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Chapter 1
Welcome to Riemannian Computing
in Computer Vision

Anuj Srivastava and Pavan K. Turaga

Abstract The computer vision community has registered a strong progress over
the last few years due to: (1) improved sensor technology, (2) increased computa-
tion power, and (3) sophisticated statistical tools. Another important innovation,
albeit relatively less visible, has been the involvement of differential geometry
in developing vision frameworks. Its importance stems from the fact that despite
large sizes of vision data (images and videos), the actual interpretable variability
lies on much lower-dimensional manifolds of observation spaces. Additionally,
natural constraints in mathematical representations of variables and desired invari-
ances in vision-related problems also lead to inferences on relevant nonlinear
manifolds. Riemannian computing in computer vision (RCCV) is the scientific
area that integrates tools from Riemannian geometry and statistics to develop
theoretical and computational solutions in computer vision. Tools from RCCV
has led to important developments in low-level feature extraction, mid-level object
characterization, and high-level semantic interpretation of data. In this chapter we
provide background material from differential geometry, examples of manifolds
commonly encountered in vision applications, and a short summary of past and
recent developments in RCCV. We also summarize and categorize contributions of
the remaining chapters in this volume.

1.1 Introduction and Motivation

The computer vision community has witnessed a tremendous progress in research
and applications over the last decade or so. Besides other factors, this development
can be attributed to: (1) improved sensor technology, (2) increased computation
power, and (3) sophisticated statistical tools. An important source of innovation
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2 A. Srivastava and P.K. Turaga

has also been the fact that, in addition to statistics, differential geometry has also
emerged as a significant source of tools and resources to exploit knowledge and
context in computer vision solutions. The usage of geometry in computer vision
is relatively recent and sparse. This combination of geometry and statistics is very
fundamentally tied to the nature of vision data, characterized by dominance of object
structures and their variabilities. Computer vision is mainly about finding structures
of interest, often representing physical objects being observed using cameras of
different kinds. Since these structures are inherently variable—two images of the
same object will exhibit pixel variability—one needs to take this variability into
account using statistics. We focus on ideas that borrow basic tools from traditionally
disparate branches—statistics and geometry—and blend them together to reach
novel frameworks and algorithms in vision.

1.1.1 What Is RCCV?

A large variety of computer vision solutions can be expressed as either inferences
under appropriate statistical models or minimizations of certain energy functions.
In some cases, the solutions are naturally constrained to lie in subsets that are
not linear, i.e., they are neither subspaces nor affine subspaces (translations of
subspaces). In fact, in high-level computer vision, it is not difficult to realize that
the set of objects of most common kinds do not follow the rules of Euclidean
geometry, e.g., adding or subtracting two images of an automobile does not result
in a valid image of an automobile. Thus, the set of automobile pictures is not easy
to characterize at the raw-pixel level. In some special cases, under certain enabling
assumptions, as will be discussed in the later chapters, one can arrive at well-defined
characterizations of objects in images. A simple example of imposing a constraint
in representation is when a vector is forced to have a unit norm, in order to pursue a
scale-invariant solution, and the desirable space is a unit sphere. The nonlinearity of
such spaces makes it difficult to apply traditional techniques that primarily rely on
Euclidean analysis and multivariate statistics. Consider the challenge of developing
statistical tools when even addition or subtraction is not a valid operation on that
domain! Thus, even simple statistics, such as sample means and covariances, are no
longer defined in a straightforward way. One needs a whole new approach to define
and compute statistical inferences and optimization solutions. This motivates the
need for RCCV.

Definition 1.1 (Riemannian Computing in Computer Vision—RCCV). Rie-
mannian Computing in Computer Vision, or RCCV, is the scientific area that
integrates tools from Riemannian geometry and statistics to develop theoretical and
computational solutions for optimization and statistical inference problems driven
by applications in computer vision.

In the context of nonlinear spaces, the analysis relies on elements of differential
geometry. Here, the chosen space is established as a differentiable manifold and
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endowed with a smooth metric structure, termed Riemannian structure, to enable
computation of distances and averages. A Riemannian structure, in principle, is
capable of providing most of the tools for calculus—averages, derivatives, integrals,
path lengths, and so on. In some cases, the spaces of interest enjoy an additional
structure, such as a group structure, that is useful in the analysis. A group implies
presence of a binary operation that allows one to compose and invert elements of
the set. Such groups, manifolds with a group structure, are called Lie groups and
play a very important role in RCCV. The examples of Lie groups include the sets
of rigid and certain nonrigid transformations on objects and images. Sometimes
Lie groups are also used to represent nuisance variability in situations where some
transformations are not deemed relevant. For instance, in shape analysis of objects,
their pose relative to the camera is treated as a nuisance parameter.

Next, we provide some basic background material for an uninitiated reader.
Those with a working knowledge of differential geometry can skip this section.

1.2 Basic Tools from Riemannian Geometry

In this section we introduce some notation and basic concepts that are needed in the
development of RCCV. Some of the following chapters define additional notation
and ideas that are specific to their own treatments.

The key idea in RCCV is that the underlying space of interest is nonlinear.
Let M represent the set of allowable feature values. Being nonlinear implies
that for arbitrary points p1 and p2 in M, and arbitrary scalars ˛1 and ˛2, the
combination ˛1p1 C ˛2p2 may not be in M. In fact, even the operation “C” may
only be interpretable when we embed M inside a larger vector space V . While
such embeddings are possible in most cases, the issue is that there are often
many embeddings available and selecting one is a nontrivial problem. Given an
embedding, the quantity ˛1p1C˛2p2 will lie in V (since it is a vector space) but not
necessarily in M. Since addition (and subtraction) are not valid operations in M, one
needs different sets of tools to handle M.

1.2.1 Tangent Spaces, Exponential Map, and Its Inverse

One starts by establishing M as a “differentiable manifold.” Loosely speaking, it
implies that small neighborhoods can be smoothly (diffeomorphically) mapped to
open sets of Euclidean spaces, and such mappings can be composed smoothly.
We will avoid precise definitions here and refer the reader to any introductory
textbook on differential geometry, such as [7, 55]. Given a manifold, the next step is
to impose a metric on it using a Riemannian structure (developed using a sequence
of steps as follows). One denotes the set of all vectors that are tangent to M at a point
p 2 M denote it by Tp.M/. (A tangent vector is the derivative of a differentiable
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curve passing through the point p at that point itself.) Tp.M/ is a vector space
of the same dimension as M and allows standard statistical procedures such as
PCA, discriminant analysis, and regression models, directly in a natural way. The
indexed collection of all tangent spaces of M is called the tangent bundle of M,
TM D [p2MTp.M/.

Since a tangent space is a convenient domain for computational statistics, it is
useful to have mappings back and forth between M and Tp.M/, for arbitrary p 2 M.
The mapping from Tp.M/ to M is called the exponential map and is denoted by
expp W Tp.M/ ! M such that expp.0/ D p. This mapping is usually a bijection
between some neighborhood of 0 in Tp.M/ and a neighborhood of p in M. (There are
exceptions though, especially when one deals with infinite-dimensional manifolds.)

1.2.2 Riemannian Structure and Geodesics

In order to obtain a metric on M, one imposes a Riemannian structure on M.
A Riemannian metric is an inner product defined on tangent spaces of M that
changes smoothly with p. For any v1; v2 2 Tp.M/, we will denote the metric by
hv1; v2ip. If ˛ W Œ0; 1�! M is a C1-curve (its derivative is continuous), then we can
define the length of ˛ according to

LŒ˛� D
Z 1

0

h P̨ .t/; P̨ .t/i˛.t/ dt:

Note that P̨ .t/ 2 T˛.t/.M/ and the inner product inside the integral is defined using
the Riemannian metric at that point. For any two points p1; p2 2 M, let the curve ˛
be such that ˛.0/ D p1 and ˛.1/ D p2. Then, LŒ˛� is the distance between those two
points along the path ˛. The path with the smallest length is called a geodesic: ˛� D
arg min˛WŒ0;1�!M;˛.0/Dp1;˛.1/Dp2 LŒ˛�. The length of the shortest geodesic between any
two points defines the distance (or geodesic distance) between those two points, i.e.,
d.p1; p2/ D LŒ˛��. In the case of relatively simpler manifolds, such as a sphere or
a matrix Lie group, the formulae for geodesic length are known and can be used
directly. In some cases, such as those involving shape manifolds of planar curves,
the problem of finding geodesics and geodesic distances is a challenge in itself and
has been addressed using computational solutions.

1.2.3 Group Actions, Orbits, and Quotient Spaces

One frequent reason for involving differential geometry in computer vision is the
need for invariance in vision applications. For instance, the identity or class of
an object is invariant to the relative pose between that object and the camera.
The classification of an activity being performed by a human subject in front of
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a camera is considered invariant to the execution rate of the activity. A natural way
to achieve such invariance to certain transformations, it turns out, is through actions
of corresponding groups on the representation space.

A group G is said to act on a manifold M, if there is a mapping � W G � M !
M that satisfies: (1) �.g2; �.g1; p// D �.g2 � g1; p/, for all g1; g2 2 G and p 2
M and (2) �.gid; p/ D p for all p 2 M, where gid is the identity element of the
group G. The first item says that we can replace a sequence of transformations of
an object by a cumulative transformation on that object. The second item simply
means that the identity transformation leaves the object unchanged. A consequence
of this definition is that for every transformation there is an inverse that can undo
that transformation. A simple example of the group action is when G D GL.n/, the
set of all non-singular matrices with matrix multiplication as the group action, and
M D R

n, with �.A; x/ D Ax for any A 2 GL.n/ and x 2 R
n.

It is interesting to note that the group actions define an equivalence relation:
two points p1 and p2 are said to be equivalent, or p1 � p2, when there exists
a g 2 G such that p2 D �.g; p1/. That is, if one object can be transformed
into another object, under a valid transformation, then they are termed equivalent.
This equivalence relation partitions M into equivalence classes that are also called
orbits. An orbit containing a point p 2 M is given by Œp� D f�.g; p/jg 2 Gg,
the set of all transformations of p. The set of all equivalence classes, or orbits,
is called the quotient space of M under G. As an example, consider a problem
where one is interested in strength (or magnitude) of the observed data and
ignores their directions. Thus, for any x 2 R

n, one is interested only in kxk,
the two-norm of x. Consequently, all the points that lie on the same sphere are
indistinguishable. Mathematically, this is accomplished by defining an action of
SO.n/ on R

n according to �.O; x/ D Ox, for any O 2 SO.n/ and x 2 R
n. Then,

the orbit of an x 2 R
n is given by Œx� D fOxjO 2 SO.n/g. All points in an orbit

are deemed equivalent and one compares points only by comparing their orbits.
Since points within a rotation are equivalent, the equivalence class is a sphere, and
the quotient space of Rn modulo SO.n/ is simply the positive real line consisting of
all possible radii.

As hinted earlier, in computer vision the reason for introducing group actions is
to achieve invariances to certain transformations. For instance, in shape analysis one
usually starts with a base space—such as the set of landmarks—and then one wishes
to be invariant to the effects of translation, scaling, and rotation. Preprocessing is
usually employed to normalize the effects of translation and scale. The resultant
space is also called the pre-shape space. The remaining problem of removing the
effect of rotation can be viewed as comparing the orbits of two elements of the pre-
shape space—where the orbit is defined as the action of the rotation group on an
element of the pre-shape space. Similarly, in activity analysis, one often encounters
the problem of comparing feature sequences while being invariant to the rate of
execution of the activity. This requires defining an orbit of a sequence under a
special kind of diffeomorphism group. Thus, the action of groups on underlying
representation spaces is of great importance for devising classification algorithms in
computer vision applications.
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1.2.4 Probability Models and Learning

The problems in computer vision are naturally expressed as those of statistical
inferences under appropriate models and probability distributions. These probability
distributions are to be learned from past training data and used in future inferences.
In order to perform these two steps—training and testing—one needs appropriate
probability models that respect the geometries of underlying relevant manifolds.
There are two main directions for defining probability models on metric spaces:
(1) a parametric family that is rich enough to capture the desired variability and (2)
a nonparametric model defined using a kernel and a bandwidth parameter. Of course,
one can use a combination—termed semi-parametric models—also, but we will not
discuss that direction here.

The training part in the parametric approach boils down to estimation of model
parameters using the training data. One either uses a frequentist approach, seeking
a maximum-likelihood estimates of the model parameters, or takes a Bayesian
approach, imposes a prior model on the unknown variables, and analyzes their
posterior distribution to specify the model. Let f .pI �/ for a � 2 � denote a
probability density on M parameterized by a � . For a set of observed points
p1; p2; : : : ; pn, the maximum-likelihood estimate of � is given by solving the
optimization problem:

O�n D arg max
�2�

 
nX

iD1
log.f .piI �//

!
:

Under a Bayesian approach, one assume a prior on � � f0.�/, and solves for � under
the posterior density given by

f .� jp1; p2; : : : ; pn/ D f0.�/.
nY

iD1
f .piI �//:

One can use the posterior mean, or some other posterior summary, as an estimate for
� in this setting. In a nonparametric approach [49, 50], the centerpiece is a kernel
density estimator of the underlying density function given by

f .p/ D 1

nZ

nX
iD1

K.p; piI h/;

where K is a kernel function that is based on the distance between p and pi, h is the
bandwidth, and Z is the integral of K over M. Depending on the choice of K and,
more importantly h, the shape of the density function can change drastically. The
problem of estimating an optimal bandwidth from the data itself is a difficult issue
in standard nonparametric statistics, and some results from the classical theory can
be brought over to RCCV manifolds also.
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1.3 History, Current Progress, and Remaining Challenges

In this section we summarize progress in use of differential geometry in vision and
related areas over the years and outline some current topics of research.

1.3.1 Manifolds and Application Areas in RCCV

Here, we take a brief look at some nonlinear manifolds that are frequently
encountered in computer vision applications.

1. Spheres, Histograms, Bag of Words: As mentioned previously, fixing the norm
of the vectors restricts the relevant space of vectors to a sphere. In case the norm
is selected to be one, the corresponding space is a unit sphere S

n � R
nC1. The

unit spheres arise in situation where one is interested in direction of the vector
rather than its magnitude. In statistical analysis, such considerations have led
to an interesting area of study called Directional Statistics [44]. In computer
vision, one often uses normalized histograms as representations or summaries of
image or video data. Let a histogram h be a vector of frequency data points in
n C 1 predetermined bins. One way to normalize h is to impose the condition
that

PnC1
iD1 hi D 1. In other words, h is a probability vector of size n C 1. If we

define pi D C
p

hi, then we see that kpk D
qPnC1

iD1 p2i D
qPnC1

iD1 hi D 1,
or p 2 S

n. Thus, one can conveniently represent normalized histograms as
elements of a unit sphere, after a square-root transformation, and utilize the
geometry of this sphere to analyze histograms [59]. It has also been argued [39]
that the popular bag-of-words representation, which is commonplace in vision
applications (cf. [48]), is best studied in terms of the statistical manifold of
the n-dimensional multinomial family. Lafferty and Lebanon [39] proposed this
approach and drew from results in information geometry to derive heat kernels
on this statistical family, demonstrating the benefits of a geometric approach over
a traditional vector space approach.

2. Rotation Matrices, Rigid Motions, Structure from Motion: One of the central
problems in computer vision is recognition of objects from their images or
videos, invariant to their pose relative to the camera. Related problems include
pose tracking, pose-invariant detection of objects, and so on. How is the pose of
a 3D object, relative to a chosen coordinate system, represented in analysis? It is
most naturally represented as an element of SO.3/, the set of all 3� 3 orthogonal
matrices with determinant C1 [29]. This representation of pose enjoys a special
structure that has the correct physical interpretations. The set SO.3/ is a Lie
group with the group operation given by matrix multiplication. If one applies
two rotations O1;O2 2 SO.3/ on a rigid object, in that order, then the cumulative
rotation is given by O1O2 2 SO.3/. Similarly, the transpose of a rotation
O 2 SO.3/, denoted by OT , represents the inverse rotation and nullifies the
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effect of O since OOT D I. Incidentally, SO.n/ is a subset (and subgroup) of
a more general transformation group GL.n/, the set of all n � n non-singular
matrices. GL.n/ is useful in characterizing affine transformation in computer
vision. Geometrical techniques for rotation averaging in structure from motion
problems have been investigated in computer vision literature [9, 27].

3. Covariance Tensors, Diffusion Tensor Imaging, Image-Patch Modeling: In
statistics one often represents a random quantity by a collection of its lower
order moments. In particular, the use of mean and covariance matrices to char-
acterize random variables is very common, especially under Gaussian models.
A covariance matrix is a square, symmetric, and positive-definite matrix. When
analyzing variables using their covariance matrices, the geometry of the space of
such symmetric, positive-definite matrices (SPDMs) becomes important. This is
a nonlinear space whose geometry is naturally studied as a quotient space of a
Lie group, GL.n/ modulo SO.n/. In other words, one forms the action of SO.n/
on GL.n/ and identify the orbits of SO.n/ with individual SPDMs. A field of
3 � 3 tensors forms an intermediate representation of data in diffusion-tensor
MRI, and one needs the geometry of SPDMs for interpolation, denoising, and
registrations of image data [15, 47, 51, 54]. This representation has also proved
highly successful in modeling textures in patches and its application to pedestrian
detection and tracking [66, 67].

4. Subspaces, Dynamical Models, Projections: Due to severity of dimensions in
vision data sets (images and videos) encountered in computer vision, the task of
dimension reduction is a central theme. One idea here is to use a linear projection
to a low-dimensional subspace of the original observation space. In order to
make these projections optimal, for the given data and the given application,
one needs to optimize a certain chosen objective function over the space of
subspaces. The space of all d-dimensional orthogonal bases of an n-dimensional
space (d << n) is called a Stiefel manifold Sn;d, while the space of of all
d-dimensional subspaces of R

n is called a Grassmann manifold Gn;d. These
manifolds are naturally studied as quotient spaces of larger rotations modulo
smaller rotations: S � SO.n/=SO.n�d/ and Gn;d D SO.n/=.SO.n�d/�SO.d//.
The use of linear projections of image data, optimally related to specific vision
tasks, is an important area in itself [42, 58]. The Grassmann manifold also plays
an important role in characterizing linear, time-invariant, dynamical systems
where the observability matrix of the system is represented as a subspace of
appropriate dimensions [64, 65]. The Grassmann manifold also arises as the
representation space in face recognition when using a subspace to model a
collection of faces. This representation has been used to devise very effective
face recognition algorithms [24, 25].

5. Deformations, Image Registration: One of the most studied problems in image
processing, especially medical image analysis, is the problem of registration of
pixels/voxels across images. This task is performed by fixing one image I1 and
deforming the other image I2 such that the corresponding pixel locations are
considered matched. The deformation � is a process of changing pixel locations,



1 Welcome to Riemannian Computing in Computer Vision 9

while keeping the pixel values fixed, in a smooth fashion so that the pixels
do not cross each other. In mathematical terms, one defines deformation using
diffeomorphic transformations of the set of pixel locations. Thus, the set of
diffeomorphisms is synonymous with the set of deformations of images used in
image registration [5, 71]. The cost function used for image registration is most
commonly of the type

arg min
�2�

�kI1 � I2 ı �k2 C �R.�/
�
;

where � is the set of all deformations and R is a roughness penalty on � .
6. Elastic Functions, Trajectories, Activities: In experiments involving dynamic

systems one studies the evolution of certain feature(s) of interest over an
observation period. These variables are mathematically represented as real- or
vector-valued functions over time and the area of statistics that deals with such
data is called functional data analysis. The main challenges in this area come
from two sources: (1) the infinite dimensionality of representation spaces and (2)
the fact that the systems evolve under different rates in different observations.
The latter source, termed the phase variability in functional data, is a nuisance
variable and needs to be removed in statistical data analysis. This requires proper
metrics and models to be able to formally define the concepts of amplitude
and phase components in functions [34]. The metrics that allow comparisons
of functions under different phase components are termed elastic metrics and the
resulting analysis elastic FDA. An extension of this problem involves studying
temporal evolutions of systems whose representations take values on Riemannian
manifolds. The sample paths, or observations, of these systems are studied as
trajectories on Riemannian manifolds [35, 62]. For instance, consider a human
performing an action or an activity in front of a depth sensor where one forms
a skeletal representation of the human body and studies the evolution of its
shape to characterize the activity. This activity can be represented as a trajectory
on an appropriate shape space of skeletons and one needs metrics/models for
classifying activities using noisy depth data (cf. [3]).

7. Shape Representations: In the context of detection, tracking, and recognition
of objects in image and video data, the shapes of silhouettes of objects play a
very important role. Since these silhouettes of objects form contours and surfaces
in 2D and 3D images, the area of shape analysis of curves and surfaces has
become very active. Even though one starts with Euclidean representations of
these objects, shape analysis quickly becomes complicated because shape is a
property that is invariant to rigid motion, global scaling, and re-parameterization
of the objects being studied. Thus, shape spaces are typically quotient spaces
representing original objects (curves or surfaces) modulo the actions of these
shape-preserving transformation groups. The shape preserving groups are rota-
tion SO.n/, translation R

n, scaling RC, and re-parameterization.
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1.3.2 Historical Perspective

The use of Riemannian geometry has been widespread in several branches of science
and engineering, contributing towards developing methodologies, algorithms, and
systems. For example, in design of control of systems, Brockett and colleagues [8]
developed a system theory for Lie groups and their quotient spaces in the 1970s,
followed by many control theoretic solutions on general manifolds [11–13, 41, 72].
Similar use of Riemannian geometry was also seen in mechanical designs, robotics,
and human–machine interaction systems.

The explicit use of manifolds, Lie groups, and Lie group actions on manifolds in
the area of pattern recognition was pioneered by Ulf Grenander. His formulation of
pattern theory for representation of complex systems is based on using combinations
of simple elementary units, called generators, that under the actions of small groups
capture the variability exhibited by the observed systems. This theory was laid out in
a series of monographs [17, 18, 20], culminating in the textbook [19]. A confluence
of particle filtering and Riemannian geometry, especially for Lie groups and their
quotient spaces, can be found in related papers [23, 56, 57]. In terms of problems
in image understanding, some applications of Grenander’s pattern theory appeared
in the joint works with Amit [2], Keenan [22], and Miller [20, 21, 45]. This laid
the foundation for a principled approach to the development of deformable template
theory that has been used extensively in a variety of applications. Shape analysis of
landmark configurations, advanced by David Kendall and colleagues starting in the
1980s [10, 31–33, 40] and continuing to date, represents another major development
that is firmly rooted in Riemannian geometry. An innovative direction in shape
analysis has been to handle continuous objects, including curves [60, 73, 74],
surfaces [36–38], and general trajectories.

Focusing on the area of computer vision and image understanding, Kanatani
[29] provided a nice discourse on the use of groups for understanding structures
in images. To cite an example, consider the problem of tracking and recognizing
objects in video data. The relative pose of objects, with respect to the camera, is
conveniently represented as an element of the special orthogonal group [23, 29, 46].
The use of Riemannian geometry has also been prevalent in tracking [52, 66],
mean shift algorithm that was used for segmentation and clustering [63], activity
recognition [43, 69, 70], basis learning [26], and so on.

In statistics, one of the earliest uses of Riemannian geometry involved imposing
metrics on parametric families of probability density functions (pdfs), using the so-
called Fisher–Rao metric [53]. This work led by Amari [1], Kass [30], Efron [14],
and many others, used the parametric version of the Fisher–Rao Riemannian metric
seeking geodesic paths and geodesic distances between pdfs restricted to chosen
exponential families. In recent years, the nonparametric version of this metric has
proven very useful in a variety of vision applications. Although, it was mentioned
as early as 1943, by Bhattacharya [6], the use of nonparametric Fisher geometry for
comparing probability distribution has also been developed with computer vision
applications in mind [59]. A framework for statistical analysis of manifold-valued
variables has been explored in a series of papers by Pennec et al. [51].
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1.3.3 Current Progress and Remaining Challenges

Despite a steady progress in identifying relevant tools from Riemannian geometry,
and their applications in vision problems, there are many directions and novel
venues for making progress in RCCV and, consequently, to make a large impact
in the area of computer vision. The challenges in posing and solving statistical
problems on nonlinear manifolds with applications to computer vision are many.
We enumerate a few of those:

1. Nonlinearity: The original problem, of course, is to define tools that can
overcome the issue of nonlinearity of manifold spaces. There has been a
large progress in identifying the basic sets of interest in computer vision and
exploiting their geometries, as described earlier in this chapter. Researchers are
discovering novel spaces, characterized by nonlinear geometries motivated by
vision applications, that will become domains for future advances in RCCV.
Examples include vector bundles of known Riemannian manifolds, to help
analyze trajectories on these spaces.

2. Effective and Efficient Metrics: Unlike Euclidean spaces, where there is
naturally a canonical choice of a metric, the case of manifolds can be very
different. There may be several choices and the most obvious one may not
provide all the desired invariances and computational efficiency. Take the case of
functional data analysis where the classical L2 norm and the associated harmonic
analysis have been used for long time for statistical analysis. However, in case
the phase variability is present in the observed data, the use of Fisher–Rao metric
and its derivatives has proven much more efficient [61]. More recent work has
focused on studying different Sobolev metrics for analyzing functional data with
phase variability. Similar examples are present in many vision applications. Even
though the manifolds of interest have been identified, the choice of metrics that
match the goals of the problem becomes important. For instance, in tracking
shapes of human silhouettes in video data, it is important to choose shape
metrics that impose smaller distances on natural motions and larger distances
on improbable deformations of shapes.

3. Computational Tools: Beyond appropriate choice of metrics and development
of geometrical tools, it is also necessary to have efficient computational solutions
to leading problems in computer vision. For any manifold representation, one
needs algorithms for computing geodesics, estimating parameters, learning
models, evaluating likelihoods, computing likelihood ratios, etc. For instance,
while the formulation of geodesics on a Grassmann manifold is known for a
while, it is important to exploit tools from numerical analysis to help decrease
the computation cost [16]. Similar ideas are needed in nearly all the domains
mentioned above—functional data analysis, covariance tracking, image registra-
tion, optimal dimension reduction, etc,

4. Geometry and Machine Learning: Perhaps the largest area of growth in
computer vision and pattern recognition has been in the area of machine learning,
particularly the advances made in probabilistic methods using deep learning
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frameworks. These and related tools in machine learning seek to learn features
and classifiers from the training data, in order to maximize classification of
objects and patterns in image data. Since many relevant features are known to
lie on nonlinear manifolds, the process of learning and discrimination of data
classes can benefit from exploiting geometries of these manifolds. One example
of these idea was illustrated in [4] where the authors used Adaboost techniques
using geodesic distances on shape manifolds for improving face recognition
performances. Another example is the use of kernel-based techniques and the
recent research on the choice of kernels suitable for use on nonlinear Riemannian
manifolds [25, 28]. However, much work needs to be done on the theoretical front
to provide the provable performance guarantees of general machine learning
algorithm on manifolds, analogous to the seminal work of Vapnik [68] but
generalized to non-Euclidean spaces. Additional work is needed as well on the
applied front when dealing with computational complexity issues and trade-offs
between approximations and accuracy.

We believe that a combination of tools and ideas from geometry, statistics, and
computational science will fuel development of next generation of computer vision
algorithms.

1.4 Volume Layout and Chapter Contributions

This edited volume provides a sampling of latest advances in RCCV from different
problem areas and perspectives in computer vision. These are invited chapters from
experienced researchers with strong, exemplary records of publications in computer
vision or related areas. The chapters in the remainder of this volume provide strong
instances of progress in RCCV. The volume is divided into four parts as follows.
Although these chapters have been arranged according to their main focus, the tools
used and results achieved can be reorganized in many different ways.

1.4.1 Statistical Computations on Riemannian Manifolds

The first part of the volume deals with defining or improving tools for computational
statistics related to manifold-valued random variables.

1. The second chapter, written by Cheng et al., looks at a very specific task of
computing the sample mean, termed Frechet mean, from a given sample of
points on a Riemannian manifold with nonpositive curvature. They provide an
algorithm for computing this and analyze its asymptotic convergence to the
population mean. They also provide three experiments demonstrating advantages
of their construction on the Riemannian manifold of SPDMs.
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2. The first chapter by Jayasumana et al. studies the suitability of kernel functions
on Riemannian manifolds. Since positive-definite kernels are critical in improv-
ing discriminatory approaches using SVMs, etc., one needs to define such
kernels on manifolds of interest also. This chapter provides some interesting
constructions—Gaussian RBF kernels and kernel-based classifiers—for some
RCCV manifolds of interest.

3. The next chapter by Kim et al. studies a similar problem, this time of canonical
correlation analysis, on the space of SPDMs. They use the differential geometry
of this space to define a Lagrangian method for computing CCA components and
demonstrate this idea using synthetic experiments.

4. The chapter by Fletcher et al. develops a framework for regression problems in
situations where the response variable lies on a Riemannian manifold. It uses
a natural analog of Gaussian distributions on manifolds and tools from principal
geodesic analysis to define the regression problem and to derive a formal solution
that also has accompanying residual analysis.

Together these four chapters bolster the toolbox for computing sample statistics on
Riemannian manifolds and treat the case of SPDMs in great details.

1.4.2 Color, Motion, and Stereo

This part of the volume deals with extracting low-level features from images and
videos that form raw data for statistical inferences in vision problems.

1. The first chapter in this part, written by Anand et al., provides a nice transition
from statistical analysis to feature extraction in vision data sets. It deals with
improving estimation of motion features using robust statistics on Grassmann
manifolds. They describe the use of the classical mean shift algorithm to
Grassmann manifolds and derive M-estimators for improving robustness to noise
in the inference process. They also describe the applications of these ideas in a
number of vision applications.

2. The second chapter by Govindu is on mechanisms for averaging features when
they are elements of certain matrix Lie groups. It focuses on the special Euclidean
group that represents rigid motions of a camera with respect to the imaged object.
The main application here is to perform 3D registrations of multiple views of a
scene in order to improve scene reconstruction.

3. The last chapter in this section, written by Li et al., highlights the well-established
involvement of Lie group structures in robotics and mechanizations. The main
transformation group used here is the special Euclidean group, denoting rigid
motions of a robot and applied to localization of multiple robots simultaneously.
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1.4.3 Shape, Surfaces, and Trajectories

As discussed previously, differential geometry plays an integral part in analyzing
shapes of objects. Since shapes are considered invariant to certain transformations
of the underlying objects, shape spaces are quotient spaces of the representation
space modulo shape-preserving transformations.

1. The first chapter by Brignell et al. continues to advance Kendall’s representation
of shapes using landmarks. It develops the notion of covariance-weighted
Procrustes alignment and applies it to some simulated data sets.

2. The second chapter, written by Joshi et al., summarizes recent progress in
the area of elastic shape analysis of curves for several types. It includes data
objects such as real-valued functions, curves in Euclidean spaces, and curves on
nonlinear manifolds. It provides examples from computer vision, including shape
analysis and activity recognition, to demonstrate these ideas.

3. The next chapter, by Bauer et al., focuses on the problem of shape analysis
of Euclidean curves and discusses some limitations of the elastic framework
discussed in the previous chapter. They suggest the use of higher-order Sobolev
metrics, i.e., metrics involving second- or higher-order derivatives of the given
curves, as a solution.

4. The last chapter in this section, written by Kurtek et al., studies more complex
objects, such as surfaces and images, from the perspective of registration and
shape analysis. It introduces an analog of square-root transformations, discussed
in the previous two chapters for curves, to surfaces and images and demonstrates
the use of these techniques in generating statistical summaries and disease
classification.

1.4.4 Objects, Humans, and Activities

The last part of this volume includes chapters that are focused more heavily on high-
level vision applications, such as face recognition, object recognition, and activity
recognition.

1. The first chapter, authored by Porikli et al., looks at the problem of boosting
classification performance using machine learning ideas, but for features that
are SPDM valued. They demonstrate the idea of using Logitboost for the
covariance descriptors and demonstrate an improvement in human detection
performance using this boosting approach.

2. The second chapter, written by Lui, develops a framework for performing
regression using matrix-valued variables that are constrained to lie on certain
manifolds. Specifically, it develops the analog of generalized least squares
framework for Euclidean variables, to spaces such as SPDMs and Grassmann
manifolds. Finally, it demonstrates these ideas using tracking, recognition, and
human interactions.
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3. The next chapter, by Shaw and Chellappa, tackles an important problem in
computer vision that involves transfer of information and statistical models from
one domain to another. Using the geometry of Grassmann manifolds, the authors
demonstrate domain adaptation in object recognition and age classification.

4. The next chapter, by Harandi et al., is on the topic of coding dictionaries
for image/video representations that are manifold valued. Taking the example
of SPDMs, the authors provide a new approach, titled coordinate coding,
using different metric structures on the space of SPDMs, and illustrate the
improvements using experimental studies.

5. The last chapter, by Shroff et al., proposes a general framework to enable summa-
rization and search over feature spaces that are manifold valued. The approach
extends classical vector space techniques, such as column subset selection and
locality-sensitive hashing, to non-Euclidean manifolds. They develop highly
efficient algorithms for exemplar selection and approximate nearest-neighbor
search and demonstrate the utility of these techniques on shapes and activities.

