Chapter 12
Elastic Shape Analysis of Surfaces and Images

Sebastian Kurtek, Ian H. Jermyn, Qian Xie, Eric Klassen, and Hamid Laga

Abstract We describe two Riemannian frameworks for statistical shape analysis of
parameterized surfaces. These methods provide tools for registration, comparison,
deformation, averaging, statistical modeling, and random sampling of surface
shapes. A crucial property of both of these frameworks is that they are invariant
to reparameterizations of surfaces. Thus, they result in natural shape comparisons
and statistics. The first method we describe is based on a special representation
of surfaces termed square-root functions (SRFs). The pullback of the > metric
from the SRF space results in the Riemannian metric on the space of surfaces. The
second method is based on the elastic surface metric. We show that a restriction of
this metric, which we call the partial elastic metric, becomes the standard L2 metric
under the square-root normal field (SRNF) representation. We show the advantages
of these methods by computing geodesic paths between highly articulated surfaces
and shape statistics of manually generated surfaces. We also describe applications of
this framework to image registration and medical diagnosis.
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12.1 Introduction

Shape is an important physical property of 3D objects that helps characterize
their appearance. As a result, statistical shape analysis, which is concerned with
quantifying shape as a random object and developing tools for generating shape
registrations, comparisons, deformations, averages, probability models, hypothe-
sis tests, Bayesian estimates, and other statistical procedures on shape spaces,
plays an important role in many applications including medical imaging, biometrics,
bioinformatics, 3D printing, and computer graphics. Medical imaging is a primary
example of an application where shape statistics can play a very important role.
Advances in noninvasive imaging technology, such as magnetic resonance imaging
(MRI), have enabled researchers to study biological variations of anatomical
structures. Studying shapes of 3D anatomies is of particular interest because many
complex diseases can potentially be linked to alterations of these shapes. Thus,
statistical shape analysis can be a central tool in disease diagnosis and design
of novel treatment strategies. The two methods described in this chapter have
been successfully applied to classification of attention deficit hyperactivity disorder
(ADHD) [31, 32, 47] and mathematics deficiency [35] using shapes of subcortical
structures, and statistical modeling of endometrial tissues [41] in the presence of
endometriosis.

In this chapter, we focus on shape analysis of parameterized surfaces. In
particular, we describe two recent Riemannian frameworks that allow comparison,
matching, deformation, averaging, and statistical modeling of observed shapes.
This work was motivated by the widespread success of elastic Riemannian shape
analysis of curves [27, 37, 40, 42, 51]. The main benefit of Riemannian shape
analysis is in the breadth of mathematical tools at our disposal, resulting in a
principled statistical shape analysis framework. We note that there are currently
very few Riemannian approaches to shape analysis of 3D objects. Similar to curves,
researchers have proposed many different representations of surfaces. Many groups
study shapes of surfaces by embedding them in volumes and deforming these
volumes under the large deformation diffeomorphic metric mapping (LDDMM)
framework [11, 12, 20, 26, 46]. While these methods are both prominent and
pioneering in medical image analysis, they are typically computationally expensive
since they try to match not only the objects of interest but also some background
space containing them. An important benefit of the LDDMM framework is that it
utilizes the Riemannian geometry of the reparameterization group to compute shape
comparisons and deformations. A closely related approach utilizes inner metrics
to describe shape deformations, which are prescribed directly on the surface [3].
Others study 3D shapes using manually generated landmarks under Kendall’s shape
theory [15], level sets [39], curvature flows [22], point clouds [2], or medial axis
representations [5, 19].

However, the most natural representation for studying the shape of a 3D object
would seem to be a parameterized surface. In this case, there is an additional
difficulty in handling the parameterization variability. Specifically, a reparame-
terization of a surface (achieved using an appropriate function y € I’ made
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precise later) does not change the shape of the object. Thus, a main goal in
shape analysis is to define Riemannian metrics and subsequent statistical analyses,
which are invariant to the introduction of an arbitrary parameterization in shape
representations. Methods such as SPHARM [6, 29] or SPHARM-PDM [17, 44]
tackle this problem by choosing a fixed parameterization that is analogous to the
arc-length parameterization on curves. Kilian et al. [30] presented a technique
for computing geodesics between triangulated meshes (discretized surfaces) but at
their given parameterizations, thus requiring the registration problem to be solved
manually or using some other available method. In fact, a large set of papers in the
literature treat surface registration as a preprocessing step [28]. In such methods,
points across surfaces are first registered using some predefined energy functions
such as the entropy [8] or the minimum description length [13]. Once the surfaces
are registered, they are compared using standard procedures. There are several
fundamental problems with such approaches; first, the energy used for registration
does not lead to a proper distance on the shape space of surfaces. Second, the
registration procedure is typically completely unrelated to the rest of the analysis.
In other words, the two tasks are performed under different metrics. Figure 12.1
displays the various representations of surfaces used for shape analysis.

