
Chapter 8
Lie-Theoretic Multi-Robot Localization

Xiao Li and Gregory S. Chirikjian

Abstract This chapter presents a new distributed cooperative localization
technique based on a second-order sensor fusion method developed for the
special Euclidean group. Uncertainties in the robot pose, sensor measurements,
and landmark positions (neighboring robots in this case) are modeled as Gaussian
distributions in exponential coordinates. This proves to be a better fit for both
the prior and posterior distributions resulting from the motion of nonholonomic
kinematic systems with stochastic noise (as compared to standard Gaussians in
Cartesian coordinates). We provide a recursive closed-form solution to the multi-
sensor fusion problem that can be used to incorporate a large number of sensor
measurements into the localization routine and can be implemented in real time.
The technique can be used for nonlinear sensor models without the need for further
simplifications given that the required relative pose and orientation information
can be provided, and it is scalable in that the computational complexity does not
increase with the size of the robot team and increases linearly with the number of
measurements taken from nearby robots. The proposed approach is validated with
simulation in Matlab.

8.1 Introduction

In recent years the field of robotics and automation has undergone a dramatic
ascendency in terms of its significance in industrial and military applications
as well as its growing importance in service applications. Multi-robot systems
(also known as multi-agent systems) is a branch of robotics that deals with the
collaboration among teams of robots (either homogenous or heterogenous) in
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accomplishing certain tasks. This section reviews some of the work done in the
field of multi-robot localization followed by an overview of the remainder of this
chapter.

8.1.1 Introduction to Multi-Robot Localization

The path to true autonomy starts with robots knowing where they are in a given
workspace. Such a problem is known as robot localization. According to [15], the
localization problem can be categorized into two subproblems: (1) position tracking
(local localization) which aims to compensate for small dead reckoning errors using
sensor feedback; this approach is local in that the initial pose is assumed known
and (2) global localization in which the robot “figures out” its position given no
knowledge of its initial pose. A tremendous amount of effort has been devoted to
effectively and efficiently solving the localization problem and the field has seen
major advancements in the establishment of highly practical and easy to implement
algorithms with the EKF (extended Kalman filter)-based and PF (particle filter)-
based approaches the most widely accepted solutions to the problem. However, the
majority of existing approaches are tailored to localizing a single robot. The field of
multi-robot localization remains relatively fresh and to be explored [6].

Performing the localization task with multiple robots possesses the advantage
of information sharing. Robots within a team can exchange information with
other members so to increase the accuracy and reduce uncertainty in their own
estimates. This advantage is shown both in simulation and experimentally in [6] in
which two robots explore an indoor environment executing their own single robot
localization scheme when they are far away from each other. And the proposed
collaborative fusion algorithm is used when the two robots come into each other’s
detection range. Results show that such an algorithmic reinforcement has the
effect of significantly reducing the ambiguities existing in the original estimates.
A collaborative architecture of this sort can effectively reduce the hardware cost of
the entire team in that if at least one robot has a good knowledge of its location, then
other team members can use this information along with relative measurements to
infer their own position and reduce estimation errors.

8.1.2 Comparison of Existing Distributed Localization
Methods

The problem of cooperative localization has been tackled with a wide variety of
approaches over the years. And similar to single robot localization, many of the
existing algorithms can be considered variations of two main categories. The first
family of algorithms makes use of recursive Gaussian filters. Distributed versions
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of the Kalman filter are proposed in [1, 14] to solve the cooperative localization
problem. The extended Kalman filter (EKF) is utilized in [12] while also providing
analytical expressions for the upper bound of the estimate uncertainty. In [2] the
EKF is also used, but the algorithm is reinforced with an entropic criterion to
select optimal measurements that reduce global uncertainty. The advantage of using
recursive Bayesian filters to fuse information lies in they are incremental in nature,
which makes them applicable to real-time estimation. Closed-form expressions for
state estimation and update also facilitate computational speed. However, these
types of algorithms deal only with Gaussian noise which may not be the case for
some real systems. And EKF linearizes the system dynamics around the state of
estimate which is prone to failure when errors grow.

The second family of algorithms is built upon sampling-based nonparametric
filters. Monte Carlo localization methods are used in [9] to estimate the pose of
each member robot while using grid cells to describe the entire particle set. A global
collaborative localization algorithm is presented in [6] that also builds upon sample-
based Markov localization. In addition, [3, 8, 11] have all approached the problem
with different variations of the particle filter and have also applied their algorithm in
the SLAM (simultaneous localization and mapping) context. Further experimental
validation is provided in [11] and [3]. Grid-based and sampling-based Markov
localization techniques usually address the problem globally and can be improved
via carefully designed resampling processes to counteract localization failures. They
can also be used to accommodate non-Gaussian noise models. However, like all
sampling-based approaches, a large number of grids/samples are usually needed to
acquire reasonable outcomes, and the computational cost grows dramatically with
the dimension of the problem. A table comparing the two families of methods is
provided below.

These two main categories of localization techniques presented in Table 8.1
currently dominate the field. Both possess their own pros and cons and the choice
of which depend heavily on the type of applications they are desired for. The two
approaches can potentially be combined to yield superior outcomes. For more
details regarding the extended Kalman filter (EKF) applied to multi-robot systems
see [12, 14]. For details on collaborative Monte Carlo localization (MCL) see [6].