1.4.5 Potential Pathways Through the Volume

We believe that the volume presents multiple possibilities and approaches for
study. The presented sequencing is likely to be helpful for a beginning researcher
in computer vision. However, any fixed sequencing is by no means optimal or
suitable for everybody. It is worth noting that almost all chapters of the book
are rather self-contained—each chapter introduces the proposed problem, the
Riemannian formulation, associated algorithms and evaluation—independently of
other chapters. While this can result in some redundancy, we feel that such a
self-contained treatment makes the book eminently readable from any chapter. We
however do highly recommend starting with the introductory chapter and Part I of
the book which should lay the general foundational principles. After that readers
interested in specific application areas can make segue into individual chapters.

It is also worth noting that many chapters in the later parts, even though
categorized into application areas, present novel theoretical material applicable
more broadly than the current application. Thus, an open-minded reader would
benefit from every chapter—irrespective of which application area it appears under.
The partitioning of material as presented should be attributed to the limitations of the
printed book format. In the increasingly interdisciplinary world we find ourselves
in, some of the most fruitful questions are to be found at the intersections of such
boundaries.

Acknowledgements The authors would like to acknowledge the support received from National
Science Foundation grants #1320267 and #1319658 during the preparation of this edited volume.
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Part I
Statistical Computing on Manifolds

This part presents a diverse selection of fundamental statistical techniques.



Chapter 2
Recursive Computation of the Fréchet Mean on
Non-positively Curved Riemannian Manifolds
with Applications

Guang Cheng, Jeffrey Ho, Hesamoddin Salehian, and Baba C. Vemuri

Abstract Computing the Riemannian center of mass or the finite sample Fréchet
mean has attracted enormous attention lately due to the easy availability of data that
are manifold valued. Manifold-valued data are encountered in numerous domains
including but not limited to medical image computing, mechanics, statistics,
machine learning. It is common practice to estimate the finite sample Fréchet mean
by using a gradient descent technique to find the minimum of the Fréchet function
when it exists. The convergence rate of this gradient descent method depends on
many factors including the step size and the variance of the given manifold-valued
data. As an alternative to the gradient descent technique, we propose a recursive
(incremental) algorithm for estimating the Fréchet mean/expectation (iFEE) of the
distribution from which the sample data are drawn. The proposed algorithm can be
regarded as a geometric generalization of the well-known incremental algorithm
for computing arithmetic mean, since it reinterprets this algebraic formula in
terms of geometric operations on geodesics in the more general manifold setting.
In particular, given known formulas for geodesics, iFEE does not require any
optimization in contrast to the non-incremental counterparts and offers significant
improvement in efficiency and flexibility. For the case of simply connected,
complete and nonpositively curved Riemannian manifolds, we prove that iFEE
converges to the true expectation in the limit. We present several experiments
demonstrating the efficiency and accuracy of iFEE in comparison to the non-
incremental counterpart for computing the finite sample Fréchet mean of symmetric
positive definite matrices as well as applications of iFEE to K-means clustering and
diffusion tensor image segmentation.
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2.1 Introduction

In computer vision and machine learning, statistical analysis of features often
requires them to be considered as random variables. Although features are always
represented as collections of real numbers, their idiosyncratic origins and indige-
nous constraints often can best be interpreted not as vectorial features in R

n but as
manifold features, features belonging to some embedded submanifold M of Rn. In
this sense, manifold-valued random variables abound in vision and machine learning
literature: Popular image features such as SIFT and HOG, due to normalization,
are often features defined on spheres. For applications involving directional and
geometric data, important features can often be found in Lie groups that model
their underlying symmetries (e.g., [25]). From Lie groups, one is naturally led to
their homogeneous and symmetric spaces, and not surprisingly, the homogeneous
and symmetric spaces of classical Lie groups such as (complex) projective spaces,
Stiefel manifolds (of which spheres form an important family), and Grassman-
nians are especially rich domains for generating useful features, making their
appearances in a wide range of vision problems, including shape and procrustean
analysis [30], subspace clustering [45], dynamic texture classification [19], object
recognition [14, 48], and many others. In particular, as a symmetric space of the
general linear group GL.n/ (n-by-n non-singular matrices), the manifold P.n/ of
n-by-n symmetric positive-definite (SPD) matrices has featured prominently in
many vision and learning problems, from the relatively simple image structure
tensors [29] that have been the traditional workhorse in vision algorithms to the
more refined covariance features used in tracking [17, 50] and recognition [49],
and from the application domain of diffusion tensor MRI (DT-MRI) in medical
imaging (e.g., [22, 34, 41, 52]) to the more esoteric domain of information geometry
using Fisher–Rao metric [2]. While manifolds identify the domains on which the
features are defined, probability and metric then furnish the tools for analyzing and
characterizing their uncertainty and similarity, respectively. In the general manifold
setting, the union of probability and geometry (metric) naturally leads to the notion
of Fréchet mean/expectation [23] of a random variable, whose definition requires
the specifications of both a distribution and a Riemannian metric. Consequently,
an important computational problem is to estimate the Fréchet mean using samples
of the distribution. However, in this era of massive and continuous streaming data,
samples are often given either as a whole that are difficult to utilize due to their size
or in parts with availability depending on other external factors. Therefore, from
an application viewpoint, the desired algorithm should be incremental in nature
in order to maximize computational efficiency and account for data availability,
requirements that are seldom addressed in more theoretically oriented domains. In
this chapter, we propose incremental Fréchet expectation estimator (iFEE), a novel
incremental algorithm for computing the Fréchet mean of manifold-valued random
variables, and establish its convergence for simply connected, complete Riemannian
manifolds with nonpositive sectional curvature.
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Let M denote a (complete) Riemannian manifold and d! its canonical Rieman-
nian volume measure. We will consider a probability measure dP on M that is
absolutely continuous with respect to d!, i.e., its density function P.x/ exists with
dP D P.x/ d! as the measure. The Fréchet expectation (or Fréchet mean) of the
probability measure dP is defined as

m D arg min
z2M

Z
M

d2M.z; x/P.x/d!; (2.1)

where dM.z; x/ is the Riemannian geodesic distance between z; x 2 M. Note
that the expectation m is a point in M (or a set in general), and it requires the
specifications of the Riemannian metric d2M.z; x/ and the probability measure dP.
In general, the existence and uniqueness of Fréchet expectation for an arbitrary
probability measure defined on a Riemannian manifold is a subtle and technical
issue; however, for simply connected and complete Riemannian manifolds with
nonpositive sectional curvature, a theorem of E. Cartan (see Sect. 6.1.5 in [7]) shows
that the Riemannian center of mass (Fréchet expectation) always exists and is unique
for any probability measure absolutely continuous with respect to !. Therefore,
in this chapter, we will focus exclusively on such Riemannian manifolds, and in
particular, we will define an estimator mk of m for any sequence x1; x2; : : : ; xk

of i.i.d. samples drawn from the distribution dP and show that mk converges
asymptotically to m as k!1.

In the Euclidean domain, the estimator mk is well known and it is simply the
average of the (finite) samples

mk D x1 C � � � C xk

k
: (2.2)

The validity of the estimator of course is guaranteed by the (weak) law of large
numbers, which states that the estimator mk converges in probability to the true
mean m. For practitioners in computer vision and machine learning (and others),
this well-known result is so deeply ingrained that many times we use it without
immediate awareness of it. In particular, mk can be computed incrementally using
the formula

mkC1 D k mk C xkC1
kC 1 ; (2.3)

and in R
n, the two formulas above are in fact equivalent. However, due to their

algebraic appearances, the underlying geometry of the two formulas are often
overlooked, and on non-Euclidean manifolds where the relations between geometry
and algebra are no longer as transparent, proper generalizations of these two
formulas must rely on their geometric interpretations rather than their algebraic
forms.



24 G. Cheng et al.

Specifically, Eq. (2.2) can be generalized geometrically to any Riemannian
manifold M as the center of mass of the finite samples, according to

mk D arg min
z2M

kX
iD1

d2M.z; xi/; (2.4)

and computationally, it can be solved as an optimization problem on M for each
k. On the other hand, the incremental form in Eq. (2.3) involves only two points
and in a Euclidean space R

n, we can interpret it geometrically as moving an
appropriate distance away from mk towards xkC1 on the straight line joining xkC1
and mk. This geometric procedure can be readily extended to any Riemannian
manifold using geodesics, and for classical spaces such as the aforementioned
examples, there are often closed-form formulas for geodesics joining two given
points. This readily yields an algorithm for computing mk that does not require
any function optimization, a considerable advantage often realized as gains in
computation time of several orders in magnitude over non-incremental algorithms
based on Eq. (2.4). However, because of the presence of curvature, generalizations
of Eqs. (2.2) and (2.3) are no longer equivalent as in the Euclidean case, and the
incremental computation of mk will also depend on the ordering of the sequence
x1; x2; : : : ; xk with the latter non-commutative property marking the qualitative
divergence between the Euclidean and non-Euclidean cases. In particular, it is
not immediately clear that mk will indeed converge asymptotically to the true
expectation m.

In this chapter, we establish the convergence of the incremental algorithm
for simply connected complete Riemannian manifolds with nonpositive sectional
curvature, and the proof presented in Sect. 2.2 is geometric in nature and elementary
in detail. The basic idea is to use the Riemannian exponential and logarithm maps
to transfer the problem from the manifold M to the tangent space Tm at m, and in
the tangent space, we can compare the magnitudes of the incremental mean mkC1
computed by iFEE and the Euclidean mean computed by Eq. (2.3). An important
geometric consequence of the nonpositive sectional curvature assumption is that the
former is always not larger than the latter, and this provides the desired contraction
that can be deployed in an inductive argument similar to the one for proving the law
of large numbers in the Euclidean domain. In particular, the proof illustrates and
illuminates the effect of curvature on the convergence of the incremental estimator,
with the convergence in the Euclidean case (zero curvature) implicitly implying the
convergence for all negative curvature cases. Furthermore, the convergence result
also provides a geometric generalization of the law of large numbers in that the
well-known sample average in the Euclidean law of large numbers is now replaced
by the geometric operation of moves on geodesics.

In the statistics literature, manifold-valued random variables, or more gen-
eral metric space-valued random variables, have been studied quite extensively,
e.g., [9, 10, 24, 31, 46, 56]. However, the focus has always been on establishing and
characterizing convergence of finite-sample means, and the attention is on extending
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Eq. (2.2) to more general domains. However, in our more application-oriented
context, the focus is instead on generalizing the incremental form in Eq. (2.3), and
this provides a context that is qualitatively different from the aforementioned works
in statistics. Perhaps the most well-known example is the incremental principal
component analysis (PCA) [35] and its various applications in computer vision and
image processing (e.g., [42]) that demand and hence motivate the incrementalization
of a well-known method originated from pure statistics. In particular, computation
of the mean from sample data plays an important role in a variety of applications
such as clustering, segmentation, and atlas construction in medical imaging, and
the performances of these algorithms are often determined by how efficiently and
accurately can the mean be computed. As an incremental algorithm, iFEE provides
a far more computationally efficient alternative to the standard non-incremental
algorithms that compute the Fréchet mean based on minimizing Eq. (2.4). The
(asymptotic) accuracy and efficiency of iFEE have been thoroughly evaluated using
experiments with synthetic and real data, and in the experiment section of this
chapter, we report the significant gains in running time achieved by iFEE over other
non-incremental methods without any noticeable degradation in its accuracy.

2.2 Algorithm and Convergence Analysis

In this section, we present the incremental algorithm for computing the Fréchet
expectation on general Riemannian manifolds and provide a convergence proof
of the incremental algorithm for simply connected and complete Riemannian
manifolds with nonpositive sectional curvature. Although phrased in the context of
Riemannian geometry, the incremental algorithm and most of the convergence proof
do not require much beyond the elementary notions such as Riemannian exponential
and logarithm maps that are familiar to a large section of the computer vision and
medical image computing audience. For simplicity of exposition, we will assume
M is a simply connected and complete Riemannian manifold with nonpositive
sectional curvature such that the Riemannian exponential map Expx and its inverse,
the Riemannian logarithm map Logx, based at every x 2 M are diffeomorphisms
between the tangent space Tx and M. In particular, M is assumed to have the R

n

topology1 and by Hopf–Rinow Theorem [16], any two points x; y in M can be
joined by a unique geodesic whose length gives the Riemannian distance dM.x; y/
between x and y. An important example of a complete Riemannian manifold with
nonpositive sectional curvature topologically equivalent to R

k for some k is the
space P.n/ of n-by-n symmetric positive matrices equipped with the affine-invariant
Riemannian metric.

1This topological assumption is not particularly restrictive since by Cartan–Hadamard Theo-
rem [7], any simply connected complete d-dimensional Riemannian manifold with nonpositive
sectional curvature can be constructed topologically from R

d .
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Let x denote an M-valued random variable and dP its associated probability
measure (distribution) on M that is absolutely continuous with respect to the
Riemannian volume measure dx with density function P.x/. Since Expx is a
diffeomorphism between Tx and M, we can use Expx to pull the distribution dP
(and its density function) back to Tx, essentially using Expx to identify distributions
on M and Tx. When there is no possibility of confusion, we will use the same
notation for such a pair of distributions.2 By a theorem of E. Cartan (see P. 256 and
Proposition 60 on P. 234 in [7]), dP has a unique (Fréchet) expectation m defined
by Eq. (2.1), and as the minimum, the first-order stationary condition gives

Z
M

Logm.x/P.x/dx D 0: (2.5)

Using Expm and Logm to identify distributions on M and Tm, the integral above
can be transferred onto Tm:

Z
Tm

x P.x/dx D 0; (2.6)

where the distribution P.x/dx on Tm in Eq. (2.6) is the pull back of the distribution
P.x/dx on M in Eq. (2.5) using Expm.

2.2.1 The Incremental Fréchet Expectation Estimator

Let x1; x2; : : : be a sequence of i.i.d. samples of the probability distribution dP. The
incremental Fréchet expectation estimator mk; k D 1; 2; : : : is defined as follows:

1. m1 D x1.
2. For k > 1, let �k.t/ denote the unique geodesic joining mk�1 and xk such that
�k.0/ D mk�1 and �k.1/ D xk. mk D �k.

1
k /.

Since the geodesic �k.t/ is constant speed [16], it follows from the definition of
mk that dM.xk;mk/ D .k � 1/dM.mk�1;mk/: In particular, when k D 2, m2 is
simply the midpoint on the geodesic joining x1 and x2. For k > 2, the estimator
mk is closer to the previous estimator mk�1 than to the new sample xk by a factor
of k � 1, a direct generalization of the Euclidean formula in Eq. (2.3), interpreted
geometrically. The incremental estimator mk is also a M-valued random variable,
and xi being independent samples implies that mk is also independent of xj for j > k.
We will denote dP.mk/ its probability measure and P.mk/ dmk its density function
with respect to the Riemannian volume measure (mk in dmk indicates the variable
of integration).

2Points in M are denoted by boldface font and their corresponding points in the tangent space are
denoted by regular font.
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The convergence result established below is a particular type of convergence
called the convergence in probability of the random variables mk to the expectation
m (see [32]). Specifically, for this particular type of convergence, we need to show
that for sufficiently large k, the probability that d2M.mk; m/ is larger than any 	 > 0
can be made arbitrary small: for 	; ı > 0, there exists an integer K.	; ı/ depending
on 	; ı such that

Pr fd2M.mk; m/ > 	 g < ı; (2.7)

for k > K.	; ı/. A simple application of the Markov’s inequality then shows that
it is sufficient to demonstrate that the mean squared error MSEm.mk/ of mk with
respect to m defined by

MSEm.mk/ D
Z
M

d2M.mk; m/P.mk/ dmk (2.8)

converges to zero as k ! 1. Recall that for a nonnegative real-valued random
variable X, Markov’s inequality states that

Pr fX > 	 g � EŒX�
	
; (2.9)

where EŒX� is the expectation of X. In our context, X D d2M.mk; m/, and EŒX� D
MSEm.mk/. Therefore, if MSEm.mk/ ! 0 as k ! 1, Eq. (2.7) is true for any
	; ı > 0 with k > K.	; ı/: since MSEm.mk/! 0 as k!1, there is a K.	; ı/ such
that for all k > K.	; ı/, MSEm.mk/ D EŒX� < 	ı, and Eq. (2.7) follows readily
from Eq. (2.9).

The convergence proof will also rely on the variance of the random variable x
defined by Var.x/ D R

M d2M.x; m/P.x/ dx: In general, the integrals in Var.x/
and MSEm.mk/ are difficult to evaluate directly on M. However, considerable
simplification is possible if the integrals are pulled back to the tangent space at
m. Specifically, since d2M.mk; m/ can be determined as the squared L2 norm of the
tangent vector Logm.mk/ in Tm, the integral above has a much simpler form on Tm:

MSEm.mk/ D
Z

Tm

kmkk2P.mk/ dmk: (2.10)

We remind the reader that the measures P.mk/ dmk;P.mk/ dmk in the two equations
above, although defined on different domains, are identified via Expm.
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2.2.2 The Example of P.n/

From an application viewpoint, P.n/ equipped with the affine (GL) invariant metric
is certainly the most important example of complete Riemannian manifold of non-
positive sectional curvature. Specifically, the general linear group GL.n/ (n-by-n
non-singular matrices) acts on P.n/ according to the formula: 8g 2 GL.n/;8M 2
P.n/, g�.M/ D gMg>. The action is not only transitive but for any pair of M;N
2 P.n/, there exists a g 2 GL.n/ such that gMg> is the identity matrix and
gNg> is a diagonal matrix, a geometric interpretation of the well-known algebraic
fact that a pair of SPD matrices can be simultaneously diagonalized. The tangent
space at each point in P.n/ is identified with the vector space of n-by-n symmetric
matrices, and a GL-invariant Riemannian metric [26] can be specified by the inner
product for the tangent space TM of M 2 P.n/: < U;V >MD tr.M�1UM�1V/;
where U;V are tangent vectors considered as symmetric matrices and tr denotes the
trace of a matrix. The differential geometry of P.n/ has been studied extensively
by the differential geometer Helgason [26], and the invariance of the metric under
GL-action makes many aspects of its geometry tractable. For example, P.n/ is a
complete Riemannian manifold with negative sectional curvature, and there is a
closed-form formula for the Riemannian distance between M;N 2 P.n/:

d2
P.n/.M;N/ D tr.Log.M�1N/2/; (2.11)

where Log denotes the matrix logarithm. Furthermore, there is also a closed-form
formula for the (unique) geodesic joining any pair of points M;N in P.n/. Because
of the invariance, the geodesic paths in P.n/ originate from geodesic curves joining
the identity matrix to diagonal matrices. Specifically, let D denote a diagonal matrix
with positive diagonal entries d1; d2; : : : ; dn > 0. The geodesic path �.t/ joining the
identity matrix and D is given by

�.t/ D

0
B@

et log.d1/ 0
: : :

0 et log.dn/

1
CA or �.t/ D

0
B@

dt
1 0
: : :

0 dt
n

1
CA : (2.12)

It is evident that �.0/ D In is the identity matrix and �.1/ D D. In particular,
�.t/ D Dt, as the fractional power of the diagonal matrix. For a general SPD
matrix M, its fractional power can be defined knowing its eigen-decomposition:
M D UDU> with D diagonal and U orthogonal, its power Mt for t 	 0 is
Mt D UDtU>: These matrix operations provide the steps for computing the
geodesic joining any pairs of M;N 2 P.n/: using g D M� 12 , .M;N/ can be
transformed simultaneously to .In;M�

1
2 NM� 12 /, and the geodesic path �.t/ joining

M;N is the transform under M
1
2 of the geodesic path N�.t/ joining .I;M� 12 NM� 12 /.

Let M� 12 NM� 12 D UDU> denote the eigen-decomposition of M� 12 NM� 12 , and
the geodesic path joining .I;M� 12 NM� 12 / is the transform under U of the geodesic
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path joining I;D, with the latter being Dt. Working backward, this gives the simple
formulas �.t/ D .M� 12 NM� 12 /t, and �.t/ D M

1
2 .M� 12 NM� 12 /tM 1

2 : Using the
above formula, the iFEE has a particularly simple form: given the i.i.d. samples
x1; x2; : : : : in P.n/, the incremental estimator is given by

m1 D x1 (2.13)

mkC1 D m
1
2

k .m
� 12
k xkC1m

� 12
k /

1
kC1 m

1
2

k : (2.14)

We remark that the computation of mkC1 requires the eigen-decomposition of

the SPD matrix m
� 12
k xkC1m

� 12
k that can be done using many efficient and robust

numerical algorithms.

2.2.3 Convergence Analysis

The analysis of the estimator’s convergence rests on the asymptotic behavior of
MSEm.mk/ defined in Eq. (2.8) and its equivalent form defined on the tangent space
Tm in Eq. (2.10). In particular, mk converges to m in the L2 norm if MSEm.mk/! 0

as k ! 1 [32]. An important element in the proof of the latter is a crucial upper
bound for the geodesic distance dM.mkC1;m/ between mkC1 and m using the
Euclidean distance in Tm, which is a consequence of the nonpositive curvature
assumption. The specific detail is illustrated in Fig. 2.1 and given in the Proposition
below. The basic idea is that by lifting mk and xkC1 back to Tm using the Riemannian

mk

xk+1

mk+1

mk+1

xk+1

mk

o
mk

Fig. 2.1 Geometric consequences of nonpositive curvature assumption. The three points
mk; xkC1;mkC1 are on a geodesic �.t/ in M. After lifting back to the tangent space Tm at m,
the point mkC1 D Logm.mkC1/ is closer to the origin than the corresponding point mk on the
straight line joining mk and xkC1. Note that the Euclidean distance between the origin and mkC1 is
the same as the geodesic distance dM.mkC1;m/
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logarithm map Logm, a triangle ˙ can be formed in Tm using the three points
mk; xkC1, and o, the origin. The geodesic distance dM.mkC1;m/ is then bounded
by the Euclidean distance between the origin o and the corresponding point mk on
˙ . This upper bound in terms of the Euclidean length of a vector in Tm is useful
because the resulting integral that gives the desired upper bound for the MSE in
Eq. (2.10) can be easily evaluated in an inductive argument using the distributions
P.mk�1/ and P.x/ instead of P.mk/. Specifically, we have

Proposition 2.1. Let x; y; z be three points on a complete Riemannian manifold
M with nonpositive sectional curvature and �.t/ the unique geodesic path joining
x; y such that �.0/ D x; �.1/ D y. Furthermore, let x D Logz.x/; y D Logz.y/,
and �.t/ denote the straight line joining x; y such that �.0/ D x; �.1/ D y. Then,
dM.�.t/; z/ � k�.t/k:
The proposition is a consequence of the nonpositive assumption on curvature.
Geometrically, it asserts that the geodesic distance between m and any point on
the geodesic �.t/ cannot be greater than the Euclidean distance in Tm between the
origin and the corresponding point on the line joining x and y. The proof of the
proposition is relegated to the appendix.

Armed with the above proposition, the proof of the convergence of the iFEE
is straightforward and essentially follows from the law of large numbers in the
Euclidean case.

Theorem 2.1. The incremental Fréchet expectation estimator mk converges to the
true Fréchet expectation m in probability, i.e., as k!1,

MSEm.mk/! 0:

Proof. We will inductively show that

MSEm.mk/ � 1

k
Var.x/: (2.15)

Since MSEm.m1/ D Var.x/, the inequality clearly holds for k D 1. For kC 1 > 1,
we have, by Proposition 2.1,

MSEm.mkC1/ �
Z

Tm

kk mk C x

kC 1 k
2 P.mk/P.x/dmkdx:

The integral on the right can be evaluated as

Z
Tm

kk mk C x

kC 1 k
2 P.mk/P.x/ dmkdx

D
Z

Tm

k2

.kC 1/2 kmkk2P.mk/ dmk



2 iFEE: Incremental Fréchet Expectation Estimator 31

C 2 k

.kC 1/2
Z

Tm

Z
Tm

m>k x P.mk/P.x/ dmkdx

C
Z

Tm

1

.kC 1/2 kxk
2 P.x/ dx

D k2

.kC 1/2MSEm.mk/C 1

.kC 1/2Var.x/ � 1

kC 1Var.x/;

where the last inequality follows from the induction hypothesis, and

Z
Tm

Z
Tm

m>k x P.mk/P.x/ dmkdx D 0

follows from Eq. (2.6), although
R

Tm
mkP.mk/dmk is not guaranteed to be zero.

We remark that although Proposition 2.1 is valid for any other point z ¤ m in M,
the cross-term in the sum above

R
Tm

R
Tm

m>k x P.mk/P.x/ dmkdx; when evaluated at
Tz, is generally nonzero. In particular, the above argument only works for the unique
Fréchet expectation m.

2.3 Related Work

Manifold-valued random variables or, more generally, random variables taking
values on general metric spaces have been studied quite extensively in probability
and statistics literature since the seminal work of Fréchet [23]. In the context
of Riemannian manifolds, the notion of center of mass that is equivalent to the
Fréchet expectation as defined by Eq. (2.1) was initially introduced by E. Cartan
(see Sect. 6.1.5 in [7]), who established, among many other things, the uniqueness
of Riemannian center of mass for complete manifolds of nonpositive sectional
curvature. For general Riemannian manifolds, the Fréchet expectation is unique
only for distributions with some special properties, for example, when their supports
are contained in convex geodesic balls. In statistics literature, the primary interest
and focus are on establishing the convergence of finite-sample means to the
true expectation. With random variables taking values in general metric spaces
and the non-uniqueness of expectation, characterizations of convergence require
more elaborate machinery to account for the marked increase in the topological
and geometric complexity. The basic form of the general law of large numbers
for metric space-valued random variables was first established in [46, 56] under
different assumptions on the metric spaces and the types of convergence. This
abstract framework has been applied to study concrete statistical problems such as
procrustean shape analysis [33], and several recent works [24, 31] have substantially
extended the scope of these earlier works, both in abstraction and in application. In
the context of Riemannian manifolds, the pair of papers [9, 10] provide some of the
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basic results, including a very general central limit theorem and several concrete
examples concerning both the intrinsic and extrinsic means of several classical
manifolds such as the complex projective spaces used in procrustean analysis. We
remark that the idea of computing the mean incrementally and the question of its
convergence do not seem to have been discussed nor studied in these works.

In the conference version of this chapter [18] we proved the convergence of
the incremental estimator under the assumptions that the distribution is symmetric
and the Riemannian manifold M is the space of SPD matrices P.n/ equipped with
the GL-invariant Riemannian metric. This result and its proof were later extended
to general distributions on P.n/ in our second conference paper [28]. The proofs
presented in both papers rely on an inequality that is valid only for Riemannian
manifolds with nonpositive sectional curvature, and this makes the method ill suited
for further extension to manifolds with positive curvature that includes important
examples in computer vision applications such as Grassmannians, Stiefel manifolds,
and most compact Lie groups. In particular, the connection between the Euclidean
and non-Euclidean cases were not made explicit in these two earlier approaches, and
the proof presented in this chapter that uses geometric comparisons is considerably
more flexible in its potential for future extensions.

After the publication of [18, 28], we were made aware of the paper by Sturm [44]
wherein he formulated and proved a substantially stronger convergence result
for length spaces, a more general class of spaces than Riemannian manifolds.
Specifically, length spaces are metric spaces that determine the distance between
two points using the minimal length of a path joining them, and compared with
Riemannian manifolds, length spaces retain the notion of geodesics (distance-
minimizing paths) but forsake the manifold structure as well as the exponential
and logarithm maps. Surprisingly, it is still possible, in the absence of a manifold
structure, to define a useful notion of nonpositive curvature for length spaces, and
Strum [44] has formulated and proved a convergence result for length spaces of
nonpositive curvature, of which complete Riemannian manifolds of nonpositive
curvature are special cases. Although Sturm’s result subsumes ours, the convergence
theorem and its proof presented in [44] require considerably more machinery and
longer exposition to compensate for the loss of familiar structures such as the
Riemannian exponential and logarithm maps. From this perspective, our present
exposition offers three important contributions: First, we present a significantly
shorter and more accessible convergence proof using only elementary Riemannian
geometry that is familiar to general readership of the computer vision and medical
image computing communities. Second, our proof provides a more transparent and
clear connection between the convergence in the Euclidean domain (the law of
large numbers) and the non-Euclidean manifolds. Third, and most importantly, our
proof method that relies heavily on the linearization provided by the Riemannian
exponential and logarithm maps should be better adapted for studying the conver-
gence problems for more general Riemannian manifolds and analyzing other related
issues. Although the generality provided by [44] is both reassuring and welcoming,
applications in computer vision and machine learning often require a specialized
instead of generalized mathematical context, and in particular, general results must
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be sharpened and improved for special cases, perhaps in terms of shorter proofs or
more precise characterizations, for which our current work serves as an example.

There are several articles in literature on computing the finite sample Fréchet
mean on Pn. Moakher [38], Bhatia and Holbrook [8], presented methods for
computing this intrinsic mean. Independently, there was work by Fletcher and Joshi
[21] that presents a gradient descent algorithm for computing the finite sample
Fréchet mean of diffusion tensors (matrices in Pn). Further, Ando, Li, and Mathias
(ALM) [3] presented a technique to compute the geometric mean of n 	 3 SPD
matrices and listed 10 properties (now called the ALM axioms) that their mean
satisfied. It is to be noted that their mean distinct from the Fréchet mean of
the given sample set. In [11] Bini et al. present an extension of the unweighted
geometric mean of two SPD matrices to higher number of SPD matrices by using
“symmetrization methods” and induction, which satisfies the ALM axioms. This
however is not the Fréchet mean of the given sample set. More recently, Lim and
Pálfia [36] presented results on computing a weighted inductive mean of a finite
set of SPD matrices. In [36], authors restrict themselves to discrete probability
densities on Pn unlike the work presented in this chapter where we consider the
continuous densities. For other types of means, we refer the reader to the excellent
discussion in Pennec [40] wherein a gradient descent algorithm is presented for
finding the finite sample Fréchet mean for simply connected nonpositively curved
Riemannian manifolds with curvature bounded from below. In [1], Afsari et al.
present a comprehensive set of results on the convergence of the gradient descent
algorithm for finding the Riemannian center of mass (a.k.a. finite sample Fréchet
mean) on Riemannian manifolds.

In Medical Image Computing, an impetus for developing efficient algorithms for
computing means from samples is provided by the prominent role played by the
mean tensor (using various kinds of distances/divergences) in solving a wide range
of important problems that include diffusion tensor image (DTI) as well as structure
tensor field segmentation, interpolation, clustering, and atlas construction. For
example, authors in [51] generalize the geometric active contour-based piecewise
constant segmentation [15, 47] to segmentation of DTIs using the Euclidean distance
to measure the distance between two SPD tensors. Authors in [20] present a
geometric active contour-based approach [13, 37] for tensor field segmentation that
used information from the diffusion tensors to construct the so-called structure
tensor which was a sum of structure tensors formed from each component of
the diffusion tensor. A Riemannian metric on the manifold of SPD matrices was
used in [5, 39, 41] for DTI segmentation and for computing the mean interpolant
of diffusion tensors, respectively. In [52, 53, 57] and [39], the symmetrized KL-
divergence (KLs) was used for DTI segmentation and interpolation, respectively.
Other applications of computing mean diffusion tensor field from a finite sample of
diffusion tensor fields (structure tensor fields) can be found in [27, 55]. However,
none of the above methods for computing the mean of SPD matrices (or SPD fields)
used within the segmentation or the dictionary learning algorithms or in their own
right for interpolation are in recursive form, even though it is evident that a recursive
formulation would be more desirable in designing a more efficient algorithm.
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2.4 Experiments

In this section, we empirically demonstrate the accuracy and efficiency of the
proposed iFEE algorithm using a set of experiments. The distributions studied
in these experiments are all defined on P.n/, the space of n-by-n SPD matrices
equipped with the GL-invariant Riemannian metric. All experiments reported in this
section were performed on an Apple laptop with a 2:5GHz Intel Core i5 CPU and
4GB DDR3. All reported timings are on the aforementioned CPU.

2.4.1 Performance of the Incremental Fréchet Expectation
Estimator

Symmetric Distributions We illustrate the performance of iFEE on a set of
random samples on P.n/ drawn from a symmetric distribution and compare the
accuracy and computational efficiency of iFEE and the non-incremental (batch-
mode) gradient descent algorithm for computing the finite sample Fréchet mean
(FM) of the given data set. To this end, a set of 100 i.i.d samples from a log-
normal distribution [43] on P.6/ are generated, and the Fréchet mean is computed
using iFEE as well as the batch-mode (gradient descent) method. We set the
expectation and the variance of log-normal distribution to the identity matrix and
one, respectively. The error in estimation is measured by the geodesic distance from
each estimated point to the identity. Further, for each new sample, the computation
time for each method is recorded. Figure 2.2a illustrates the significant difference in
running time between iFEE and the batch mode method denoted using the legend,
FM, in this figure and figures to follow. It can be seen that the time taken by iFEE is
considerably shorter than the batch-mode (FM) method.