The remainder of this chapter describes two Riemannian frameworks for statis-
tical shape analysis of parameterized surfaces that overcome the above presented
difficulties. In particular, the defined Riemannian metrics are invariant to reparam-
eterizations of surfaces and allow shape comparisons via geodesic paths in the
shape space. Geodesics can in turn be used to define statistics on shape spaces
including the Karcher mean and covariance. Tools for other statistical procedures are
also presented including principal component analysis and random sampling from

o
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Morse Function Geometric Descriptors Domain Embedding Parameterized Surfaces

Fig. 12.1 Different representations of surfaces for shape analysis. (courtesy of Srivastava
et al. [43])
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Gaussian-type shape models. Finally, an application to classification of attention
deficit hyperactivity disorder is presented, where the benefits of these methods are
seen through a superior classification rate.

12.2 Surface Representations and Riemannian Metrics

Let F be the space of all smooth embeddings f : D — R3, where D represents
the surface domain. Depending on the application of interest D can be the sphere
for closed surfaces, disk for hemispherical surfaces, or square for quadrilateral
surfaces. Each such embedding defines a surface f(D) C R>. Let I" be the set of
all diffeomorphisms of D. I" will act as the reparameterization group for surfaces.
It acts naturally on F by composition: (f, y) — foy. Thus, the space of surfaces can
be thought of as the quotient space F /I, i.e. the space of equivalence classes under
the action of I" endowed with appropriate structures.

Since F is a vector space, the tangent space at any point f € JF denoted
by T;(F) can be identified with F. Given the Lebesgue measure ds on D, one
can define a Riemannian structure on F as follows. For éf1, 8, € T;(F), define
the L? Riemannian metric as (8fi,8%) = |, p (8f1(s), 8f2(s)) ds, where the inner
product inside the integral is the Euclidean inner product in R3. The resulting
squared > distance between two surfaces fi,f, € F is /, plfi(s) — fa(s)|?ds. In
this expression, | - | denotes the standard two-norm of a vector in R?. While simple,
this metric has a critical defect: just as in the case of curves, the action of I" does
not preserve distances. In other words, the group I" does not act on the space F by
isometries under the IL? metric. This is easily seen through the following expression:
dfiov.roy) = [ i) —Ly6)IPds = [, G — LG, (s)7'ds #
d(fy, fz)z, where J, is the determinant of the Jacobian of y. In this equation, we
have used the substitution § = y(s) and J,(s)ds = d5. The inequality comes
from the fact that, in general, y is not area preserving and thus the determinant
of the Jacobian is not one at all points. The lack of isometry means that the shape
space F/I" does not inherit the structure of a Riemannian manifold from F, thereby
making this metric difficult to use for analyzing shapes of parameterized surfaces.
One solution is to restrict attention to area-preserving diffeomorphisms [21], but
this restriction proves to be very limiting in practice. Another solution is to develop
a new representation of surfaces such that the action of I" preserves IL? distances.
Then, one can use the pullback of the IL? metric from the new representation space
to define a Riemannian structure on the space F. We take this approach and present
two different representations of surfaces that satisfy these conditions: the square-
root function (SRF) and the square-root normal field (SRNF).
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12.2.1 Square-Root Function Representation
and Pullback Metric

Let (x,v) : D — R? be coordinates on Dj; then, fi(s) = %(s) and f,(s) = g—f;(s).
To endow F with a Riemannian metric, we begin by defining a new representation
of surfaces called square-root functions or SRFs [32, 33, 38]:

Definition 1. Define the mapping Q : F — L? as Q(f)(s) = q(s) = +/|n(s)|f(s),
where n(s) = fi(s) x f;(s) is the normal vector to the surface f at point s.

The factor |n(s)| can be interpreted as the ratio of infinitesimal areas of the surface
at f(s) and the domain at s, the “area multiplication factor.” For any f € F, we will
refer to g(s) = Q(f)(s) as the SRF of f. Since we defined F as the space of smooth
surfaces, Q(F) is a subset of L2(D, R?), henceforth denoted 2. If a surface f is
reparameterized by y, then its SRF changes to (¢,y) = (g o y) \/J_y . This can be
extended to a right action of I" on L.