The following subsection explains how our approach differs.

8.1.3 Objectives, Contributions, and Outline

Existing approaches to the multi-robot localization problem usually consider only
uncertainties in each robot’s pose estimate and sensor measurement. The goal of
this chapter is to explore cooperative localization in a more generalized setting
where uncertainties in the sources of relative measurements (neighboring robots’
pose estimates) are also considered. The distributed localization approach proposed
in this chapter makes an effort to providing recursive closed-form expressions
for real time cooperative sensor fusion used for pose updates of robots within a
team. This work extends the method presented in [10], which considers cooperative



168 X. Li and G.S. Chirikjian

Table 8.1 Comparison between distributed EKF And MCL

Distributed EKF Multi-Robot MCL

Restrictions on error
distribution

Requires Gaussian process and
measurement error

Nonparametric particle
representation of posterior
belief, no assumptions on
noise distribution

Global localization No Yes

State recovery No Possible given a
well-designed resampling
process

Localization accuracy Accurate when error is small Depends on the number of
particles used

Computational cost Small due to the closed-form
propagation and update equations

Depends on the number of
particles. Can increase
dramatically with the
dimension of the state space

Ease of
implementation

Simple Can be involved

Robustness Prone to error due to linearization Quite resistant to errors
given multiple beliefs are
maintained simultaneously

Process multiple
detections
simultaneously

No No

Complexity relative
to team size

Fully distributed. Complexity
independent of team size

Complexity independent of
team size

localization with only one exact noise-free measurement (relative to a neighboring
robot), whereas the technique proposed here can take into account any number of
relative measurements while also considering sensor noise. This method is devel-
oped under the framework of exponential coordinates for Lie groups which gives
this exotic sounding methodology a down-to-earth benefit: Gaussian distribution
in Cartesian coordinates, .x; y; �/-planar coordinates and heading angle, possesses
elliptical probability density contours for each fixed � and for marginal densities in
.x; y/, whereas the banana-shaped distribution resulting from incremental motions
of a stochastic differential-kinematic system (i.e., a probabilistic model of mobile
robots with nonholonomic kinematic constraints) is better represented by a Gaussian
in exponential coordinates which produce a more conformable density contour
(see Fig. 8.2a). This underlying framework allows the proposed algorithm to tolerate
higher errors without worrying about collapse of the normality assumption as
uncertainty grows. Unlike most existing cooperative localization schemes that
consider only uncertainty in the pose of the robot to be estimated and measurement
noise, the presented method has also taken into account the uncertainty in the pose
of nearby robots from which relative measurements are taken, making it a more
realistic and dynamical localization technique. This approach is second order in its
expansion of the Gaussians that describes the pose and measurement distributions
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using the Baker–Campbell–Hausdorff (BCH) formula [4], and no simplifications
are made regarding the system kinematics, thus preserving the full nonlinear
characteristics of the original system. Lastly, the form of sensor measurement in
this method is kept generic without assuming the type of sensor or any underlying
characteristics given the Gaussian-in-exponential-coordinate model can be applied.

The remainder of this chapter is outlined as follows. Section 8.2 introduces
the mathematical foundation on which the proposed approach is based, namely
the basics of matrix Lie groups and exponential mapping. Section 8.3 provides a
detailed derivation of the proposed technique. Section 8.4 describes the experimen-
tal setup in simulation and provides a discussion of the results. Section 8.5 concludes
this chapter.

8.2 Mathematical Background for the Group SE.n/
and Exponential Mapping

8.2.1 The Special Euclidean Group and Exponential
Coordinates

The Special Euclidean Motion Group

The proposed technique is largely based on the notion of Lie groups and their
parameterizations. According to [4], a group is defined as a pair .G; ı/ consisting
of a set G and a binary operator ı such that g1 ı g2 2 G whenever g1; g2 2 G, the
operator is associative in the sense that .g1 ıg2/ıg3 D g1 ı .g2 ıg3/ for all elements
g1; g2; g3 2 G, there exists an identity element e 2 G such that for all elements
g 2 G, gıe D eıg D g, and for each g 2 G there exists an inverse element g�1 2 G
such that g ı g�1 D g�1 ı g D e. For engineering applications, a group of great
interest is the Special Euclidean Group, SE.n/, that describes rigid-body motions
in n-dimensional Euclidean space. The elements of SE.n/ can be represented as
.n C 1/ � .n C 1/ homogeneous transformation matrices of the form

SE.n/ D
��

R t
0T 1

�ˇ̌̌
ˇR 2 SO.n/; t 2 <n

�
; (8.1)

where SO.n/ is the special orthogonal group consisting of n�n rotation matrices and
<n is the n-dimensional vector space representing translations. The binary operation
in this context is simply the matrix multiplication. The Special Euclidean Group is
also a matrix Lie group since each element is a real-valued matrix, the whole set is
a differentiable manifold, and both the operations of multiplication and inversion of
homogeneous transformation matrices are smooth operations. We note that in most
practical problems n takes only two values: n D 2 for planar motion and n D 3 for
3-dimensional space motion.
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Now we introduce the concept of Lie Algebra. Again following [4], elements of
a matrix Lie group can be written as g D exp.X/ for X 2 G where the set G is
the matrix Lie algebra of G. The Lie Algebra for SE.2/ [denoted as se.2/] can be
represented by the linear combination of a set of basis