The accuracy errors of the two estimators are shown in Fig. 2.2b. It can be seen
that the incremental estimator provides roughly the same accuracy as the batch-
mode counterpart. Furthermore, for large numbers of samples, the incremental
estimation error clearly converges to zero. Therefore, the algorithm performs more
accurately as the number of data samples grows.

Asymmetric Distributions For asymmetric distributions, we use a mixture of two
log-normal distributions on P.4/ and repeat the same experiment as above. The first
distribution in the mixture is centered at the identity matrix with the variance 0:1,
and the second component is centered at a randomly chosen matrix with variance
0:2. A set of 500 samples are drawn from this distribution for the experiment.
To measure the error, we compute the gradient vector of the objective function in
Eq. (2.4) (k D 500) and its norm. Figure 2.2c depicts the timing plot for convergence
of the two algorithms for samples drawn from this asymmetric distribution. The plot
shown is an average over 500 runs. As evident, iFEE shows superior computational
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Fig. 2.2 (a) and (b): Time and error comparison of iFEE (blue) vs. batch-mode (red) Fréchet mean
computation for data from a symmetric distribution on P.6/. (c) and (d): Similar experiment for
data from an asymmetric distribution on P.4/

efficiency. Figure 2.2d depicts the error of iFEE vs. its counterpart batch-mode
algorithm for this asymmetric distribution. Note that the accuracies of both the
algorithms are as expected similar.

2.4.2 Application to K-Means Clustering

In this section, we evaluate the performance of our proposed incremental algorithm
within the K-means clustering framework. K-means clustering is of fundamental
importance for many applications in computer vision and machine learning. Due
to the lack of a closed-form formula for computing the Fréchet mean, mean
computation is the most time consuming step in applying K-means to SPD matrices,
since at the end of each iteration the mean for each estimated cluster needs to be
recomputed. The experimental results in this section demonstrate that, for SPD
matrices, our iFEE algorithm can significantly speed up the clustering process—
when compared with the batch mode—without any observable degradation in its
accuracy.
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For comparisons, we use the two different ways to compute the cluster centers:
(1) the iFEE algorithm and (2) the batch-mode algorithm for computing the Fréchet
mean (FM). iFEE is applied to the K-means clustering for SPD matrices as follows.
At the end of each iteration of the K-means algorithm, we only consider matrices
whose cluster assignments have changed. For each of these “moving” samples,
the source cluster center is updated by removing the sample, and the destination
cluster center is updated by adding the new sample matrix. Both these updates
can be efficiently performed using our incremental formula given in Eq. (2.14),
with appropriate weights. A set of experiments are presented here using different
scenarios to illustrate the effectiveness of our method. In each experiment, a set of
random samples from mixtures of log-normal distributions on P.n/ are generated
and used as inputs to the K-means algorithm. In the first experiment, we increase
the number of samples and compare the accuracy and running time of incremental
and batch-mode estimates for each case. In the second experiment, we evaluate the
performance of each algorithm with respect to the matrix dimension. To measure the
clustering error, the geodesic distance between each estimated cluster center and its
true value is computed and these are summed over all cluster centers and reported.

Figure 2.3a, b, respectively, compare the running time and the clustering accuracy
of each method with increasing number of samples. It is evident that the iFEE
outperforms the batch-mode method, while the accuracy for both methods are very
similar. Moreover, as the number of samples increases, iFEE improves in accuracies.
Also Fig. 2.3c illustrates a significant difference in running time between these two
methods, while Fig. 2.3d shows that the accuracies for both methods are roughly the
same. These experiments verify that the proposed iFEE is far more computationally
efficient than the batch-mode algorithm for K-means clustering applied to SPD
matrices.

2.4.3 Application to Diffusion Tensor Image Segmentation

In this section, we present results of applying our iFEE algorithm to real data
segmentation, specifically, the DTI segmentation problem. Diffusion tensors are
SPD (coefficient) matrices in a quadratic approximation to the diffusivity function
characterizing the water molecule diffusion in sample tissue being imaged using
a medical imaging technique called diffusion magnetic resonance imaging [6].
Standard MRI acquisition is modified via the application of diffusion sensitizing
magnetic field gradients at each voxel of an image grid to acquire the signal along
the applied magnetic field gradient directions. One acquires these signals over a
sphere of directions and at each voxel of an image grid, the diffusivity function
is then approximated by a zero-mean local Gaussian, whose covariance matrix is
proportional to the diffusion tensor. For more details on DTI, we refer the reader
to [6].
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Fig. 2.3 Comparison of running times and accuracy for K-means clustering based on iFEE and
batch-mode estimators for: (a) and (b) varying number of samples from three clusters on P.4/; (c)
and (d) 1000 samples from three clusters with varying sizes

In [52], the classical level-set-based (piecewise constant model) segmentation
algorithm [15] was generalized to cope with a field of diffusion tensors. The
constant in the piecewise constant model employed here is the mean of the tensor-
valued voxels in a region. In this section, we use this algorithm to segment DTIs
and use different (tensor field) mean estimation techniques within this algorithm
for comparison purposes. We applied six different methods to compute the mean
diffusion tensor (SPD matrices) and compared their accuracies and computation
speed in the task of DTI segmentation. The first two methods used here are the
proposed iFEE and the batch-mode Fréchet mean (FM) obtained from Eq. (2.4). The
next two methods denoted henceforth by KLS and RKLS, respectively, are the mean
computed using the symmetrized KL-divergence [52] and its recursive counterpart,
reported in [18]. The last two techniques are the Log-Euclidean mean (LEM) [4]
and its recursive version (RLEM) introduced in [54].

The diffusion tensors at each grid point of the image field are estimated (using
the method described in [52]) from a diffusion MR scan of a rat spinal cord. The
data were acquired using a 17.6-T Brucker scanner, along 21 directions with a
b-value of 1000 s/mm2. Each voxel size in the scan was 35 � 35 � 300
m; and the
image resolution was 128 � 128. Our goal here is to segment the gray matter from
the DTI of the rat spinal cord. We used the same initialization for all the methods.
We applied all of the six methods (incremental and batch-mode versions for each
of the three “distance” measures) to perform this experiment. In order to compare
the time efficiency, we report the run times for the entire gray matter segmentation
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Table 2.1 Time (in seconds)
for segmentation of the gray
matter in a rat spinal cord

iFEE FM RKLS KLS RLEM LEM

MT 1.85 92.05 2.89 4.20 1.45 26.59

TT 52.42 147.79 54.23 59.41 66.34 117.58

MT and TT denote the mean computation time and total
segmentation time, respectively

Fig. 2.4 Segmentation results of gray matter in a rat spinal cord. (a)–(d) Results from iFEE, FM,
RKLS, and RLEM, respectively

process, including the total time required to compute the means. Table 2.1 shows the
result of this comparison, from which we can see that FM takes nearly two thirds
of the total reported segmentation time to compute the Fréchet mean, whereas using
the iFEE makes the computation much faster and also significantly reduces the total
segmentation time.

The segmentation results are shown in Fig. 2.4 for each method. For the sake
of space, we present only the segmentation results from iFEE, FM, RKLS, and
RLEM algorithms, as the results from RKLS and RLEM are visually similar to their
non-incremental counterparts. The segmented region is the gray matter in the rat
spinal cord. The region surrounding the entire spinal cord shown in blue is water in
which the excised spinal cord was suspended for ex vivo image acquisition. Each
.3; 3/ diffusion tensor in the DTI data is depicted using an ellipsoid, whose axis
directions and lengths correspond to the eigenvectors and eigenvalues of the tensor,
respectively. The color of each ellipsoid ranges from blue to red, demonstrating
the lowest to highest degree of anisotropy, respectively. Moreover, the segmentation
result is depicted as a curve in red overlaid on the ellipsoidal visualization of the
diffusion tensor field. From the figure, we can see that the segmentation results are
visually similar to each other, while the iFEE takes far less computation time, which
would be very useful in practice.

2.5 Conclusions

In this chapter, we have presented a novel incremental Fréchet expectation
estimator-dubbed iFEE that incrementally computes the Fréchet expectation of
a distribution defined on a Riemannian manifold and presented a proof for the
algorithm’s convergence for simply connected and complete Riemannian manifolds
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with nonpositive sectional curvature. In iFEE, the intrinsic mean update is done
by moving the current mean towards the new sample on the geodesic joining
them; therefore, provided that the geodesics are accessible, iFEE does not require
optimization and is computationally very efficient. The asymptotic accuracy of iFEE
is guaranteed by the convergence analysis, and it provides an example of geometric
generalizations of the law of large numbers in that the well-known sample average
in the Euclidean law of large numbers is now replaced by the geometric operation
of moves on geodesics. We have presented several experiments demonstrating the
efficiency and accuracy of the iFEE algorithm.
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Appendix

In this appendix, we prove Proposition 2.1 presented in Sect. 2.2. The proof is
entirely elementary if we assume the general property of CAT.0/-metric spaces [12]
and Toponogov’s comparison theorem (specifically, the easier half of the theorem
on manifolds of nonpositive sectional curvature) [7].

Complete Riemannian manifolds of nonpositive sectional curvature form an
important subclass of CAT.0/-metric spaces [12]. For our purpose, the detailed
definition of CAT.0/-metric spaces is not necessary; instead, we will recall only
the features that are used in the proof. A geodesic triangle � on a complete
Riemannian manifold M is the union of three geodesic segments joining three
points p;q; r 2M: �1.0/ D �3.1/ D p; �1.1/ D �2.0/ D q; �2.1/ D �3.0/ D r. Its
comparison triangle � is a triangle in R

2 with vertices p; q; r such that the lengths
of the sides pq; qr; rp are equal to the lengths of the geodesic segments �1; �2; �3,
respectively. Such comparison triangle always exists for any geodesic triangle in M,
and it is unique up to a rigid transform in R

2. The correspondence between the three
sides and segments extends naturally to points on the triangles as well: a point x 2 �
corresponds to a point x 2 � if their associated sides correspond and their distances
to the corresponding two endpoints are the same. For example, if x 2 �1 and x 2 pq,
x corresponds to x if dM.x;p/ D dR2 .x; p/; and hence dM.x;q/ D dR2 .x; q/ as
well. An important property enjoyed by any CAT.0/-metric space is that for any pair
of points x; y on � and their corresponding points x; y on �, we have (see Fig. 2.5)
dM.x; y/ � dR2 .x; y/: The importance of this inequality is the upper bound given
by the Euclidean distance in R

2, and it allows us to bound the integral of the squared
distance function on M by an integral involving squared Euclidean distance that is
considerably easier to manage. Finally, for the pair of triangles �;�, Toponogov’s
comparison theorem asserts the angle †.rpq/ on � no smaller than †.rpq/ on � .

Armed with these results, the proof of Proposition 2.1 is straightforward and it
involves comparing two triangles in the tangent space Tm. See Fig. 2.1. We restate
Proposition 2.1 for convenience below and now present its proof.
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Fig. 2.5 A geodesic triangle
in M and its comparison
triangle in R

2. Corresponding
sides on the triangles have the
same length. By Toponogov’s
comparison theorem, the
angle †.qpr/ is not less than
the angle †.qpr/ due the
nonpositive sectional
curvature of M. Furthermore,
if �.t/; �.t/ denote the
geodesic and straight line
joining p;q and p; q,
respectively, then the
geodesic distance dt between
p and �.t/ is not greater than
the Euclidean distance dt

between p and �.t/, i.e.,
dt � dt

p

q

g (t)

r

dt
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q

g (t )

r

dt

R 2

Proposition 2.1. Let x; y; z be two points on a complete Riemannian manifold M
with nonpositive sectional curvature and �.t/ the unique geodesic path joining x; y
such that �.0/ D x; �.1/ D y. Furthermore, let x D Logz.x/; y D Logz.y/, and
�.t/ denote the straight line joining x; y such that �.0/ D x; �.1/ D y. Then,
dM.�.t/; z/ � k�.t/k:
Proof. Given mk, xkC1 in M, and mkC1 determined according to the iFEE
algorithm, we will denote mk; xkC1 and mkC1, their corresponding points in Tm

under the Riemannian logarithm map Logm. Without loss of generality, we will
prove the proposition using z D m; x D xkC1, y D mk. Let a D dM.xkC1;m/
and b D dM.mk;m/: On Tm, we have the first triangle ˙ formed by the three
vertices: xkC1;mk, and o the origin with the side lengths jxkC1oj D a; jmkoj D b.
The geodesic triangle � on M spanned by m; xkC1;mk has a comparison triangle�
in Tm spanned by o; p; q with jpoj D a; jqoj D b, and by Toponogov’s comparison
theorem,

�� � †.xkC1omk/ � †.poq/ � �ı;

since, by definition, †.xkC1omk/ D †.xkC1mmk/.
For completing the proof, we need to show that the distance between any point

on the side pq of � and the origin is not greater than the distance between its
corresponding point on the side xkC1mk of ˙ and the origin. Specifically, a point
u 2 pq can be written as u D tpC.1� t/q; for some 0 � t � 1 and its corresponding
point v on xkC1mk is the point v D txkC1C .1� t/mk: Since the triangle� is unique
up to a rigid transform, we can, without loss of generality, assume that the two
triangles �;˙ are contained in a two-dimensional subspace of Tm such that (using
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the obvious coordinates) they are spanned by the following two sets of three points:

� W .0; 0/; .a; 0/; .b cos �ı; b sin �ı/;

˙ W .0; 0/; .a; 0/; .b cos �� ; b sin �� /;

with �� � �ı . Consequently, u D .ta C .1 � t/b cos �ı; .1 � t/b sin �ı/ and
v D .taC .1 � t/b cos �� ; .1 � t/b sin �� /; and their lengths are, respectively,

kuk D
p

t2a2 C 2t.1 � t/ab cos �ı C .1 � t/2;

kvk D
p

t2a2 C 2t.1 � t/ab cos �� C .1 � t/2:

Since �� � �ı , it then follows that kuk � kvk.
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Chapter 3
Kernels on Riemannian Manifolds

Sadeep Jayasumana, Richard Hartley, and Mathieu Salzmann

Abstract We discuss an approach to exploiting kernel methods with manifold-
valued data. In many computer vision problems, the data can be naturally repre-
sented as points on a Riemannian manifold. Due to the non-Euclidean geometry
of Riemannian manifolds, usual Euclidean computer vision and machine learning
algorithms yield inferior results on such data. We define positive definite kernels on
manifolds that permit us to embed a given manifold with a corresponding metric
in a reproducing kernel Hilbert space. These kernels make it possible to utilize
algorithms developed for linear spaces on nonlinear manifold-valued data.

We primarily work with Gaussian radial basis function (RBF)-type kernels. Since
the Gaussian RBF defined with any given metric is not always positive definite, we
present a unified framework for analyzing the positive definiteness of the Gaussian
RBF on a generic metric space. We then use the proposed framework to identify
positive definite kernels on three specific manifolds commonly encountered in
computer vision: the Riemannian manifold of symmetric positive definite matrices,
the Grassmann manifold, and Kendall’s manifold of 2D shapes. We show that many
popular algorithms designed for Euclidean spaces, such as support vector machines,
discriminant analysis, and principal component analysis can be generalized to
Riemannian manifolds with the help of such positive definite Gaussian kernels.
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3.1 Introduction

Mathematical entities that do not form Euclidean spaces but lie on nonlinear
manifolds are often encountered in computer vision. Examples include normalized
histograms that form the unit n-sphere Sn, symmetric positive definite (SPD)
matrices, linear subspaces of a Euclidean space, and 2D shapes. Recently, the latter
three manifolds have drawn significant attention in the computer vision community
due to their widespread applications. SPD matrices, which form a Riemannian man-
ifold when endowed with an appropriate metric [28], are encountered in computer
vision in the forms of covariance region descriptors [36, 37], diffusion tensors [28],
and structure tensors [13]. Linear subspaces of a Euclidean space, known to form a
Riemannian manifold named the Grassmann manifold, are commonly used to model
image sets [14, 15] and videos [35]. Shape descriptors can be used as strong cues in
object recognition [4].

Since manifolds lack a vector space structure and other Euclidean structures
such as norm and inner product, many popular computer vision and machine
learning algorithms including support vector machines (SVM), principal component
analysis (PCA), and mean-shift clustering cannot be applied in their original
forms on manifolds. One way of dealing with this difficulty is to neglect the
nonlinear geometry of manifold-valued data and apply Euclidean methods directly.
As intuition suggests, this approach often yields poor accuracy and undesirable
effects, as was demonstrated, for instance, in [3, 28] for SPD matrices.

When the manifold under consideration is Riemannian, another common
approach used to cope with its nonlinearity consists in approximating the manifold-
valued data with its projection to a tangent space at a particular point on the
manifold, for example, the mean of the data. Such tangent space approximations
are often calculated successively as the algorithm proceeds [37]. However, mapping
data to a tangent space only yields a first-order approximation of the data that can be
distorted, especially in regions far from the origin of the tangent space. Moreover,
iteratively mapping back and forth to the tangent spaces significantly increases the
computational cost of the algorithm. It is also difficult to decide the origin of the
tangent space, which strongly affects the accuracy of this approximation.

In Euclidean spaces, the success of many computer vision algorithms arises from
the use of kernel methods [31, 32]. Therefore, one could think of following the idea
of kernel methods in R

n and embed a manifold in a high-dimensional reproducing
kernel Hilbert space (RKHS), where linear geometry applies. Many Euclidean
algorithms can be directly generalized to an RKHS, which is a vector space that
possesses an important structure: the inner product. Such an embedding, however,
requires a kernel function defined on the manifold, which, according to Mercer’s
theorem [31], should be positive definite. While many positive definite kernels are
known for Euclidean spaces, such knowledge remains limited for manifolds.

In this chapter, we present a generalization of successful and powerful kernel
methods to manifold-valued data. To this end, we analyze the Gaussian RBF kernel
on a generic manifold and provide necessary and sufficient conditions for the
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Gaussian RBF kernel generated by a distance function on any nonlinear manifold to
be positive definite. This lets us generalize kernel methods to manifold-valued data
while preserving the favorable properties of the original algorithms.

We apply the theory to analyze the positive definiteness of Gaussian kernels
defined on three specific manifolds: the Riemannian manifold of SPD matrices,
the Grassmann manifold, and the shape manifold. Given the resulting positive
definite kernels, we discuss different kernel methods on these three manifolds,
including kernel SVM, multiple kernel learning (MKL), and kernel PCA. We
present experiments on a variety of computer vision tasks, such as pedestrian detec-
tion, segmentation, face recognition, and action recognition, to show that manifold
kernel methods outperform the corresponding Euclidean algorithms that neglect the
manifold geometry, as well as other state-of-the-art techniques specifically designed
for manifolds.

3.2 Riemannian Manifolds of Interest

A topological manifold, generally referred to as simply a manifold, is a topological
space that is locally homeomorphic to the n-dimensional Euclidean space R

n, for
some n. Here, n is referred to as the dimensionality of the manifold. A differentiable
manifold is a topological manifold that has a globally defined differential structure.
The tangent space at a given point on a differentiable manifold is a vector space that
consists of the tangent vectors of all possible curves passing through the point.

A Riemannian manifold is a differentiable manifold equipped with a smoothly
varying inner product on each tangent space. The family of inner products on all
tangent spaces is known as the Riemannian metric of the manifold. It enables us
to define various geometric notions on the manifold such as the angle between
two curves, or the length of a curve. The geodesic distance between two points
on the manifold is defined as the length of the shortest curve connecting them. Such
shortest curves are known as geodesics and are analogous to straight lines in R

n.
The geodesic distance induced by the Riemannian metric is the most natural

measure of dissimilarity between two points lying on a Riemannian manifold.
However, in practice, many other nonlinear distances or metrics which do not
necessarily arise from Riemannian metrics can also be useful for measuring
dissimilarity on manifolds. It is worth noting that the term Riemannian metric refers
to a family of inner products while the term metric refers to a distance function that
satisfies the four metric axioms. A nonempty set endowed with a metric is known
as a metric space which is a more abstract space than a Riemannian manifold.

In the following, we provide a brief overview of the three Riemannian manifolds
discussed in this chapter.
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3.2.1 The Riemannian Manifold of SPD Matrices

A d � d, real SPD matrix S has the property: xTSx > 0 for all nonzero x 2 R
d.

The space of d� d SPD matrices, which we denote by SymCd , is clearly not a vector
space since an SPD matrix when multiplied by a negative scalar is no longer SPD.
Instead, SymCd forms a convex cone in the d2-dimensional Euclidean space.

The geometry of the space SymCd is best explained with a Riemannian metric that
induces an infinite distance between an SPD matrix and a non-SPD matrix [2, 28].
Therefore, the geodesic distance induced by such a Riemannian metric is a
more accurate distance measure on SymCd than the Euclidean distance in the d2-
dimensional Euclidean space it is embedded in. Two popular Riemannian metrics
proposed on SymCd are the affine-invariant Riemannian metric [28] and the log-
Euclidean Riemannian metric [2, 3]. They result in the affine-invariant geodesic
distance and the log-Euclidean geodesic distance, respectively. These two distances
are so far the most widely used metrics on SymCd .

Apart from these two geodesic distances, a number of other metrics have been
proposed for SymCd to capture its nonlinearity [33]. For a review of metrics on
SymCd , we refer the reader to [11].

3.2.2 The Grassmann Manifold

A point on the .n; r/ Grassmann manifold, where n > r, is an r-dimensional
linear subspace of the n-dimensional Euclidean space. Such a point is generally
represented by an n � r matrix Y whose columns store an orthonormal basis of
the subspace. With this representation, the point on the Grassmann manifold is the
linear subspace spanned by the columns of Y or span.Y/ which we denote by ŒY�.
We use Gr

n to denote the .n; r/ Grassmann manifold.
The set of n � r .n > r/ matrices with orthonormal columns forms a manifold

known as the .n; r/ Stiefel manifold. From its embedding in the nr-dimensional
Euclidean space, the .n; r/ Stiefel manifold inherits a canonical Riemannian met-
ric [12]. Points on Gr

n are equivalence classes of n � r matrices with orthonormal
columns, where two matrices are equivalent if their columns span the same
r-dimensional subspace. Thus, the orthogonal group Or acts via isometries (change
of orthogonal basis) on the Stiefel manifold by multiplication on the right, and Gr

n
can be identified as the set of orbits of this action. Since this action is both free and
proper, Gr

n forms a manifold, and it is given a Riemannian structure by equipping it
with the standard normal Riemannian metric derived from the metric on the Stiefel
manifold.

A geodesic distance on the Grassmann manifold, called the arc length distance,
can be derived from its canonical geometry described above. The arc length distance
between two points on the Grassmann manifold turns out to be the l2 norm of the
vector formed by the principal angles between the two corresponding subspaces.
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Several other metrics on the Grassmann manifold can be derived from the principal
angles. We refer the reader to [12] for more details and properties of different
Grassmann metrics.

3.2.3 The Shape Manifold

A number of different representations have been proposed to capture shapes,
which are geometric information invariant to translation, scale, and rotation. In this
chapter, we use Kendall’s formalism where a 2D shape is initially represented
as an n-dimensional complex vector, where n is the number of landmarks that
denote the shape [21]. The real and imaginary parts of each element of the vector
encode the x and y coordinates of a landmark, respectively. Translation and scale
invariances are achieved by subtracting the mean from the vector and scaling it to
have unit norm. The vector z obtained in this manner is dubbed pre-shape as it is not
invariant to rotation yet. Pre-shapes lie on the complex unit sphere CSn�1. To remove
rotation, all rotated versions of z are identified and the final shape is obtained as the
resulting equivalence class of pre-shapes, denoted by Œz�. Since rotations correspond
to multiplication by complex numbers of unit magnitude, the shape manifold is in
fact the complex projective space CPn�2. In the following, we use SPn to denote the
manifold of 2D shapes defined by n landmarks.

Arguably, the most popular distance on the shape manifold is the full Procrustes
distance [21]. A detailed analysis of different metrics on the shape manifold is given
in [10].

3.3 Hilbert Space Embedding of Manifolds

An inner product space is a vector space equipped with an inner product. A Hilbert
space is an (often infinite-dimensional) inner product space which is complete with
respect to the norm induced by the inner product. A Reproducing Kernel Hilbert
Space (RKHS) is a special kind of Hilbert space of functions on some nonempty set
X in which all evaluation functionals are bounded and hence continuous [1]. The
inner product of an RKHS of functions on X can be defined by a bivariate function
on X � X , known as the reproducing kernel of the RKHS.

Many useful computer vision and machine learning algorithms developed for
Euclidean spaces depend only on the notion of inner product, which allows us to
measure angles and also distances. Therefore, such algorithms can be extended to
Hilbert spaces without effort. A notable special case arises with RKHSs where
the inner product of the Hilbert space can be evaluated using a kernel function
without computing the actual vectors. This concept, known as the kernel trick, is
commonly employed in machine learning in the following setting: input data in
some n-dimensional Euclidean space R

n are mapped to a high-dimensional RKHS
where some learning algorithm, which requires only the inner product, is applied.
We never need to calculate actual vectors in the RKHS since the learning algorithm
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only requires the inner product of the RKHS, which can be calculated by means
of a kernel function defined on R

n � R
n. A variety of algorithms can be used

with the kernel trick, such as support vector machines (SVM), principal component
analysis (PCA), Fisher discriminant analysis (FDA), k-means clustering, and ridge
regression.

Embedding lower-dimensional data in a higher-dimensional RKHS is commonly
and successfully employed with data that lie in a Euclidean space. The theoretical
concepts of such embeddings can directly be extended to manifolds. Points on
a manifold M are mapped to elements in a high (possibly infinite)-dimensional
Hilbert space H, a subspace of the space spanned by real-valued functions1 on M.
A kernel function k W .M�M/! R is used to define the inner product on H, thus
making it an RKHS. The technical difficulty in utilizing Hilbert space embeddings
with manifold-valued data arises from the fact that, according to Mercer’s theorem,
the kernel function must be positive definite to define a valid RKHS. While many
positive definite kernel functions are known for Rn, generalizing them to manifolds
is not straightforward.

Identifying such positive definite kernel functions on manifolds would, however,
be greatly beneficial. Indeed, embedding a manifold in an RKHS has two major
advantages: First, the mapping transforms the nonlinear manifold into a (linear)
Hilbert space, thus making it possible to utilize algorithms designed for linear spaces
with manifold-valued data. Second, as evidenced by the theory of kernel methods
in Euclidean spaces, it yields a much richer high-dimensional representation of the
original data distribution, making tasks such as classification easier.

In the next two sections, we build a generic framework that enables us to define
provably positive definite Gaussian RBF-type kernels on manifolds. Our main focus
is on Gaussian RBF kernels since they have proven extremely useful and versatile
in Euclidean spaces. We discuss other types of kernels in Sect. 3.6.

3.4 Theory of Positive and Negative Definite Kernels

In this section, we present some general results on positive and negative definite
kernels. These results will be useful for our derivations in later sections. We
start with the definition of real-valued positive and negative definite kernels on a
nonempty set [5]. Note that by kernel on X or kernel on X � X , we mean a real-
valued function on X � X hereafter.

Definition 1. Let X be a nonempty set. A kernel f W .X�X /! R is called positive
definite if it is symmetric (i.e., f .x; y/ D f .y; x/ for all x; y 2 X ) and

1We limit the discussion to real Hilbert spaces and real-valued kernels, since they are the most
useful kind in learning algorithms. However, the theory holds for complex Hilbert spaces and
complex-valued kernels as well.
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mX
i;jD1

cicjf .xi; xj/ 	 0

for all m 2 N; fx1; : : : ; xmg 
 X and fc1; : : : ; cmg 
 R. The kernel f is called
negative definite if it is symmetric and

mX
i;jD1

cicjf .xi; xj/ � 0

for all m 2 N; fx1; : : : ; xmg 
 X and fc1; : : : ; cmg 
 R with
Pm

iD1 ci D 0.

It is important to note the additional constraint on
P

ci for the negative definite
case. Due to this constraint, some authors refer to this latter kind as conditionally
negative definite. However, in this chapter, we stick to the most common terminol-
ogy used in the literature.

Given a finite set of points fxigmiD1 
 X and a kernel k on X , consider the
m � m matrix K defined by Kij D k.xi; xj/. If the kernel k is positive definite, the
matrix K turns out to be positive semi-definite, whereas if k is negative definite, K
is conditionally negative semi-definite. Note that there is an unfortunate confusion
of terminology here due to different conventions in literature on kernels and linear
algebra.

We now present the following theorem, which plays a central role in this chapter.
It was introduced by Schoenberg in 1938 [29], well before the theory of reproducing
kernel Hilbert spaces was established in 1950 [1].

Theorem 2. Let X be a nonempty set and f W .X �X /! R be a kernel. The kernel
exp.�� f .x; y// is positive definite for all � > 0 if and only if f is negative definite.

Proof. We refer the reader to Theorem 3.2.2 of [5] for a detailed proof of this
theorem.

Note that this theorem describes Gaussian RBF—like exponential kernels that are
positive definite for all � > 0. One might also be interested in exponential kernels
that are positive definite for only some values of � . Such kernels, for instance,
were exploited in [16]. To our knowledge, there is no general result characterizing
this kind of kernels. However, the following result can be obtained from the above
theorem.

Theorem 3. Let X be a nonempty set and f W .X � X / ! R be a kernel. If the
kernel exp.�� f .x; y// is positive definite for all � 2 .0; ı/ for some ı > 0, then it
is positive definite for all � > 0.

Proof. If exp.�� f .x; y// is positive definite for all � 2 .0; ı/, it directly follows
from Definition 1 that 1 � exp.�� f .x; y// is negative definite for all � 2 .0; ı/.
Therefore, the pointwise limit

f .x; y/ D lim
�!0C

1 � exp.�� f .x; y//

�
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is also negative definite. Now, since f .x; y/ is negative definite, it follows from
Theorem 2 that exp.�� f .x; y// is positive definite for all � > 0.

Next, we highlight an interesting property of negative definite kernels. It is well
known that a positive definite kernel represents the inner product of an RKHS [1].
Similarly, a negative definite kernel represents the squared norm of a Hilbert space
under some conditions stated by the following theorem.

Theorem 4. Let X be a nonempty set and f .x; y/ W .X � X / ! R be a negative
definite kernel. Then, there exists a Hilbert space H and a mapping  W X ! H
such that

f .x; y/ D k .x/ �  .y/k2 C h.x/C h.y/;

where h W X ! R is a function which is nonnegative whenever f is. Furthermore, if
f .x; x/ D 0 for all x 2 X , then h D 0.

Proof. The proof of a more general version of this theorem can be found in
Proposition 3.3.2 of [5].

Now, we state and prove a lemma that will be useful for the proof of our main
theorem.

Lemma 5. Let V be an inner product space. The squared l2 distance in V defined
by f W .V � V/! R W f .x; y/ D kx � yk2V is a negative definite kernel.

Proof. The kernel f is obviously symmetric. Based on Definition 1, we then need
to prove that

Pm
i;jD1 cicjf .xi; xj/ � 0 for all m 2 N, fx1; : : : ; xmg 
 X and

fc1; : : : ; cmg 
 R with
Pm

iD1 ci D 0. Now,

mX
i;jD1

cicjf .xi; xj/ D
mX

i;jD1
cicjkxi � xjk2V

D
mX

i;jD1
cicjhxi � xj; xi � xjiV

D
mX

jD1
cj

mX
iD1

cihxi; xiiV C
mX

iD1
ci

mX
jD1

cjhxj; xjiV � 2
mX

i;jD1
cicjhxi; xjiV :

The first two terms vanish since
Pm

iD1 ci D 0. Therefore,

mX
i;jD1

cicjf .xi; xj/ D �2
mX

i;jD1
cicjhxi; xjiV D �2

�����
mX

iD1
cixi

�����
2

V
� 0:
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3.5 Gaussian RBF Kernels on Manifolds

A number of well-known kernels exist for Euclidean spaces including the linear
kernel, polynomial kernels, and the Gaussian RBF kernel. The key challenge in
generalizing kernel methods from Euclidean spaces to manifolds lies in defining
appropriate positive definite kernels on the manifold. There is no straightforward
way to generalize Euclidean kernels such as the linear kernel and polynomial
kernels to nonlinear manifolds, since these kernels depend on the linear geometry
of Euclidean spaces. However, we show that the popular Gaussian RBF kernel can
be generalized to manifolds under certain conditions.

In this section, we first introduce a general theorem that provides necessary and
sufficient conditions to define a positive definite Gaussian RBF kernel on a given
manifold and then show that some popular metrics on SymCd , Gr

n, and SPn yield
positive definite Gaussian RBFs on the respective manifolds.