We choose the natural I.> metric on the space of SRFs: the inner product of
any two elements 8q1,8q, € T,(L?) is (8q1,8¢2) = Jp (8q1(s), 842(s)) ds. This
metric has the key property that I" acts by isometries on L?. As a result, if we
pullback this metric to F, the resulting Riemannian metric is also preserved by the
action of I', unlike the plain > metric on F mentioned at the beginning of this
section. To obtain the pullback metric, we must first derive the differential of the
mapping Q at any surface f, denoted by Q.. This is a linear mapping between

tangent spaces T7(F) and T (LL?). For a tangent vector §f € Ty(F), the mapping
Ox s : T(F) — To()(L?) is given by

Qs (8f) = || —— (- ngp)f + VIl 8. (12.1)

The quantity ns depends on both f and §f and is defined as f; x 8f;, + 8f; x f;. The
pullback metric on F is then defined as usual.

Definition 2. For any f € F and any 6f}, f> € T¢(F), define the inner product

(871, 82))r = (0w £ (811), Qs (812)) (12.2)

where the inner product on the right side is the standard inner product in L.

To write the metric in Definition 2 in full detail, we use the expression for Qx ¢(3f)
given in Eq. (12.1):

(81,80 = <2‘ B (- ns)f + Vnl 81, ” |x (- nsp)f + Vnl 8f2)

<4| |3(n nsp )f, (n - nbfz)f> <2| | [(n-nsp)8fi + (n - nsp )8f], f> (Inléfi, 8f2) .
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As stated, because of the structure of Q, the action of I" on F is by isometries
under this metric. That is, for any surface f € F,a y € I', and two tangent vectors
8fi.8f> € T;(F). we have ({8fi © .82 0 ¥))joy = ({81 862))-

It is frequently important for shape analysis to be invariant to changes in the
positions, orientations, and sizes of the surfaces being compared. In other words,
the metric should be invariant to the action of the (direct) similarity group of
translations, rotations, and scalings. One way to achieve such invariance is by
normalizing, i.e. by picking a distinguished representative of each equivalence class
under the group action, and then computing distances only between these distin-
guished elements. Thus, translations may be removed by centering, fienterea(S) =

f( ) fD (Y)‘"(Y)‘dV

Jp In(s)|ds
unit area, ficaed(s) =

, while scalings may be removed by rescaling all surfaces to have
f(s)

A Jp In(s)|ds ’

of such normalized surfaces also by F. Then, F forms the “preshape space” in
our analysis. Paired with the Riemannian metric ((-,-)), it becomes a Riemannian
manifold.

Another, often equivalent, way to achieve invariance is by constructing the
quotient space under the group action, inducing a metric on the quotient space from
the covering space and then computing distances between points in the quotient
space (i.e. between equivalence classes). This is how we will deal with the actions
of the rotation group SO(3) and I". The rotation group acts on F according to
(0.f) = Of, for O € SOQ) and f € F. It is easy to check that this action
is by isometries. We have already seen that the action of I" is by isometries too.
Furthermore, the actions of I" and SO(3) on F commute, allowing us to define an
action of the product group. The equivalence class or orbit of a surface f is given
by [f] = {O(f o y)|0 € SO@3),y € I'}, and the set of all [f] is by definition the
quotient space S = F/I" = {[f]lf € F}. This quotient space is called the “shape
space.”

The next step is to define geodesic paths and distances in the shape space S.
This is accomplished using the following joint optimization problem. Let f; and
/> denote two surfaces and let ((-,-)) be the Riemannian metric on F. Then, the
geodesic distance between shapes of f; and f; is given by

Slightly abusing notation, we denote the space

_ - ; PO dF@) )
aLE = min . (/0 (0 Oy g,

F(0) =/1. FA) = O(f20 )
(12.3)
In this equation, F(f) is a path in F indexed by ¢. The quantity L(F) =
fo dfly), cliu] ))1/2) dt provides the length of the path F. The minimization inside
the brackets represents the problem of finding a geodesic path between the surfaces
fi and O(f0y), where O and y stand for an arbitrary rotation and reparameterization
of f,, respectively. This is computed using a path-straightening technique. We

omit the details of this method here and refer the interested reader to [34] for
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min
F:[0,1] = F
F0)=fi, F(1)=0(f207)

Fig. 12.2 Pictorial description of the process of computing geodesics in the shape space of
surfaces

details. The minimization outside the brackets seeks the optimal rotation and
reparameterization of the second surface so as to best match it with the first surface.
This optimization is performed iteratively using Procrustes analysis to solve for
optimal rotations and a gradient descent algorithm [32, 33] to solve for the optimal
reparameterization. A few details of this registration procedure are presented in the
next section. In simple words, the outside optimization solves the registration prob-
lem while the inside optimization solves for both an optimal deformation (geodesic
path, F*) and a formal geodesic distance between shapes. Figure 12.2 displays
the joint optimization problem defined in Eq. (12.3). Figure 12.3 displays several
examples of geodesic comparisons for complex surfaces with many articulated
parts. We note the clear benefit of finding optimal reparameterizations during the
geodesic computation. The geodesics in the shape space are much more natural
than those in the pre-shape space. Furthermore, the decrease in the distance due to
optimization over the reparameterization group is significant in all of the presented
examples. These properties will additionally lead to improved shape statistics and
more parsimonious shape models.