Ese.2/
1 D

2
40 0 1

0 0 0

0 0 0

3
5 ; Ese.2/

2 D
2
40 0 0

0 0 1

0 0 0

3
5 ; Ese.2/

3 D
2
40 �1 0

1 0 0

0 0 0

3
5 :

The exponential coordinates for an element of SE.2/ can be defined as xse.2/ D
Œv1; v2; ˛�T and under this definition an element of the Lie algebra se.2/ can be
written as a 3 � 3 matrix

Xse.2/ D
2
40 �˛ v1

˛ 0 v2

0 0 0

3
5 D

3X
iD1

Ese.2/
i xse.2/

i : (8.2)

The “hat” and “vee” notation is convenient to identify an element of se.2/ with a
vector in <3 as follows:

Oxse.2/ D Xse.2/ and Xse.2/_ D xse.2/:

The exponential map exp W se.2/ ! SE.2/ is surjective, but is not injective since
˛ D � and �� correspond to the same group element of SE.2/. But by removing
from SE.2/ the set of measure zero, M, corresponding to ˛ D � , it is possible to
define an inverse map log W .SE.2/ � M/ ! se.2/. Since the integrals of well-
behaved functions over SE.2/ and SE.2/ � M are the same, we do not distinguish
between SE.2/ and SE.2/ � M in the remainder of this chapter.

For SE.2/, exponentiation gives

R D
�

cos.˛/ sin.˛/

sin.˛/ cos.˛/

�
and t D

�
Œv2.cos.˛/ � 1/ C v1 sin.˛/�=˛

Œv1.1 � cos.˛// C v2 sin.˛/�=˛

�
: (8.3)

Adjoint Matrices

The adjoint operators Ad.g/ and ad.X/ are two important concepts in the derivations
that follow, and so their definitions as well as relevant properties are introduced in
this section. To define the adjoints, we need to first define the inner product and
Lie bracket operations for Lie algebras. According to [4], an inner product between
arbitrary elements of the Lie algebra Y D P

i yiEi and Z D P
i ziEi can be defined

such that
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.Y; Z/ D
dX
i

yizi; (8.4)

where d is the dimension of G. In particular, for G D SE.n/ the dimension is d D
n.n C 1/=2. Choosing a basis fEig and requiring that .Ei; Ej/ D ıij, where ıij is the
Dirac delta function, defines an inner product for G and a metric for G.

The Lie bracket of Y; Z 2 G is defined as

ŒY; Z�
:D YZ � ZY: (8.5)

With the above definitions in place, and any g 2 G, the adjoint operators are

Ad.g/X
:D d

dt
.g ı exp.tX/ ı g�1/jtD0 D d

dt
exp.tgXg�1/

ˇ̌
tD0

D g X g�1;

ad.X/Y
:D d

dt
.Ad.etX/Y/

ˇ̌̌
ˇ
tD0

:

(8.6)

Since the adjoint operators are both linear operators, they can both be written as
matrices that represent linear mapping. We call these matrices adjoint matrices and
define them as (in component form) [4]

ŒAd.g/�ij D .Ei; Ad.g/Ej/ D .Ei; g Ej g�1/; Œad.X/�ij D .Ei; ad.X/Ej/ D .Ei; ŒX; Ej�/:

(8.7)

Written in terms of columns, the matrices have the form

ŒAd.g/� D Œ.gE1g�1/_; : : : ; .gEng�1/_�; Œad.X/� D ŒŒX; E1�_; : : : ; ŒX; En�_�:

(8.8)
Some important properties of the adjoint matrices that are used in the following
calculations are listed as follow:

1. Ad.exp.X// D exp.ad.X//, ad.X/X_ D 0, ad.X/Y D XY � YX D ŒX; Y�

2. ad.X/Y_ D ŒX; Y�_, ad.ŒX; Y�/ D ad.X/ad.Y/ � ad.Y/ad.X/, ad.X/Y_ D
�ad.Y/X_

3. Ad.g1/Ad.g2/X D g1.g2Xg�1
2 /g�1

1 D .g1g2/X.g1g2/�1 D Ad.g1g2/X
4. log_.g ı eX ı g�1/ D Ad.g/ log_.eX/

For SE.2/, the explicit form of the adjoint matrices are

Ad.g/ D
�

R Mt
0T 1

�
2 <3�3; ad.g/ D

��˛M Mv
0T 0

�
2 <3�3 (8.9)

where M D
�

0 1

�1 0

�
and R and t are defined by Eq. (8.1). .v; ˛/ D .v1; v2:˛/ are the

exponential coordinates of SE.2/.
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The Baker–Campbell–Hausdorff Formula

The Baker–Campbell–Hausdorf (BCH) formula [4] serves as the core of the second-
order estimation of Gaussian convolutions (described in more detail in the next
section). In essence, the BCH formula establishes a relationship between the Lie
bracket [defined in Eq. (8.5)] and the matrix exponential. Let X; Y 2 G and define
Z.X; Y/ D log.eXeY/, the BCH formula then takes the form

