. 3.1, in MiniML+ the MiniMLa attacker is
restricted to reference objects formalized as names nf

i and nl
i that refer to

λ-terms and locations shared by the MiniML program respectively. A MiniMLa

attacker can compare these names through its α-equivalence testing operator
≡α and can also apply, read and write them in MiniML+ using the newly added
terms: call nf

i v, deref nl
i and set nl

i v respectively. The attacker can also
create new names nl

i, that point to freshly allocated locations li in the MiniML
program, through a term frefτ v. Where τ represent the MiniML type that the
attacker promises the value v conforms to. This promise is checked at run-time
by MiniML+. The syntax of MiniMLa is thus extended as follows.

t ::= ... | call t1 t2 | set t1 t2 | deref t | frefτ t v ::= ... | nf
i | nl

i

In contrast, the terms of MiniML are only extended with one new value: τF(λx.t)
that embeds a MiniMLa λ-term in MiniML, modelling an attacker function
that the MiniML program can use. The type τ is included with the value to
enable MiniML+ to type check the use of this attacker function at run-time. The
MiniML-calculus is not extended with a term to embed locations of MiniMLa,
as manipulating the attacker memory harms the full abstraction result. This
does not harm the interoperation, as the attacker can simply create an MiniML
location through the frefτ t term instead of sharing its own.

The marshalling process of MiniML+ transitions between terms of MiniML
and MiniMLa within the secure state M. The marshalling terms m are as follows.

m ::= v | v | 〈mi∈1..n
i 〉

The marshalling converts MiniML values to MiniMLa values and vice versa.
Marshalling a tuple of size n is not immediate but takes n steps. To capture
the intermediate state where some members are converted and others are not a
tuple of terms m is included.

3.3 Operational Semantics

The reduction rules of the MiniML-calculus are denoted as P � P ′. As described
in Sect. 3.1 a program P = M || A composes two states M and A. The secure

Formalizing a Secure Foreign Function Interface 221

state M is either (1) executing a term t of type τ , (2) marshalling out values
from MiniML to MiniMLa, (3) marshalling in input from the attacker that is
expected to be of type τ or (4) waiting on input from the attacker.

(1) N;μ � Σ ◦ t : τ (2) N;μ � Σ � m : τ (3) N;μ � Σ � m : τ (4) N;μ � Σ

The attacker state takes two forms: it executes a term: A = μ �C ◦ t or is
suspended waiting on input from the MiniML program: A = μ �C.

For every possible program state P , the attacker or the secure state is thus
suspended. We divide the reduction rules over the program state P into four
categories: internal computations, marshalling values in, marshalling values out
and cross-boundary commands.

Internal Computations. These are reduction rules that only affect the terms of
one of the two languages. These are thus simply the reduction rules of MiniML
and MiniMLa set within the program state of MiniML+, denoted as follows.

μ �C || N;μ � Σ ◦ t : τ � μ �C || N;μ′ � Σ ◦ t′ : τ (Internal MiniML)

μ�C ◦ t || N;μ � Σ � μ′ �C ◦ t′ || N;μ � Σ (Internal MiniMLa)

Marshalling Values Out. Whenever the embedded MiniML program reduces to
a value v , that value needs to be converted to the appropriate representation
before it is shared with the head of the attacker’s call stack C. If the value is
a location or a λ-term then it must be masked with a name nl

i or nf
i , and

the association between the name, the term and the term’s type recorded in the
map N. Otherwise, the value is simply converted to the corresponding MiniMLa

value. This conversion happens in a designated marshalling state as follows.

μ �C || N;μ � Σ ◦ v : τ � μ�C || N;μ � Σ � v : τ (Setup)

To save space in the following marshalling rules, we have compressed the state
μ�C || N;μ � Σ � m into a wrapper ��m��Nτ that denotes the only two constructs
relevant to the marshalling process: the expected type τ and the map of shared
names N. Note the tuple conversion rule: it converts every member individually,
ensuring that the embedded λ-terms and locations become names.

222 A. Larmuseau and D. Clarke

If the marshalling succeeds (there is no type error) the result is shared, otherwise
the secure state is cleared and the attacker is updated with wrong: wr.

μ �C,C || N;μ � Σ � v : τ � μ�C ◦ C[v] || N;μ � Σ (Share)

μ �C,C || N;μ � Σ � wr : τ � μ�C,C[wr] || �, ∅ � ε (Type Error)

Marshalling Values In. Whenever the attacker reduces to a value and the secure
state’s call stack Σ is not empty the value is input into the secure state.

μ�C ◦ v || N;μ � Σ, E : τ → τ ′ � μ �C || N;μ � Σ � v : τ (Input)

The input value must be converted to the correct representation before it is
plugged into the head of the stack of evaluation contexts Σ. Note that as denoted
in the reduction rule Input, the marshalling rules will verify that the input value
matches the argument type τ of the to-be-plugged evaluation context. The mar-
shalling reduction rules are analogous to the previously detailed marshalling out
rules in that they perform the reverse operation: they convert the input into the
appropriate MiniML representation, fetching names from the map N instead of
introducing names. The detailed rules are thus omitted here but can be found
in the tech report [8]. When the marshalling succeeds the result is plugged into
the head of Σ, otherwise M is cleared and the attacker updated to wr.

μ�C || N;μ � Σ, E : τ → τ ′ � v : τ � μ �C || N′, μ � Σ ◦ E[v] : τ ′ (Plug)

μ�C,C || N;μ � Σ � wr : τ � μ �C,C[wr] || �, ∅ � ε (Type Error)

Cross Boundary Commands. The cross boundary commands enable the MiniML
program to manipulate shared λ-terms and locations as follows.

μ �C,C || N;μ � Σ ◦ E[(τ1→τ2F(λx.t) v)] : τ � (M-Call)

μ�C,C[((λx.t) [·])] || N;μ � Σ, E : τ2 → τ � v : τ1

As listed above a MiniML program is able to apply a MiniMLa λ-term (M-Call).
The application is done in two steps as it consists of two components: the shared
λ-term and an argument v . In the first step an evaluation context that consists
of an application of the shared λ-term to a hole [·] is placed inside the context
C while the secure state is setup for marshalling. In a second step the argument
v is then marshalled out as described previously and plugged into the newly
constructed evaluation context after which control is reverted to the attacker.

Note that this cross boundary function application serves as an input to the
attacker as it is plugged into the top context/attack C of the attacker’s call
stack C. This is because the attacker must be able to inspect this function call
as accurately as the machine-level attacker who is able to observe which of its
functions are called using which arguments.

Formalizing a Secure Foreign Function Interface 223

The cross boundary commands also enable the attacker to manipulate shared
MiniML λ-terms and locations as follows.

μ�C ◦ E[call nf
i v] || N;μ � Σ � μ �C ◦ v || N;μ � Σ, (t [·]) : τ → τ ′ (A-Call)

where N(nf
i) = (t, τ → τ ′)

μ�C ◦ E[set nl
i v] || N;μ � Σ � μ �C ◦ v || N;μ � Σ, (li := [·]) : τ → Unit

where N(nl
i) = (li, Ref τ) (A-Set)

μ�C ◦ E[deref nl
i] || N;μ � Σ � μ�C || N;μ � Σ ◦ !li : τ (A-Der)

where N(nl
i) = (li, Ref τ)

μ�C ◦ E[fref τ v] || N;μ � Σ � μ�C ◦ v || N;μ � Σ, (ref [·]) : τ → Ref τ
(A-Ref)

A command from the attacker is not an input to the MiniML program, but
rather a task it must carry out, and is as such not plugged into the head of the
stack of evaluation contexts Σ, but is instead executed on top the stack. As was
the case for the function application by a MiniML program, applying a λ-term
(A-Call), writing to a shared location (A-Set) or referencing a new location
(A-Ref) requires two steps. In the first step a new evaluation context is con-
structed. In the second the argument is marshalled out as described previously.
Dereferencing a shared MiniML location (A-Der) requires but one step as it
involves only the shared name nl

i and thus does not need to marshall out a
value.

Note that in each of these rules the current evaluation context of the attacker
(E) is discarded. While discarding this evaluation context changes the way
MiniMLa operates within the FFI, that does not affect its usefulness as an
attacker model. On the contrary, we remove it to strengthen the attacker model.
As detailed in Sect. 3.1, the contexts C of the attackers call stack C pose a real
threat to the abstractions MiniML, whereas an evaluation context E doesn’t.

Note also that the rules that deal with type violations by the attacker are
omitted as they are analogous to the error rules used by the marshalling rules.

3.4 MiniML+ Typing Rules

A MiniML+ run-time program state P is type checked by type checking each
individual evaluation context of the secure state’s evaluation stack Σ as well as
each association in the state’s map N and each location in the secure store μ.

Γ � N;μ � Σ Γ, x : τ1 � N � E[x] : τ2

Γ � N;μ � Σ, E : τ1 → τ2

Γ � N Γ � μ

Γ � N;μ � ε
Γ � N;μ � Σ Γ � t : τ

Γ � N;μ � Σ ◦ t : τ

Γ � N;μ � Σ

Γ � N;μ � Σ � m : τ

Γ � N;μ � Σ

Γ � N;μ � Σ � m : τ

Γ � �

Γ � N Γ � t : τ

Γ � N; [ni �→ (t, τ)] Γ � ∅
Γ � μ Γ � v : τ

Γ � μ, li = v

224 A. Larmuseau and D. Clarke

Typing the terms of the secure state is done through the regular MiniML typing
rules extended with one additional rule for type checking the additional value
τF (λx.t) that embeds a MiniMLa λ-term.

Γ � τF(λx.t) : τ
.

3.5 Type Soundness

Only the secure state M of a program P is type checked. As such we cannot
rely on a traditional notion of type soundness. Instead, similar to Wadler’s and
Findler’s blame calculus [14], we establish that whenever a program gets stuck
or reduces to the error wr the attacker is at fault. As usual type soundness
is split into theorems of progress and preservation. Proofs are omitted for space
reasons, they are available in the accompanying tech report.

Theorem 1 (Preservation). Given Γ � P and P � P ′ we have Γ � P ′.

Theorem 2 (Progress). Given Γ � P then if P � μ�wr || �, ∅ � ε or
P � P ′ then the attacker is the cause.

3.6 Contextual Equivalence

The MiniML+-calculus program state P combines the secure state M and the
attacker state A. However, our definition of contextual equivalence will only
relate the secure states M that embed the MiniML program as preserving the
security properties of MiniML in MiniML+ is the goal of this paper. The attacker
state A. thus serves as the context in which the secure state M operates.

Definition 2. Contextual equivalence over MiniML+ (�+) is defined as:

M1 � M2
def
= ∀A.(A || M1)⇑ ⇐⇒ (A || M2)⇑

Consider, for example, the equivalent λ-terms of Ex-1 in Sect. 2.1. These λ-terms
remain equivalent when placed within two secure states as follows.

�; ∅ � ε ◦ (λx : Int.(+ x x)) �; ∅ � ε ◦ (λx : Int.(∗ 2 x))

There exists no attacker A that can distinguish these two secure states. The
marshalling out rule for λ-terms will convert both λ-terms to the name nf

1 as
they are the first λ-term to be shared with the attacker. An attacker A will
observe that name, but cannot observe that the names refer to λ-terms that are
not α-equivalent as, due to the dynamic type checking rules of MiniML+,it can
only apply the name nf

1 to numbers n̄ as in MiniML.
Alternatively, the following two secure states are not contextually equivalent.

�,nf
1 �→ (λx : Ref Int.1); ∅ � ε �,nf

1 �→ (λx : Ref Int.!x); ∅ � ε

Formalizing a Secure Foreign Function Interface 225

As an attacker A = (∅�(if(1 == [·]) Ω true), call nf
1 [·] ◦ fref τ 2) can dis-

tinguish them. Reducing frefτ 2 will result in both secure states returning a
name nl

1 associated with a location l1 where: l1 �→ 2. This name nl
1 serves as

input to the second context where the name nf
1 is applied to it. The name nf

i

refers to terms that are not equivalent in MiniML, a fact that is subsequently
observed.

4 Full Abstraction

To establish that the MiniML+-calculus is a secure FFI, we show that the FFI
preserves the equivalences between MiniML terms despite the presence of the
attacker. Direct proofs over contextual equivalence are, however, difficult as one
needs to reason about every reduction in every context. To that end we develop
notions of bisimulation that coincide with contextual equivalence for MiniML
(Sect. 4.1) and for MiniML+ (Sect. 4.2). Proving that the FFI is fully abstract is
done by relating these bisimulations (Sect. 4.3).

4.1 Bisimulation for MiniML

We define a bisimulation relation S over the programs of MiniML that is con-
gruent: it coincides with the contextual equivalence relation �. There have been
multiple different bisimulations and trace semantics over typed λ-calculi with
references. In this paper we use an applicative bismulation that is a combination
of Jeffrey’s and Rathke’s applicative bisimulation for the vref-calculus [6] and
the fully abstract trace semantics for the λμhashref-calculus by Jagadeesan [5]
Applicative bisimulation is defined through an LTS. The LTS models the interac-
tions between a MiniML context C and a MiniML program. The LTS is formally
defined as a triple (ζ, α,

α−−→). The state ζ = K;μ | t is the MiniML run-time
state extended with a sequence K that records the locations li that the opponent
has knowledge of. This is needed to capture fact that locations are not part of
the static semantics and thus do not appear in contexts unless made available
at run-time. The labels α of the LTS are defined as follows.

α ::= γ | τ γ ::= @v | .i | li := v | ref v | !li | li | b | n | unit

The most relevant labelled reductions are as follows.

K;μ | t
τ−−→ K;μ′ | t′ (Sil) K;μ | n

n−−→ K;μ′ | n (O-N)

K;μ | (λx : τ.t) @v−−−→ K;μ | ((λx : τ.t) v) where � v : τ (I-App)

K;μ | v
li:=v′

−−−−−→ K;μ | li := v′ where l ∈ K and � li : τ and � v : τ (I-S)

K;μ | v
!li−−→ K;μ |!l if li ∈ K (I-D) K;μ | li

li−−→ K, li;μ | vi (O-L)

K;μ | v
ref v′

−−−−−→ K;μ | ref v′ (I-Ref) K;μ | 〈vi∈1..n
i 〉 .i−−→ K;μ | vi (I-Proj)

226 A. Larmuseau and D. Clarke

Reduction steps between terms cannot be observed by a context and are thus
labelled as silent through the label τ (Sil). Whenever a MiniML program reduces
to a value that is not a λ-term or tuple (as it may contain a λ-term), the context
can observe that value (O-N,O-L). Observing a label (O-L) is a special case as it
adds a new location li to K : the list of observed locations. A context interacts
with a λ-term by applying it to values (I-App), likewise a context queries members
of a tuple instead of observing it directly (I-Proj). A context can also dereference
observed locations li (I-D), create new ones (I-Ref) and assign them values (I-S).

We define a weak bisimulation over this LTS. In contrast to a strong bisimu-
lation, such a bisimulation does not use the silent transitions between two states.
Define the transition relation ζ

γ
=⇒ ζ ′ as ζ

τ−−→∗ γ−−→ ζ ′ where τ−−→∗
is the reflexive

transitive closure of the silent transitions τ−−→. A Bisimulation over this LTS is
now formally defined as follows.

Definition 3. The relation S is a bisimulation iff ζ1 S ζ2 implies:

(1) Given ζ1
γ
=⇒ ζ ′

1 there is a ζ ′
2 such that: ζ2

γ
=⇒ ζ ′

2 and ζ ′
1 S ζ ′

2

(2) Given ζ2
γ
=⇒ ζ ′

2 there is a ζ ′
1 such that: ζ1

γ
=⇒ ζ ′

1 and ζ ′
1 S ζ ′

2

We denote bisimilarity, the largest bisimulation, as ≈. We now establish that
the bisimilarity ≈ coincides with contextual equivalence �.

Theorem 3 (Congruence). t1 � t2 ⇔ t1 ≈ t2.

Where t1 ≈ t2 is short for ∅; ∅ | t1 ≈ ∅; ∅ | t2. A proof of this theorem is an
adaptation of existing results [5,6], as such we leave it to the accompanying tech
report [8]. The proof splits the theorem into two sublemma: contextual equiv-
alence implies bisimilarity (Completeness) and bisimilarity implies contextual
equivalence (Soundness). The former is proven as per Gordon [4]. The latter is
proven by induction over the number of reduction steps.

4.2 Bisimulation for the MiniML+-Calculus

We define a notion of bismulation (S+) that coincides with the contextual equiva-
lence relation (�+). Again we rely on an applicative bisimulation defined through

an LTS. The LTS is a triple (M, α+,
α+

−−−→) where the secure states M are the states,

α+ the set of labels and α+

−−−→ the labelled transitions between states. The labels
α+, which denote the observations of the attacker, are defined as follows.

α+ ::= γ+ | τ+ | √
γ+ ::= v? | v! | wr | � (λx.t) | � nl

i | � nf
i | � refτ | !nl

i

The labelled reductions of the LTS are of the form: M
γ+

−−−→ M′. Although the
attacker state A is not represented in these labelled reductions, the changes to
the attacker state can be derived from the labels. The transitions are as follows.

Formalizing a Secure Foreign Function Interface 227

N;μ � Σ ◦ t : τ
τ−−→ N;μ′ � Σ ◦ t′ : τ (S-Inner)

N;μ � Σ ◦ v : τ
τ−−→ N;μ � Σ � v : τ (S-Setup)

N;μ � Σ, E � v : τ
τ−−→ N;μ � Σ ◦ E[v] : τ (S-Plug)

N;μ � Σ � m : τ
τ−−→ N;μ � Σ � m′ : τ (S-MarshIN)

N;μ � Σ � m : τ
τ−−→ N′;μ � Σ � m′ : τ (S-MarshOut)

N;μ � Σ, E : τ → τ ′ v?−−−→ N � Σ, E : τ → τ ′ � v : τ (A-V)

N;μ � Σ � v : τ
v!−−→ N;μ � Σ (M-V)

N;μ � Σ � wr : τ
wr−−−→ �; ∅ � ε (Wr-O)

N;μ � Σ � wr : τ
wr−−−→ �; ∅ � ε (Wr-I)

N;μ � Σ
wr−−−→ �; ∅ � ε (Wr-C)

�;μ � ε
√

−−−→ �; ∅ � ε (Done)

N;μ � Σ
� refτ

−−−−−−→ N;μ � Σ, (ref [·]) : τ → Ref τ (A-R)

N;μ � Σ
!nl

i−−−→ N;μ � Σ ◦ !li : τ where N(nl
i) = (li, Ref τ) (D-N)

N;μ � Σ
� nf

i−−−−→ N;μ � Σ, (t [·]) : τ → τ ′ where N(nf
i) = (t, τ → τ ′) (C-N)

N;μ � Σ
� nl

i−−−−→ N;μ � Σ, (li := [·]) : τ → Unit if N(nl
i) = (li, Ref τ) (S-N)

N;μ � Σ ◦ E[(τ1→τ2F(λx.t) v)] : τ
� (λx.t)−−−−−−−→ N;μ � Σ, E : τ2 → τ � v : τ1 (C-L)

The internal reduction steps, the marshalling transitions as well as the rules
that setup the marshalling and plug the stack Σ are labelled as silent through
the label τ (S-*). The values v that the attacker returns or inputs are deco-
rated with ? (A-V). Likewise the inputs or returned values of the secure state,
converted to MiniMLa values v by the marshalling rules, are decorated with
! (M-V). Whenever the marshalling fails (Wr-O,Wr-I) or the attacker makes an
inappropriate call (Wr-C), the transition is labelled as wrong wr. Dereferencing
shared names is a one step transition and is labelled accordingly (D-N).

Setting and creating shared locations (S-N,A-R) or applying shared λ-terms
(C-N,C-L), are as detailed in Sect. 3.3 two step operations which are captured by
two labels. In the first step, whose label is decorated with �, a new context is
constructed that encodes the shared term and the operation to be performed on
it. In the second step the argument is passed across the boundary as captured
by the value sharing rules (A-V,M-V). Note that when the secure state applies a
MiniMLa (C-L) the argument is marshalled first (S-MarshOut).

As in Sect. 4.1 we define weak bisimulation. Define the transition relation
M

γ+

=⇒ M′ as M τ+

−−−→
∗

γ+

−−−→ M′ where τ+

−−−→
∗

is the reflexive transitive closure of the
silent transitions τ+

−−−→. Bisimulation is now defined as follows.

Definition 4. The relation S+ is a bisimulation iff M1 S+ M2 implies:

(1) Given M1
γ+

=⇒ M′
1 there is M′

2 such that: M2
γ+

=⇒ M′
2 and M′

1 S+ M′
2.

(2) Given M2
γ+

=⇒ M′
2 there is M′

1 such that: M1
γ+

=⇒ M′
1 and M′

1 S+ M′
2.

228 A. Larmuseau and D. Clarke

Again, we denote bisimilarity as ≈+ and prove that it is a congruence.

Theorem 4 (Congruence of the Bisimilarity). M1 �+ M2 ⇐⇒ M1 ≈+ M2.

The proof splits the thesis into two sublemma: completeness and soundness.

Lemma 1 (Completeness). M1 �+ M2 ⇒ M1 ≈+ M2.

Proof Sketch. To prove that contextual equivalence implies bisimilarity we show
that the contextual equivalence relation is itself a bisimulation. Assume that:

M1 �+ M2. and that: M1
γ+

=⇒ M′
1 (or its symmetry). We must show that there

exists a M2 such that M2
γ+

=⇒ M′
2 and that M′

1 �+ M′
2. The proof proceeds by case

analysis on the labels γ+. The labels are divided into two camps: those produced
by M and those produced by the attacker A. In the former case we prove the

contra positive: if M1
γ+

=⇒ M′
1 ∧ M2

γ+

=⇒ M′
2 =⇒ M1 �+ M2, by showing that for

every scenario where the states produce different labels there exists a context C
that can distinguish M1 and M2. In the latter case we simply show that every label
produced by the attacker can be encoded as a context C, because contextual
equivalence is closed under contexts that suffices to imply the thesis.

Lemma 2 (Soundness). M1 ≈+ M2 ⇒ M1 �+ M2.

The proof proceeds by induction on the number of reduction steps. We show
that given P1 = A || M1 and P2 = A || M2 that P2 diverges if and only if P1

diverges.
Full proofs for both lemmas are provided in the tech report.

4.3 The FFI Securely Embeds a MiniML Program

To prove that the FFI is secure we prove that injecting a MiniML term t into
a secure state of MiniML+ as follows: {t}↑ def

= �;μ � ε ◦ t : τ where Γ � t : τ ,
will preserve the abstractions of t irrespective of which attacker A it faces.
Formally stated: bisimilar terms in MiniML remain bisimilar when injected to
MiniML+.

Theorem 5 (A Secure FFI). t1 ≈ t2 ⇐⇒ {t1}↑ ≈+ {t2}↑.

The proof splits the thesis into two sublemma: preservation and reflection.

Lemma 3 (Preservation). t1 ≈ t2 ⇒ {t1}↑ ≈+ {t2}↑.

Proof Sketch. We must establish that there exists a relation R, so that: (1) {t1}↑

R{t2}↑ and (2) that R relates M1 and M2 as would S+. We define R as R =
R0 ∪ R1 ∪ R2 ∪ R3: one relation for each possible kind of M. The relation R0

relates two waiting states: N;μ � Σ and N′;μ′ � Σ′ and enforces that the name
maps are equivalent: Dom(N) = Dom(N′) ∧ ∀ni.N(ni) � N′(ni), and that the
evaluation stacks are equivalent: |Σ| = |Σ′| ∧ ∀E, E′, t.E[t] � E′[t]. The relation
R1 relates two states reducing terms t and t′ requiring that t1 ≈ t2 in addition to

Formalizing a Secure Foreign Function Interface 229

R0. The relations R2 and R3 relate the marshalling states, they require that R0

holds and that the marshalled terms are equal if they are terms of MiniMLa and
contextually equivalent otherwise. Case (1) now follows from the assumption.
Case (2) proceeds by analysis on the label γ+.

Lemma 4 (Reflection). {t1}↑ ≈+ {t2}↑ ⇒ t1 ≈ t2.

Proof Sketch. We prove the contrapositive: t1 ≈ t2 ⇒ {t1}↑ ≈+ {t2}↑. The proof
has two cases. In the first case the bisimulation fails immediately as t1 and t2
produce different transitions after silent reduction: ∅; ∅ | t1

γ
=⇒ ζ ′

1 ∧ �ζ ′
2.∅; ∅ |

t2
γ
=⇒ ζ ′

2 (or it’s symmetry). In this case we derive the thesis by case analysis
over the labels γ. In the second case there is a sequence of context actions
(@v, ref v,!li,li := v) that result in two states where different LTS transitions
apply. In this case we establish the thesis by showing that each MiniML context
action can be replicated by an MiniML+ attacker action.

Full proofs for both lemmas are provided in the tech report [8].

5 Related Work

This paper extended and refined a secure interoperation semantics for the
λ-calculus introduced in previous work [9] with references, non-trivial data types
and data marshalling. Formalisations that capture foreign function interface
implementations have been developed before. Matthews’ and Findler’s multi-
language semantics [10] enable two languages to interoperate in a way that pre-
serves termination and type safety. In their work however, they aim to abstract
away low-level details and instead focus on semantic properties. Our formalism
in contrast, focusses on lifting low-level interoperation details into the formalism
to study their effect on security. Furr and Foster investigate a sound FFI between
OCaml and C, by developing a multi-language type system that embeds OCaml
types in C and vice-versa [3]. They, however, assume that the C code is not an
attacker and will thus not circumvent their typing system. Tan et al. proprose
a framework that adds type safety to the default Java FFI [13]. Their system
however, requires both static and dynamic checks on the C code. Our formalism
in contrast, details an FFI that does not enforce any static checks.

The notions of applicative bisimulations for MiniML and MiniML+ are based
on the applicative bisimulation for the νref-calculus by Jeffrey and Rathke [6],
the fully abstract trace semantics for the λμhashref-calculus by Jagadeesan [5]
and the trace semantics for general references by Laird [7]. The labels of our
bisimulation differ from the labels used in the latter as our labels do not explic-
itly state the shared location store. The proof of congruence for the bisimulations
over MiniML+ relies on Gordon’s proof of congruence for FPC [4]. A possible
alternative to the applicative bisimulation for MiniML+ are the environmental
bisimulations of Sangiorgi et al. [12]. Our definition of bisimulation is however
much simpler than their respective definitions, as the names used in the formal-
ism of MiniML+ are not local but global and denumerable.

230 A. Larmuseau and D. Clarke

6 Conclusions

This paper introduced a formal model for a foreign function interface between a
light-weight ML-like programming language and a low-level attacker. The FFI
is secure in that it preserves the abstractions of the ML-like in its interactions
with the low-level attacker. This security property was proven by establishing
that contextually equivalent terms in the ML-like remain contextually equivalent
when interoperating with the low-level attacker through the FFI.

References

1. Abadi, M.: Protection in programming-language translations. In: Vitek, J. (ed.)
Secure Internet Programming. LNCS, vol. 1603. Springer, Heidelberg (1999)

2. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235–271 (1992)

3. Furr, M., Foster, J.S.: Checking type safety of foreign function calls. TOPLAS
30(4), 1–63 (2008)

4. Gordon, A.: Bisimilarity as a Theory of Functional Programming: Mini-Course.
BRICS Notes Series. Computer Science Department, Aarhus (1995)

5. Jagadeesan, R., Pitcher, C., Rathke, J., Riely, J.: Local memory via layout ran-
domization. In: CSF 2011. IEEE (2011)

6. Jeffrey, A., Rathke, J.: Towards a theory of bisimulation for local names. Computer
Science Report 02–2000, University of Sussex (2000)

7. Laird, J.: A fully abstract trace semantics for general references. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
667–679. Springer, Heidelberg (2007)

8. Larmuseau, A., Clarke, D.: Formalizing a secure foreign function interface -
extended version. Technical report 2015–015, Uppsala University, May 2015

9. Larmuseau, A., Patrignani, M., Clarke, D.: Operational semantics for secure inter-
operation. In: PLAS Workshop 2014. ACM (2014)

10. Matthews, J., Findler, R.B.: Operational semantics for multi-language programs.
TOPLAS 31(3), 1–44 (2009)

11. Patrignani, M., Agten, P., Strackx, R., Jacobs, B., Clarke, D., Piessens, F.: Secure
compilation to protected module architectures. ACM TOPLAS 37, 6:1–6:50 (2015)

12. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. ACM TOPLAS 33(1), 5:1–5:69 (2011)

13. Tan, G., Chakradhar, S., Srivaths, R., Wang, R.D.: Safe Java native interface. In:
ESSoS, pp. 97–106, March 2006

14. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Castagna, G.
(ed.) ESOP 2009. LNCS, vol. 5502, pp. 1–16. Springer, Heidelberg (2009)

15. Wand, M.: The theory of fexprs is trivial. Lisp Symbolic Comput. 10(3), 189–199
(1998)

A Formal Study of Backward Compatible
Dynamic Software Updates

Jun Shen(B) and Rida A. Bazzi

Arizona State University, Tempe, AZ 85281, USA
{jun.shen.1,bazzi}@asu.edu

Abstract. We study the dynamic software update problem for pro-
grams interacting with an environment that is not necessarily updated.
We argue that such updates should be backward compatible. We propose
a general definition of backward compatibility and cases of backward
compatible program update. Based on our detailed study of real world
program evolution, we propose classes of backward compatible update
for interactive programs, which are included at an average of 32 % of all
studied program changes. The definitions of update classes are parame-
terized by our novel framework of program equivalence, which generalizes
existing results on program equivalence to non-terminating executions.
Our study of backward compatible updates is based on a typed extension
of W language.

1 Introduction

Dynamic software update (DSU) allows programs to be updated in the middle
of their execution. The ability of DSU is useful for high-availability applications
that cannot afford the downtime incurred by offline updates [14]. DSU has been
an active area of research [5,14,20,23] with much of the published work empha-
sizing the update mechanism that implements a state mapping which maps the
execution state of an old version of the program to that of a new version. DSU
safety has not yet been successfully studied. Existing studies on DSU safety are
lacking in one way or another: high-level studies are concerned with change man-
agement for system components [8,17] and lower-level studies typically require
significant programmer annotations [12,22,34] or have a restricted class of appli-
cations to which they apply (e.g., controller systems [27]).

In this paper, we consider the safety of DSU when applied to possibly non-
terminating programs interacting with an environment that is not necessarily
updated. For such updates, the new program must be able to interact with
the old environment, which means that it should be, in some sense, backward
compatible with the old program. A strict definition of backward compatibility
would require the new version to exhibit the same I/O behavior as the old
version (observational equivalence). However, it should be immediately clear that
a more nuanced definition is needed because observational-equivalence does not
allow changes such as bug fixes, new functionalities, or usability improvement

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 231–248, 2015.
DOI: 10.1007/978-3-319-22969-0 17

232 J. Shen and R.A. Bazzi

(e.g., improved user messages). Allowing for such differences would be needed in
any practical definition of backward compatibility.

Determining backward compatibility between two different program versions
requires solving the semantic equivalence problem which has been extensively
studied [6,10,15,16,18,19,21,32]. Unfortunately, existing results are lacking in
one or more aspects which rules out retrofitting them for our setting. Existing
work on program equivalence does not allow us to express that a point in the
middle of a loop execution of one program corresponds to a point in the middle of
a loop execution of another program. The ability to express such correspondences
is desirable for DSU. Besides, existing formulations of the program equivalence
problem either do not use formal semantics [7,15,16], only apply to terminating
programs [6,18], severely restrict the programming model [10,16,32], or rely on
model checking [19,21] (which is not appropriate for non-terminating programs
with infinite states). Our goal for program equivalence is to establish compile-
time conditions ensuring that two programs have the same I/O behavior in all
executions. This is different from much of the literature on program equivalence
which only guarantees same behavior in terminating executions.

The closest work that aims to establish program equivalence for nonterminat-
ing programs is that of Godlin and Strichman [10] who give sufficient conditions
for semantic equivalence for a language that includes recursive functions, but
does not allow loops (loops are extracted as recursive functions). That and the
fact that equivalence is enforced on corresponding functions severely limits the
applicability of the work to general transformations affecting loops such as loop-
invariant code motion, loop fission/fusion. So we set out to develop sufficient
conditions for semantic equivalence for programs in a typed extension of the W
languages [9] with small-step operational semantics. The syntax of language is
extended and the semantics take into consideration the execution environment
to allow us to express various classes of updates.

In summary, the paper makes the following contributions:

1. We formally define backward compatibility and identify cases of backward
compatible program behavior for typical program updates.

2. We identify and formally define classes of program changes that result in
backward compatible program update from a study of real program evolution.

3. We give a formal operational semantics based treatment of semantic equiva-
lence for nonterminating imperative programs.

The rest of the paper is organized as follows. Section 2 proposes the gen-
eral backward compatibility and cases of backward compatible new program
behavior. Then we describe real world update classes that result in backward
compatible update in Sect. 3. Section 4 shows the formalism for the framework of
equivalence which is the core of our technical results. Related work is discussed
in Sect. 5.

2 Backward Compatibility

The term ‘backward compatibility’ is commonly used to describe how a new
version of an application is related to an old version of the application. In our

A Formal Study of Backward Compatible Dynamic Software Updates 233

setting, we consider updating a program that interacts with an environment
which is not necessarily updated; we want to ensure that the updated program
can meaningfully interact with an old client (environment) without breaking
client semantics. For example, we do not expect that a banking program server
be updated into an online video game server. To define backward compatibility,
we have to define program execution, the environment, the interaction together
with its validity. Due to the space limit, we present informally the definition of
backward compatibility (see [31] for full formal treatment).

A program execution is a sequence of steps. In a step, the program can
receive input, change its internal state, send output or halt. We model a program
state as a mapping from locations to values. The locations are the internal state
locations, the external state locations (local environment), and next input register
(possibly empty). An internal step can modify the values in the state locations.
An input step copies the content of the input register to other state locations
and an output step produces an output value as a function of the program
state. All steps specify the next step to execute. The interleaving sequence of
input consumed and output produced is the I/O sequence. Part of the execution
environment of a program is the sequence of inputs available to the program
during its execution. The input consumed is a prefix of the input sequence.

A specification is a predicate on the executions of a program. It distinguishes
valid executions from invalid executions. In this paper, we restrict ourselves
to I/O specifications which are specifications that only depend on the initial
external state, the input sequence and the program’s I/O sequence. The external
state is included to allow for reference to initial state of external storage. For
example, a user with stored data in a system considers the program’s refusal to
access the stored data a violation of the service specification; this is not the case
if the user has no stored data.

A hybrid execution is an execution in which a prefix consists of steps of an
old program and a suffix consists of steps of a new program. Between these two
parts, there is a state mapping that maps the last state of the old execution
to the first state of the new execution. The mapping does not affect the input
sequence and the new program consumes input from where the old one left off.

In practice, a program is its own specification because explicit specification is
usually unavailable. This means that program specification is inferred by observ-
able behavior of a program. However program bugs cause a dilemma that a pro-
gram does not usually capture its implicit specification. Below we examine how
two programs in DSU relate for a meaningful hybrid execution.

Input. The inputs that are valid for the new program should be a superset of
those for the old program for the new program’s interaction with old clients.
New inputs should be allowed for new functionality under the assumption
that the new inputs are either never generated by old clients or that new
inputs generated by old clients result in errors.

Output. The new program should produce the same outputs as the old program
when it receives inputs that are valid for the old program. This is the case
when the new program includes no bug fix. For a bug fix, the new program

234 J. Shen and R.A. Bazzi

should not introduce outputs that are not valid for old clients but definitely
change outputs for certain received inputs.

Bug Fix. Bug fixes are problematic. If the execution already violates the spec-
ification that is introduced by a fix, a valid hybrid execution is not possible.
We do not expect the state mapping to fix an error state just as static updat-
ing does not fix occurred errors. Instead, it is safe to update a program when
the bug to be fixed has not occurred in the old program execution. In this
paper, we do not attempt to determine if a particular state is an error state.
Such determination is impossible in general and very hard in practice. We
simply assume that the state at the time of update is not an error state.

New Functionality. New functionality is usually accompanied by new inputs/
outputs and the expansion of external state. We assume that new functional-
ity is independent of existing functionality in the sense that the old program
and the new one produce the same I/O sequence when receiving inputs in
the old program. Therefore we assume all new inputs are introduced by
new functionality. Otherwise, existing clients (environment) are necessarily
updated. We assume that the expansion of external state is independent of
values in existing external state. One of the motivating examples is to add
application settings for new program features.

In light of the above discussion, we define a backward compatible DSU to be
a DSU that (1) is not occurring in an error state, (2) the input/output/external
states of the old program are a subset of those of the new program, and (3) sat-
isfies the specification of the old program for old valid inputs. A new program is
backward compatible with an old program in a given state if there exists a back-
ward compatible DSU in that state from the old program to the new program.
We do not explicitly model DSU technology because our study of DSU semantic
corrrectness is independent of DSU technology and the hybrid execution has
modeled the effect of DSU technology.

We identified five cases of program update by considering typical update
motivation (i.e., new functionality, bug fix and program perfective/preventive
needs [3]). According to David Parnas [28], a program is updated to adapt to
changing needs. In other words, program changes are to produce more or less
or different output. These changes are captured by case 2, 3, 4, and 5 in Fig. 1.
We also capture output-preserving changes which are mostly likely motivated
by developer’s own needs (e.g., performance), which is case 1 in Fig. 1.

All of the five cases in Fig. 1 are backward compatible. Cases 1 and 2 are
obviously backward compatible because an old client is guaranteed to get old
responses. Unlike case 1 and 2, cases 3, 4 and 5 require some specific assumptions
about program semantics. Case 3 is backward compatible because we assume the
change is either adding new functionality, or fixing a bug by which the old pro-
gram stops execution. Similarly, case 4 is backward compatible in that the new
program stops execution in case of detected errors while the old program blindly
progresses forward. A new program is backward compatible if it does not preserve
faulty I/O behaviors. Case 5 is backward compatible because different output
could express the same application semantics for human clients. For example, a
greeting message could be changed from “hi” to “hello”.

A Formal Study of Backward Compatible Dynamic Software Updates 235

Case New program behavior

1 the old behavior

2 the old behavior for old input and consuming inputs only from new clients

3 producing more output while the old program stops execution

4 stopping execution while the old program produces more output

5 producing different output that is functionally equivalent to old output

Fig. 1. Five cases of general new program behavior

Software version Upd. date Tot. Class.

ftp 1.1.0 –1.1.1 2002-10-07 16 8
ftp 1.1.1 –1.1.2 2002-10-16 8 1
ftp 1.1.2 –1.1.3 2002-11-09 8 4
ftp 1.1.3 –1.2.0 2003-05-29 61 9
ftp 1.2.0 –1.2.1 2003-11-13 33 11
ftp 1.2.1 –1.2.2 2004-04-26 10 6
ftp 1.2.2 –2.0.0 2004-07-01 52 13
ftp 2.0.0 –2.0.1 2004-07-02 7 4
ftp 2.0.1 –2.0.2 2005-03-03 23 4
ftp 2.0.2 –2.0.3 2005-03-19 18 8
ftp 2.0.3 –2.0.4 2006-01-09 14 9
ftp 2.0.4 –2.0.5 2006-07-03 21 15
ftp 2.0.5 –2.0.6 2008-02-13 20 9
ftp 2.0.6 –2.0.7 2008-07-30 16 8
ftp 2.0.7 –2.1.0 2009-02-19 53 11
ftp 2.1.0 –2.1.2 2009-05-29 21 9
ftp 2.1.2 –2.2.0 2009-08-13 34 14

Software version Upd. date Tot. Class.

ftp 2.2.0 –2.2.2 2009-10-19 21 5
ftp 2.2.2 –2.3.0 2010-08-06 13 3
ftp 2.3.0 –2.3.2 2010-08-19 5 0
ftp 2.3.2 –2.3.4 2011-03-12 7 0
ftp 2.3.4 –2.3.5 2011-12-19 14 6
ftp 2.3.5 –3.0.0 2012-04-10 23 4
ftp 3.0.0 –3.0.2 2012-09-19 40 2

ssh 3.5p1 –3.6p1 2003-03-31 95 34
ssh 3.6p1 –3.6.1p1 2003-04-01 13 12
ssh 3.6.1p1 –3.6.1p2 2003-04-29 16 12
ssh 4.5p1 –4.6p1 2007-03-07 48 13
ssh 6.6p1 –6.7p1 2014-10-06 283 51

ice 0.8.0 –0.8.1 2004-08-04 4 3
ice 0.8.1 –0.8.2 2004-08-04 2 0
ice 2.3.0 –2.3.1 2005-11-30 47 10
ice 2.3.1 –2.3.2 2008-06-02 250 28
ice 2.4.0 –2.4.1 2014-11-19 178 154

Fig. 2. Statistics of classified real world software update

The five cases in Fig. 1 have covered the changes of output, including more or
less or different output. There exists more specific cases of backward compatible
program behavior changes under various specific assumptions. However, these
more specific cases could be attributed to one of the five cases as far as the
changes of output are concerned. In conclusion, it is not possible to go much
beyond the five cases of backward compatibility in Fig. 1.

3 Real World Backward Compatible Update Classes

We have studied evolution of three real world programs (i.e., vsftpd, sshd and
icecast) to identify real world changes that are backward compatible. We chose
these three programs because the programs are widely used in practice [1,2]
and are widely studied in the DSU community [24,26]. We have studied several
years of releases of vsftpd and consecutive updates of sshd and icecast. This is
because vsftpd is more widely studied by the DSU community [23,24,26]. There
is detailed discussion of why DSU is highly desirable in the evolution of these
programs in [23,26].

236 J. Shen and R.A. Bazzi

Update class (Case) Required assumptions for backward compatible update

program equivalence (1) none

new config. variables (1) no redefinitions of new config variables after initialization

enum type extension (2) no inputs from old clients match the extended enum labels

var. type weakening (3) no intended use of value overflow or array out of bound

exit on error (4) correct error check before exit

improved prompt msgs (5) better prompt messages for more effective communication

Fig. 3. Required assumptions for real world backward compatible update classes

Our study of real world program evolution is carried out as follows. We exam-
ined every changed function manually to classify updates. For every individual
change, we first identified the motivation of the change, then the assumptions
under which the change could be considered backward compatible. If the assump-
tion under which the change is considered backward compatible is reasonable,
we recorded the change into one particular update class. Finally we summarized
common update classes observed in the studied evolution of programs.

Figure 2 shows the statistics from our study of real world program evolution
where “Tot.” refers to the total number of updated functions, “Class.” refers to
the number of updated functions with at least one classified update pattern. In
summary, 32 % of all updated functions include at least one classified program
update; the unclassified updates are mostly bug fix that are related to specific
program logic. The statistics of classified update classes shows the usability of
automatic state mapping. We summarized six most common real world update
classes from all the studied updates in Fig. 3 and we believe that these update
classes are also widespread in other program evolution. Each of the six real
world update classes falls in one of the five cases of backward compatibility in
Fig. 1. We present informal descriptions of all update classes including required
assumptions for the two programs to produce same or equivalent output sequence
which guarantees backward compatible DSU.

3.1 Observational Equivalence: The Old Behavior

In case 1 Fig. 1, two programs are backward compatible because the new pro-
gram keeps all old behaviors (“observational equivalence”). In our study, we
differentiate two types of “observational equivalence” based on whether or not
additional semantic assumptions are needed.

Program Equivalence. We consider several types of program changes that are
allowed by “observational equivalence” without user assumptions. These changes
include: loop fission or fusion, statement reordering or duplication, and extra
statements unrelated to output (e.g., logging related changes). We incorporate
these changes in our framework of program equivalence which ensures two pro-
grams produce the same output regardless of whether the programs terminate
or not. The details of the formal treatment is in Sect. 4.