3.5.1 The Gaussian RBF on Metric Spaces

The Gaussian RBF kernel has proven very effective in Euclidean spaces for a variety
of kernel-based algorithms. It maps the data points to an infinite-dimensional Hilbert
space, which, intuitively, yields a very rich representation of the data. In R

n, the
Gaussian kernel can be expressed as kG.x; y/ WD exp.��kx � yk2/, which makes
use of the Euclidean distance between two data points x and y. To define a kernel
on a manifold, we would like to replace the Euclidean distance by a more accurate
distance measure on the manifold. However, not all geodesic distances yield positive
definite kernels. For example, in the case of the unit n-sphere embedded in R

nC1,
exp.�� d2g.x; y//, where dg is the usual geodesic distance or the great-circle distance
on the manifold, is not positive definite.

We now state our main theorem which provides the sufficient and necessary
conditions to obtain a positive definite Gaussian kernel from a given distance
function defined on a generic space.

Theorem 6. Let .M; d/ be a metric space and define k W .M�M/! R by k.x; y/ WD
exp.�� d2.x; y//. Then, k is a positive definite kernel for all � > 0 if and only
if there exists an inner product space V and a function  W M ! V such that,
d.x; y/ D k .x/ �  .y/kV .

Proof. We first note that positive definiteness of k.:; :/ for all � and negative
definiteness of d2.:; :/ are equivalent conditions according to Theorem 2.

To prove the forward direction of the present theorem, let us first assume that
V and  exist such that d.x; y/ D k .x/ �  .y/kV . Then, from Lemma 5, d2 is
negative definite and hence k is positive definite for all � .
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On the other hand, if k is positive definite for all � , then d2 is negative definite.
Furthermore, d.x; x/ D 0 for all x 2 M since d is a metric. According to Theorem 4,
then V and  exist such that d.x; y/ D k .x/ �  .y/kV .

3.5.2 Geodesic Distances and the Gaussian RBF

A Riemannian manifold, when considered with its geodesic distance, forms a metric
space. Given Theorem 6, it is then natural to wonder under which conditions would
a geodesic distance on a manifold yield a Gaussian RBF kernel. We now present and
prove the following theorem, which answers this question for complete Riemannian
manifolds.

Theorem 7. Let M be a complete Riemannian manifold and dg be the geodesic
distance induced by its Riemannian metric. The Gaussian RBF kernel kg W .M �
M/! R W kg.x; y/ WD exp.�� d2g.x; y// is positive definite for all � > 0 if and only
if M is isometric (in the Riemannian sense) to some Euclidean space R

n.

Proof. If M is isometric to some R
n, the geodesic distance on M is simply the

Euclidean distance in R
n, which can be trivially shown to yield a positive definite

Gaussian RBF kernel by setting  in Theorem 6 to the identity function.
On the other hand, if kg is positive definite, from Theorem 6, there exists an inner

product space Vg and a function  g W M ! Vg such that dg.x; y/ D k g.x/ �
 g.y/kVg . Let Hg be the completion of Vg. Therefore, Hg is a Hilbert space, in
which Vg is dense.

Now, take any two points x0; x1 in M. Since the manifold is complete, from the
Hopf–Rinow theorem, there exists a geodesic ı.t/ joining them with ı.0/ D x0 and
ı.1/ D x1, and realizing the geodesic distance. By definition, ı.t/ has a constant
speed dg.x0; x1/. Therefore, for all xt D ı.t/ where t 2 Œ0; 1�, the following equality
holds:

dg.x0; xt/C dg.xt; x1/ D dg.x0; x1/:

This must also be true for images  .xt/ in Hg for t 2 Œ0; 1�. However, since
Hg is a Hilbert space, this is only possible if all the points  .xt/ lie on a straight
line in Hg. Let  .M/ be the range of  . From the previous argument, for any two
points in  .M/ 
 Hg, the straight line segment joining them is also in  .M/.
Therefore,  .M/ is a convex set in Hg. Now, since M is complete, any geodesic
must be extensible indefinitely. Therefore, the corresponding line segment in  .M/

must also be extensible indefinitely. This proves that  .M/ is an affine subspace
of Hg, which is isometric to R

n, for some n. Since M is isometric to  .M/, this
proves that M is isometric to the Euclidean space R

n.

According to Theorem 7, it is possible to obtain a positive definite Gaussian
kernel from the geodesic distance on a Riemannian manifold only when the
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manifold is made essentially equivalent to some R
n by the Riemannian metric

that defines the geodesic distance. Although this is possible for some Riemannian
manifolds, such as the Riemannian manifold of SPD matrices, for some others, it is
theoretically impossible.

In particular, if the manifold is compact, it is impossible to find an isometry
between the manifold and R

n, since R
n is not compact. Therefore, it is not possible

to obtain a positive definite Gaussian kernel from the geodesic distance of a compact
manifold. In such cases, the best hope is to find a different non-geodesic distance on
the manifold that does not differ much from the geodesic distance but still satisfies
the conditions of Theorem 6.

3.5.3 Kernels on SymC
d

We next discuss the different metrics on SymCd that can be used to define positive
definite Gaussian kernels. In particular, we focus on the log-Euclidean distance,
which is a true geodesic distance on SymCd [3].

In the log-Euclidean framework, a geodesic connecting S1; S2 2 SymCd is defined
as �.t/ D exp..1� t/ log.S1/C t log.S2// for t 2 Œ0; 1�. The log-Euclidean geodesic
distance between S1 and S2 can be expressed as

dLE.S1; S2/ D k log.S1/ � log.S2/kF ; (3.1)

where k � kF denotes the Frobenius matrix norm induced by the Frobenius matrix
inner product h:; :iF.

The main reason to exploit the log-Euclidean distance in our experiments is that
it defines a true geodesic distance that has proven an effective distance measure on
SymCd . Furthermore, it yields a positive definite Gaussian kernel as stated in the
following corollary to Theorem 6:

Corollary 8 (Theorem 6). The Log-Euclidean Gaussian kernel kLE W .SymCd �
SymCd / ! R W kLE.S1; S2/ WD exp.�� d2LE.S1; S2//, where dLE.S1; S2/ is the log-
Euclidean distance between S1 and S2, is a positive definite kernel for all � > 0.

Proof. The matrix logarithm log.:/ maps d � d SPD matrices to d � d symmetric
matrices, which form an inner product space when endowed with the Frobenius
matrix inner product h:; :iF. The result then directly follows from Theorem 6 with
 D .S 7! log.S//.

A number of other metrics have been proposed for SymCd [11]. The definitions
and properties of these metrics are summarized in Table 3.1. Note that only some
of them were derived by considering the Riemannian geometry of the manifold
and hence define true geodesic distances. Similar to the log-Euclidean metric, from
Theorem 6, it directly follows that the Cholesky and power-Euclidean metrics also
define positive definite Gaussian kernels for all values of � . Some metrics may yield
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Table 3.1 Properties of different metrics on the three manifolds

Metric name Formula
Geodesic
distance

PD Gaussian
kernel for all
� > 0

SPD matrices

Log-Euclidean k log.S1/� log.S2/kF Yes Yes
Affine invariant k log.S�1=2

1 S2S
�1=2
1 /kF Yes No

Cholesky k chol.S1/� chol.S2/kF No Yes

Power Euclidean 1
˛
kS˛1 � S˛2kF

No Yes

Root Stein divergence
�
log det

�
1
2
S1 C 1

2
S2
�� 1

2
log det.S1S2/

�1=2
No No

Grassmann manifold

Projection 2�1=2kY1YT
1 � Y2YT

2 kF D .
P

i sin2 �i/
1=2 No Yes

Arc length .
P

i �
2
i /
1=2 Yes No

Fubini study arccos j det.YT
1 Y2/j D arccos.

Q
i cos �i/ No No

Chordal 2-norm kY1U � Y2Vk2 D 2maxi sin 1
2
�i No No

Chordal F-norm kY1U � Y2VkF D 2.sin2 1
2
�i/

1=2 No No

Shape manifold

Full Procrustes
�
1� jhz1; z2ij2� 12 No Yes

Partial Procrustes .1� jhz1; z2ij/ 12 No No

Arc length arccos.jhz1; z2ij/ Yes No

We analyze the positive definiteness of the Gaussian kernels generated by different metrics.
Theorem 6 applies to the metrics claimed to generate positive definite Gaussian kernels. For the
other metrics, examples of nonpositive definite Gaussian kernels exist

a positive definite Gaussian kernel for some value of � only. This, for instance, was
shown in [33] for the root Stein divergence metric. Constraints on � are nonetheless
undesirable, since one should be able to freely tune � to reflect the data distribution,
and automatic model selection algorithms require kernels to be positive definite for
continuous values of � > 0 [8].

3.5.4 Kernels on Gr
n

Similarly to SymCd , different metrics can be defined on Gr
n. Many of these metrics

are related to the principal angles between two subspaces. Given two n � r
matrices Y1 and Y2 with orthonormal columns, representing two points on Gr

n,
the principal angles between the corresponding subspaces are obtained from the
singular value decomposition of YT

1 Y2 [12]. More specifically, if USVT is the
singular value decomposition of YT

1 Y2, then the entries of the diagonal matrix S are
the cosines of the principal angles between ŒY1� and ŒY2�. Let f�igriD1 represent those
principal angles. Then, the geodesic distance derived from the cannonical geometry
of the Grassmann manifold, called the arc length, is given by .

P
i �

2
i /
1=2 [12].
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Unfortunately, as can be shown with a counterexample, this distance squared is not
negative definite and hence does not yield a positive definite Gaussian for all � > 0.

Nevertheless, there exists another widely used metric on the Grassmann mani-
fold, namely the projection metric, which gives rise to a positive definite Gaussian
kernel. The projection distance between two subspaces ŒY1�; ŒY2� is given by

dP.ŒY1�; ŒY2�/ D 2�1=2kY1YT
1 � Y2Y

T
2 kF: (3.2)

We now formally introduce the corresponding Gaussian RBF kernel on the
Grassmann manifold.

Corollary 9 (Theorem 6). The Projection Gaussian kernel kP W .Gr
n � Gr

n/ !
R W kP.ŒY1�; ŒY2�/ WD exp.�� d2P.ŒY1�; ŒY2�//, where dP.ŒY1�; ŒY2�/ is the projection
distance between ŒY1� and ŒY2�, is a positive definite kernel for all � > 0.

Proof. The proof follows from Theorem 6 with  D .ŒY� 7! YYT/ and V being the
space of n � n matrices endowed with the Frobenius inner product.

As shown in Table 3.1, none of the other popular metrics on Grassmann
manifolds have this property.

3.5.5 Kernels on SPn

While an ideal metric on shape descriptors should be fully invariant to translation,
scale, and rotation, not all metrics commonly used on SPn satisfy this require-
ment [10]. The full Procrustes metric, however, is fully invariant to all these three
transformations. Therefore, although it is not a geodesic distance on the shape
manifold, it has become a popular shape distance [10]. Given two pre-shapes z1
and z2, the full Procrustes distance between the corresponding shapes is given
by Kendall [21] and Dryden and Mardia [10]

dFP.Œz1�; Œz2�/ D
�
1 � jhz1; z2ij2

� 1
2
; (3.3)

where h:; :i and j:j denote the usual inner product in C
m and the absolute value

of a complex number, respectively. In the following corollary, we prove that the full
Procrustes distance yields a positive definite Gaussian kernel on the shape manifold.

Corollary 10 (Theorem 6). The Procrustes Gaussian kernel kFP W .SPn �SPn/!
R W kFP.Œz1�; Œz2�/ WD exp.�� d2FP.Œz1�; Œz2�/, where dFP is the full Procrustes
distance between two shapes Œz1� and Œz2�, is a positive definite kernel for all � > 0.

Proof. Consider the map CSn�1 ! C
n�n W z 7! zz� from pre-shapes to Hermitian

matrices. It is clear that any rotation of the pre-shape z is also mapped to the same
point under this map. Therefore,  1 W SPn ! C

n�n W Œz� 7! zz� turns out to be a
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function that maps the shape manifold to the space of n � n Herminitan matrices,
which, when endowed with the Frobenius inner product, forms a real inner product
space. Furthermore, it can be shown that,

dFP.Œz1�; Œz2�/ D
����12 1.Œz1�/ �

1

2
 1.Œz2�/

����
F

:

Therefore, by applying Theorem 6 with  D 1
2
 1, we have that kFP is positive

definite for all � > 0.

Properties of other metrics on the shape manifold are summarized in Table 3.1.
Note that it is possible to define a Riemannian metric on the shape manifold that
induces the arc length distance. Hence it can be considered as a geodesic distance
on the shape manifold.

3.6 Non-Gaussian Kernels on Manifolds

Although the Gaussian RBF is the predominant kernel used with Euclidean-valued
data, other kinds of kernels are also used in practice. Similarly, a number of non-
Gaussian kernels have been proposed for manifolds. In particular, kernels that are
analogous to linear kernels in Euclidean spaces were proposed for the Grassmann
manifold in [14] and for SPD matrices in [40]. These kernels exploit the inner
product structure in the linear spaces to which these two manifolds are isometrically
(in the distance-preserving sense) mapped under the Projection metric and the log-
Euclidean metric, respectively. It was empirically shown in [20] that the Gaussian
RBF kernels introduced in the previous section usually outperforms these linear-
type kernels, agreeing with the common observations in Euclidean spaces.

In [19], families of positive definite radial kernels were proposed for the unit
n-sphere, the Grassmann manifold, and the shape manifold. They also proposed
an optimization algorithm to automatically learn the best suited radial kernel from
these families in a classification setting. These radial kernels take the form of
conic combinations of monomial kernels (integer powers of linear kernels). The
optimization algorithm essentially optimizes the weights in the conic combination.
Interestingly, the Gaussian RBF kernels defined in Theorems 9 and 10 belong to the
family of radial kernels introduced there.

It is known that the heat kernel is positive definite on any Riemannian mani-
fold [6]. However, evaluating the heat kernel on a nontrivial Riemannian manifold
is mathematically cumbersome. In [6], the authors relied on a number of approxima-
tion techniques to show that this kernel can nevertheless be estimated on a number
of manifolds commonly encountered in computer vision.
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3.7 Kernel-Based Algorithms on Manifolds

A major advantage of being able to compute positive definite kernels on manifolds
is that it directly allows us to make use of algorithms developed for Rn, while still
accounting for the geometry of the manifold. In this section, we discuss the use of
five kernel-based algorithms on manifolds. The resulting algorithms can be thought
of as generalizations of the original Euclidean kernel methods to manifolds. In the
following, we use M, k.:; :/, H and �.x/ to denote a d-dimensional manifold, a
positive definite kernel function defined on M �M, the RKHS generated by k,
and the feature vector in H to which x 2M is mapped, respectively. Although we
use �.x/ for explanation purposes, following the kernel trick, it never needs to be
explicitly computed in any of the algorithms.

3.7.1 Support Vector Machines on Manifolds

We first consider the binary classification problem on a manifold. To this end, we
propose to extend the popular Euclidean kernel SVM algorithm to manifold-valued
data. Given a set of training examples f.xi; yi/gmiD1, where xi 2 M and the label
yi 2 f�1; 1g, kernel SVM searches for a hyperplane in H that separates the feature
vectors of the positive and negative classes with maximum margin. The class of a
test point x 2 M is determined by the position of the feature vector �.x/ in H
relative to the separating hyperplane. Classification with kernel SVM can be done
very fast, since it only requires to evaluate the kernel at the support vectors.

The above procedure is equivalent to solving the standard kernel SVM problem
with kernel matrix generated by k. Thus, any existing SVM software package can be
utilized for training and classification. Convergence of standard SVM optimization
algorithms is guaranteed since k is positive definite.

Kernel SVM on manifolds is much simpler to implement and less computa-
tionally demanding in both training and testing phases than the current state-of-
the-art binary classification algorithms on manifolds, such as LogitBoost on a
manifold [37], which involves iteratively combining weak learners on different
tangent spaces. Weighted mean calculation in LogitBoost on a manifold involves
an extremely expensive gradient descent procedure at each boosting iteration, which
makes the algorithm scale poorly with the number of training samples. Furthermore,
while LogitBoost learns classifiers on tangent spaces used as first-order Euclidean
approximations to the manifold, our approach works in a rich high-dimensional
feature space. As will be shown in our experiments, this yields better classification
results.

With manifold-valued data, extending the current state-of-the-art binary clas-
sification methods to multi-class classification is not straightforward and requires
additional work [34]. In contrast, our manifold kernel SVM classification method
can easily be extended to the multi-class case with standard one-vs-one or one-vs-
all procedures.
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3.7.2 Multiple Kernel Learning on Manifolds

We next tackle the problem of combining multiple manifold-valued descriptors via
a MKL approach. The core idea of MKL is to combine kernels computed from
different descriptors (e.g., image features) to obtain a kernel that optimally separates
two classes for a given classifier. Here, we follow the formulation of [39] and make
use of an SVM classifier. As a feature selection method, MKL has proven more
effective than conventional techniques such as wrappers, filters, and boosting [38].

More specifically, given training examples f.xi; yi/gm1 , where xi 2 X (some
nonempty set), yi 2 f�1; 1g, and a set of descriptor generating functions fgjgN1 where
gj W X !M, we seek to learn a binary classifier f W X ! f�1; 1g by selecting and
optimally combining the different descriptors generated by g1; : : : ; gN . Let K.j/ be
the kernel matrix generated by gj and k as K.j/

pq D k.gj.xp/; gj.xq//. The combined
kernel can be expressed as K� D P

j �jK.j/, where �j 	 0 for all j guarantees
the positive definiteness of K�. The weights � can be learned using a min-max
optimization procedure with an l1 regularizer on � to obtain a sparse combination of
kernels. The algorithm has two steps in each iteration: First it solves a conventional
SVM problem with �, hence K�, fixed. Then, it updates � with SVM parameters
fixed. These two steps are repeated until convergence. For more details, we refer
the reader to [39] and [38]. Note that convergence of MKL is only guaranteed if all
the kernels are positive definite, which is satisfied in this setup since k is positive
definite.

We also note that MKL on manifolds gives a convenient method to combine
manifold-valued descriptors with Euclidean descriptors, which is otherwise a
difficult task due to their different geometries.

3.7.3 Kernel Principal Component Analysis on Manifolds

We next study the extension of kernel PCA to nonlinear dimensionality reduction
on manifolds. The usual Euclidean version of kernel PCA has proven successful in
many applications [30, 31]. On a manifold, kernel PCA proceeds as follows: All
points xi 2M of a given data set fxigmiD1 are mapped to feature vectors in H, thus
yielding the transformed set f�.xi/gmiD1. The covariance matrix of this transformed
set is then computed, which really amounts to computing the kernel matrix of the
original data using the function k. An l-dimensional representation of the data is
obtained by computing the eigenvectors of the kernel matrix. This representation
can be thought of as a Euclidean representation of the original manifold-valued
data. However, owing to our kernel, it was obtained by accounting for the geometry
of M.

Once the kernel matrix is calculated with k, the implementation details of the
algorithm are similar to that of the Euclidean kernel PCA algorithm. We refer the
reader to [30] for more details on the implementation.
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3.7.4 Kernel k-Means on Manifolds

For clustering problems on manifolds, we propose to make use of kernel k-means.
Kernel k-means maps points to a high-dimensional Hilbert space and performs
k-means in the resulting feature space [30]. In a manifold setting, a given data set
fxigmiD1, with each xi 2 M, is clustered into a predefined number of groups in H,
such that the sum of the squared distances from each �.xi/ to the nearest cluster
center is minimum. The resulting clusters can then act as classes for the fxigmiD1 .

The unsupervised clustering method on Riemannian manifolds proposed in [13]
clusters points in a low-dimensional space after dimensionality reduction on the
manifold. In contrast, our method performs clustering in a high-dimensional RKHS
which, intuitively, better represents the data distribution.

3.7.5 Kernel Fisher Discriminant Analysis on Manifolds

The kernelized version of linear discriminant analysis, known as Kernel Fisher
discriminant analysis (kernel FDA), can also be extended to manifolds on which
a positive definite kernel can be defined. In particular, given f.xi; yi/gmiD1, with each
xi 2 M having class label yi, manifold kernel FDA maps each point xi on the
manifold to a feature vector in H and finds a new basis in H where the class
separation is maximized. The output of the algorithm is a Euclidean representation
of the original manifold-valued data, but with a larger separation between class
means and a smaller within-class variance. Up to .l � 1/ dimensions can be
extracted via kernel FDA, where l is the number of classes. We refer the reader
to [31] for implementation details. In Euclidean spaces, kernel FDA has become an
effective pre-processing step to perform nearest-neighbor classification in the highly
discriminative, reduced dimensional space.

3.8 Applications and Experiments

In this section, we present a set of experiments on the material presented in this
chapter using the positive definite kernels introduced in Sect. 3.5 and the algorithms
described in Sect. 3.7.

3.8.1 Pedestrian Detection

The pedestrian detection experiment published in [17] evaluates the performance
of the manifold SVM/MKL framework described in this chapter. Covariance
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Fig. 3.1 Pedestrian detection. Detection-error trade-off curves for the proposed manifold MKL
approach and state-of-the-art methods on the INRIA data-set. Manifold MKL outperforms existing
manifold methods and Euclidean kernel methods

descriptors [37] that lie on SymC8 and the log-Euclidean Gaussian kernel defined
on them were used in this experiment. The MKL setup described in Sect. 3.7.2 was
utilized with 100 kernels, each generated from covariance descriptors calculated in
a fixed subwindow inside the detection window.

The INRIA person data-set [9] was used to compare the performance of manifold
SVM/MKL with other state-of-the-art classification algorithms on manifolds. The
resulting detection-error trade-off (DET) curves are shown in Fig. 3.1. As can be
seen from the graph, manifold MKL performs better than the Euclidean MKL
method that neglects the nonlinear geometry of SymCd , and the LogitBoost on
manifolds method that uses tangent space approximations. This demonstrates the
benefits of accounting for the nonlinearity of the manifold using an appropriate
positive definite kernel. It is also worth noting that LogitBoost on the manifold
is significantly more complex and harder to implement than the manifold MKL
method.

3.8.2 Visual Object Categorization

We next demonstrate the use of kernels on manifolds in the context of unsupervised
object categorization. This experiment uses the ETH-80 data set [24], which
contains 8 object categories with 10 objects each and 41 images per object.
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Table 3.2 Object categorization

Sample images and percentages of correct clustering on the ETH-80 data set using k-means (KM)
and kernel k-means (KKM) with different metrics on SymC

d . The proposed KKM method with the
log-Euclidean metric achieves best results in all tests

The goal was to find object categories (clusters) in an unsupervised setting. A single
covariance descriptor was used to describe each image, narrowing down the problem
to a clustering problem in SymC5 . Consequently, the kernel k-means algorithm on
SymC5 described in Sect. 3.7.4 was used to obtain object categories.

To set a benchmark, the performance of both k-means and kernel k-means on
SymC5 was evaluated with different metrics that generate positive definite Gaussian
kernels (see Table 3.1). For the power-Euclidean metric, ˛ was set to 0:5, which
achieved the best results in [11]. For all non-Euclidean metrics with (non-kernel)
k-means, the Karcher mean [11] was used to compute the centroid. The results of the
different methods are summarized in Table 3.2. Manifold kernel k-means with the
log-Euclidean Gaussian kernel performs significantly better than all other methods
in all test cases.

3.8.3 Video-Based Face Recognition

Face recognition from video, which uses an image set for identification of a person,
is a rapidly developing area in computer vision. For this task, the videos are
often modeled as linear subspaces which lie on a Grassmann manifold [14, 15].
To demonstrate the use of the projection Gaussian kernel in video-based face
recognition, we used the YouTube Celebrity data set [23], which contains 1910
video clips of 47 different people.

We extracted face regions from videos and resized them to have a common size
of 96 � 96. Each face image was then represented by a histogram of local binary
patterns [27] having 232 equally spaced bins. We next represented each image set
corresponding to a single video clip by a linear subspace of order 5. We randomly
chose 70% of the data set for training and the remaining 30% for testing. We report
the classification accuracy averaged over 10 different random splits.
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Table 3.3 Face recognition Method Classification accuracy

DCC [22] 60.21˙ 2.9

KAHM [7] 67.49˙ 3.5

GDA [14] 58.72˙ 3.0

GGDA [15] 61.05˙ 2.2

Linear SVM 64.76˙ 2.1

Manifold kernel FDA 65.32˙ 1.4

Manifold kernel SVM 71.78˙ 2.4

Recognition accuracies on the YouTube celebrity
data set. Manifold kernel SVM and FDA with the
Gaussian kernel achieve the best results

We employed both kernel SVM on a manifold and kernel FDA on a manifold
with our projection Gaussian kernel for classification. With kernel SVM, a one-vs-
all procedure was used for multiclass classification. For kernel FDA, the training
data were projected to an .l � 1/-dimensional space, where l D 47 is the number
of classes, and we used a 1-nearest-neighbor method to predict the class of a test
sample projected to the same space. We determined the hyperparameters of both
methods using cross-validation on the training data.

We compared our approach with several state-of-the-art image set classification
methods: discriminant analysis of canonical correlations (DCC) [22], kernel affine
hull method (KAHM) [7], Grassmann discriminant analysis (GDA) [14], and
graph-embedding Grassmann discriminant analysis (GGDA) [15]. As can be seen
in Table 3.3, kernel FDA on a manifold and kernel SVM on a manifold both
outperform the other methods significantly, with kernel SVM achieving the best
accuracy.

3.8.4 Shape Retrieval

Finally, we exploit the full Procrustes Gaussian kernel for the task of shape retrieval.
State-of-the-art shape retrieval methods [4, 25] perform exhaustive nearest-neighbor
search over the entire database using nonlinear distances between the shapes, which
does not scale with the database size. Here, instead, we made use of the kernel
PCA algorithm of Sect. 3.7.3 to obtain a real-valued Euclidean representation of the
data set while preserving the important shape variances. We then performed shape
retrieval on the resulting Euclidean space, which can be done more efficiently using
an algorithm such as k-d trees. To validate our shape retrieval approach, we used
the SQUID Fish data set [26] which consists of 1100 unlabeled fish contours. We
obtained 100 landmarks from each contour. We set aside 10 different fish shapes
from the data set as query images and used the remaining shapes to obtain a d D 50-
dimensional real Euclidean representation of the data set. For retrieval, we projected
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Fig. 3.2 Shape retrieval. Retrieval results from the SQUID fish data set using our kernel PCA
approach. The nearest neighbors are ordered according to their distance to the query

each query shape to this 50-dimensional space and found its 5 nearest neighbors
using the standard Euclidean distance. Figure 3.2 depicts the retrieval results. Note
that the retrieved shapes match the query ones very accurately.

3.9 Conclusion

In this chapter, we have discussed kernels on Riemannian manifolds, which is a
growing research topic in computer vision [18, 19]. We have showed that powerful
kernel methods from Euclidean spaces can be generalized to manifold-valued data
with the help of an appropriately defined Gaussian kernel on the manifold of interest.
We have introduced a unified framework to analyze the positive definiteness of the
Gaussian RBF kernel defined on a manifold or a more general metric space. We
have then used the same framework to derive provably positive definite kernels on
the Riemannian manifold of SPD matrices, the Grassmann manifold, and the shape
manifold. These kernels were then utilized to extend popular learning algorithms
designed for Euclidean spaces, such as SVM and FDA, to manifolds. Experimental
results on several challenging computer vision tasks, such as pedestrian detection,
object categorization, and face recognition, have evidenced that identifying positive
definite kernel functions on manifolds can be greatly beneficial when working with
manifold-valued data.
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Chapter 4
Canonical Correlation Analysis
on SPD.n/ Manifolds

Hyunwoo J. Kim, Nagesh Adluru, Barbara B. Bendlin, Sterling C. Johnson,
Baba C. Vemuri, and Vikas Singh

Abstract Canonical correlation analysis (CCA) is a widely used statistical
technique to capture correlations between two sets of multivariate random variables
and has found a multitude of applications in computer vision, medical imaging,
and machine learning. The classical formulation assumes that the data live in a
pair of vector spaces which makes its use in certain important scientific domains
problematic. For instance, the set of symmetric positive definite matrices (SPD),
rotations, and probability distributions all belong to certain curved Riemannian
manifolds where vector-space operations are in general not applicable. Analyzing
the space of such data via the classical versions of inference models is suboptimal.
Using the space of SPD matrices as a concrete example, we present a principled
generalization of the well known CCA to the Riemannian setting. Our CCA
algorithm operates on the product Riemannian manifold representing SPD matrix-
valued fields to identify meaningful correlations. As a proof of principle, we present
experimental results on a neuroimaging data set to show the applicability of these
ideas.

4.1 Introduction

Canonical correlation analysis (CCA) is a powerful statistical technique to extract
linear components that capture correlations between two multivariate random
variables [25]. CCA provides an answer to the following question: suppose we are
given data of the form, .xi 2 X ; yi 2 Y/NiD1 � X � Y where xi 2 Rm and yi 2 Rn,
find a model that explains both of these observations. More precisely, CCA identifies
a pair of directions where the projections (namely, u and v) of the random variables x
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and y yield maximum correlation u;v D COV.u; v/=�u�v . Here, COV.u; v/ denotes
the covariance function and �� gives the standard deviation. During the last decade,
the CCA formulation has been broadly applied to various unsupervised learning
problems in computer vision and machine learning including image retrieval [21],
face/gait recognition [54], super-resolution [29], and action classification [34].

Beyond the applications described above, a number of works have recently
investigated the use of CCA in analyzing neuroimaging data [6]. Here, for each
participant in a study, one acquires different types of images such as magnetic
resonance (MRI), computed tomography (CT), and functional MRI. It is expected
that each imaging modality captures a unique aspect of the disease pathology.
Therefore, given a group of N subjects and their brain images, we may want
to identify relationships (e.g., anatomical/functional correlations) across different
image types. When performed across different diseases, such an analysis will reveal
insights into what is similar and what is different across diseases even when their
symptomatic presentation may be similar. Alternatively, CCA may serve a feature
extraction role. That is, the brain regions found to be strongly correlated can be used
directly in downstream statistical analysis. In a study of a large number of subjects,
rather than performing a hypothesis test on all brain voxels independently for each
imaging modality, restricting the number of tests only to the set of “relevant” voxels
(found via CCA) can improve statistical power.

The classical version of CCA described above concurrently seeks two linear
subspaces in vector spaces Rm and Rn for the two multivariate random variables
x and y. The projection onto the straight line (linear subspace) is obtained by an
inner product. This formulation is broadly applicable but encounters problems for
manifold-valued data that are becoming increasingly important in current research.
For example, diffusion tensor magnetic resonance images (DTI) allow one to infer
the diffusion tensor characterizing the anisotropy of water diffusion at each voxel
in an image volume [9]. This tensorial feature can be visualized as an ellipsoid and
represented by a 3 � 3 symmetric positive definite (SPD) matrix at each voxel in
the acquired image volume. Neither the individual SPD matrices nor the field of
these SPD matrices lies in a vector space but instead are elements of a negatively
curved Riemannian manifold where standard vector space operations are not valid
[10, 24]. Classical CCA is not applicable in this setting. For T1-weighted magnetic
resonance images (MRIs), we are frequently interested in analyzing not just the
3D intensity image on its own, but rather a quantity that captures the deformation
field between each image and a population template. A registration between the
image and the template yields the deformation field required to align the image
pairs, and the determinant of the Jacobian J of this deformation at each voxel is a
commonly used feature that captures local volume changes [12, 28]. Quantities such
as the Cauchy deformation tensor defined as

p
JTJ have been reported in literature

for use in morphometric analysis [27]. The input to the statistical analysis is a 3D
image of voxels, where each voxel corresponds to a matrix

p
JTJ � 0 (the Cauchy

deformation tensor). Another example of manifold-valued fields is derived from
high angular resolution diffusion images (HARDI) and can be used to compute
the ensemble average propagators (EAPs) at each voxel of the given HARDI data.
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The EAP is a probability density function that is related to the diffusion-sensitized
MR signal via the Fourier transform [11]. Since an EAP is a probability density
function, by using a square root parameterization of this density function, it is
possible to identify it with a point on the unit Hilbert sphere. Once again, to perform
any statistical analysis of these data-derived features, we cannot apply standard
vector-space operations since the unit Hilbert sphere is a positively curved manifold.
When analyzing real brain imaging data, it is entirely possible that no meaningful
correlations exist in the data. The key difficulty is that we do not know whether the
experiment (i.e., inference) failed because there is in fact no statistically meaningful
signal in the data set or if the algorithms being used are suboptimal.