Z.X; Y/ D X C Y C 1

2
ŒX; Y� C 1

12
.ŒX; ŒX; Y�� C ŒY; ŒY; X��/

C 1

48
.ŒY; ŒX; ŒY; X��� C ŒX; ŒY; ŒY; X���/ C � � � : (8.10)

This can be verified by expanding eX; eY using matrix exponential Taylor series
eX D P1

kD0
Xk

kŠ
and substitute into the Taylor series for matrix logarithm

log.eXeY/ D log.I C .eXeY � I// D
1X

kD1

.�1/kC1 .eXeY � I/k

k
: (8.11)

Applying the _ operator to (8.10) results in

z D x C y C 1

2
ad.X/y C 1

12
.ad.X/ad.X/y C ad.Y/ad.Y/x/

C 1

48
.ad.Y/ad.X/ad.Y/x C ad.X/ad.Y/ad.Y/x/ C � � � :

(8.12)

Equations (8.11) and (8.12) will be used extensively.

8.2.2 Gaussians on SE.n/ and Second-Order
Convolution Theory

A Gaussian on the SE.n/ is defined as

f .gI �; ˙/
:D 1

C.˙/
exp

�
�1

2
Œlog_.��1g/�T˙�1Œlog_.��1g/�

�
; (8.13)

where �; g 2 SE.n/, C.˙/ � .2�/
d
2 kdet.˙/k 1

2 is the normalizing factor when
k˙k is small.
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For a domain of integration G D SE.n/, the mean of the above Gaussian is
defined by the value � 2 G for which

Z
G

log_.��1g/f .g/ dg D 0; (8.14)

and the covariance is given by

˙
:D

Z
G
Œlog_.��1g/�Œlog_.��1g/�T f .g/ dg: (8.15)

For details on how to integrate on SE.n/, please refer to [15, 16]. Given two
Gaussians f1.g/ D f .gI �1; ˙1/ and f2.g/ D f .gI �2; ˙2/ in the form of (8.13),
their convolution is defined as

.f1 � f2/.g/ D
Z

G
f1.h/f2.h�1g/ dh D

Z
G
�1.��1

1 h/�2.��1
2 h�1g/ dh;

with �i.g/ D f .gI e; ˙i/ denoting a Gaussian centered at the identity. It is proven
(refer to [16]) that the convolution .f1 � f2/.g/ results (to the second order) in a
Gaussian with mean and covariance

�1�2 D �1�2; ˙1�2 D A C B C F.A; B/ (8.16)

with the terms A, B, and F defined by

A D Ad.��1
2 /˙1Ad.��1

2 /T and B D ˙2; (8.17)

where

F.A; B/ D 1

4

dX
i;jD1

ad.Ei/ B ad.Ej/
TAij C 1

12

8<
:Œ

dX
i;jD1

A
00

ij �B C BT Œ

dX
i;jD1

A
00

ij �
T

9=
;

C 1

12

8<
:Œ

dX
i;jD1

B
00

ij �A C AT Œ

dX
i;jD1

B
00

ij �
T

9=
;

(8.18)
and

A
00

ij D ad.Ei/ad.Ej/Aij; B
00

ij D ad.Ei/ad.Ej/Bij: (8.19)

The above results will be used for SE.2/ in the next section, where the basis
elements Ei as well as Ad and ad matrices as defined in the previous section.
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8.3 Derivation of Second-Order Bayesian Sensor Fusion
on the SE Group

This section presents a detailed derivation of the proposed technique. Again the
technique focuses on fusing the relative measurements of neighboring robots and
their pose information to reduce the estimation uncertainty of the current robot.
A probabilistic approach is adapted where uncertainties in the robot positions
and sensor measurements are modeled by Gaussians (refer to [5] for a more
generalized formulation of nonlinear measurement model approximation on Lie
groups). In addition, since the motion of a stochastic system with differential
constraints is modeled more accurately with Gaussians in exponential coordinates
than that in Cartesian coordinates, the proposed technique is developed under
exponential coordinates. The theory will first be developed for a system of two
robots (which builds on [10] by taking sensor noise into consideration) and be
extended to the multi-robot scenario.

8.3.1 Localization for a Robot Pair

The problem is given by two mobile robots i and j moving in the plane whose
priors in position and orientation are Gaussians f .a�1

i giI �i; ˙i/ and f .a�1
j gjI �j; ˙j/.

Here ai; aj 2 SE.2/ are the known initial positions of the robots relative to the
world frame at t D 0. At time t, �i; �j 2 SE.2/ and ˙i; ˙j 2 R3�3 are the
means (defined relative to the initial frames ai; aj), and covariances obtained from
a previous prediction step which we will also assume to be known. In addition,
a sensor measurement of robot j relative to i is also obtained at time t and is
given by the homogeneous matrix mij 2 SE.2/. Since we assume the sensor has
Gaussian noise, its distribution is then characterized by a Gaussian of the form
Mij.gi; gj/ D f .gjI gimij; ˙m/ which says that according to the sensor, the position
of robot j with respect to robot i has a mean of mij and covariance of ˙m.