A Formal Study of Backward Compatible Dynamic Software Updates 237

:’1:1 If (b) then
:’2:2 output a ∗ 2
:’3:3 else

4: output a + 2 4’: output a + 2
wendlo

Fig. 4. Specializing new configuration variables

Specializing New Configuration Variables. Another update class of “obser-
vational equivalence” is “specializing new configuration variables”. In this update
class, new configuration variables are introduced to generalize functionality. For
example, in Fig. 4, a new configuration variable b is used to introduce new code.
The two statement sequences in Fig. 4 are equivalent when the new variable b is
specialized to 0. In general, if all new code is introduced in a way that is similar
to that in Fig. 4 where there is a valuation of new configuration variables under
which new code is not executed, and new configuration variables are not rede-
fined after initialization, then the new program and the old program produce
the same output sequence. The point is that new functionality is not introduced
abruptly in interaction with an old client. Instead new functionality could be
enabled for a new client when old clients are not a concern.

3.2 Enumeration Type Extension: Old Behavior for Old Input
and Allowing New Input

Enumeration types allow developers to list similar items. New code is usually
accompanied with the introduction of new enumeration labels. Figure 5 shows an
example of the update. The new enum label o2 gives a new option for matching
the value of the variable a, which introduces the new code “output 3 + c”. To

1: enum id {o1} 1’: enum id {o1, o2}
2: a : enum id 2’: a : enum id
3: If (a == o1) then 3’: If (a == o1) then
4: output 2 + c 4’: output 2 + c

:’5:5 If (a == o2) then
:’6:6 output 3 + c

wendlo

Fig. 5. Enumeration type extension

show enumeration type extensions to be backward compatible, we assume that
values of enum variables, used in the If-predicate introducing the new code, are
only from inputs for the old program.

3.3 Variable Type Weakening: More Output When the Old
Program Terminates

In program updates, variable types are changed either to allow for larger ranges
(weakening) or smaller ranges to save space (strengthening). For example, an

238 J. Shen and R.A. Bazzi

integer variable might be changed to become a long variable to avoid integer
overflow or a long variable might be changed to an integer variable because
the larger range of long is not needed. Type weakening also includes adding a
new enumeration value and increasing array size. The kinds of strengthening
or weakening that should be allowed are application dependent and would need
to be defined by the user in general. The type weakening considered is either
changes from type int to long or increase of array size. These updates fix integer
overflow or array index out of bound.

3.4 Exit on Error: Stopping Execution While the Old Program
Produces More Output

One kind of bug fix, which we call exit on error, causes a program to exit in obser-
vation of errors that depend on application semantic. Fig. 6 shows an example

:’1:1 If (1/(a − 5)) then
:’2:2 skip

3: output a 3’: output a
wendlo

Fig. 6. Exit on error

of “exit on error” update. In the example, the fixed bugs refer to the program
semantic error that a = 5. Instead of using an “exit” statement, we rely on
the crash from expression evaluations to model the “exit”. When errors do not
occur, the two programs in Fig. 6 produce the same output sequence. Naturally,
we assume that all error checks are correct.

3.5 Improved Prompt Messages: Functional Equivalent Outputs

In practice, outputs could be classified into prompt outputs and actual outputs.
Prompt outputs are those asking clients for inputs, which are constants hard-
coded in output statements. Actual outputs are dynamic messages produced by
evaluation of non-constant expressions in execution. If the differences between
two programs are only the prompt messages that a client receives, we consider
that the two programs are equivalent. The prompt messages are the replaceable
part of program semantics. We observe cases of improving prompt messages in
program evolution for effective communication. The changes of prompt outputs
do not matter only for human clients.

4 Formal Treatment of the Technical Results

We first briefly introduce the formal language. Then we present our framework
of program equivalence. The framework of equivalence facilitates our formal
treatment of real world program changes. The appendix includes the formal
treatment of real world update classes.

A Formal Study of Backward Compatible Dynamic Software Updates 239

4.1 The Programming Language

Our language is a typed extension and I/O extension of the W language [9],
which could be used to describe more real world program update classes.

Figure 7 shows our language syntax. Two basic types are Int and Long where
values of type Int are a subset of those of Long type. The two types for inte-
gers allow different space representation of integer values (which is of concern
in practice). We also have user-defined base types: enumeration and prompt
type (which represents messages to users). The user-defined base types help
developers organize application semantics (e.g., describing possible input from
users). In addition, variables can be declared to be arrays of any of the base
type (τ id[n]).

Identifier id Constant n Label l

Enum Items el ::= l | el1, el2
Enumeration EN ::= ∅ | enum id {el} | EN1, EN2

Prompt Msg msg ::= l : n | msg1, msg2

Prompts Pmpt ::= ∅ | {msg}
Base type τ ::= Int | Long | pmpt | enum id
Variables V ::= ∅ | τ id | τ id[n] | V1, V2

Left value lval ::= id | id1[id2] | id[n]
Expression e ::= id == l | lval | other
Statement s ::= lval := e | input id | output e | skip

| If (e) then {St} else {Sf} | while (e) {S}
Statements S ::= s1; ...; sk for k ≥ 1
Program P ::= Pmpt; EN ; V ; Sentry

Fig. 7. Abstract syntax

We have explicit input and output statement because we model the program
behavior as the I/O sequence. The I/O statement makes it convenient for the
argument of program behavior correspondence. In this paper, every I/O value is
an integer value [11].

Our language covers most characteristics of a real world imperative language
such as C. We omit some real world language characteristics. For procedure, it is
easy to transform a program without recursive procedures to a program without
procedure. As to recursive procedures, it is easy to transform a self-recursive
procedure to a loop statement [10]. Besides, there are ways to eliminate recursion
in general programs [30]. For pointer, we skip it because pointer semantic is
memory model dependent and it restricts the applicability of our results.

We skip our almost standard type system and operational semantics that are
close to those in [29,33].

240 J. Shen and R.A. Bazzi

4.2 The Framework of Program Equivalence

We present the framework of program equivalence in three steps. We first propose
a proof rule for two terminating programs to compute a variable equivalently.
We then suggest a proof rule for two programs to either both terminate or both
do not terminate. Finally we describe a proof rule for two programs to be behav-
ioral equivalent. Our proof rule of program equivalence implies program point
mapping as well as program state mapping. Though we express the program
equivalence as a whole program relation, it is easy to apply the equivalence
check for local changes using our framework under user’s various assumptions
for equivalence.

Step One: Equivalent Computation for Terminating Programs. We
start by giving the definition of equivalent computation for terminating pro-
grams. Then we present the proof rule of computation in the same way. In [31],
we show that the proof rule for equivalent computation is sound.

Definition 1 (Equivalent Computation). Two statement sequences S1 and
S2 compute a variable x equivalently when started in states m1 and m2

respectively, written (S1,m1) ≡x (S2,m2), iff, after terminating execution
(S1,m1)

∗→(skip,m′
1(σ1′)) and (S2,m2)

∗→(skip,m′
2(σ2′)), value stores σ1′ and

σ2′ agree on the value of the variable x, σ1′(x) = σ2′(x).

Proof Rule. Our proof rule allows statement reordering or duplication, loop fis-
sion or fusion, additional statements unrelated to the computation and state-
ments movement across if-branch.

Definition 4 includes the recursive proof rule of equivalent computation. The
base cases are in Definition 3. Definition 2 captures the variable def-use chain
which is the essence of our equivalence. In Definition 2, the Def and Use refer to
variables defined or used in a statement (sequence) or an expression similar to
those in the optimization chapter in the dragon book [4]; Si refers to i consecutive
copies of a statement sequence S.

Definition 2 (Imported Variables). The imported variables in a sequence of
statements S relative to variables X, written Imp(S,X), are defined below:

1. Def(S) ∩ X = ∅: Imp(S,X) = X;
2. S = “id := e” or “input id” or “output e” and Def(S) ∩ X �= ∅:

Imp(S,X) = Use(S) ∪ (X \ Def(S));
3. S = “If (e) then {St} else {Sf}” and Def(S) ∩ X �= ∅:

Imp(S,X) = Use(e) ∪ ⋃
y∈X

(
Imp(St, {y}) ∪ Imp(Sf , {y})

)
;

4. S = “while(e) {S′}” where(Def(S′) ∩ X) �= ∅): Imp(S,X) =
⋃

i≥0

Imp(S′i, Use(e) ∪ X);
5. For k > 0, S = s1; ...; sk+1: Imp(S,X) = Imp(s1; ...; sk, Imp(sk+1,X)).

Definition 3 (Base Cases of Equivalent Computation). Two simple state-
ments s1 and s2 satisfy the proof rule of equivalent computation of a variable x,
written s1 ≡S

x s2, iff one of the following holds:

A Formal Study of Backward Compatible Dynamic Software Updates 241

1. s1 = s2;
2. s1 �= s2 and one of the following holds:

(a) s1 = “input id1”, s2 = “input id2”, x /∈ {id1, id2};
(b) Case a) does not hold and x /∈ Def(s1) ∪ Def(s2).

Definition 4 (Proof Rule for Equivalent Computation). Two statement
sequences S1 and S2 satisfy the proof rule of equivalent computation of a variable
x, written S1 ≡S

x S2, iff one of the following holds:

1. S1 and S2 are one statement and one of the following holds:
(a) S1 = s1 and S2 = s2 are simple statement and s1 ≡S

x s2;
(b) S1 = “If(e) then {St

1} else {Sf
1 }”, S2 = “If(e) then {St

2} else {Sf
2 }” and

all of the following holds: i. x ∈ Def(S1) ∩ Def(S2); ii. St
1 ≡S

x St
2; iii.

Sf
1 ≡S

x Sf
2 ;

(c) S1 = “while(e) {S′
1}”, S2 = “while(e) {S′

2}” and both of the following
hold: i. x ∈ Def(S1)∩Def(S2); ii. ∀y ∈ Imp(S1, {x})∪Imp(S2, {x}) :
S′
1 ≡S

y S′
2;

(d) S1 and S2 do not define the variable x: x /∈ Def(S1) ∪ Def(S2).
2. S1 and S2 are not both one statement and one of the following holds:

(a) Last statement in S1 = S′
1; s1 or S2 = S′

2; s2 does not define the variable
x:

(
x /∈ Def(s1) ∧ (S′

1 ≡S
x S2)

) ∨ (
x /∈ Def(s2) ∧ (S1 ≡S

x S′
2)

)
;

(b) S1 = S′
1; s1, S2 = S′

2; s2 where last statements both define the variable x,
x ∈ Def(s1) ∩ Def(s2), and both of the following hold: i. s1 ≡S

x s2; ii.
∀y ∈ Imp(s1, {x}) ∪ Imp(s2, {x}) : S′

1 ≡S
y S′

2;
(c) S1 = S′

1; s1, S2 = S′
2; s2 and there are statements moving in or out of an If

statement: s1 = “If (e) then {St
1} else {Sf

1 }”, s2 = “If (e) then {St
2} else

{Sf
2 }”, none of the above cases hold and all of the following holds: i.

∀y ∈ Use(e) : S′
1 ≡S

y S′
2; ii. (S′

1;S
t
1 ≡S

x S′
2;S

t
2) ∧ (S′

1;S
f
1 ≡S

x S′
2;S

f
2);

Step Two: Termination in the Same Way. We start by giving the definition
of termination in the same way. Then we present the proof rule for termination
in the same way. In [31], we show that the proof rule for termination in the same
way is sound.

Definition 5 (Termination in the Same Way). Two statement sequences S1

and S2 terminate in the same way when started in states m1 and m2 respectively,
written (S1,m1) ≡H (S2,m2), iff one of the following holds: (a) S1 and S2 both
terminate, (S1,m1)

∗→(skip,m′
1) and (S2,m2)

∗→(skip,m′
2); (b) S1 and S2 both

do not terminate, ∀i ≥ 0, (S1,m1)
i→ (Si

1,m
i
1) and (S2,m2)

i→ (Si
2,m

i
2) where

Si
1 �= skip, Si

2 �= skip.

Proof Rule. Our proof rule allows statement duplication or reordering, loop fis-
sion or fusion and additional terminating statements. We summarize the cause
of non-terminating execution and then give the proof rule.

242 J. Shen and R.A. Bazzi

By our formal language, we consider two causes of nonterminating exe-
cutions: crash and infinite loops. According to [25], we consider four com-
mon causes of crash: expression evaluation exceptions, the lack of input value,
input/assignment value type mismatch and array index out of bound. In essence,
the causes of nontermination are partly due to the values of some particular vari-
ables during executions. We capture variables affecting each source of nontermi-
nation; loop deciding variables LVar(S) are variables affecting the evaluation of
a loop predicate in the statement sequence S, crash deciding variables CVar(S)
are variables whose values decide if a crash occurs in S. We list the definitions
of LVar(S) and omit the similar definition of CVar(S).

Definition 6 (Loop Deciding Variables). The loop deciding variables of a
statement sequence S, written LVar(S), are defined as follows:

1. LV ar(S) = ∅ if �s = “while(e) {S′}” and s ∈ S;
2. LV ar(“If (e) then {St}else {Sf}”) = Use(e) ∪ LV ar(St) ∪ LV ar(Sf) if

“while(e){S′}” ∈ S;
3. LV ar(“while(e){S′}”) = Imp(S,Use(e) ∪ LV ar(S′));
4. For k > 0, LV ar(s1; ...; sk; sk+1) = LV ar(s1; ...; sk) ∪ Imp(s1; ...; sk,

LV ar(sk+1));

The termination deciding variables (TVar) TVar(S) = CVar(S) ∪ LVar(S) sum-
marize the variables whose values decide if one program S terminates. We give
the recursive definition of the proof rule of termination in the same way. Defi-
nition 7 shows base cases of termination in the same way and Definition 8 gives
recursive cases. The notation Γ in Definition 7 refers to a type environment.

Definition 7 (Base Cases of Termination in the Same Way). Two simple
statements s1 and s2 satisfy the proof rule of termination in the same way,
written s1 ≡S

H s2, iff one of the following holds:

1. s1 and s2 are same, s1 = s2;
2. s1 and s2 are input statement with a same typed variable: s1 = “input id1”,

s2 = “input id2” where (Γs1 id1 : τ) ∧ (Γs2 id2 : τ);
3. both s1 and s2 definitely terminate, s1 = “output e1” or “id1 := e1”, s2 =

“output e2” or “id2 := e2”, where the following holds for s1 and s2:
– When s = “id := e”, there is no value type mismatch in “id := e”,

¬(Γs id : Int) ∨ ¬(Γs e : Long) ∨ (Γs e : Int).

Definition 8 (Proof Rule for Termination in the Same Way) Two state-
ment sequences S1 and S2 satisfy the proof rule of termination in the same way,
written S1 ≡S

H S2, iff one of the following holds:

1. S1 and S2 are both one statement and one of the following holds.
(a) S1 = s1 and S2 = s2 are simple statements and s1 ≡S

H s2;
(b) S1 = “If (e) then {St

1} else {Sf
1 }”, S2 = “If (e) then {St

2} else {Sf
2 }”

and similar branches terminate in the same way, (St
1 ≡S

H St
2) ∧ (Sf

1 ≡S
H

Sf
2);

A Formal Study of Backward Compatible Dynamic Software Updates 243

(c) S1 = “while(e){S′
1}”, S2 = “while(e){S′

2}” and both of the following
hold: i.
S′
1 ≡S

H S′
2; ii. S′

1 and S2” have equivalent computation of TV ar(S1)
∪ TV ar(S2);

2. S1 and S2 are not both one statement and one of the following holds:
(a) W.l.o.g., the last statement in S1 is “skip”: (S1 = S′

1; skip)∧ (S′
1 ≡S

H S2).
(b) S1 = S′

1; s1 and S2 = S′
2; s2 and all of the following hold:

i. S′
1 ≡S

H S′
2; ii. S′

1 and S′
2 have equivalent computation of TV ar(s1) ∪

TV ar(s2);
iii. s1 ≡S

H s2 where s1 and s2 are not “skip”;
(c) W.l.o.g, the last statement s1 in S1 = S′

1; s
′
1;S1”; s1 is a “duplicate”

statement and all of the following holds:
i. S′

1; s
′
1;S1” and S2 terminate in the same way, S′

1; s
′
1;S1” ≡S

H S2;
ii. s′

1 and s1 terminate in the same way, (s′
1 ≡S

H s1) ∧ (s1 �= “skip”);
iii. s′

1;S1” define none of TV ar(s1), Def(s′
1;S1”) ∩TV ar(s1) = ∅;

(d) S1 = S′
1; s1; s

′
1 and S2 = S′

2; s2; s
′
2 have s1 and s2 reordered and all of the

following hold:
i. S′

1 and S′
2 terminate in the same way, S′

1 ≡S
H S′

2;
ii. S′

1 and S′
2 have equivalent computation of TV ar(s1; s′

1)∪ TV ar(s2; s′
2);

iii. the reordered statements, (s1 ≡S
H s′

2) ∧ (s′
1 ≡S

H s2);
iv. s1 defines none of TV ar(s′

1), Def(s1) ∩ TV ar(s′
1) = ∅;

v. s2 defines none of TV ar(s′
2), Def(s2) ∩ TV ar(s′

2) = ∅;

Step Three: Behavioral Equivalence. We now propose a proof rule under
which two programs produce the same output sequence, namely the same I/O
sequence till any ith output value. We care about the I/O sequence due to the
possible crash from the lack of input. We start by giving the definition of behav-
ioral equivalence and then we describe the proof rule under which two programs
produce the same output sequence. We show the soundness of the proof rule
in [31]. We use the notation “Out(σ)” to represent the output sequence in value
store σ, the I/O sequence σ(idIO) till the rightmost output value. Particularly,
when there is no output value in the I/O sequence σ(idIO), Out(σ) = ∅.

Definition 9 (Behavioral Equivalence). Two statement sequences S1 and
S2 produce the same output sequence (behaviorally equivalent) when started in
states m1 and m2 respectively, written (S1,m1) ≡O (S2,m2), iff ∀m′

1 m′
2 such

that (S1,m1)
∗→(S′

1,m
′
1(σ

′
1)) and (S2,m2)

∗→(S′
2,m

′
2(σ

′
2)), there are states m′′

1

and m′′
2 reachable from initial states m1 and m2, (S1,m1)

∗→(S′′
1 ,m′′

1(σ′′
1)) and

(S2,m2)
∗→(S′′

2 ,m′′
2(σ′′

2)) such that Out(σ′′
2) = Out(σ′

1) and Out(σ′′
1) = Out(σ′

2).

Proof Rule. Our proof rule for behavioral equivalence allows non output state-
ments reordering or duplication, loop fission or fusion, and arbitrary differ-
ent statements after the last output statement. The point is to capture all
variables affecting the produced I/O sequence of a program, which are called
output deciding variables. The output deciding variables are of two parts:

244 J. Shen and R.A. Bazzi

OVar(S) = Impo(S) ∪ TVaro(S). Terminating deciding variables related to out-
put TVaro(S) are variables affecting the termination of the program S before the
last output statement; Impo(S) are variables affecting values of the I/O sequence
produced in executions of the program S. We only describe the proof rule for
behavioral equivalence due to the limit of space.

The proof rule for behavioral equivalence is defined recursively. There are
two base cases. The first case is of two same output statements; the second case
is of two statements without any output statement.

There are four inductive cases. The first case is of two If statements with the
same predicate expression and corresponding If-branches produce same output
sequence. The second case is of two loop statements with the same predicate
expression and two loop bodies produce same output sequence, terminate in
the same way and compute all output deciding variables in the same way. The
third case is that the last statement of the two program produce same output
sequence, and the two programs without respective last statement produce same
output sequence, terminate in the same way and compute the output deciding
variables of the two last statements in the same way. The last case is that one
last statement of the two programs does not include an output statement and
the two programs without that last statement produce same output sequence.

5 Related Work

We discuss related work on DSU safety and program equivalence in order.
Existing studies on DSU safety could be roughly divided into high level stud-

ies [8,17,27] and low level ones [12,13,22,34]. In [17], Kramer and Magee defined
the DSU correctness that the updated system shall “operate as normal instead
of progressing to an error state”. This is covered by our requirement that hybrid
executions conform to the old program’s specification and no occurred bug at
DSU. Moreover, our backward compatibility includes I/O behavior, which is
more concrete than the behavior in [17]. In [8], Bloom and Day proposed a DSU
correctness which allows functionality extension that could not produce past
behavior. This is probably because Bloom and Day considered updated environ-
ment. In contrast, we assume that the environment is not updated. In addition,
we explicitly present the error state, which is not mentioned in [8]. Panzica La
Manna [27] presented a high level correctness only considering scenario-based
specifications for controller systems.

Hayden et al. [12] concluded that there is only client-oriented correctness.
Zhang et al. [34] asked the developers to ensure DSU correctness. Magill et al. [22]
did ad-hoc program correlation without definitions of any correctness. We con-
sider that there is general principle of DSU safety. The difference lies at the
abstraction of the program behavior. We model program behavior by concrete
I/O while others [12,22,34] consider a general program behavior. In addition,
there is a DSU tool requiring little user effort on state mapping (Kitsune [13]).
However, Kitsune requires careful selection of update points to minimize manual
state mapping effort. It is unclear how much effort is required to select update
points and manual state mapping is not sound.

A Formal Study of Backward Compatible Dynamic Software Updates 245

There is a rich literature on program equivalence and we compare our work
only with most related work. Our study of program equivalence is inspired by
Horwitz et al. [15], but we take a much more formal approach and we consider
terminating as well as non-terminating programs with recurring I/O. In [10],
Godlin and Strichman have a structured study of program equivalence similar
to that of ours. Godlin and Strichman [10] restricted the equivalence to cor-
responding functions and therefore weakens the applicability to general trans-
formations affecting loops such as loop fission, loop fusion and loop invariant
code motion. Furthermore, our syntactic conditions imply more program point
mapping because we correlate program point in arbitrarily nested statements.

A Proof Rule for Behavioral Equivalence

We show the formal proof rule for behavioral equivalence. The output sequence
produced in executions of a statement sequence S depends on values of a set
of variables in the program, the output deciding variables OVar(S). The output
deciding variables are of two parts: TVaro(S) are variables affecting the termi-
nation of executions of a statement sequence; Impo(S) are variables affecting
values of the I/O sequence produced in executions of a statement sequence. We
show the definition of TVaro(S), Impo(S) and OVar(S) in order.

Definition 10 (Imported Variables Relative to Output). The imported
variables in one program S relative to output, written Impo(S), are listed as
follows:

1. Impo(S) = {idIO}, if (∀e : “output e” /∈ S);
2. Impo(“output e”) = {idIO} ∪ Use(e);
3. Impo(“If (e) then {St}else {Sf}”) = Use(e) ∪ Impo(St) ∪ Impo(Sf) if (∃e :

“output e” ∈ S);
4. Impo(“while〈n〉(e){S′′}”) = Imp(“while〈n〉(e){S′′}”, {idIO})if(∃e :

“output e” ∈ S′′);
5. For k > 0, Impo(s1; ...; sk; sk+1) = Imp(s1; ...; sk, Impo(sk+1))if(∃e :

“output e” ∈ sk+1);
6. For k > 0, Impo(s1; ...; sk; sk+1) = Impo(s1; ...; sk)if(∀e : “output e”

/∈ sk+1);

Definition 11 (Termination Deciding Variables Relative to Output).
The termination deciding variables in a statement sequence S relative to output,
written TV aro(S), are listed as follows:

1. TV aro(S) = ∅ if (∀e : “output e” /∈ S);
2. TV aro(“output e”) = Err(e);
3. TV aro(“If (e) then {St}else {Sf}”) = Use(e) ∪ TV aro(St) ∪ TV aro(Sf)

if (∃e : “output e” ∈ S);
4. TV aro(“while(e){S′′}”) = TV ar(“while(e){S′′}”) if (∃e : “output e” ∈

S′′);

246 J. Shen and R.A. Bazzi

5. For k > 0, TV aro(s1; ...; sk; sk+1) = TV ar(s1; ...; sk)
∪Imp(s1; ...; sk, TV aro(sk+1)) if (∃e : “output e” ∈ sk+1);

6. For k > 0, TV aro(s1; ...; sk; sk+1) = TV aro(s1; ...; sk) if (∀e : “output e”
/∈ sk+1);

Definition 12 (Output Deciding Variables). The out-deciding variables in
a statement sequence S are Impo(S) ∪ TV aro(S), written OV ar(S).

The condition of the same output sequence is defined recursively. The base
case is for two same output statements or two statements where the output
sequence variable is not defined. The inductive cases are syntax directed consid-
ering the syntax of compound statements and statement sequences.

Definition 13 (Proof Rule for Behavioral Equivalence). Two statement
sequences S1 and S2 satisfy the condition of the same output sequence, written
S1 ≡S

O S2, iff one of the following holds:

1. S1 and S2 are one statement and one of the following holds:
(a) S1 and S2 are simple statement and one of the following holds:

i. S1 and S2 are not output statement, ∀e1 e2 : (“output e1” �= S1) ∧
(“output e2” �= S2); or

ii. S1 = S2 = “output e”.
(b) S1 = “If (e) then {St

1}else {Sf
1 }”, S2 = “If (e) then {St

2}else {Sf
2 }” and

all of the following hold:
– There is an output statement in S1 and S2,

∃e1 e2 : (“output e1 ” ∈ S1) ∧ (“output e2” ∈ S2);
– (St

1 ≡S
O St

2) ∧ (Sf
1 ≡S

O Sf
2);

(c) S1 = “while〈n1〉(e) {S′′
1 }” and S2 = “while〈n2〉(e) {S′′

2 }” and all of the
following hold:
– There is an output statement in S1 and S2,

∃e1 e2 : (“output e1” ∈ S1) ∧ (“output e2” ∈ S2);
– S′′

1 ≡S
O S′′

2 ;
– S′′

1 and S′′
2 have equivalent computation of OV ar(S1) ∪ OV ar(S2);

– S′′
1 and S′′

2 satisfy the proof rule of termination in the same way,
S′′
1 ≡S

H S′′
2 ;

(d) Output statements are not in both S1 and S2,
∀e1 e2 : (“output e1” /∈ S1) ∧ (“output e2” /∈ S2).

2. S1 and S2 are not both one statement and one of the following holds:
(a) S1 = S′

1; s1 and S2 = S′
2; s2, and all of the following hold:

– S′
1 ≡S

O S′
2;

– S′
1 and S′

2 have equivalent computation of OV ar(s1) ∪ OV ar(s2);
– S′

1 and S′
2 satisfy the proof rule of termination in the same way:

S′
1 ≡S

H S′
2;

– There is an output statement in both s1 and s2, ∃e1 e2 : (“output e1”
∈ s1) ∧ (“output e2” ∈ s2);

– s1 ≡S
O s2;

(d) There is no output statement in the last statement in S1 or S2:(
(S1 = S′

1; s1) ∧ (S′
1 ≡S

O S2) ∧ (∀e : “output e” /∈ s1)
)

∨(
(S2 = S′

2; s2) ∧ (S1 ≡S
O S′

2) ∧ (∀e : “output e” /∈ s2)
)
;

A Formal Study of Backward Compatible Dynamic Software Updates 247

B Backward Compatible Update Classes

Please refer to our technical report [31] for the proof rules for real world update
classes.

C Appendix: Formal Programming Language

Please refer to our technical report [31] for the small step operational semantics
of our formal language.

References

1. http://en.wikipedia.org/wiki/Vsftpd. Accessed 15 January 2015
2. http://www.openssh.com/users.html. Accessed 15 January 2015
3. Software life cycle processes - maintenance. Technical report. ISO/IEC

14764:2006(E)
4. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: principles, techniques, and tools
5. Arnold, J., Kaashoek, M.F.: KSplice: automatic rebootless kernel updates
6. Benton, N.: Simple relational correctness proofs for static analyses and program

transformations (2004)
7. Binkley, D., Horwitz, S., Reps, T.: The multi-procedure equivalence theorem (1989)
8. Bloom, T., Day, M.: Reconfiguration and module replacement in argus: theory and

practice (1993)
9. Cartwright, R., Felleisen, M.: The semantics of program dependence (1989)

10. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures (2008)

11. Gordon, A.D.: Functional programming and input/output (1994)
12. Hayden, C.M., Magill, S., Hicks, M., Foster, N., Foster, J.S.: Specifying and verify-

ing the correctness of dynamic software updates. In: Joshi, R., Müller, P., Podelski,
A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 278–293. Springer, Heidelberg (2012)

13. Hayden, C.M., Smith, E.K., Denchev, M., Hicks, M., Foster, J.S.: Kitsune: efficient,
general-purpose dynamic software updating for C. In: Proceedings of the ACM
Conference on Object-Oriented Programming Languages, Systems, and Applica-
tions (OOPSLA), October 2012

14. Hicks, M.: Dynamic software updating. Ph.D. thesis, August 2001
15. Horwitz, S., Prins, J., Reps, T.: On the adequacy of program dependence graphs

for representing programs. In: POPL 1988, pp. 146–157. ACM (1988)
16. Karfa, C., Banerjee, K., Sarkar, D., Mandal, C.: Verification of loop and arithmetic

transformations of array-intensive behaviors (2013)
17. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-

agement (1990)
18. Kundu, S., Tatlock, Z., Lerner, S.: Proving optimizations correct using parameter-

ized program equivalence. SIGPLAN Not. 44(6), 327–337 (2009)
19. Lacey, D., Jones, N.D., Van Wyk, E., Frederiksen, C.C.: Proving correctness of

compiler optimizations by temporal logic. SIGPLAN Not. 37(1), 283–294 (2002)
20. Lee, Y.F., Chang, R.C.: Hotswapping linux kernel modules. J. Syst. Softw. 79(2),

163–175 (2006)

http://en.wikipedia.org/wiki/Vsftpd
http://www.openssh.com/users.html

248 J. Shen and R.A. Bazzi

21. Lucanu, D., Rusu, V.: Program equivalence by circular reasoning. In: Johnsen,
E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 362–377. Springer, Heidelberg
(2013)

22. Magill, S., Hicks, M., Subramanian, S., McKinley, K.S.: Automating object trans-
formations for dynamic software updating. SIGPLAN Not. 47(10), 265–280 (2012)

23. Makris, K.: Whole-program dynamic software updating. Ph.D. thesis
24. Makris, K., Bazzi, R.A.: Immediate multi-threaded dynamic software updates using

stack reconstruction
25. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of unix

utilities. ACM
26. Neamtiu, I.: Practical dynamic software updating. Ph.D. thesis, August 2008
27. Panzica La Manna, V., Greenyer, J., Ghezi, C., Brener, C.: Formalizing correctness

criteria of dynamic updates derived from specification changes. In: EAMS 2013
28. Parnas, D.L.: Software aging. In: ICSE 1994. IEEE Computer Society Press
29. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
30. Rohl, J.S.: Eliminating recursion from combinatoric procedures (1981)
31. Shen, J., Bazzi, R.A.: A formal study of backward compatible dynamic software

updates. CoRR http://arxiv.org/abs/1503.07235
32. Verdoolaege, S., Janssens, G., Bruynooghe, M.: Equivalence checking of static affine

programs using widening to handle recurrences. ACM Trans. Program. Lang. Syst
33. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.

MIT Press, Cambridge (1993)
34. Zhang, M., Ogata, K., Futatsugi, K.: Formalization and verification of behavioral

correctness of dynamic software updates. Electron. Notes Theor. Comput. Sci. 294,
12–23 (2013)

http://arxiv.org/abs/1503.07235

Testing and Model Checking

Memory Management Test-Case Generation
of C Programs Using Bounded Model Checking

Herbert Rocha(B), Raimundo Barreto, and Lucas Cordeiro

Federal University of Amazonas, Manaus, Brazil
{herberthb12,lucasccordeiro}@gmail.com

rbarreto@icomp.ufam.edu.br

Abstract. We describe a novel method to automatically generate and
verify memory management test cases for unit tests, which are based
on assertions extracted from safety properties typically generated by
bounded model checking (BMC) tools. In particular, the proposed method
checks for properties related to pointer safety, memory leaks, and invalid
deallocation. To investigate our method’s effectiveness, we developed a
tool called Map2Check that adopts the ESBMC model checker and the
CUnit testing framework. Additionally, Map2Check provides an integra-
tion of BMC tools with unit testing frameworks, which helps developers
not very familiar with formal methods to verify large C programs. We use
Map2Check to perform an empirical evaluation over publicly available
benchmarks and compare the results to recognized tools, e.g., Valgrind’s
Memcheck,CBMC,LLBMC,CPAChecker, Predator, andESBMC.Exper-
imental results show that our proposed method detects at least as many
memory management defects as existing tools; and it does not report
any false positive and negative. We compared Map2Check with tools on
the Competition on Software Verification 2014 (SVCOMP), in the Mem-
orySafety category. Map2Check would have the same score than the 1st
place and it would win the 2st place when ranking the evaluated tools
on memory consumption.

1 Introduction

Nowadays, software applications need to be developed quickly, mainly due to
the short time-to-market. However, programmers make mistakes, e.g., writing a
given system requirement incorrectly. In this sense, the application of verifica-
tion and testing are indispensable techniques to the development of high-quality
software. Integrating formal program verification and testing has been adopted
as a widely recognized solution to improve the software quality. This integration
aims to alleviate the weaknesses from these strategies [8,13,15], e.g., in software
testing a significant human effort is required to generate effective test cases and
as a result, subtle bugs are difficult to detect by testing and that can cause sig-
nificant overhead after the target software is deployed. According to Kebrt and
Sery [17], the adoption of software model checking technologies in the industrial

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 251–267, 2015.
DOI: 10.1007/978-3-319-22969-0 18

252 H. Rocha et al.

development process is still very slow. This is caused by two main reasons: lim-
ited scalability to large software and missing tool-supported integration into the
development process.

In the last few years, we have observed a trend towards the application of for-
mal verification techniques to the implementation level. Bounded Model Check-
ing (BMC) is going into this direction since it has been successfully applied to
reason about low-level ANSI-C/C++ programs [5,9,19]. The main challenge in
model checking is how to deal with both the state space explosion problem and
the lacking of integration with other test environments more familiar to practi-
tioners [6]. One possible solution to tackle these problems is to explore features
already provided by the model checking community (e.g., identification of safety
properties) for test case generation. According to Baier and Katoen [1], safety
properties are often characterized as “nothing bad should happen”. In particular,
the violation of a safety property can be detected by monitoring the run-time
system execution.

The verification of memory management is an important task to avoid unex-
pected behavior of the programs, e.g., pointer safety violation results in an invalid
address, which might produce an incorrect result of the program and not nec-
essarily a crash; a memory leak does not immediately produce an easily visible
symptom, i.e., a crash or the output of a wrong value. However, memory leaks
typically remain unobserved until they consume a large portion of the memory
available in a system; and these might lead to a negative impact in other appli-
cation running on the same system [7]. Due to the serious consequences and
common occurrence of memory management errors, there are still open research
fields to improve the error detection.

In this study, we describe a novel method to automatically integrate formal
verification techniques with testing environments. The proposed method gen-
erates automatically memory management test cases for structural unit tests,
which are based on assertions from safety properties generated by BMC tools.
As a consequence, our proposed method aims to improve the unit testing envi-
ronment, adopting features from (bounded) model checkers. Additionally, the
proposed method adopts source code instrumentation to monitor and gather
data from the program’s executions, aiming to verify the generated test cases,
and thus, detecting violations of safety properties from the analyzed program.
Note that this method checks the program out of the BMC tools flow, given that
they do not handle well pointers and pointers arithmetic [2].

The BMC is adopted as verification condition (VC) generator that trans-
lates a program fragment and its correctness property into logical formula. The
VC has the property that if it is valid, then the program fragment satisfies its
correctness property [12]. In this study, we use the Efficient SMT-Based Context-
Bounded Model Checker (ESBMC) [9], which derives VCs using two recursive
functions that compute assumptions or constraints (i.e., variable assignments)
and properties (i.e., safety conditions and user-defined assertions). Both func-
tions accumulate the control flow predicates to each program point and use that
to guard both the constraints and the properties, so that they properly reflect

Memory Management Test-Case Generation of C Programs 253

the program’s semantics. It is worth noting that ESBMC does not require the
user to annotate the programs with pre/post-conditions to generate the VCs,
but allows the user to state additional properties using assert-statements.

The proposed method is a complementary technique for the verification per-
formed by state-of-the-art BMC tools. Our method aims to check for proper-
ties related to pointer safety, memory leaks, and invalid free. Additionally, the
proposed method provides trace of memory addresses, which has already been
executed at the current point of the program, in case of property violation. This
trace of memory guides developers directly to the locations, where the memory
management errors are identified. Most existing initiatives have been proposed
to verify the memory management of C programs ([7,19,22]). However, those
initiatives do not support the integration between testing and verification in
an environment, where a software engineer can extend the analysis of the pro-
gram through APIs and include new BMC and unit testing tools. The proposed
method also provides an API library of functions, which helps developers to
extend the tests generated by our proposed method, e.g., by using functions
from API to write new assertions (i.e., test cases) in a specific point of the ana-
lyzed program to validate pointers operations. In this study, we adopted the C
programming language since it is the standard language to implement different
kinds of software, including critical software [21].

To evaluate the effectiveness of our proposed method, we adopted ESBMC [9]
and the CUnit testing framework [18], and we implemented the method in a pro-
totype tool called Map2Check. Note that any other BMC and unit testing tool
could be used together with our approach. We performed an empirical evaluation
on publicly available benchmarks from the Competition on Software Verification
(SV-COMP 2014) [2], in particular the MemorySafety category. We also com-
pare our proposed method with other tools, such as: Valgrind’s Memcheck [22],
CBMC [5], LLBMC [19], CPAChecker [4], Predator [11], and ESBMC [9]. The
experimental results of the proposed method have shown to be effective, detect-
ing 95.08 % of the correct results, i.e., if a property satisfy its specification or
is violated. Our method, in comparison to the results of the SV-COMP 2014,
would have the same score than the 1st place.

2 Preliminaries

This section presents the ESBMC, discuss about safety properties, and software
testing using CUnit.

2.1 Efficient SMT-Based Bounded Model Checking (ESBMC)

ESBMC is a Context-Bounded Model Checker based on Satisfiability Modulo
Theories (SMT) solvers, which is used for ANSI-C/C++ programs [9]. ESBMC
verifies single- and multi-threaded programs and checks for properties related to
arithmetic under- and overflow, division by zero, out-of-bounds index, pointer

254 H. Rocha et al.

safety, deadlocks, and data races. In ESBMC, the verification process is com-
pletely automated and does not require the user to annotate programs with pre-
or post-conditions. ESBMC converts ANSI-C/C++ programs into equivalent
GOTO-programs, which simplify statement representations (e.g., replacement of
while by if and goto statements). The GOTO-program is symbolically executed
by the GOTO-symex, which generates a single static assignment form that is later
converted into a first-order logic formula and then checked by an SMT solver. If
a property violation is found, a counterexample is provided by ESBMC, which
assigns values to the program variables for reproducing the respective error.

2.2 Safety Properties

Informally, a property in linear time specifies the allowable (or desired) behavior
of a system [1]. If a system fails to satisfy a safety property, then there exists a
finite execution that exhibits this failure. Consequently, checking the correctness
of the system related to the safety properties is a means to validate the system’s
behavior.

Definition 1 (Safety Property). Given a transitions system TS = (S, S0, E),
let B ⊂ S be a set of bad states such that S0∩B = ∅, we may say that TS is safe
in relation to B, denoted by TS |= AG ¬B if there is no path in the transition
system from the initial state S0 up to bad state B. Otherwise we say TS is not
safety, denoted by TS �|= AG¬B [1].

ESBMC is able to automatically infer safety properties from the C program-
ming language such as arithmetic under- and overflow, memory safety, array
bounds, atomicity and order violations, deadlock and data race. In this study,
however, we use ESBMC VCs generator to check for memory safety as follows:
VCs to check for safety pointers, i.e., checking if the pointer does reference to
a correct object (represented by SAME OBJECT) and also checks if a pointer
is NULL or invalid object (represented by INVALID POINTER); and VCs for
dynamic memory allocation, ESBMC checks if the arguments to malloc, free
functions, or dereferencing operations are a dynamic object (represented by
IS DYNAMIC OBJECT) and if the argument to any free, or dereferencing oper-
ation is still a valid object (VALID OBJECT).

2.3 Software Testing with CUnit

Software testing is the process of executing a program to find faults [20]. A suc-
cessful test is the one that can determine the test cases for which the program
under test fails. A test case consists of a test data analysis associated with an
expected result of the software specification. Unit tests are typically written
based on a set of test cases to ensure that the program meets its design and
behaves as expected. In this study, we create unit tests to analyze the software
specification together with their test data. In particular, we adopt the CUnit
framework to develop unit tests. CUnit allows software engineers to create unit

Memory Management Test-Case Generation of C Programs 255

tests in a more efficient way by favoring better organization and code reuse.
CUnit supports full C and provides a set of assertions for testing logical condi-
tions (e.g., CU ASSERT PTR EQUAL for pointers). The success or failure of
these assertions is tracked by the framework, and can be viewed when a test
run is complete. The typical sequence of steps for using CUnit is as follows1:
(1) Write functions for tests (and init/cleanup, if necessary); (2) Initialize the
test registry - CU initialize registry(); (3) Add suites to the test registry -
CU add suite(); (4) Add tests to the suites - CU add test(); (5) Run tests
using an appropriate interface, e.g. CU console run tests; (6) Cleanup the test
registry - CU cleanup registry.

3 Map2Check Method

In this section, we present the Map2Check method for memory management
test case generation for C programs. Map2Check is an improvement from the
FORTES (FORmal unit TESt generation) method [23], which explores the safety
properties generated by BMC tools to create test cases. However, FORTES does
not generate memory management test case. The Map2Check tool2 is available
to freely download under GPL license. Figure 1 shows an overview of our pro-
posed method, where the boxes and the arrows with dashed lines represent,
respectively, the components updated or inserted by Map2Check and its execu-
tion flow.

Fig. 1. Flow structure of the proposed method.

To explain the main steps of our proposed method, we use the program
960521 − 1 false-valid-free.c from the SV-COMP’14; this program belongs to
the category MemorySafety [2] (see Fig. 2). We use this program as a running
example since 55.6 % of the tools in the MemorySafety category are not able to
find the property violation.

1 http://cunit.sourceforge.net/doc/introduction.html#usage.
2 https://sites.google.com/site/map2check/.

http://cunit.sourceforge.net/doc/introduction.html#usage.
https://sites.google.com/site/map2check/

256 H. Rocha et al.

Fig. 2. C program 960521 − 1 false-valid-free.c from SVCOMP’14

3.1 Step 1: Identification of Safety Properties

Map2Check adopts ESBMC for identification of safety properties. ESBMC
receives a C program as an input parameter and an option --show-claims,
which shows all safety properties that ESBMC automatically generates from the
original C program. In the ESBMC context, a claim is the same as a safety
property. Claims generated automatically by ESBMC do not necessarily corre-
spond to errors, but they are just potential flaws in the program. One needs
to determine, through further analysis, if some claim actually corresponds to
an error. Figure 3 shows an example of a claim automatically generated. In this
example, claim 1 states a potential lower bound of the dynamic object “a” in
the line 12 of the function foo. All claims are stored to be used in the next steps.

3.2 Step 2: Extract Information from Safety Properties

The second step checks the result produced in step 1 as follows: (i) identi-
fication of the claim; (ii) comments about the claim (e.g., dereference fail-
ure: dynamic object upper bound); (iii) the code line number where the claim
occurred (e.g., Line = 26); and (iv) the property identified by that claim (e.g.,
!(POINTER OFFSET((void *)b) < 0) || !(IS DYNAMIC OBJECT(b))). The
proposed method then classifies data provided in the claims via regular expres-
sions to find all relevant information.

Memory Management Test-Case Generation of C Programs 257

Fig. 3. Step 1 - Identification of safety properties.