Related Work There are two somewhat distinct bodies of work that are related to
and motivate this work. The first one pertains to the extensive study of the classical
CCA and its nonlinear variants. These include various interesting results based
on kernelization [2, 8, 20], neural networks [26, 36], and deep architectures [3].
Most, if not all of these strategies extend CCA to arbitrary nonlinear spaces.
However, this flexibility brings with it the associated issues of model selection
(and thereby, regularization), controlling the complexity of the neural network
structure, choosing an appropriate activation function, and so on. On the other
hand, a second line of work incorporates the specific geometry of the data directly
within the estimation problem. Various statistical constructs have been generalized
to Riemannian manifolds: these include regression [45, 57], classification [52],
kernel methods [31], margin-based and boosting classifiers [37], interpolation,
convolution, filtering [19], and dictionary learning [23, 38]. Among the most closely
related are ideas dealing with projective dimensionality reduction methods, for
instance, the generalization of principal components analysis (PCA) via the so-
called principal geodesic analysis (PGA) [17], geodesic PCA [30], exact PGA
[48], horizontal dimension reduction [47] with frame bundles, and an extension
of PGA to the product space of Riemannian manifolds, namely, tensor fields [52].
Except the nonparametric method of [49], most of these strategies focus on one
rather than two sets of random variables (as is the case in CCA). Even in this
setting, the first results on successful generalization of parametric regression models
to Riemannian manifolds are relatively recent: geodesic regression [16, 41] and
polynomial regression [22]. It should be noted that the adaptive CCA formulation in
[53] seems related to this work but is in fact not designed for manifold-valued input
data.

We describe a parametric model between two different tensor fields on a
Riemannian manifold, which falls beyond these recent works. The CCA formulation
we present requires the optimization of functions over either a single product
manifold or a pair of product manifolds (of different dimensions) concurrently.
The latter problem involving product manifolds of different dimensions will not
be addressed here. Note that in general, on manifolds the projection operation
does not have a nice closed form solution. So, we need to perform projections via
an optimization scheme on the two manifolds and find the best pair of geodesic
subspaces. We provide a solution to this problem.
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4.2 Canonical Correlation in Euclidean Space

First, we will briefly review the classical CCA in Euclidean space to motivate
the rest of our presentation. Recall that Pearson’s product–moment correlation
coefficient is a quantity to measure the relationship of two random variables, x 2 R
and y 2 R. For one dimensional random variables,

x;y D COV.x; y/

�x�y
D EŒ.x � �x/.y � �y/�

�x�y
D

PN
iD1.xi � �x/.yi � �y/qPN

iD1.xi � �x/2
qPN

iD1.yi � �y/2

(4.1)
where �x and �y are the means of fxigNiD1 and fyigNiD1. For high-dimensional data,
x 2 Rm and y 2 Rn, we cannot perform a direct calculation as above. So, we need
to project each set of variables onto a special axis in each space X and Y . CCA
generalizes the concept of correlation to random vectors (potentially of different
dimensions). It is convenient to think of CCA as a measure of correlation between
two multivariate data based on the best projection which maximizes their mutual
correlation.

Canonical correlation for x 2 Rm and y 2 Rn is given by

max
wx;wy

corr.�wx.x/; �wy.y// D max
wx;wy

PN
iD1 wT

x .xi � �x/w
T
y .yi � �y/qPN

iD1
�
wT

x .xi � �x/
�2qPN

iD1
�
wT

y .yi � �y/
�2

(4.2)
where �wx.x/ WD arg mint2R d.twx; x � �x/

2 D arg mint2R d.�x C twx; x/2 and
�x;wx 2 Rm, �y;wy 2 Rn. We will call �wx.x/ the projection coefficient for x
(similarly for y). Define Swx as the subspace which is the span of wx. The projection
of x onto Swx is given by ˘Swx

.x/. Without loss of generality, assume that x; y are
centered. We can then verify that the relationship between the projection and the
projection coefficient is

˘Swx
.x/ WD arg min

x02Swx

d.x; x0/2 D wT
x x
kwxk

wx

kwxk D
wT

x x
kwxk2wx D �wx.x/wx (4.3)

In the Euclidean space, ˘Swx
.x/ has a closed form solution. In fact, it is obtained

by an inner product, wT
x x. Hence, by replacing the projection coefficient �wx.x/ with

wT
x x=kwxk2 and after a simple calculation, one obtains the form in (4.2). Using a

matrix representation, the optimization problem can be written as

max
wx;wy

wT
x XTYwy subject to wT

x XTXwx D wT
y YTYwy D 1 (4.4)

where x;wx 2 Rm, y;wy 2 Rn, X D Œx1 : : : xN �
T and Y D Œy1 : : : yN �

T . The only
difference here is that we remove the denominator. Instead, we have two equality
constraints (note that correlation is scale invariant).
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4.3 Preliminaries

We now briefly summarize certain basic concepts [14] which we will use shortly.

Riemannian Manifolds A differentiable manifold [14] of dimension n is a set M
and a family of injective mappings 'i W Ui � Rn !M of open sets Ui of Rn into M
such that (1) [i 'i.Ui/ DM; (2) for any pair i; j with 'i.Ui/ \ 'j.Uj/ D W ¤ �,
the sets '�1i .W/ and '�1j .W/ are open sets in Rn and the mappings '�1j ı 'i are
differentiable, where ı denotes function composition.

In other words, a differentiable manifold M is a topological space that is locally
homeomorphic to a Euclidean space and has a globally defined differential structure.
The tangent space at a point p on the manifold, TpM, is a vector space that consists
of the tangent vectors of all possible curves passing through p.

A Riemannian manifold is equipped with a smoothly varying inner product. The
family of inner products on all tangent spaces is known as the Riemannian metric of
the manifold. The geodesic distance between two points on M is the length of the
shortest geodesic curve connecting the two points, analogous to straight lines in Rn.
The geodesic curve from xi to xj can be parameterized by a tangent vector in the
tangent space at yi with an exponential map Exp.yi; �/ W TyiM!M. The inverse of
the exponential map is the logarithm map, Log.yi; �/ WM ! TyiM. Separate from
these notations, matrix exponential and logarithm are given as exp.�/ and log.�/.
Intrinsic Mean Given xi 2M; for i D 1; : : : ;N with a given Riemannian metric
d, the finite sample Fréchet mean is defined as the minimizer of sum of squared
geodesic distances, given explicitly by,

�� D arg min
�2M

NX
iD1

d2.xi;�/ (4.5)

Uniqueness of Fréchet mean in general is not guaranteed. We refer the reader to
[1] for a detailed exposition on the same.

Geodesically Convex A subset C of M is said to be a geodesically convex set
if there is a minimizing geodesic curve in C between any two points in C. This
assumption is commonly used [16] and essential to ensure that the Riemannian
operations such as the exponential and logarithm maps are well defined.

4.4 A Model for CCA on Riemannian Manifolds

We now present a step-by-step derivation of our Riemannian CCA model. Classical
CCA finds the mean of each data modality. Then, it maximizes correlation between
projected data on each subspace translated to each mean. Similarly, CCA on
manifolds must first compute the intrinsic mean (i.e., Fréchet mean) of each data
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ΠSwy
(y2)
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Fig. 4.1 CCA on Riemannian manifolds. CCA searches geodesic submanifolds (subspaces), Swx

and Swy at the Fréchet mean of data on each manifold. Correlation between projected points
f˘Swx

.xi/gNiD1 and f˘Swy
.yi/gNiD1 is equivalent to the correlation between projection coefficients

ftigNiD1 and fuigNiD1. Although x and y belong to the same manifold we show them in different
plots for ease of explanation

set. It then identifies a “generalized” version of a subspace at each Fréchet mean
to maximize the correlation of projected data. The generalized form of a subspace
on Riemannian manifolds has been studied in the literature [17, 30, 37, 48]. The
so-called geodesic submanifold [17, 33, 52] which has been used for geodesic
regression serves our purpose well and is defined as S D Exp.�; span.fvig/ \ U/,
where U � T�M, and vi 2 T�M [17]. When S has only one tangent vector v, then
the geodesic submanifold is simply a geodesic curve, see Fig. 4.1.

We can now proceed to formulate the precise form of projection onto a geodesic
submanifold. Recall that when given a point, its projection on a set is the closest
point in the set. So, the projection onto a geodesic submanifold (S) must be a
function satisfying this behavior. This is given by

˘S.x/ D arg min
x02S

d.x; x0/2 (4.6)

In Euclidean space, the projection on a convex set (e.g., subspace) is unique. It
is also unique on some manifolds under special conditions, e.g., quaternion sphere
[44]. However, the uniqueness of the projection on geodesic submanifolds in general
cannot be ensured. Like other methods [32, 48], we assume that given the specific
manifold and the data, the projection is well posed.

Finally, the correlation of points (after projection) can be measured by the
distance from the mean to the projected points. To be specific, the projection on
a geodesic submanifold corresponding to wx is given by

˘Swx
.x/ WD arg min

x02Swx

kLog.x; x0/k2x (4.7)

Swx WD Exp.�x; spanfwxg \ U/ where wx is a basis tangent vector and U � T�x
Mx

is a small neighborhood of �x. Then, the expression for projection coefficients is

ti D �wx.xi/ WD arg min
t0i2.�	;	/

kLog.Exp.�x; t
0
iwx/; xi/k2�x (4.8)
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where xi;�x 2 Mx;wx 2 T�x
Mx; ti 2 R. The term ui D �wy.y/ is defined

analogously. Here, ti is a real value to obtain the point ˘Swx
.x/ D Exp.�x; tiwx/.

As mentioned above, x and y belong to the same manifold. However, we use two
different notations Mx and My to show that they are differently distributed for ease
of discussion.

Notice that we have

d.�x; ˘Swx
.xi// D kLog.�x;Exp.�x;wxti//k�x

D tikwxk�x
(4.9)

By inspection, this shows that the projection coefficient is proportional to the length
of the geodesic curve from the base point �x to the projection of x, ˘Swx

.x/.
Correlation is scale invariant, as expected. Therefore, the correlation between
projected points f˘Swx

.xi/gNiD1 and f˘Swy
.yi/gNiD1 reduces to the correlation between

the quantities that serve as projection coefficients here, ftigNiD1 and fuigNiD1.
Putting these pieces together, we obtain our generalized formulation for CCA:

x;y D corr.�wx.x/; �wy.y// D max
wx;wy;t;u

PN
iD1.ti � Nt/.ui � Nu/qPN

iD1.ti � Nt/2
qPN

iD1.ui � Nu/2
(4.10)

where ti D �wx.xi/, t WD ftig, ui D �wy.yi/, u WD fuig, Nt D 1
N

PN
iD1 ti, and Nu D

1
N

PN
iD1 ui. Expanding out components in (4.10) further, it takes the form

x;y D max
wx;wy;t;u

PN
iD1.ti � Nt/.ui � Nu/qPN

iD1.ti � Nt/2
qPN

iD1.ui � Nu/2
(4.11)

subject to ti D arg min
ti2.�	;	/

kLog.Exp.�x; tiwx/; xi/k2;8i 2 f1; : : : ;Ng

ui D arg min
ui2.�	;	/

kLog.Exp.�y; uiwy/; yi/k2;8i 2 f1; : : : ;Ng

Directly, we see that (4.11) is a multilevel optimization and solutions from nested
suboptimization problems may be needed to solve the higher level problem. How-
ever, deriving the first-order optimality conditions leads to a cleaner formulation:

Define functions as the following.

f .t;u/ WD
PN

iD1.ti � Nt/.ui � Nu/qPN
iD1.ti � Nt/2

qPN
iD1.ui � Nu/2

;

g.ti;wx/ WD kLog.Exp.�x; tiwx/; xi/k2;
g.ui;wy/ WD kLog.Exp.�y; uiwy/; yi/k2:

(4.12)
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Then, we can replace the equality constraints in (4.11) with optimality conditions
rather than another optimization problem for each i. Using this idea, we have

x;y D max
wx;wy;t;u

f .t;u/

subject to rti g.ti;wx/ D 0;8i 2 f1; : : : ;Ng
rui g.ui;wy/ D 0;8i 2 f1; : : : ;Ng

(4.13)

4.5 Optimization Schemes

We present two different algorithms to solve the problem of computing CCA on
Riemannian manifolds. The first algorithm is based on a numerical optimization
scheme for (4.13). We explain the main model here and provide technical details.
Later, we present another approach which is based on an approximation for
computational efficiency.

4.5.1 An Augmented Lagrangian Method

Due to the nature of our formulation, especially the constraints, our options for
numerical optimization scheme are limited. In particular, to avoid dealing with the
second-order derivatives of the constraints, we use first-order methods. One option
here is a gradient projection method. However, we will need to define distance
metric over the decision variables and projection are on the feasible set accordingly.
In this case, efficient projections on the feasible set are not available.

The other option is a quadratic penalty algorithm. Given a constrained opti-
mization problem max f .x/ s.t. ci.x/ D 0;8i, such an algorithm optimizes the
quadratic penalty function, i.e., max f .x/��k

P
i ci.x/2. Classical penalty algorithms

iteratively solve a sequence of models above while increasing �k to infinity. Here, we
chose a well-known variation of the penalty method called augmented Lagrangian
technique (ALM). It is generally preferred to the classical quadratic penalty method
since there is little extra computational cost. In particular, by avoiding �!1, we
reduce the possibility of ill conditioning by introducing explicit Lagrange multiplier
estimates into the function to be minimized [42].

The augmented Lagrangian method solves a sequence of the following models
while increasing �k:

max f .x/C
X

i

�ici.x/ � �k
X

i

ci.x/2 (4.14)
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Algorithm 1 Riemannian CCA based on the Augmented Lagrangian method
1: x1; : : : ; xN 2Mx, y1; : : : ; yN 2My

2: Given �0 > 0; �0 > 0; starting points .w0x ;w
0
y ; t

0;u0/ and �0

3: for k D 0; 1; 2 : : : do
4: Start at .wk

x;w
k
y; t

k;uk/

5: Find an approximate minimizer .wk
x;w

k
y; t

k;uk/ of LA.�;�kI �k/, and terminate when

krLA.wk
x;w

k
y; t

k;uk;�kI �k/k � � k

6: if a convergence test for (4.13) is satisfied then
7: Stop with approximate feasible solution
8: end if
9: �

kC1
ti D �k

ti � �krti g.ti;wx/;8i

10: �kC1
ui
D �k

ui
� �krui g.ui;wy/;8i

11: Choose new penalty parameter �kC1 � �k

12: Set starting point for the next iteration
13: Select tolerance � kC1

14: end for

The augmented Lagrangian formulation for our CCA formulation is given by

max
wx;wy;t;u

LA.wx;wy; t;u;�kI �k/ D max
wx;wy;t;u

f .t;u/C
NX
i

�k
tirti g.ti;wx/

C
NX
i

�k
ui
rui g.ui;wy/ � �

k

2

 
NX

iD1
rti g.ti;wx/

2 Crui g.ui;wy/
2

! (4.15)

The pseudocode for our algorithm is summarized in Algorithm 1.

Remarks. Note that for Algorithm 1, we need the second derivative of g, in
particular, for d2

dwdt g and d2

dt2
g. The literature does not provide a great deal of guidance

on second derivatives of functions involving Log.�/ and Exp.�/ maps on general
Riemannian manifolds. However, depending on the manifold, it can be obtained
analytically or numerically (see “Appendix 1”).

Approximate Strategies The difficulty in deriving the algorithm above was the lack
of a closed form solution to projections onto geodesic submanifolds. If however, an
approximate form of the projection can lead to significant gains in computational
efficiency with little sacrifice in accuracy, it may be useful in practice. The simplest
approximation is to use a Log-Euclidean model. But it is well known that the Log-
Euclidean is only reasonable for data that are tightly clustered on the manifold and
not otherwise. Further, the Log-Euclidean metric lacks the important property of
affine invariance. We can obtain a more accurate projection using the submanifold
expression given in [52]. The form of projection is

˘S.x/ � Exp.�;
dX

iD1
vihvi;Log.�; x/i� / (4.16)
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Algorithm 2 CCA with approximate projection
1: Input X1; : : : ;XN 2My, Y1; : : : ;YN 2 My

2: Compute intrinsic mean �x;�y of fXig, fYig
3: Compute Xo

i D Log.�x;Xi/, Yo
i D Log.�y;Yi/

4: Transform (using group action) fXo
i g, fYo

i g to the TIMx;TIMy

5: Perform CCA between TIMx;TIMy and get axes Wa 2 TIMx, Wb 2 TIMy

6: Transform (using group action) Wa;Wb to T�x
Mx, T�y

My

where fvig denotes an orthonormal basis at T�M. The CCA algorithm with this
approximation for the projection is summarized as Algorithm 2.

Algorithm 2 finds a globally optimal solution to the approximate problem, i.e.,
the classical version of CCA between two tangent spaces TIMx and TIMy. It
does not require any initialization. On the other hand, Algorithm 1 is a first-order
optimization scheme. It converges to a local minimum. Different intializations may
lead to different local solutions. In our experiments, for Algorithm 1, we initialized
wx and wy by Algorithm 2. Further, t and u are initialized by the corresponding
projection coefficients to wx and wy using the iterative method minimizing (4.8).

Finally, we provide a brief remark on one remaining issue. This relates to the
question of why we use the group action rather than other transformations such as
parallel transport. Observe that Algorithm 2 sends the data from the tangent space
at the Fréchet mean of the samples to the tangent space at identity I. The purpose of
the transformation is to put all measurements at the identity of the SPD manifold,
to obtain a more accurate projection, which can be understood by inspecting (4.16).
The projection and inner product depend on the anchor point �. If � is identity, then
there is no discrepancy between the Euclidean and the Riemannian inner products.
Of course, one may use a parallel transport, if desired. However, a group action may
be substantially more efficient relative to parallel transport since the former does
not require computing a geodesic curve (which is needed for parallel transport).
Interestingly, it turns out that on SPD manifolds with a GL-invariant metric, parallel
transport from an arbitrary point p to Identity I is equivalent to the transform using
a group action. For this reason, one can parallel transport tangent vectors from p
to I using the group action much more efficiently [50]. This is formalized in the
following two results.

Theorem 4.1. On SPD manifold, let �p!I.w/ denote the parallel transport of
w 2 TpM along the geodesic from p 2 M to I 2 M. The parallel transport is
equivalent to a group action by p�1=2wp�T=2, where the inner product hu; vip D
tr.p�1=2up�1vp�1=2/.

Proof. Parallel transport � from p to q is given by [15]

�p!q.w/ D p1=2rp�1=2wp�1=2rp1=2

where r D exp.p�1=2
v

2
p�1=2/ and v D Log.p; q/ D p1=2 log.p�1=2qp�1=2/p1=2
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Let us transform the tangent vector w at TpM to I by setting q D I:

�p!I.w/ D p1=2rp�1=2wp�1=2rp1=2 where r D exp.p�1=2
v

2
p�1=2/ and

v D Log.p; I/ D p1=2 log.p�1=2Ip�1=2/p1=2 D p1=2 log.p�1/p1=2 (a)

Then, r is given as

r D exp.p�1=2
v

2
p�1=2/

D exp.p�1=2p1=2 log.p�1/p1=2p�1=2=2/, by (a)

D exp.log.p�1/=2/

D p�1=2 (b)

Also,

�p!I.w/ D p1=2rp�1=2wp�1=2rp1=2

D p1=2p�1=2p�1=2wp�1=2p�1=2p1=2, by (b)

D p�1=2wp�1=2

D p�1=2wp�T=2 since p�1=2 is SPD.

Theorem 4.2. On SPD manifolds, let �I!q.w/ denote the parallel transport of w 2
TIM along the geodesic from I 2M to q 2M. The parallel transport is equivalent
to a group action by q1=2wqT=2.

Proof. The proof is similar to that of Theorem 4.1. By substitution, the
parallel transport is given by �I!q.w/ D rwr, where r D exp. v

2
/ and v D

Log.I; q/ D log.q/. Then, r is q1=2. Hence, �I!q.w/ D q1=2wq1=2 D
q1=2wqT=2 since q1=2 is SPD.

Remarks. Theorems 4.1 and 4.2 show that the parallel transport from or to I is
replaceable with group actions. However, in general, the parallel transport of w 2
TpM from p to q is not equivalent to the composition of group actions to transform
from p to I and from I to q. This is consistent with the fact that parallel transport
from a to c may not be same as two parallel transports: from a to b and then from b
to c. The following is an example for SPD.2/ manifold.

Example 4.5.1. When p and q are given as

p D
	
2 3

3 5



q D

	
2 1

1 1



w D

	
0 1

1 0
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The parallel transport of w from p to q is

�p!q.w/ �
	�8 �1
�1 0




Transform of w by two group actions .p! I ! q/ is

q1=2p�1=2wp�T=2qT=2 �
	�4 1
1 0




The transform by group actions above is identical to the composition of two parallel
transports �I!q.�p!I.w//. However, it is different from �p!q.w/.

Note We use the first-order optimality condition in (4.13). In general, the first
order optimality condition is necessary but not a sufficient condition. So, is (4.13) a
relaxed version of (4.5.2)? Interestingly, on SPD manifolds, the first order condition
is sufficient for the optimality of projection. To see this, we introduce the concept of
geodesic convexity [43].

Definition 4.1. A set A �M is geodesically convex (g-convex) if any two points
of A are joined by a geodesic belonging to A.

Definition 4.2. Let A � M be a g-convex set. Then, a function f W A ! R is
g-convex if its restrictions to all geodesic arcs belonging to A are convex in the arc
length parameter, i.e., if t 7! f .t/ � f .Exp.x; tu// is convex over its domain for all
x 2M and u 2 TxM, where Exp.x; �/ is the exponential map at x [39].

Lemma 4.1. The function d.Exp.�; tu/; S/ on SPD manifolds is convex with
respect to t where �; S 2M and u 2 T�M.

Proof. This can be shown by the definition of the geodesic convexity of the function
and the fact that the real-valued function defined on SPD.n/ by P 7! d.P; S/ is
geodesically convex, where S 2 SPD.n/ is fixed and d.�; �/ is the geodesic distance
[39, 40].

Lemma 4.1 shows that the projection to a geodesic curve on SPD manifolds is a
convex problem and the first-order condition for projection coefficients is sufficient.

4.5.2 Extensions to the Product Riemannian Manifold

For applications of this algorithm, we study the problem of statistical analysis of an
entire population of images (of multiple types). For such data, each image must be
treated as a single entity, which necessitates extending the formulation above to a
Riemannian product space.
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In other words, our CCA will be performed on product manifolds, i.e., Mx WD
M1

x � : : : �Mm
x and My WD M1

y � : : : �Mn
y . We seek Wx WD .W1

x ; : : : ;W
m
x / 2

T�x
Mx, Wy WD .W1

y ; : : : ;W
m
y / 2 T�y

My, where T�xMx WD T�1xM
1
x � : : : T�m

x
Mm

x

and T�yMy WD T�1yM
1
y � : : : T�n

y
Mn

y . We will discuss a Riemannian metric on
the product space and projection coefficients. Finally, we will offer the extended
formulation of our method.

First, let us define a Riemannian metric on the product space M DM1 � : : : �
Mm. A natural choice is the following idea from [52]:

hX1;X2iP D
mX

jD1
hXj

1;X
j
2iPj (4.17)

where X1 D
�
X11; : : : ;X

m
1

� 2 M, and X2 D
�
X12; : : : ;X

m
2

� 2 M and P D�
P1; : : : ;Pm

� 2 M. Once we have the exponential and logarithm maps, CCA
on a Riemannian product space can be directly performed by Algorithm 2. The
exponential map Exp.P;V/ and logarithm map Log.P;X/ are given by

.Exp.P1;V1/; : : : ;Exp.Pm;Vm// and .Log.P1;X1/; : : : ;Log.Pm;Xm// (4.18)

respectively, where V D .V1; : : : ;Vm/ 2 TPM. The length of tangent vector is

kVk D
q
kV1k2

P1
C � � � C kVmk2Pm , where Vi 2 TPiMi. The geodesic distance

between two points d.X1;X2/ on Riemannian product space is also measured by
the length of tangent vector from one point to the other. So, we have

d.�x;X/ D
q

d.�1x ;X
1/2 C � � � C d.�m

x ;X
m/2 (4.19)

From our previous discussion of the relationship between projection coefficients
and distance from the mean to points (after projection) in Sect. 4.4, we have ti D
d.�x; ˘SWx

.Xi//=kWxk�x
and tj

i D d.�j
x; ˘S

W
j
x
.Xj

i//=kWj
xk�j

x
. By substitution, the

projection coefficients on Riemannian product space are given by

ti D d.�x; ˘SWx
.Xi//=kWxk�x

D
vuut mX

j

	
tj
i

���Wj
x

���
�

j
x


2� mX
jD1

���Wj
x

���2
�

j
x

(4.20)
We can now mechanically substitute these “product space” versions of the terms

in (4.20) to derive a CCA on a Riemannian product space.
Our formulation is

X;Y D max
Wx;Wy;t;u

PN
iD1.ti � Nt/.ui � Nu/qPN

iD1.ti � Nt/2
qPN

iD1.ui � Nu/2

s:t: tj
i D arg min

t
j
i2.�	;	/

kLog.Exp.�j
x; t

j
iW

j
x/;X

j
i/k2;8i;8j
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uk
i D arg min

uk
i 2.�	;	/

kLog.Exp.�k
y; u

k
i Wk

y /;Y
k
i /k2;8i;8k (4.21)

ti D

rPm
jD1

�
tj
ikWj

xk�j
x

�2
rPm

jD1 kWj
xk2
�

j
x

; ui D

rPn
kD1

�
uk

i kWk
yk�k

y

�2
qPn

kD1 kWk
yk2�k

y

; Nt D 1

N

NX
i

ti; Nu D 1

N

NX
i

ui8i

where i 2 f1; : : : ;Ng, j 2 f1; : : : ;mg, and 8k 2 f1; : : : ; ng. This can be optimized
by constrained optimization algorithms similar to those described in Sect. 4.5 with
relatively minor changes.

4.6 Experiments

4.6.1 CCA on SPD Manifolds

Diffusion tensors are symmetric positive definite matrices at each voxel in a
diffusion tensor image (DTI). Let SPD.n/ be a manifold for symmetric positive
definite matrices of size n�n. This forms a quotient space GL.n/=O.n/, where GL.n/
denotes the general linear group and O.n/ is the orthogonal group. The inner product
of two tangent vectors u; v 2 TpM is given by hu; vip D tr.p�1=2up�1vp�1=2/. Here,
TpM is a tangent space at p, which is the .nC 1/n=2 dimensional vector space of
symmetric matrices. The geodesic distance is d.p; q/2 D tr.log2.p�1=2qp�1=2//.

Here, the exponential map and logarithm map are defined as

Exp.p; v/ D p1=2 exp.p�1=2vp�1=2/p1=2; Log.p; q/ D p1=2 log.p�1=2qp�1=2/p1=2
(4.22)

and the first derivative of g in (4.13) on SPD.n/ is given by

d

dti
g.ti;wx/ D d

dti
kLog.Exp.�x; tiWx/;Xi/k2 D d

dti
trŒlog2.X�1i S.ti//�

D 2trŒlog.X�1i S.ti//S.ti/
�1 PS.ti/�, according to Proposition 2.1 in [39]

(4.23)
where

S.ti/ D Exp.�x; tiWx/ D �1=2x exptiA �1=2x

PS.ti/ D �1=2x A exptiA �1=2x

A D ��1=2x Wx�
�1=2
x

(4.24)
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Note that the derivative of the equality constraints in (4.13), namely, d2

dWdt g, d2

dt2
g, are

calculated numerically. The numerical differentiation requires an orthonormal basis
of the tangent space. This can be easily accomplished using an embedding described
in more detail in the appendix.

4.6.2 Synthetic Experiments

In this section, we provide experimental results using a synthetic data set to evaluate
the performance of Riemannian CCA. To simplify presentation, we introduce two
operations vec.�/ and mat.�/ that will be used in the following description. We use
“vec” to give the operation of embedding tangent vectors in TIM into R6; “mat”
refers to the inversion of “vec.” By construction, we have hS1; S2iI D hv1; v2i, where
vi D vec.Si/. In other words, the distance from a base point/origin to each point
is identical in the two spaces by the construction. Using group actions and these
subroutines, points can be mapped from an arbitrary tangent space TpM to R6 or
vice versa, where p 2M. On SPD.3/, the two operations are given by

vec.S/ WD Œs11;
p
2s12;
p
2s13; s22;

p
2s23; s33�

T ;where S D
2
4 s11 s12 s13

s21 s22 s23
s31 s32 s33

3
5 and

mat.v/ WD

2
64

v1
1p
2
v2

1p
2
v3

1p
2
v2 v4

1p
2
v5

1p
2
v3

1p
2
v5 v6

3
75 ;where v D

2
64
v1
:::

v6

3
75

T

(4.25)
Our CCA algorithm with approximate projections, namely, Algorithm 2, can be
implemented by these two subroutines with group actions.

We now discuss the synthetic data generation. The samples are generated to be
spread far apart on the manifold M.� SPD(3)/—observe that if the data are closely
clustered, a manifold algorithm will behave similar to its non-manifold counterpart.
We generate data around two well-separated means �x1 ; �x2 2 X , �y1 ; �y2 2 Y
by perturbing the data randomly in the corresponding tangent spaces, i.e., adding
Gaussian-like noise in each tangent space at cluster mean �xj and �yj , where j 2
f1; 2g is the index for cluster. The procedure is described in Algorithm 3.

We plot data projected onto the CCA axes (PX and PY ) and compute the correla-
tion coefficients. In our experiments, we see that the algorithm offers improvements.
For example, by inspecting the correlation coefficients x;y in Fig. 4.2, we see that
manifold CCA yields significantly better correlation relative to other baselines.
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Algorithm 3 The procedure simulates truncated-Gaussian-like noise. The second
step (safeguard) in the pseudocode ensures that the data live in a reasonably small
neighborhood to avoid numerical issues. We define subroutines mat for mapping
from Rn.nC1/=2 to SPD.n/ and vec for the inversion

1: �0 2 Rn.nC1/=2 � N .0; �I/
2: �0  �0 min.k�0k; c1/=k�0k, B c1 is a parameter for a safeguard
3: 	I  mat.�0/, B tangent vector at I
4: Transform (using group action) 	I to T�M
5: Perturb data X Exp.�; 	�/, where 	� 2 T�M

4.6.3 CCA for Multimodal Risk Analysis

Motivation We collected multimodal magnetic resonance imaging (MRI) data to
investigate the effects of risk for Alzheimer’s disease (AD) on the white and gray
matter in the brain. One of the goals in analyzing this data set is to find statistically
significant relationships between AD risk and the brain structure. We can adopt
many different ways of modeling these relationships but a potentially useful way is
to analyze multimodality imaging data simultaneously, using CCA.

In the current experiments, we include a subset of 343 subjects and first investi-
gate the effects of age and gender in a multimodal fashion since these variables are
also important factors in healthy aging. Brain structure is characterized by diffusion-
weighted images (DWI) for white matter and T1-weighted (T1W) image data for the
gray matter. DWI data provide us information about the microstructure of the white
matter. We use diffusion tensor (D 2 SPD(3)) model to represent the diffusivity
in the microstructure. T1W data can be used to obtain volumetric properties of the
gray matter [18]. The volumetric information is obtained from Jacobian matrices
(J) of the diffeomorphic mapping to a population-specific template. These Jacobian
matrices can be used to obtain the Cauchy deformation tensors (

p
JTJ) which also

belong to SPD.3/.
We first focus our analysis using two important regions called hippocampus and

cingulum bundle (shown in Fig. 4.3) which are significantly affected by Alzheimer’s
disease. However, the statistical power of detecting changes in the brain structures
before the memory/cognitive function is impaired is difficult due to several factors
such as noise in the data, small sample, and effect sizes. One approach to improving
statistical power in such a setting is to perform only a few number of tests using
average properties of the substructures. This procedure reduces both noise and the
number of tests. However, taking averages will also dampen the signal of interest
which is already weak in certain studies. CCA can take the multimodal information
from the imaging data and project the voxels into a space where the signal of interest
is likely to be stronger.

Experimental Design The main idea is to detect age and gender effects on the
gray and white matter interactions. Hence the key multimodal linear relations we
examine for the purpose are
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Fig. 4.3 Shown on the left are the bilateral cingulum bundles (green) inside a brain surface
obtained from a population DTI template. Similarly, on the right are the bilateral hippocampi.
The full gray matter and white matter are shown on the right
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Fig. 4.4 The sample characteristics in terms of gender and age distributions

YDTI D ˇ0 C ˇ1GenderC ˇ2XT1W C ˇ3XT1W � GenderC "
YDTI D ˇ00 C ˇ01AgeGroupC ˇ02XT1W C ˇ03XT1W � AgeGroupC "

where the AgeGroup is defined as a categorical variable with 0 (middle aged) if the
age of the subject � 65 and 1 (old) otherwise. The sample under investigation is
between 43 and 75 years of age (see Fig. 4.4 for the full distributions of age and
gender). The statistical tests we ask are if the null hypotheses ˇ3 D 0 and ˇ03 D 0

can be rejected using our data at ˛ D 0:05. The gender and age distributions of the
sample are shown in Fig. 4.4.

We report the results from the following four sets of analyses: (i) Classical ROI-
average analysis: This is a standard type of setting where the brain measurements
in an ROI are averaged. Here, YDTI D MD, i.e., the average mean diffusivity in
the cingulum bundle. XT1W D log jJj, i.e., the average volumetric change (relative
to the population template) in the hippocampus. (ii) Euclidean CCA using scalar
measures (MD and log jJj) in the ROIs: Here, the voxel data are projected using
the classical CCA approach [51], i.e., YDTI D wT

MDMD and XT1W D wT
log jJj log jJj.