12.2.2 Application to Image Registration

The problem of image registration is common across multiple application areas.
Given a set of observed images, the goal is to establish point correspondence across
the domains of these images. Although the registration problem has been studied
for almost two decades, there continue to be some fundamental limitations in the
popular solutions that make them suboptimal, difficult to evaluate, and limited in
scope. To explain these limitations, let f; and f, represent two R”-valued images.
A pairwise registration between these images is defined as finding a diffeomorphic
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Fig. 12.3 Comparison of geodesics computed under ({, -} in the pre-shape space and shape space

mapping y of the image domain D to itself, such that pixels fi(s) and f>2(y(s))
are optimally matched to each other for all s € D. To develop an algorithm
for registration one needs an objective function for formalizing the notion of
optimality. A common type of objective function used in registration frameworks is
L(Sfr.froy) = [plfils)— f2(y(s))|?ds + AR(y), where R is a regularization penalty
on y and A is a positive constant. This objective function has many shortcomings
including lack of symmetry (registration of f to f, is different from registration
of f, to f1). Next, we outline several important properties for image registration
and show that the framework for shape analysis of surfaces can be applied to the
image registration problem. Furthermore, this framework overcomes many of the
shortcomings of current registration methods.

In the case of images we extend the definition of F to all images on some
domain D that take value in R”, n > 1. (When dealing with grayscale images,
we add the gradient of the image f to create an image in R3.) We let I" denote the
reparameterization group, also called the image-warping group. Let L(fi, (2, ¥))
denote the objective function for matching f; and f, by optimizing over I (here y is
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assumed to be applied to f; resulting in (f2, y) € F). Then, the desired properties of
L are (for any fi,f, € F and y € I'): (1) symmetry; (2) positive definiteness;
(3) lack of bias: if fi,f, are constant functions then L(f1,£2) = L(f1, (/. ¥));
(4) invariance to identical warping: L(fi,f2) = L ((fi,y), (2, y)); (5) triangle
inequality; and (6) I" is a group with composition as the group action. These
properties have been discussed previously in [9, 45, 49].

Next, we define a representation of images, similar to the SRF, which allows
invariance to I” under the L? metric [48, 49].

Definition 3. Define the mapping Q : F — L2(D,R"),n > 1, as Q(f)(s) = §(s) =
V1a(s)|f (s), where |a(s)| = |fi(s) A f;(s)|, where A is the wedge product.

We will refer to this representation as the extended SRF. The extended SRF is
simply a generalization of the SRF used for surfaces to functions taking values in
R", n > 1. Assuming the original set of images to be smooth, the set of all extended
SRFs is a subset of 2. One can show that the action of I" on IL? is exactly the same,
mutatis mutandis, as that in the previous section. This implies that this group acts
on > by isometries, satisfying property (4). This leads to the following definition
of the objective function.

Definition 4. Define an objective function for registration of any two images f; and
f>, represented by their extended SRFs g, and ¢, as L(f1, (2, 7)) = llg1 — (G2, V)|

The registration is then achieved by minimizing this objective function: y* =
arginf, ¢ L(f1, (2, ¥)) = arginf, ¢ |§1 — (g2, y) |- The objective function L given
in Definition 4 satisfies all of the properties listed earlier. The I.> norm between
extended SRFs of images becomes a proper measure of registration between images
since it remains the same if the pixel correspondence is unchanged. This leads to
a quantity that serves as both the registration objective function and an extrinsic
distance between registered images (||g; — (g2, ¥ *)||). It is important to note that the
proposed objective function has only one term (similarity term) and the regularity
term appears to be missing. However, the similarity term has built-in regularity,
since it includes the determinant of the Jacobian of the transformation y. Additional
regularity can also be introduced as in the LDDMM framework [4].