3.3 Step 3: Translation of Safety Properties

This step aims to translate claims provided by ESBMC to assertions into the C
program; these claims have specific functions that are only executed by ESBMC
(e.g., INVALID-POINTER). This function checks if a pointer is NULL or an invalid
object. Thus, the proposed method translates the claims to check them without
ESBMC intervention. The translator translates each ESBMC function using a
grammar parse for the claims. The identification of each claim, and its respective
components, are passed as input to the translator, which applies the appropriate
rules (e.g., rewrite the function return according to source code) to convert the
claims into functions that can be executed by the C program that is being ana-
lyzed, without ESBMC intervention. Aiming the function execution, Map2Check
provides a library to the C program that provides the support to execute the
functions generated by the translator.

3.4 Step 4: Memory Tracking

The memory tracking aims to extend the FORTES verification in the sense
of pointer safety. The identification of pointers and invalid objects allow us to
analyze invalid free and memory leak. The memory tracking consists of two
phases: (1) identify and track variables in the analyzed source code, as well as,
the variable operations and assignments, and (2) instrument the source code
with specific functions for monitoring the memory addresses and the addresses
pointing by these variables according to the program execution.

Algorithm 1 shows how to identify and track variables. The runtime com-
plexity of this algorithm is O(n2), where n is the number of the nodes in an
Abstract Syntax Tree (AST) of the analyzed program. We use the following
terms to explain our algorithm: Object, which means that the analyzed variable
is a pointer or dynamically allocated variable; Simple Variable, which are vari-
ables that are not pointers; and Mapping, which means that the variable is being
identified and their characteristics and operations (declaration and assignments)
have been extracted and saved.

258 H. Rocha et al.

Input: Abstract Syntax Tree (AST)
Output: The map of the variables

1 begin
2 compound func = Not specified
3 foreach node IN the AST do
4 if type(node) == FuncDef then
5 compound func = get the sub tree from node
6 foreach subNo FROM compound func == Decl do

getDataFromVar(subNo, 0) ;

7 end
8 else if type(node) == Decl then getDataFromVar(node, 1) ;

9 end
10 Function getDataFromVar(node, enableGlobalSearch)
11 if type(node) is a pointer then
12 if node has an Assigment then Mapping the data from getNodeData

(node) ;
13 if enableGlobalSearch then
14 searchVarAssigInAllFunctions (node)

15 else
16 searchAssigIn (compound func, node)
17 end

18 else
19 Mapping the data from getNodeData (node)
20 end

21 end

22 end

Algorithm 1. Gather the variables to memory track

The input of the Algorithm1 is an Abstract Syntax Tree (AST), which is
generated from the analyzed C program. Map2Check adopts Pycparser3 that
parses the C code into an AST. The algorithm runs each node in the AST and
for each node, it is identified the local scope (i.e., the program functions (line 4))
and global scope (line 8).

Line 8 of the algorithm starts the mapping of the program global variables.
This mapping identifies if the AST node refers to a declaration of a variable,
which is indicated by the type Decl in the AST. Line 8 calls the function
getDataFromVar which takes two parameters, node and enableGlobalSearch.
The parameter node is the current AST node that contains the declaration of
a variable to be mapped and enableGlobalSearch is a Boolean value. In this
particular case, True indicates that a search is performed in all functions of the
program to track variable assignments identified in the node. In the same sense,
Line 4 of the Algorithm 1 identifies if the current AST node refers to a program
function to perform a mapping of the AST node refers to a declaration of a
variable, but in this case only in that function.

The function getDataFromVar from the algorithm (line 10) consists of identi-
fying whether or not the variable being mapped is a pointer and then it extracts

3 Available at https://github.com/eliben/pycparser.

https://github.com/eliben/pycparser

Memory Management Test-Case Generation of C Programs 259

the variable data. If the variable is not a pointer, it just executes the mapping of
the variable. The mapping is performed by gathering and listing data provided
by the function getNodeData (in line 19). The function getNodeData receives
as input the node being analyzed and it obtains the following data: (i) the line
number in the source code where the variable is located; (ii) the variable name;
(iii) the scope/function name where the variable is located; and (iv) if the object
is dynamic.

In line 11 if the variable is a pointer, then it performs the object mapping
(using the function getNodeData) only if the statement identified in the analyzed
node also includes an assignment. In other case, the mapping is performed only
after the first assignment. Thus, the method avoids mapping uninitialized point-
ers, which may contain garbage memory. Additionally, a search is performed
to track pointer assignments (operations, allocation, and deallocation of mem-
ory) according to its scope (line 13). If the object is in the global scope, then a
search is performed in all program functions (line 14); otherwise, the search is
performed only in the scope where the object is located (line 16).

The second phase is to instrument the source code with functions that will
monitor the memory addresses and the addresses pointed by the variables accord-
ing to the program execution. For each line identified in the mapping (of the pre-
vious phase) for the analyzed program, the proposed method inserts, after the
identified line, the function mark map MF, where this function receives as input
the mapped data for that line. The function mark map MF manages a list (called of
LIST LOG) of variables, which contains: the memory address; the memory address
that points to; the identifier of its scope; an identifier if it is dynamic; the iden-
tifier if was executed the free function; and the line number of the source code.
The list LIST LOG has the trace of memory addresses already executed at the
current point of the program. In Map2Check, we developed a C library that con-
tains specific functions, which allow the execution of the function mark map MF
as well as the functions previously mentioned in Sect. 3.3.

The verification of the analyzed properties is performed by applying the func-
tions from the Map2Check library, as shown in the following list. The functions
in items 3 and 4 are generated as test case by Map2Check and are not pro-
vided from ESBMC claims, as well as, Map2Check provides test cases for union
operation to check for dynamic memory address overwriting.

1. IS VALID DYN OBJ MF. This function identifies if a dynamic object is
valid. In this case, the method searches in the list LIST LOG by the memory
address pointed to by the variable that is being traced. If the memory address
is found, the method adopts these checks: (1) the method searches in the list
to identify if the memory address pointed was previously traced; and (2) the
method searches in the list by the attribute that identifies if the variable is
still a dynamic object.

2. IS VALID POINTER MF. This function searches in the list LIST LOG
only by the memory address pointed to by the analyzed variable to identify if
the variable is pointing to a valid address. If the memory points to a dynamic
object, then it verifies if it is a valid object using the function IS VALID DYN
OBJ MF.

260 H. Rocha et al.

3. INVALID FREE. This function identifies whether a given dynamic object
can be released/deallocated from the memory properly, for instance, using
the free function from the C programming language. The library calls the
function IS VALID DYN OBJ MF to identify if the dynamic object is valid.

4. CHECK MEMORY LEAK. The function identifies if, in the end of the
program, some allocated memory was not released. This function searches in
the list LIST LOG the memory addresses that are still dynamic, checking the
attribute that identifies whether a given object is dynamic. If it is identified
in that point of the program that there is some dynamic object, then the
functions identify this as a memory leak.

Table 1 shows an example of the tracking memory execution of the analyzed
program (see Fig. 2). In this execution of the proposed method, we identified
that the analyzed program has an invalid free in line 28. This happens because
in line 22, the variable b was iterated, as shown in ID = 4 and Points to =
0xb44034 of the Table 1. Thus, the invalid free has been presented in line 28 and
showing in ID = 260 of the table since the memory address that the pointer
points to is not a valid request from a block of memory from the heap, as shown
in ID = 4 and Is Dynamic = 0 in Table 1.

Table 1. The result to apply the tracking memory in the analyzed program.

ID Memory Address Memory Address Points to Scope Is Dynamic Is Free Line Number
260 0x601050 0xb44034 global 0 1 28
259 0x601060 0xb44010 global 0 1 28
...

133 0xb44034 (nil) global 0 0 14
...
6 0xb44010 (nil) global 0 0 12
5 0x7fff39f18a2c (nil) foo 0 0 10
4 0x601050 0xb44034 global 0 0 22
3 0x601050 0xb44030 global 1 0 21
2 0x601060 0xb44010 global 1 0 20
1 0x601058 (nil) global 0 0 4

3.5 Step 5: Code Instrumentation with Assertions

This step aims to create test cases, based on assertions, which are included in the
source code with their respective safety property/claim generated by ESBMC
and also by Map2Check. This step adds an assertion to verify the safety property,
which is identified in Step 2 (see Sect. 3.2) and Step 4 (see Sect. 3.4). This asser-
tion can be a simple assertive provided by the C language or an assertion of a unit
testing framework. This step identifies the source code line from each identified
property, in order to add an assertion in a previous line, which is identified by the
property in the source code being verified. For instance, in the program of Fig. 2,
the following assertion is added to line 28: ASSERT(INVALID FREE(LIST LOG,
(void *)(intptr t)(b), 28)).

Memory Management Test-Case Generation of C Programs 261

3.6 Step 6: Implementation of the Tests

This step applies the model to the analyzed program for tests execution. The
method has two models: Using only C assertions, the method inserts the include
to Map2Check library in the new instance of the analyzed program. This model is
very simple and useful while debugging a program to check a property violation;
and the model for CUnit, this model is useful when one needs more options/
statements for unit testing. In this CUnit model, we apply a template provided
by the method in the analyzed program that has the following items: (i) includes
for CUnit and Map2Check library in the analyzed C program; (ii) the setup
CUnit functions; (iii) functions that contain test cases, which will be tested; and
(iv) the new function main that will be executed by CUnit.

The CUnit libraries are extracted from the template as well as the Map2Check
library. The includes from the analyzed C program are copied from its original
C code. The setup CUnit functions are used from the template. The proposed
method renames the function main to testClaims, because the new function
main and its content is taken from the template. This new function (main to
CUnit) calls the setup CUnit functions and the function testClaims (old func-
tion main). The result is a new instance of the analyzed program, which is ready
to be tested and executed by the CUnit framework. Note that our method can
also be applied to other unit testing frameworks; however, one needs to create a
template for code generation.

3.7 Step 7: Execution of the Tests

In this last step, Map2Check provides two options: (1) executing the test cases
using assertions from the C programming language or (2) executing the test cases
using assertions from a unit test framework. To explain the result of this step,
we adopt here the second option. Thus, CUnit runs the tests in the new program
that has test cases generated from ESBMC and Map2Check safety properties,
thus validating each assertion. Basically, the test cases are analyzed over the
execution of the new instance of the analyzed program, where each test case
generated by the proposed method can pass or fail. Each test failure is reported
by the framework in the end of the new program execution. Figure 4 shows the
result of the Map2Check.

It is worth noting that the test cases are analyzed over program execution,
thus it is possible to improve the program coverage adopting different test inputs
to the program. For instance, adopting the PathCrawler tool [25] that automati-
cally generates test inputs for functions written in ANSI-C. PathCrawler is based
on dynamic analysis and uses constraint logic programming to solve a (partial)
path predicate and find test inputs.

4 Experimental Evaluation

This section describes the planning, design, execution, and the analysis of the
results of an empirical study to evaluate the proposed method, when applied to

262 H. Rocha et al.

Fig. 4. The result of the use of Map2Check.

the verification of standard ANSI-C benchmarks and, additionally, a comparison
to the tools: Valgrind’s Memcheck [22], CBMC [5], LLBMC [19], CPAChecker [4],
Predator [11], and ESBMC [9]. The experiments are conducted on an Intel Core
i7-2670QM CPU, 2.20 GHz, 32 GB RAM with Linux OS. The proposed method
is implemented in a tool called Map2Check using ESBMC.

4.1 Planning and Designing the Experiments

This empirical evaluation checks the ability of Map2Check to generate and verify
test cases related to memory management. We investigate the following research
questions:

RQ1: Are the test cases generated by Map2Check enough to identify a given
defect in the analyzed program?

RQ2: How was the ability (the execution of instrumented functions) of Map2
Check to verify the test cases?

RQ3: How is the Map2Check’s ability to detect memory management defects
compared to existing tools?

To answer these three research questions, we consider 61 ANSI-C programs
from the MemorySafety category of the SV-COMP’14 benchmark [2]. In this
case, we only consider programs related to the memory safety category. In this
category, the properties to be verified are: (i) p valid-free - All memory deal-
locations are valid; (ii) p valid-deref - All pointer dereferences are valid; and
(iii) p valid-memtrack - All allocated memory is tracked, i.e., pointed to or
deallocated.

In SV-COMP benchmarks, some programs adopt specific functions, e.g., the
MemorySafety category has the VERIFIER nondet int() function that models
nondeterministic integer values. In Map2Check, we implement a function to sim-
ulate the nondeterministic integer values; our implementation returns a random

Memory Management Test-Case Generation of C Programs 263

number (0 or 1) from an array according to the following distribution: 30 % to 0
and 65 % to 1. One could argue that this approach depends on luck to have a
correct program coverage to validate the assertions. This could be true, but we
adopt this simulation of non-determinism since in our preliminary tests, it was
enough to detect 70% of the properties violations.

We conducted the evaluation as follows: (1) Application of Map2Check (see
Sect. 3), adopting the model with only C assertions to identify the first property
violation in the analyzed program. (2) Application of the Valgrind/MemCheck
with the following options: --leak-check = yes --undef-value-errors = yes.
(3) The results of the application of the tools: CBMC, LLBMC, CPAChecker,
Predator, and ESBMC are taken literally from [2], because the options adopted
to execute all tools in this experiment are the same and the hardware used is
similar. It is worth noting that it is necessary to compile the program to run
Valgrind/MemCheck; therefore we adopt the nondeterministic function imple-
mented in the Map2Check library.

For the Map2Check and Valgrind/MemCheck, each program in the category
is executed 3 times, because of the nondeterministic behaviour. It is important
to note that from these 3 executions, we always consider the execution classified
as FAILED (if any), i.e., an execution that the tool has identified a property
violation.

4.2 Experiment’s Execution and Results Analysis

After executing the benchmarks, we obtained the results shown in Table 2, where
each row of this table means: (1) name of the tool (Tool); (2) total number of
programs that satisfies the specification identified by the tool (Correct Results);
(3) total number of programs that the tool identified an error for a program that
fulfills the specification (False Negatives); (4) total number of programs that the
tool did not identify the error (False Positives); (5) total number of programs that
the tool failed to compute verification result, without resources, program crash or
the tool exceeded runtime verification of 15 min (Unknown and TO); (6) the exe-
cution time in minutes of the verification for all programs in the category (Time).

To answer research question RQ3 (see Sect. 4.1), Table 2 shows that Map2-
Check has found 95.08 % of correct results, while CPAChecker has found 95.72 %,
Valgrind has found 93.44 %, and the other tools could detect only less than 76 %
of the correct results. Note that Map2Check did not generate any false positive

Table 2. Result of tools evaluation using SVCOMP’14 benchmark.

Tool CPAChecker Map2Check Valgrind CBMC Predator LLBMC ESBMC

Correct results 59 58 57 46 43 31 7

False negatives 0 0 0 8 0 0 0

False positives 0 0 0 2 12 0 36

Unknown and TO 2 3 4 5 6 30 18

Time 23.33min 190.98min 151.57min 200min 76.66min 416.66min 139.06min

264 H. Rocha et al.

Fig. 5. Memory consumed by the tools in the programs.

and false negative results. Map2Check has generated 3 unknown and timeout
results. We believe that this is, in part, because of the concrete execution of
the program. In future, we plan to adopt a static verification based on abstract
domain [24] to improve verification time.

With respect to research questions RQ1 and RQ2, we can infer that Map2-
Check has generated and verified successful test cases. Taking into account RQ1,
Map2Check was able to generate correct test cases to identify a given defect in
the analyzed program and not generated incorrect assertions in the test cases
that could result a false alarm in the test execution. We also identified for RQ2
that the execution of the instrumented functions worked properly, since the
instrumented functions supported the execution of the test cases without incor-
rect results.

The results presented in Table 2 shows that Map2Check can be adopted
as a complementary technique for the verification performed by BMC tools.
Map2Check can provide support for the program analysis, mainly when BMC
tools cannot, usually because of time-out; or when there are false negative or
false positive. If we compare the results of ESBMC to Map2Check, ESBMC
identified 7 correct results while Map2Check identified 58 where, in this case,
Map2Check may be seen as a complement to ESBMC. In the same way, ESBMC
had 18 Unknown and Time-out results, but Map2Check was able to analyze 15
of those programs without Unknown or Time-out results.

Analyzing the memory consumption by the tools in each program of the
SVCOMP 2014 benchmark. We identified that Map2Check is the 2nd tool that
consumes less memory (total of 3680.69 MB); the 1st is Predator tool (total
of 1600 MB), as shown in Fig. 5. Analyzing this figure, we identified that from
32th program (the vertical line in the Fig. 5) there was an increase of the mem-
ory consumption to more than 50 MB from 5 of the 7 analyzed tools. How-
ever, Map2Check in 95 % of the programs has consumed about 50 MB. Thus,
Map2Check did not have considerable variation w.r.t memory consumption,
which is different from other tools, e.g., LLBMC consumed more than 10.000 MB
for specific programs.

Memory Management Test-Case Generation of C Programs 265

Note that Map2Check consumes less memory than ESBMC since it adopts
ESBMC only to generate the claims, which consumes about 20 MB. In 53 % of
the programs, Map2Check consumed less memory, except for Predator. However,
Map2Check identified 25 % more correct results than Predator. We believe that
the Map2Check memory consumption can be improved because only for the test
cases generation was used 78.98 % (i.e., 2907.16 MB) of total memory. Therefore,
optimizing the translation of claims would have significant impact in reducing
the memory consumption.

We observe that the runtime verification of Map2Check was 54.16 % faster
than LLBMC and 4.5 % than CBMC, as shown in Table 2. Note that the time to
generate the claims is about 1s, which is included in Table 2. Importantly, even
though the verification time of Map2Check was higher than the other tools.
Map2Check only not identified less correct results, and generated less Unknown
and TO than CPAChecker tool. We believe that Map2Check total verification
time, in turns, could be explained by the concrete execution of the nondetermin-
istic programs.

One could argue that concrete execution should be much faster than the sym-
bolic execution performed by the tools adopted in this experiment. In part this
could be explained by the strategy adopted to unwind loops and their respective
loop exit condition, where benchmarks use the function VERIFIER nondet int()
in loop structures. The Map2Check implementation returns a random number
(0 or 1) from an array according to the following distribution: 30 % to 0 and
65 % to 1. Thus, a BMC could complete the program verification faster than
the Map2Check that depends on a random function to determine the stopping
condition of a loop.

To analyze the evaluation of Map2Check in the context of the SVCOMP’14 [2]
in the MemorySafety category, we need to take into account the same rules
adopted in the SVCOMP’14. For instance, the scores that could be ranked with
negative points, e.g., an incorrect TRUE is equal to −8 points. For more details,
see Beyer [2]. Therefore, Map2Check could achieve the 1st place of the
SVCOMP’14 in the MemorySafety category with a score of 95 points, where
actually in the SVCOMP’14 the 1st place was CPAChecker with the same score
of 95 points; 2th place was LLBMC with a score of 38 points; and 3th place was
Predator with a score of 14 points.

Recently, we had participated of SV-COMP 2015 with Map2Check tool in the
MemorySafety category (see the competition report in [3]). The main differences
were: in SV-COMP 2014 the total file was 61 and in SV-COMP 2015 was 205; and
the scores was updated to penalize incorrect results, which thus rules out testing
and BMC tools. Map2Check won the 6th from 9 tools. Map2Check overcame
tools as Forester [14], Seahorn [16] and CBMC [5]. Analyzing the Map2Check
results in SV-COMP 2015, we identify that Map2Check is the 4nd tool that con-
sume less time (total of 8.400 s) and memory (total of 70.000 MB). Map2Check
generated 0 false positives and 15 false negative. These incorrect answers pro-
duced by our tool in the competition are due to bugs in the implementation.
Since the tool submission, we have fixed some bugs, and considerably improved
the implementation. Taking into account only the correct results (the programs
that satisfies the specification identified by the tool). Map2Check would win

266 H. Rocha et al.

the 2nd place, where the total number of correct programs was 165 from 205;
the total time of the verification was 2.100 s; and the memory consumption was
9.100 MB.

These results, albeit preliminary in nature, strongly suggest that our method
can be effective in generating and checking test cases of memory management
for C programs. Additionally, Map2Check reports traces that guide develop-
ers to the locations where the memory management errors are. We thus argue
that Map2Check integrates test and verification. The test is based on dynamic
analysis and assertion verification. The assertions contain a set of specifications
(for the validation of memory blocks). This verification is similar to the one
performed by Delahaye et al. [10], where Pre-Post conditions based on formal
program specification are translated into executable C code.

5 Conclusions and Future Work

In this study we presented a novel method to generate and verify automati-
cally memory management test cases for structural unit tests, which are based
on assertions from safety properties generated by BMC tools of C programs.
The proposed method checks properties such as: pointer safety, memory leaks,
and invalid free. The main purpose of this study is to integrate unit testing with
model checkers, focusing on memory management defects; therefore, disseminat-
ing the application of formal methods and helping developers not very familiar
with this subject to verify large C programs.

We also presented Map2Check, a prototype tool that implements our method.
The experimental results have shown to be very effective. Map2Check has found
95.08 % of correct results, while CPAChecker has found 95.72 %, Valgrind has
found 93.44 %, and the other tools could detect only less than 76 % of the cor-
rect results. For future work, we intend to improve the verification runtime and
precision of the proposed method by adopting program invariants and static
verification based on abstract domain [24].

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg
(2014)

3. Beyer, D.: Competition on Software Verification (SV-COMP) - Results of
the Competition (2015). http://sv-comp.sosy-lab.org/2015/results/MemorySafety.
table.html

4. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011)

5. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

http://sv-comp.sosy-lab.org/2015/results/MemorySafety.table.html
http://sv-comp.sosy-lab.org/2015/results/MemorySafety.table.html

Memory Management Test-Case Generation of C Programs 267

6. Clarke, E.M.: The birth of model checking. In: Grumberg, Orna, Veith, Helmut
(eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg
(2008)

7. Clause, J., Orso, A.: LEAKPOINT: pinpointing the causes of memory leaks. In:
ICSE, pp. 515–524. ACM (2010)

8. Comar, C., Kanig, J., Moy, Y.: Integrating formal program verification with testing.
In: ERTS (2012)

9. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based bounded model checking
for embedded ANSI-C software. In: TSE, pp. 957–974. IEEE (2012)

10. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for static
and dynamic analysis of C programs. In: SAC, pp. 1230–1235. ACM (2013)

11. Dudka, K., Peringer, P., Vojnar, T.: Predator: a shape analyzer based on symbolic
memory graphs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS).
LNCS, vol. 8413, pp. 412–414. Springer, Heidelberg (2014)

12. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: POPL, pp. 193–205. ACM (2001)

13. Groce, A., Joshi, R.: Extending model checking with dynamic analysis. In: Logozzo,
F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 142–156.
Springer, Heidelberg (2008)

14. Holik, L., Hruska, M., Lengal, O., Rogalewicz, A., Simacek, J., Vojnar, T.: Forester,
(2015). http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/

15. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: systematic test case
generation for dynamic analysis and measurement. In: Gupta, A., Malik, S. (eds.)
CAV 2008. LNCS, vol. 5123, pp. 209–213. Springer, Heidelberg (2008)

16. Kahsai, T., Gurfinkel, A., Navas, J.A.: SeaHorn - A software verification tool
(2015). https://bitbucket.org/lememta/seahorn/wiki/Home

17. Kebrt, M., Šerý, O.: UnitCheck: unit testing and model checking combined. In:
Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 97–103. Springer,
Heidelberg (2009)

18. Kumar, A.: CUnit (2014). http://cunit.sourceforge.net/
19. Merz, F., Falke, S., Sinz, C.: LLBMC: bounded model checking of C and C++ pro-

grams using a compiler IR. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 146–161. Springer, Heidelberg (2012)

20. Myers, G.J., Sandler, C.: The Art of Software Testing. Wiley, New York (2004)
21. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: CETS: compiler enforced

temporal safety for C. In: ISMM, pp. 31–40. ACM (2010)
22. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary

instrumentation. In: PLDI, pp. 89–100. ACM (2007)
23. Rocha, H., Cordeiro, L., Barreto, R., Netto, J.: Exploiting safety properties in

bounded model checking for test cases generation of C programs. In: SAST, pp.
121–130. SBC (2010)

24. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-
Kamp, P.: Proving termination and memory safety for programs with pointer arith-
metic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol.
8562, pp. 208–223. Springer, Heidelberg (2014)

25. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005)

http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/
https://bitbucket.org/lememta/seahorn/wiki/Home
http://cunit.sourceforge.net/

Techniques for Memory-Efficient Model
Checking of C and C++ Code

Petr Ročkai, Vladimı́r Štill, and Jǐŕı Barnat(B)

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xrockai,xstill,barnat}@fi.muni.cz

Abstract. We present an overview of techniques that, in combination,
lead to a memory-efficient implementation of a model checker for LLVM
bitcode, suitable for verification of realistic C and C++ programs.

As a central component, we present the design of a tree compres-
sion scheme and evaluate the implementation in context of explicit-state
safety, LTL and untimed-LTL (for timed automata) model checking. Our
design is characterised by dynamic, multi-way adaptive partitioning of
state vectors for efficient storage in a tree-compressed hash table, repre-
senting the closed set in the model checking algorithm. To complement
the tree compression technique, we present a special-purpose memory
allocation algorithm with very compact memory layout and negligible
performance penalty.

1 Introduction

Model checking is an important verification technique with wide applicability
in software development. The older generation of model checking tools primar-
ily targeted special-purpose “modelling” languages, and as such are suitable for
stratified, long-term development processes. In those cases, the role of the model
checker was towards the early stages, especially in high-level design. However,
the trend in the software industry is towards much more tightly integrated devel-
opment cycles, where all activities are coupled as closely as possible to coding
and early deployment. In those scenarios, it would be impractical to add a long
and drawn-out process of modelling design elements that are to be programmed
(coded) in the implementation language at almost the same time. It is those
concerns that motivate the current work on model checking code directly. Addi-
tionally, such tight integration of programming and model checking has other
benefits: it becomes possible to use the model checker to verify implementation-
level properties this way (as contrasted with design-level properties). As such, a
sufficiently powerful model checker has the capacity to enter the programmer’s
toolkit alongside interactive symbolic debuggers (like gdb) and runtime analysis
tools (like valgrind).

This work has been partially supported by the Czech Science Foundation grant No.
15-08772S.

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 268–282, 2015.
DOI: 10.1007/978-3-319-22969-0 19

Techniques for Memory-Efficient Model Checking of C and C++ Code 269

While it is quite obvious that those are all worthwhile goals, model checking of
executable code presents substantial challenges. In the case of explicit-state model
checking, the approach used by the DIVINE model checker [1], those challenges
derive from the large number of distinct states reachable through execution of pro-
grams. This is most pertinent to multi-threaded programs, where model checking
happens to be also most useful. Besides the size of the state space, the primary
challenge in verifying a program directly lies in the interpretation of the source
code. In DIVINE, this challenge was quite successfully resolved by using a stan-
dard C/C++ compiler with an LLVM backend, and by interpreting the resulting
bitcode instead of the (much more complicated) original source code. Besides sim-
plifying the implementation of the model checker, this also removes large portion
of the complicated C++ compiler from the trusted code base.

The remaining challenges, stemming from large state spaces, are hence twofold:
the time required to explore the state space, and the memory required to store it.
Some techniques attack both problems at once: reduction techniques that vastly
reduce the number of reachable states are one such approach [7]. In this regard,
DIVINE employs a very successful τ+reduction [8] which removes many thread
interleavings and compresses state chains down to a single transition, without
compromising the soundness of model checking. Some approaches target one of
those problems specifically: one such is parallelisation, which exclusively aims
at reducing the time required for a verification run to complete. This is an
important goal because a verification tool that can be used interactively is more
valuable than a batch one, where the user needs to wait overnight (or for a week)
to obtain the result. In this regard, DIVINE employs parallelism extensively and
achieves decent speed-ups through its use.

Finally, despite extensive state space reduction, the state spaces obtained
from C (and especially C++) programs are very large, memory-wise. And while
parallelism gives us an acceptably fast algorithm, it is easy to run out of available
memory. Of course, there is always room for optimisations: the LLVM interpreter
embedded in DIVINE is currently the main speed bottleneck, and as such is sub-
ject to ongoing optimisation effort. Nonetheless, even in its current incarnation,
on most computers, DIVINE will run out of memory very quickly. As such, tech-
niques that reduce memory use are of prime importance, even if they have a
modest negative impact on speed.

1.1 Reducing Memory Use

There are a few elements in an explicit-state model checker where large amounts
of (fast, random-access) memory are required. Usually, by far the most extensive
is the representation of the closed set, although the open set (usually a queue in a
parallel model checker) can become quite large as well. The representation of the
program being model checked is usually small and of constant size throughout
the computation, as is the code of the model checker itself. Hence, for all but
very small models, the memory requirements of the model checker are dominated
by the open and closed sets, which are composed of state vectors and often
some ancillary per-state data of the model checking algorithm. Besides the state

270 P. Ročkai et al.

vectors themselves, the fact they are organised in a data structure (a hash table, a
queue or similar) causes memory overhead of its own. While with “plain” LLVM-
based model checking the state vectors are very large (often many kilobytes),
and as such, eclipse the memory requirements of all the data structures that hold
them, we will see the importance of memory efficiency of those data structures
rise in prominence when the amount of memory occupied by a single state vector
shrinks considerably.

One important technique that can contribute to memory efficiency of explicit-
state model checking is lossless compression. Several methods of lossless compres-
sion – including methods based on state vector decomposition – were introduced
over the time as discussed in Sect. 1.2. In our work we present an extension of
existing state vector decomposition methods that is particularly well suited for
real-world application of model checking of C and C++ code through LLVM
bitcode – it supports dynamically sized states, has no need for preallocation of
fixed-size closed set and supports parallel model checking. We show in our exper-
iments that for verification of real-world programs with DIVINE, the method we
describe constitutes enabling technology. That is, we show that it is possible to
verify programs where verification without compression would require terabytes
of RAM.

1.2 Related Work

The oldest and simplest lossless compression method was to use a generic data
compression algorithm (Huffman coding, arithmetic coding, etc.) to compress
individual state vectors before storing them into memory [3,5]. These approaches
only minimally exploit the redundancy between different states, which is usually
much higher than the redundancy within a single state vector.

In this respect, a better method has been proposed in [4], where the state
vector is decomposed and each slice of the vector is hashed separately and only
indices to those slices are saved as a state. This exploits the fact that many state
vectors contain parts that are identical between different states and also much
longer than a single pointer – hence, storing a pointer to a separately hashed
slice is more memory-efficient than storing the duplicated area repeatedly. While
this idea is in a way a specialisation of otherwise very generic and well-known
dictionary-based compression (as employed by the commonly used LZ77 [10]
algorithm), it has some special properties that make it more interesting for model
checking: namely, the construction of the “dictionary” makes it easy and efficient
to hash the compressed states and compare them for equality – neither of those
steps needs to decompress states already stored.

The one-level scheme proposed in [4] has been improved upon by [2], making
it fully recursive. It also removes the requirement that the compression algo-
rithm knows specifics about the state vector layout. This recursive approach has
been further adapted for parallel model checking in [6]. One downside of this
implementation is a requirement for a fixed-size, pre-allocated hash table with
fixed size slots.

Techniques for Memory-Efficient Model Checking of C and C++ Code 271

We use a similar scheme, but we re-introduce optional state vector layout
awareness into the compressor, we use generic n-ary trees instead of binary, we
use resizing hash tables in the implementation and we focus on dynamically sized
states which naturally occur in LLVM-based programs which include memory
allocation.

2 Tree Compression

Depending on the verification task, the storage size of a single vertex (state) can be
fairly large. This is especially true of more complicated model checking inputs, like
timed automata or LLVM1. In those cases, it makes sense to consider compression
schemes for states and/or the entire state space. In DIVINE, we have implemented
the latter [9], using a scheme similar to collapse [4]. Since our hash table is resizeable
to facilitate better resource use, we cannot directly use some of the improvements
that rely on fixed-size hash tables [6]. On the other hand, since the hash table we
use can accommodate variable-size keys, we are not limited to fixed-layout trees
and can use content-aware state decomposition like in the original collapse app-
roach (but unlike original collapse, we can decompose the state recursively, which
is useful with more complex state vectors, like those arising from LLVM inputs).
The decomposition tree structure is illustrated in Fig. 1.

Fig. 1. A decomposition of a state into a component tree. The leaves represent frag-
ments of the original state vector.

Our approach uses three hash tables that are adaptively resized as needed.
One holds root elements – one root element corresponds to each visited state 1:1.
These root elements are represented as component vectors, where each compo-
nent is represented as a separate object in memory. Those components are de-
duplicated using a leaf table – a state fragment that is identical in multiple different
states is only stored once, and the root table refers to the de-duplicated instances
of those objects. To facilitate recursive decomposition, we also maintain a third

1 In theory, nothing about LLVM per se causes states to be large; in practice, however,
inputs that are expressed in terms of LLVM have a tendency to have much richer state
than more traditional formalisms, like DVE or ProMeLa.

272 P. Ročkai et al.

table, internal, for internal nodes of the state decomposition tree. The internal
nodes have the same structure as root nodes (a vector of pointers), but they do
not correspond to complete states and the internal table is not consulted by the
model checking algorithm when looking up vertices during search.

The component vectors contain a flag to decide whether a particular compo-
nent is another component vector or a state fragment, as otherwise they are not
distinguishable – both are stored as raw byte arrays in memory, without distinct
headers. Clearly, reconstructing a state vector from a component vector is eas-
ily done by walking the decomposition tree and copying leaf node content to a
buffer from left to right. In theory, storing the size of the entire state in the root
component vector could improve efficiency by making the reconstruction work in
a single pass, copying fragments into a pre-allocated buffer. In practice however,
the decomposition trees are small and the requisite pointers are retained in fast
CPU cache on the first pass (when the buffer size is computed), making the sav-
ings from a single-pass algorithm small. Moreover, the extra memory overhead
of storing another integer along with each state is far from negligible.

The trade-off inherent in tree-based compression schemes is visible in Figs. 1
and 2. Compare the number of squares (memory cells) in these two pictures.
The original state vector occupies 11 cells, its decomposition uses 18 cells. How-
ever, adding another similar state (state B in Fig. 2) increases the memory use
only by 9 cells in the compressed variant, while it would add another 11 cells
without compression. The state vectors illustrated here are extremely small; real-
world LLVM states typically occupy thousands of memory cells and bigger states
naturally favour compression. On the other hand, a realistic implementation
introduces slightly more memory overhead than the idealised picture show here.

Fig. 2. A de-duplicated pair of states. The layers are analogous to Fig. 1. States A
and B differ only in the light green component.

2.1 Splitting State Vectors

The fact that both the component vectors in the internal nodes and the state
vector fragments stored in the leaf table are of possibly variable size (and making
them fixed-size would not improve compactness, thanks to the memory allocator
design described in Sect. 3), we gain the capability to decide on how to split
state vectors dynamically. This capability can be used to align boundaries of
both leaf fragments as well as their groupings with logical divisions of the state

Techniques for Memory-Efficient Model Checking of C and C++ Code 273

vector. The working hypothesis is that this would improve compression ratio,
since changes between state vectors that are neighbours in the state space have
a tendency to be localised within the state vector. By correctly aligning the
split points for the purposes of compression, we expect the changes between
a pair of related state vectors to be localised to the smallest possible subtree.
Moreover, the size of a decomposition tree has an impact on performance: if we
can identify large contiguous chunks of the state vector that change only rarely,
if at all, we can reduce the size of the decomposition trees and thus improve
the overall speed of verification. On the other hand, if those larger chunks in
fact do change, this has adverse effect on compression ratio. Therefore, finding a
good way to split the state vectors is a balancing act: smaller leaf fragments and
more balanced trees lead to better compression, but incur higher performance
penalty. Of course, leaf fragment size cannot be reduced arbitrarily: to achieve
compression, a leaf must be strictly larger than a single pointer (8 bytes), since
the reference in the parent node is represented using a pointer.

2.2 Interactions

The tree compression methods interacts with other components of the model
checker. First, the memory allocation regime is an important aspect: how big
a pointer to a node is, for example, is quite important from the perspective of
compression ratio. With 32-bit pointers, compared to 64-bit, we could expect
nearly twice the memory efficiency. However, that would also limit the number
of nodes in the compression tree to about 4 billion: considering that on realistic
x86-class hardware, exploring and storing 40 billion states is possible, and even
if we neglect the requirement to also store internal and leaf nodes of the tree,
32-bit pointers are clearly insufficient.

Another aspect to consider is how the requirements of parallel exploration
affect the compression method. In shared memory, DIVINE offers two exploration
modes, shared and partitioned. On modern hardware, the shared mode is usually
faster, especially with higher thread counts. In the context of compression, it
offers another important advantage: since it uses a single hash table which is
shared by all the workers, tree compression is very efficient. Since all states are
stored in the same (compressed) hash table, all redundancy can be exploited
for compression. With the partitioned scheme, on the other hand, each state is
statically assigned to a particular worker thread, and each thread maintains a
private hash table. This hash table is slightly more efficient (because access to
it does not need to be thread-safe), but this advantage is usually outweighed by
more costly communication between the threads which need to exchange states
based on the partitioning. The effect on compression is even more pronounced,
though: since each thread stores – and compresses – state vectors privately, a
large fraction of the leaf and internal nodes will be duplicated. This happens
whenever two state vectors share a subtree, but are assigned to different worker
nodes. This subtree would only be stored once in the shared scheme, but twice
in the partitioned scheme.

274 P. Ročkai et al.

On the other hand, DIVINE also offers a distributed-memory mode, using
MPI for communication. This mode necessarily works just like the partitioned
mode in shared memory: each machine in the cluster has a private hash table
and compression is performed locally within that hash table. This means the
compression will be less efficient in distributed-memory situations, nonetheless
substantial savings are still possible.

Finally, besides the closed set stored in the hash table (or hash tables in
partitioned and distributed modes), a model checker needs to maintain an open
set. In parallel algorithms, both for checking safety (reachability) and for LTL
model checking (OWCTY), this is often a queue. Since the compression method
we use is lossless, the state vector can be reconstructed from its compressed form
and it is possible to also compress the open set, in addition to the closed set.

3 Memory Allocation

Memory allocation is an extremely frequent operation in an explicit-state model
checker. Moreover, the memory pool that threads allocate from is a shared
resource, requiring certain amount of synchronisation. One way to side-step this
issue is to statically pre-allocate as many resources as possible – this is the app-
roach taken by, most prominently, the model checker SPIN. The main downside
of this approach is that the tool either has to “guess” resource use very well
ahead of time, or rely on the user to provide guidance. In all but very simple
scenarios, the former is very hard to get right – models vary wildly from one
to another in which parts of the model checker they stress. Some require very
long queues or deep stacks, even when the overall size of the state space is com-
paratively small. Others only need a very small queue but the state space is
huge, and almost all memory needs to be allocated towards the closed set. Some
models have few big states, requiring few slots in the hash tables, but need a lot
of memory for storing the states themselves.2

However, there is a more important limitation, namely with regard to mul-
titasking: users expect to be able to execute multiple instances of a program
at the same time, especially if the verification runs are well below the limits of
the computer they are using. Static resource allocation in such cases becomes
a chore – especially so if multiple users are involved on shared hardware. In
most cases, we aim at interactive use: batch scheduling is only suitable for very
large instances, where the entire computer (or a cluster) is tied up in a single
verification task. Meanwhile, a large SMP system can easily serve many tasks
and many users interactively – but this means that tasks should only consume
resources that they actually need, so that resource conflicts are minimised. This
is very hard to achieve if memory needs to be pre-allocated at a time when the
size of the state space is not yet known.

2 The LTSmin model checker avoids this particular resource split by storing state
vectors decomposed, each fixed-size chunk stored inline in the large pre-allocated
hash table.

Techniques for Memory-Efficient Model Checking of C and C++ Code 275

To address those issues, DIVINE uses dynamic allocation for all resources,
achieving optimal hardware utilisation when multitasking. There are, however,
multiple challenges associated with this flexibility, especially when dealing with
parallel algorithms.3

3.1 Allocation Profile

When designing a custom memory allocator, the first thing to ask is what is the
allocation profile of our target application. Are object sizes similar, or distributed
across a wide spectrum? Are there many small allocations, or few big allocations?
Is memory retained for a long time, or a short time? Is memory deallocated often?

We can answer most of those questions for DIVINE: for one, there is a ten-
dency to see many objects of similar size. This is most visible in models with
fixed-size states (this is actually the case with majority of input languages in
DIVINE: most traditional modelling languages require all state variables to be
explicitly declared and do not provide dynamic variables). It is also true, to a
smaller extent, with variable-size state vectors: many states will differ in content
but not the size of the state vector. For LLVM, state size changes when a thread
is created, a function is entered or left and when a new thread is created or
when heap memory is allocated. All these operations are comparatively rare, so
we can expect many states of any given size to appear over time. This is even
more pronounced when compression enters the picture, since the fragments have
more uniform sizes than the entire state vectors. This favours a design where
objects of a particular size are grouped into bigger blocks, reducing overheads
in the parent allocator (both time and memory overhead).

This type of layout also offers the opportunity to store exact object size
as allocator metadata, once per block of objects. When state vectors (or their
fragments) are of variable length, their length needs to be stored somewhere: if
each state vector stores its own length, this either adds 4 bytes of overhead per
state (or, when using 2 bytes, causes the rest of the vector to be stored unaligned
which incurs a large performance penalty). Both are far from optimal. If the size
is stored once per block, a single 4-byte word can be used to keep the size for
hundreds of objects, saving considerable amounts of memory. It does mean that
the allocator needs to be able to find block metadata from a pointer, to read the
object size associated with the pointer. This particular optimisation also cancels
out the extra overhead from adaptive, recursive state splitting employed in our
compression scheme. For root and internal nodes, the size of the node (obtained
through the allocator) can be used to easily compute the number of children.
Likewise, the size of a particular leaf fragment can be cheaply extracted from
the allocator metadata.

3 Intra-process parallelism can be very useful even when multiple verification instances
are involved. A 64-core system can easily accommodate 4 verification tasks running
on 16 cores each, splitting memory between those 4 tasks as needed. If memory
becomes scarce, some of the processes can be suspended and swapped out to disk
and later, when other tasks have finished, resumed again.

276 P. Ročkai et al.

Second, there are two main classes of objects during state space exploration:
the first class contains state vectors that are part of the closed set, and will be
reclaimed at the end of the verification run, but not earlier. The second class
contains newly generated successor states that may or may not be duplicates of
states in the closed set – some of those will go on to be added to the closed set
(which may require their re-allocation if compression is enabled) while others
will be deallocated when they are found to be duplicates. In other words, some
objects are short-lived, and some are very long lived – however, there are few,
if any, “in-between” objects. This split would favour a generational allocator –
especially since we often know ahead of time whether a particular object will be
short- or long-lived (at least in the case where compression comes into play – in
other circumstances, the distinction is less clearly cut).

Since compression is such an important ingredient, its requirements need to
be considered in the design of a good memory allocator. The considerations laid
out above lead to a design where memory is allocated in blocks of same-sized
objects. For a number of reasons, it is impractical to reclaim blocks that have
been already claimed for a particular object size for another object size (here,
parallel access is the main reason that an efficient solution is not known to exist).
However, when compression is in use, the state vectors that are allocated during
successor generation (into the open set) only exist for a very short time, since
they are immediately moved into the compressed state store. Consequently, if
the same allocator was to be used for those ephemeral state vectors, a substantial
amount of memory would be claimed but unused. While the amount of memory
so wasted is only proportional to the number of different state vector sizes (and as
such not very large), it can add up to many megabytes. More importantly, this
overhead appears in each thread separately and is therefore also proportional
to the number of execution threads. So while raw speed is not affected much
by a generational approach, memory efficiency can be jeopardised. With those
considerations in mind, when state compression is enabled, ephemeral memory
is obtained from a simple, special-purpose allocator.