(iii) Euclidean CCA using D and J in the ROIs: This setting is an improvement to
the setting in (ii) above in that the projections are performed using the full tensor
data [51]. Here, YDTI D wT

DD and XT1W D wT
JJ . (iv) Riemannian CCA using D

and J in the ROIs: Here YDTI D hwD;Di�D and XT1W D hwJ ;J i�J .



4 Canonical Correlation Analysis on SPD.n/ Manifolds 87

We first show the statistical sensitivities of the four approaches in Fig. 4.5. We
can see that the performance of CCA using the full tensor information improves
the statistical significance for both Euclidean and Riemannian approaches. The
weight vectors in the different settings for both Euclidean and Riemannian CCA
are shown in Fig. 4.6, top row. We would like to note that there are several different
approaches of using the data from CCA and we performed additional experiments
with full gray matter and white matter regions in the brain. We only show and
discuss briefly the representative weight vectors in the bottom row of Fig. 4.6 and
refer the interested reader to “Appendix 2” for more comprehensive details of the
full brain experiments. Interestingly, the weight vectors are spatially cohesive even
without enforcing any spatial constraints. What is even more interesting is that
the regions picked between the DTI and T1W modalities are complimentary in a
biological sense. Specifically, when performing our CCA on the ROIs, although
the cingulum bundle extends into the superior midbrain regions, the weights are
nonzero in its hippocampal projections. In the case of entire white and gray matter
regions, the volumetric difference (from the population template) in the inferior part
of the corpus callosum seems to be highly cross-correlated to the diffusivity in the
corpus callosum. Our CCA finds these projections without any a priori constraints
in the optimization suggesting that performing CCA on the native data can reveal
biologically meaningful patterns.

We have presented in these experiments (including those in the appendix)
evidence that CCA when performed using the intrinsic properties of the MRI data
can reveal biologically meaningful patterns without any a priori biological input to
the model. We showed that we can perform various types of multimodal hypothesis
testing of linear relationships using the projection vectors from the CCA, which
can be easily extended to discriminant analysis (predicting gender and age group
using the multimodal brain data) using the CCA projection vectors. CCA can be
applied to settings beyond multimodal imaging data, where one can try to directly
maximize the correlation between imaging and nonimaging data using a cross-
validation technique [7]. Our Riemannian CCA can provide a starting point for such
studies.

4.7 Conclusion

The classical CCA assumes that data live in a pair of vector spaces. However, many
modern scientific disciplines require the analysis of data which belong to curved
spaces where classical CCA is no longer applicable. Motivated by the properties
of imaging data from neuroimaging studies, we generalize CCA to Riemannian
manifolds. We employ differential geometry tools to extend operations in CCA
to the manifold setting. Such a formulation results in a multilevel optimization
problem. We derive solutions using the first-order condition of projection and an
augmented Lagrangian method. In addition, we also develop an efficient single path
algorithm with approximate projections. Finally, we propose a generalization to the
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Fig. 4.6 Weight vectors (in red-yellow color) obtained from our Riemannian CCA approach. The
weights are in arbitrary units. The top row is from applying Riemannian CCA on data from the
cingulum and hippocampus structures (Fig. 4.3) while the bottom row is obtained using data from
the entire white and gray matter regions of the brain. On the left (three columns) block we show
the results in orthogonal view for DTI and on the right for T1W. The corresponding underlays are
the population averages of the fractional anisotropy and T1W contrast images, respectively

product space of SPD.n/, namely, tensor fields allowing us to treat a full brain image
as a point on the product manifold. Experiments show the applicability of these ideas
for the analysis of neuroimaging data.
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Appendix 1

The iterative method Algorithm 1 for Riemannian CCA with exact projection needs
first and second derivatives of g in (4.13). We provide more details here.

First Derivative of g for SPD

Given SPD.n/, the gradient of g with respect to t is obtained by the following
proposition in [39].

Proposition 4.1. Let F.t/ be a real matrix-valued function of the real variable t.
We assume that, for all t in its domain, F.t/ is an invertible matrix which does not
have eigenvalues on the closed negative real line. Then,
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d

dt
trŒlog2 F.t/� D 2trŒlog F.t/F.t/�1

d

dt
F.t/� (4.26)

The derivation of d
dti

g.ti;wx/ proceeds as

d

dti
g.ti;wx/ D d

dti
kLog.Exp.�x; tiWx/;Xi/k2

D d

dti
trŒlog2.X�1i S.ti//�

(4.27)

where S.ti/ D Exp.�x; tiWx/ D �1=2x exptiA �
1=2
x and A D ��1=2x Wx�

�1=2
x .

In our formulation, F.t/ D X�1i S.ti/. Then, we have F.t/�1 D S.ti/�1Xi and
d
dt F.t/ D X�1i

PS.ti/. Hence, the derivative of g with respect to ti is given by

d

dti
g.ti;wx/ D 2trŒlog.X�1i S.ti//S.ti/

�1XiX
�1
i
PS.ti/�, according to Proposition 4.1

D 2trŒlog.X�1i S.ti//S.ti/
�1 PS.ti/�

(4.28)
where PS.ti/ D �1=2x A exptiA �

1=2
x .

Numerical Expression for the Second Derivative of g

Riemannian CCA with exact projection can be optimized by Algorithm 1. Observe
that the objective function of the proposed augmented Lagrangian method LA

includes the term rg in (4.13). The gradient of LA involves the second derivative
of g. More precisely, we need d2

dwdt g and d2

dt2
g. These can be estimated by a finite

difference method

f
0

.x/ D lim
h!0

f .xC h/ � f .x/

h
(4.29)

Obviously, d2

dt2
g can be obtained by the expression above using the analytical first

derivative d
dt g. For d2

dwdt g, we use the orthonormal basis in T�xM to approximate the
derivative. By definition of directional derivative, we have

lim
h!0

dX
i

	
f .xC hui/ � f .x/

h



ui D

dX
i

hrxf .x/; uiiui D rxf .x/ (4.30)
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where x 2 X , d is dimension of X , and fuig is orthonormal basis of X . Hence,
perturbation along the orthonormal basis enables us to approximate the gradient.
For example, on SPD.n/manifolds, the orthonormal basis in arbitrary tangent space
TpM can be obtained by following three steps:

Step a) Pick an orthonormal basis feig of Rn.nC1/=2,
Step b) Convert feig into n-by-n symmetric matrices fuig in TIM, i.e.,
fuig Dmat.feig/,

Step c) Transform basis fuig from TIM to TpM.

Appendix 2

MR Image Acquisition and Processing All the MRI data were acquired on a GE
3.0 Tesla scanner Discovery MR750 MRI system with an 8-channel head coil and
parallel imaging (ASSET). The DWI data were acquired using a diffusion-weighted,
spin-echo, single-shot, echo planar imaging radiofrequency (RF) pulse sequence
with diffusion weighting in 40 noncollinear directions at b D 1300 s/mm2 in
addition to 8 b D 0 (nondiffusion-weighted or T2-weighted) images. The cerebrum
was covered using contiguous 2.5-mm-thick axial slices, FOV D 24 cm, TR D
8000ms, TE D 67:8ms, matrix D 96 � 96, resulting in isotropic 2.5 mm3 voxels.
High-order shimming was performed prior to the DTI acquisition to optimize the
homogeneity of the magnetic field across the brain and to minimize EPI distortions.
The brain region was extracted using the first b D 0 image as input to the brain
extraction tool (BET), also part of the FSL software.

Eddy current-related distortion and head motion of each data set were corrected
using FSL software package [46]. The b-vectors were rotated using the rotation
component of the transformation matrices obtained from the correction process.
Geometric distortion from the inhomogeneous magnetic field applied was corrected
with the b D 0 field map and PRELUDE (phase region expanding labeler for
unwrapping discrete estimates) and FUGUE (FMRIBs utility for geometrically
unwarping EPIs) from FSL. Twenty-nine subjects did not have field maps acquired
during their imaging session. Because these participants did not differ on APOE4
genotype, sex, or age compared to the participants who had field map correction,
they were included in order to enhance the final sample size. The diffusion tensors
were then estimated from the corrected DWI data using nonlinear least squares
estimation using the Camino library [13].
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Individual maps were registered to a population-specific template constructed
using diffusion tensor imaging toolkit (DTI-TK1), which is an optimized DTI spatial
normalization and atlas construction tool that has been shown to perform superior
registration compared to scalar-based registration methods [55]. The template is
constructed in an unbiased way that captures both the average diffusion features
(e.g., diffusivities and anisotropy) and anatomical shape features (tract size) in the
population. A subset of 80 diffusion tensor maps was used to create a common
space template. All diffusion tensor maps were normalized to the template with
first rigid followed by affine and then symmetric diffeomorphic transformations.
The diffeomorphic coordinate deformations themselves are smooth and invertible,
that is, neuroanatomical neighbors remain neighbors under the mapping. At the
same time, the algorithms used to create these deformations are symmetric in that
they are not biased towards the reference space chosen to compute the mappings.
Moreover, these topology-preserving maps capture the large deformation necessary
to aggregate populations of images in a common space. The spatially normalized
data were interpolated to 2�2�2 mm voxels for the final CCA analysis.

Along with the DWI data the T1-weighted images were acquired using BRAVO
pulse sequence which uses 3D inversion recovery (IR) prepared fast spoiled gradient
recalled echo (FSPGR) acquisition to produce isotropic images at 1�1�1 mm
resolution. We extract the brain regions again using BET. We compute an optimal
template space, i.e., a population-specific, unbiased average shape and appearance
image derived from our population [4]. We use the openly available advanced
normalization tools (ANTS2) to develop our template space and also perform the
registration of the individual subjects to that space [5]. ANTS encodes current best
practice in image registration, optimal template construction, and segmentation [35].
Once we perform the registrations we extract the Jacobian matrices (J) per voxel per
subject from these deformation fields and compute the Cauchy deformation tensors
(
p

JTJ) for performing CCA analysis.

Additional Experiments As described in the main text (Sect. 4.6.3), we examine
the following multimodal linear relations but this time by performing CCA on the
entire gray and white matter structures rather than just the hippocampi and cinguli:

YDTI D ˇ0 C ˇ1GenderC ˇ2XT1W C ˇ3XT1W � GenderC "
YDTI D ˇ00 C ˇ01AgeGroupC ˇ02XT1W C ˇ03XT1W � AgeGroupC "

To enable this analysis, the gray matter region was defined as follows: First,
we performed a three tissue segmentation of each of the spatially normalized

1http://dti-tk.sourceforge.net/pmwiki/pmwiki.php.
2http://www.picsl.upenn.edu/ANTS/.

http://dti-tk.sourceforge.net/pmwiki/pmwiki.php
http://www.picsl.upenn.edu/ANTS/
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T1-weighted images into gray, white, and cerebral spinal fluid using FAST seg-
mentation algorithm [56] implemented in FSL. Then, we take the average of the
gray matter probabilities using all the subjects and threshold it to obtain the final
binary mask resulting in�700,000 voxels. The white matter region is simply defined
as the region with fractional anisotropy (FA) obtained from the diffusion tensors
> 0:2 which resulted in about 50,000 voxels. We would like to contrast this with the
region-specific analyses where the number of voxels was much smaller. To address
this in our CCA we imposed an L1-norm penalty to the weight vectors (similar to
Euclidean CCA [51]) in our CCA objective function with a tuning parameter �.

In addition to the above linear relationships, CCA can also facilitate testing the
following relationships by using the weight-vectors as substructures of interest and
taking the average mean diffusivity (MD) and average volumetric change (log jJj)
in those structures as the outcome measures:

MD D ˇ0 C ˇ1ıFemale C ˇ2ıMale C "
log jJj D ˇ00 C ˇ01ıFemale C ˇ02ıMale C "

where the null hypotheses to be tested are ˇ1 D ˇ2 and ˇ01 D ˇ02. Similarly, we can
find statistically significant AgeGroup differences by examining the following two
models:

MD D ˇ0 C ˇ1ıMiddle C ˇ2ıOld C "
log jJj D ˇ00 C ˇ01ıMiddle C ˇ02ıOld C "

The scatter and bar plots for the testing linear relationships using both Rieman-
nian and Euclidean CCA are shown in Figs. 4.7 and 4.8.

We now present a comprehensive set of montages of all the slices of the brain
overlaid by the weight vectors obtained from CCA from Figs. 4.9, 4.10, 4.11,
and 4.12.

We can observe that the voxels with nonzero weights (highlighted in red-boxes)
are spatially complimentary in DTI and T1W. Even more interestingly, CCA finds
the cingulum regions in the white matter for the DTI modality. In our experiments,
we observe the same regions for various settings of a sparsity parameter (used
heuristically to obtain more interpretable regions). Similarly, Figs. 4.11 and 4.12
show the results using the Euclidean CCA performed using the full tensor informa-
tion [51]. We can observe that the results are similar to those in Figs. 4.9 and 4.10
but the regions are thinner in the Euclidean version.
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Fig. 4.7 CCA projections revealing statistically significant volume and diffusivity interactions
with gender (left) and age group (right). Top row shows the results using Riemannian CCA and
the bottom row using the Euclidean CCA with vectorization. We can clearly see improvements
in the statistical confidence (smaller p-values) for rejecting the null hypotheses when using
Riemannian CCA
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Fig. 4.9 Weight vector (obtained by Riemannian (tensor) CCA) visualization of T1W axial slices

Fig. 4.10 Weight vector (obtained by Riemannian (tensor) CCA) visualization of DTI axial slices
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Fig. 4.11 Weight vector [obtained by Euclidean CCA (tensors)] visualization of T1W axial slices

Fig. 4.12 Weight vector [obtained by Euclidean CCA (tensors)] visualization of DTI axial slices
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Chapter 5
Probabilistic Geodesic Models for Regression
and Dimensionality Reduction on Riemannian
Manifolds

P. Thomas Fletcher and Miaomiao Zhang

Abstract We present a probabilistic formulation for two closely related statistical
models for Riemannian manifold data: geodesic regression and principal geodesic
analysis. These models generalize linear regression and principal component anal-
ysis to the manifold setting. The foundation of the approach is the particular
choice of a Riemannian normal distribution law as the likelihood model. Under
this distributional assumption, we show that least-squares fitting of geodesic
models is equivalent to maximum-likelihood estimation when the manifold is a
homogeneous space. We also provide a method for maximum-likelihood estimation
of the dispersion of the noise, as well as a novel method for Monte Carlo sampling
from the Riemannian normal distribution. We demonstrate the inference procedures
on synthetic sphere data, as well as in a shape analysis of the corpus callosum,
represented in Kendall’s shape space.

5.1 Introduction

Linear models are often the first choice in a statistical analysis of Euclidean data
for several reasons. First, the relative simplicity of linear models makes them
less prone to problems of overfitting. Second, interpreting linear relationships
between variables or linear variability within multivariate data is often easier
than interpreting nonlinear alternatives. Third, linear models typically give rise
to computationally efficient inference algorithms. When dealing with data that
are inherently manifold valued, linear methods are not applicable. However, by
using geodesic curves on a manifold as the natural generalization of straight lines,
geodesic models also provide simple and interpretable analysis of manifold data.

Much of the literature on manifold statistics focuses on model fitting as a
purely geometric optimization problem, rather than as a problem of inferring the
parameters of an underlying probability model. Model fitting is typically done
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by minimizing the sum-of-squared geodesic distances from the model to the
data. Of course, in traditional multivariate Euclidean statistics, such least-squares
fitting is equivalent to maximum-likelihood estimation under a Gaussian likelihood
model. The goal of this chapter is to present a similar foundation for probabilistic
modeling of manifold data. At the heart of the approach is the definition of a
Riemannian normal distribution law. We show how this distribution provides a
unifying framework for probabilistic interpretation of several models of manifold
data, including the Fréchet mean, geodesic regression, and principal geodesic
analysis (PGA).

5.2 Related Work on Manifold Statistics

Possibly the simplest manifold statistic is the Fréchet mean of a set of points,
y1; : : : ; yN 2 M, which we will denote by �Fr. It is defined as the minimizer of
the sum-of-squared distance function

�Fr D arg min
y2M

NX
iD1

d.y; yi/
2; (5.1)

where d denotes the geodesic distance on M. Fréchet actually introduced a much
more general concept of expectation of a probability measure on a metric space [11]
of which the sample Fréchet mean on a manifold is a special case. Note that
there may be multiple solutions to the above minimization problem. Karcher [18]
provided conditions guaranteeing the existence and uniqueness of the Fréchet mean,
which were later improved by Kendall [19].

Several works have studied regression models on manifolds, where the goal is to
fit a curve on a manifold that models the relationship between a scalar parameter
and data on the manifold. This is typically done by a least squares fit, similar to
the Fréchet mean definition in (5.1), except now the optimization is over a certain
class of curves on the manifold rather than a point. That is, given manifold data
y1; : : : ; yN 2 M with corresponding real data x1; : : : ; xN 2 R, the regression problem
is to find a curve O�.x/ 2 M such that

O� D arg min
�2�

NX
iD1

d.�.xi/; yi/
2; (5.2)

where � is a space of curves on M. In this chapter we will focus on geodesic
regression [7, 8], i.e., where � is the space of parameterized geodesics on M.
Niethammer et al. [22] independently proposed geodesic regression for the case
of diffeomorphic transformations of image time series. Hinkle et al. [15] use
constant higher-order covariant derivatives to define intrinsic polynomial curves
on a Riemannian manifold for regression. Nonparametric kernel regression on
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Riemannian manifolds has also been proposed by Davis et al. [3]. Shi et al. [27]
proposed a semi-parametric model for manifold response data, which also has the
ability to handle multiple covariates.

A closely related problem to the regression problem is that of fitting smoothing
splines to manifold data. The typical objective function for smoothing splines is a
combination of a data matching term and a regularization term for the spline curve.
For example, Su et al. [29] proposed a smoothing spline where the data matching
is the same least squares objective as the regression problem (5.2), leading to a
smoothing splines optimization of the form

O� D arg min
�2�

NX
iD1

d.�.xi/; yi/
2 C �R.�/; (5.3)

where R is some regularization functional and � > 0 is a weighting between
regularization and data fitting. In this case, the search space may be the space of all
continuous curve segments, � D C.Œ0; 1�;M/. Jupp and Kent [17] proposed solving
the smoothing spline problem on a sphere by unrolling onto the tangent space. This
unrolling method was later extended to shape spaces by Kume [20]. Smoothing
splines on the group of diffeomorphisms have been proposed as growth models
by Miller et al. [21] and as second-order splines by Trouvé et al. [31]. A similar
paradigm is used by Durrleman et al. [5] to construct spatiotemporal image atlases
from longitudinal data. Yet another related problem is the spline interpolation
problem, where the data matching term is dropped and the regularization term is
optimized subject to constraints that the curve pass through specific points. The
pioneering work of Noakes et al. [23] introduced the concept of a cubic spline
on a Riemannian manifold for interpolation. Crouch and Leite [2] investigated
further variational problems for these cubic splines and for specific classes of
manifolds, such as Lie groups and symmetric spaces. Buss and Fillmore [1] defined
interpolating splines on the sphere via weighted Fréchet averaging.

Dimensionality reduction is closely related to regression, in that we are seeking
a lower-dimensional parameterization of data, with the exception that we are not
given the corresponding explanatory variables. PGA [9, 10] generalizes principal
component analysis (PCA) to nonlinear manifolds. It describes the geometric
variability of manifold data by finding lower-dimensional geodesic subspaces that
minimize the residual sum-of-squared geodesic distances to the data. While [9]
originally proposed an approximate estimation procedure for PGA, recent contribu-
tions [26, 28] have developed algorithms for exact solutions to PGA. Related work
on manifold component analysis has introduced variants of PGA. This includes
relaxing the constraint that geodesics pass through the mean of the data [13] and,
for spherical data, replacing geodesic subspaces with nested spheres of arbitrary
radius [16].

All of these methods are based on geometric, least-squares estimation proce-
dures, i.e., they find subspaces that minimize the sum-of-squared geodesic distances
to the data. Much like the original formulation of PCA, current component analysis
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methods on manifolds lack a probabilistic interpretation. The following sections
present a unified framework for two recently introduced probabilistic models on
manifolds, geodesic regression [8], and probabilistic principal geodesic analysis
(PPGA) [32].

5.3 Normal Densities on Manifolds

Throughout, we will let M denote a connected and complete Riemannian manifold.
Before defining geodesic models, we first consider a basic definition of a manifold-
valued normal distribution and give procedures for maximum-likelihood estimation
of its parameters. There is no standard definition of a normal distribution on man-
ifolds, mainly because different properties of the multivariate normal distribution
in R

n may be generalized to manifolds by different definitions. Grenander [12]
defines a generalization of the normal distribution to Lie groups and homogeneous
spaces as a solution to the heat equation. Pennec [24] defines a generalization of the
normal distribution in the tangent space to a mean point via the Riemannian Log
map. The definition that we use here, introduced in [8], and also used in [15, 32],
generalizes the connection between least-squares estimation of statistical models
and maximum-likelihood estimation under normally distributed errors.

Consider a random variable y taking values on a Riemannian manifold M, defined
by the probability density function (pdf)

p.yI�; �/ D 1

C.�; �/
exp

�
��
2

d.�; y/2
�
; (5.4)

C.�; �/ D
Z

M
exp

�
��
2

d.�; y/2
�

dy; (5.5)

where C.�; �/ is a normalizing constant. We term this distribution a Riemannian
normal distribution and use the notation y � NM.�; �

�1/ to denote it. The parameter
� 2 M acts as a location parameter on the manifold, and the parameter � 2
RC acts as a dispersion parameter, similar to the precision of a Gaussian. This
distribution has the advantages that (a) it is applicable to any Riemannian manifold,
(b) it reduces to a multivariate normal distribution (with isotropic covariance)
when M D R

n, and (c) much like the Euclidean normal distribution, maximum-
likelihood estimation of parameters gives rise to least-squares methods when M is a
Riemannian homogeneous space, as shown next.
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5.3.1 Maximum-Likelihood Estimation of �

Returning to the Riemannian normal density in (5.4), the maximum-likelihood
estimate of the mean parameter, �, is given by

O� D arg max
�2M

NX
iD1

ln p.yiI�; �/

D arg min
�2M

N ln C.�; �/C �

2

NX
iD1

d.�; yi/
2:

This minimization problem clearly reduces to the least-squares estimate, or Fréchet
mean in (5.1), if the normalizing constant C.�; �/ does not depend on the �
parameter. As shown in [8], this occurs when the manifold M is a Riemannian
homogeneous space, which means that for any two points x; y 2 M, there exists
an isometry that maps x to y. This is because the integral in (5.5) is invariant under
isometries. More precisely, given any two points �;�0 2 M, there exists an isometry
� W M ! M, with �0 D �.�/, and we have

C.�; �/ D
Z

M
exp

�
��
2

d.�; y/2
�

dy

D
Z

M
exp

�
��
2

d.�.�/; �.y//2
�

d�.y/

D C.�0; �/:

Thus, in the case of a Riemannian homogeneous space, the normalizing constant
can be written as

C.�/ D
Z

M
exp

�
��
2

d.�; y/2
�

dy; (5.6)

and we have equivalence of the MLE and Fréchet mean, i.e., O� D �Fr.
Two properties of the Riemannian normal distribution are worth emphasizing

at this point. First, the requirement that M be a Riemannian homogeneous space
is important. Without this, the normalizing constant C.�; �/ may be a function
of �, and if so, the MLE will not coincide with the Fréchet mean. For example,
a Riemannian normal distribution on an anisotropic ellipsoid (which is not a
homogeneous space) will have a normalizing constant that depends on �. Second,
it is also important that the Riemannian normal density be isotropic, unlike the
normal law in [24], which includes a covariance matrix in the tangent space to
the mean. Again, a covariance tensor field would need to be a function of the
mean point, �, which would cause the normalizing constant to change with �,
that is, unless the covariant derivative of the covariance field was zero everywhere.
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Unfortunately, such tensor fields are not always possible on general homogeneous
spaces. For example, the only symmetric, second-order tensor fields with zero
covariant derivatives on S2 are isotropic.

5.3.2 Estimation of the Dispersion Parameter, �

Maximum-likelihood estimation of the dispersion parameter, � , can also be done
using gradient ascent. Unlike the case for estimation of the � parameter, now the
normalizing constant is a function of � , and we must evaluate its derivative. We can
rewrite the integral in (5.6) in normal coordinates, which can be thought of as a
polar coordinate system in the tangent space, T�M. The radial coordinate is defined
as r D d.�; y/, and the remaining n � 1 coordinates are parameterized by a unit
vector v, i.e., a point on the unit sphere Sn�1 � T�M. Thus we have the change
of variables, �.rv/ D Exp.�; rv/. Now the integral for the normalizing constant
becomes

C.�/ D
Z

Sn�1

Z R.v/

0

exp
�
��
2

r2
�
jdet.d�.rv//j dr dv; (5.7)

where R.v/ is the maximum distance that �.rv/ is defined. Note that this formula
is only valid if M is a complete manifold, which guarantees that normal coordinates
are defined everywhere except possibly a set of measure zero on M.

The integral in (5.7) is difficult to compute for general manifolds, due to the
presence of the determinant of the Jacobian of �. However, for symmetric spaces
this change-of-variables term has a simple form. If M is a symmetric space, there
exists a orthonormal basis u1; : : : ; un, with u1 D v, such that

jdet.d�.rv//j D
nY

kD2
fk.r/; (5.8)

where �k D K.u1; uk/ denotes the sectional curvature, and fk is defined as

fk.r/ D

8̂
<̂
ˆ̂:

1p
�k

sin.
p
�kr/ if �k > 0;

1p��k
sinh.
p��kr/ if �k < 0;

r if �k D 0:

Notice that with this expression for the Jacobian determinant there is no longer a
dependence on v inside the integral in (5.7). Also, if M is simply connected, then
R.v/ D R does not depend on the direction v, and we can write the normalizing
constant as
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C.�/ D An�1
Z R

0

exp
�
��
2

r2
� nY

kD2
j�kj�1=2fk.

p
j�kjr/dr;

where An�1 is the surface area of the n � 1 hypersphere, Sn�1. While this formula
works only for simply connected symmetric spaces, other symmetric spaces could
be handled by lifting to the universal cover, which is simply connected, or by
restricting the definition of the Riemannian normal pdf in (5.4) to have support only
up to the injectivity radius, i.e., R D minv R.v/.

The derivative of the normalizing constant with respect to � is

C0.�/ D An�1
Z R

0

r2

2
exp

�
��
2

r2
� nY

kD2
j�kj�1=2fk.

p
j�kjr/dr: (5.9)

Both C.�/ and C0.�/ involve only a one-dimensional integral, which can be quickly
and accurately approximated by numerical integration. Finally, the derivative of the
log-likelihood needed for gradient ascent is given by

d

d�

NX
iD1

ln p.yiI�; �/ D �N
C0.�/
C.�/

� 1
2

NX
iD1

d.�; yi/
2:

5.3.3 Sampling from a Riemannian Normal Distribution

In this section, we describe a Markov Chain Monte Carlo (MCMC) method for
sampling from a Riemannian normal distribution with given mean and dispersion
parameters, .�; �/. From (5.7) we see that the Riemannian normal density is
proportional to an isotropic Gaussian density in T�M times a change-of-variables
term. This suggests using an independence sampler with an isotropic Gaussian as
the proposal density.

More specifically, let y � NM.�; �
�1/, and let �.rv/ D Exp.�; rv/ be normal

coordinates in the tangent space T�M. Then the density in .r; v/ is given by

f .r; v/ /
(

exp
�� �

2
r2
� jdet.d�.rv//j r � R.v/;

0 otherwise.

Notice that the density is zero beyond the cut locus. For the independence sampler,
we will not need to compute the normalization constant. We will then use an
isotropic (Euclidean) Gaussian in T�M as the proposal density, which in polar
coordinates is given by

g.r; v/ / r exp
�
��
2

r2
�
:
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Algorithm 1 Independence sampler for the Riemannian normal distribution
Input: Parameters �; �
Draw initial sample .r; v/ from g
for i D 1 to S do

Sample proposal .Qr; Qv/ from g
Compute the acceptance probability ˛..Qr; Qv/; .r; v// using (5.10)
Draw a uniform random number u 2 Œ0; 1�
if Qr � R.Qv/ and u � ˛..Qr; Qv/; .r; v// then

Accept: Set yi D Exp.�; QrQv/, and set .r; v/ D .Qr; Qv/
else

Reject: Set yi D Exp.�; rv/
end if

end for

An iteration of the independence sampler begins with the previous sample .r; v/
and generates a proposal sample .Qr; Qv/ from g, which is accepted with probability

˛..Qr; Qv/; .r; v// D min

�
1;

f .Qr; Qv/g.r; v/
f .r; v/g.Qr; Qv/



D min

�
1;

ˇ̌
ˇ̌ r det.d�.Qr Qv//
Qr det.d�.rv//

ˇ̌
ˇ̌

:

(5.10)

So the acceptance probability reduces to simply a ratio of the Log map change-
of-variables factors, which for symmetric spaces can be computed using (5.8). The
final MCMC procedure is given by Algorithm 1.

5.3.4 Sphere Example

We now demonstrate the above procedures for sampling from Riemannian normal
densities and ML estimation of parameters on the two-dimensional sphere, S2.
Figure 5.1 shows example samples generated using the independence sampler in
Algorithm 1 for various levels of � . Notice that the sampler is efficient (high
acceptance rate) for larger values of � , but less efficient for smaller � as the
distribution approaches a uniform distribution on the sphere. This is because the
proposal density matches the true density well, but the sampler rejects points beyond
the cut locus, which happens more frequently when � is small and the distribution
is approaching the uniform distribution on the sphere.

Next, to test the ML estimation procedures, we used the independence sampler
to repeatedly generate N D 100 random points on S2 from a NS2 .�; �/ density,
where � D .0; 0; 1/ was the north pole, and again we varied � D 1; 20; 50. Then
we computed the MLEs, O�; O� , using the gradient ascent procedures above. Each
experiment was repeated 1000 times, and the results are summarized in Fig. 5.2.
For the O� estimates, we plot a kernel density estimate of the points Log� O�. This is
a Monte Carlo simulation of the sampling distribution of the O� statistic, mapped
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t = 50
Accept rate = 0.995

t = 20
Accept rate = 0.991

t = 1
Accept rate = 0.833

Fig. 5.1 Samples from a Riemannian normal density on S2 for various levels of � . Samples are in
blue, and the mean parameter, �; is shown in red
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Fig. 5.2 Monte Carlo simulation of the MLEs, O� (top row), and O� (bottom row). The true
parameter values are marked in red
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into the tangent space of the true mean, T�M, via the Log map. Similarly, the
corresponding empirical sampling distribution of the O� statistics are plotted as kernel
density estimates. While the true sampling distributions are unknown, the plots
demonstrate that the MLEs have reasonable behavior, i.e., they are distributed about
the true parameter values, and their variance decreases as � increases.

5.4 Probabilistic Geodesic Regression

Let y1; : : : ; yN be points on a smooth Riemannian manifold M, with associated scalar
values x1; : : : ; xN 2 R. The goal of geodesic regression is to find a geodesic curve
� on M that best models the relationship between the xi and the yi, as shown in
Fig. 5.3. Just as in linear regression, the speed of the geodesic will be proportional
to the independent parameter corresponding to the xi. The tangent bundle, TM, is
the space of all possible tangent vectors to points in M. Because a geodesic on a
complete manifold is uniquely defined by its initial point and velocity, the tangent
bundle serves as a convenient parameterization of the set of possible geodesics on M.
An element .p; v/ 2 TM represents an intercept, or initial point, �.0/ D p, and a
slope, or initial velocity, � 0.0/ D v. Such a geodesic may also be written in terms
of the Riemannian Exp map: �.x/ D Exp.p; xv/. Given this setup, we are ready to
define the probabilistic model for geodesic regression as

y � NM.Exp.p; xv/; ��1/: (5.11)

As is customary in regression models, y is a random variable, while the x values
are observations that we do not model as random. We now have model parameters,
.p; v/ 2 TM and � 2 RC, which we want to estimate. Notice that for Euclidean
space, the exponential map is simply addition, that is, Exp.p; v/ D p C v. Thus,
when M D R

n, the geodesic model reduces to multiple linear regression with
isotropic Gaussian errors, and ML inference is the standard ordinary least squares.

Fig. 5.3 Schematic of the
geodesic regression model
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5.4.1 Maximum-Likelihood Estimation

Given data .xi; yi/ 2 R � M, for i D 1; : : : ;N, the joint log-likelihood for the
geodesic regression model, using (5.4) and (5.11), is given by

log
NY

iD1
p.yI x; .p; v/; �/ D �

NX
iD1

n
log C.�.xi/; �/C �

2
d.�.xi/; yi/

2
o
;

�.xi/ D Exp.p; xiv/:

(5.12)

Again, for general manifolds, the normalization constant may be a function of the
point �.xi/, and thus a function of .p; v/. However, if we restrict our attention
to homogeneous spaces, the same argument used before in Sect. 5.3 applies to
show that the normalizing constant is independent of the point �.xi/. Thus, for
homogeneous spaces, ML estimation is equivalent to the minimization problem

..Op; Ov/; O�/ D arg min
.p;v/2TM
�2RC

E..p; v/; �/;

E..p; v/; �/ D N log C.�/C �

2

NX
iD1

d.Exp.p; xiv/; yi/
2:

As before, we solve this problem using gradient descent.