Gradient Descent Method for Optimization Over I' The optimization problem
over I is a major component of this registration framework and we use a gradient
descent method to solve it. Since I' is a group, we use the gradient to solve for the
incremental warping y, on top of the previous cumulative warping y,, as follows.
First, define a cost function with respect to y as E(y) = ||g1 — ¢;,g()/)||2, where
¢; : I' — [q] is defined to be ¢;(y) = (¢, y) and g5 = (g2, ¥,) With y, being the
current registration function. Given a set of orthonormal basis elements, say B, of
T, (I"), the gradient at y,q takes the form VE(y;q) = D cp(q1 — b3 (Via), dg.% ().
In this equation, (,25;];,*([?) denotes the differential of ¢; at y;s in the direction of b
and brackets denote the I.? inner product. We omit the derivation of ¢5,+ and note
that it is the same as presented in [33]. We note that this gradient-based solution can
also be employed in the search for optimal y in the case of parameterized surfaces.
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Fig. 12.4 Registration of two synthetic grayscale images. y1» = argmin,c L(f2, (fi,y)) and

yu = argmin, .~ L(fi, (f2, ). |1 — q2ll = 0.2312, [[g1 — (G2, y20) || = 0.0728, and || (g1, y12) —
721l = 0.0859. (Courtesy of Xie et al. [49])

There, one has to perform an additional search over the rotation group SO(3), and
then solve for the geodesic using path straightening.

In Fig. 12.4 we display an example of registering two smooth grayscale images
using this framework. The correspondence appears to be good, and more impor-
tantly, the resulting distance between the registered images is approximately
symmetric and the registration is inverse consistent. That is, the compositions
y210y12 and y1; 0 y7; result in the identity mapping. This provides empirical support
for the claim that this method satisfies all properties outlined earlier.

12.2.3 Elastic Riemannian Metric

While the SRF representation has its advantages, it has two important drawbacks.
First, there is no intuitive interpretation or justification for the use of the metric,
unlike the elastic Riemannian metric used in the case of curves; rather, it was solely
devised for the convenience of being able to compare the shapes of parameterized
surfaces using the > metric in the SRF space. Second, the associated metric is not
translation invariant; translating two shapes equally does not preserve the distance
between them, which can cause some issues during statistical analysis. To overcome
these two drawbacks, while preserving the advantages of the SRF representation, a
different representation of surfaces was introduced in [25]: the square-root normal
field, or SRNF, the details of which we present next.

We first recall the elastic metric in the case of curves [42]. Let 8 : D — R2
be a curve, where D temporarily denotes either the circle S ! or the interval. Let
rds = |B| ds be the induced metric measure, where ds is Lebesgue measure on D,
and let 71 be the normalized normal vector to the curve. We can represent the curve
uniquely up to translations by the pair (r, 7). Then, the family of elastic metrics
takes the form
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3r1(s)8ra(s)

(({(Br1, 871), (5r2,5712))))(rﬁ) = ZA/D r(s)

ds+c/ (6m1(s), 6na(s)) r(s)ds,
D
(12.4)

where (§r;, 0n;), i € {1, 2} are tangent vectors at the curve (r,71), and A, c € R5.

Although this metric was defined for curves, it can immediately be applied to
surfaces, with » = |n| denoting the induced metric measure and 7 = * denoting
the unit normal vector. We thereby define a new Riemannian metric on the space
of parameterized surfaces known, for reasons that will become clear, as the “partial
elastic metric.” To understand this metric, consider that a small change in f on an
infinitesimal patch in the surface around the point f(s) can be decomposed into a
change in the normal direction of the patch (“bending”) and a change in its geometry
(“stretching”). Since a change in 7(s) corresponds to a change in normal direction
and a change in r corresponds to a change in the area of the patch, we see that this
metric has an interpretation directly analogous to its interpretation in the case of
curves.

However, when D is two-dimensional, the change in area does not completely
characterize a change in the geometry of a patch. A change in geometry can be
decomposed into a change in area and an area-preserving change of shape [10, 14].
The partial elastic metric measures the first type of change, but does not measure
changes in f that change the shape of a patch while preserving its area and normal
direction. This limitation came about because the correspondence that we used
between the quantity 7 in the case of curves and in the case of surfaces was in fact
incomplete. We interpreted r for curves as the induced metric measure, but 72 is also
the full induced metric; in one dimension there is no difference. This suggests that
instead of using (r, 72) to represent a surface, we should use (g, 72), where g = f*h
is the full pullback metric (with & the metric on R®). The metric g contains more
information than r, because r is just |g| 2, where | - | indicates the determinant.