3.2 Pointer Representation

There are two basic options on how to represent pointers: either use raw machine
pointers, or use an indirection scheme. The former has a clear advantage in terms
of access speed: dereferencing a raw machine pointer is as fast as it gets – any
other representation will incur additional costs. On the other hand, most con-
temporary platforms use pointers that are 64 bits wide – for realistic memory
sizes, this constitutes substantial overhead. Current CPUs can physically address
at most 48-bit memory addresses, while the rest of the pointer representation
is unused – that is 16 bits of memory lost for every pointer. Moreover, there
are plenty of places in DIVINE where extra bits packed inside pointers can save
considerable amount of memory: the hash tables, for example, can use (some of)
those 16 bits to store a small part of the hash value to avoid full object com-
parisons and speed up lookups at no extra memory expense. Quite importantly,
the compression algorithm can use a few of those bits for type-tagging pointers,

Techniques for Memory-Efficient Model Checking of C and C++ Code 277

making it free, in terms of memory use, to distinguish state vector fragments
from state component vectors (cf. Sect. 2).

Moreover, a custom pointer representation enables the allocator to easily find
the block header for any given pointer, making it possible to obtain object sizes
from pointers to those objects. As explained in previous section, this can save
considerable memory in some cases.

The main downside is that the pointer dereference operation needs to con-
sult a lookup table to reconstruct the raw machine pointer. The lookup tables
can be represented in such a way that this can be implemented using a single
addition instruction, followed by a memory fetch from the lookup table, followed
by another addition instruction. Since the lookup tables are relatively small, we
can hope that they will always be readily available from fast CPU cache. Maybe
more importantly, there will only be very few very hot cache lines in those lookup
tables. In our informal testing, the slowdown from this indirection was in single-
digits percent range, while the memory savings were quite substantial. Based
on this, we have decided to use indirect pointers for storing states and state
fragments.

3.3 Implementation

The considerations laid out in previous sections give us a fairly good guidance on
how to implement an efficient allocator for use in DIVINE. Our implementation
uses a custom pointer type, which is translated to machine pointers on demand,
at the cost of an extra memory fetch (which is expected to be served from cache,
since the indirection table is usually very hot) and a couple of addition instruc-
tions. All data structures in the hot paths of the allocator (object allocation and
deallocation) are thread-local and expensive thread synchronisation only hap-
pens in special circumstances, usually after some threshold is exceeded: either
per-thread freelists have grown too big, or they have become empty; or when
all freelists are empty and no pre-allocated memory is available, in which case
it needs to be obtained from the operating system.

The shared data structures: indirection tables and lists of shared freelist, are
implemented as standard lock-free data structures. Since they are only accessed
comparatively rarely, no special precautions need to be taken to make access
to them more efficient – the indirection table is almost entirely read-only – it
is only written when a new block is allocated. Additionally, a shared counter
is maintained to assign blocks to threads (threads claim 16 blocks at once to
minimise contention on this counter; the blocks are only allocated when they
are needed though).

4 Measurements

We implemented the aforementioned scheme in DIVINE and evaluated it using
several large C and C++ models translated into LLVM. We also verified general
usability of this scheme by benchmarking a few UPPAAL Timed automata mod-
els. All the models can be found in DIVINE source distribution. In this section
we will give a detailed analysis of our results.

278 P. Ročkai et al.

Table 1. Scaling of pthread rwlock LLVM model with and without compression and
with different splitters.

Configuration W = 1 W = 2 W = 4 W = 8

time scale time scale time scale time scale

no comp.+eph alloc. 7581 1 3785 2.00 1985 3.82 1009 7.51

tree+none+generic 11094 1 6052 1.83 3000 3.70 1499 7.40

tree+old+generic 11625 1 6230 1.87 3074 3.78 1559 7.46

tree+eph+generic 11332 1 5693 1.99 2981 3.80 1523 7.44

tree+eph+hybrid 11258 1 5677 1.98 2973 3.79 1518 7.42

tree+eph+obj-mono 11227 1 5727 1.96 2972 3.78 1519 7.39

tree+eph+obj-rec 11265 1 5743 1.96 3006 3.75 1540 7.31

To measure memory requirements, we used DIVINE’s simple statistics output
which allows us to track memory allocation during a verification run. We mea-
sured resident memory usage, either for DIVINE as a whole or divided by number
of states explored; either way, the number in statistics is adjusted by subtract-
ing resident memory used before the model is loaded and before the verification
algorithm starts – this allows us to easily compare numbers between different
configurations of DIVINE, but still includes all the overheads of the algorithm,
such as overhead of thread-local data in a multi-threaded setting. Memory mea-
surements were performed on several computers in a way no memory swapping
could have occurred.

For time measurements, we take wall time from DIVINE’s report. This time
includes the initialisation of the algorithm and the time required to load the
model. Time measurements were performed on server with two Intel Xeon E5-
2630v2 CPUs at 2.60 GHz with 128 GB of memory.

Besides the detailed measurements presented in the following sections, we
have also measured (using the same set of models) that on average, verifica-
tion with compression generates states at 77% of the speed of uncompressed
algorithm in case of single threaded run, and 73% for 8 workers. We have also
measured the scaling behaviour of various configurations of compression and
memory allocation schemes. The results of those measurements are summarised
in Table 1.

4.1 Allocation Schemes

Table 2 shows how memory requirements of DIVINE with tree compression vary
based on the allocation scheme used and the number of worker threads. In this
case we have considered three variations of allocation scheme:

n/a. direct allocator, which uses raw machine pointers, and allocates them using
general purpose allocator (TBB malloc); this scheme stores the size of each
entry directly in the memory of the entry, which increases its overhead;

Techniques for Memory-Efficient Model Checking of C and C++ Code 279

Table 2. Memory use of LLVM models with compression depending on memory allo-
cator and number of workers.

Name Average state memory (B)

W = 1 W = 2 W = 4 W = 8 W = 16

n/a old eph n/a old eph n/a old eph n/a old eph n/a old eph

pt rwlock 105 90 88 106 93 89 106 96 90 106 104 90 109 121 94

pt barrier 60 45 45 65 53 53 64 53 52 63 54 52 63 53 53

collision 252 232 229 253 237 229 253 245 229 257 261 235 265 296 246

elevator2 105 81 81 106 82 82 106 82 82 106 82 82 107 84 83

lead-uni basic 55 45 45 56 47 45 55 48 45 56 52 46 57 59 48

lead-uni peterson 66 57 56 67 59 56 67 61 56 67 67 58 69 79 60

hashset-2-4-2 243 202 191 244 213 191 244 232 192 246 270 194 250 340 198

W = 40

hashset-3-1 67 77 47

old. indirection allocator from Sect. 3.3 without ephemeral memory optimisa-
tion;

eph. indirection allocator from Sect. 3.3 with ephemeral memory optimisation.

It can be clearly seen that indirection allocator with ephemeral memory
optimisation is the best option, providing best memory efficiency among the
considered options. While the indirection allocator without ephemeral mem-
ory optimisation provides comparable efficiency in single-threaded verification,
it quickly loses to the optimised version as number of workers increase; this
is caused by thread-local overhead of the allocator when allocating short-lived
blocks of different sizes. Furthermore, for sufficient number of workers, overhead
of the per-thread structures of this allocator can outweigh per-state overheads
of the naive solution. These measurements show the importance of an efficient
memory allocation scheme for multi-threaded verification, which was further
emphasised on hashset-3-1 model with 630 millions of states, which was veri-
fied using 40 worker threads: here, the naive solution has 43% overhead over our
allocator with ephemeral storage, while the allocator without ephemeral storage
has 64% overhead over ephemeral storage allocator. This shows that efficient
parallel allocator is a necessary part of memory-efficient parallel verification.

4.2 Compression Efficiency

Tables 3 and 4 list overall memory usage and memory usage per state, respec-
tively, including memory usage for various state-vector splitting strategies:

none. Verification without compression. For large models (where more than
320 GB RAM was required to finish verification) this value is a lower bound
based on average state size and the number of states as reported by a run
with compression. This bound therefore does not include any overheads of
the verification algorithm.

280 P. Ročkai et al.

Table 3. Total resident memory used for LLVM models, without and with compression
with different splitters.

Name # of
states

memory usage (GB) compression ratio

none generic hybrid obj-mono obj-rec best worst

pt rwlock 10.7 M 67.9 0.88 0.93 0.92 0.94 77.2 72.2

pt barrier 128.5 M > 825.4 5.48 9.00 8.98 9.27 150.5 89.0

collision 3.0 M 47.6 0.64 0.63 0.64 0.64 75.3 74.1

elevator2 33.0 M > 342.8 2.50 1.93 1.90 1.90 180.3 137.4

lead-uni basic 19.2 M 232.0 0.81 1.30 1.30 1.30 288.1 178.3

lead-uni peterson 12.2 M 146.4 0.64 1.03 1.03 1.03 229.6 142.2

hashset-2-4-2 6.7 M 133.3 1.20 1.15 1.15 1.16 116.1 111.1

hashset-3-1 626.9 M > 15109.8 27.51 31.96 31.55 31.44 549.1 472.7

Table 4. Total resident memory used for LLVM models, without and with compression
with different splitters.

Name # of

states

average state memory (B) compression ratio

none generic hybrid obj-mono obj-rec best worst

pt rwlock 10.7 M 6807 88 92 91 94 77.2 72.2

pt barrier 128.5 M > 6900 45 75 75 77 150.5 89.0

collision 3.0 M 17119 229 227 231 229 75.3 74.1

elevator2 33.0 M > 11130 81 62 61 61 180.3 137.4

lead-uni basic 19.2 M 12966 45 72 72 72 288.1 178.3

lead-uni peterson 12.1 M 12926 56 90 90 90 229.6 142.2

hashset-2-4-2 6.7 M 21283 191 183 184 184 116.1 111.1

hashset-3-1 626.9 M > 25879 47 54 54 53 549.1 472.7

generic. Compression with a generic splitter which decomposes a state vector
into a balanced binary tree with fixed-sized leaves.

hybrid. Compression with a splitter that decomposes a state vector according
to the top-level structure of the state vector. The splitter is aware of global
symbols, heap, and thread stacks. These chunks are further split in a generic
way.

obj-mono. An extension of the hybrid approach which further decomposes the
state vector, respecting boundaries of smaller objects (individual variables,
stack frames and so on). This splitter does not decompose any large individ-
ual objects.

obj-rec. An extension of the obj-mono approach that also allow for decompo-
sition of large objects (>40 bytes) in a binary fashion.

From the aforementioned tables, the following conclusions can be drawn: tree
compression offers excellent savings for LLVM models, providing up to several

Techniques for Memory-Efficient Model Checking of C and C++ Code 281

Table 5. Total resident memory used for Timed Automata models, without and with
compression.

Name # of

states

memory usage (GB)

compression

average state memory

(B) compression

ratio

none custom generic none custom generic best worst

fischer9 ltsm 0.56 M 0.86 0.11 0.13 1656 212 249 7.8 6.6

fischer9 0.56 M 0.86 0.11 0.13 1656 211 249 7.8 6.6

fischer10 2.5 M 4.40 0.26 0.26 1892 113 113 16.6 16.6

fischer11 11.1 M 23.2 1.15 1.40 2243 110 135 20.2 16.6

fischer12 48.8 M > 119 4.23 4.23 > 2618 93 93 28.0 28.0

train-gate9 6.5 M 3.26 0.91 1.03 535 149 169 3.6 3.2

train-gate10 65.4 M 36.8 5.94 11.14 604 97 182 6.2 3.3

orders of magnitude decrease in memory requirements. This enables verification
of models which would be otherwise intractable on any realistic hardware4. Fur-
thermore, with the exception of hashset-3-1, all of the measured compressed
state-spaces can be efficiently verified using a high-end laptop. This is a signifi-
cant improvement over a dedicated multi-socket computer for verification of the
same models that would be needed otherwise (without compression).

Even more significant is the observation that memory requirements per state
decrease as the number of states increases, and that they seem to converge to
approximately the same number independent of state vector size: even though
hashset-3-1 has almost 4 times larger state vector then pthread barrier, its
states are compressed into almost the same size.

Finally, we observe that the effect of advanced splitting algorithms on mem-
ory efficiency is mostly negative for LLVM models, even though the achieved
compression ratios are still very good in those cases.

Table 5 shows compression results for UPPAAL Timed automata models, using
a custom and a generic state vector splitter. The generic version is modelling-
language-agnostic and therefore the same as in case of LLVM models. The custom
splitter uses a technique similar to the hybrid approach in LLVM. For UPPAAL
models, the achieved compression ratios are much lower, but still a significant
reduction is obtained. Furthermore, we can see that in this case a custom split-
ter can significantly improve compression ratio.

5 Conclusions

We have presented a scheme for compressing state vectors in an explicit-state
model checker geared towards verification of C and C++ programs. The main
contribution of our work is a very efficient scheme for allocating memory and

4 If we extrapolate from the biggest model, hashset-3-1, we can estimate maximum
tractable state space size to be over 40 billion vertices considering high-end server
with 2TB of RAM, this could result in around 950 TB of raw uncompressed state
space.

282 P. Ročkai et al.

its novel combination with a tree compression scheme. Our approach builds on
earlier solutions but mitigates many of their limitations. The presented scheme
is very flexible and offers excellent compression ratios (up to 500×) at a very
modest performance penalty. Our tool, building on the presented approach, is
realistically capable of exploring on the order of tens of billions of states using
commercial, off-the-shelf hardware. Moreover, this number discounts the sav-
ings from τ+reduction which alone offers a 50–1000× saving (depending on the
model, larger state spaces usually benefit more), together approaching the equiv-
alent of 1012 unreduced, uncompressed states (or, considering an average state
size of 12 kilobytes, the equivalent of 10000 terabytes of memory).

This represents a considerable improvement in our ability to verify real-world
code. With the addition of sufficient parallelism into the mix, very realistic pro-
grams can be model-checked in reasonable time and memory using explicit-state
techniques. Just as importantly, those advances benefit not only verification of
big problem instances on big hardware, but also considerably expands what can
be verified using your laptop. In the course of development of DIVINE itself, we
increasingly rely on model checking the source code of its components to ensure
their correctness. We are quite happy to report that this approach to software
development is quickly becoming viable.

References

1. Barnat, J., et al.: DiVinE 3.0 – an explicit-state model checker for multithreaded
C and C++ programs. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 863–868. Springer, Heidelberg (2013)

2. Blom, S., Lisser, B., van de Pol, J., Weber, M.: A database approach to distributed
state space generation. Electron. Notes Theor. Comput. Sci. 198(1), 17–32 (2008)

3. Geldenhuys, J., de Villiers, P.J.A., Rushby, J.: Runtime efficient state compaction
in SPIN. In: Dams, D.R., Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS,
vol. 1680, pp. 12–21. Springer, Heidelberg (1999)

4. Holzmann, G.J.: State compression in SPIN: recursive indexing and compression
training runs. In: The International SPIN Workshop (1997)

5. Holzmann, G.J., Godefroid, P., Pirottin, D.: Coverage preserving reduction strate-
gies for reachability analysis. In: PSTV, pp. 349–363 (1992)

6. Laarman, A., van de Pol, J., Weber, M.: Parallel recursive state compression for
free. In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823,
pp. 38–56. Springer, Heidelberg (2011)

7. Peled, D.: Ten years of partial order reduction. In: Vardi, Moshe Y. (ed.) CAV
1998. LNCS, vol. 1427, pp. 17–28. Springer, Heidelberg (1998)

8. Ročkai, P., Barnat, J., Brim, L.: Improved state space reductions for LTL model
checking of C and C++ programs. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM
2013. LNCS, vol. 7871, pp. 1–15. Springer, Heidelberg (2013)

9. Štill, V.: Compression, State Space, for the DiVinE Model Checker, : Bachelor’s
thesis. Masaryk University Brno, Faculty of Informatics (2013)

10. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. 23(3), 337–343 (1977)

NAT2TEST Tool: From Natural Language
Requirements to Test Cases Based on CSP

Gustavo Carvalho1(B), Flávia Barros1, Ana Carvalho2, Ana Cavalcanti3,
Alexandre Mota1, and Augusto Sampaio1

1 Centro de Informática, Universidade Federal de Pernambuco,
Recife 50740-560, Brazil

{ghpc,fab,acm,acas}@cin.ufpe.br
2 NTI, Universidade Federal de Pernambuco, Recife 50670-901, Brazil

ana.alves@ufpe.br
3 Department of Computer Science, University of York, Heslington YO10 5GH, UK

ana.cavalcanti@york.ac.uk

Abstract. Formal models are increasingly being used as input for auto-
mated test-generation strategies. However, typically the requirements are
captured as English text, and these formal models are not readily avail-
able. With this in mind, we have devised a strategy (NAT2TEST) to
obtain formal models from natural language requirements automatically,
particularly to generate sound test cases. Our strategy is extensible, since
we consider an intermediate and hidden formal characterisation of the
system behaviour from which other formal notations can be derived.
Here, we present the NAT2TEST tool, which implements our strategy.

Keywords: Natural-language requirements · Test-case generation ·
Tool

1 Introduction

In 2009, the Federal Aviation Administration (FAA) published a report [7] that
discusses current practices concerning requirements engineering management. It
states that at the very beginning of system development, typically only natural-
language (NL) requirements are documented.

In this light, we have investigated automatic strategies to obtain formal mod-
els from NL requirements aiming to generate sound test cases. Automation is
essential for this task, since we cannot expect that practitioners will always
have formal modelling knowledge. To accomplish our goal, we have devised a
strategy (NATural language requirements to TEST cases – NAT2TEST) that
generates test cases from NL requirements based on different internal and hid-
den formalisms: Software Cost Reduction – SCR (NAT2TESTSCR [3]), Internal
Model Representation – IMR (NAT2TESTIMR [1]), and Communicating Sequen-
tial Processes – CSP (NAT2TESTCSP [4]).

Each instance of the NAT2TEST strategy has its own benefits and limita-
tions. NAT2TESTSCR encodes the system behaviour as SCR specifications and,
c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 283–290, 2015.
DOI: 10.1007/978-3-319-22969-0 20

284 G. Carvalho et al.

thus, one can use SCR-based tools, such as T-VEC1, to generate test cases and
test drivers. Although time can be manually encoded, it is not a native ele-
ment of SCR specifications on T-VEC. Differently, NAT2TESTIMR translates
requirements into the RT-Tester2 internal notation, which natively considers dis-
crete and continuous time representations. NAT2TESTCSP distinguishes itself
by using refinement checking, instead of specific algorithms, for generating test
cases. In such case, the test-generation approach can be proved sound. However,
its performance might be worse than the one of specific algorithms.

Differently from previous works, where technical aspects of the NAT2TEST
strategy are discussed, our focus here is on the NAT2TEST tool3 that automates
generation of test cases, particularly when using CSP as an internal and hid-
den formalism. Therefore, besides discussing implementation aspects, we provide
here an overview of the functionalities supported by this tool. Section 2 presents
an overview of our strategy. Section 3 details the NAT2TEST tool, including its
user interface, functionalities and overall architecture. Section 4 addresses related
work. Section 5 presents our conclusions and future work.

2 The NAT2TEST Strategy

Our strategy is tailored to generate tests for Data-Flow Reactive Systems
(DFRS): a class of embedded systems whose inputs and outputs are always avail-
able as digital signals. The input signals can be seen as data provided by sensors,
whereas the output data are provided to system actuators. These systems can
also have timed-based behaviour, which may be discrete or continuous.

NAT2TEST receives as input system requirements written using the SysReq-
CNL, a Controlled Natural Language (CNL) specially tailored for editing unam-
biguous requirements of data-flow reactive systems. As output, it produces test
cases. Our test-generation strategy comprises a number of phases. The three ini-
tial phases are fixed: (1) syntactic analysis, (2) semantic analysis, and (3) DFRS
generation; the remaining phases depend on the internal formalism.

The syntactic analysis phase receives as input the system requirements, and
performs two tasks: it verifies whether these requirements are in accordance with
the SysReq-CNL grammar, besides generating syntactic trees for each correctly
edited requirement. The second phase maps these syntax trees into an informal
NL semantic representation. Afterwards, the third phase derives an intermedi-
ate formal characterization of the system behaviour from which other formal
notations can be derived (currently, SCR, IMR and CSP). The possibility of
exploring different formal notations allows analyses from several perspectives,
using different languages and tools, besides making our strategy extensible.

Here, we focus on the use of CSP to generate test cases. In this context, we
have two additional phases. First, the DFRS model is encoded as CSP processes.
Then, with the aid of the FDR4 and Z3 tools5, test cases are generated.
1 http://www.t-vec.com/.
2 https://www.verified.de/products/rt-tester/.
3 Available for download at: http://www.cin.ufpe.br/∼ghpc/.
4 FDR tool – http://www.cs.ox.ac.uk/projects/fdr/.
5 Z3 tool – http://z3.codeplex.com/.

http://www.t-vec.com/
https://www.verified.de/products/rt-tester/
http://www.cin.ufpe.br/~ghpc/
http://www.cs.ox.ac.uk/projects/fdr/
http://z3.codeplex.com/

NAT2TEST Tool: From Natural Language Requirements 285

3 The NAT2TEST Tool

The tool is written in Java (it is multi-platform), and its Graphical User Interface
(GUI) is built using the Eclipse RCP6. Figure 1 shows the tool interface.

Fig. 1. The NAT2TEST tool

Each phase of the strategy is realised by a different component. Figure 2
shows a diagram of the tool architecture, which follows a traditional layered
structure: presentation, business, and data layers. The first one comprises edi-
tors that interact with the business layer via the LocalFacade. The business
layer has a set of controllers that are responsible for interacting with the compo-
nents that realise each phase of the strategy. Besides that, it also persists data
(i.e., requirements and dictionaries) via Business Objects (BO) and Data Access
Objects (DAO). We do not persist other elements (e.g., the DFRS model), as
they can be automatically derived from the requirements very efficiently.

An explanation on how to use the tool is available on its help. In the follow-
ing sections we describe each component in terms of implementation details
and functionalities provided. To illustrate the tool, we consider a Vending
Machine (VM) (adapted from [9]). Initially, the VM is in an idle state. When it
receives a coin, it goes to the choice state. After inserting a coin, when the coffee
option is selected, the system goes to the weak or strong coffee state. If coffee is
selected within 30 seconds after inserting the coin, the system goes to the weak
coffee state. Otherwise, it goes to the strong coffee state. The time required to
produce a weak coffee is also different from that of a strong coffee.
6 http://wiki.eclipse.org/index.php/Rich Client Platform.

http://wiki.eclipse.org/index.php/Rich_Client_Platform

286 G. Carvalho et al.

Fig. 2. The NAT2TEST tool architecture.

3.1 CNL-Parser Component

The CNL-Parser analyses the system requirements according to the SysReq-
CNL grammar, yielding the corresponding syntax trees. This CNL allows writing
requirements that have the form of action statements guarded by conditions [3].
For a concrete example, consider the following valid requirement for the VM:
“When the system mode is idle, and the coin sensor changes to true, the coffee
machine system shall: reset the request timer, assign choice to the system mode”.

First, each word is classified into its corresponding lexical class by a POS-
Tagger (Parts-Of-Speech Tagger), based on a domain-specific dictionary. In NL
the same lexeme may bear more than one classification (e.g., “change” may be
a noun or a verb). In our work, we implemented a customized POS-Tagger that
searches all possible classifications of each lexeme. For parsing we implemented
a version of the Generalized LR (GLR) algorithm [12]. It generalizes the tra-
ditional LALR (Look-Ahead LR parser) algorithm to handle non-deterministic
and ambiguous grammars. When the parser identifies more than one possible
syntax tree, the user needs to remove the ambiguity before proceeding.

The tool provides other functionalities, such as editing the domain-specific
dictionary, besides using aliases to promote text reuse (in Fig. 1, by clicking on
Dictionary and Aliases, respectively). It is also capable of assisting the user while
writing the requirements by informing the next expected grammatical classes.

3.2 RF-Generator Component

The second processing phase receives as input the generated syntax tree, and
delivers the requirement semantic representation. In this work, we adopt the

NAT2TEST Tool: From Natural Language Requirements 287

Case Grammar theory [8] to represent meaning. In this theory, a sentence is
analysed in terms of the semantic (Thematic) Roles (TR) played by each word,
or group of words in the sentence. The verb is the main element of the sentence,
and it determines its possible semantic relations with the other words in the
sentences, that is, the role that each word plays with respect to the action or
state described by the verb.

The verb’s associated TRs are aggregated into a structure named as Case
Frame (CF). Each verb in a requirement NL specification gives rise to a different
CF. All derived CFs are joined afterwards to compose what we call a Requirement
Frame (RF). In this work, we consider nine thematic roles [3], for instance, agent:
entity who performs the action; patient: entity who is affected by the action; and
to-value: the patient value after action completion.

This component is implemented using the visitor pattern to analyse the syn-
tax trees, considering the inference rules defined in [3], which associate words
with the corresponding TRs. In Fig. 1, one can see the inferred TRs for a given
requirement by clicking on the respective requirement identifier (e.g., REQ0001).

3.3 DFRS-Generator Component

The DFRS model [2] provides a formal representation of the requirements seman-
tics, which has a symbolic and an expanded representation. Briefly, the symbolic
version is a 6-tuple: (I, O, T, gcvar, s0, F). Inputs (I) and outputs (O) are sys-
tem variables, whereas timers (T) are used to model temporal behaviour. The
global clock is gcvar, a variable whose values are non-negative numbers repre-
senting a discrete or a dense (continuous) time. The element s0 is the initial
state. The last element (F) represents a set of functions, each one describing the
behaviour of one system component. The expanded DFRS comprises a (possibly
infinite) set of states, and a transition relation between states. This expanded
representation is built by applying the elements of F to the initial state to define
function transitions and letting the time evolve to define delay transitions.

The symbolic DFRS is automatically generated by the DFRS-Generator,
which identifies its constituent components from the RFs. First, variables
(inputs, outputs and timers) are obtained from the contents of the thematic
role patient. Their types are inferred considering the values mentioned by roles
such as the to-value. Then, we create an initial state considering initial default
values (like 0 for integers, and false for booleans, for instance). Nevertheless, the
tool allows the user to edit the initial values.

Afterwards, we encode the conditions and actions described by the require-
ments as functions. The tool keeps traceability information between the require-
ments and the function entries. The requirement shown in Sect. 3.1 is encoded
as the guard: ¬ (prev(the coin sensor) = true) ∧ the coin sensor = true ∧
the system mode = 1, where 1 represents the idle state, and prev denotes the
value in the previous state), and the following assignments the request timer :=
gc, the system mode := 0, where gc refers to the system global clock, and 0 to
the choice state. The tool also supports validation of the requirements by ani-
mating DFRS models (in Fig. 1, by clicking on Animation).

288 G. Carvalho et al.

3.4 CSPM -Generator Component

This component encodes DFRSs as CSP processes. It describes in CSP how the
expanded DFRS is obtained from the symbolic one. First, processes are created
to represent a shared (global) memory, which comprises the values of the DFRS
inputs and outputs. Time is modelled symbolically to prevent state explosion
when compiling the CSP specification and generating the corresponding LTS.
When some behaviour depends on the amount of time elapsed, we just assume
that the delay occurred satisfies the temporal constraints, and we perform a
specific event to represent this assumption. Later, we use Z3 to find concrete
values for delays that satisfy these constraints (see Sect. 3.5).

The tool creates a CSP process for each function of the symbolic DFRS. We
also keep traceability with the original requirements by means of events named
after their identifier. When these events occur, it implicitly states that the sys-
tem is presenting the behaviour described by the corresponding requirement.
Besides being one of our alternatives for generating test cases, the CSP model
allows the automatic verification of important properties concerning the require-
ments, and thus providing more confidence in the system specification, namely:
completeness, consistency, and reachability. More information is available in [4].
In Fig. 1, one can see the obtained CSP specification by clicking on CSPm.

3.5 TC-Generator Component

This component accomplishes the ultimate goal of the NAT2TEST strategy: the
generation of test cases. It is done in two steps: (1) the enumeration of symbolic
test cases via FDR, and (2) the instantiation of time-related events via Z3. The
enumeration of test cases is performed with the aid of a TCL7 script, which is
based on the traces enumeration technique presented in [10].

Due to the potential large (possibly infinite) number of test cases, we con-
sider coverage criteria (e.g., maximum number of test cases, coverage of nodes
or transitions of the LTS, requirement coverage) to guide the test-generation
process. Here, we consider requirement coverage: one can select which require-
ments should be covered by the generated test cases. To meet this criterion
the tool searches for traces that have the event named after the requirement
identifier.

Using FDR, the NAT2TEST tool enumerates traces that meet the cover-
age criteria. Basically, we can split the events of these traces into three distinct
groups: input, output, and time-related events (delays and resets). From the first
two, the tool infers the stimuli provided to the system, as well as the expected
response. In this way, we obtain a symbolic test case as it still lacks time infor-
mation. The proper test case is obtained with the aid of Z3. From the reset and
delay events we automatically generate a satisfiability problem. More specifi-
cally, there is a mapping from each time-related event that appears in the trace
to a time constraint that needs to be fulfilled. Z3 is then used to find solutions
(delays) that satisfy these constraints.
7 http://www.tcl.tk/.

http://www.tcl.tk/

NAT2TEST Tool: From Natural Language Requirements 289

Figure 1, presented in Sect. 3, shows the screen where the user can select
which requirements the test cases are going to cover, as well as inspect the gen-
erated test cases, which are presented in a tabular form. The test case depicted
in Fig. 1 tests the following scenario: first, the coin sensor becomes true (1.0 s),
leading the system to the choice state (the system mode = 0). Later (3.0 s),
the user presses the coffee request button (the coffee request = true); after 10
seconds, the machine produces weak coffee (the coffee machine output = 1).

4 Related Work

In the related literature, other approaches generate test cases from NL specifi-
cations. In [5], requirements are written in the quasi-natural language Gherkin.
Tests are generated with the aid of a model-based testing tool. In order to
obtain executable test cases, clauses from the specification are manually associ-
ated with code, which is not required by us. Nevertheless, we generate executable
test cases, since they represent data to be sent and monitored from sensors and
actuators. Furthermore, we also consider time aspects when generating tests.
While [5] addresses test generation for web applications, we focus on embedded
systems.

In [11], after defining a dictionary, test cases are generated from plain text,
with no need of an underlying CNL, which brings flexibility, but also more user
intervention. It is necessary to identify and partition system inputs and outputs
manually. In our work, they are automatically identified from thematic roles.
Similarly to our approach, time is considered as an element of testing in [11].

Some works impose a more standardised writing form and, thus, rely on less
user intervention. In [6] requirements need to be written according to a strict if-
then template, which, however, can be used to represent time properties, besides
generating tests. In our work, the SysReq-CNL provides a more flexible writing
structure. In [10] a similar sentence structure is also considered. However, it
generates non-executable test cases, besides not considering time aspects.

The absence of user intervention in our strategy is due to the compromise
reached by the SysReq-CNL. As we focus on the domain of embedded systems,
whose behaviour can be described as actions guarded by conditions, we can
impose some restrictions, while allowing the requirements to be expressed as a
textual specification. However, these restrictions make our approach not suitable
for writing requirements that do not adhere to this format of actions and guards.

5 Conclusions

We presented the NAT2TEST tool, which supports the automatic generation
of test cases from natural-language requirements, which might consider dis-
crete or continuous temporal properties. This is achieved possibly using com-
mercial tools (like T-VEC and RT-Tester) or based on a formal conformance
relation using tools like FDR and Z3, in which case the test generation is proved

290 G. Carvalho et al.

sound. As future work, we envisage the following tasks: (1) apply compression
and optimisation techniques to enhance the performance of our strategy, and
(2) extend our approach to consider NL descriptions of hybrid systems.

Acknowledgments. This work was carried out with the support of the CNPq
(Brazil), INES (www.ines.org.br.), and the grants: FACEPE 573964/2008-4, APQ-
1037-1.03/08, CNPq 573964/2008-4 and 476821/2011-8.

References

1. Carvalho, G., Barros, F., Lapschies, F., Schulze, U., Peleska, J.: Model-based test-
ing from controlled natural language requirements. In: Artho, C., Ölveczky, P.C.
(eds.) FTSCS 2013. CCIS, vol. 419, pp. 19–35. Springer, Heidelberg (2014)

2. Carvalho, G., Carvalho, A., Rocha, E., Cavalcanti, A., Sampaio, A.: A formal model
for natural-language timed requirements of reactive systems. In: Merz, S., Pang,
J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 43–58. Springer, Heidelberg (2014)

3. Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., Blackburn,
M.: NAT2TESTSCR: Test case generation from natural language requirements
based on SCR specifications. Sci. Comput. Program. 95, Part 3(0), 275–297 (2014)

4. Carvalho, G., Sampaio, A., Mota, A.: A CSP timed input-output relation and a
strategy for mechanised conformance verification. In: Groves, L., Sun, J. (eds.)
ICFEM 2013. LNCS, vol. 8144, pp. 148–164. Springer, Heidelberg (2013)

5. Colombo, C., Micallef, M., Scerri, M.: Verifying web applications: from business
level specifications to automated model-based testing. In: Proceedings Ninth Work-
shop on Model-Based Testing, MBT 2014, 6 April 2014, Grenoble, France, pp.
14–28 (2014)

6. Esser, M., Struss, P.: Obtaining models for test generation from natural-language
like functional specifications. In: International Workshop on Principles of Diagno-
sis, pp. 75–82 (2007)

7. FAA: Requirements Engineering Management Findings Report. Technical report,
U.S. Department of Transportation - Federal Aviation Administration (2009)

8. Fillmore, C.J.: The Case for case. In: Bach, H. (ed.) Universals in Linguistic Theory,
pp. 1–88. Holt, Rinehart, and Winston, New York (1968)

9. Larsen, K., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
uppaal: status and future work. In: Perspectives of Model-Based Testing - Dagstuhl
Seminar, vol. 04371 (2004)

10. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Formal Aspects Comput. 26(3), 441–490 (2014)

11. Santiago Junior, V., Vijaykumar, N.L.: Generating model-based test cases from
natural language requirements for space application software. Softw. Qual. J. 20,
77–143 (2012)

12. Tomita, M.: Efficient Parsing for Natural Language. Kluwer Academic Publishers,
Boston (1986)

www.ines.org.br

Planning

Task Planning of Cyber-Human Systems

Roykrong Sukkerd1(B), David Garlan1, and Reid Simmons2

1 Institute for Software Research, School of Computer Science Carnegie Mellon
University, Pittsburgh, PA, USA
{rsukkerd,garlan}@cs.cmu.edu

2 Robotics Institute, School of Computer Science Carnegie Mellon University,
Pittsburgh, PA, USA
reids@cs.cmu.edu

Abstract. Internet of Things (IoT) allows for cyber-physical applica-
tions to be created and composed to provide intelligent support or
automation of end-user tasks. For many of such tasks, human partici-
pation is crucial to the success and the quality of the tasks. The cyber
systems should proactively request help from the humans to accomplish
the tasks when needed. However, the outcome of such system-human
synergy may be affected by factors external to the systems. Failure to
consider those factors when involving human participants in the tasks
may result in suboptimal performance and negative experience on the
humans. In this paper, we propose an approach for automated genera-
tion of control strategies of cyber-human systems. We investigate how
explicit modeling of human participant can be used in automated plan-
ning to generate cooperative strategy of human and system to achieve a
given task, by means of which best and appropriately utilize the human.
Specifically, our approach consists of: (1) a formal framework for mod-
eling cooperation between cyber system and human, and (2) a formal-
ization of system-human cooperative task planning as strategy synthesis
of stochastic multiplayer game. We illustrate our approach through an
example of indoor air quality control in smart homes.

Keywords: Cyber-human systems · Planning · Stochastic multiplayer
games

1 Introduction

Computing has become increasingly ubiquitous and integrated into our daily
lives through interconnected devices and services inhabiting in our living envi-
ronments. The advancement of this ubiquitous computing paradigm enables us
to automate processes to support our everyday living and activities, such as effi-
cient home heating/cooling, security and emergency response, and navigation.
We refer to these processes as tasks.

This work is supported by Bosch Research and Technology Center North America.

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 293–309, 2015.
DOI: 10.1007/978-3-319-22969-0 21

294 R. Sukkerd et al.

Cyber and robotic systems that can carry out our everyday tasks in a fully
autonomous way are still far from reality. In many cases, human involvement is
crucial to the success and the quality of tasks. Some tasks may require manual
steps – humans may need to act, provide information, or make decisions for the
cyber or robotic systems responsible for those tasks. For example, an emergency
response system requires human responders to provide first aid to the patients.
And even when human involvement is not strictly required, many tasks can
be performed better with cooperation from humans. For example, a navigation
system may obtain information about occurring events around the area from the
locals to plan a better tour for the visitors.

It is important, therefore, to consider cyber-human system (CHS) paradigm,
in which cyber systems in smart environments cooperate with humans to carry
out tasks. Such cyber-human systems raise a number of challenges for soft-
ware and system engineers, who must decide when and how humans should
be involved, how to deal with the uncertainty inherent in having humans in the
loop, how to provide assurances that such systems will not go awry, and how to
take into consideration variability of human capability and motivation for task
participation. Moreover, ideally engineered solutions should be flexible enough to
accommodate at low cost the rapidly changing contexts of smart environments
in which mobile users move in and out of spaces, new tasks are introduced,
and new devices, technologies, appliances and services may become available at
any time.

Unfortunately, today’s practice fails to adequately address these challenges.
Software for smart environments tends to be written as handcrafted programs
for particular environments by specialized engineers, making it costly to create
and even more costly to upgrade. Code tends to involve complex low-level logic
encoded as if-then-else statements, which is brittle, hard to maintain, and diffi-
cult to validate. Policies for coordination between automated and non-automated
functions tend to be wired in, and are largely context independent. In cases where
systems adapt to context (such as the Nest smart thermostat), they tend to be
isolated devices or subsystems, and have limited ability to explicitly leverage
human capabilities.

What is missing is a way to describe tasks and develop strategies for accom-
plishing them that (a) provides flexibility by accommodating varying contexts,
human factors, and changing technology, (b) accounts for the inherent uncer-
tainty in human-in-the-loop systems, (c) can be analyzed formally to provide
probabilistic guarantees about the expected quality of a plan under various con-
ditions.

To this end, we explore the use of automated planning to design coopera-
tion between cyber systems and humans in performing tasks, in which human
participants have the role of actuators. We investigate how explicit modeling of
human participants can be used in planning to generate cooperative strategies
which best and appropriately utilize the humans. Specifically, our contributions
are: (1) a formal framework for modeling cooperation between cyber systems
and humans under uncertainty, with an explicit modeling of human participants

Task Planning of Cyber-Human Systems 295

based on opportunity-willingness-capabiity (OWC) ontology, and (2) a formal-
ization of cyber system-human cooperative task planning as strategy synthesis
of stochastic multiplayer game.

This paper is organized as follows. Section 2 provides background on SMG.
Section 3 describes the running example. Section 4 presents the approach to
model system-human delegation. Section 5 presents the formalization of system-
human cooperative task planning as strategy synthesis of SMG. Section 6 shows
the analysis results from the running example. Section 7 discusses the related
work and Sect. 8 concludes the paper.

2 Preliminaries

This section introduces our notion of tasks, and background on stochastic multi-
player games (SMGs) and strategy synthesis of SMGs – the technique on which
we build our approach.

2.1 Task Representation

We consider a task to consist of a reachability goal and a utility function, denoted
as T = 〈goal, r〉. goal is a predicate describing the end condition of T . This
end condition may be the desired condition that T must achieve, or it may
simply indicate the end of T ’s duration. r : S → R≥0 is the utility function that
maps the states of the execution context to their associated utility values. This
utility function captures the qualities of concern of T and allows for trade-offs
among multiple potentially conflicting objectives over those qualities. The utility
function is to be optimized in the task planning.

2.2 Stochastic Multiplayer Games

A turn-based stochastic multiplayer game (SMG) is a tuple G =
〈Π,S,A, (Si)i∈Π ,Δ,AP, χ〉, where: Π is a finite set of players; S is a finite,
non-empty set of states; A is a finite, non-empty set of actions; (Si)i∈Π is a
partition of S; Δ : S × A → D(S) is a partial transition function; AP is a finite
set of atomic propositions; and χ : S → 2AP is a labeling function.

In each state s ∈ S of the SMG G, the set of available actions is denoted by
A(s) := {a ∈ A|Δ(s, a) �=⊥}. We assume that A(s) �= ∅ for all s. The choice of
action to take in s is under the control of exactly one player, namely the player
i ∈ Π for which s ∈ Si. Once action a ∈ A(s) is selected, the successor state is
chosen according to the probability distribution Δ(s, a).

A path of SMG G is an (in)finite sequence λ = s0a0s1a1... such that ∀j ∈
N · aj ∈ A(sj) ∧ Δ(sj , aj)(sj+1) > 0. Ω+

G denotes the set of finite paths in G.
A strategy for player i ∈ Π in G is a function σi : (SA)∗Si → D(A) which,

for each path λ · s ∈ Ω+
G where s ∈ Si, selects a probability distribution σi(λ · s)

over A(s).

296 R. Sukkerd et al.

2.3 Strategy Synthesis of SMGs

Reasoning about strategies is a fundamental aspect of model checking SMGs,
which enables checking for the existence of a strategy that is able to optimize
an objective expressed as a quantitative property in a logic called rPATL, which
extends ATL, a logic extensively used to reason about the ability of a set of
players to collectively achieve a particular goal. Properties written in rPATL
can state that a coalition of players has a strategy which can ensure that the
probability of an event’s occurrence or an expected reward measure meet some
threshold. rPATL is a CTL-style branching-time temporal logic that incorpo-
rates the coalition operator 〈〈C〉〉 of ATL, combining it with the probabilistic
operator P��q and path formulae from PCTL. Moreover, rPATL includes a gen-
eralization of the reward operator Rr

��x ([1,2]) to reason about goals related to
rewards. An example of typical usage combining coalition and reward operators
is 〈〈{1, 2}〉〉Rr

≥5[Fφ] meaning that “players 1 and 2 have a strategy to ensure
that the reward r accrued along paths leading to states satisfying state formula
φ is at least 5, regardless of the strategies of other players.” Moreover, extended
versions of the rPATL reward operator 〈〈C〉〉Rr

max=?[Fφ] and 〈〈C〉〉Rr
min=?[Fφ],

enable the quantification of the maximum and minimum accrued reward r along
paths that lead to states satisfying φ that can be guaranteed by players in coali-
tion C, independently of the strategies followed by the rest of players. Model
checking of rPATL properties supports optimal strategy synthesis for a given
property.

3 Running Example

Air quality control system (AQC-sys) periodically monitors the air quality in
the home – a measure of how clean or polluted the air is, as indicated by the
index ranging bad, moderate, and good – and controls it to be at a desirable level.
AQC-sys can clean the air by running an electric air purifier. Alternatively, if
the condition of the outdoor climate is favorable (e.g., no pollution and the
temperature is desirable), the indoor air quality can be improved by means of
wind ventilation through open windows. However, AQC-sys does not have a
mechanism to directly control the windows in the home; therefore, it has to
request the occupant to open the windows for ventilation.

There are 3 concerns regarding this task:

1. Air quality – When the home is occupied, higher air quality is always preferred
to lower air quality. When the home is vacant, the air qualities moderate and
good are equally desirable, and are preferred to the air quality bad.

2. Energy consumption – Running air purifier consumes energy, while wind ven-
tilation does not. AQC-sys should be energy-efficient.

3. Human annoyance – The occupant may get annoyed if AQC-sys requests her
to open the windows when she is not willing to do so (e.g., the occupant
is busy with other activity). AQC-sys should avoid being intrusive to the
occupant.

Task Planning of Cyber-Human Systems 297

Additionally, there is uncertainty due to the occupant’s involvement in the
task. When the occupant will be at home is uncertain, which affects when AQC-
sys can request for the windows to be opened for ventilation. The occupant’s
willingness to cooperate with AQC-sys is also uncertain – the occupant may
agree or refuse to open the windows when AQC-sys requests her to, and factors
such as whether she is busy with other activity may affect that outcome.