Gradient for .p; v/

The gradient for the intercept and slope parameters require that we take the
derivative of the exponential map, Exp.p; xiv/, with respect to the initial point
p and velocity v. To do this, first consider a variation of geodesics given by
c1.s; t/ D Exp.Exp.p; su1/; tv.s//, where u1 2 TpM defines a variation of the initial
point along the geodesic �.s/ D Exp.p; su1/. Here we have also extended v 2 TpM
to a vector field v.s/ along � via parallel translation. Next consider a variation of
geodesics c2.s; t/ D Exp.p; su2C tv/, where u2 2 TpM. (Technically, u2 is a tangent
to the tangent space, i.e., an element of Tv.TpM/, but there is a natural isomorphism
Tv.TpM/ Š TpM.) Taking the derivatives with respect to s at s D 0, these variations
lead to Jacobi fields along the geodesic � , giving the derivatives of the Exp map:

dpExp.p; xiv/ � u1 D d

ds
c1.s; xi/

ˇ̌
ˇ
sD0

dvExp.p; xiv/ � u2 D d

ds
c2.s; xi/

ˇ̌
ˇ
sD0:
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Finally, the gradients of the negative log-likelihood function are given by

rpE D �
NX

iD1
dpExp.p; xiv/

�	i; (5.13)

rvE D �
NX

iD1
xi dvExp.p; xiv/

�	i; (5.14)

where we have defined 	i D Log.Exp.p; xiv/; yi/; and we have taken the adjoint of
the Exp derivative, defined by

hdpExp.p; v/u;wi D hu; dpExp.p; v/�wi:

Formulas for Jacobi fields and their respective adjoint operators can often be derived
analytically for many useful manifolds. We will give examples of the computations
for spheres and Kendall’s shape space in Sect. 5.6.

Gradient for �

The gradient for � is similar to the normal distribution case. Plugging in the ML
estimate for the geodesic parameters, .Op; Ov/, we have

r�E D N
C0.�/
C.�/

C 1

2

NX
iD1

d.Exp.Op; xi Ov/; yi/
2:

5.5 Probabilistic Principal Geodesic Analysis

PCA [14] has been widely used to analyze highdimensional Euclidean data. Tipping
and Bishop proposed probabilistic PCA (PPCA) [30], which is a latent variable
model for PCA. A similar formulation was independently proposed by Roweis [25].
The main idea of PPCA is to model an n-dimensional Euclidean random variable
y as

y D �C BxC 	; (5.15)

where � is the mean of y, x is a q-dimensional latent variable, with x � N.0; I/, B
is an n � q factor matrix that relates x and y, and 	 � N.0; �2I/ represents error.
We will find it convenient to model the factors as B D W�, where the columns
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of W are mutually orthogonal, and � is a diagonal matrix of scale factors. This
removes the rotation ambiguity of the latent factors and makes them analogous to the
eigenvectors and eigenvalues of standard PCA (there is still of course an ambiguity
of the ordering of the factors). We now generalize this model to random variables
on Riemannian manifolds.

5.5.1 Probability Model

The PPGA model for a random variable y on a smooth Riemannian manifold M is

yjx � NM
�
Exp.�; z/; ��1

�
; z D W�x; (5.16)

where x � N.0; 1/ are again latent random variables in R
q, � here is a base point on

M, W is a matrix with q columns of mutually orthogonal tangent vectors in T�M,
� is a q � q diagonal matrix of scale factors for the columns of W, and � is a scale
parameter for the noise. In this model, a linear combination of W� and the latent
variables x forms a new tangent vector z 2 T�M. Next, the exponential map shoots
the base point � by z to generate the location parameter of a Riemannian normal
distribution, from which the data point y is drawn. Note that in Euclidean space,
the exponential map is an addition operation, Exp.�; z/ D �C z. Thus, our model
coincides with (5.15), the standard PPCA model, when M D R

n.

5.5.2 Inference

We develop a maximum likelihood procedure to estimate the parameters
� D .�;W; �; �/ of the PPGA model defined in (5.16). Given observed data
yi 2 fy1; : : : ; yNg on M, with associated latent variable xi 2 R

q, and zi D W�xi, we
formulate an expectation maximization (EM) algorithm. Since the expectation step
over the latent variables does not yield a closed-form solution, we develop an HMC
method to sample xi from the posterior p.xjyI �/, the log of which is given by

log
NY

iD1
p.xijyiI �/ / �N log C �

NX
iD1

�

2
d .Exp.�; zi/; yi/

2 � kxik2
2

; (5.17)

and use this in a Monte Carlo expectation maximization (MCEM) scheme to
estimate � . The procedure contains two main steps:
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E-Step: HMC

For each xi, we draw a sample of size S from the posterior distribution (5.17) using
HMC with the current estimated parameters � k. Denoting xij as the jth sample for
xi, the Monte Carlo approximation of the Q function is given by

Q.� j� k/ D ExijyiI�k

"
NY

iD1
log p.xijyiI � k/

#
� 1

S

SX
jD1

NX
iD1

log p.xijjyiI � k/: (5.18)

Hamiltonian Monte Carlo (HMC) [4] is a powerful gradient-based Markov Chain
Monte Carlo sampling method that is applicable to a wide array of continuous prob-
ability distributions. It rigorously explores the entire space of a target distribution
by utilizing Hamiltonian dynamics as a Markov transition probability. The gradient
information of the log probability density is used to efficiently sample from the
higher probability regions.

Next, we derive an HMC procedure to draw a random sample from the posterior
distribution of the latent variables x. The first step to sample from a distribution
f .x/ using HMC is to construct a Hamiltonian system H.x;m/ D U.x/ C V.m/,
where U.x/ D � log f .x/ is a “potential energy”, and V.m/ D � log g.m/ is a
“kinetic energy”, which acts as a proposal distribution on an auxiliary momentum
variable, m. An initial random momentum m is drawn from the density g.m/.
Starting from the current point x and initial random momentum m, the Hamiltonian
system is integrated forward in time to produce a candidate point, x�, along with
the corresponding forward-integrated momentum, m�. The candidate point x� is
accepted as a new point in the sample with probability

P.accept/ D min.1; exp.�U.x�/ � V.m�/C U.x/C V.m//:

This acceptance–rejection method is guaranteed to converge to the desired density
f .x/ under fairly general regularity assumptions on f and g.

In our HMC sampling procedure, the potential energy of the Hamiltonian
H.xi;m/ D U.xi/ C V.m/ is defined as U.xi/ D � log p.xijyiI �/, and the kinetic
energy V.m/ is a typical isotropic Gaussian distribution on a q-dimensional auxiliary
momentum variable, m. This gives us a Hamiltonian system to integrate: dxi

dt D
@H
@m D m and dm

dt D � @H
@xi
D �rxi U. Due to the fact that xi is a Euclidean variable,

we use a standard “leap-frog” numerical integration scheme, which approximately
conserves the Hamiltonian and results in high acceptance rates. Now, the gradient
with respect to each xi is

rxi U D xi � ��WTfdzi Exp.�; zi/
�Log.Exp.�; zi/; yi/g: (5.19)
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M-Step: Gradient Ascent

In this section, we derive the maximization step for updating the parameters � D
.�;W; �; �/ by maximizing the HMC approximation of the Q function in (5.18).
This turns out to be a gradient ascent scheme for all the parameters since there are
no closed-form solutions.

Gradient for �

The gradient term for estimating � is

r�Q D �N
C0.�/
C.�/

� 1
S

NX
iD1

SX
jD1

d.Exp.�; zij/; yi/
2;

where the derivative C0.�/ is given in (5.9).

Gradient for �

From (5.17) and (5.18), the gradient term for updating � is

r�Q D 1

S

NX
iD1

SX
jD1

�d�Exp.�; zij/
�Log

�
Exp.�; zij/; yi

�
:

Gradient for �

For updating �, we take the derivative w.r.t. each ath diagonal element �a as

@Q

@�a
D 1

S

NX
iD1

SX
jD1

�.Waxa
ij/

Tfdzij Exp.�; zij/
�Log.Exp.�; zij/; yi/g;

where Wa denotes the ath column of W, and xa
ij is the ath component of xij.

Gradient for W

The gradient w.r.t. W is

rWQ D 1

S

NX
iD1

SX
jD1

�dzij Exp.�; zij/
�Log.Exp.�; zij/; yi/x

T
ij�: (5.20)
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Algorithm 2 Monte Carlo expectation maximization for probabilistic principal
geodesic analysis

Input: Data set Y , reduced dimension q.
Initialize �;W; �; � .
repeat

Sample X according to (5.19),
Update �;W; �; � by gradient ascent in Section 3:2:2.

until convergence

To preserve the mutual orthogonality constraint on the columns of W, we project
the gradient in (5.20) onto the tangent space at W and then update W by shooting
the geodesic on the Stiefel manifold in the negative projected gradient direction,
see the detail in [6].

The MCEM algorithm for PPGA is an iterative procedure for finding the sub-
space spanned by q principal components, shown in Algorithm 2. The computation
time per iteration depends on the complexity of exponential map, log map, and
Jacobi field which may vary for different manifold. Note the cost of the gradient
ascent algorithm also linearly depends on the data size, dimensionality, and the
number of samples drawn. An advantage of MCEM is that it can run in parallel
for each data point. Since the posterior distribution (5.17) is estimated by HMC
sampling, to diagnose the convergence of our algorithm, we run parallel independent
chains to obtain univariate quantities of the full distribution.

5.6 Experiments

In this section, we demonstrate the effectiveness of PPGA and our ML estimation
using both simulated data on the 2D sphere and a real corpus callosum data
set. Before presenting the experiments of PPGA, we briefly review the necessary
computations for the specific types of manifolds used, including the Riemannian
exponential map, log map, and Jacobi fields.

5.6.1 Simulated Sphere Data

Sphere Geometry Overview

Let p be a point on an n-dimensional sphere embedded in R
nC1, and let v be a

tangent at p. The inner product between tangents at a base point p is the usual
Euclidean inner product. The exponential map is given by a 2D rotation of p by
an angle given by the norm of the tangent, i.e.,
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Exp.p; v/ D cos � � pC sin �

�
� v; � D kvk: (5.21)

The log map between two points p; q on the sphere can be computed by finding the
initial velocity of the rotation between the two points. Let �p.q/ D p � hp; qi denote
the projection of the vector q onto p. Then

Log.p; q/ D � � �q � �p.q/
�

kq � �p.q/k ; � D arccos.hp; qi/: (5.22)

All sectional curvatures for Sn are equal to one. The adjoint derivatives of the
exponential map are given by

dpExp.p; v/�w D cos.kvk/w? C w>; dvExp.p; v/�w D sin.kvk/
kvk w? C w>;

where w?;w> denote the components of w that are orthogonal and tangent to v,
respectively. An illustration of geodesics and the Jacobi fields that give rise to the
exponential map derivatives is shown in Fig. 5.4.

Parameter Estimation on the Sphere

Using our generative model for PGA (5.16), we forward simulated a random sample
of 100 data points on the unit sphere S2, with known parameters � D .�;W; �; �/,
shown in Table 5.1. Next, we ran our maximum likelihood estimation procedure to
test whether we could recover those parameters. We initialized � from a random
uniform point on the sphere. We initialized W as a random Gaussian matrix, to
which we then applied the Gram–Schmidt algorithm to ensure its columns were
orthonormal. Figure 5.4 compares the ground truth principal geodesics and MLE
principal geodesic analysis using our algorithm. A good overlap between the first
principal geodesic shows that PPGA recovers the model parameters.

One advantage that our PPGA model has over the least-squares PGA formulation
is that the mean point is estimated jointly with the principal geodesics. In the
standard PGA algorithm, the mean is estimated first (using geodesic least squares),

Table 5.1 Comparison between ground truth parameters for the simulated
data and the MLE of PPGA, non-probabilistic PGA, and standard PCA

� w � �

Ground truth .�0:78; 0:48;�0:37/ .�0:59;�0:42; 0:68/ 0.40 100

PPGA .�0:78; 0:48;�0:40/ .�0:59;�0:43; 0:69/ 0.41 102

PGA .�0:79; 0:46;�0:41/ .�0:59;�0:38; 0:70/ 0.41 N/A

PCA .�0:70; 0:41;�0:46/ .�0:62;�0:37; 0:69/ 0.38 N/A
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p
v

J(x)

M

Fig. 5.4 Left: Jacobi fields; Right: the principal geodesic of random generated data on unit sphere.
Blue dots: random generated sphere data set. Yellow line: ground truth principal geodesic. Red line:
estimated principal geodesic using PPGA

then the principal geodesics are estimated second. This does not make a difference in
the Euclidean case (principal components must pass through the mean), but it does
in the nonlinear case. To demonstrate this, we give examples where data can be fit
better when jointly estimating mean and PGA than when doing them sequentially.
We compared our model with PGA and standard PCA (in the Euclidean embedding
space). The noise variance � was not valid to be estimated in both PGA and PCA.
The estimation error of principal geodesics turned to be larger in PGA compared to
our model. Furthermore, the standard PCA converges to an incorrect solution due
to its inappropriate use of a Euclidean metric on Riemannian data. A comparison of
the ground truth parameters and these methods is given in Table 5.1.

5.6.2 Shape Analysis of the Corpus Callosum

Shape Space Geometry

A configuration of k points in the 2D plane is considered as a complex k-vector,
z 2 C

k. Removing translation, by requiring the centroid to be zero, projects this
point to the linear complex subspace V D fz 2 C

k WP zi D 0g, which is equivalent
to the space C

k�1. Next, points in this subspace are deemed equivalent if they are a
rotation and scaling of each other, which can be represented as multiplication by a
complex number, ei� , where  is the scaling factor and � is the rotation angle. The
set of such equivalence classes forms the complex projective space, CPk�2.

We think of a centered shape p 2 V as representing the complex line Lp D fz �p W
z 2 Cnf0g g, i.e., Lp consists of all point configurations with the same shape as p.
A tangent vector at Lp 2 V is a complex vector, v 2 V , such that hp; vi D 0. The
exponential map is given by rotating (within V) the complex line Lp by the initial
velocity v, that is,
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Exp.p; v/ D cos � � pC kpk sin �

�
� v; � D kvk: (5.23)

Likewise, the log map between two shapes p; q 2 V is given by finding the initial
velocity of the rotation between the two complex lines Lp and Lq. Let �p.q/ D
p � hp; qi=kpk2 denote the projection of the vector q onto p. Then the log map is
given by

Log.p; q/ D � � �q � �p.q/
�

kq � �p.q/k ; � D arccos
jhp; qij
kpkkqk : (5.24)

The sectional curvatures of CPk�2, �i D K.ui; v/, used in (5.8), can be computed
as follows. Let u1 D i � v, where we treat v as a complex vector and i D p�1. The
remaining u2; : : : ; un can be chosen arbitrarily to construct an orthonormal frame
with v and u1. Then we have K.u1; v/ D 4 and K.ui; v/ D 1 for i > 1. The adjoint
derivatives of the exponential map are given by

dpExp.p; v/�w D cos.kvk/w?1 C cos.2kvk/w?2 C w>;

dvExp.p; v/�w D sin.kvk/
kvk w?1 C

sin.2kvk/
2kvk C w>2 ;

where w?1 denotes the component of w parallel to u1, i.e., w?1 D hw; u1iu1, u>2
denotes the remaining orthogonal component of w, and w> denotes the component
tangent to v.

Shape Variability of Corpus Callosum Data

As a demonstration of PPGA on Kendall shape space, we applied it to corpus
callosum shape data derived from the OASIS database (www.oasis-brains.org).
The data consisted of magnetic resonance images (MRI) from 32 healthy adult
subjects. The corpus callosum was segmented in a midsagittal slice using the ITK
SNAP program (www.itksnap.org). An example of a segmented corpus callosum
in an MRI is shown in Fig. 5.5. The boundaries of these segmentations were
sampled with 64 points using ShapeWorks (www.sci.utah.edu/software.html). This
algorithm generates a sampling of a set of shape boundaries while enforcing
correspondences between different point models within the population. Figure 5.5
displays the first two modes of corpus callosum shape variation, generated from
the as points along the estimated principal geodesics: Exp.�; ˛iwi/, where ˛i D
�3�i;�1:5�i; 0; 1:5�i; 3�i, for i D 1; 2.

www.itksnap.org
www.sci.utah.edu/software.html
http://www.oasis-brains.org
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Fig. 5.5 Left: example corpus callosum segmentation from an MRI slice. Middle to right: first and
second PPGA mode of shape variation with �3, �1:5, 1:5, and 3� �
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Part II
Color, Motion, and Stereo

This part presents theory and applications in problems such as chromatic filtering,
3D motion estimation, and fundamental matrix estimation.



Chapter 6
Robust Estimation for Computer Vision Using
Grassmann Manifolds

Saket Anand, Sushil Mittal, and Peter Meer

Abstract Real-world visual data are often corrupted and require the use of
estimation techniques that are robust to noise and outliers. Robust methods are well
studied for Euclidean spaces and their use has also been extended to Riemannian
spaces. In this chapter, we present the necessary mathematical constructs for
Grassmann manifolds, followed by two different algorithms that can perform robust
estimation on them. In the first one, we describe a nonlinear mean shift algorithm for
finding modes of the underlying kernel density estimate (KDE). In the second one, a
user-independent robust regression algorithm, the generalized projection-based M-
estimator (gpbM), is detailed. We show that the gpbM estimates are significantly
improved if KDE optimization over the Grassmann manifold is also included. The
results for a few real-world computer vision problems are shown to demonstrate the
importance of performing robust estimation using Grassmann manifolds.

6.1 Introduction

Estimation problems in geometric computer vision often require dealing with
orthogonality constraints in the form of linear subspaces. Since orthogonal matrices
representing linear subspaces of Euclidean space can be represented as points on
Grassmann manifolds, understanding the geometric properties of these manifolds
can prove very useful for solving many vision problems. Usually, the estimation
process involves optimizing an objective function to find the regression coefficients
that best describe the underlying constraints. Alternatively, given a distribution of
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sampled hypotheses of linear solutions, it could also be formulated as finding the
cluster centers of those distributions as the dominant solutions to the underlying
observations.

A typical regression problem in computer vision involves discovering multiple,
noisy inlier structures present in the data corrupted with gross outliers. Usually,
very little or no information is available about the number of inlier structures, the
nature of the noise corrupting each one of them, and the amount of gross outliers.
The original RAndom SAmple Consesus (RANSAC) [5] and its several variants
like MLESAC, LO-RANSAC, PROSAC, and QDEGSAC [15] were designed for
problems with single inlier structure where either a fixed estimate of the scale of
inlier noise is provided by the user beforehand or it is estimated using a simple
heuristic. As the complexity of the problems grow, a scale estimate becomes harder
to determine. Although Grassmann manifolds provide a continuous parameter space
to optimize and refine the estimate returned by a robust algorithm, it is still essential
for the original algorithm to perform well in situations where the data deviate from
the underlying model in a variety of different ways. Accurate estimation of the scale
of inlier noise, especially for multidimensional problems, is an important step for
all robust algorithms.

Robust methods applied to the more general Riemannian manifolds have
appeared in computer vision literature. A short introduction to Riemannian
manifolds, mainly from a computer vision point of view, and some applications can
be seen in [12] and [19], as well as the references therein. More recent work in this
area could be found in [7, 8, 10, 16, 20–22]. In case of Grassmann manifolds, such
techniques amount to clustering and finding the modes of the subspace distributions
obtained from the data.

This chapter is organized as follows. We introduce in Sect. 6.2, the necessary
tools for solving subspace estimation and clustering problems on Grassmann
manifolds. Section 6.3 describes two robust subspace estimation algorithms—the
nonlinear mean shift and the generalized projection-based M-estimator (gpbM).
A few applications of the two algorithms are presented in Sect. 6.4. We conclude
with a discussion in Sect. 6.5.

6.2 Grassmann Manifolds

A point X on the Grassmann manifold, Gm;k, represents a k-dimensional linear
subspace in R

m, where m > k. The point X is represented by an m � k orthogonal
matrix, i.e., X>X D Ik�k and is independent of the choice of any particular basis
vectors. Hence, points on the Grassmann manifold are equivalence classes of m� k
orthogonal matrices, where two matrices are equivalent if their columns span the
same k-dimensional subspace in R

m [4].
Tangent vectors at X to Gm;k are also represented as m � k matrices. Given a

real-valued function f W Gm;k ! R on the manifold, �.f / is the magnitude of the
derivative of f in the tangent direction � at X. Intuitively, the tangent vector can be
thought of as velocity of a point constrained to move on the manifold. The tangent
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Fig. 6.1 (a) Tangent and normal spaces of Grassmann (Riemannian) manifold with the geodesic
along the direction of the horizontal space. (b) Parallel transport of tangent � from X to Y on the
manifold by removing the normal component �?

space can be further divided into complementary horizontal and vertical spaces.
The space normal to the tangent space is called the normal space. See Fig. 6.1a for
an illustration of this decomposition. A 3 � 3 matrix of G3;1 has two-dimensional
horizontal, one-dimensional vertical, and six-dimensional normal space.

A curve in a Riemannian manifold M is a smooth mapping ˛ from an open
interval T of R to M. For a particular t 2 T, X.t/ lies on the manifold and X0.t/ is a
tangent vector at X.t/. Given points X;Y on M, the shortest curve connecting X and
Y is called the geodesic. The length of the geodesic is defined to be the Riemannian
distance between the two points. It can be shown that for Grassmann manifold Gm;k,
a geodesic from X in the direction of the tangent � (m� k matrix) can be written as

X.t/ D ŒXV U�
�

cos ˙ t
sin ˙ t

�
V> (6.1)

where U˙ V> is the compact SVD of � (only Uk, the first k columns of U are
computed) and the operators sin and cos act element by element along the diagonal
of ˙ .

In Euclidean space, a vector can be moved parallel to itself by just moving the
base of the vector. Moving a tangent vector � from a point X to Y on the manifold
M also accumulates a normal component �? at Y, which is subtracted from the
transported vector. This is called parallel translation and is illustrated in Fig. 6.1b.
A tangent vector � 2 �X at X D X.0/ can be parallel-translated to another point
Y 2M by infinitesimally removing the normal component of the translated vector,
�? along the path between X and Y on the manifold. For Grassmann manifold
Gm;k, the parallel-translation of � along the geodesic in direction � is given by

�.t/ D
	
ŒXV U�

� � sin ˙ t
cos ˙ t

�
U> C ŒI � UU>�



� (6.2)

where U˙ V> is the compact SVD of �, and �.0/ D �.
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The horizontal space of the tangent vectors and geodesics on the manifold are
closely related. There is a unique geodesic curve ˛ W Œ0; 1� ! Gm;k, starting at X
with tangent vector �, which has the initial velocity ˛0.0/ D �. The exponential
map, expX, maps � from the tangent space to the point on the manifold reached by
this geodesic

expX.�/ D ˛.1/ D X.1/ (6.3)

where X.1/ is computed using (6.1). The origin of the tangent space is mapped to the
point itself, expX.0/ D X.0/. For each point X 2 Gm;k, there exists a neighborhood
around the origin of �X that can be uniquely mapped to a neighborhood of X via
expX. The inverse mapping is achieved by the logarithm map, logX D exp�1X .

Given two points X;Y 2 Gm;k, the logarithm map finds a tangent direc-
tion � such that the geodesic from X along � reaches Y in unit time. With
ŒX X?�>ŒX X?� D Im, let C and S represent the generalized singular values
of X>Y and X>?Y such that C>C C S>S D Ik. With some computation, it can be
shown that for Gm;k, the logarithm operator can be written as

logX.Y/ D � D U˙ V> D U cos�1 .C1/V> D U sin�1 .S1/V> (6.4)

where C1 D
�
C 0
0 I.m�k/

�
and S1 D

�
S 0
0 0.m�k/�.m�k/

�
and cos�1 and sin�1 act

element by element along the diagonals of C1 and S1. The exponential and logarithm
operators vary as the point X moves on Gm;k which is made explicit above by the
subscript.

The distance between two points on the Grassmann manifold using (6.4) is
given by

d.X;Y/ D jjlogX.Y/jjF (6.5)

where jj�jjF is the matrix Frobenius norm. The gradient of the squared Riemannian
distance for Grassmann manifolds [19] is

rXd2.X;Y/ D �2 logX.Y/ (6.6)

For a real-valued, scalar function f W Gm;k ! R on Gm;k, let @fX be the m � k
Jacobian of f w.r.t. X such that @fX.i; j/ D @f=@X.i; j/; i D 1; : : : ;m; and j D
1; : : : ; k. The jth column vector in @fX gives the partial differential of f w.r.t. the jth
basis vector of X. Since each entry of @fX is computed independently, in general,
@fX does not lie in the tangent space �X. The gradient of f at X is the tangent vector
r fX obtained by subtracting from @fX its component in subspace spanned by the
columns of X yielding
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r fX D @fX � XX>@fX D X?X>?@fX (6.7)

It is easy to verify that X>.r fX/ D 0. See [12] for proofs of most of the above
equations.

6.3 Robust Estimation Using Grassmann Manifolds

First, we describe the nonlinear mean shift algorithm, which takes a clustering-based
approach to identify dominant subspace hypotheses over the Grassmann manifold.
Next, we describe the generalized projection-based M-estimator (gpbM), which
improves the subspace estimate over the Grassmann manifold by using conjugate
gradient optimization method.

6.3.1 Nonlinear Mean Shift on Grassmann Manifolds

The mean shift algorithm [3] takes an iterative approach for identifying local
modes of the underlying kernel density estimate (KDE). In Euclidean space, this is
achieved by computing weighted means of sample points in a local neighborhood.
As opposed to this, the mean of points lying on a Grassmann manifold itself may not
lie on the manifold. However, the tangent vectors of these points exist in a vector
space, where their weighted mean can be computed and used to update the mode
estimate. This method has been generalized to many Riemannian manifolds [19].

Given n points on the Grassmann manifold, Xi; i D 1; : : : ; n, the kernel density
estimate with a kernel profile � and bandwidth h is

Of�.Y/ D c�;h
n

nX
iD1

�

	
d2.Y;Xi/

h2



(6.8)

where c�;h is the normalization constant and d.�; �/ represents the Riemannian
distance for Grassmann manifolds computed using (6.5). The kernel profile � is
related to the kernel function as Kh.u/ D c�;h�.u2/ [3]. The bandwidth h, which is
a tuning parameter in the application, is provided by the user. It can also be thought
of as the scale parameter in the distance function.
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The gradient of Of� at Y is calculated as

rOf�.Y/ D 1

n

nX
iD1
r�

	
d2.Y;Xi/

h2




D �1
n

nX
iD1

g

	
d2.Y;Xi/

h2


 rd2.Y;Xi/

h2

D 2

n

nX
iD1

g

	
d2.Y;Xi/

h2



logY.Xi/

h2
(6.9)

where g.�/ D ��0.�/, and the relation (6.6) is used in the last equation of (6.9).
The gradient of the distance function is taken here with respect to Y. Like in the
Euclidean case, the updated nonlinear mean shift vector is then computed as

ıY D

nX
iD1

g

	
d2.Y;Xi/

h2



logY.Xi/

nX
iD1

g

	
d2.Y;Xi/

h2


 (6.10)

This expression is defined in a vector space since logY.Xi/ terms lie in the tangent
space �Y and the kernel terms g.d2.Y;Xi/=h2/ are scalars. Since the mean shift
vector is computed in the tangent space, i.e., not on the manifold intrinsically, this
algorithm was referred to as the extrinsic mean shift in [1]. On the other hand, the
intrinsic mean shift (Int-MS) proposed in [1] operates directly on the manifold. As
shown in Sect. 6.4.4, there is little difference in performance of the two mean shift
procedures. The mean shift vector (6.10) computed in �Y is projected back to the
Grassmann manifold using the exponential map for the jth iteration

Y.jC1/ D expY.j/

�
ıY.j/

�
(6.11)

Each iteration of (6.11) updates the current mode estimate Y.j/ by moving along the
geodesic defined by the mean shift vector to get the next estimate, Y.jC1/. A mean
shift iteration is initialized at each data point by initializing X D Xi and repeatedly
updated until convergence. The complete nonlinear mean shift algorithm is shown
in Algorithm 1.
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Algorithm 1 Nonlinear mean shift over Grassmann manifolds
Given: Points on Grassmann manifold Xi; i D 1; : : : ; n
for i 1 : : : n
Y Xi

repeat

ıY 

nX
iD1

g
�
d2.Y;Xi/=h2

�
logY.Xi/

nX
iD1

g
�
d2.Y;Xi/=h2

�

Y expY .ıY/
until kıYk < 	
Retain Y as a local mode
Report distinct local modes.

The mean shift procedure is initiated from every hypothesis point on the
manifold. Points whose iterations converge into a particular mode belong to its basin
of attraction. Dominant modes are identified as the ones having high kernel density
estimates and a large number of points in their basins of attraction. Spurious modes
are characterized by low kernel density estimates and fewer points in their basins of
attraction and can be easily pruned.

6.3.2 Generalized Projection-Based M-Estimators

The generalized projection-based M-estimator (gpbM) [13] is a robust subspace
estimation algorithm that works on the hypothesize and test principle. The scale of
the inlier noise, the number of inlier structures, and the associated model hypotheses
are automatically estimated by gpbM without any user intervention. The gpbM
can also handle heteroscedastic data for single or multiple carrier problems in a
unified framework. The original pbM algorithm [17] performed scale estimation
for each newly chosen elemental subset-based hypothesis by computing the median
absolute deviation (MAD) estimate in each dimension separately. More recently,
a completely different scale estimation strategy was presented in [13] showing
superior performance over competing methods. However, the model parameters
were estimated by optimization over a discrete set of parameter matrices. In [12],
these estimates were refined over the Grassmann manifold as a continuous space of
parameter matrices, which led to significant performance improvements.

Given n1 measurements of inlier variables yi 2 R
p, let xi 2 R

m; i D 1; : : : ; n1
represent the corresponding carrier vectors that are usually monomials in a subset
of the variables. For example, in the case of fitting an ellipse to measured
data yi D Œy1 y2�> 2 R

2, the corresponding carrier vector is given by x D
Œy1 y2 y21 y1y2 y22�

> 2 R
5. In this setting, robust subspace estimation corresponds

to performing a linear estimation in the carrier space of the data corrupted with
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outliers and containing an unknown number of noisy inlier points. We have n .> n1/
points xi, i D 1; : : : ; n, where n � n1 points are outliers. The parameter matrix � is
an m � k; .k < m/, orthonormal matrix such that �>� D Ik�k and therefore
can be represented as a point on the Grassmann manifold Gm;k. Geometrically,
it is a basis of the k-dimensional null space of the inlier data representing the k
constraints imposed on them. The ˛ 2 R

k is the corresponding k-dimensional vector
of intercepts. Therefore,

�>xio � ˛ D 0k (6.12)

where xio, i D 1; : : : ; n1, are the unknown true values of the inlier carrier points. The
multiplicative ambiguity in the estimation of � is resolved by enforcing �>� D
Ik�k. No assumptions are made about the distribution of the n � n1 outlier points.

The carrier vectors are often nonlinear in the variables, thereby making the
estimation problem heteroscedastic, i.e., each carrier vector has a different noise
covariance matrix and in general can even have a different mean. Given the
covariance matrices of the observed variables, Cyi

, and the Jacobians of the carrier
vectors with respect to those variables, Jxijyi

, the first-order approximation of the
m � m carrier covariances can be computed using error propagation as

Cxi D J>xijyi
Cyi

Jxijyi
; i D 1; : : : ; n (6.13)

The covariance of the vector of variables Cyi
is often assumed to be the same for all

i, but in general can be different for each yi. Since some carriers are associated with
outliers, their covariances are computed incorrectly.

For each projected point zi D �>xi, the k � k covariance matrix is computed as
Hi D �>Cxi� . The k � k point-dependent bandwidth matrices Bi are computed
as Bi D S>HiS using the k � k diagonal scale matrix S, with the diagonal
entries corresponding to the value of scale of inlier noise in each dimension
of the null space. Therefore, in order to compute Bi, we need to estimate the
k-dimensional scale first. In gpbM, each inlier structure is estimated by using a
three-step procedure:

• scale estimation,
• mean shift-based robust model estimation,
• inlier/outlier dichotomy.

In case of multiple structures, the set of inlier points associated with each detected
structure is removed iteratively from the data and the three-step procedure is
repeated until no more significant inlier structures are found.