This in turn suggests that Eq. (12.4) is merely a special case of a more general
elastic metric for surfaces, and indeed this is the case. This “full elastic metric” is
defined, up to an overall scale, by

((5g1 s 8;’1)5 (8g25 8ﬁ2))(gﬁ)

_ _ A _ L e 1
= / [ir(s™' 85187 '682) + Jtr(s™"Sg0)ir(s™ ' 8g2) + ¢ (87, 87a) Jlg s, (12.5)
D

where, for positivity, A > =2 and ¢ € Ry.!
To see that the partial metric is indeed a special case of this full metric, note that
the term multiplied by A can be written as

't is interesting to note that the first two terms in the full elastic metric form the unique family
of ultralocal metrics on the space of Riemannian metrics on which diffeomorphisms act by
isometries [14]. The A = 0 case of this metric on Riemannian metrics has been studied in
e.g., [10, 16, 18].
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[ ds|g tr(g ' 5g)ir(g " Sg2) = 4 / dslgl 281 (gHsaglh.  (126)
D D

Since r = |g|%, this is the same as the first term in Eq. (12.4), while the last term
is the same in each case. Unlike the partial metric, however, the first two terms in
Eq. (12.5) measure not only changes in local area but also any “stretching” of the
surface, i.e., changes in both the area and the shape of local patches. The third
term continues to measure changes in the normal direction, that is, “bending.” The
intuitive interpretation of the metric thus remains unchanged, but now all types of
change in f are measured. Indeed, the map from F to the (g, ) representation is
bijective, up to translations (although it is not surjective) [1].

Having defined this metric for surfaces, i.e., codimension-1 embedded subman-
ifolds of R?, it is easy to see that it applies in fact to codimension-1 embedded
submanifolds in any number of dimensions, and, with a simple generalization of
the third term, to embedded submanifolds of any codimension in any number of
dimensions. In particular, when D is one-dimensional, and thus g is a scalar, the
first two terms become the same, so that the full metric becomes identical to the
partial metric (which is thus no longer partial), which is, in turn, just the elastic
metric for curves. Equation (12.5) is thus the most general form of the elastic metric
and deserves further study. However, we defer further analysis of its properties to
another place. We now focus on the partial metric.

12.2.4 Square-Root Normal Field Representation of Surfaces

An important and remarkable property of the partial elastic metric in Eq. (12.4)
is that, despite appearances, for a particular choice of the ratio of A and c, it
is Euclidean: i.e., we can find a transformation of the representation such that
this metric takes on the simple IL? form. This is strictly analogous to the case of
the elastic metric for curves, which gave rise to the square-root velocity function
(SRVF) [42]. Just as in this case, and in the case of the SRF, the existence of a
representation that transforms the metric to L2 form means that parts of the shape
analysis framework can be dramatically simplified.

This new, convenient representation of surfaces is called the square-root normal
field (SRNF) and is defined as follows [25]:

Definition 5. Define the mapping H : F — L? as H(f)(s) = h(s) = /r(s)i(s) =
n(s) — n(s)

Nr(s) @)

This is strictly analogous to the SRVF defined for curves, except that there the
tangent vector is used instead of the normal vector/form. Since |h|> = r, the L2
norm of  is just the area of the surface (again, cf. the case of curves, where the 1.2
norm of the SRVF gives the length of the curve). Thus, just as in the case of SRFs,
the space of SRNFs is also a subset of LL>(D, R?) or simply 2.
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We now show that the > metric in the SRNF space is the same as that in
Eq. (12.4). The derivative map between the tangent spaces at (r,7) and h € L2
is given by

1

2/ r(s)

Taking the IL? inner product between two such vectors, we obtain

Sh(s) = n(s)8r(s) + /r(s)én(s). (12.7)

8r1(s)dra(s)
r(s)

since (71(s), 6n;(s)) = 0. This is just the partial elastic metric for A = 1/8 and
¢ = 1. We thus find that if ¢/A = 8, the SRNF representation acts as “Euclidean
coordinates” for the partial elastic metric, bringing it to > form.

As in the case of SRFs, we must also remove all shape-preserving transforma-
tions in order to generate shape comparisons. A major advantage of the SRNF is that
it (and consequently the partial and full elastic metrics) is automatically invariant
to translations, simply because it depends only on derivatives of f. As previously,
we can scale all surfaces to have unit area. It is easily checked that rotating a
surface f — Of sends h +— Oh and reparameterizing a surface f +— f o y sends
h (h,y) =(qoy) \/J_), It is also easy to verify that just as in the SRF case, the
action of I" on the space of surfaces under the partial elastic metric is by isometries.
This allows the use of this metric for parameterization-invariant shape analysis.

In order to generate comparisons of shapes using geodesic paths and distances,
we take a similar approach to that presented in Sect. 12.2.1 for the SRF repre-
sentation. Because the action of I" on the SRNF space is the same as that on the
SREF space, the gradient descent algorithm to compute optimal reparameterizations
remains unchanged. To compute geodesics, we also use the path-straightening
approach [41]. In Fig. 12.5, we again provide a comparison of geodesics computed
in the pre-shape space and shape space under the partial elastic metric. We use
the same examples as in Fig. 12.3. As previously, the geodesics in the shape space
have much lower distances due to the additional optimization over I'. They are
also much more natural due to the improved correspondence of geometric features
across surfaces. When comparing the shape space results in this figure to those in
Fig. 12.3, we notice that the partial elastic metric provides better registrations than
the pullback metric from SRF space. This is expected due to the nice stretching and
bending interpretation of this metric.