The strategy of AQC-sys to control the air quality must make trade-off among
the 3 concerns outlined above and must consider the uncertainty due to the
human involvement. We will use this example throughout the paper to illustrate
our approach.

4 System-Human Delegation Model

Cooperation between the cyber system and the human occurs through delegation.
The system makes decisions about how to perform a given task, and it may
request help from the human to perform some sub-tasks along the way. This
section describes our approach to model system-human delegation.

4.1 Delegation

Delegation is an action denoted as Delegate(A,B, τ), where A is the delegator,
B is the delegatee, and τ is the task being delegated. For simplicity, we only
consider τ to be a goal with no utility function. Thus, the performance of τ
refers to whether or not the goal is achieved.

To specify Delegate(A,B, τ), we need to define the state space of the dele-
gation context, and the precondition and effect of the delegation.

Delegation Context. The precondition and effect of delegation are defined in
terms of the states of the delegation context. The delegation context is an
abstraction of the state of A,B, and their environment, at time of delegation.
We denote the state space of the delegation context as S del.

Precondition. The precondition of Delegate(A,B, τ), denoted as pre, is a
necessary condition under which A may delegate τ to B. That is, action
Delegate(A,B, τ) is applicable in s ∈ S del if and only if s |= pre.

Effect. The effect of Delegate(A,B, τ) is modeled as a performance function
fperf : S̄ del → B, where S̄ del ⊆ S del is the set of all states s |= pre,
and B is a set of Bernoulli random variables, each representing the (binary)
outcome of τ ’s performance. The performance function fperf represents A’s
belief about the outcomes of delegation, i.e., B’s performance of τ , in dif-
ferent states of the delegation context. Since the performance of τ is binary,
its outcome can be modeled as a Bernoulli random variable, whose success
probability is the probability that A believes B will perform τ as a result of
delegation.

The system may request the human to cooperate in performing the task
by means of delegation. In addition to its direct actions (i.e., the actions that

298 R. Sukkerd et al.

affect the environment directly), the system has a set of delegation actions of the
form Delegate(sys, hum, τ), where τ is a sub-task that the system may need the
human to perform. Identifying the precondition and effect of delegation action
requires knowing what factors affect the human’s performance of the task and
in what way.

Next, we discuss the approach to model the precondition and effect of system-
human delegation, and illustrate it through the running example.

4.2 Human Model

To capture factors that may influence the human’s performance of a task and
how, we employ the opportunity-willingness-capability (OWC) ontology [5],
which classifies a set of factors on which the task’s performance is conditioned.
For each task τ which the system may want to delegate to the human, we create
an OWC model by identifying the factors for each of the following categories:

Opportunity. Opportunity captures the prerequisites for task performance.
Opportunity elements (OE) are variables relevant to such prerequisites.
Opportunity function fO is a boolean formula of the states of OE, deter-
mining whether the task performance is possible.

Running Example: The opportunity of window-opening task is that the occupant
must be at home. The opportunity element is OE = {occupant at home}.
The opportunity function is fO = (occupant at home == true).

Willingness. Willingness captures the desire of the human to perform the
task. Willingness elements (WE) are variables that influence such desire.
Willingness function is fW : SWE → B, where SWE is the state space of
WE and B is a set of Bernoulli random variables. The success probability of
each Bernoulli random variable x ∈ B represents the willingness probability
pW associated with the state of WE to which x is mapped.

Running Example: The willingness of window-opening task is influenced
by whether the occupant is busy. The willingness element is WE =
{occupant busy}. The willingness probabilities for when occupant busy and
¬occupant busy are 0.1 and 0.95, respectively.

Capability Capability captures the humans’ ability to perform the task,
given opportunity and willingness. Capability elements (CE) are variables
that influence such ability. Similar to willingness, capability function is
fC : SCE → B, where SCE is the state space of CE and B is a set of
Bernoulli random variables. The success probability of each Bernoulli ran-
dom variable x ∈ B represents the capability probability pC associated with
the state of CE to which x is mapped.

Running Example: For window-opening task, we assume that the capability is
trivial, i.e., CE = ∅.

4.3 From OWC Model to Delegation Model

We use the OWC model of task τ to derive the specification of Delegate
(sys, hum, τ) as follow:

Task Planning of Cyber-Human Systems 299

Delegation Context. We represent the delegation context of Delegate
(sys, hum, τ) using the OWC elements, i.e., defining S del to be the state
space of OE ∪ WE ∪ CE .

Precondition. We define the precondition pre of Delegate(sys, hum, τ) to be
the opportunity function fO of the OWC model of τ .

Effect. The effect of Delegate(sys, hum, τ), i.e., the performance function fperf ,
is derived from the OWC model of τ as follow. Recall that fperf : S̄ del → B.
For each state s ∈ S̄ del, fperf (s) is a Bernoulli random variable with success
probability pW · pC , where pW and pC are the willingness and the capability
probabilities associated with WE and CE components of s, respectively.

Running Example: For window-opening task τ , S del is the state space built
over the state variables occupant at home and occupant busy. The precon-
dition of Delegate(sys, hum, τ) is: occupant at home == true. The effect of
Delegate(sys, hum, τ) is: if occupant at home ∧ occupant busy, the prob-
ability of τ ’s performance is 0.1; if occupant at home ∧ ¬occupant busy,
the probability of τ ’s performance is 0.95. Otherwise, the effect of
Delegate(sys, hum, τ) is undefined.

5 System-Human Cooperative Task Planning

In this section, we present a formalization of system-human cooperative task
planning problem as strategy synthesis of SMG. We also provide a description
of our running example’s SMG model implemented in the probabilistic model-
checker PRISM-games [4].1

5.1 SMG Model

The SMG representing the interactions among the cyber system, the human,
and the environment is G = 〈Π,S,A, (Si)i∈Π ,Δ,AP, χ, r〉, where:

– Π = {sys, hum, env} is the set of players, representing the system, the human,
and the environment.

– S = Ssys ∪ Shum ∪ Senv is the set of states, where Ssys, Shum, and Senv

are the states controlled by the players sys, hum, and env, respectively, and
Ssys ∩ Shum ∩ Senv = ∅.

1 We illustrate our approach to modeling the SMG using the syntax of the PRISM
language [3] for SMG, which are encoded as commands:

[action] guard − > p1 : u1 + ... + pn : un

where guard is a predicate over the model variables. Each update ui describes a
transition that the process can make (by executing action) if the guard is true. An
update is specified by giving the new values of the variables, and has an assigned
probability pi ∈ [0, 1]. Multiple commands with overlapping guards (and probably,
including a single update of unspecified probability) introduce local nondeterminism.

300 R. Sukkerd et al.

– A = Asys ∪Ahum ∪Aenv is the set of actions, where Asys, Ahum, and Aenv are
the actions available to the players sys, hum, and env, respectively.

– r : S → R≥0 is the utility function capturing the qualities of concern of the
task.

Players sys, hum, and env take alternating turns of the control of the game.
We use a special state variable turn to distinguish between the states Ssys, Shum,
and Senv. When there is no delegation, the control of the game evolves in a round-
robin fashion: the control is transferred from env to hum, to sys, and back to
env. When there is delegation, instead of yielding the control to env, sys yields
the control to hum. Next, if the delegated task is successfully performed, then
hum yields the control to env. Otherwise, the delegated task is not performed
and hum yields the control to sys. Next, sys yields the control to env, and
the transfer of the control goes back to the round-robin fashion until the next
delegation.

To incorporate our system-human delegation model in G, we must first
include, in the set of state variables that define S, all the OWC elements asso-
ciated with all the tasks which the system may delegate to the human.

Running Example: There is only 1 task which AQC-sys may delegate to
the occupant: opening the windows. The OWC elements for the task are
occupant at home and occupant busy.

5.2 Environment

Player env controls the actions Aenv available in Senv. Conceptually, env models
potential occurrences of events that are out of the system’s and the human’s
control. Each action a ∈ Aenv available in a state s ∈ Senv updates 0 or more
environment variables and always yields the control of the game to player hum.

Running Example: Player env models the evolution of time, and the effects
of running the air purifier and wind ventilation on the indoor air quality. The
game ends when the time reaches the defined planning horizon. We simplify the
running example by assuming that within the planning horizon, the outdoor air
quality remains constant and the indoor air quality does not decrease.2

1 module environment

2 t : [0.. MAX_TIME] init 0;

3 aqi_out : [GOOD..BAD] init GOOD;

4 aqi_in : [GOOD..BAD] init MODERATE;

5

6 // effect of running air purifier

7 [purify] turn=ENV & t<MAX_TIME & purifier_on -> (aqi_in ’=GOOD) & (t’=t+TAU) & (turn ’=

HUM);

8

9 // effect of wind ventilation

10 [vent] turn=ENV & t<MAX_TIME & window_open -> (aqi_in ’= aqi_out) & (t’=t+TAU) & (turn

’=HUM);

11

2 In this example, player env only has deterministic behavior. However, in general, it
can have probabilistic and nondeterministic behavior as well.

Task Planning of Cyber-Human Systems 301

12 // no change in air quality

13 [env_none] turn=ENV & t<MAX_TIME & !purifier_on & !window_open -> (t’=t+TAU) & (turn

’=HUM);

14 endmodule

Listing 1.1. Environment module

Listing 1.1 shows the encoding of the environment. The variable t (line 2)
keeps track of time, which increments by a discrete value TAU (e.g., 10 min).
The variables aqi out and aqi in (line 3 and line 4) represent the indices of
the outdoor and indoor air quality, respectively. The transition purify (line 7)
models the effect of running the air purifier on the indoor air quality – if the
air purifier is turned on, then in the next TAU, the indoor air quality will be
at level GOOD. Similarly, the transition vent (line 10) models the effect of wind
ventilation on the indoor air quality – if the windows are open, then in the next
TAU, the indoor air quality will be at the same level as that of the outdoor air
quality. The transition env none (line 13) models the indoor air quality when
the air purifier is off and the windows are closed – no change. All transitions
yield the turn to player hum (line 7, 10, and 13).

5.3 System

Player sys controls the actions of the system Asys available in Ssys. Asys consists
of 2 disjoint subsets: direct actions Asys dir, and delegation actions Asys del.

To represent delegation, we use a special state variable delegation. Let the
system have k tasks τ1, τ2, ..., τk that it may delegate to the human, we have
that:

1. delegation ∈ {∅, τ1, τ2, ..., τk}, where delegation = ∅ means that the system
is not currently delegating any task, and delegation = τi means that the
system is delegating τi to the human.

2. Asys del = {â1, â2, ..., âk}, where âi sets delegation = τi. That is, âi represents
Delegate(sys, hum, τi).

The precondition of each âi ∈ Asys del is the opportunity function fO of the
OWC model of τi. Thus, if âi is available in s ∈ Ssys, then s |= fτi

O . However, we
also want to avoid scenarios in which the system keeps delegating the same task
to the human after they failed to perform it. One way to achieve this is to set a
bound on the maximum number of times the system can delegate each task to
the human. That is, for all s ∈ Ssys, âi ∈ Asys del is available in s if and only if
s |= fτi

O and the count on the number of times the system has delegated τi to
the human is less than the bound.

If player sys chooses a delegation action â ∈ Asys del, the control of the game
is yielded to player hum, i.e., the next state of the game is s′ ∈ Shum. Otherwise,
if it chooses a direct action a ∈ Asys dir, the control of the game is yielded to
player env, i.e., the next state of the game is s′ ∈ Senv.

Running Example: Player sys has 3 direct actions: turn on and turn off the
air purifier, and do nothing; and a delegation action to request the occupant to
open the windows.

302 R. Sukkerd et al.

1 module aqc_system

2 purifier_on : bool init false;

3 delegation : [0.. OPEN_WINDOW] init 0;

4 count : [0.. MAX_COUNT] init 0;

5

6 // turn on/off air purifier

7 [turn_on] turn=SYS & !purifier_on -> (purifier_on ’= true) & (turn ’=ENV);

8 [turn_off] turn=SYS & purifier_on -> (purifier_on ’= false) & (turn ’=ENV);

9

10 // delegate task OPEN_WINDOW

11 [delegate] turn=SYS & count <MAX_COUNT & occupant_at_home -> (delegation ’= OPEN_WINDOW)

& (count ’= count +1) & (turn ’=DEL);

12

13 // do nothing

14 [sys_none] turn=SYS -> (turn ’=ENV);

15 endmodule

Listing 1.2. System module

Listing 1.2 shows the encoding of AQC-sys. The variable purifier on (line 2)
represents whether the air purifier is turned on and running. The variable
delegation (line 3) represents the currently delegated task – either OPEN WINDOW
or none. The variable count (line 4) keeps track of the number of times AQC-sys
has delegated the task OPEN WINDOW to the occupants. The transitions turn on
(line 7) and turn off (line 8) model the actions of AQC-sys to turn on and
turn off the air purifier, respectively. The transition delegate (line 11) models
the delegation of OPEN WINDOW. This transition can only occur when there is
an opportunity for OPEN WINDOW and AQC-sys has not exceeded the maximum
number of times it can delegate OPEN WINDOW to the occupant. The transitions
turn on, turn off, and sys none yield the turn to player env (line 7, 8, and 14).
The transition delegate yields the turn to player hum (line 11).

5.4 Human

Player hum controls the actions Ahum available in Shum. Conceptually, hum
models potential human actions and changes in the human’s physical and cog-
nitive states. We model the behavior of human when there is no delegation (i.e.,
the human behaves independently of the system) as well as when there is dele-
gation. To this end, we partition Shum into 2 disjoint subsets: S DEL and SHUM ,
representing the states in which the system is delegating a task to the human,
and the states in which there is no delegation, respectively.

When player hum gains the control of the game from player env, the game is
always in a state s ∈ SHUM . Each state s ∈ SHUM has 1 or more available actions
a ∈ Ahum. These actions always yield the control of the game to player sys.

When player hum gains the control of the game from player sys (that is, the
system decided to delegate a task τ to the human), the game is in a state
s ∈ S DEL, where s |= delegation = τ . We model the effect of delegation
Delegate(sys, hum, τ) as follow:

Let the system have k tasks τ1, τ2, ..., τk that it may delegate to the human, we
have the set of actions Ȧhum ⊂ Ahum, where Ȧhum = {ȧ1, ȧ2, ..., ȧk}. Each ȧi ∈
Ȧhum represents the human’s performance of τi. For each s ∈ S DEL in which

Task Planning of Cyber-Human Systems 303

s |= delegation = τi, the only action available in s is ȧi. (s, ȧi) probabilistically
transitions to either:

1. s′ ∈ Senv, where s′ |= performed(τ). That is, the human successfully per-
formed τ , and the control of the game is yielded to player env.

2. s′′ ∈ Ssys, where s′′ �|= performed(τ) That is, the human failed to perform τ ,
and the control of the game is yielded to player sys.

The probabilities of (s, ȧi) transitioning to s′ and s′′ are obtained from the
performance function fτi

perf in the system-human delegation model of τi.
Running Example: Player hum has probabilistic as well as nondeterministic

behavior. The probabilistic behavior models the schedule of the occupant – when
they are at home and when they are busy, and the effect of window-opening
delegation. The nondeterministic behavior models the occupant’s decision to
open and close the windows (when it was not requested by AQC-sys).

1 module human

2 occupant_at_home : bool init false; // opportunity element

3 occupant_busy : bool init false; // willingness element

4 upd : bool init false;

5

6 // at t=0, occupant is more likely to be at home and busy

7 [t0] turn=HUM & t=0 & !upd ->

8 0.6 : (occupant_at_home ’= true) & (occupant_busy ’=true) & (upd ’=true) +

9 0.2 : (occupant_at_home ’= true) & (occupant_busy ’= false) & (upd ’=true) +

10 0.2 : (occupant_at_home ’= false) & (upd ’= true);

11

12 // at t=10, ...

13 [t10] turn=HUM & t=10 & !upd ->

14 ...

15

16 // open/close windows

17 [open] turn=HUM & upd & occupant_at_home & !window_open -> (window_open ’=true) & (upd

’= false) & (turn ’=SYS);

18 [close] turn=HUM & upd & occupant_at_home & window_open -> (window_open ’= false) & (upd

’= false) & (turn ’=SYS);

19

20 // do nothing

21 [hum_none] turn=HUM_TURN & upd -> (upd ’= false) & (turn ’=SYS);

22

23 // receive OPEN_WINDOW when not busy

24 [receive1] turn=DEL & delegation=OPEN_WINDOW & occupant_at_home & !occupant_busy ->

25 0.95 : (window_open ’=true) & (turn ’=ENV) +

26 0.05 : (turn ’=SYS);

27

28 // receive OPEN_WINDOW when busy

29 [receive2] turn=DEL & delegation=OPEN_WINDOW & occupant_at_home & occupant_busy ->

30 0.2 : (window_open ’=true) & (turn ’=ENV) +

31 0.8 : (turn ’=SYS);

32 endmodule

Listing 1.3. Human module

Listing 1.3 shows the encoding of the human. turn=HUM indicates state in
S HUM and turn=DEL indicates state in S DEL. The variables occupant at home
(line 2) and occupant busy (line 3) represent whether the occupant is at home

304 R. Sukkerd et al.

(the opportunity element of OPEN WINDOW) and whether the occupant is busy
(the willingness element of OPEN WINDOW), respectively. Finally, the variable upd
(line 4) is a flag indicating whether occupant at home and occupant busy are
updated for the current time t.

When turn=HUM, player hum makes a move in 2 steps. First, it updates the
state of occupant at home and occupant busy at the current time t, based on
some prediction. The transition t0 (line 7 - 10) encodes the probability distrib-
ution over the possible states of occupant at home and occupant busy at time
t=0 – there is 0.6 probability that the occupant is at home and busy (line 8),
0.2 probability that the occupant is at home and not busy (line 9), and 0.2
probability that the occupant is not at home (line 10). Once the transition t0 is
taken, the state of occupant at home and occupant busy at time t=0 become
known – upd is set to true.

Second, player hum nondeterministically chooses among actions opening the
windows (line 16), closing the windows (line 17), and do nothing (line 20). These
actions yield the turn to player sys.

When turn=DEL, player hum makes a move in 1 step. The transition
receive1 (line 20 - 22) models the effect of OPEN WINDOW delegation when the
occupant is at home and not busy – there is 0.95 probability that the windows
get opened. Similarly, the transition receive2 (line 25 - 27) models the effect of
OPEN WINDOW delegation when the occupant is at home and busy. These transi-
tions yield the turn to player env if OPEN WINDOW is successful (line 24 and 29),
and to player sys otherwise (line 25 and 30).

5.5 Utility Function

Utility function of the task r : S → R assigns rewards to states of the system-
human-environment. It is designed to incentivize certain kinds of behavior of
the system. Utility function is sensitive to the context and allows for trade-offs
among multiple potentially conflicting objectives, concerning different qualities
such as performance and cost. In addition to the qualities associating with the
task and the system, the utility function must capture qualities regarding the
human’s experience in working with the system, such as annoyance, cognitive
and physical loads.

Running Example: The utility function defines the relative costs associated
with the indoor air quality, the energy consumption, and the annoyance of the
occupant. We define annoyance to be when AQC-sys requests the occupant to
open the windows but the occupant refuses. The objective of the task is to
minimize this utility function.

Table 1 shows the relative costs associated with different levels of the indoor
air quality, per a time period of TAU (e.g., 10 min). The cost of indoor air quality
is sensitive to whether or not the occupant is at home (e.g., the cost of bad air
quality is higher when the occupant is at home than when he/she is not). Table 2
shows the relative costs associated with energy consumption of running the air
purifier and wind ventilation per TAU, and annoyance of the occupant per each
refusal.

Task Planning of Cyber-Human Systems 305

Table 1. Costs associated with indoor air quality per 10 min

Whether occupant is at home

Air quality index occupant at home ¬occupant at home

good 0 0

moderate 10 0

bad 30 2

Table 2. Costs associated with energy consumption and human annoyance

Running air purifier 15 (per 10 min)

Wind ventilation 0 (per 10 min)

Annoyance of occupants 2 (per each refusal)

To augment SMG model with utility function, we assign numeric utility val-
ues to the states of SMG. Listing 1.4 shows the encoding of the utility function,
as defined in Tables 1 and 2. To define utility values for a duration (e.g., cost of
air quality per 10 min, cost of running air purifier per 10 min), we assign those
utility values to states in which player env controls the game, since we use player
env to model the evolution of time.

1 rewards"total_cost"

2 turn=ENV & aqi_in=GOOD & occupant_at_home : 0;

3 turn=ENV & aqi_in=MODERATE & occupant_at_home : 10;

4 turn=ENV & aqi_in=BAD & occupant_at_home : 30;

5

6 turn=ENV & aqi_in=GOOD & !occupant_at_home : 0;

7 turn=ENV & aqi_in=MODERATE & !occupant_at_home : 0;

8 turn=ENV & aqi_in=BAD & !occupant_at_home : 2;

9

10 turn=ENV & purifier_on : 15;

11 turn=ENV & window_open : 0;

12

13 turn=DEL & occupant_annoyed : 2;

14 endrewards

Listing 1.4. Utility function

5.6 SMG Strategy Synthesis

To generate a system-human cooperative plan for a task T = 〈goal, r〉, we use
model checking of rPATL property to synthesize a strategy in G for player sys
that has the objective of reaching a state satisfying goal and optimizes for the
utility function r.3

3 We do not generate strategies for a coalition of players sys and hum because, in
addition to the cooperative behavior between the human and the system, we also
want the planning model to capture the human behavior that is independent of the
system. Such behavior can also affect how the task must be performed.

306 R. Sukkerd et al.

Fig. 1. Expected total costs of system-
human strategies vs. system-only
strategy

Fig. 2. Decisions of system-human
strategies

The rPATL property specification for strategy synthesis is in the form
〈〈sys〉〉Rr

max=?[F goal], or alternatively 〈〈sys〉〉Rr
min=?[F goal]. The resulting

strategy may include delegation actions, representing the cooperation between
the human and the system.

Running Example: The goal of the air quality control task is defined as a
fixed time horizon t=MAX TIME, and the utility function is the “total cost” as
defined in List 1.4. The rPATL property representing the task is:

umin = 〈〈sys〉〉R“total cost′′
min=? [F t=MAX TIME]

where umin is the minimum expected utility of the generated strategy.

6 Results

In this section, we demonstrate how our SMG approach makes decisions about
how to perform task in cyber-human system – especially, how decisions on del-
egation are made.

We implement SMG of cyber-human system for the indoor air quality control
task, as described in the running example. However, instead of constant values,
we vary the values of willingness probability (pW)4 and annoyance cost, with
values in the range [0,1] and [0,16], respectively. We synthesize system-human
strategies for all pairs of pW and annoyance cost values. Additionally, we syn-
thesize a system-only strategy, which does not have delegation action. Figure 1
shows the expected total costs of system-human and system-only strategies, for
all values of pW and annoyance cost. Figure 2 shows the decisions of system-
human strategies on whether to involve human in performing the task.

4 To simplify the analysis, we use a single value of pW for both when the occupant is
and is not busy.

Task Planning of Cyber-Human Systems 307

In Fig. 1, the expected total cost of the system-only strategy (represented by
the plane) is 17.4, independently of pW and annoyance cost, and it is the upper
bound of the expected total costs of the system-human strategies (represented
by the curved surface) for all values of pW and annoyance cost. The region of
pW -annoyance cost in which the expected total costs of system-only and system-
human strategies are equal are the region in which system-human strategies do
not use delegation (shown as white dots in Fig. 2) – AQC-sys always runs air
purifier when it needs to improve the air quality. Whereas in the rest of the
region, system-human strategies use delegation (shown as black dots in Fig. 2)
when the opportunity exists.

Decision on whether AQC-sys should use delegation is sensitive to the energy
cost of running air purifier, the occupant’s annoyance cost, and pW . Since the
costs associated with the air quality dominate the costs of energy annoyance,
AQC-sys must always choose between running air purifier or delegating window-
opening task to the occupant, and if the occupant refuses to open the windows,
AQC-sys must run air purifier as a fallback. In the white region in Fig. 2, the
expected cost of delegation is higher than the cost of running air purifier for
TAU, because it is more likely that both annoyance cost and energy cost incur
as a result of delegation. Thus, the better decision is to run air purifier – only
energy cost incurs (shown as the flat region of the curved surface in Fig. 1). On
the other hand, in the black region in Fig. 2, the expected cost of delegation is
lower than the cost of running air purifier, because it is more likely that no cost
incurs as a result of delegation. Thus, the better decision is to use delegation.
The expected cost of delegation decreases as pW increases, and as annoyance
cost decreases except when pW = 1. This analysis shows the average 32.93 %
decrease in the expected total cost of system-human strategy compare to that
of system-only strategy.

7 Related Work

Eskins and Sanders [5] introduce a definition of a cyber-human system (CHS)
and the opportunity-willingness-capability (OWC) ontology for classifying CHS
elements with respect to system tasks. This approach provides a structured and
quantitative means of analyzing cyber security problems whose outcomes are
influenced by human-system interactions, reflecting the probabilistic nature of
human behavior.

There are some existing approaches for controller synthesis of systems with
human operators. Li et al. [8] propose an approach for synthesizing human-
in-the-loop discrete controller from temporal logic specification. They address
the issue of devising a controller that is mostly automatic and requires only
occasional human interaction for correct operation. Our work differs from theirs
in that, while they focus on predicting the system’s failure and notifying the
human operator ahead of time, we focus on analyzing human factors to create
cooperative strategy of the system and the human. Fu and Topcu [7] propose an
approach for synthesizing shared autonomy policy that coordinates human oper-
ator and autonomous controller, by solving a multi-objective Markov decision

308 R. Sukkerd et al.

process with temporal logic specification. Their approach captures the evolution
of the operator’s cognitive state during control execution, and trades-off the
human’s effort and the system’s performance level. While the trade-off analysis
is similar to that of our work, our approach considers a more general notion
of human factors, and thus it is appropriate for cyber-human systems of which
humans are not necessarily have the system’s operator.

Cámara et al. [6] propose a framework for analyzing the trade-offs of involving
human operators in self-adaptation. Their work employs the OWC model to
capture human factors, and uses model checking of SMG for analysis of how
the human factors affect the outcome of adaptation, given a fixed adaptation
strategy of the human operator. Our work has similar approach; however, we use
strategy synthesis of SMG for devising cooperative strategy of the human and
the system. Moreover, we emphasize on the interaction between the human and
the system through delegation, and modeling of system-independent behavior
of the human.

8 Conclusion

We explore the use of automated planning to design cooperation between cyber
systems and humans in performing tasks, in which human participants have
the role of actuators. We investigate how explicit modeling of human partic-
ipants can be used in planning to generate cooperative strategies which best
and appropriately utilize the humans. Specifically, our contributions are: (1) a
formal framework for modeling cooperation between cyber systems and humans
under uncertainty, with an explicit modeling of human participants based on
opportunity-willingness-capabiity (OWC) ontology, and (2) a formalization of
cyber system-human cooperative task planning as strategy synthesis of stochas-
tic multiplayer game.

References

1. Chen, T., et al.: Automatic verification of competitive stochastic systems. Formal
Methods Syst. Des. 43(1), 61–92 (2013)

2. Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol.
8172, pp. 5–22. Springer, Heidelberg (2013)

3. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Computer Aided Verification. Springer, Berlin (2011)

4. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games:
a model checker for stochastic multi-player games. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 185–191. Springer,
Heidelberg (2013)

5. Eskins, D., Sanders, W.H.: The multiple-asymmetric-utility system model: a frame-
work for modeling cyber-human systems. In: 2011 Eighth International Conference
on Quantitative Evaluation of Systems (QEST). IEEE (2011)

Task Planning of Cyber-Human Systems 309

6. Cámara, J., Moreno, G.A., Garlan, D.: Reasoning about human participation in self-
adaptive systems. In: Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2015) (2015)

7. Fu, J., Topcu, U.: Pareto efficiency in synthesizing shared autonomy policies with
temporal logic constraints (2014). arXiv preprint arXiv:1412.6029

8. Li, W., Sadigh, D., Sastry, S.S., Seshia, S.A.: Synthesis for human-in-the-loop control
systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol.
8413, pp. 470–484. Springer, Heidelberg (2014)

http://arxiv.org/abs/1412.6029

Generating None-Plans in Order to Find Plans

Micha�l Knapik1(B), Artur Niewiadomski2, and Wojciech Penczek1,2

1 Institute of Computer Science, PAS, Warsaw, Poland
{mknapik,penczek}@ipipan.waw.pl

2 University of Natural Sciences and Humanities, ICS, Siedlce, Poland
artur.niewiadomski@uph.edu.pl

Abstract. We put forward a brand new approach to planning. The
method aims at simplifying the task of planning in an abstract object-
oriented domain where entities are added only and never removed. Our
approach is based on the synthesis of a family of all sets of actions that
cannot be composed into a plan (called none-plans) in order to prune
the state space searched for plans. We show how to build a propositional
formula describing a set of the none-plans and how to approximate this
set when the task of planning becomes too complex. A preliminary eval-
uation of the application of the none-plans synthesis to the generation
of plans in the PlanICS framework is shown. The experimental results
show a high potential of the approach.

1 Introduction

Planning tasks appear in many applications of Artificial Intelligence [14], for
example in automated composition of web services [9,13] or in automated orga-
nization of the robot activities required to achieve a desired goal [5]. It is known
that planning in a domain involving objects is a difficult computational problem,
which belongs to the class of NP-hard problems [10].

In this paper we put forward a brand new method aiming at simplifying
the planning process by applying an abstraction to the planning problem. The
presented results are inspired by the research of the authors in the field of approx-
imative parametric model checking [7,8]. Our method reduces the number of sets
of actions to be considered while looking for plans and improves the efficiency
of their automated selection. Informally, the idea is as follows. We translate the
planning problem to the abstract affine planning problem in such a way that
each action corresponds to some abstract action, and each plan corresponds to
some abstract plan, but not necessarily the other way round. This means that
in the abstract planning domain there could be abstract plans that do not cor-
respond to any plan in the original planning domain. However, if one identifies a
set of abstract actions which cannot be composed into an abstract plan (call it a
none-plan), then the actions corresponding to these abstract actions also cannot

This work has been partly supported by the National Science Centre under the
grant No. 011/01/B/ST6/01477. Micha�l Knapik is supported by DEC-2012/07/N/
ST6/03426 NCN Preludium 4 grant.

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 310–324, 2015.
DOI: 10.1007/978-3-319-22969-0 22

Generating None-Plans in Order to Find Plans 311

be composed into a plan. Our aim is to characterize none-plans in the abstract
planning domain in order to reduce the search of plans to these sets of actions
that do not correspond to none-plans.

Our abstract planning domain has been selected in such a way that it is
affine, i.e., the states and the operations can be represented as vectors of natural
numbers, and the problem of finding a single plan can be solved in a polyno-
mial time. To this order we assume that there is no consumption of objects, so
that an increase of their number is visible only. There are several other reasons
motivating our choices:

– More complicated plans can be divided into smaller fragments, where the
objects are not consumed;

– Consumption of objects can be encoded by modifying their attributes (without
removing them);

– In many programming languages, a garbage collector is activated only after
some limit has been reached, as objects are collected in a dynamic way and
removed altogether in a specified moment of time;

– There are planners exploiting directly affine planning domains, where actions
cannot remove objects (see PlanICS [2]).

We show how to build a propositional formula describing a set of the none-plans
and how to approximate this set when the task of planning becomes too complex.
A preliminary evaluation of the application of the none-plans synthesis to the
SMT-based generation of plans [10,11] in the PlanICS framework [2] is discussed.
The experimental results of the presented framework for the synthesis of all the
none-plans suggest that this task is of acceptable average complexity1 and show
a high potential of the approach. In most of the experiments the total time of
finding the first plan and all the plans is much shorter when the SMT-solver gets
also a formula blocking all the none-plans.

The rest of the paper is organized as follows. In the next subsection we discuss
the related work. Section 2 introduces an abstract planning domain, while the
none-plan synthesis is described in Sect. 3. The experimental results are discussed
in Sect. 4. Section 5 concludes the paper.

1.1 Related Work

Since decades automatic planning is in the scope of interest of a broad scientific
community. Currently, one of the leading standards in this field is the PDDL
language [3]. However, due to the high complexity of the planning problem there
are number of abstraction-based approaches to deal with it. For example, in [12]
Nourbakhsh proposes an abstraction enabling interleaved planning and action
execution. The paper [4] introduces the Dynamic Abstract Planning (DAP)
technique that improves the efficiency of state-enumeration planners for real-
time embedded systems. The intuition behind DAP is similar to the case of the

1 Pessimistic complexity is still prohibitive.

312 M. Knapik et al.

abstract planning stage in the web service composition framework PlanICS [2] –
sometimes certain world features are just not important. On the other hand,
DAP allows for the application of different levels of abstraction in different parts
of the search space.

Nevertheless, many of the existing approaches concentrate either on
(1) action-based or (2) state-based abstraction [12], while our solution com-
bines both: (1) we treat equally (to some point) multiple executions of the same
actions, and (2) we do not distinguish between object instances, while we are
interested only in their types and total count. Moreover, to our best knowledge,
there is no approach exploiting the none-plans concept.

2 Abstract Planning Domain

As we outlined in the introduction, our task is to provide at least a partial
characterization of the collection of the sets of actions such that a plan cannot
be composed from any of these sets, i.e., we aim at characterizing none-plans.
The idea is strongly influenced by some practical applications, as we have been
looking for a method to optimize an abstract phase of service composition in an
object-oriented domain. This is the reason that we preserve an object-oriented
nomenclature in this paper.

In the abstract planning domain introduced in this section we only track
the quantity of the instances of each type and the services are modeled by the
actions that transform the current world state solely by adding objects. The
actions prerequisites are rather rudimentary, as the action is enabled only in the
worlds where certain resources are provided and can only add new objects when
executed. The strength of this abstraction lies in its simplicity. As we show, the
proposed domain is affine, thus it can be explored and analysed using many AI-
related approaches. In this work we lay the groundwork for the approach based
on formal methods. We start with introducing the basic concepts of the theory.

We assume a simple, set-theoretic understanding of the notion of a class and
the class inheritance. Let A be a finite set of attributes and U ⊆ 2A. The pair
H = (U ,⊆) is called a Class Hierarchy and the elements of U are called Classes.
Let u, u′ ∈ U . If u ⊆ u′ then we say that u′ extends u. If for every u′′ ∈ U we
have u ⊆ u′′ ⊆ u′ =⇒ u′′ = u′ ∨ u′′ = u, then u′ is called a successor of u. The
set of all the successors of u is denoted by succ(u). The set of the ancestors of u
is defined as anc(u) = {u′ ∈ U | u′ �= u ∧ u′ ⊆ u}.

Example 1. Let A= {seatNo, trunkSize,waterSpeed , roadSpeed} and H =(U ,⊆)
be a hierarchy such that U = {Body ,Car ,Boat ,Amphibian}, where Body =
{seatNo, trunkSize}, Car = Body ∪ {roadSpeed}, Boat = Body ∪ {waterSpeed},
and Amphibian = Body ∪ {roadSpeed ,waterSpeed}. We have anc(Amphibian) =
{Body ,Car ,Boat}, anc(Car) = anc(Boat) = {Body}, and anc(Body) = ∅. We
depict the inheritance relation in Fig. 1, where each arrow head points to the
class being extended.

In what follows let us assume a fixed hierarchy H = (U ,⊆). A function
ω : U → N is called an abstract world and we denote the set of all the abstract

Generating None-Plans in Order to Find Plans 313

Body

Car Boat

Amphibian

Fig. 1. A simple class hierarchy.

worlds by WH. An abstract world associates a class with the total number of its
instances. A world is transformed by adding objects. By ω + k · u we mean the
addition of k instances of the class u to the world ω, as defined below.

Definition 1. Let ω ∈ WH, u ∈ U , and k ∈ N. We define the following function
ω + k · u : U → N:

(ω + k · u)(u′) =
{

ω(u′) + k if u′ = u or u′ ∈ anc(u),
ω(u′) otherwise.

Intuitively, ω + k · u means extending ω with k instances of u and k instances
of each ancestor of u. This way we encode the part of the hierarchy of classes
(rooted at u) in ω. Observe that we have (ω + k ·u)+ k′ ·u′ = (ω + k′ ·u′)+ k ·u
for all u, u′ ∈ U and k, k′ ∈ N, therefore we can omit the brackets whenever it is
convenient. In what follows let ω0 denote the abstract world such that ω0(u) = 0
for all u ∈ U .

Example 2. If H is the hierarchy from Example 1, then we have:

ω0 + 1 · Amphibian + 2 · Car =

⎧
⎪⎪⎨

⎪⎪⎩

Body �→ 3,
Car �→ 3,
Boat �→ 1,
Amphibian �→ 1.

To unify the notation we also use the abstract worlds to represent the actions
constraints and results. To this end we extend the addition operation as follows.
Let ω, ω′ ∈ WH and ω′ = {(u1, k1), (u2, k2), . . . , (un, kn)} ⊆ U × N for some
n ∈ N. Now, we define ω + ω′ := ω + k1 · u1 + k2 · u2 + . . . + kn · un. For any
relation ∼ ∈ {≤, <,=, >,≥} we write ω ∼ ω′ if ∀u∈U ω(u) ∼ ω′(u). In particular,
if ω ≥ ω′, then we say that ω covers ω′. We say that ω ∈ WH is realisable iff
for some n ∈ N there exist k1, k2, . . . , kn ∈ N and u1, u2, . . . , un ∈ U such that
ω = ω0 +

∑n
i=1 ki ·ui. Intuitively, ω is realisable if it can be built from the empty

world by adding new objects. All the transformations of the abstract worlds
considered in this section preserve realisability.

Definition 2. Let pre, eff ∈ WH, where pre is realisable. An ordered pair act =
(pre, eff) is called an action, pre is its enabling condition and eff is its effect.

314 M. Knapik et al.

We also use the notation pre(act) and eff(act) to denote the enabling condi-
tion and the effect of act, respectively. An action act can be executed in ω ∈ WH
iff ω ≥ pre(act); the result of its execution is ω′ = ω + eff(act). This is denoted
by ω

act→ ω′. Next, we introduce planning domains system used in this paper.

Definition 3 (Planning Domain). By a Planning Domain we mean a four-
tuple P = (WH, FI , FG,Act), where:

– WH is the set of the abstract worlds,
– FI , FG are finite sets of the initial and the final abstract worlds, respectively,

where all the worlds from FI are realisable,
– Act = {act1, . . . , actk}, where k ∈ N, is a finite set of actions.

Let us assume throughout this section that we have a fixed planning domain
P = (WH, FI , FG,Act). The following concepts are needed to present the theory
of plan synthesis. A path is a sequence (ω0, act1, ω1, act2, . . . , actn, ωn) for some
n ∈ N, such that ∀0≤i≤nωi ∈ WH and ∀0<i≤n(acti ∈ Act ∧ωi−1

acti→ ωi). One can
observe that a path is uniquely determined by its first world and the sequence
of actions, thus we can introduce a convenient short-hand notation π = ω0act1 ◦
act2 ◦ . . . ◦ actn. By |π| = n we mean that the length of the path π is n and by
πi = ωi we denote its i-th state for 0 ≤ i ≤ n. The set Acts(π) ⊆ Act consists
of all the actions of π; we call it the support of π. For A ⊆ Act and ω, ω′ ∈ WH,
we denote by Π(ω,A, ω′) the set of all the paths π starting from ω, such that
Acts(π) ⊆ A and the final state of π covers ω, i.e., π|π| ≥ ω. By an abstract plan
we mean a path π ∈ Π(ωI , A, ωF), where ωI ∈ FI and ωF ∈ FG. Notice that an
abstract plan is a path that starts in an initial state and covers a final state.

The notions introduced above have their convenient vector counterparts. We
employ a slight notational abuse and use the same symbol for the vector addition
and the addition of abstract worlds. It is easy to identify the operation from the
type of the operands. Assume that U = {u1, . . . , un} for some n ∈ N and ≺ is
a fixed linear order on U such that u1 ≺ . . . ≺ un. A vector ω ∈ N

n satisfying
∀1≤i≤n ωi = ω(ui) is the vector representation of ω ∈ WH. The arithmetic
relations between the abstract worlds are naturally extended to their vector
representations using the lexicographical ordering of vectors. Let u ∈ U and
define eu ∈ N

n such that:

ei
u =

{
1 if ui ∈ anc(u) or ui = u,
0 otherwise.

It is easy to see that ω+k ·u is represented by ω+k ·eu for any k ∈ N. To extend
this to the general case of the addition of abstract worlds, assume that ω, ω′ ∈
WH and ω′ = {(u1, k1), (u2, k2), . . . , (un, kn)} ⊆ U×N. The vector representation
of the sum ω+ω′ is given by ω+ω′ := ω+k1 ·eu1 +k2 ·eu2 . . .+kn ·eun

. The linear
representation of an action act = (pre, eff) consists of the linear representations
of its enabling condition and the effect, and it is denoted by act = (pre, eff).
Consequently, we use the following notations pre(act) = pre and eff(act) = eff.

We illustrate the concepts introduced above in the following example.

Generating None-Plans in Order to Find Plans 315

Example 3. We build an exemplary planning domain P ′ = (WH, FI , FG,Act),
where the hierarchy H is defined in Example 1 and FI = {ωI} and FG = {ωF }
satisfy ωI = ω0, ωF (Amphibian) = 1 and ωF (u) = 0 for u ∈ U \ {Amphibian}.
In our domain we start with the empty world and the goal is to produce at
least one Amphibian. To this end we can employ the actions from the set Act =
{makeBody ,makeCar ,makeBoat ,makeAmphibian, tinker} having the following
specifications:

– for each O ∈ {Body ,Car ,Boat ,Amphibian} we have eff(makeO)(O) = 1 and
eff(makeO)(u) = 0 for u ∈ U \ {O},

– ∀u∈Upre(makeBody)(u) = 0,
– pre(makeCar)(Body) = 1 and ∀u∈U\{Body}pre(makeCar)(u) = 0,
– pre(makeBoat)(Body) = 1 and ∀u∈U\{Body}pre(makeBoat)(u) = 0,
– pre(makeAmphibian)(Body) = 2, pre(makeAmphibian)(Car) = 1,

pre(makeAmphibian)(Boat) = 1, pre(makeAmphibian)(Amphibian) = 0,
– pre(tinker)(Body) = 2, pre(tinker)(Car) = 2, pre(tinker)(Boat) = 1,

pre(tinker)(Amphibian) = 1,
– eff(tinker)(Amphibian) = 2 and ∀u∈U\{Amphibian}eff(tinker)(u) = 0.

Intuitively, a Car or a Boat can be produced from a Body , and an Amphibian
from a pair of a Car and a Boat (observe that these two make two Bodies).
The production of a Body does not have any prerequisites. We can also tinker
and build two Amphibians from an Amphibian and a Car . Let us build the
vector representation of the domain by assuming the order Body ≺ Car ≺
Boat ≺ Amphibian. The initial state is represented by ωI = (0, 0, 0, 0) and
ωF = (0, 0, 0, 1) is the representation of the goal state. We also have eBody =
(1, 0, 0, 0), eCar = (1, 1, 0, 0), eBoat = (1, 0, 1, 0), and eAmphibian = (1, 1, 1, 1),
therefore we represent the actions from Act as follows:

– pre(makeBody) = (0, 0, 0, 0) and eff(makeBody) = (1, 0, 0, 0),
– pre(makeCar) = (1, 0, 0, 0) and eff(makeCar) = 1 · eCar = (1, 1, 0, 0),
– pre(makeBoat) = (1, 0, 0, 0) and eff(makeBoat) = 1 · eBoat = (1, 0, 1, 0),
– pre(makeAmphibian) = (2, 1, 1, 0) and eff(makeAmphibian) =

1 · eAmphibian = (1, 1, 1, 1),
– pre(tinker) = (2, 2, 1, 1) and eff(tinker) = 2 · eAmphibian = (2, 2, 2, 2).