The goal is then to calculate a posterior for the position of robot i using the
sensor measurement to update its prior. Because the sensor provides a relative mea-
surement, we first formulate the joint prior of robots i and j making the assumption
that the priors are independent of each other, giving

pij.gi; gj/ D f .a�1
i giI �iI ˙i/f .a�1

j gjI �jI ˙j/: (8.20)

Then according to Bayes’ Theorem, the joint posterior is given by

pij D �1pijMij; (8.21)

where �1 is a constant normalizing factor. Similar normalizing factors result in
all fusion processes that follow and will be denoted by �i. To save space in the
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derivations, we will denote �i.�
�1
i gi/ D f .giI �iI ˙i/ and the rest follows where

�i.g/ is a Gaussian with mean at the identity. The marginal distribution of the joint
posterior for robot i is then

pi.gi/ D f .giI �i; ˙ i/ D �2

Z
G

pij.gi; gj/Mij.gi; gj/ dgj

D �2�i.�
�1
i a�1

i gi/

Z
G
�j.�

�1
j a�1

j gj/�m.m�1
ij g�1

i gj/ dgj:

(8.22)

The goal is to find closed-form expressions for �i and ˙ i. Since �m is symmetric
around the mean, we have �m.m�1

ij g�1
i gj/ D �m.g�1

j gimij/. Letting g0 D gimij,
Eq. (8.22) becomes

pi.gi/ D �2�i.�
�1
i a�1

i gi/

Z
G
�j.�

�1
j a�1

j gj/�m.g�1
j gimij/ dgj

D �2�i.�
�1
i a�1

i gi/

Z
G
�j.�

�1
j a�1

j gj/�m.e�1g�1
j g0/ dgj;

(8.23)

where e 2 SE.2/ is the identity element of SE(2). According to the definition of
convolution in Sect. 8.2, the integral in Eq. (8.23) defines a convolution .f1 � f2/.g0/
where f1.g0/ D f .g0I aj�j; ˙j/ and f2.g0/ D f .g0I e; ˙m/. Let f1�2.g0I �1�2; ˙1�2/ D
.f1 � f2/.g0/, then (8.16)–(8.19) can be used to calculate the closed-form expressions
of �1�2 (which equals to aj�j) and ˙1�2. With the integral taken care of, (8.23)
becomes

pi.gi/ D f .giI �i; ˙ i/ D �2f .��1
i a�1

i giI e; ˙i/f .gimijI aj�j; ˙1�2/: (8.24)

For a posterior of robot i formulated in the form of (8.24), the fusion technique
developed in [10] can be used to derive the closed-form expressions for �i and ˙ i.

8.3.2 Localization for Multi-Robot Team

Now we are ready to extend the technique to multi-robot localization. Similar
to the previous subsection, the posterior of robot i is what we are trying to
estimate, but instead of taking measurement from a single neighboring robot,
multiple measurements are taken from however many neighboring robots that are
in the sensing range (for derivation purposes we label the neighboring robots as
1; 2; : : : ; n). Following a similar approach we have the joint prior

pi;1;:::;n D f .a�1
i giI �iI ˙i/f .a�1

1 g1I �1I ˙1/ : : : f .a�1
n gnI �nI ˙n/

D �i.�
�1
i a�1

i gi/�1.��1
1 a�1

1 g1/ : : : �n.��1
n a�1

n gn/:
(8.25)
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Let Min D f .gnI gimin; ˙in/ be the distribution of the sensor measurement of robot n
relative to robot i and assume independence among all the measurements. Then we
have the joint measurement distribution

Mi;1;:::;n D Mi1Mi2 : : : Min: (8.26)

To further save space, we will write in short �i D �i.�
�1
i a�1

i gi/ as the position priors
and �in D �in.m�1

in g�1
i gn/ D Min as the measurement distributions. We will further

define g0
in D gimin. The posterior for robot i is then

pi.gi/ D f .giI �i; ˙ i/ D �3

Z
G

Z
G
: : :

Z
G

pi;1;:::;nMi;1;:::;n dg1 dg2 : : : dgn

D �3�i

�Z
G
�1�i1 dg1

� �Z
G
�2�i2 dg2

�
: : :

�Z
G
�n�in dgn

�
:

(8.27)

Let fn.g0
in/ D f .g0

inI an�n; ˙n/ and fin.g0
in/ D f .g0

inI e; ˙in/, then (8.27) becomes

pi.gi/ D f .giI �i; ˙ i/ D �3�i.�
�1
i a�1

i gi/.f1 � fi1/.g0
i1/.f2 � fi2/.g0

i2/ : : : .fn � fin/.g0
in/:

(8.28)
Calculating the convolutions using (8.16)–(8.19), we finally arrive at

pi.gi/ D f .giI �i; ˙ i/ D �3f .��1
i a�1

i giI e; ˙i/f .gimi1I a1�1; ˙1�i1/ � : : : � f .giminI an�n; ˙n�in/

(8.29)

An extension of the method provided by [10] (which fuses only one measurement)
gives the equations to calculate �i and ˙ i and is presented as follows:

For neighboring robots 1; : : : ; k; : : : :; n

1. Define qk D mik�
�1
k a�1

k ai�i, exp.Oxk/ D qk., �k D .I C 1
2
ad.Oxk//, Si D � T

i ˙�1
i �i

2. Define Sk D � T
m Ad�T.mik/˙

�1
k�ikAd�1.mik/�k

3. S
0 D Si C

nP
kD1

Sk, x0 D NS0�1
nP

kD1

Skxk

With the above definitions, the posterior distribution for robot i can be calculated by

˙ i D N� 0 NS0�1 N� 0T

�i D �i exp.�ONx0/
(8.30)

with the operator ^ and _ defined in section 8.2.1.
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8.3.3 A Complete Distributed Localization Algorithm Using
Bayesian Filter in Exponential Coordinates

The fusion technique introduced above defines the state update step for the proposed
localization method. However, like all Bayesian filters a complete recursive filter for
state estimation consists of a state prediction step as well as a state update step. This
section serves to provide the proposed algorithm in such a form.

Similar to the above setting, suppose at time tk robot i is the robot to be
localized, robots 1; : : : ; k; : : : ; n are its n neighbors. Their means are �i.tk/; �k.tk/
and covariances ˙i.tk/; ˙k.tk/, respectively. Let the stochastic differential equation
(SDE) governing the motion of the robots be of the form

.g�1 Pg/_dt D hdt C Hdw; (8.31)

where h is constant. When g � e and for a sampling time 	t a constant command
u is given to the system resulting in motion of the system from tk to tkC1, the
distributed localization scheme that estimates the location of robot i at time tkC1

follows two steps (letting 	t D tkC1 � tk). These are the prediction and update
steps.

Prediction

�i.	t/ D exp

�Z 	t

0

Ohi d


�

˙i.	t/ D
Z 	t

0

Ad.��1
i .t � 
//HiH

T
i AdT.��1

i .t � 
// d


�i.t
�
kC1/ D �i.tk/ ı �i.	t/

˙i.t
�
kC1/ D Ai.tk/ C Bi.tk/ C F.Ai.tk/; Bi.tk//

(8.32)

where

Ai.tk/ D Ad.�i.	t/�1/˙i.t
C
k /Ad.�i.	t/�1/T ; Bi.tk/ D ˙i.	t/

Ai.tk/
00

ij D ad.Ei/ad.Ej/Ai.tk/ij; Bi.tk/
00

ij D ad.Ei/ad.Ej/Bi.tk/ij

(8.33)
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Fi.Ai.tk/; Bi.tk// D 1

4

dX
i;jD1

ad.Ei/Bi.tk/ad.Ej/
TAi.tk/ij

C 1

12

8<
:

"
dX

i;jD1

Ai.tk/
00

ij

#
Bi.t/ C Bi.t/

T

"
dX

i;jD1

Ai.t/
00

ij

#T
9=
;

C 1

12

8<
:

"
dX

i;jD1

Bi.tk/
00

ij

#
Ai.tk/ C Ai.tk/

T

"
dX

i;jD1

Bi.tk/
00

ij

#T
9=
;

(8.34)

The second equation in (8.32) follows from equation (19) in [13] given by

˙i.	t/ D
Z 	t

0

Ad�1Œ��1
i .
/�i.t/�HiH

T
i Ad�T Œ��1

i .
/�i.t/� d
: (8.35)

Since in our context the mean takes the form of � D exp.Xt/ where X 2 G is a
constant, it follows that ��1

i .t/�i.
/ D �i.
/��1
i .t/ D ��1

i .t � 
/. Combined with
the property of adjoint Ad�1.�/ D Ad.��1/ gives the final expression in (8.32).

Also in the above equations, �i.	t/ and ˙i.	t/ define the incremental distribu-
tion resulting solely from the input given at the 	t time frame with location given
with respect to �i.tk/, not the fixed world frame. In order to take into account the
uncertainties already present at time t given by ˙i.tk/, the distribution at time tk is
convolved with the incremental distribution resulting in the predicted distribution
given by �i.t�kC1/; ˙i.t�kC1/.

Update

Now to incorporate the relative measurements, for each of the neighboring robots
1; : : : ; k; : : : ; n, obtain the measurement distribution mik.t/; ˙ik.t/, then

Aik.tk/ D Ad.mik.tk/
�1/˙k.tk/Ad.mik.tk/

�1/T ; Bik.tk/ D ˙ik.tk/

Aik.tk/
00

ij D ad.Ei/ad.Ej/Aik.tk/ij; Bik.tk/
00

ij D ad.Ei/ad.Ej/Bik.tk/ij

(8.36)

and using (8.18),

˙k�ik.t.tk// D Aik.tk/ C Bik.tk/ C F.Aik.tk/; Bik.tk// (8.37)

1. Define qk.tk/ D mik.tk/�k.tk/�1a�1
k ai�i.t�kC1/, exp.Oxk.tk// D qk.tk/

2. Define �k.tk/ D .I C 1
2
ad.Oxk.tk///, Si.tk/ D �i.tk/T Œ˙i.t�kC1/��1�i.tk/

3. Define Sk.tk/ D �m.tk/TAd�T.mik.tk//˙k�ik.tk/�1Ad�1.mik.tk//�k.tk/

4. S
0
.tk/ D Si.tk/ C

nP
kD1

Sk.tk/, x0.tk/ D NS0.tk/�1
nP

kD1

Sk.tk/xk.tk/
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Then

˙i.t
C
kC1/ D N� 0.tk/NS0.tk/�1 N� 0.t/tk ; �i.t

C
kC1/ D �i.t

�
kC1/ exp.�ONx0.tk// (8.38)