(8hy. 8hy), = % fD ds + /D r(s) (871 (s), 87ia(s)) ds (12.8)

12.3 Shape Statistics

In this section, we present tools for computing two fundamental shape statistics, the
mean, and the covariance. We then utilize these quantities to estimate a generative
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Fig. 12.5 Comparison of geodesics computed under (((-,-))) in the pre-shape space and shape
space

Gaussian model and draw random samples from this model. These methods have
been previously presented for SRFs and SRNFs in [31, 36].

First, we define an intrinsic shape mean, called the Karcher mean. Let
{fi.fo.....fa} € F denote a sample of surfaces. Also, let F7* denote a geodesic
path (in the shape space) between the shape of some surface f and the shape of
the ith surface in the sample, f;. Then, the sample Karcher mean shape is given by

n
[f] = argmin Z L(F¥)*. A gradient-based approach for finding the Karcher mean
1es i=
is given in, for example, [15] and is omitted here for brevity. Note that the resulting
Karcher mean shape is an entire equivalence class of surfaces.
Once the sample Karcher mean has been computed, the evaluation of the
Karcher covariance is performed as follows. First, find the shooting vectors from

the estimated Karcher mean f € [f] to each of the surface shapes in the sample,
v = % lr=0, Wwhere i = 1,2,...,n and F* denotes a geodesic path in S. This is



12 Elastic Shape Analysis of Surfaces and Images 271

accomplished using the inverse exponential map, which is used to map points from
the representation space to the tangent space. Then, perform principal component
analysis by applying the Gram—Schmidt procedure (under the chosen metric ({(-,-)))
to generate an orthonormal basis {B;|j = 1,...,k}, k < n, of the observed {v;}.
Project each of the vectors v; onto this orthonormal basis using v; ~ j’f=1 cijBj,
where ¢;; = ({v;, B;)). Now, each original shape can simply be represented using the
coefficient vector ¢; = {c;;}. Then, the sample covariance matrix can be computed
in the coefficient space as K = (1/(n — 1)) Y_1_, c;cT € R**. One can use the
singular value decomposition of K to determine the principal directions of variation
in the given data. For example, if u € R¥ corresponds to a principal singular vector
of K, then the corresponding tangent vector in T7(F) is given by v = Zj;l u;B;.
One can then map this vector to a surface f using the exponential map, which
is used to map points from the tangent space to the representation space. The
exponential map must be computed under one of the nonstandard metrics introduced
earlier, which is not a simple task. This can be accomplished using a tool called
parallel transport, which was derived for the SRNF representation of surfaces by Xie
et al. [50]. For brevity, we do not provide details here but rather refer the interested
reader to that paper. We also note that when computing the following results we
approximated the exponential map using a linear mapping.

Given the mean and covariance, we can impose a Gaussian distribution in the
tangent space at the mean shape. This will provide a model, which can be used
to generate random shapes. A random tangent vector v € T3(F) can be sampled

from the Gaussian distribution using v = Zf:] 3 @uij, where z; i N(0, 1),
S;; is the variance of the jth principal component, y; is the corresponding principal
singular vector, and B; is a basis element as defined previously. One can then map
this element of the tangent space to a surface shape using the exponential map to
obtain a random shape from the Gaussian distribution.

We present an example of computing shape statistics for a toy data set in
Figs. 12.6 and 12.7. The data in this example was simulated in such a way that
one of the peaks on each surface was already matched perfectly while the position
of the second peak was slightly perturbed. All surfaces in this data set are displayed
in the top panel of Fig. 12.6. We computed three averages in this example: simple
average in the pre-shape space (bottom left of Fig. 12.6), Karcher mean under the
SRF pullback metric ((-,)) (bottom center of Fig. 12.6), and Karcher mean under
the partial elastic metric {({-,-))) (bottom right of Fig. 12.6). The pre-shape mean
is not a very good summary of the given data. One of the peaks is sharp while
the other is averaged out due to misalignment. The Karcher mean under the SRF
pullback metric is much better, although it also shows slight averaging out of the
second peak. The best representative shape is given by the Karcher mean computed
under the partial elastic metric where the two peaks are sharp as in the original data.
In Fig. 12.7, we display the two principal directions of variation in the given data
computed by those three methods. The result computed in the pre-shape space does
not reflect the true variability in the given data. In fact, as one goes in the positive
second principal direction, the resulting shapes have three peaks. This result is again
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Fig. 12.6 Top: given data. Bortom: shape means computed (1) in the pre-shape space, (2) under
the SRF pullback metric, and (3) under the partial elastic metric

improved under the SRF pullback metric. But, there is still some misalignment,
which can be seen in the second principal direction where a wide peak evolves into
a thin peak. The best result is observed in the case of the partial elastic metric. Here,
all of the variability is contained in the first principal direction of variation where
the peak naturally moves without any distortion. Based on the given data, this is
the most intuitive summary of variability.