It is now easy to see that to create an abstract plan we need all the actions from
the set AP = {makeBody ,makeCar ,makeBody ,makeBoat ,makeAmphibian}.
The action tinker is redundant, as it can be fired only after the goal is enabled.

As we have already mentioned, a planning domain is an abstraction of a
possibly more complex system. In particular, the fact that the objects are only
produced and never consumed means that some plans found in the planning
domain may have no counterpart in the original system. However, referring to
Example 3, observe that as none of the proper subsets of AP′ can be a support
of an abstract plan, none of them can be used for generating a plan in the
underlying system. We exploit this observation in the next section.

316 M. Knapik et al.

3 Action Classification and None-Plan Synthesis

As we show, in our planning domain a greedy approach to the synthesis of the
abstract plans is guaranteed to succeed, and we obtain a certain classification of
the actions as a byproduct of the computations. This partition can be used for
the identification of the core sequence of the sets of actions necessary in every
abstract plan.

In what follows assume that we have a single initial and a single goal state,
i.e., FI = {ωI} and FG = {ωF }. Moreover, we can assume that ωI = ω0. This
premise is possible without a loss of generality, as we can replace every action
that has a vector representation act = (pre, eff) with the action represented
by act = (pre − ωI , eff), and the final world ωF with a world represented by
ωF − ωI . Note that as a result of this operation some negative numbers may
appear in enabling conditions and the final state. This is not a problem as the
translation does not change the results of the arithmetic comparisons.

Action Classification. We classify the actions from a fixed set A ⊆ Act . Let
Vmax be the largest number present in the enabling conditions of the vector
representations of all the actions from Act . For each B ⊆ A we denote:

enact(B) = {act ∈ A |
∑

act′∈B

Vmax · eff(act′) ≥ pre(act)}.

Observe that the set enact(B) consists of all those actions from A that can be
enabled by firing actions from B, possibly each action more than once.

As before assume that ω, ω′ ∈ WH. In order to partition the set A we define
the ascending sequence {Gω

i }i∈N of subsets of A such that:

Gω
0 = {act ∈ A | act ≥ ω},

Gω
i+1 = enact(Gω

i) for i > 0.

We also define the derived sequence {Hω
i }i∈N such that Hω

0 = Gω
0 and Hω

i+1 =
Gω

i+1\Gω
i for all i ∈ N. The set Gω

i+1 consists of the actions enabled by executing
all the actions Gω

i and out of these Hω
i+1 selects those actions that are newly

enabled. Now, let klimit(ω) ∈ N be the smallest number such that Hω
klimit(ω) = ∅;

this definition is correct as the set A is finite. By kgoal(ω, ω′) ∈ N we mean
the smallest number such that the effect of the actions from Gω

i+1 covers ω′.
Formally:

kgoal(ω, ω′) = min({k ∈ N |
∑

act∈Gω
k

Vmax · eff(act) ≥ ω′})

and if there is no such a number, then we set kgoal(ω, ω′) = ∞.

Lemma 1. The following condition holds:

kgoal(ω, ω′) < ∞ iff Π(ω,A, ω′) �= ∅.

The value of kgoal(ω, ω′) can be computed in time O(|A|2 · |U|).

Generating None-Plans in Order to Find Plans 317

HωI
0

HωI
1

HωI
kgoal(ωI ,ωF)

T E

R

GωI
klimit(ωI)

G

Fig. 2. A partition of the actions in A.

Proof. The first part of the thesis follows immediately from the definition. A
procedure for finding kgoal(ω, ω′) is based on building the sequence {Gω

i }klimit(ω)
i=0 .

In order to find Gω
i+1 = enact(Gω

i) given Gω
i we need to compare the computed

value
∑

act′∈Gω
i

Vmax · eff(act′) with the enabling conditions of all the actions
from the set A \ Gω

i . In the worst case of klimit(ω) = |A|, we need O(|A|2)
comparisons of the vectors of length |U| to build the whole sequence. �

Assume that kgoal(ωI , ωF) < ∞, which, from Lemma 1, is equivalent to the
existence of an abstract plan. Define the following subsets of A:

– E = A \ GωI

klimit(ωI) - the set of the useless actions that cannot be enabled,
– G = GωI

kgoal(ωI ,ωF) - the set of the actions sufficient to build an abstract plan,
– R = {act ∈ GωI

klimit(ωI) | pre(act) ≥ ωF } - the redundant actions that can be
enabled only after the goal is covered,

– T = GωI

klimit(ωI) \ (GωI

kgoal(ωI ,ωF) ∪ R) - the set of the potentially useful actions
that are not a part of the greedily built set of the sufficient actions.

As established in the following corollary, these sets partition A, i.e., they are
pairwise disjoint and their union is equal to A. We illustrate this in Fig. 2.

Corollary 1. If kgoal(ωI , ωF) < ∞, then:

– {E ,G,R, T } is a partition of A,
– {HωI

0 , . . . , HωI

kgoal(ωI , ωF)} is a partition of G.

Example 4. Let P be the planning domain from Example 3, where Vmax =
2. We perform the classification of the set of all the actions act. For clar-
ity we omit the initial and the final states from the sub- and superscripts.
The action makeBody is the only one that is enabled in the initial state ωI ,
thus we have H0 = G0 = {makeBody}. Firing makeBody enables the actions
makeCar and makeBoat , therefore G1 = {makeBody ,makeCar ,makeBoat} and
H1 = {makeCar ,makeBoat}. Now, firing all the actions from H1 enables the
action makeAmphibian that is needed to cover the final state ωF ; we there-
fore have G = G2 = {makeBody ,makeCar ,makeBoat ,makeAmphibian} and

318 M. Knapik et al.

H2 = {makeAmphibian} and kgoal = 2. The action tinker can be enabled by G2,
therefore G3 = {makeBody ,makeCar ,makeBoat ,makeAmphibian, tinker} and
H3 = {tinker}. No more actions can be enabled, which means that klimit = 3.
The action tinker needs an Amphibian, it is therefore redundant and R =
{tinker}. As there are no useless actions, we have E = ∅; also, there are no
potentially useful actions, i.e., T = ∅.

We know from Lemma 1 that the sequence {Hω
i }kgoal(ω,ω′)

i=0 can be built in a
polynomial time. In the next lemma we observe that the support of an abstract
plan contains at least one action from each of the elements of this sequence. By
a simple plan we mean a plan such that only its final state covers ωF .

Lemma 2. Assume that kgoal(ωI , ωF) < ∞ and let π = ωIact1 ◦act2 ◦ . . .◦actn

be a simple plan such that π ∈ Π(ωI , A, ωF). There exists a prefix π′ ∈ Π(ωI , A)
of π such that Acts(π′) ⊆ G and HωI

i ∩Acts(π′) �= ∅ for all 0 ≤ i ≤ kgoal(ωI , ωF).

Proof. Let us start with two observations. Firstly, immediately from the def-
inition, for each i ∈ N if B ⊆ GωI

i , then enact(B) ⊆ GωI
i+1. Secondly, for a

path π = ωIact1 ◦ act2 ◦ . . . ◦ actj ◦ . . . ◦ actn such that actj ∈ T we have
Acts(π) ∩ HωI

kgoal(ωI ,ωF) �= ∅. Now, let us move to the proof of the lemma. Let
π′ be a maximal prefix of π such that Acts(π′) ⊆ GωI

kgoal(ωI ,ωF). From both the
observations we have that Acts(π′) ∩ HωI

kgoal(ωI ,ωF) �= ∅, as otherwise π′ would
either not cover ωI or would not enable any action from T , or would not be
maximal. Therefore, Acts(π′) needs to contain an element from HωI

kgoal(ωI ,ωF)−1,
as otherwise by the first observation none of the actions from HωI

kgoal(ωI ,ωF) would
become enabled. The rest of the proof follows by the induction. �

The results of Lemma 2 can be applied in pruning the space of the possible
plans. Observe that if we put A = Act , then the collection {Act \HωI

0 , . . . ,Act \
HωI

kgoal(ωI , ωF)} consists of the sets of actions insufficient to form an abstract
plan. We call such sets of actions none-plans. Formally, assume that A ⊆ Act and
ω, ω′ ∈ WH and define the set of none-plans Z(ω,A, ω′) ⊆ 2A as the collection
of sets of the actions such that B ∈ Z(ω,A, ω′) iff B ⊆ A and Π(ω,B, ω′) = ∅.

None-Plan Synthesis. We now propose a method for the synthesis of the
set of none-plans. Firstly (Item 1 of Lemma 3), we show that an abstract plan
covers the final state iff it covers all the non-zero valued coordinates of its vector
representation. Secondly (Item 3 of Lemma 3), we prove that a set of actions is a
none-plan iff for each action a from this set, if eff(a) covers the final state, then
a cannot be enabled. We apply these properties to obtain the recursive formula
characterizing the none-plans in Theorem 1.

Let I(ωF) be the set of all the worlds such that their vector representations
are unitary and covered by ωF , formally:

I(ωF) = {ω ∈ WH | ∃0≤i≤n(ωi = 1 ∧ ωF i > 0 ∧ ∀j �=iωj = 0)}.

Let ω ∈ I(ωF) be such a world that ωi = 1 for i ∈ N. We define Ā(ω) = {act ∈
A | eff(act)i = 0}. The set Ā(ω) consists of those actions from A whose effect
vector representation assigns 0 to the non-zero coordinate of ω.

Generating None-Plans in Order to Find Plans 319

To avoid the convoluted notation, the notions introduced in this section so far
have depended on the fixed set of actions. From now on, we implicitly designate
the set of actions whenever we need to refer to the concepts that depend on
A ⊆ Act , i.e., we write: {Gω

i (A)}i∈N, klimit(ω,A), and kgoal(ω,A, ω′).

Lemma 3. Let A ⊆ Act and ω, ω′ ∈ WH. The following conditions hold:

1. Π(ω,A, ω′) = ∅ iff ∃ω′′∈I(ω′)Π(ω,A, ω′′) = ∅,
2. Π(ω,A, ω′) = ∅ iff ∃ω′′∈I(ω′)G

ω
klimit(ω,A) ⊆ Ā(ω′′),

3. if ω′ is represented by a unitary vector, then we have Π(ω,A, ω′) = ∅ iff
ω �≥ ω′ ∧ ∀act∈A

(
eff(act) ≥ ω′ =⇒ Π(ω,A \ {act},pre(act)) = ∅).

Proof. Let us start with Item 1 of the lemma. If there exists ω′′ ∈ I(ω′) such that
Π(ω,A, ω′′) = ∅, then from the definition of I(ω′) there is a none-zero valued
coordinate of ω′ that is not covered by any plan. Furthermore, no plan can
cover ω′. For the other side of the proof, assume that I(ω′) = {ω′′

1 , . . . , ω′′
m} for

some m ∈ N and that for every ω′′ ∈ I(ω′) we have Π(ω,A, ω′′) �= ∅, i.e., there
exists a sequence πω′′ = ωactω′′

1 ◦ . . . ◦ actω′′
nω′′ ∈ Π(ω,A, ω′′). Now, from the fact

that the actions stay enabled once becoming so, we obtain that the sequence
π = ωactω′′

1
1 ◦ . . . ◦ actω′′

1
nω′′

1
◦ . . . ◦ actω′′

m
1 ◦ . . . ◦ actω′′

m
nω′′

m
belongs to Π(ω,A, ω′).

To prove Item 2, we fix any ω′′ ∈ I(ω′) and observe that Π(ω,A, ω′′) = ∅
iff the actions present in the sequence {Gω

i (A)}i∈N do not cover ω′′. This is
equivalent to Gω

klimit(ω,A) ⊆ Ā(ω′′) thus we conclude by applying Item 1.
Let us move now to Item 3. If Π(ω,A, ω′) = ∅, then ω �≥ ω′. If there were an

action act ∈ A with eff(act) ≥ ω′, and a plan π ∈ Π(ω,A\{act},pre(act)), then
we would have had π ◦ act ∈ Π(ω,A, ω′), which contradicts with the emptiness
of this set. Let us assume now that π ∈ Π(ω,A, ω′) (hence Π(ω,A, ω′) �= ∅) and
ω �≥ ω′. As ω′ is a unitary vector, there exists an action act ∈ Acts(π) such that
eff(act) ≥ ω′. Let π′ be the prefix of π that ends immediately before the first
occurrence of act. Notice that we have π′ ∈ Π(ω,A \ {act},pre(act)), and the
non-emptiness of Π(ω,A \ {act},pre(act)) concludes the proof of this case and
the whole lemma. �

It can be shown that the assumption that ω′ is unitary, made in Item 3 of
Lemma 3, is essential. The following theorem provides a recursive characteriza-
tion of none-plans.

Theorem 1. Let A ⊆ Act and ω, ω′ ∈ WH. The set Z of the none-plans is
characterized as follows:

Z(ω,A, ω′) =
⋃

{ω′′∈I(ω′)|ω �≥ω′′}

⋂

{act∈A|eff(act)≥ω′′}

(D(ω,A, act) ∪ 2A\{act}),

where D(ω,A, act) = {B ∪ {act} | B ∈ Z(ω,A \ {act},pre(act))}.

320 M. Knapik et al.

Proof. Firstly, observe that from Item 1 of Lemma 3 and the fact that if ω ≥ ω′′,
then Z(ω,A, ω′′) = ∅, we have:

Z(ω,A, ω′) =
⋃

ω′′∈I(ω′)

Z(ω,A, ω′′) =
⋃

{ω′′∈I(ω′)|ω �≥ω′′}
Z(ω,A, ω′′). (�)

Assume that ω �≥ ω′′ and ω′′ have unitary vector representations. By Item 3 of
Lemma 3 we know that B ∈ Z(ω,A, ω′′) iff B consists of all those actions a that
satisfy (1) eff(a) does not cover ω′′, or (2) eff(a) covers ω′′, but a is not enabled
by the remaining actions of B. Therefore, we have the following equality:

Z(ω,A, ω′′) =
⋂

{act∈A|eff(act)≥ω′′}

({B ∪ {act}|B ∈ Z(ω,A \ {act},pre(act))} ∪ 2A\{act}),

which applied to (�) concludes the proof. �

The results of Theorem 1 can be applied to generate a propositional formula
φP that describes all the none-plans over a planning domain. This formula has
such a property that the set of its models is in a one-to-one correspondence with
the set of none-plans in P. To build the representation of φP we firstly recursively
unfold the set of none-plans Z(ω,A, ω′), as given in Theorem 1, into a meet-join
graph with the power sets of certain sets of actions as leaves. This graph is
then transformed into an and-or graph with disjunctions of the propositions
representing the respective actions in the leaves. Due to the limited space we
omit here further details.

In the next example we perform by hand computations the first step of
the recursive computation of the set of none-plans for an exemplary planning
domain.

Example 5. Let P ′′ = (WH, F ′
I , F

′
G,Act ′) be the planning domain obtained by

modifying the planning domain P ′ of Example 3 as follows:

– Act ′ = {makeBody ,makeCar ,makeBoat ,makeAmphibian}, i.e., tinker is
removed from the set of actions,

– F ′
I = {ω′

I} and F ′
G = {ω′

F } are such that:
• ω′

I(Body) = ω′
I(Boat) = 1 and ω′

I(Car) = ω′
I(Amphibian) = 0,

• ω′
F (Car) = 1 and ω′

F (Car) = ω′
F (Boat) = ω′

F (Amphibian) = 0.

Intuitively, we start with a Boat and wish to build a Car . For convenience we use
the vector representations and the order established in Example 3, thus we have
ω′

I = (1, 0, 1, 0) and ω′
F = (0, 1, 0, 0). Let us compute Z(ω′

I ,Act ′, ω′
F). Firstly,

observe that {ω′′ ∈ I(ω′
F) | ω′

I �≥ ω′′} = {(0, 1, 0, 0)} and {act ∈ Act ′ | eff(act) ≥
(0, 1, 0, 0)} = {makeCar ,makeAmphibian}, we therefore have:

Z(ω′
I ,Act ′, ω′

F) =
(D(ω′

I ,Act ′,makeCar) ∪ 2Act′\{makeCar}) ∩
(D(ω′

I ,Act ′,makeAmphibian) ∪ 2Act′\{makeAmphibian}).

Generating None-Plans in Order to Find Plans 321

Now, to compute D(ω′
I ,Act ′,makeCar) and D(ω′

I ,Act ′,makeAmphibian) we
need to find Z(ω′

I , {makeBody ,makeBoat ,makeAmphibian},pre(makeCar)) and
Z(ω′

I , {makeBody ,makeCar ,makeBoat},pre(makeAmphibian)), resp. We apply
the equivalence from Theorem 1 until we obtain the result consistent with the
intuition, i.e., the set of none-plans consisting of all the subsets of Act ′ that do
not contain makeCar .

In theory, such an approach, based on the straightforward unfolding of the
characterisation of none-plans, may become intractable for very large planning
domains. Observe that in the equivalence from Theorem 1, in the worst case
the outer sum ranges over all the unitary vectors and the inner join ranges over
all the currently considered actions. Thus, applying the recursive equivalence
k times can require O

(|U|k · |Act|!
(|Act|−k)!

)
operations in the worst case. Since it

can be at most |Act | steps until the unfolding is complete, the time complexity
of the synthesis of all the none-plans is in O(|U||Act| · |Act |!). This is a rough
estimate of the pessimistic complexity, but the experimental results allow to
conjecture that the average complexity is much better. Nevertheless, we propose
a method of approximating the result when the exhaustive computations are too
time-consuming.

Let ω, ω′ ∈ WH and A ⊆ Act . Recall that if ω′′ has a unitary vector repre-
sentation, then Ā(ω′′) is the set of the actions which effects cannot cover ω′′. Let
EF (Ā(ω′′)) = A \ Gω

klimit(ω,Ā(ω′′)) denote the set of all the actions from A that
are not enabled by Ā(ω′′). We define:

F(ω,A, ω′) =
⋃

ω′′∈I(ω′)

{X ∪ Y | X ⊆ Ā(ω′′) ∧ Y ⊆ EF (Ā(ω′′))}.

As shown in the following lemma F(ω,A, ω′) is a lower approximation of the set
of the none-plans Z(ω,A, ω′).

Lemma 4. For all A ⊆ Act and ω, ω′ ∈ WH we have F(ω,A, ω′) ⊆ Z(ω,A, ω′).

Proof. Let B ∈ F(ω,A, ω′) and ω′′ ∈ I(ω′) be such that B = X ∪ Y for some
X ⊆ Ā(ω′′) and Y ⊆ EF (Ā(ω′′)). By the definition B consists of the actions
that are either useless or their effects do not cover ω′′, therefore by Item 1 of
Lemma 3 their effects do not cover ω′ as well. �

We can therefore stop the unfolding of the characterisation of the set of the
none-plans performed by the consecutive application of the equivalence from
Theorem 1 at any given depth and obtain an approximate result.

This can be done by replacing at the selected depth the recursive call to the
Z(ω,A, ω′) computation with the results of computing F(ω,A, ω′).

4 Evaluation

The search space reduction described above has been evaluated in practice. We
have implemented the SpaceCut (SC) tool which generates a formula describing

322 M. Knapik et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0 %

50 %

100 %

timeout of Total

benchmark id

N
o
R

e
d
T

im
e
−

B
e
s
tR

e
d
T

im
e

N
o
R

e
d
T

im
e

·1
0
0
%

First

Total

Fig. 3. The summary of the reduction efficiency.

none-plans using the SMT-LIB v2 format [1], as well as partitioning the service
types into sets. The open source tool can be downloaded from [6].

We have also implemented the dedicated version of the SMT-based abstract
planner on top of PlanICS [2] which makes use of the none-plans description and
the service types partitioning. The implemented changes are threefold. Firstly,
we ignored the services classified by SC as useless. Overall, we could remove out
of the planning scope about 7% of the service types (from 0 to 34 such service
types, depending on the particular benchmark).

The second improvement consists in using the formula describing none-plans.
We have simply added ¬φP as an SMT-solver assertion. However, our original
SMT-based planner [11] in the low-level encoding deals with sequences rather
than with sets of service types. Thus, a “bridge” formula is needed in order to
join the “old” encoding with the φP formula.

Finally, we also make use of the service types partitioning. As the first service
in the sequence belongs to GωI

0 , the second one is from GωI
1 , the third is from

GωI
2 and so on, we simply encoded this dependency as a propositional formula.

Moreover, assuming that our search for the plans is incremental, and we have
found nothing so far, we can add one more constraint. Namely, we can assume
that the last service in the sequence is from the set HωI

kgoal(ωI , ωF) ∪ T .
We report in Fig. 3 the experimental results performed using 24 benchmarks

where the search space reduction has been applied on various depths, compared
to the standard SMT-based abstract planner of the PlanICS toolset. We imposed
the 2000 s time-out for every experiment. We have focused on two performance
indicators: the time needed to find the first plan (Fig. 3: First) and the time con-
sumed by the SMT-solver in order to search the whole space (Fig. 3: Total), i.e.,
to make sure that all the plans (of a given length) have already been found. Due
to the space limit the detailed results are presented in Appendix. The experi-
ments have been conducted on a standard PC computer with 2GHz CPU and
8 GB RAM.

The benchmarks have been randomly generated by our tool Ontology Gener-
ator [15]. Table 1 presents the benchmarks characteristics. The consecutive rows

Generating None-Plans in Order to Find Plans 323

Table 1. Benchmark features

ont 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28 26 27 28

k 6 9 12 15

sol 1 10 1 10 1 10 1 10

HωI
0 35 67 131 44 76 140 35 67 131 40 76 140 35 67 131 28 76 140 35 67 131 16 76 140

HωI
1 5 21 84 14 23 91 5 26 94 12 22 100 3 26 98 12 25 92 6 19 106 12 16 80

HωI
2 1 6 35 3 21 6 10 21 12 14 16 3 6 14 12 13 12 3 9 13 12 12 12

HωI
3 1 1 3 3 3 12 12 12 3 6 3 12 12 12

HωI
4 3 4 3 12 12 12

E 23 34 6 6 25 3 18 25 10 0 16 0 20 26 10 0 2 0 14 23 0 0 0 0

R 0

T 1 6 35 0 4 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

contain the following data, starting from the top: the benchmark id (ont), the
number of service types (actions) available, the length of the shortest solutions
(k), and the number of plans of the length k. The next rows show the results of
the service types partitioning, i.e., the size of particular sets.

Observe that in most cases (20 out of 24), the time needed for finding the first
solution has been reduced. Moreover, in 18 cases the improvement is significant,
i.e., we obtain a speedup by over 25%. Only for two benchmarks the reduction
worsens the performance of finding the first plan. We plan to further investi-
gate these anomalies. In the remaining cases we obtain only a minor difference
between the approaches, as the benefits of the reduction probably have been
balanced by the overhead resulting from more complex formula to be solved.

However, while taking into account the total computation time, an applica-
tion of the reduction has been superior for all the cases which we could measure,
i.e., for those that do not exceeded the time limit. The improvements vary from
30% to 84%. This means that the computation combined with the reduction
may take up to 84% less time than the one without the reductions.

5 Conclusions and Future Work

In this paper we presented a novel framework aimed at the optimization of
planning in an object-oriented domain. The problem is inspired by our earlier
applications of planning to web service composition [2,10,11]. We have shown
how to represent a simplified class hierarchy together with the actions that oper-
ate on classes of objects as an affine transition system. Our main contribution
consists in synthesising none-plans, i.e., the sets of actions that are not sufficient
to forming a monotone plan. This synthesis can be either exhaustive or approx-
imative. The none-plans are then used to reduce the space of the possible web
service compositions in PlanICS.

The experimental results are quite promising as we have achieved a substan-
tial speedup in most cases. A parallelized approach where the separate threads
attempt to synthesise solutions having different degrees of approximation seems

324 M. Knapik et al.

to be the best strategy for attaining the optimal efficiency. While the rough
estimates of the theoretical complexity of the task of none-plan synthesis are
discouraging, the experimental results suggest that in practice the algorithm
behaves much better. As far as the future work is concerned, we plan to inves-
tigate the theoretical complexity of the task of the none-plan synthesis in more
detail. We are also going to design criteria for the selection of the optimal degree
of the approximation of the set of none-plans for reducing the time of the syn-
thesis of the first plan.

References

1. Cook, D.R.: The SMT-LIBv2 language and tools: a tutorial (2012). http://www.
grammatech.com/resource/smt/SMTLIBTutorial.pdf

2. Doliwa, D., et al.: PlanICS - a web service compositon toolset. Fundamenta Infor-
maticae 112(1), 47–71 (2011)

3. Gerevini, A.E., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic
planning in the fifth international planning competition: PDDL3 and experimental
evaluation of the planners. Artif. Intel. 173(5), 619–668 (2009)

4. Goldman, R.P., Musliner, D.J., Krebsbach, K.D., Boddy, M.S.: Dynamic abstrac-
tion planning. In: AAAI/IAAI, pp. 680–686 (1997)

5. Gómez, J.V., Lumbier, A., Garrido, S., Moreno, L.: Planning robot formations
with fast marching square including uncertainty conditions. Robot. Auton. Syst.
61(2), 137–152 (2013)

6. Knapik, M.: SpaceCut - a tool for none-plan generation (2015). https://github.
com/MichalKnapik/SpaceCut

7. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata.
In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Transactions on Petri Nets and Other
Models of Concurrency V. LNCS, vol. 6900, pp. 141–159. Springer, Heidelberg
(2012)

8. Knapik, M., Penczek, W.: SMT-based parameter synthesis for L/U automata. In:
Proceedings of International Workshop on Petri Nets and Software Engineering
(PNSE 2012), pp. 77–92 (2012)

9. Li, Z., O’Brien, L., Keung, J., Xu, X.: Effort-oriented classification matrix of web
service composition. In Proceedings of the Fifth International Conference on Inter-
net and Web Applications and Services, pp. 357–362 (2010)

10. Niewiadomski, A., Penczek, W.: Towards SMT-based abstract planning in PlanICS
ontology. In: Proceedings of International Conference on Knowledge Engineering
and Ontology Development (KEOD), pp. 123–131 (2013)

11. Niewiadomski, A., Penczek, W.: SMT-based abstract temporal planning. In: Pro-
ceedings of International Workshop on Petri Nets and Software Engineering, pp.
55–74 (2014)

12. Nourbakhsh, I.: Using abstraction to interleave planning and execution. In: Pro-
ceedings of the Third Biannual World Automation Congress, vol. 2 (1998)

13. Rao, J., Su, X.: A survey of automated web service composition methods. In:
Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54.
Springer, Heidelberg (2005)

14. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn.
Prentice Hall Press, Upper Saddle River (2009)

15. Skaruz, J., Niewiadomski, A., Penczek, W.: Evolutionary algorithms for abstract
planning. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2013, Part I. LNCS, vol. 8384, pp. 392–401. Springer, Heidelberg (2014)

http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf
http://www.grammatech.com/resource/smt/SMTLIBTutorial.pdf
https://github.com/MichalKnapik/SpaceCut
https://github.com/MichalKnapik/SpaceCut

Modelling and Model Transformation

Twitlang(er): Interactions Modeling Language
(and Interpreter) for Twitter

Rocco De Nicola1, Alessandro Maggi1, Marinella Petrocchi2,
Angelo Spognardi2, and Francesco Tiezzi3(B)

1 IMT Institute for Advanced Studies, Lucca, Italy
{rocco.denicola,alessandro.maggi}@imtlucca.it

2 CNR, Istituto di Informatica e Telematica, Pisa, Italy
{marinella.petrocchi,angelo.spognardi}@iit.cnr.it

3 School of Science and Technology, University of Camerino, Camerino, Italy
francesco.tiezzi@unicam.it

Abstract. Online social networks are widespread means to enact inter-
active collaboration among people by, e.g., planning events, diffusing
information, and enabling discussions. Twitter provides one of the most
illustrative example of how people can effectively interact without resort-
ing to traditional communication media. For example, the platform has
acted as a unique medium for reliable communication in emergency or
for organising cooperative mass actions. This use of Twitter in a coop-
erative, possibly critical, setting calls for a more precise awareness of
the dynamics regulating message spreading. To this aim, in this paper,
we propose Twitlang, a formal language to model interactions among
Twitter accounts. The operational semantics associated to the language
allows users to clearly and precisely determine the effects of actions per-
formed by Twitter accounts, such as post, retweet, reply-to or delete
tweets. The language is implemented in the form of a Maude interpreter,
Twitlanger, which takes a language term as an input and, automati-
cally or interactively, explores the computations arising from the term.
By relying on this interpreter, automatic verification of communication
properties of Twitter accounts can be carried out via the analysis tools
provided by the Maude framework. We illustrate the benefits of our exe-
cutable formalisation by means of few simple, yet typical, examples of
Twitter interactions, whose effects are somehow subtle.

Keywords: Social systems dynamics · Twitter · Formal semantics ·
Verification

1 Introduction

More than a personal microblogging site, Twitter has been transformed by com-
mon use to an information publishing venue. At August, 2014, stats reported 271

Research supported by the European projects IP 257414 ASCENS and STReP
600708 QUANTICOL, the Italian PRIN 2010LHT4KM CINA, and the Registro.it
project MIB (My Information Bubble).

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 327–343, 2015.
DOI: 10.1007/978-3-319-22969-0 23

328 R. De Nicola et al.

million of monthly active Twitter users, with an average of 500 million of tweets
sent per day and about 307 tweets sent per user [1]. Popular public characters,
such as actors and singers, as well as traditional mass media, such as radio,
TV, and newspapers, currently use Twitter as a new media channel. Politicians
commit notable part of their campaigns to their Twitter home pages, see, e.g.,
the last US presidential election event [2]. Naturally, the platform has raised the
attention of the most famous brands, that massively use the site for business
promotion [3]. Furthermore, it has been used for spreading alerts and activity
information messages by civil protection departments and the most well-known
humanitarian driving forces, e.g. [4].

One of the keys for the success of this socially-centric platform consists on its
ease of use. Basically, Twitter users interact by posting tweets, textual messages
up to 140 characters. Tweets can also carry pictures, URLs, or mentions to other
users. Remarkably, mentions trigger notifications to the mentioned users. There
are three types of possible relationships between Twitter users A and B: either A
follows B, meaning that the tweets posted by B appear on A’s Twitter timeline,
or B follows A (with the complementary meaning), or both A and B follow each
other. Of course, there is also the case of no relationship between A and B. Users
may also reply to, or even retweet, any tweet, in order to spread to their followers
what they think particularly worth of notice (leading to a capillary diffusion of
tweets).

In the last recent years, researchers have focused their attention on several
aspects of Twitter, from modeling the number and nature of follow relationships
(see, e.g., [5]), to applying to tweets sentiment analysis and natural language
processing techniques, in order to, e.g., discover trending topics and their corre-
spondence to real events (see, e.g., [6]), to relying on machine learning for mali-
cious accounts detection (e.g., [7]). In this paper, we focus on what probably
represents one of the core aspects of the platform, that makes it so popular and
widespread: the Twitter communication and interaction network. All those who
like to use Twitter for socializing, being informed, interact within the commu-
nity, must precisely know the dynamics of their tweets, say, e.g., which accounts
are directly reachable by their tweets, or what happens if a tweet is deleted.
A conscious usage of Twitter becomes even more crucial when it is used as a
communication media to support (critical) collaborative work.

Despite the apparent easiness and simplicity of Twitter interactions, the
achievement of a full user experience-awareness on Twitter should not be given
for granted. Indeed, the effects of (a sequence of) Twitter interactions could be
subtle. As simple examples, we invite the reader to consider the following three
sequences of actions:

1. post a tweet t - reply to t - delete t;
2. post a tweet t - retweet t - undo the retweet;
3. post a tweet t - retweet t - retweet the retweet - delete t.

Without introducing here a formal notation, we give the intuition for such
sequences. Sequences 1 and 2 involve two users, say @mickey and @goofy , while
sequence 3 involves also a third user, say @donald . In sequence 1, @mickey posts

Twitlang(er): Interactions Modeling Language (and Interpreter) for Twitter 329

Fig. 1. Effects of an example Twitter interaction on users’ accounts

a tweet t and @goofy replies to that tweet, then @mickey deletes t. In sequence 2,
@mickey posts a tweet t, @goofy retweets t, and successively @goofy cancels his
retweet. In sequence 3, @mickey posts a tweet t, @goofy retweets t, then @donald
retweets @goofy ’s retweet, and finally @mickey deletes the original tweet t. The
effects of the removal actions in these three interactions are quite different. In
the first case, t is removed from any timeline, while the reply still exists. In the
second case, the fact that @goofy cancels his retweet does not cause any effect
to t, that still exists. Finally, in sequence 3, deleting t leads to the disappearance
of the tweet and of all its retweets as well. Figure 1 gives a pictorial represen-
tation of sequence 3, from the point of view of the messages received by the
three accounts under examination. For the sake of modeling, each tweet/retweet
is labeled by a unique identifier idj .

The previous interactions are just some of many example interactions users
can engage on Twitter. Even these simple examples have effects that could be
not fully intuitive for the community. In the following of the paper, we will show
examples of interactions leading to more subtle and counterintuitive effects. This
motivates the need for designing a rigorous model to trace, and hence analyse,
Twitter interaction patterns.

In this paper, we propose a formalization of Twitter interactions, through
Twitlang, a specification language describing a network of Twitter accounts and
their behavior. The language has been inspired by process calculi (à la CCS [8])
and its semantics is defined in the SOS style [9] in terms of labeled transition
systems. To the best of our knowledge, this is the first attempt to formally model
the basic interactions resulting from users communicating on Twitter. The Twit-
lang formal semantics clearly determines the effects of the actions of a Twitter
account, with respect to all the other accounts (including subtle and counterin-
tuitive effects). This is determined “a priori”, without the need of experimenting
interactions and their effects case by case.

330 R. De Nicola et al.

Table 1. Twitlang: syntax

Besides being interesting per se, the Twitlang formal semantics has been
implemented in the form of a Maude interpreter, called Twitlanger. It takes a
language term, i.e. a specification of a network of Twitter accounts, as an input
and performs an automatic or interactive exploration of the computations arising
from the term. This also paves the way to automatic verification of communica-
tion properties of Twitter accounts (by using, e.g., the model checking facilities
offered by the Maude toolset).

Road Map. The remainder of this paper is organized as follows. The next
section presents the syntax and the semantics of Twitlang, focusing on specify-
ing a simple Twitter interaction pattern. Then, we describe in Sect. 3 a sequence
of Twitter interactions among three parties, which is peculiar for its counterin-
tuitive visible outcome. We show that the semantics of the language is capable
to precisely capture that subtle outcome, without the need for setting up empir-
ical experiments. Section 4 describes the basic Maude modules of the Twitlanger
interpreter. Section 5 is devoted to the related work in the area of Twitter mod-
elling and analysis techniques. Finally, in Sect. 6 we discuss future work and
conclude the paper.

2 Twitlang: A Formal Language for Modeling
Twitter Interactions

In this section, we introduce Twitlang, a formalism for modelling interactions
among Twitter accounts. Specifically, we present both syntax and operational
semantics of the language.

Twitlang(er): Interactions Modeling Language (and Interpreter) for Twitter 331

2.1 Syntax

The syntax of Twitlang is reported in Table 1.
A network N is a composition, by means of parallel operator ‖, of accounts

of the form u : T : N : F : B, where:

– u is a username that uniquely identifies the account;
– T is the timeline, i.e. the list of messages received from the account’s followings

or sent by the account;
– N is the list of notifications of the account, containing the messages where

the account’s username is mentioned and the replies to account’s messages;
– F is the list of followings of the account;
– B is a model of the account’s behaviour, expressed as a process performing

Twitter actions.

A message is a data tuple of the form 〈idcur, idret, idrep, text , ua, ul, us〉,
where:

– idcur is the identifier of the (current) message;
– idret is the identifier of the original tweet the current message is a retweet of;
– idrep is the identifier of the message the current message is a reply to;
– text is the textual content of the message;
– ua is the username of the author of the (retweeted or replied) original message;
– ul is the username of the sender of the last retweet in a retweet chain;
– us is the username of the sender of the current message.

We will use the null symbol to leave unspecified a field of a message, as, for
example, in the case of a new tweet, where the fields idret, idret, ua and ul are
irrelevant. Moreover, we will exploit a projection function m ↓i that returns the
i-th field of the message m. It is worth noticing that the identifiers used in a
message act as links to other messages. Thus, given a message 〈id1, id2, id3, t, u1,
u2, u3〉, the identifier id1 is a link to access all messages produced as replies to
this message (i.e., the set of messages {m | m ↓3= id1}), while the identifier id3
can be used to access the previous message in the conversation (i.e., the message
m such that m ↓1= id3). Other messages can be iteratively retrieved from the
already accessed ones. The navigation among messages via links can be done
in Twitter by means of the functionalities expand and view conversation. As an
example, let us consider the case of a reply to a reply of a tweet; the message m
corresponding to the reply of the tweet permits accessing both the tweet message
(by means of the id in the third field of m) and the second reply message (by
means of the id in the first field of m).

Account behaviours are modelled by means of terms of a simple process alge-
bra (actually, this is a simple variant of the well-known process algebra CCS [8],
with specialised actions). Each process is built up from the inert process nil via
action prefixing (a.B), nondeterministic choice (B1 + B2), parallel composition
(B1 | B2), and process invocation (K). We assume that K ranges over a set
of process constants that are used in (recursive) process definitions. We assume
that each constant K has a single definition of the form K � B.

332 R. De Nicola et al.

Processes can perform eight different kinds of actions. We use the follow-
ing pairwise disjoint sets of variables: the set of tweet variables (ranged over
by x), the set of retweet variables (ranged over by y), and the set of message
variables (ranged over by z). We define three action prefixes tweet(text , x).B,
retweet(z, y).B and reply(z, text , U, x).B used to send messages to other
accounts; they bind variables x and y in B. The receivers of such messages are
determined according to follower-following relationships and presence of men-
tions in the content of messages, as formally described by the language seman-
tics (described below). In particular, action tweet(text , x) produces a new tweet
with content text , whose fresh message identifier is bound to the tweet vari-
able x. Action retweet(z, y) permits retweeting a message identified by z; the
fresh identifier of the retweet message is bound to the retweet variable y. Action
reply(z, text , U, x) produces a message in response to the message identified by
z; the produced message has content text , inherits all mentions from the replied
message but for those specified in the set U of usernames1, and its identifier is
bound to variable x. Tweet and reply messages can be removed by means of
action delete(x), while retweet messages by means of action undo(y). Actions
retweet(z, y) and reply(z, text , U, x) act on a message that, at runtime, will
replace the message variable z. This message is retrieved from the Twitter net-
work by means of the (blocking) action search(P, z)@t.B, which indeed binds
variable z in B. The action relies on a predicate P for selecting a message among
those stored in a given account u (target t = u) or among all messages in the
network (target t = all). Predicates are boolean-valued expression obtained by
logically combining the evaluation of (comparison) relations between message
fields and values. An account can add or remove a username u to/from its fol-
lowing list F by means of actions follow(u) and unfollow(u), respectively.

We conclude the presentation of the syntax by showing how the examples
shown in Fig. 1 is rendered in our formalism.

Example 1 (Tweet-retweet-retweet-delete). Let us consider a network of three
accounts with usernames um (@mickey), ug (@goofy) and ud (@donald), with
empty timelines and notifications lists and such that ug follows um and ud fol-
lows ug:

um : ε : ε : ε :Bm ‖ ug : ε : ε : um :Bg ‖ ud : ε : ε : ug :Bd

Account um posts a tweet, waits for a local message indicating that ud has
retweeted it, and then deletes it. Account ug (resp. ud) reads a local message
from um (resp. ug) and retweets it. This is rendered by the following behaviours:

Bm = tweet(Hello, x). search(↓7= ud, z)@um.delete(x).nil

Bg = search(↓7= um, z′)@ug. retweet(z′, y).nil

Bd = search(↓7= ug, z′′)@ud. retweet(z′′, y′).nil

1 For the sake of simplicity, the set U is statically defined. This is adequate for the
purpose of our study; a more dynamic definition of the set could be considered in
further developments.

Twitlang(er): Interactions Modeling Language (and Interpreter) for Twitter 333

Predicate ↓7= u is verified by a message m if its sender (i.e., m ↓7) is the
username u.

2.2 A Glimpse of the Semantics

We present here an excerpt of the operational semantics of Twitlang. We refer
to the companion technical report [10] for a more complete account.

The operational semantics is given in terms of a labeled transition relation,
whose definition relies on an auxiliary relation on behaviors B

α� B′ meaning
that “B can perform a transition labeled α and become B′ in doing so”. Intu-
itively, all actions give rise to a transition labeled by the corresponding label α.
For example, the rules for actions tweet, retweet or reply are as follows:

tweet(text , x).B
tweet(text, id)� B[id/x]

retweet(m, y).B
retweet(m, id)� B[id/y]

reply(m, text , U, x).B
reply(m,(m↓7·m↓5·mentions(m↓4))\U·text,id)� B[id/x]

When one of the above actions is executed, a fresh message id is generated
and used to replace the corresponding variable x or y via a substitution, i.e. a
function [v/k] mapping variable k to value v. As clarified later, the freshness of
message identifiers is ensured by operational rules at network level. The message
text within the label produced by a reply action consists of a mention to the
sender of message m, a mention to the author of the original tweet, all mentions
included in the text of m (retrieved by means of the mention retrieval function
mentions(text)) except those in U and, of course, the text of the reply (which
may include new mentions).

The rules below state that the execution of an action permits to take a
decision between alternative behaviors (left rule), while execution of parallel
actions is interleaved (right rule):

B1
α� B′

1

B1 + B2
α� B′

1

B1
α� B′

1

B1 | B2
α� B′

1 | B2

Now, the labeled transition relation on networks is given by the rules (an
excerpt of which are) in Table 2. We write N λ� N ′ to mean that “N can
perform a transition labeled λ and become N ′ in doing so”. Transition labels
are generated by the following production rule:

λ : := m | delete(id) | undo(id) | u : found(m) | u : added(u′) | u : removed(u′)

meaning that a message m has been transmitted, the tweet/reply identified by
id and its related messages have been deleted, the retweet identified by id has
been deleted, a message m is retrieved by u, the account u′ has been added to

334 R. De Nicola et al.

Table 2. Twitlang: operational semantics (excerpt of rules at network level)

the following list of u, the account u′ has been removed from the following list
of u, respectively.

The first rule shown in Table 2 transforms a tweet label into a network label
m representing the message generated by the action. The message is inserted in
the timeline of the account. Notably, premise id /∈ ids(T,N,B) checks that the
message id is fresh in the considered account (in fact, function ids(·) returns all
identifiers used in the terms passed as arguments).

The second rule is similar; the extra premise m ↓7 �= u permits blocking a
retweet of a message generated by the same account u (indeed, this is not allowed
in Twitter). Notice that this time the second field of the produced message
records the identifier of the original tweet. If m is a retweet, this information is
retrieved from the second field of m, while in case of tweet or reply it is retrieved
from the first field. This is achieved by resorting to a particular projection func-
tion m ↓i/j , which stands for m ↓i if m ↓i �= , otherwise m ↓j . Similarly, the fifth
field is determined by means of function author(m) that returns m ↓5 if m ↓2 �=
(i.e., m is a retweet), otherwise (i.e., m is a tweet or a reply) it returns m ↓7.
Moreover, the text of the retweet is the same of that of the retweeted message
(indeed, in Twitter the retweet action does not allow to modify the text of the
retweeted message).

The third rule of Table 2 is similar; the rule properly records identifier and
author of the replied message m in the third and fifth field of the generated
message, respectively.