8.4 Simulation and Discussions

This section provides verification for the proposed technique in a Matlab-simulated
environment. A team of two-wheeled differential drive robots are moving in the
field. The given inputs are such that all robots move along a straight line or a circular
arc. However, due to the stochastic nature of the systems, errors accumulate over
time such that odometry or dynamics alone is insufficient in estimating the robot
poses. The results from the previous sections can therefore be used to update the
robots’ knowledge of their poses with the help of measuring their positions relative
to neighboring robots.

Figure 8.1 depicts a simple model of the two-wheeled differential drive robot
which is very useful in modeling segway-like mobile bases and various multi-
robot experimental platforms (E-pucks, iRobot create, Khepera, etc.). According
to [10], the kinematics of such a mobile robot can be characterized by the stochastic
differential equation

.g�1 Pg/_dt D
2
4

r
2
.!1 C !2/

0
r
2
.!1 � !2/

3
5 dt C p

D

2
4

r
2

r
2

0 0
r
l � r

l

3
5 �

dw1

dw2

�
; (8.39)

where g 2 SE.2/ is the homogenous matrix representing the pose of the robot, r is
the wheel radius, l is the axle length, !1; !2 are the wheel angular velocities, dwi

Fig. 8.1 Simple model for a
two-wheeled differential
drive mobile system
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are unit strength Wiener processes, and D is a noise coefficient. This stochastic
differential system can be simulated using Euler–Maruyama method described
in [7]. Equation (8.39) can be written in short as

.g�1 Pg/_dt D hdt C Hdw (8.40)

when g is close to the identity, given an input pair Œ!1; !2�T , the mean and covariance
of system (8.39) can be estimated by

�.t/ D exp

�Z t

0

Oh d


�
;

˙.t/ D
Z t

0

Ad.��1.t � 
//HHTAdT.��1.t � 
// d
:

(8.41)

For simple motions like straight-line motion when !1 D !2, (8.41) can be evaluated
analytically as

�.t/st D
2
41 0 r!t

0 1 0

0 0 1

3
5 ; ˙.t/st D

2
64

1
2
Dr2t 0 0

0 2D!2r4t3

3l2
D!r3t2

l2

0 D!r3t2

l2
2Dr2t

l2

3
75 : (8.42)

The same can be done with circular motion of constant curvature

�.t/cir D
2
4cos. P̨ t/ � sin. P̨ t/ a sin. P̨ t/

sin. P̨ t/ cos. P̨ t/ a.1 � cos. P̨ t//
0 0 1

3
5 ; ˙.t/cir D

2
4�11 �12 �13

�21 �22 �23

�31 �32 �33

3
5 :

(8.43)

where

�11 D c

8
Œ.4a2 C l2/.2 P̨ t C sin.2 P̨ t// C 16a2. P̨ t � sin.2 P̨ t//�;

�12 D �21 D �c

2
Œ4a2.�1 C cos.2 P̨ t// C l2� sin. P̨ t=2/2;

�13 D �31 D 2ca. P̨ t � sin.2 P̨ t//;

�23 D �32 D �2ca.�1 C cos. P̨ t//;

�33 D 2c P̨ ;

c D Dr2

l2 P̨ :

(8.44)
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With the pose priors calculated with (8.41)–(8.44), (8.36)–(8.38) are then applied
with sensor measurements to update the priors. For arbitrary inputs .!1; !2/ an
approximation will be applied to (8.41) which will be discussed in the next section.

This example simulates localization of a robot team in straight and circular
motion. In the setup of this simulation, the model based parameters are set as
r D 0:033; l D 0:2. The simulation parameters for straight-line motion are D D
5; v D 0:5; T D 1:3, !1 D !2 D v

r , and T D 2, !1 D 26:166; !2 D 21:408 (for
circular motion). The true robot motions are simulated 500 times using the Euler–
Maruyama method [7] and the end position of each trial is plotted in the following
figures. It can be observed that the posterior of such a stochastic differential system
(SDE) results in a banana shaped distribution as is also discussed in [15].

In this simulation, all four robots are given the command to travel in a straight
line for 1.3 % at 0.5 m/s or along an arc of constant curvature of 1 m at 45 deg/s
for 1 s. The blue dashed lines in the figures represent the desired path of travel
with the blue points at the two ends representing initial to final position. However,
due to process noise each robot will eventually end up somewhere near the desired
goal and our objective is to estimate its true position along with a quantification
of our confidence of this estimate. Specifically for this example, the true pose of
the middle robot (cyan colored) is what we are trying to estimate which we will
call robot i, while the neighboring robots (yellow) are members of this team where
relative measurements are obtained from. Among all the sampled end positions, one
position for each robot is chosen as the true end pose (red point) and this is used to
generate the mean of the measurement distribution min.