In Fig. 12.8, we show two random samples from the Gaussian distribution defined
(1) in the pre-shape space, (2) in the shape space under the SRF pullback metric, and
(3) in the shape space under the partial elastic metric. The two random samples in
the pre-shape space do not resemble the given data as they both have three peaks.
While method (2) produced random samples with two peaks, one can see that in
both cases one of the peaks has a strange shape (either too thin or too wide). Method
(3) produces the best random samples, which clearly resemble the structure in the
given data.

12.4 Classification of Attention Deficit Hyperactivity
Disorder

In this last section, we present an application of the described methods to medical
imaging: the diagnosis of attention deficit hyperactivity disorder (ADHD) using
structural MRI. The results presented here have been previously published in [31,
32, 47]. The surfaces of six left and right brain structures were extracted from
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Fig. 12.7 The two principal directions of variation (from —20 to +20) for (1) pre-shape mean
and covariance without optimization over I”, (2) pullback metric under SRF representation, and

(3) partial elastic metric
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Fig. 12.8 Random samples from Gaussian model computed (1) in the pre-shape space, (2) under
the pullback metric under SRF representation, and (3) under the partial elastic metric

T1-weighted brain magnetic resonance images of young adults aged between 18
and 21. These subjects were recruited from the Detroit Fetal Alcohol and Drug
Exposure Cohort [7, 23, 24]. Among the 34 subjects studied, 19 were diagnosed
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Caudate Pallidus Putamen Thalamus

Fig. 12.9 Left subcortical structures used for ADHD classification. (Courtesy of Kurtek et al. [32])

Table 12.1 Classification accuracy (%) for five different techniques

Method SRNF Gauss | SRF Gauss | SRF NN ICP | SPHARM-PDM
structure (%) | [47] [31] [32] Harmonic | [2] [44]
L. Caudate 67.7 - 41.2 64.7 324 161.8
L. Pallidus 85.3 824 76.5 79.4 67.7 |44.1
L. Putamen |94.1 88.2 824 70.6 61.8 | 50.0
L. Thalamus | 67.7 - 58.8 67.7 355 1529
R. Caudate 55.9 - 50.0 44.1 50.0 | 70.6
R. Pallidus 76.5 67.6 61.8 67.7 55.9 529
R. Putamen | 67.7 82.4 67.7 55.9 472 559
R. Thalamus | 67.7 - 58.8 52.9 64.7 | 64.7

with ADHD and the remaining 15 were controls (non-ADHD). Some examples
of the left structures used for classification are displayed in Fig. 12.9. In order to
distinguish between ADHD and controls, we utilize several methods for compari-
son: SRNF Gaussian, SRF Gaussian, SRF distance nearest neighbor (NN), iterative
closest point (ICP) algorithm, IL? distance between fixed surface parameterizations
(Harmonic), and SPHARM-PDM. The classification performance for all methods is
reported in Table 12.1. The results suggest that the Riemannian approaches based
on parameterization-invariant metrics perform best in this setting due to improved
matching across surfaces. Furthermore, the use of Gaussian probability models
outperforms standard distance-based classification.

12.5 Summary

This chapter describes two Riemannian frameworks for statistical shape analy-
sis of 3D objects. The important feature of these methods is that they define
reparameterization-invariant Riemannian metrics on the space of parameterized
surfaces. The first framework develops the metric by pulling back the IL?> metric from
the space of square-root function representations of surfaces. The main drawbacks
of this method are the lack of interpretability of the resulting Riemannian metric
and the lack of invariance to translations. The second framework starts with a full
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elastic metric on the space of parameterized surfaces. This metric is then restricted,
resulting in a partial elastic metric, which becomes the simple > metric under
the square-root normal field representation of surfaces. This metric has a nice
interpretation in terms of the amount of stretching and bending that is needed to
deform one surface into another. We show examples of geodesic paths and distances
between complex surfaces for both cases. Given the ability to compute geodesics in
the shape space, we define the first two moments, the Karcher mean and covariance,
and use them for random sampling from Gaussian-type shape models. Finally, we
showcase the applicability of these methods in an ADHD medical study.
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