The forth rule takes care of delivering a new message to all the accounts of
the network that have to receive it. In particular, this rule should be repeat-

Twitlang(er): Interactions Modeling Language (and Interpreter) for Twitter 335

edly applied in order to consider one by one all the accounts. For each account
is checked if the identifier of the message is fresh. In this way, at the end of
the inference of the transition, the global freshness of the identifier is ensured.
Notably, this does not require to use a restriction operator à la π-calculus [11],
because the scope of the identifiers is always global, i.e. each user potentially
can access every tweet in the network (in Twitter, for example, it is possible to
access the messages sent and received by any user by visiting his/her Twitter
page). The possible insertion of the message in the timeline and notification list
of the considered account u is regulated by the following insertion operators:

– tweet insertion T ⊕F m: a message m is inserted in the timeline T of an account
only if the sender of m is in the following list F of this account;

– notification insertion N ⊕u m: a message m is inserted in the notification list
N of an account with username u only if u is mentioned in the text of m, or
m is a retweet whose original tweet message has been sent by u, or m is a
reply to a message sent by u.

Example 2 (Tweet-retweet-retweet-delete). Let N be the network defined in the
Example 1. The behaviour Bm of the account um can evolve as follows:

Bm
tweet(Hello,id1)� B′

m

Now,byapplying thefirst rule inTable 2, themessagem1 = 〈id1, , ,Hello, , , um〉
is produced. Then, by applying the last rule in Table 2, m1 is delivered to ug (since
ug is a follower of um). Thus, the resulting transition is:

N 〈id1, , ,Hello, , ,um〉� N ′ = um : m1 : ε : ε :B′
m ‖ ug : m1 : ε : um :Bg ‖ ud : ε : ε : ug :Bd

Similarly, ug and ud perform their actions as follows:

N ′ ug :found(m1)� m2� ud:found(m2)� m3� N ′′ =
um : m1 : (m2, m3) : ε :B′

m ‖ ug : (m1, m2) : m3 : um :nil ‖ ud : (m2, m3) : ε : ug :nil

where m2 and m3 are 〈id2, id1, ,Hello, um, um, ug〉 and 〈id3, id1, ,Hello,
um, ug, ud〉, respectively. Finally, um performs the search and delete actions:

N ′′ um:found(m3)� delete(id)� N ′′′=um : ε : ε : ε :nil ‖ ug : ε : ε : um :nil ‖ ud : ε : ε : ug :nil

As in Fig. 1, the action produces a domino-effect that removes all messages from
the timelines and notification lists.

3 An Example Interaction with Counterintuitive Effects

Twitter provides users with a basic set of simple features to communicate each
other over the platform. Despite the apparent simplicity of such features, the
combination of some communication actions can lead to counterintuitive effects.

We consider three Twitter accounts, say @mickey , @donald , and @goofy .
We suppose they belong to three distinct researchers, Mickey Mouse, Donald

336 R. De Nicola et al.

Duck, and Goofy, respectively. Mickey and Donald are colleagues and follow
each others on Twitter, while Goofy is neither a follower nor a following of both.
This scenario is rendered in our formalism as the following network (for the sake
of presentation, we consider empty the timelines and notifications lists of the
accounts at the beginning of the interaction):

um : ε : ε : ud : Bm ‖ ud : ε : ε : um : Bd ‖ ug : ε : ε : ε : Bg

Mickey is attending a conference and listens with interest to Goofy’s talk on
his recent results on using formal methods for the specification of the Twitter
interaction patterns. Since Mickey and Donald are performing research on very
related topics, Mickey sends an enthusiastic tweet mentioning both Donald and
Goofy, with the following text: “@donald great work by @goofy on #formalmeth-
ods and Twitter! Let’s start a collaboration!”. Thus, the behavior of the Mickey’s
account is:

Bm = tweet(“ud great work by ug on#formalmethods and Twitter ! . . . ”, x). B′
m

Such a tweet, called hereafter the original tweet and denoted by m1, appears
(1) on Donald’s user timeline, since Donald follows Mickey, and on Donald’s
notifications list, since Donald has been mentioned; (2) on Goofy’s notifications
list, since Goofy has been mentioned, but Goofy does not follow Mickey; and (3)
on Mickey’s user timeline:

um : m1 : ε : ud : B ′
m ‖ ud : m1 : m1 : um : Bd ‖ ug : ε : m1 : ε : Bg

It happens that Donald has listened some rumors on Goofy’s professional repu-
tation. Quite recklessly, he replies to the original tweet, although removing the
mention to him: in that reply, called hereafter the replying tweet and denoted by
m2, Donald writes the following “@mickey don’t go for it, waste of time”. Note
that mention to @mickey is automatically inserted in the replying tweet, being
it a reply to the original tweet sent by Mickey. By default, the reply contains all
the mentions included in the original tweet, thus, in this case, it automatically
contains @goofy . However, Donald manually removes “@goofy” from the reply,
before sending it. Thus, the behavior of the Donald’s account is:

Bd = search(↓7= um ∧ #formalmethods ∈ hashtags(↓4), z)@ud.
reply(z, “um don ′t go for it , waste of time ′′, {ug}, x′). B′

d

Notably, the reply is triggered by the presence in the @donald account of a message
whose sender is @mickey and whose text contains the hashtag #formalmethods
(in fact, function hashtags(·) returns all hashtags in the text passed as argument).

Donald’s reply (1) appears on Mickey’s user timeline, since Mickey follows
Donald, and on Mickey’s notifications list, since Mickey has been mentioned;
(2) appears on Donald’s user timeline; and (3) quite surprisingly, is added to a
conversation on Goofy’s notifications list, even if the mention to Goofy has been
removed. In particular, the reply is tied to the original tweet, and it is visible on
Goofy’s notifications list upon clicking on the “expand” button. Figure 2 shows

Twitlang(er): Interactions Modeling Language (and Interpreter) for Twitter 337

Fig. 2. Donald’s reply is visible on Goofy’s notification list

the screenshot of Goofy’s notifications list, upon clicking on the “expand” button.
Formally, we have:

um : (m1 ,m2) : m2 : ud : B ′
m ‖ ud : (m1 ,m2) : m1 : um : B ′

d ‖ ug : ε : m1 : ε : Bg

where m1 at ug now allows Goofy accessing the message m2. In fact, as explained
in the section devoted to the presentation of our formalism, the identifiers in a
message can be thought of as links to retrieve other messages. In our example,
the identifier of m1 (i.e., its first field) can be used to retrieve m2, because m2 ↓3
is set to the m1’s identifier (since m2 is a reply to m1).

Finally, having seen the message of Donald, Mickey decides to remove his
tweet, which is expressed in our formalism as an action delete(x). This removes
all occurrences of m1, leaving untouched those of m2:

um : m2 : m2 : ud : B ′′
m ‖ ud : m2 : ε : um : B ′

d ‖ ug : ε : ε : ε : Bg

Notice, even if the reply message is still around, Goofy now has no direct link
to it.

4 Twitlanger: Executable Twitlang in Maude

Maude is “a programming language that models (distributed) systems and the
actions within those systems” [12]. The systems are specified by defining alge-
braic data types axiomatising systems’ states, and rewrite rules axiomatising
systems’ local transitions.

In this section, we present Twitlanger, the interpreter for Twitlang writ-
ten in Maude. Four basic Maude modules represent the core of Twitlanger:
TWITLANG-SYNTAX, TWITLANG-CONTEXT, TWITLANG-SUPPORT
and TWITLANG-SEMANTICS.

The functional module TWITLANG-SYNTAX provides declarations of sorts,
e.g., networks, messages, actions and behaviours, and operators on those sorts

338 R. De Nicola et al.

that are defined in the language syntax. It also defines subsort relationships
which are mainly used to capture the hierarchy between sets and respective ele-
ments. The module also provides reserved ground terms representing the names
of actions (tweet, delete, search, etc.) and network-level labels (found, added,
etc.). Given the similarities between behaviours in Twitlang and processes in
CCS [8], we used Verdejo and Mart́ı-Oliet state-of-the-art implementation of
CCS in Maude [13] as a foundation for operators definition.

The functional module TWITLANG-CONTEXT defines the top-level behav-
iours’ context that supports behaviour definition in terms of bindings to identi-
fiers.

Module TWITLANG-SUPPORT defines equations that realise support oper-
ators used in rewrite rules for behaviour unfolding and network transitions.

Such rewrite rules are finally defined in TWITLANG-SEMANTICS, along-
side additional operators and equations introduced to allow for a more compact
and readable definition of the transition rules. The latter represent the opera-
tional semantics rules for behaviours and networks, an excerpt of which is given
in Sect. 2.2 (while the complete set of rules is defined in the companion technical
report [10]).

Maude uses appropriate strategies for rules application. A Maude default
strategy is implemented by the rewrite command, that explores one possible
sequence of rewrites, starting by a set of rules and an initial state [12]. To prevent
undesirable looping caused by recursive rewrites inside operators arguments, we
have adopted an approach similar to the one described in [13]. Thus, in our
implementation, the rewrite command can only be used to produce a one-step
successor of a given state.

However, Maude provides another convenient command, search, which gives
a priori all the possible sequences of rewrites between an initial and a final
state supplied by the user. By providing a transitive closure to the network
transitions, it is thus possible to use this command to evaluate arbitrarily long
traces. Practically, since for certain recursively defined systems the search could
not terminate, the command is decorated with an optional bound on the number
of desired solutions and on the maximum depth of the search.

The example in Sect. 3 can be specified in the machine-readable syntax of
Twitlang taken as input by Twitlanger. Then, the interpreter can be used to
evaluate the evolution of the network, verifying that the exploration yields the
expected outcome. Indeed, by issuing the following command2:

search example =>* T:Twitter.

we obtain a full unfolding of a rewrite trace
{M1}{Donald :Nfound(M1)}{M2}{Mickey :Nfound(M2)}{Mickey :Ndelete(1)}

up to the final state:
Donald : M2 : empty : Mickey : Bd’ || Goofy : empty : empty : none : Bg
|| Mickey : M2 : M2 : Donald : Bm’’

2 Both the command and its output use a shorthand notation - i.e. the terms example,
M1 and M2 - that is equationally equivalent to a complex composition of terms.

Twitlang(er): Interactions Modeling Language (and Interpreter) for Twitter 339

Further analyses of the interactions can be performed by invoking search
with the such that clause, effectively introducing a condition that the solutions
have to fulfil. For instance, we may use the auxiliary operator expand, which
evaluates accessible messages through direct linking (without resorting to the
search action) from a specific user’s perspective:

search example =>* T:Twitter such that (M2 in expand(Goofy,1,T:Twitter)).

The command basically says “find all states of the system in which user Goofy can
access message m2 via a one-hop link”. The output produced by the interpreter
in this case is comprised of two solutions, the first one describing the trace and
the state:

{M1}{Donald :Nfound(M1)}{M2}

Donald : (M1 ; M2) : M1 : Mickey : Bd’ || Goofy : empty : M1 : none : Bg
|| Mickey : (M2 ; M1) : M2 : Donald : ((search(predP7(Donald),z’)@ Mickey).

delete(x) . Bm’’)[1 / x])

which represents the system configuration after Donald replies to Mickey, mean-
ing that indeed Goofy is able to easily access m2 as soon as the message is
published, even though it carries no mention of him. On the other hand, given
that the only other solution found by the interpreter that satisfies the clause is
the subsequent state in which Mickey has performed the search action, these
results confirm that after deleting m1 Goofy looses his only direct link to m2

and, thus, he cannot access it without resorting to explicit search.
A more comprehensive overview of Twitlanger alongside the access to the

complete Maude implementation of the Twitlanger modules and examples dis-
cussed in this paper, together with appropriate equations for all the declared
operators, are available at http://sysma.imtlucca.it/tools/twitlanger/.

5 Related Work

To the best of our knowledge, there is no previous attempt to rigorously formalise
Twitter interaction patterns. Instead, a series of blogs offer the general public
some useful, yet informal, tips on tweets, retweets, and replies, see, e.g., [14].

Proposing a syntax and associated semantics describing the cause-effect rela-
tionships among communicating Twitter accounts should not be considered as a
standalone work. Indeed, our formalisation aims at putting the rigorous basis for
a uniform approach to Twitter accounts’ properties specification and analysis.
The first, yet significant, step in this direction is given by the implementation of
the Twitlanger tool.

Interestingly, in the scientific literature there are several works on modelling
and analysis of tweets’ contents and their associated metadata. As an example,
both works in [15,16] exploit sentiment analysis techniques over real tweet-sets,
to detect “public sentiment” and associate its fluctuations with a timeline of
notable events that took place in the period tweets were collected. The authors
of [17] use text-mining techniques to understand tweets via several schemes to
train standard tools and compare their quality and effectiveness. In our work,

http://sysma.imtlucca.it/tools/twitlanger/

340 R. De Nicola et al.

instead, we mainly focus on analysing the interactions among users rather than
on the content of their tweets.

Aiming at making tweets useful for recommendations, authors of [18] propose
a method for enriching the semantics of tweets, by identifying and detailing, e.g.,
topics, persons, events mentioned in tweets. The usefulness of the platform for
real-time crisis management has been tested by various works, as e.g. [19,20].
Authors of [21] study the Twitter hashtags ability to represent real-world entities,
by comparing hashtags characteristics with Semantic Web “strong identifiers”
features. By analysing a dataset of Twitter conversations, the work in [22] mea-
sures the “economy of attention” in the Twitter world. Authors of [5] provide a
characterisation of the topological features of the Twitter follow graph, mainly
aiming at answering questions related to the inner nature of the platform, e.g.
“Is Twitter a social network or an information network?”. Again, the above
bunch of works concerns information and social aspects of Twitter, while we are
interested in the effects of user interactions in terms of message spreading.

Remarkably, Twitter versatility and widespread usage have made it the ideal
arena for proliferation of anomalous accounts, that behave in unconventional
ways. Literature has focused its attention on spammers, that is those accounts
actively putting their efforts in spreading malware, sending spam, and advertis-
ing activities of doubtful legality (see, e.g., [7,23]), as well as on fake followers,
corresponding to Twitter accounts specifically exploited to increase the number
of followers of a target account, e.g., see [24]. Our long-term research goal is to
define an approach for distinguishing genuine accounts from anomalous one by
making use of the analysis techniques enabled by the formal semantics and, in
particular, by their Maude implementation.

To sum up, the above literature overview clearly highlights the research effort
towards the characterisation of social dynamics inferred from Twitter studies
and having an impact on real life (and vice versa). Our modeling approach,
instead, focuses on a novel study of Twitter interactions’ effects from the point
of view of Twitter users, with a special care on understanding the communication
mechanisms underlying message spreading. Besides this achievement, we think
that our work can be extended in several directions in order to enable some of
the analyses mentioned above, although by means of different formal techniques.
In fact, our formalism could serve as a uniform, common formal ground for
modelling and analysing Twitter accounts’ behaviour. For example, quantitative
information could be added to model the frequency of actions (by resorting, e.g.,
to a stochastic approach).

We conclude the section by comparing Twitlang with some of the closely
related works from the process calculi literature, which are not specifically devised
for Twitter but have nevertheless inspired some features of our formalism. The
network layer of Twitlang and, in particular, the tuple-based format of messages,
take inspiration from Klaim [25]. However, the communication between Klaim
network nodes takes place via Linda-like primitives and is only dyadic, while a
Twitlang account can atomically send messages via Twitter-like primitives to
multiple accounts. A similar form of multicast communication is provided by

Twitlang(er): Interactions Modeling Language (and Interpreter) for Twitter 341

SCEL [26], which anyway is established on a generic attribute-based approach
specifically devised for dealing with dynamic formation of autonomic component
ensembles. The attribute-based communication of SCEL could be exploited to
model the delivery of tweets to their target accounts, but it is not suitable for
atomically removing messages from multiple accounts as required by actions
delete and undo. Moreover, with respect to SCEL, and other formalisms based
on π-calculus [11], Twitlang is not equipped with the restriction operator, which
is indeed not necessary for the scope of our study. Finally, Twitlang behaviours
are defined by composing Twitter actions by means of some operators borrowed
from CCS, i.e. action prefixing, nondeterministic choice, parallel composition
and invocation of process definitions.

6 Concluding Remarks

We have presented Twitlang, a formal language to specify communication inter-
actions on Twitter, from the point of view of the involved accounts. To the
best of our knowledge, this is the first attempt to rigorously model communica-
tions on Twitter. By equipping the language with an operational semantics, it is
possible to know in advance which are the effects of the basic actions that mil-
lions of Twitter users daily perform, without the need of setting up experiments
(which, of course, we have extensively carried out to properly define our formal
semantics). On top of the formal semantics, we have implemented Twitlanger,
an interpreter of the language written in Maude.

It is worth noting that the language is currently able to capture the core
aspects of Twitter communications, i.e., standard behavioural patterns, like,
e.g., posting a tweet, replying to, or retweeting a particular tweet. However, it
could be easily extended by giving both the syntax and the semantic rules for
more specific features, as direct messages and blocking of an account. Concerning
peculiar behaviours, an example, which perhaps not everyone is aware of, is the
following: putting a mention at the very beginning of a tweet implies that the
tweet is sent only to the intersection of the author’s followers with the mentioned
account’s followers. This and other peculiarities, if considered relevant for specific
analyses, could be dealt with in our approach.

We envision two classes of potential users for Twitlang: (i) researchers work-
ing on formal methods, which can use the operational semantics, and possibly
its Maude implementation, for developing analysis techniques for Twitter inter-
actions; and (ii) developers of collaborative work platforms, which intend to use
Twitter as a communication media and want to ensure that their applications
enjoy desired properties (e.g., all people who have to attend a postponed meeting
must receive a notification message).

To meet the needs of this latter class of users, as future work we aim at
realising a user-friendly, on-line service based on Twitlanger, through which these
users not acquainted with formal methods can test what happens to their tweets,
by means of simple questions and easy-to-understand answers. Moreover, to
enable the verification of Twitter interactions properties in our approach, we

342 R. De Nicola et al.

intend to incorporate in Twitlanger the Maude facilities supporting automatic
analysis (e.g., model checking).

References

1. Smith, C.: By The Numbers: 150+ Amazing Twitter Statistics. In: (March 2015).
http://goo.gl/2Xr9X. Last checked 21 March 2015

2. The Guardian: Barack Obama tweets the start to his 2012 re-election campaign.
In: (Apr 2011). http://goo.gl/Uk6Av. Last checked 21 March 2015

3. Brandwatch.com: Analysis of global brands’ Twitter activity. In: (Dec 2012).
http://goo.gl/C6MeU. Last checked 21 March 2015

4. Save the Children: Hurricane Tips for Parents: How to Help Kids. In: (Jun 2014).
http://goo.gl/vZynkt. Last checked 21 March 2015

5. Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social net-
work?: the structure of the twitter follow graph. In: WWW, pp. 493–498. ACM
(2014)

6. Ritter, A., Cherry, C., Dolan, B.: Unsupervised modeling of twitter conversations.
In: HLT-NAACL, pp. 172–180 (2010)

7. Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In:
ACSAC, pp. 1–9. ACM (2010)

8. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

9. Plotkin, G.: A structural approach to operational semantics. J. Log. Algebr. Pro-
gram. 60–61, 17–139 (2004)

10. De Nicola, R., Maggi, A., Petrocchi, M., Spognardi, A., Tiezzi, F.: Twitlang(er):
interactions modeling language (and interpreter) for Twitter. Technical report,
IMT (2015). http://sysma.imtlucca.it/tools/twitlanger/

11. Milner, R., Parrow, J., Walker, D.: A Calculus of mobile processes. Inf. Comp.
100(1), 1–77 (1992)

12. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.,
Talcott, C.: All About Maude - A High-performance Logical Framework. Springer,
Heidelberg (2007)

13. Verdejo, A., Mart́ı-Oliet, N.: Implementing CCS in Maude 2. In: WRLA, vol. 71
of ENTCS, pp. 239–257. Elsevier (2002)

14. Larson, D.: 9 Strange Things About Tweets, Retweets And DMs Every Twitter
User Must Know. In: (Nov 2011). http://goo.gl/XyvAO. Last checked 21 March
2015

15. Bollen, J., Mao, H., Pepe, A.: Modeling public mood and emotion: twitter senti-
ment and socio-economic phenomena. In: ICWSM (2011)

16. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion
mining. In: LREC, ELRA (2010)

17. Hong, L., Davison, B.D.: Empirical study of topic modeling in twitter. In: SOMA,
pp 80–88. ACM (2010)

18. Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing user modeling on twitter for
personalized news recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L.,
Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg
(2011)

19. Abel, F., Hauff, C., Houben, G.J., Stronkman, R., Tao, K.: Twitcident: fighting
fire with information from social web streams. In: WWW, pp. 305–308 (2012)

http://goo.gl/2Xr9X
http://goo.gl/Uk6Av
http://goo.gl/C6MeU
http://goo.gl/vZynkt
http://sysma.imtlucca.it/tools/twitlanger/
http://goo.gl/XyvAO

Twitlang(er): Interactions Modeling Language (and Interpreter) for Twitter 343

20. Mendoza, M., Poblete, B., Castillo, C.: Twitter under crisis: can we trust what we
RT? In: SOMA, pp. 71–79. ACM (2010)

21. Laniado, D., Mika, P.: Making sense of twitter. In: Patel-Schneider, P.F., Pan, Y.,
Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC
2010, Part I. LNCS, vol. 6496, pp. 470–485. Springer, Heidelberg (2010)

22. Gonalves, B., Perra, N., Vespignani, A.: Modeling users’ activity on twitter net-
works: validation of Dunbar’s number. PLoS ONE 6(8), e22656 (2011)

23. Yang, C., Harkreader, R., Gu, G.: Empirical evaluation and new design for fighting
evolving twitter spammers. IEEE Inf. Forensics Secur. 8(8), 1280–1293 (2013)

24. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: A criticism to
society (as seen by Twitter analytics). In: DASec. IEEE (2014)

25. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: a Kernel language for agents
interaction and mobility. T. Software Eng. 24(5), 315–330 (1998)

26. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. TAAS 9(2), 7:1–7:29 (2014)

From Featured Transition Systems to Modal
Transition Systems with Variability Constraints

Maurice H. ter Beek1(B), Ferruccio Damiani2, Stefania Gnesi1,
Franco Mazzanti1, and Luca Paolini2

1 ISTI–CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
{terbeek,gnesi,mazzanti}@isti.cnr.it

2 Università di Torino, C.so Svizzera 185, 10149 Torino, Italy
{damiani,paolini}@di.unito.it

Abstract. We present an automatic technique to transform a subclass
of featured transition systems into modal transition systems with addi-
tional sets of variability constraints in the specific format accepted by
the variability model checker VMC. Both formal models are widely used
in the field of software product line engineering and both come with a
dedicated model checker. The transformation serves two purposes. First,
it contributes to a better understanding of the fundamental differences
between the two approaches, basically concerning the way in which vari-
ability constraints are represented (in terms of features and actions,
respectively). Second, it paves the way to compare the modelling and
analysis of product line behaviour in two different settings.

1 Introduction

Modern software systems come in many variants in order to satisfy multiple vary-
ing user requirements [24]. Such variant-rich, configurable systems are developed
and managed by techniques from the field known as software product line engi-
neering (SPLE) [23]. Feature-oriented software development (FOSD) [1] is cur-
rently one of the most widely used approaches for modelling variability. A feature
characterises a stakeholder visible piece of functionality or aspect of a system
and a feature diagram models all possible products of a configurable system (e.g.
a software product line) in a compact way in terms of their features [25].

Basically, a feature diagram is a hierarchical tree structure of features that
defines their presence in products (thus defining the valid product configura-
tions): optional features may be present provided their parent is, mandatory
features must be present provided their parent is, exactly one of the features
involved in an alternative relation must be present provided their parent is, and

We received support by project HyVar (which has received funding from the
European Union’s Horizon 2020 research and innovation programme under
grant agreement No 644298), EU FP7-ICT FET-Proactive project QUANTICOL
(600708), Italian MIUR project CINA (PRIN 2010LHT4KM), Ateneo/CSP SALT
project, ICT COST Action IC1402 ARVI, and ICT COST Action IC1201 BETTY.

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 344–359, 2015.
DOI: 10.1007/978-3-319-22969-0 24

From Featured Transition Systems to Modal Transition Systems 345

at least one of the features involved in an or relation must be present provided
their parent is. Additional cross-tree constraints may be used to indicate that
the presence of one feature requires that of another or excludes the presence of
another feature (i.e. they are mutually exclusive).

Featured transition systems (FTS) were introduced in [14] as a semantic
model for the concise description of the behaviour of variability-intensive sys-
tems. An FTS is a doubly-labelled transition system (L2TS) with an additional
feature diagram. Each state is labelled with an atomic proposition while each
transition is labelled with an action and, using the improved definition from [13],
an associated feature expression (a Boolean formula defined over the set of fea-
tures) that needs to hold for this specific transition to be part of the executable
product behaviour. Hence an FTS models a family of labelled transition systems
(LTS), one per product, which can be obtained by projection.

Modal transition systems (MTS) were originally introduced in [21] to model
successive refinements (implementations) of partial specifications. They were
first proposed for the compact description of all possible operational behaviour
of the products of a product line in [18] and form the basis of numerous succes-
sive approaches in SPLE [2,3,17,20,22]. An MTS is an LTS that distinguishes
between admissible (may) and necessary (must) transitions. In this paper, we
use a specific variant that will be introduced in Sect. 3.

Variants of FTS and MTS are widely used in SPLE and they come with
dedicated model checkers. FTS model checkers like SNIP [12], now integrated
in the product line of model checkers ProVeLines [15], allow efficient family-
based SPL model checking capable of relating errors and undesired behaviour
to the exact set of products in which they occur. Such verification techniques
operate on an entire product line using variability knowledge about valid fea-
ture configurations to deduce results for products, as opposed to enumerative
product-based verification in which individually generated products (or at most
a subset) are examined [26]. The MTS-based variability model checker VMC
(fmt.isti.cnr.it/vmc) [9,10] combines elements of both analysis strategies.

There is an obvious trade-off between brute-force product-based analysis
with highly optimised model checkers for single product engineering, like SPIN
(spinroot.com), NuSMV (nusmv.fbk.eu) and mCRL2 (mcrl2.org), and dedicated
family-based analysis with SPL model checkers, like SNIP [12] and the NuSMV
extension of [11]. One of the goals of this paper is to set the stage for a full-fledged
comparison between SNIP and VMC.

In this paper, we present an automatic technique to transform FTS1 into
MTS (with additional sets of variability constraints and in the specific format
accepted by VMC). The transformation serves two purposes. First, it contributes
to a better understanding of the fundamental differences between the two models,
basically concerning the way in which variability constraints are represented (in
terms of features and actions, respectively). Second, it paves the way to compare
the modelling and analysis of product line behaviour in two different frameworks.

1 We consider a subclass of action-based FTS in which we ignore their state labels
(atomic propositions) and consider only their transition labels (actions).

http://fmt.isti.cnr.it/vmc
http://spinroot.com
http://nusmv.fbk.eu
http://mcrl2.org

346 M.H. ter Beek et al.

The paper starts with a running example in Sect. 2. In Sect. 3 we provide the
necessary background on MTS, after which we point out the differences with
respect to FTS in the way each deals with variability (constraints) in Sect. 4.
The main contribution of this paper, the transformation from FTS to MTS, is
defined in Sect. 5. Some model-checking features of VMC are presented in Sect. 6.
In Sect. 7, the transformation is performed on an FTS from the literature, after
which VMC is applied to the result. Conclusions and future work close the paper.

2 Running Example

We illustrate our transformation technique on a small running example (we will
present a larger example from the SPL literature in Sect. 7). We assume a product
line with three features (F, G, and H) and the feature diagram depicted in Fig. 1,
which defines the four valid product configurations depicted alongside.

Fig. 1. Feature diagram of running example

The allowed behaviour of the four products is modelled by the FTS in Fig. 2.
Formally, an FTS is a transition system with an associated feature diagram and
a labelling function that labels the transitions with an action and an additional
feature expression (i.e. a Boolean expression over the features). For instance, the

transition means that a only occurs in products having both features
F and G (i.e. in p1). We moreover require any action occurring more than once in
an FTS to be tagged with one and the same feature expression. Note that this
can easily be achieved by renaming or indexing possible multiple occurrences.
The specific behaviour of each of the products is modelled by the LTS in Fig. 2.

3 Modal Transition Systems with Variability Constraints

We assume some familiarity with the principles of labelled transition systems
(LTS), model checking and action-based computation tree logic (ACTL) [4,6,16].

Recall that an MTS is an LTS that distinguishes admissible (may) from nec-
essary (must) transitions. By definition, every necessary transition is also an
admissible transition, while admissible but not necessary transitions are called
optional . Graphically, solid edges model necessary transitions while dotted edges
model optional transitions. Here we focus on the elaboration of MTS into a mod-
elling and analysis framework for the specification and verification of behavioural
variability in SPLE in [2,3,5]. This concerns a different semantics for refinement

From Featured Transition Systems to Modal Transition Systems 347

Fig. 2. FTS of running example and LTS of product configurations p1, p2, p3, and p4

of MTS into LTS (implementations) and the addition of an associated set of
so-called variability constraints. Next we explain this in more detail and from
now on we always intend this specific type of MTS when we speak of MTS. Some
commonalities and differences with the FTS of [14] are discussed in [3].

Like FTS, also an MTS models a family of LTS (one per product) which can
be obtained by turning each optional transition into a necessary transition or
by removing it; this differs fundamentally from the classical definition of refine-
ment [21]. An MTS has to respect the notion of coherence (i.e. the set of labels
of the necessary transitions and that of the optional transitions must be disjoint)
and the refinement operation has to respect the notion of consistency (i.e. the
decision to turn one optional a-transition into a necessary one must be repeated
for all other optional a-transitions). Moreover, an MTS does not have an associ-
ated feature diagram. Instead, it has an associated set of variability constraints
(expressed over action labels rather than over features), which each product must
satisfy. Let a range over LTS actions. Given an LTS L the following six different
kind of variability constraints may be defined over L (where “occurrence of an
action a in L” is defined as “a being the label of a reachable transition in L”):

a1 ALT· · · ALT an : precisely one of the n ≥ 2 actions a1, ..., an must occur in L;
a1 OR· · · OR an : at least one of the n ≥ 2 actions a1, ..., an must occur in L;
a1 EXC a2 : at most one of the actions a1 and a2 may occur in L;
a1 REQ a2 : action a2 must occur in L whenever a1 occurs in L;
a1 IFF (a2 ALT· · · ALT an) : precisely one of the n ≥ 2 actions a2, ..., an must

occur in L if and only if a1 occurs in L;
a1 IFF (a2 OR· · · OR an) : at least one of the n ≥ 2 actions a2, ..., an must occur

in L if and only if a1 occurs in L.

These constraints express exactly the standard type of relations that may be
modelled by means of a feature diagram (expressed in terms of actions, though).

VMC [9,10] is a dedicated model checker for this type of MTS modelling prod-
uct line variability. It accepts the specification of an MTS in process-algebraic

348 M.H. ter Beek et al.

terms together with an optional set of variability constraints, upon which it
allows to perform two kinds of behavioural variability analyses (cf. Sect. 6):

1. The actual set of all valid product behaviour can explicitly be generated and
the resulting LTS can all be verified against one and the same logic property
(expressed in ACTL, cf. Sect. 6 for a definition).

2. A logic property (expressed in variability-aware ACTL, cf. Sect. 6 for a defin-
ition) can directly be verified against the MTS, relying on the fact that under
certain syntactic conditions validity over the MTS guarantees validity of the
same property for all its products (cf. Theorems 2 and 3 in Sect. 6).

4 From Feature Constraints to Action Constraints

We use a simple example to show the role that reachability plays when trans-
forming an FTS (with constraints in terms of features and action labels tagged
with feature expressions) into an MTS with variability constraints (expressed in
terms of actions). Consider the FTS in Fig. 3 (left) and imagine that the feature
diagram gives rise to the constraint A requires C. It is immediate that a product
that contains the features A and C but not B is valid. The FTS projection for
this product (obtained by first removing all transitions whose feature expression
is not satisfied by A∧C∧¬B and then all states and transitions that are no longer
reachable from the initial state) results in the LTS in Fig. 3 (right).

However, it is far from trivial to obtain this LTS in Fig. 3 (right) among
the valid products of an MTS with constraints on its actions, since this LTS
apparently violates the obvious translation of the (feature) constraint A REQ C
into the (action) constraint a REQ c, meaning that whenever action a occurs
(i.e. is reachable) then so does action c. The solution we propose is to introduce:

1. a new action for each feature (which allows to handle more complex feature
expressions);

2. a dummy transition for each action (which is used to verify the constraints).

The resulting MTS would be the one shown in Fig. 4 (left), where
actually is a shorthand notation for a separate (may) transition for each action
and each feature. This MTS actually has the LTS in Fig. 4 (right) among its valid
products (note that a REQ c is now satisfied).

It is important to underline that our transformation is such that we are able
to ignore all dummy transitions when model checking. It is the combination of the
presence of dummy transitions and the aforementioned notion of consistency (cf.
Sect. 3), that makes this solution work. In the example, consistency guarantees
that whenever a c-labelled may transition from the initial state is preserved in the
LTS, then also any other reachable c-labelled may transition must be preserved.

5 Model Transformation

We assume, without loss of generality, that any action occurring more than once
in an FTS is tagged with one and the same feature expression (cf. Sect. 2).

From Featured Transition Systems to Modal Transition Systems 349

Fig. 3. FTS (left) and a valid product LTS (right)

Fig. 4. MTS (left) and a valid product LTS (right)

Step 1: Definition of Valid Products in Terms of Features. The type of vari-
ability constraints accepted by VMC (cf. Sect. 3) and the fact that (in step 3)
we will add dummy transitions labelled with actions that represent features (as
anticipated in Sect. 4) allow to directly translate the feature diagram in a set
of variability constraints on features. For our running example we obtain the
following constraints: F OR G and F REQ H.

Step 2: Definition of Valid Products in Terms of Actions. We define a logic for-
mula of the form a ↔ φ for each transition

a/φ−→ in the FTS, i.e. we link each
action with its associated feature expression via a biconditional (iff). Moreover,
all feature expressions not directly translatable in one of the type of variability
constraints accepted by VMC (cf. Sect. 3) are transformed into conjunctive nor-
mal form (CNF). For our running example we obtain the following propositional
formulae:

a ↔ (F ∧ G) ≡ (~a ∨ F) ∧ (~a ∨ G) ∧ (a ∨ ~F ∨ ~G)
b ↔ (~F ∨ ~G) ≡ (b ∨ F) ∧ (b ∨ G) ∧ (~b ∨ ~F ∨ ~G)
c ↔ H

d ↔ F

e ↔ G

To be able to accept any formula in CNF, we have slightly extended the set of
variability constraints accepted by VMC. In VMC v6.1, the constraint concerning
OR, i.e. a1 OR · · · OR an, can contain either ai (as before) or its negation ~ai.

Step 3: Definition of Valid Products in MTS and Additional Variability Con-
straints. We define the FTS depicted in Fig. 2 in a process-algebraic setting,
which can be seen as the natural encoding of the graph (FTS) of Fig. 2, with the
process terms corresponding to the nodes of the graph and all actions ‘tagged’
with may rather than with a feature expression. Actions in the FTS without an
associated feature expression are not tagged with may, i.e. they are considered
‘must’ actions.

We moreover create a dummy action for each resulting ‘may’ action and for
each non-mandatory feature, whose executions all result in a deadlock. Finally,

350 M.H. ter Beek et al.

we create a new initial process from which the execution of a special action
behaviour leads to the FTS encoding, whereas a special action signature leads
to the execution of dummy actions.

In process algebra, the basic mechanism for constructing behavioural expres-
sions is action prefixing. The process a.P executes a and subsequently behaves
as process P. The process P+Q non-deterministically chooses to behave as either
process P or process Q. Finally, nil stands for both successful termination and
deadlock. We use net SYS to indicate the initial process of a process model. For
our running example, we obtain the process-algebraic definition of an MTS with
an additional set of variability constraints given in Fig. 5 (on the left-hand side).

Step 4: Definition of Live Action Sets and Transformation Into Must Transitions.
We present two optimisations for model-checking purposes: the explicit definition
of additional live action sets (explained in more detail in the next section) and
the transformation of may transitions into must transitions. For both, we explore
the behaviour process created in step 3.

1. For each subprocess T that can be reached from n other subprocesses by
performing one of the actions a1, . . . , an (possibly tagged with may) while
from T itself a ‘may’ action a(may) can be executed, the latter is substituted
by ‘must’ action a whenever

∧
1≤i≤n (ai → a) is a tautology with respect

to all other constraints. Furthermore, the corresponding dummy action is
eliminated together with the associated constraints.

2. For each subprocess T (corresponding to a node in the FTS) from which n > 1
‘may’ actions a1(may), . . . , an(may) (and no ‘must’ actions) can be executed,
a1∨· · ·∨an is added to the set of variability constraints (if not already present)
whenever it is a tautology with respect to all other constraints.

In our running example, no action can be transformed, while a OR b and d OR e
are added to the set of variability constraints according to 2.

These optimisations help the model checker to understand a model’s live
states and to take full advantage of the specificities of variability-aware ACTL
(i.e. the so-called ‘boxed’ operators). Both will become more clear in Sect. 6.

Soundness of Model Transformation. Given an FTS S and an MTS S′, let �S�
denote the set of valid product configurations for S, and let FTS(S) and MTS(S′)
denote the set of LTS products of S and S′, respectively.

Theorem 1 (Soundness of Model Transformation). Let S be an FTS and
S′ be the MTS obtained by the model transformation procedure described above.

1. There exist a bijection between �S� and MTS(S′) such that each p ∈ �S� is
associated to an LTS that contains a (dummy) transition with label F for each
feature F ∈ p and no transitions labelled with a feature not in p.

2. The set FTS(S) and the set of LTS obtained by omitting the dummy transi-
tions from the LTS in MTS(S′) are equal.

From Featured Transition Systems to Modal Transition Systems 351

Fig. 5. VMC input model for the running example of Sect. 2 (left) and VMC generated
MTS of vending machine product line of Sect. 7 (right)

Proof (Sketch). Each valid product configuration p ∈ �S� determines an LTS Sp,
called FTS projection.

1. Let p be a valid product configuration for S. Consider the LTS P obtained by
extending Sp with a transition for each action a in Sp (labelled by a) and for
each selected feature F ∈ p (labelled by F), whose executions result in a dead-
lock. Then, P ∈ MTS(S′) because the MTS variability constraints mimic
(by construction) the feature constraints of S and from the way in which
the MTS process generation is carried out. On the other hand, given an LTS

352 M.H. ter Beek et al.

P ′ ∈ MTS(S′) it is straightforward to recover a valid product configuration,
by dummy transitions labelled by features which occur in P ′.

2. Straightforward, reasoning as above. 	

Patently, removing the dummy transitions in the LTS in MTS(S′) may collapse
some LTS. This happens exactly when the FTS S is ambiguous (i.e. there are
at least two different valid product configurations that generate the same LTS).

6 Model Checking

The model transformation described in Sect. 5 allows to use VMC to verify
properties over the entire product line or over its individual products alike.
These properties can be specified in the action-based branching-time tempo-
ral modal logic ACTL (for products, i.e. LTS) or one of the fragments of its
variability-aware extension v-ACTL (for product lines, i.e. MTS) defined next.
ACTL defines action formulae (denoted by ψ), state formulae (denoted by φ),
and path formulae (denoted by π). Action formulae are Boolean compositions
of actions.

Definition 1. Action formulae are built over a set {a, b, . . .} of atomic actions:

ψ ::= true | a(e) | ¬ψ | ψ ∧ ψ.

Definition 2. The syntax of ACTL as accepted by VMC is defined as follows:

φ ::= true | ¬φ | φ ∧ φ | [χ]φ | 〈χ〉φ | E π | Aπ | μ Y.φ(Y) | ν Y.φ(Y)
π ::= [φ {χ}U {χ′} φ′] | [φ {χ}U φ′] | [φ {χ}W {χ′} φ′] | [φ {χ}W φ′] |

X {χ} φ | F φ | F {χ} φ | Gφ

where Y is a propositional variable and φ(Y) is syntactically monotone in Y .

In VMC, propositional operators ¬, ∨, ∧, and the least and greatest fixed-point
operators μ and ν are written as not, or, and, min, and max, respectively.

We provide some intuition for the less common (action-based) operators.
The action-based until operators [φ {χ}U φ′] ([φ {χ}U {χ′} φ′]) say that φ′

holds at some future state of the path (reached by a final action satisfying χ′),
while φ holds from the current state until that state is reached and all the
actions executed meanwhile along the path satisfy χ. The action-based weak
until operators [φ {χ}W φ′] and [φ {χ}W {χ′} φ′] (also called unless) hold on
a path either if the corresponding strong until operator holds or if for all states
of the path the formula φ holds and all actions executed on the path satisfy χ.

To make ACTL variability-aware, for the box, diamond and F operators we
defined also an interpretation that takes the modality of the transitions (may
or must) into account, resulting in v-ACTL. The intuitive interpretation of the
different variants of these operators is as follows. [χ]φ: in all next states reachable
by a may transition executing an action satisfying χ, φ holds. [χ]� φ: in all next
states reachable by a must transition executing an action satisfying χ, φ holds.

From Featured Transition Systems to Modal Transition Systems 353

F φ: there exists a future state in which φ holds. F� φ: there exists a future
state in which φ holds and all transitions until that state are must transitions.
F {χ} φ: there exists a future state, reached by an action satisfying χ, in which
φ holds. F� {χ} φ: there exists a future state, reached by an action satisfying χ,
in which φ holds and all transitions until that state are must transitions.

We now present two fragments of v-ACTL, called v-ACTL� and v-ACTLive�,
which suffice for the specification of many interesting properties for product lines
and, moreover, enjoy some convenient properties concerning the preservation of
results from MTS to LTS (elaborated on below) which allow to perform a type
of family-based verification with linear complexity.2

Due to space limitation, we only present the syntax of these logics. We
refer to [5,8,9] for their semantics (and for proofs of the preservation theorems
below3).

Definition 3. The syntax of the fragment v-ACTL� of v-ACTL is defined as:

φ ::= false | true | φ ∧ φ | φ ∨ φ | [χ] φ | 〈χ〉� φ |
EF � φ | EF � {χ} φ | AF � φ | AF � {χ} φ | AG φ | ¬ ψ

where

ψ ::= false | true | ψ ∧ ψ | ψ ∨ ψ | 〈χ〉 ψ | EF ψ | EF{χ} ψ | ¬ φ

Note that v-ACTL� consists of two parts. The first part is such that any formula
expressed in it that is true for the MTS, is also true for all products. The second
part (which in v-ACTL� appears negated) is such that any formula expressed
in it that is false for the MTS, is also false for all products.

For the sequel, let S be an MTS. A formula φ is said to be preserved by
refinement if S |= φ implies Sp |= φ, for all products (i.e. refinements) Sp of S.

Theorem 2 (Preservation by Refinement). Any formula φ expressed in
v-ACTL� is preserved by refinement.

We also define a wider fragment of v-ACTL, which again has two parts, but with
a slightly different characteristic: all formulae expressed in it that are valid over
a live MTS preserve their validity for all valid products of that MTS. An MTS is
live if all its states are live. Intuitively, a live state of an MTS is a state that does
not occur as a final state in any of its products. So-called live action sets are
used to define such states. For instance, a state q with two outgoing transitions
whose actions labels a and b are in an or relation, is a live state based on the
fact that a OR b gives rise to a live action set {a, b}: it guarantees that in any
product in which q occurs, q has at least one outgoing transition.

2 The complexity of verification with either v-ACTL� or v-ACTLive� in VMC is
linear with respect to the size of the state space and with respect to the size of the
formula.

3 Actually, the results presented in Theorems 2 and 3 are slight extensions of those
presented in [5,8,9] by including the neXt and Until operators not considered there.