As the first step, the prior mean and covariance of robot i is calculated using
(8.42) and (8.43), and plotted in Fig. 8.2a, b, the resultant prediction aligns perfectly
with the desire path (blue dash line), and the error “ellipse” marginalized over the
heading angle is also plotted from the calculated covariance (magenta loop). Since
this error “ellipse” is a contour of the resultant distribution, it can be observed
that a Gaussian distribution under exponential coordinates is a much better fit for
characterizing the uncertainties in an SDE of this kind than that under Cartesian
coordinates. It is obvious that this prediction gives the same resultant distribution
regardless of the true position and is only effected by the system dynamics and input
commands. Therefore the next step is to update this prediction with measurements
relative to neighboring robots.

It is assumed that robot i can exchange information with its neighbor when it
comes into its sensing range, which means when a relative measurement is taken
of neighbor j relative to robot i, the belief (mean and covariance in this case) that
j holds for its current position can be communicated to i so that i can make use of
this information in its localization process (update step). In this example, this belief
(�j; ˙j) for each neighboring robot j is taken to be the pose prediction calculated
from (8.42) or (8.43), but in reality this can very well be the posterior from its own
localization results. The covariance of the measurement distribution is chosen to be
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Fig. 8.2 Localization with only the prediction model. (a) Straight-line motion. (b) Circular motion
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Figures 8.3a, b show the updated posterior of robot i calculated from fusing the
relative measurements taken from its three neighbors. The result indicates a more
accurate position mean (black dot) and a shrinked error “ellipse” representing higher
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Fig. 8.3 Pose update after sensor measurement and fusion. (a) Straight-line motion. (b) Circular
motion

confidence in the estimate. Since this is a distributed localization technique aimed to
be implemented on the embedded processor of each individual robot, the procedure
is demonstrated only for one robot and the same goes for all other.
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8.5 Conclusion

This chapter proposed a distributed cooperative localization technique that can
incorporate multiple sensor measurements to achieve higher estimation accuracy.
Robots in a team can take measurements and exchange information among each
other to update their knowledge of the current position. Simulation is used to
validate the performance of the approach in Matlab. Results from the Matlab
simulation show a good localization accuracy of the presented approach. The
proposed multi-robot localization technique is distributed in that each robot can
perform this localization process without the help of a centralized processor and
is scalable for the computation time does not increase as the robot team enlarges
and increases only linearly with the number of measurements taken. The generality
of this scheme lies in the fact that uncertainties in the belief of the current
robot, neighboring robots, and sensor measurements have all been considered
which yields a more realistic estimate. Unlike sampling-based approaches, the
proposed approach provides closed-form expressions which significantly increases
computational efficiency. Most existing cooperative localization schemes possess a
subset of the above attributes but rarely all. Lastly, this technique is of second order
in its estimation of an updated posterior which is expected to be more accurate and
reliable than first-order methods.

The limitation of this method is its dependency on Gaussian noises. Moreover,
at present this is a local technique in that it depends on known initial poses and
does not recover from localization failures (defined by [15]). In its current state, this
approach does not possess the ability to serve as the sole scheme to localize a team
of robots in that as errors accumulate in the beliefs of neighboring robots, erroneous
information will be given to the current robot that leads to localization failures.
However, this technique is local and prone to error accumulation only when none
of the member robots have a reasonable estimate of their positions. As long as one
robot possesses a good knowledge of its current pose (via more accurate sensors or
sophisticated but computationally expensive algorithms) then this information can
be used to drastically reduce the uncertainty of the entire team which introduces a
level of robustness to the system and can also significantly reduce hardware and
computational cost of the team. Table 8.2 shows a comparison of the proposed
method with two of the most representative and accepted approaches.

The accuracy of the exponential localization method is expected to see great
increase compared to results shown previously if the algorithm parameters (initial
pose covariance, process and measurement noise covariances, etc.) can be fine-
tuned. Establishing a systematic way of tuning these parameters can be a topic of its
own. It is also incredibly beneficial if the proposed method can be combined with
sampling-based approaches for their global localization and state recovery abilities.
Lastly, experiments on hardware are required to fully establish the advantage of
the proposed scheme. Overall this chapter has provided an alternative distributed
cooperative localization technique in the domain of Lie group and exponential
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Table 8.2 Final comparison

Distributed EKF Multi-Robot MCL Exponential localization

Restrictions on error
distribution

Requires Gaussian
process and measurement
error

Nonparametric particle
representation of posterior
belief, no assumptions on
noise distribution

Gaussian

Global localization No Yes No

State recovery No Possible given a
well-designed resampling
process

No

Localization
accuracy

Accurate when error is
small

Depends on the number of
particles used

Accurate within an error
range

Computational cost Small due to the
closed-form propagation
and update equations

Depends on the number of
particles. Can increase
dramatically with the
dimension of the state
space

Small due to closed form
equations

Ease of
implementation

Simple Can be involved Simple

Robustness Prone to error due to
linearization

Quite resistant to errors
given multiple beliefs are
maintained simultaneously

Less susceptible to errors
given the well conformity
to the motion model

Process multiple
detections

No No Yes

Complexity relative
to team size

Fully distributed.
Complexity independent
of team size

Complexity independent
of team size

Linear to the number of
measurements processed

coordinates and has validated in simulation the potential of this technique as the
next state of the art.
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