354 M.H. ter Beek et al.

Definition 4. The syntax of the fragment v-ACTLive� of v-ACTL is defined as:

φ ::= false | true | φ ∧ φ | φ ∨ φ | [χ] φ | 〈χ〉� φ | EF � φ | EF � {χ} φ |
A[φ {χ} U {χ′} φ′] | A[φ {χ} U φ′] | A[φ {χ} W {χ′} φ′] | A[φ {χ} W φ′] |
AX {χ} φ | AF φ | AF {χ} φ | AF � φ | AF � {χ} φ | AG φ | ¬ ψ

where

ψ ::= false | true | ψ ∧ ψ | ψ ∨ ψ | 〈χ〉 ψ | E [φ {χ} U {χ′} φ′] | E [φ {χ} U φ′] |
E[φ {χ} W {χ′} φ′] | E[φ {χ} W φ′] | EX {χ} φ | EF ψ | EF {χ} ψ | ¬ φ

A product Sp of S is said to be a live refinement (of S) if Sp |= AG 〈true〉 true,
i.e. Sp has only infinite (full) paths. A formula φ is said to be preserved by live
refinement if S |= φ implies Sp |= φ, for all live refinements Sp of S.

Theorem 3 (Preservation by Live Refinement). Any formula φ expressed
in v-ACTLive� is preserved by live refinement.

VMC notifies the user whenever preservation of a verification result is applicable.
The preservation of v-ACTLive� formulae obviously is an important improve-

ment over the preservation of v-ACTL� formulae, since it allows family-based
verification in a lot more cases. Finally, it is worthwhile to remark that an MTS
in which every path is infinite is by definition live and while this might seem a
rather strong condition, many reactive systems actually exhibit infinite behav-
iour, so the class of live MTS includes many models of practical interest.

If we want to actually verify a v-ACTL formula φ over the behavioural MTS
model that encodes the original FTS behaviour, it suffices to verify the formula
[behaviour] φ. This guarantees that the signature is ignored.

7 Example in VMC

In this section, we illustrate the transformation on the beverage vending machine
example SPL from [13]. The feature diagram in Fig. 6 models its valid products,
defining 12 vending machines based on the features Soda, Tea, FreeDrinks and
CancelPurchase. The allowed product behavior is modelled by the FTS in Fig. 7.

Fig. 6. Feature diagram of vending machine product line from [13]

From Featured Transition Systems to Modal Transition Systems 355

Fig. 7. FTS of vending machine product line from [13]

Fig. 8. VMC input model of vending machine product line

Figure 8 shows the input model in VMC after having applied the transfor-
mation described in Sect. 5 to the FTS in Fig. 7. The corresponding MTS, as
generated by VMC, is shown in Fig. 5 (on the right-hand side). Note that we
have omitted all dummy actions in the signature part (for ease of presentation).

356 M.H. ter Beek et al.

Some sample formulae/properties that can be verified over the example are:

1. [behaviour] AG AF {pay or free} true: Infinitely often, either action pay or
action free occurs.

2. [behaviour] AG [open] AF {close} true: It is always the case that action open
is eventually followed by action close.

3. [behaviour] AG AF { cancel or serveSoda or serveTea } true: Infinitely
often, either action cancel or action serveSoda or action serveTea occurs.

4. [behaviour] not E [true {not tea} U {serveTea} true]: It is not possible
that action serveTea occurs without being preceded by action tea.

5. [behaviour] [pay] AF {takePaid} true: Whenever action pay occurs, eventu-
ally action takePaid occurs.

Figure 9 shows the result of verifying formula 4 over the MTS. We see that this
formula is true and, since it is a v-ACTLive� formula, VMC reports that this
result is preserved by all products of the product line (hence in particular by
the valid ones). VMC can also generate all valid products, upon which it lists
all 12 valid products of the input model, providing for each a list of the action
labels of all may transitions that have been preserved (as must transitions) in
that product. These can then be used to perform product-based verification.

Figure 10 shows the result of verifying the v-ACTLive� formula 5 over all
valid products. We see that this formula is true for all products, except for those
that allow to cancel a payment, i.e. those that have the CancelPurchase feature
but at the same time lack the FreeDrinks feature.

Clicking one of these products, VMC loads it and opens a new window with
the product’s process model. Subsequently, the corresponding LTS can be visu-
alised or properties can be verified directly over this product.

Fig. 9. Formula 4 verified by VMC over vending machine product line

From Featured Transition Systems to Modal Transition Systems 357

Fig. 10. Formula 5 verified by VMC over all products of vending machine product line

8 Conclusions and Future Work

We have presented an automatic technique to transform FTS into the con-
strained form of MTS accepted by VMC. The crux of this transformation is
to go from variability constraints expressed in terms of features to variability
constraints expressed in terms of actions. This paper thus contributes to a bet-
ter understanding of the fundamental characteristics of the two models. Finally,
we have showed how a well-known FTS example from the literature can be
transformed and analysed with VMC.

VMC is a product of the KandISTI family of model checkers developed at
ISTI–CNR in Pisa [7,19]. This modelling and verification framework is pub-
licly accessible online at the URL http://fmt.isti.cnr.it/kandisti. KandISTI is
an experimental analysis environment whose target is not primarily full-scale
industrial-sized system/software verification, but rather the development of and
experimentation with new ideas and approaches concerning the analysis of sys-
tem designs. KandISTI is a framework in continuous evolution. VMC is its most
recent extension developed for the purpose of exploring verification strategies for
configurable systems (such as product lines). The basic idea underlying VMC
is the use of ‘constrained’ MTS for the modelling of variability. Since FTS are
the input model of other highly successful approaches to modelling (and model
checking) variability-intensive systems, it is important to understand the relation
between these two approaches in detail. This involves comparing them on larger
examples, and comparing also their analysis capabilities. This paper is another
step in this direction, after the preliminary comparison in [3]. In the future, we
intend to perform a quantitative evaluation of the expressivity, complexity and
scalability of both approaches, as well as of the complexity of the transformation.
Finally, we intend to consider also the state labelling of FTS by switching from
a purely process-algebraic description of MTS in VMC to a richer modelling

http://fmt.isti.cnr.it/kandisti

358 M.H. ter Beek et al.

language. Other KandISTI members, with whom VMC shares the underlying
verification engine, in fact have both an action and a state labelling [6].

Acknowledgments. We thank the anonymous reviewers for their useful comments.

References

1. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013)

2. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A logical framework to deal
with variability. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp.
43–58. Springer, Heidelberg (2010)

3. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: Formal description of variability
in product families. In: SPLC, pp. 130–139. IEEE (2011)

4. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and Analysing the
Variability in Product Families: Model Checking of Modal Transition Systems

6. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011)

7. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model
checkers. In: De Nicola, R., Hennicker, R. (eds.) Wirsing Festschrift. LNCS, vol.
8950, pp. 312–328. Springer, Heidelberg (2015)

8. ter Beek, M.H., Gnesi, S., Mazzanti, F.: Model checking value-passing modal spec-
ifications. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol. 8974, pp.
304–319. Springer, Heidelberg (2015)

9. ter Beek, M.H., Mazzanti, F.: VMC: recent advances and challenges ahead. In:
SPLC, vol. 2, pp. 70–77. ACM (2014)

10. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: a tool for product variability
analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
450–454. Springer, Heidelberg (2012)

11. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Formal semantics,
modular specification, and symbolic verification of product-line behaviour. Sci.
Comput. Program. 80(B), 416–439 (2014)

12. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: Model checking
software product lines with SNIP. STTT 14(5), 589–612 (2012)

13. Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., Raskin, J.-F.:
Featured transition systems: foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE TSE 39(8), 1069–1089 (2013)

14. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model check-
ing lots of systems: efficient verification of temporal properties in software product
lines. In: ICSE, pp. 335–344. ACM (2010)

15. Cordy, M., Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A.: ProVeLines: a
product line of verifiers for software product lines. In: SPLC, pp. 141–146. ACM
(2013)

16. De Nicola, R., Fantechi, A., Gnesi, S., Ristori, G.: An action based framework
for verifying logical and behavioural properties of concurrent systems. In: Larsen,
K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 37–47. Springer, Heidelberg
(1992)

From Featured Transition Systems to Modal Transition Systems 359

17. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In:
SPLC, pp. 193–202. IEEE (2008)

18. Fischbein, D., Uchitel, S., Braberman, V.A.: A foundation for behavioural con-
formance in software product line architectures. In: ROSATEA, pp. 39–48. ACM
(2006)

19. Gnesi, S., Mazzanti, F.: An abstract, on the fly framework for the verification of
service-oriented systems. In: Wirsing, M., Hölzl, M. (eds.) SENSORIA. LNCS, vol.
6582, pp. 390–407. Springer, Heidelberg (2011)

20. Larsen, K.G., Nyman, U., W ↪asowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

21. Larsen, K., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE
(1988)

22. Lauenroth, K., Pohl, K., Töhning, S.: Model checking of domain artifacts in prod-
uct line engineering. In: ASE, pp. 269–280. IEEE (2009)

23. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

24. Schaefer, I., Rabiser, R., Clarke, D., Bettini, L., Benavides, D., Botterweck, G.,
Pathak, A., Trujillo, S., Villela, K.: Software diversity: state of the art and per-
spectives. STTT 14(5), 477–495 (2012)

25. Schobbens, P., Heymans, P., Trigaux, J.: Feature diagrams: a survey and a formal
semantics. In: RE, pp. 136–145. IEEE (2006)

26. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey
of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6:1–
6:45 (2014)

An Extensible Operational Semantics for UML
Activity Diagrams

Zamira Daw(B) and Rance Cleaveland

Department of Computer Science, University of Maryland, College Park, USA
zdaw@cs.umd.edu

Abstract. This paper presents an operational semantics for UML activ-
ity diagrams, which can be extended according to domain-specific needs.
The purpose of this semantics is three-fold: to give a robust basis for
verifying model correctness; to help validate model transformations; and
to provide a well-formed basis for assessing whether a proposed exten-
sion/interpretation of the modeling language is consistent with the stan-
dard. The challenges of a general formal framework for UML models
include the semi-formality of the semantics specification, the extensibil-
ity of the language, and (sometimes deliberate, sometimes accidental)
under-specification of model behavior in the standard. We also propose
the use of simulation relations to verify whether a language extension is
consistent with the UML standard.

1 Introduction

Model-driven development (MDD) emphasizes the use of models and model
transformations (e.g. code generation) through the system development process.
This has increased the importance of verification methods for models and model
transformations in order to ensure a correct development process. The Unified
Modeling Language (UML) [8] has attracted substantial attention as a language
for MDD. UML is a non-proprietary, independently maintained standard that
includes several graphical sublanguages, a precise abstract syntax given via a
metamodel and an extensible semantics. This work focuses on UML activity
diagrams, which are generally used to specify the workflow of a system. Activity
diagrams can be seen as so-called block diagrams, with a system represented in
terms of actions (blocks) that compute outputs in terms of inputs, and edges
and special-purpose nodes that together determine how data is routed from one
action to another. The activity semantics is based on Petri nets semantics.

The purpose of this paper is to present a mathematically well-defined opera-
tional semantics for UML activity diagrams. The research is motivated by several
concerns. On one hand, to realize the full benefit of MDD, engineers need mech-
anisms for checking the correctness of their models. Formalizing these checks
(e.g. by using model checking) requires a mathematical account of the behav-
ior of diagrams. Reasoning about the correctness of model transformations (e.g.

Research supported by NSF Grant CCF-0926194.

c© Springer International Publishing Switzerland 2015
R. Calinescu and B. Rumpe (Eds.): SEFM 2015, LNCS 9276, pp. 360–368, 2015.
DOI: 10.1007/978-3-319-22969-0 25

An Extensible Operational Semantics for UML Activity Diagrams 361

code generation) also requires a precise account of model behavior in order to
determine if the transformation correctly preserves model semantics. At the same
time, by design, UML may be interpreted flexibly [2,6] and may be extended via
profiles. Determining when an interpretation/extension of UML is semantically
consistent with the standard is challenging in the absence of a reference seman-
tics. The challenges are primarily attributable to the following characteristics of
the standard: ambiguities, under-specifications, semantic variation points, and
semantic extensions using profiling. Figure 1 categorizes the characteristics and
gives examples related to activity diagrams. It should be noted that some of the
resulting semantic choices are explicitly identified in the standard; others are
due to incomplete and sometimes contradictory exposition.

Fig. 1. Semantic components of an interpretation of UML models. Note that profile
semantics may redefine the behavior of core concepts, make choices among semantic
variation points, and resolve under-specification, as well as introduce new semantic
concepts (e.g. scheduling, priority).

Our proposed reference semantics is a structural operational semantics (SOS)
(Sect. 4). SOS is chosen due to its implicit definition translation from models
into Kripke structures, which are used in model-verification tools such as model
checkers. The proposed semantics uses non-determinism to capture all possible
behaviors in case of under-specification or ambiguity in the standard. For exam-
ple, the standard does not define the duration of the execution of an action as
is shown in Fig. 1. In our semantics, the termination of an action is defined by
an inference rule that is applicable after the invocation of the action but is non-
deterministically executed with respect to the other applicable rules. Allowing
all possible behaviors in this fashion ensures that the proposed semantics cov-
ers interpretations consistent with the standard, and that all possible behaviors
can be taking into account during the verification. Alternative domain-specific
semantics can be defined by using the proposed rules, either explicitly or in a
customized way, or by adding additional rules (Sect. 5). In order to prove whether
a semantics is consistent with the standard, we use simulation relations between
the semantics of the interpretation and our reference semantics (Sect. 6).

2 Related Work

The work in this paper was initially inspired by research about the implementa-
tion of translators from diagrams into the (formally precise) input notations of

362 Z. Daw and R. Cleaveland

model checkers, summarized in [3]. Each of these pieces of work indirectly defines
a formal semantics for activities via the translation strategies used. An immedi-
ate question that emerges is this: in what sense are these semantics correct, or
consistent, with respect to the standard? Providing a means for answering this
question is a prime motivation for this paper.

For similar reasons, other researchers have also developed mathematical
semantics for (fragments of) UML activity diagrams. Translational approaches
describe how activity diagrams may be interpreted as ASMs [1] and PNs [10,11].
None of these approaches addresses the issue of extensibility nor discusses how to
assess an extended semantics against a reference once. Among these approaches,
the PN-based semantics of Störrle [11] arguably has the broadest coverage of
the standard by addressing data flow, structured nodes, streaming and excep-
tions. This semantics however does omit some aspects of the standard, such
as: token-holding by all nodes, token-transfer limitations, and different types of
invocations of activities, which are addressed in our semantics. Modeling of non-
local behaviors (e.g. UML final nodes, where tokens of an entire activity have to
be terminated) represent a challenge for PN-based semantics, which we believe
they can be easier to address using SOS. In addition, model checkers based on
Kripke structures have better capabilities than PN model checkers. It should be
noted that one benefit of a PN semantics is the capability to model so-called
true concurrency. Such features can be captured in SOS also, although we do
not do so in this paper for reasons of brevity; instead, our semantics reduces
concurrency to interleaving.

Groenniger [5] and Knieke [7] present a flexible semantics for a basic subset
of UML activities. Groenniger [5] proposes a denotational inner semantics with
variation points, which are used to define the type of implementation of actions
(e.g. actions as methods). Knieke [7] presents a framework, which enables com-
position of operational semantics out of fundamental semantic constructs. These
constructs define the state and the execution sequence of an activity diagram
based on a step algorithm, which is triggered by a global clock. By contrast, our
approach allows customizing the implementation of both actions and execution
order. Furthermore, a clock-based synchronization reduces the number of possi-
ble behaviors that can be specified, thereby limiting the set of target-domains.
In addition, our approach enables the consistency verification of the extension
with the UML standard.

3 Reference Semantics

This section introduces a reference structural operational semantics (SOS)1 of
activities based on the UML-standard. The semantics describes changes in the
system behavior by using labeled transitions (s l→ s′), called steps. Due to the
complexity of the activity semantics, we propose two types of steps: macro-steps,
which specify changes on the state of nodes, and micro-steps, which are used to
model intermediates transitions.
1 Due to space limitation, this paper only introduces a subset of the semantics. Find
the complete semantics in www.cs.umd.edu/∼rance/.

www.cs.umd.edu/~rance/

An Extensible Operational Semantics for UML Activity Diagrams 363

3.1 State of Activity Execution

The behavior of an activity is mainly based on coordinated executions of nodes,
which is determined by the location of the tokens and the occurrence of events.
Therefore, the state of a UML model is defined by the status of nodes (Sn),
activities (Sa), and token holders (Sth) such as pins. This information is enough
to determine all possible following behaviors of the activity in any step of the
execution.

Definition 1. Given the model M = 〈A,D〉1, where A is a set of activities, and
D is a set of data types. The state of the system is given by the tuple 〈Sn, Sa, Sth〉,
where:

– Sn ∈ (N → {idle} ∪ {〈executing, fin〉|finis a function}), where ∀n ∈ N , if
Sn(n) = 〈executing, fin〉 then fin ∈ (input(n) → D∗). N is a set of nodes.

– Sa ∈ (A → {idle} ∪ {〈executing, Ps, Pn〉} ∪ {〈exception(v)|v ∈ D〉}), where
Ps and Pn specify which parameter set that has invoked the activity, and the
required pins to finish the activity (for streaming behavior).

– Sth ∈ ((P ∪ APN) → D∗), where ∀h ∈ (P ∪ APN), if Sth(h) = V then
∀v ∈ V. v ∈ δ(h) and |V | ≤ upperbound(h). P is a set of pins and APN is
a set of activity parameter nodes, which are the interfaces of the nodes and
activities, respectively. These elements can hold tokens within the activity.

3.2 Step Semantics

SOS specifies the behavior of a system in terms of inference rules, which deter-
mine the valid transitions of the state of the system. The following defines the
two proposed step types.

Definition 2. A macro-step (�) is a transition in the state of an activity that
leads to a change in the status of a node.

Definition 3. A micro-step (�) is a transition in the state of an activity that
does not lead to a change in the status of any node.

The distinction between these two steps is also made in order to facilitate
model checking by reducing the state-space, since requirements to verify pri-
marily refer to node execution (e.g. A � (received event ⇒ A♦ motor starts)).
Figure 2 shows the reduction of state-space, in which intermediate states (e.g.
that represent token transfer) are removed. The reduced state-space is used to
verify UML models and their consistency with the UML standard. A transition
in the reduced state-space is defined as a sequence of micro-steps that ends with
a macro-step, i.e., a transition ends with the start or the finalization of the exe-
cution of a node as is shown in Definition 4. The transition inherits the label l
of the macro-step.

364 Z. Daw and R. Cleaveland

Fig. 2. Reduction of the state-space of an activity by abstracting only the informa-
tion about node execution. Transition labels indicate termination of the execution (t),
starting of the execution (i), and transfer of tokens (r)

Definition 4. A transition (→) is defined as follow:

〈Sn, Sa, Sth, SΣ〉(�)∗〈S′
n, S

′
a, S

′
th, S

′
Σ〉, 〈S′

n, S
′
a, S

′
th, S

′
Σ〉 l� 〈S′′

n , S
′′
a , S

′′
th, S

′′
Σ〉,

∀x ∈ N, type(x) ∈ SN,∀p ∈ inpin(x), S′′
th(p) = ∅,

∀y ∈ N, type(y) ∈ SN − {Fork}, ∀q ∈ outpin(y), S′′
th(q) = ∅,

∀z ∈ N, type(z) = Fork, ∃p ∈ outpin(z), S′′
th(p) = ∅

〈Sn, Sa, Sth, SΣ〉 l→ 〈S′′
n , S

′′
a , S

′′
th, S

′′
Σ〉

1

2

3

4

5

Transitions have additional requirements (Lines 2–4) related to a subset of
control nodes such as Join, Fork, Merge, and Decision, called switch nodes (SN).
Since SN cannot hold any token [8, p. 327], the token flow through any SN has
to end in the execution of a node not belonging to this subset. This condition is
evaluated at the target state of the macro-step.

A sequence of SN represents a challenge to the formal specification because
it has to be first analyzed whether at the end of the token flow at least one
non-SN can be executed and post conditions of the SN are satisfied (Lines 2–4).
Therefore, the execution of SN is defined by a micro-step in order to analyze
all possible token flows of a sequence of SN without changing the state of the
activity. This is possible because a transition can only end with a macro-step
and, therefore, no transition is created for token flows that do not end in an
execution of a non-SN and/or do not satisfy constraints for SN.

3.3 Token Transfer and Node Invocation

Tokens are transfered from a source token holder to a target token holder that are
connected by an edge. Tokens can be transferred only if they can be immediately
consumed by the target node [8, p. 320]. Therefore, the token transfer and the
beginning of the node execution are performed in the same macro-step as is
shown in the following SOS-rule, which determines the invocation of an action.

This rule is applicable only for inactive actions (Line 1) that have been
offered enough tokens to their inputs (Line 2). Note that the function transfer

An Extensible Operational Semantics for UML Activity Diagrams 365

a ∈ A,n ∈ node(a), type(n) = Action, Sa(a) = 〈executing, Ps, Pn〉, Sn(n) = idle,
ftl ∈ Ftl(inpin(n)), ∀p ∈ inpin(n).transfer(ftl(p)) 	= ∅,
{V c1, ..., V ci} = {transfer(ftl(p))|∀p ∈ inpin(n)},
{p1, ..., pi} = inpin(n), fin � ordering(pk)(V ck), ∀1 ≤ k ≤ i,
{q1, ..., qi} = {source(ftl(pk))|∀1 ≤ k ≤ i},
∀1 ≤ k ≤ i.Vqk = Sth(qk)

〈Sn, Sa, Sth, SΣ〉 i(n)
� 〈Sn[n �→ 〈executing, fin〉], Sa,

Sth[q1 �→ Vq1�V c1]...[qi �→ Vqi�V ci], SΣ〉

1

2

3

4

5

6

7

8

determines if the tokens transfer is possible according to the preconditions of the
edge (guard, weight), and the target pin (lower, upper, upperbound). Since an
input pin can have multiple edges, and thereby multiple source pins, this rule
non-deterministically chooses a source by using the function Ftl. This function
returns a set of injective functions that map target pins into source pins, which
offer tokens to consume. As a result, the tokens V ci (Line 3) are consumed from
the source pins qi (Line 8). The values of these tokens are saved in the action’s
state using the function fin (Line 4), which forms part of the status of the
action after the update (Line 7) and is used to define which sequence of tokens
are offered in the output pins in the termination of the action. After executing
this macro-step, the termination rule of the action becomes applicable.

3.4 Switch Nodes

The following SOS-rule specifies token consumption and activation of a Fork,
which is shown as an example of SN. A Fork creates a token in each output
for each incoming token. An incoming token is consumed by a Fork only if at
least one of the outputs’ offers is accepted, i.e. immediately consumed by the
target node. Outgoing tokens that cannot immediately be consumed remain in
the output except for tokens that do not satisfy the guard of the outgoing edge.
This constraint is also evaluated in the definition of a transition (Definition 4,
Line 4). V c defines a subset of the offered tokens V o that can satisfy the guards
of at least one outgoing edge (Line 4). This subset ensures that at least one of
the outputs offers is accepted. The precondition of the edge is reevaluated with
the set of tokens to consume (Line 5). In case that all premises are satisfied, the
state of the pins is updated (Lines 7–8).

a ∈ A,n,m ∈ node(a), type(n) = Fork, Sa(a) = 〈executing, Ps, Pn〉, Sn(n) = idle,
e ∈ E.e = 〈s, t, g, w〉 ∧ t ∈ inpin(n) ∧ transfer(e) 	= ∅,
V o = transfer(e),
V c = {v ∈ V o|∃p ∈ outpin(n).∃e ∈ edge(a).e = 〈p, t′, g′, w′〉 ∧ g′(v) = true},
|V c| ≥ weight(e),
Vs = Sth(source(e)),

〈Sn, Sa, Sth, SΣ〉 � 〈Sn[〈executing, ∅〉], Sa, Sth[source(e) �→ Vs�V c]
[target(e) �→ V c], SΣ〉

1

2

3

4

5

6

7

8

366 Z. Daw and R. Cleaveland

4 Semantics Extensions

Semantics extensions refer to the extension of the core semantics in order to
define a specific interpretation of UML activities. Depending on the extension,
possible behaviors given by the core semantics may be reduced or enlarged, which
can affect the consistency with the standard. These behaviors can be described
by adding new rules or by adapting rules of the core semantics. The following
new inference rule exeT ime(n) shows how to define the execution time of a
node, which is based on the profile DMOSES [4]. This profile adds information
to UML models regarding execution time, parallelism and priority, which allow
verifying time deadlines, in particular important for real-time embedded systems.
The inference rule defines the time that has elapsed since the invocation of the
action (i(n)), where the clock is started. The semantics of the clocks process
implements the time increasing and ensures a correct termination. This rule
adds a new label to the semantics that does not exist in the reference semantics.
Note that a set of clocks is added to the state of the system and the status ready
is added to the node. The conclusion of the rule stops the timer corresponding
to the node that enables a termination rule.

a ∈ A,n ∈ node(a), type(n) = Action, Sa(a) = 〈executing, Ps, Pn〉,
Sn(n) = 〈executing, fin〉,
C(n) ≥ executionT ime(n)

〈Sn, Sa, Sth, SΣ , C〉 exeTime(n)
� 〈Sn[n �→ 〈ready, fin〉], Sa, Sth, SΣ , C[n �→ ⊥]〉

1

2

3

4

5 Consistency of Extended Semantics

From a formal point of view, the UML semantics can be extended by redefining
SOS-rules of the reference semantics and by adding SOS-rules (e.g. execution
time). Extensions in the semantics can allow behaviors that are forbidden in the
UML standard. Therefore, a concept of consistency between extensions and the
reference semantics is defined in order to identify types of extensions that are
not in conformance with the standard. The consistency is verified by defining a
simulation relation between the reference semantics and the extension. A hiding
operator and a closure function are needed in order to hide (i.e. transforms them
into τ ’s) all labels that do not belong to the reference semantics. It, however,
allows the system to perform the transitions labeled by hidden labels.

Definition 5. The behavior of a model M is specified as a transition system
Tr(M) = 〈S,L,→, I〉, where S is a set of states, L is a set of labels (actions) of
the transition, → ⊆ S × L × S is a transition relation, and I ⊆ S is a set of
initial states.

Definition 6. Hiding operator (\): If T = 〈S,L,→, I〉 is a transition system,
and L′ is a set of labels, then T \ L′ = 〈S,L′ ∪ {τ},→′ , I〉, where s

l→′ s′ iff
(assume that τ �∈ L ∪ L′):

An Extensible Operational Semantics for UML Activity Diagrams 367

– l = τ and s
�→ s′ some � �∈ L′

– l ∈ L′ and s
l→ s′

Definition 7. Left closure (lc): Let T = 〈S,L,→, I〉 be a transition system.
Then lc(T) = 〈S,L − {τ},⇒, I〉, where: s

l⇒ s′ holds iff s(τ→)∗ l→ s′

These functions allow analyzing the behavior related only to the labels
defined in the reference semantics. Thus, it can be verified if the extended seman-
tics simulates the reference semantics taking only the execution of the nodes into
account. The consistency concept is based on the definition of the simulation
relation (�) presented in [9].

Definition 8. An extended semantics defined as Te(M) = 〈Se, Le,→e, Ie〉 is
consistent with the UML standard defined as Tr(M) = 〈Sr, Lr,→r, Ir〉 for a
specific model M if the following holds:

lc(Te(M) \ Lr) � Tr(M)

If this holds for all models in the UML extension, then the extended semantics
is defined to be consistent with the UML standard.

6 Conclusion

This paper has presented a reference operational semantics for UML 2.x activ-
ity diagrams. The presented semantics aims to provide the same flexibility and
extensibility as the standard, and is defined by inference rules that specify all
allowed behaviors by the standard. These rules can be extended or additional
rules can be added in order to customize the semantics. We also define a criterion
for determining if an extension to the semantics is consistent with the standard
that is based on the simulation ordering of Park. This mechanism is independent
of the rules; thereby allowing interpretations defined using different formalism
to be checked. We also want with our extensible semantics to open a discus-
sion in the community about a common formal framework for UML models. For
future work, we want to implement the generation of Kripke structures based
on the presented inference rules, thereby facilitating model checking of UML
activities. We also would like to examine other consistency criteria for semantic
extensions beyond the simulation-based one proposed here in order to impose
requirements on transitions that must be present, according to the standard.
In addition, although the proposed semantics can specify parallelism between
executions of multiple nodes, the start and termination of multiple executions
are interleaved. In order to support full parallelism, we are studying methods
to extend the step semantics using notions from partial-order reduction. These
methods can be applied to the resulting Kripke structure, which has information
about shared resources.

368 Z. Daw and R. Cleaveland

References

1. Börger, E., Cavarra, A., Riccobene, E.: An ASM semantics for UML activity dia-
grams. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 293–308. Springer,
Heidelberg (2000)

2. Broy, M., Cengarle, M.: Uml formal semantics: lessons learned. Softw. Syst. Model.
10(4), 441–446 (2011)

3. Daw, Z., Cleaveland, R., Vetter, M.: Formal verification of software-based medical
devices considering medical guidelines. Int. J. Comput. Assist. Radiol. Surg. 9(1),
145–153 (2014)

4. Daw, Z., Vetter, M.: Deterministic UML models for interconnected activities and
state machines. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795,
pp. 556–570. Springer, Heidelberg (2009)

5. Grönniger, H., Reiß, D., Rumpe, B.: Towards a semantics of activity diagrams
with semantic variation points. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.)
MODELS 2010, Part I. LNCS, vol. 6394, pp. 331–345. Springer, Heidelberg (2010)

6. Gulan, S., Johr, S., Kretschmer, R., Rieger, S., Ditze, M.: Graphical modelling
meets formal methods. In: IEEE Conference on Industrial Informatics (2013)

7. Knieke, C., Schindler, B., Goltz, U., Rausch, A.: Defining domain specific opera-
tional semantics for activity diagrams. Technical report, TU Clausthal (2012)

8. OMG: Unified Modeling Language, Superstructure, Version 2.4.1 (2011). http://
www.omg.org/spec/UML/2.4.1/Superstructure/PDF

9. Park, D.: Concurrency and automata on infinite sequences. Technical report,
Coventry, UK, UK (1981)

10. Staines, T.: Intuitive mapping of uml 2 activity diagrams into fundamental mod-
eling concept petri net diagrams and colored petri nets. In: IEEE Conference on
Engineering of Computer Based Systems, March 2008, pp. 191–200 (2008)

11. Störrle, H.: Semantics and verification of data flow in uml 2.0 activities. Electron.
Notes Theoret. Comput. Sci. 127(4), 35–52 (2005)

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF

Author Index

Amighi, Afshin 69

Barnat, Jiří 268
Barreto, Raimundo 251
Barros, Flávia 283
Bazzi, Rida A. 231
Bendisposto, Jens 199
Blom, Stefan 69, 84
Burg, Sebastian 117

Cabot, Jordi 108
Carvalho, Ana 283
Carvalho, Gustavo 283
Cavalcanti, Ana 283
Clarisó, Robert 108
Clarke, Dave 215
Cleaveland, Rance 360
Colombo, Christian 99
Cordeiro, Lucas 251

Damiani, Ferruccio 344
Darabi, Saeed 69
Daw, Zamira 360
De Nicola, Rocco 327
Dimech, Gabriel 99
Dodds, Mike 37

Eichelberger, Hanno 117

Francalanza, Adrian 99
Frappier, Marc 132

Garlan, David 293
Gnesi, Stefania 344
González, Carlos A. 108

Hanazumi, Simone 148
Höfner, Peter 175
Huisman, Marieke 69, 84
Huster, Stefan 117

Jacobs, Bart 53
Jakobs, Marie-Christine 159
Jones, Cliff B. 3

Kamali, Maryam 175
Kamali, Mojgan 175
Knapik, Michał 310

Krings, Sebastian 199
Kropf, Thomas 117

Lanet, Jean-Louis 132
Larmuseau, Adriaan 215
Laufenberg, Jo 117
Lee, Edward A. 20
Leuschel, Michael 132, 199
Lohstroh, Marten 20
Lüttgen, Gerald 37

Maggi, Alessandro 327
Mazzanti, Franco 344
de Melo, Ana C.V. 148
Mota, Alexandre 283
Mühlberg, Jan Tobias 37

Niewiadomski, Artur 310

Paolini, Luca 344
Penczek, Wojciech 310
Petre, Luigia 175
Petrocchi, Marinella 327
Piessens, Frank 37

Reisig, Wolfgang 190
Rocha, Herbert 251
Ročkai, Petr 268
Rosenstiel, Wolfgang 117
Ruf, Jürgen 117

Sampaio, Augusto 283
Savary, Aymerick 132
Shen, Jun 231
Simmons, Reid 293
Spognardi, Angelo 327
Štill, Vladimír 268
Sukkerd, Roykrong 293

ter Beek, Maurice H. 344
Tiezzi, Francesco 327

Vanspauwen, Gijs 53
Völlinger, Kim 190

White, David H. 37

Yatapanage, Nisansala 3

Zaharieva-Stojanovski, Marina 84

	Preface
	Organization
	Contents
	Invited Papers
	Reasoning about Separation Using Abstraction and Reification
	1 Introduction
	2 In-Place List Reversal
	2.1 Original Presentation
	2.2 Abstract Specification
	2.3 Representing Sequences
	2.4 The Heap
	2.5 Observations

	3 Mergesort
	3.1 Specification
	3.2 Algorithm
	3.3 Representing Sequences
	3.4 The Heap
	3.5 Observations

	4 Discussion
	References

	An Interface Theory for the Internet of Things
	1 Introduction
	1.1 Accessors
	1.2 Code Mobility and Trust
	1.3 Concurrency
	1.4 Outline

	2 Background
	2.1 Actors
	2.2 Behavioral Interfaces
	2.3 Time and Synchrony
	2.4 Causality and Predictable Timing

	3 A Formal Model
	3.1 Blocking Inputs and Delayed Outputs
	3.2 Deferred AACs

	4 Conclusion
	References

	Program Verification
	Learning Assertions to Verify Linked-List Programs
	1 Introduction
	2 Data Structure Operation Identification
	2.1 Instrumentation and Preparation
	2.2 Trace Segmentation
	2.3 Classifying Data Structure Operations

	3 Annotation Generation
	4 Evaluation
	5 Conclusions and Future Work
	References

	Verifying Protocol Implementations by Augmenting Existing Cryptographic Libraries with Specifications
	1 Introduction
	2 Extended Symbolic Model of Cryptography
	2.1 Cryptographic Terms
	2.2 Linking Memory Regions to Terms
	2.3 Cryptographic Primitives
	2.4 Constructing Messages
	2.5 Invariants for Public Messages
	2.6 Attacker Model
	2.7 Handling Data Values
	2.8 Interpreting a Received Public Message

	3 Memory Safety and Security Properties
	4 Dolev-Yao Style API
	5 Conclusions and Future Work
	References

	Specification and Verification of Atomic Operations in GPGPU Programs
	1 Introduction
	2 Background
	2.1 Atomic Operations in Concurrent Separation Logic
	2.2 Reasoning about GPGPU Programs

	3 Specification
	3.1 Specification of a Kernel with Parallel Addition
	3.2 Parallel Addition with Multiple Work Groups

	4 Formalisation
	4.1 Syntax and Semantics
	4.2 Verification
	4.3 Soundness
	4.4 Tool Support

	5 Related Work
	6 Conclusion
	References

	History-Based Verification of Functional Behaviour of Concurrent Programs
	1 Introduction
	2 Background
	3 Modular History-Based Reasoning
	4 Formalisation
	5 Conclusions and Related Work
	References

	Investigating Instrumentation Techniques for ESB Runtime Verification
	1 Introduction
	2 Design
	3 Performance Evaluation
	3.1 Case Study
	3.2 Results

	4 Conclusion
	References

	Towards Domain Refinement for UML/OCL Bounded Verification
	1 Introduction
	2 Bound Tightening Procedure
	3 Experimental Results
	4 Related Work
	5 Conclusions
	References

	Testing
	Efficient Testing of Different Loop Paths
	1 Introduction
	2 Related Work and Techniques
	3 Methodology
	3.1 Generating and Analysing Possible Iterations
	3.2 Generating Loop Path and Test Cases
	3.3 Implementation Details and Surrounding Conditions

	4 Case Studies
	4.1 Case Study 1: String Array Signal Parser
	4.2 Case Study 2: Modified String Array Signal Parser
	4.3 Case Study 3: String Parser
	4.4 Case Study 4: Best Fit Optimisation

	5 Conclusion and Future Work
	References

	Model-Based Robustness Testing in Event-B Using Mutation
	1 Introduction
	2 Overview of the Approach
	2.1 The Event-B Method
	2.2 Overview of Robustness Test Generation

	3 Formal Model of the Bytecode Verifier
	3.1 Java Card Instruction Sets
	3.2 The Refinements
	3.3 The State Model

	4 Event-B Specification Mutation
	4.1 Mutation of an Event-B Machine
	4.2 Mutation of an Event
	4.3 Negation of a Formula

	5 Model-Based Testing Algorithm Improvements and Performance
	5.1 Feasibility Analysis
	5.2 Enabling Analysis
	5.3 Main MBT Algorithm

	6 Experimentation and Comparison
	7 Related Work
	8 Conclusion
	References

	On the Testability of Properties Patterns
	1 Introduction
	2 Background
	3 Testable Properties
	4 Extending the Testable Properties
	4.1 Correctness of the Results

	5 Concluding Remarks
	A Linear Temporal Logic (LTL)
	B JPF - New Example
	References

	Certification
	Speed Up Configurable Certificate Validation by Certificate Reduction and Partitioning
	1 Introduction
	2 Background
	2.1 Programming Language and Its Semantics
	2.2 Configurable Program Analysis

	3 Certificate Reduction
	4 Certificate Partitioning
	5 Experiments
	6 Conclusion
	References

	Formal Analysis of Proactive, Distributed Routing
	1 Introduction
	2 Optimized Link State Routing---An Overview
	3 Modelling OLSR in Uppaal
	3.1 Uppaal's Timed Automata
	3.2 A Uppaal Model of OLSR

	4 Analysis
	4.1 Static Topologies
	4.2 Dynamic Topologies

	5 Related Work
	6 Conclusions and Outlook
	References

	Certification of Distributed Algorithms Solving Problems with Optimal Substructure
	1 Introduction
	1.1 Certifying Sequential Algorithms
	1.2 Distributed Algorithms
	1.3 Structure of this Paper

	2 Making Distributed Algorithms Certifying
	2.1 Local Approach
	2.2 Example: Shortest Path Problem
	2.3 Challenge: Minimum Spanning Tree Problem

	3 Related Work
	4 Conclusion and Future Work
	References

	Formal Specification and Proof
	From Failure to Proof: The ProB Disprover for B and Event-B
	1 Introduction and Motivation
	2 Constraint-Based Proof Technique
	2.1 ProB's Constraint Solving Kernel
	2.2 Integration into Rodin for Event-B
	2.3 Integration into Atelier B for Classical B
	2.4 Inconsistency Detection

	3 Empirical Evaluation and Comparison
	3.1 Experimental Setup
	3.2 Results

	4 Discussion and Conclusion
	References

	Formalizing a Secure Foreign Function Interface
	1 Introduction
	2 The Interoperating Languages
	2.1 The Source Language MiniML
	2.2 The Attacker Model MiniMLa

	3 The MiniML+-Calculus: A Secure FFI
	3.1 Overview
	3.2 Syntax
	3.3 Operational Semantics
	3.4 MiniML+ Typing Rules
	3.5 Type Soundness
	3.6 Contextual Equivalence

	4 Full Abstraction
	4.1 Bisimulation for MiniML
	4.2 Bisimulation for the MiniML+-Calculus
	4.3 The FFI Securely Embeds a MiniML Program

	5 Related Work
	6 Conclusions
	References

	A Formal Study of Backward Compatible Dynamic Software Updates
	1 Introduction
	2 Backward Compatibility
	3 Real World Backward Compatible Update Classes
	3.1 Observational Equivalence: The Old Behavior
	3.2 Enumeration Type Extension: Old Behavior for Old Input and Allowing New Input
	3.3 Variable Type Weakening: More Output When the Old Program Terminates
	3.4 Exit on Error: Stopping Execution While the Old Program Produces More Output
	3.5 Improved Prompt Messages: Functional Equivalent Outputs

	4 Formal Treatment of the Technical Results
	4.1 The Programming Language
	4.2 The Framework of Program Equivalence

	5 Related Work
	A Proof Rule for Behavioral Equivalence
	B Backward Compatible Update Classes
	C Appendix: Formal Programming Language
	References

	Testing and Model Checking
	Memory Management Test-Case Generation of C Programs Using Bounded Model Checking
	1 Introduction
	2 Preliminaries
	2.1 Efficient SMT-Based Bounded Model Checking (ESBMC)
	2.2 Safety Properties
	2.3 Software Testing with CUnit

	3 Map2Check Method
	3.1 Step 1: Identification of Safety Properties
	3.2 Step 2: Extract Information from Safety Properties
	3.3 Step 3: Translation of Safety Properties
	3.4 Step 4: Memory Tracking
	3.5 Step 5: Code Instrumentation with Assertions
	3.6 Step 6: Implementation of the Tests
	3.7 Step 7: Execution of the Tests

	4 Experimental Evaluation
	4.1 Planning and Designing the Experiments
	4.2 Experiment's Execution and Results Analysis

	5 Conclusions and Future Work
	References

	Techniques for Memory-Efficient Model Checking of C and C++ Code
	1 Introduction
	1.1 Reducing Memory Use
	1.2 Related Work

	2 Tree Compression
	2.1 Splitting State Vectors
	2.2 Interactions

	3 Memory Allocation
	3.1 Allocation Profile
	3.2 Pointer Representation
	3.3 Implementation

	4 Measurements
	4.1 Allocation Schemes
	4.2 Compression Efficiency

	5 Conclusions
	References

	NAT2TEST Tool: From Natural Language Requirements to Test Cases Based on CSP
	1 Introduction
	2 The NAT2TEST Strategy
	3 The NAT2TEST Tool
	3.1 CNL-Parser Component
	3.2 RF-Generator Component
	3.3 DFRS-Generator Component
	3.4 CSPM-Generator Component
	3.5 TC-Generator Component

	4 Related Work
	5 Conclusions
	References

	Planning
	Task Planning of Cyber-Human Systems
	1 Introduction
	2 Preliminaries
	2.1 Task Representation
	2.2 Stochastic Multiplayer Games
	2.3 Strategy Synthesis of SMGs

	3 Running Example
	4 System-Human Delegation Model
	4.1 Delegation
	4.2 Human Model
	4.3 From OWC Model to Delegation Model

	5 System-Human Cooperative Task Planning
	5.1 SMG Model
	5.2 Environment
	5.3 System
	5.4 Human
	5.5 Utility Function
	5.6 SMG Strategy Synthesis

	6 Results
	7 Related Work
	8 Conclusion
	References

	Generating None-Plans in Order to Find Plans
	1 Introduction
	1.1 Related Work

	2 Abstract Planning Domain
	3 Action Classification and None-Plan Synthesis
	4 Evaluation
	5 Conclusions and Future Work
	References

	Modelling and Model Transformation
	Twitlang(er): Interactions Modeling Language (and Interpreter) for Twitter
	1 Introduction
	2 Twitlang: A Formal Language for Modeling Twitter Interactions
	2.1 Syntax
	2.2 A Glimpse of the Semantics

	3 An Example Interaction with Counterintuitive Effects
	4 Twitlanger: Executable Twitlang in Maude
	5 Related Work
	6 Concluding Remarks
	References

	From Featured Transition Systems to Modal Transition Systems with Variability Constraints
	1 Introduction
	2 Running Example
	3 Modal Transition Systems with Variability Constraints
	4 From Feature Constraints to Action Constraints
	5 Model Transformation
	6 Model Checking
	7 Example in VMC
	8 Conclusions and Future Work
	References

	An Extensible Operational Semantics for UML Activity Diagrams
	1 Introduction
	2 Related Work
	3 Reference Semantics
	3.1 State of Activity Execution
	3.2 Step Semantics
	3.3 Token Transfer and Node Invocation
	3.4 Switch Nodes

	4 Semantics Extensions
	5 Consistency of Extended Semantics
	6 Conclusion
	References

	Author Index