The gpbM algorithm follows a hypothesize-then-test strategy such that an esti-
mate of the parameter pair Œ� ;˛� is computed from a randomly selected elemental
subset, i.e., minimal set of points necessary to generate a subspace hypothesis.
The hypothesis corresponding to the best model over the set of all randomly
generated hypotheses is selected by maximizing the following heteroscedastic
objective function
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h O� ; Ǫ
i
D arg max

� ;˛

1

n

nX
iD1

K

	�
.�>xi � ˛/>B�1i .�>xi � ˛/

� 1
2



p

det Bi
(6.14)

where K.u/ is the kernel function and is related to a redescending M-estimator loss
function by K.u/ D 1 � .u/. The loss function .u/ is nonnegative, symmetric,
nondecreasing with juj and has a unique minimum of .0/ D 0 and a maximum of
one for juj > 1.

Step 1: Heteroscedastic Scale Estimation The estimation of the scale of inlier
noise is equivalently posed as the problem of estimating the approximate fraction of
data points belonging to an inlier structure. For estimating the fraction, M elemental
subset-based model hypotheses are generated. For each hypothesis Œ� ;˛�, the value
of fraction is varied between .0; 1� in Q steps, such that for q D 1; : : : ;Q, the
fraction is �q D q=Q D nq=n. A value of Q D 40 was used for all applications
shown in [12, 13]. The scale of the inlier noise is estimated by taking into account
the heteroscedasticity of the carrier vector. In the projected space defined by � , the
volume around the intercept ˛ containing nq points is computed as

volq.� ;˛/ D
vuut nqX

lD1
.zl � ˛/>H�1l .zl � ˛/ (6.15)

where zl; l D 1; : : : ; nq are Mahalanobis distance-based nq nearest neighbors of ˛.
Given a hypothesis Œ� ;˛�, the density at each fraction �q; q D 1; : : : ;Q, is
computed as nq=.volq.� ;˛/C 	/, where a small constant 	 is added to suppress
extremely high numerical values of the densities at low fractions. The computed
density values are used to populate an M � Q matrix 	 .

From the matrix 	 , the peak density values along each of the M hypotheses
(rows) and their corresponding fractions (columns) are retained. Typically, some
columns are associated with several density peaks while other columns are not. At
each column q, a fraction �q of the highest peak density values are summed up.
The largest sum of density peaks corresponds to �Oq, i.e., the estimate of the fraction
of points comprising an inlier structure. This approach makes the fraction estimate
more robust, especially when multiple inlier structures exist, each comprising very
different number of points.

The hypothesis Œ��;˛�� that gives the highest density at �Oq is used to project
the data points xi. The dimensions of the smallest k-dimensional rectangle enclosing
the nOq nearest neighbors of ˛� provide the final estimate of the scale, which forms
the diagonal of S. The corresponding nOq points enclosed inside the rectangle form
an initial estimate of the inliers.

Step 2: Model Estimation Model estimation is performed by generating N
elemental subset-based model hypotheses. However, only the initial set of inliers
returned by the scale estimation step is used for the selection of elemental subsets,
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making the model estimation very efficient. For a given hypothesis Œ� ;˛�, the
problem (6.14) can be rewritten as that of estimating the kernel density of the
data points projected to the k-dimensional null space. The adaptive kernel density
function over the projections zi D �>xi 2 R

k; i D 1; : : : ; n is defined as

Of� .� ; z/ D 1

n

nX
iD1

�
�
.z � zi/

>B�1i .z � zi/
�

p
det Bi

(6.16)

where �.u2/ D K.u/ is the profile of the kernel function K.u/. Differentiating (6.16)
w.r.t. z,

dOf�.� ; z/
dz

D 2

n

nX
iD1

B�1i .z � zi/
g
�
.z � zi/

>B�1i .z � zi/
�

p
det Bi

D 0 (6.17)

where g.u2/ D �d
�
�.u2/

�
=d.u2/. The Euclidean mean shift vector can be

written as

ız D
"

nX
iD1

B�1i g .: : :/p
det Bi

#�1 " nX
iD1

B�1i zig .: : :/p
det Bi

#
� z (6.18)

The mean shift procedure is initiated from z.0/, i.e., the projection of the elemental
subset points on � . The update z.jC1/ D ız.j/ C z.j/ is a gradient ascent step
converging to ˛, the closest mode of the KDE (6.16).

Step 2.1: Conjugate Gradient on the Grassmann Manifold Each � is an m � k
orthogonal matrix and can be represented as a point on the Grassmann manifold,
Gm;k. Continuous optimization techniques to maximize the objective function of
(6.16) over Gm;k can therefore be employed.

The conjugate gradient algorithm is widely used for optimization of nonlinear
objective functions defined over Euclidean spaces. This popularity is due to
fast convergence rates achieved by iteratively moving along linearly independent
directions in the solution space. Moreover, it avoids computing the Hessian, thus
making each iteration less expensive than other alternatives like Newton’s method.
The optimization along a chosen direction is performed using line search methods
and in this case Brent’s method [14, pp. 402–405] is used. Edelman et al. [4] adapted
the conjugate gradient algorithm to minimize a function f W Gm;k ! R over the
Grassmann manifold Gm;k.

Conjugate gradient method originally being a function minimization algorithm,
the function f˙.� ;˛/ D �Of�.� ;˛/ is optimized. The function f˙.� ;˛/ is jointly
minimized over its domain Gm;k � R

k with each iteration of conjugate gradient
simultaneously updating both � 2 Gm;k and ˛ 2 R

k. Given an estimated pair
Œ� ;˛�, the initial gradient of the objective function f˙.� ;˛/ w.r.t. � on Gm;k is
computed using (6.7) as
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rf� D @f� ���>@f� (6.19)

where @f� is the Jacobian of f˙.� ;˛/ w.r.t. � . The corresponding gradient w.r.t. ˛

is given by

rf˛ D @f˛ (6.20)

where @f˛ is the Jacobian of f˙.� ;˛/ w.r.t. ˛.
The Jacobians @f� and @f˛ depend on the choice of the kernel function and are

computed to a first-order approximation. This is equivalent to assuming an explicit
independence among � , ˛, and the covariance matrices Hi; i D 1; : : : ; n, i.e., the
Jacobian computation does not involve differentiating Hi w.r.t. � and ˛. For the
Epanechnikov kernel defined as

K.u/ '
�
1 � u2 if juj � 1
0 if juj > 1 (6.21)

and j D 1; : : : ; k; l D 1; : : : ;m, the entries of the m � k matrix @f� are

@f�.l; j/ D �1
n

nX
iD1

1p
det Bi

	
@�.u2/

@�.l; j/



D 2

n

nX
iD1

pi.j/xi.l/ (6.22)

where u D
�
.�>xi � ˛/>B�1i .�>xi � ˛/

� 1
2

and pi D B�1

i .�>xi�˛/p
det Bi

. The entries

of the k-dimensional vector @f˛ are given as

@f˛.j/ D �1
n

nX
iD1

1p
det Bi

	
@�.u2/

@˛.j/



D �2

n

nX
iD1

pi.j/ j D 1; : : : ; k (6.23)

The conjugate gradient algorithm is initialized by setting the optimization

variables to
h
� .0/;˛.0/

i
as estimated in the model estimation step. The initial

search directions are taken to be the negative gradient direction, i.e., �.0/ D �rf
�.0/

and �.0/ D �rf
˛.0/

, computed using (6.19) and (6.20). For each iteration j, Brent’s

method is applied for minimization of f˙ in directions along
h
�.j/;˛.j/

i
and the

variables
h
� .jC1/;˛.jC1/

i
are updated to this directional minimum. Both the search

and the gradient directions on the Grassmann manifold are parallel-translated to
the newly updated location � .jC1/ using (6.2) and are denoted by �.j/

� and r� f�.j/ ,
respectively. The equivalent operations for �.j/ and f

˛.j/ are simply the Euclidean
translations in R

k. The new gradient directions
hrf

�.jC1/ ;rf
˛.jC1/

i
are computed at

the updated points and the resulting conjugate directions are

�.jC1/ D �rf
�.jC1/ C !.j/�.j/

�
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�.jC1/ D �rf
˛.jC1/ C !.j/�.j/ (6.24)

where

!.j/ D
trace

	hrf
�.jC1/ �r� f�.j/

i>rf
�.jC1/



C
hrf

˛.jC1/ �rf
˛.j/

i>rf
˛.jC1/

trace
	�rf

�.j/

�>rf
�.j/



C
�rf

˛.j/

�>rf
˛.j/

While the covariance matrices H.j/
i D

�
� .j/

�>
Cxi�

.j/; i D 1; : : : ; n, should

ideally be recomputed in each iteration, it was shown in [12] that maintaining H.j/
i D

H.0/
i ; j D 1; 2; : : : ; i D 1; : : : ; n reduced the computational cost significantly

without noticeable changes in the final estimates. After convergence of the conjugate

gradient, the optimization variables
h O� ; Ǫ

i
give the final estimate of the parameter

matrix and the intercept.

Step 3: Inlier/Outlier Dichotomy Given the estimated model
h O� ; Ǫ

i
, the devia-

tion of each point from the mode is normalized by its point-dependent covariance.

For zi D O�>xi; i D 1; : : : ; n, the heteroscedastic projections around the mode are
computed as

Qzi D Ǫ C .zi � Ǫ /
jjzi � Ǫ jj2

q
.zi � Ǫ />H�1i .zi � Ǫ / (6.25)

This reduces the inlier/outlier dichotomy to homoscedastic mean shift clustering
problem since the bandwidth matrices QBi D S>Ik�kS D S>S also become constant
for all points. The points for which the mean shift iterations converge to Ǫ (within a
small tolerance) are considered inliers.

Using the estimated scale matrix S, the strength of the detected inlier structure

is computed as � D f
� O� ; Ǫ

�
=kSk2. The algorithm stops if the strength drops by

a factor of 20 compared to the maximum strength among the previously computed
inlier structures, indicating that the remaining points comprise only gross outliers.

6.4 Applications

A result of the nonlinear mean shift for chromatic noise filtering is presented,
followed by the application of generalized projection-based M-estimators (gpbM)
algorithm applied to fundamental matrix and homography estimation. Finally, a
quantitative comparison of both methods with related robust estimation techniques
is presented using a subset of the Hopkins155 dataset.
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6.4.1 Chromatic Noise Filtering

In general, pixels in images are represented by m-dimensional vectors, e.g., RGB
values encoded as a three-vector. Chromatic image noise affects only a pixel’s
chromaticity, i.e., the direction of the color vector but not its intensity. Here, we
restrict the filtering application to RGB images, and therefore the chromaticity can
be represented by unit vectors in R

3, which lies on the Grassmann manifold G3;1.
The original mean shift has been used for the discontinuity preserving filtering of
color images [2, 3]. This algorithm was extended to manifold-valued images in [18].

The image I is considered to be a mapping on a d-dimensional lattice which
assigns a value to each lattice point. Visual images typically have d D 2, although
3D images with d D 3 are also used. In this case d D 2 and at each location
zi D Œxi; yi�

>, the data values I.zi/ are assumed to lie on G3;1. A pixel I.zi/ along
with its location zi is considered as a single data point xi D .zi; I.zi//, in the joint
domain R

2 �G3;1.
The mean shift iterations are performed in this joint space to cluster the pixels.

Consider an iteration starting at the point xi D .zi; ci/, where ci D I.zi/, that
converges to the mode .Ozi; Oci/. In the filtered image OI, all the pixel values converging
to this mode are set to Oci. The profile in the joint domain is the product of a
spatial profile defined on R

2 and a parameter profile defined on the Grassmann
manifold G3;1:

�.x; xi/ D �s

	kz � zik2
h2s



�p

 
d2.c; ci/

h2p

!
(6.26)

A truncated normal kernel was used for both �s and �p. The bandwidth in the joint
domain consists of a one-dimensional spatial bandwidth hs and a one-dimensional
parameter bandwidth hp. The bandwidths hs and hp can be varied by the user to
achieve the desired quality in the output.

Subbarao and Meer [19] showed that chromatic filtering using Grassmann
manifolds leads to remarkable improvements over the original mean shift which
smooths both intensity and color. The filtering results for the 512 � 512 peppers
image are shown in Fig. 6.2. The image is corrupted with chromatic noise by adding
Gaussian noise with standard deviation � D 0:3, along tangent directions followed
by an exponential map onto G3;1. The original mean shift image filtering algorithm
from EDISON was executed with carefully selected bandwidth parameters (spatial
hs D 11:0 and color hp D 10:5) to obtain the middle image. Using larger hp led
to oversmoothing and using smaller values did not denoise the original noisy image
sufficiently. The nonlinear mean shift was executed with the same hs D 11:0 but
with hp D 0:5 to obtain the image on the right. The nonlinear chromatic filtering is
clearly better than EDISON due to the smoothening of the correct noise model.
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Fig. 6.2 Chromatic Noise Filtering. Mean Shift over R
2 � G3;1. The peppers image corrupted

with chromatic noise is shown on the left. The results of using standard mean shift filtering with
EDISON are in the middle and the result of nonlinear mean shift filtering is on the right

6.4.2 Fundamental Matrix Estimation

Reliable estimation of the fundamental matrix is often crucial for multi-view vision
systems. Typically, in robust estimation formulations, the 3 � 3 fundamental matrix
is represented by 
 2 R

8 while ˛ 2 R. Each data point is a vector of variables
y D Œx y x0 y0�> and lies in R

4. Here, .x; y/ and .x0; y0/ are the coordinates of the
corresponding points in the two images. Using the homogeneous image coordinates
(without the points at infinity), the epipolar constraint can be written as

Œx0 y0 1�F3�3

2
4 x

y
1

3
5 D 0 (6.27)

The carrier vector is written as x D Œx y x0 y0 xx0 xy0 yx0 yy0�> which lies in R
8.

Assuming the variables y have covariance �2I4�4, the first-order approximation of
the covariance matrix of x is computed from the Jacobian using error propagation

Jxjy D

2
664
1 0 0 0 x0 y0 0 0

0 1 0 0 0 0 x0 y0
0 0 1 0 x 0 y 0

0 0 0 1 0 x 0 y

3
775 D Œ I4�4 J.y/ � (6.28)

Cx D �2J>xjy I4�4 Jxjy D �2
�

I4�4 J.y/
J.y/> J.y/>J.y/

�
(6.29)

Raglan Castle Images The gpbM algorithm was used to estimate the fundamental
matrix between the Raglan Castle image pair shown in Fig. 6.3. Notice the large
viewpoint change between the left and the right images. Using the SIFT algorithm
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Fig. 6.3 Two images from the Raglan Castle sequence. The true inliers are marked with green
markers while the outliers with red markers. The viewpoints of the two images are very different

[11], 109 point matches were obtained, out of which 54 were true inliers. With the
values of M D 400 and N D 200, the performance of the gpbM algorithm was
compared over 50 runs with and without the optimization on Grassmann manifold.
On average, the gpbM algorithm misclassified 7.1 (out of 109) points, while only
5.6 points were classified wrongly after using the conjugate gradient algorithm. The
average absolute residual error for the 54 true inlier points using gpbM algorithm
was 1.86 pixels, while it was 1.77 pixels when optimization using conjugate gradient
algorithm was also performed.

6.4.3 Planar Homography Estimation

A planar homography is a general 2D mapping between corresponding points on
two projective planes. A pair of inlier homogeneous point correspondences p and
p0, represented in homogeneous coordinates, satisfy p0 D Hp. Using the Direct
Linear Transformation (DLT) [6, Alg. 7.1], the same equation can be rewritten as

Aih D
��p>i 0>3 x0ip>i

0>3 �p>i y0ip>i

�2
4h1

h2
h3

3
5 D 02 i D 1; : : : ; n1 (6.30)

where pi D Œxi yi 1�> and p0i D Œx0i y0i 1�> are obtained from the image point
correspondences of the n1 inliers. The parameter vector 
 is obtained by rearranging
the 3�3 homography matrix H D Œh1 h2 h3�

>. The variables are yi D Œxi yi x0i y0i�>
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and Ai is the 2�9 carrier matrix. The rows of Ai correspond to the two carrier vectors
xŒ1�i ; x

Œ2�
i 2 R

9 obtained from each point correspondence and are heteroscedastic due
to multiplicative terms.

Given four point correspondences across two planes, the 8 � 9 data matrix is
formed by stacking the corresponding four carrier matrices. For a point corre-
spondence pair, the 4 � 4 covariance matrix of the variable vector y is given as
Cy D �2I4�4. The 4 � 9 Jacobians of the two carriers given by

J
xŒ1�i jyi
D
2
4�I2�2

04�4
x0I2�2 02

0>2 p>
0>2 0>2 0

3
5

J
xŒ2�i jyi
D
2
404�3

�I2�2
04

y0I2�2 02
0>2 0>2 0

0>2 p>

3
5 (6.31)

are used to compute the 9 � 9 covariance matrices for each carrier vector CŒc�
i D

�2J>
xŒc�i jyi

Cyi
J

xŒc�i jyi
; c D 1; 2. The covariances correctly capture the point-dependent

noise for inlier points only.

Graffiti Images Figure 6.4 shows two images from the Graffiti dataset used
for planar homography estimation. The projective distortion between the two
images is clearly visible. The SIFT algorithm [11] identified 61 point matches,
out of which only 21 were true matches. Using M D 800 and N D 200,
the performance of the gpbM algorithm was compared over 50 runs with and
without performing the optimization on Grassmann manifolds. On average, the
gpbM algorithm misclassified 8.68 (out of 61) points, while only 7.31 points were
classified incorrectly after using the conjugate gradient algorithm. The relatively
large number of misclassifications is due to the large projective distortion between

Fig. 6.4 Two images of the Graffiti dataset. The true inliers are shown with green markers while
the outliers are in red
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the two images. The average absolute residual error over the 21 true inlier points
using gpbM algorithm was 1.132 pixels while it was 1.091 pixels after using the
conjugate gradient algorithm too.

6.4.4 Affine Motion Factorization

When n1 image points lying on a rigid object undergoing an affine motion are
tracked over F frames, each trajectory can be represented as a 2F-dimensional point.
Due to the rigid body motion constraint, these points lie in a three-dimensional
subspace of R

2F. Please see [6, pp. 436–439] for more details about motion
factorization. The gpbM algorithm was applied to projective motion factorization in
[13] with extensive quantitative comparisons. Due to space constraints, only affine
motion factorization is presented here to demonstrate the improvements achieved
through the additional optimization on Grassmann manifolds.

The quantitative performance comparison of four different robust estimation
algorithms is discussed. The nonlinear mean shift [19] is referred to as Ext-MS
because the mean shift computation is performed in the tangent space extrinsic to
the manifold. The remaining three algorithms are the intrinsic nonlinear mean shift
(Int-MS) [1], generalized projection-based M-estimator (gpbM) [13], and gpbM
with conjugate gradient on Grassmann manifolds (gpbM+CG) [12]. The input data
are the point matches across the F frames and the performance is compared using
percentage of misclassified points.

The algorithms are tested on ten video sequences containing multiple motions
from Hopkins155 dataset. This dataset does not contain outliers. For each sequence,
F D 5 frames were used by picking every sixth or seventh frame from the sequence.
For gpbM with and without using conjugate gradient on Grassmann manifolds,
the values of M D 1000 and N D 200 were used. The Ext-MS algorithm used
1000 randomly generated elemental subset-based hypotheses. The corresponding
parameter matrices were clustered on the Grassmann manifold G10;3 using the
algorithm described in Sect. 6.3.1 with the bandwidth parameter h set to 0.1.
The algorithm Int-MS used 1000 hypotheses generated as in the Ext-MS case.

Table 6.1 shows the comparative performance based on the percentage misclas-
sification error. The results of the gpbM and gpbM+CG algorithms were averaged
over 50 independent runs, while those of Ext-MS and the Int-MS were averaged over
20 independent runs. Neither of the methods assumed the knowledge of the true
number of motions, but the nonlinear mean shift algorithms need the bandwidths
as input from the user. It is clear that the optimization over Grassmann manifolds
improves the estimates for every sequence.
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Table 6.1 Average percentage of misclassified points

Sequence Ext-MS (%) [19] Int-MS (%) [1] gpbM (%) [13] gpbM+CG (%) [12]

Arm(2) 30.65 27.73 7.99 7.79

Articulated(3) 30.17 24.50 6.90 6.70

Cars1(2) 20.07 23.00 6.51 5.96

Cars2(2) 11.90 9.08 3.58 3.55

Cars4(2) 21.60 11.94 7.55 7.31

Cars5(3) 19.94 19.41 8.93 8.05

Cars6(2) 5.68 7.09 1.86 1.85

Cars8(2) 42.71 35.29 7.31 6.97

Truck1(2) 28.56 13.24 6.27 6.09

2RT3RC(3) 12.52 7.40 10.92 10.06

Overall 17.91 14.64 6.58 6.18

CG stands for conjugate gradient on Grassmann manifolds. The number in the parenthesis in
the first column shows the true number of motions for each sequence. The results of gpbM and
gpbM+CG were averaged over 50 runs while those of Ext-MS and Int-MS were averaged over
20 runs

6.5 Discussion

The image formation process imposes constraints on the imaged objects, e.g.
the trajectory of points on a moving rigid body in a video sequence, human
joint angle trajectories, shape of planar regions across multiple views, etc. Many
computer vision techniques assume the pinhole camera model for image formation,
which allows us to interpret the physical constraints as data points lying in an
unknown linear subspace. The subspace parameters characterize physical world
phenomena like camera rotation, object motion, human activity, etc. An orthonormal
matrix Xn�k, lying on the Grassmann manifold can uniquely represent a linear
subspace. Therefore, the geometry of Grassmann manifolds provides a natural
mathematical framework to design subspace estimation or tracking algorithms for
several computer vision applications.

The nonlinear mean shift on Grassmann manifolds takes a clustering-based
approach to solve the robust subspace estimation problem. For the applications
that we presented here, both the Ext-MS [19] and Int-MS [1] produced comparable
results. However, these methods can only be used when the user provides a correct
bandwidth parameter. A new research direction could be to make these algorithms
fully automatic by employing purely data-driven techniques for estimating the
bandwidth. In [19], many other Riemannian manifolds were analyzed—Lie groups,
the space of symmetric positive definite matrices, and the essential manifold, which
is a composite Lie group formed by the product space of two special orthogonal
(SO.3/) groups. Clustering-based approaches on these manifolds were used to solve
a variety of computer vision problems.

We also discussed the generalized projection-based M-estimator (gpbM), which
benefited from optimization over Grassmann manifolds. The first step of gpbM
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estimates an initial set of inliers and the scale of inlier noise using a discrete
set of elemental subset-based hypotheses. The model estimation step optimizes a
robust objective function over a smaller set of hypotheses generated only from the
initial inlier set. To further refine the estimate, the optimal hypotheses are used to
initialize the conjugate gradient algorithm over the Grassmann manifold, which is a
continuous space of subspace parameters. It remains an open question if, after the
scale estimation step, the Grassmann manifold can directly be used to estimate the
model and the correct inliers. This would require a reformulation of the problem
definition.

The gpbM algorithm has been used in many applications to recover multiple
structures by iteratively removing inlier points associated with each structure [13].
Without any prior knowledge about the scale of inlier noise, it is difficult for the
robust estimation algorithm to recover more than a few structures automatically,
which seems to be an easy task for the human vision system. We believe that the
capabilities of automatic estimation algorithms can be significantly improved if top-
down information is effectively incorporated into existing data-driven techniques.

Data analysis on manifolds involves higher computation to account for the
nonEuclidean geometry. These problems have been somewhat mitigated with
availability of parallel processing hardware and development of efficient new
algorithms. For example, the Grassmannian Robust Adaptive Subspace Tracking
Algorithm (GRASTA) [9] uses stochastic gradient descent on Grassmann manifolds
to move along the geodesic with efficient rank one updates. GRASTA was applied
to foreground/background segmentation in videos achieving a frame rate of about
46 fps. Such algorithmic advances have bridged the gap between the theoretical
research and practical applications to large-scale computer vision problems that are
of interest to researchers and practitioners alike.

The computational complexity of solutions may be higher for problems that
incorporate the underlying Riemannian geometry, but it is important to avoid heuris-
tics and ad hoc approximations incurred due to solutions designed in Euclidean
space. There is only a small amount of research work that has used Riemannian
geometry to make significant impact in computer vision applications. Computer
vision researchers could benefit from a course on Riemannian geometry with a
special focus on its applications to computer vision problems. We hope that this
book will serve as a catalyst to push forward computer vision research in this
direction in order to understand and exploit the vast mathematical infrastructure
of Riemannian geometry.
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Chapter 7
Motion Averaging in 3D Reconstruction
Problems

Venu Madhav Govindu

Abstract We consider the problem of recovering individual motions for a set of
cameras when we are given a number of relative motion estimates between camera
pairs. Typically, the number of such relative motion pairs exceeds the number of
unknown camera motions, resulting in an overdetermined set of relationships that
needs to be averaged. This problem occurs in a variety of contexts and in this chapter
we consider sensor localization in 3D reconstruction problems where the camera
motions belong to specific finite-dimensional Lie groups or motion groups. The
resulting problem has a rich geometric structure that leads to efficient and accurate
algorithms that are also robust to the presence of outliers. We develop the motion
averaging framework and demonstrate its utility in 3D motion estimation using
images or depth scans. A number of real-world examples exemplify the motion
averaging principle as well as elucidate its advantages over conventional approaches
for 3D reconstruction.

7.1 Introduction

The availability of an accurate 3D digital model of a scene or an object allows us
to interpret the 3D representation as well as manipulate it in a variety of ways.
This is of use in a diverse set of applications such as human–computer interaction,
modeling and archiving of cultural objects, industrial inspection, measurement of
change, and shape and deformation analysis. Such 3D models may be acquired or
estimated either from raw 3D depth measurements provided by depth scanners or
from 2D images from conventional RGB cameras. Throughout this chapter, we shall
use the term “sensor” to denote either the depth scanner or RGB camera as the case
may be. In the case of 3D scanner data, the problem is one of using many individual
scans taken from different viewpoints to build a single, unified, dense representation
of a scene or an object. In contrast, when using 2D images, the most common
approach is to use matched corner-like feature points to estimate a sparse 3D point
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cloud (structure). In both cases, recovering 3D scene structure also involves solving
for the 3D position and orientation parameters (motion) of the sensors involved.
The motion estimation problem in building 3D scan models is referred to as 3D
registration whereas the approach using camera images is known as structure-from-
motion (henceforth SfM). In some other cases, e.g., SLAM approaches to robot
navigation, we are primarily interested in recovering the motion or path of the
sensor. In this chapter we will develop an approach to sensor motion estimation
that factors out the dependence on 3D depth of the scene. As a result, the motion
estimation problem becomes easier to solve. In the case of SfM, once motion is
either partially or fully recovered, solving for 3D structure is a significantly easier
task.

If we denote a point in 3D .X;Y;Z/ by its homogeneous form as P D ŒX;Y;Z; 1�T
and its projection on an image as P D Œu; v; 1�T , then we have

P D K
�

R j T
�

P (7.1)

where K is a 3 � 3 upper-triangular matrix denoting the intrinsic calibration
parameters of the camera and R and T are the 3D rotation and translation of
the camera with respect to a given frame of reference. Given enough image
projections of the 3D points in different cameras [lhs of Eq. (7.1)], SfM methods
recover the camera intrinsic calibration parameters, 3D motions and the 3D points,
i.e., all unknowns in the rhs of Eq. (7.1). The well-known approach of bundle
adjustment [25] performs a least squares minimization of the reprojection error, i.e.,
distance between observed image feature point locations .u; v/ and their positions as
estimated from the rhs of Eq. (7.1). A large number of advances in feature matching,
efficient computation, and effective heuristics has made it possible to solve for the
SfM problem at a large scale of many thousands of images covering areas as large
as a city block [1, 24, 30].

In the case of 3D scans, we can directly observe the 3D locations of points.
However, since each scan covers only a part of a scene or object, to build a
unified 3D representation, we need to register them, i.e., place them in a common
frame of reference. As each scan is a representation of a part of the scene
defined in an independent frame of reference, we recognize that the relative motion
between a pair of scans is a 3D rotation and translation, i.e., a rigid 3D Euclidean
transformation. Therefore, for the same 3D point represented in two independent
scans as homogeneous points P and P

0

, we have

P
0 D

"
R T
0 1

#
P DMP (7.2)

where M is a 4� 4 matrix denoting a rigid 3D Euclidean transformation. Typically,
we are given scans but not the correspondences, i.e., knowledge of the matching
point pairs .P;P

0

/ is not available a priori and has to be estimated from the data
themselves. The Iterative Closest Point (henceforth ICP) method alternately solves
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for the optimal 3D Euclidean transformation M given correspondences (motion
step) and reestimates correspondences .P;P

0

/ given the motions (correspondence
step). These steps are iterated till convergence. The ICP is the most well-known
method for registration of a pair of 3D scans, and a variety of heuristics and
improvements [23] make it feasible to use this method in practical situations.

Although the bundle adjustment approach to SfM and ICP is effective in
solving their respective problems, both approaches suffer from some significant
drawbacks. Bundle adjustment is a nonlinear minimization over a large number
of unknowns and hence it needs a good initial guess for convergence. Moreover
it is also computationally very expensive, often prohibitively so. As a result, all
effective practical implementations need to incorporate a variety of heuristics that
incrementally and robustly grow the solution by adding one camera at a time
to the solution. Nevertheless, bundle adjustment-based approaches to SfM are
computationally very demanding and may fail to work on occasion. In the case
of scan registration, the problem lies in the fact that ICP is a greedy method that
would fail to converge correctly if the two scans being registered have a large initial
motion between them. This problem is further exacerbated in the case of currently
popular depth cameras such as the Kinect which provide depth maps that are quite
noisy.

In this chapter we develop an alternate framework based on the idea of motion
averaging that addresses the above-mentioned drawbacks of bundle adjustment and
the ICP algorithm. In both scenarios of 3D reconstruction using cameras or scans,
we are interested in solving for rigid 3D rotations or Euclidean motions of the
sensors involved.

The approach of motion averaging is based on the observation that we can
estimate the global motion by considering the relative motions between pairs of
sensors that can be estimated from the given data. Crucially, estimating the relative
motion between a pair of sensors is often computationally inexpensive. Consider

Fig. 7.1 A schematic graph representing the relationships available between different sensors.
Each vertex in the graph denotes a sensor and the presence of an edge between two vertices implies
that we can estimate the relative motion between the two sensors. The motion averaging problem is
equivalent to determining the values of the vertices given the values on the edges, i.e., differences
between vertices
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an illustrative graph G D .V; E/ shown in Fig. 7.1 where each vertex in V denotes
a sensor and the presence of an edge between two vertices i and j denotes that we
can solve for the relative motion between them. The problem on hand in our case is
solving for the global motion (value at each vertex) given estimates of the relative
motions between them (edge values). If we denote the motion of the ith sensor as
Xi with respect to a given frame of reference, then we can denote our desired global
solution as Xg D fX1; � � � ;XNg where N is the number of sensors involved. We note
that in our case X may either denote the 3� 3 rigid 3D rotation .R/ or the 4� 4 3D
Euclidean motion .M/ as specified in Eq. (7.2). However, the general principle holds
true for all finite-dimensional Lie groups or matrix groups. Noting that the relative
motion between the ith and jth vertex can be written in terms of the difference of
motions between the global frame of reference and the two vertices, we have the
fundamental relationship

Xij D XjX�1i (7.3)

)
Relative Motions‚ …„ ƒ� � � � Xij � � � �I � � � �

2
66666664

:::

Xi
:::

Xj
:::

3
77777775

„ƒ‚…
XgW Global Motions

D 0

The motion averaging problem is one of estimating Xg given enough observa-
tions fXijj8.i; j/ 2 Eg of the form in Eq. (7.3) and was developed in [5, 9–12].
It will be immediately noted that we can arbitrarily choose the origin and a basis
as our frame of reference to represent the observed relative motions. Typically, we
remove this gauge freedom by fixing the origin and a basis to one of the vertices.
It will also be noted that a solution for global motion Xg exists as long as we have
a spanning tree present in the graph G. For N vertices, while Xg can be specified
by .N � 1/ motions, in a graph with jVj D N vertices we can have as many as
NC2 D N.N�1/

2
relative motion observations on edges. In general we may have

jE j > .N � 1/ observations resulting in a redundant set of observations. Due to
the presence of noise in our estimated Xij, these individual observations will not be
consistent with each other, i.e., we may not have a solution Xg that exactly satisfies
Eq. (7.3) for all Xij. In such a case, we seek the best possible solution that is most
consistent with Eq. (7.3), i.e. we “average” the relative motion observations to solve
for the global motion Xg.

Such an approach of motion averaging has several advantages. First, by averaging
out the noise or error in individual relative motion observations Xij we arrive at a
more accurate solution than is possible by considering only a minimal spanning
tree. This is particularly true if we have loops in the viewgraph G. In the minimal
solution case, the error in Xi grows when we traverse the graph as the errors in
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individual edges add up. However, in the motion averaging scenario since we seek
to be as consistent as possible with respect to all the relative motion observations,
the errors will be evenly distributed over all edges resulting in greatly reduced drift
of the solution. Additionally, as we shall see later in this chapter, motion averaging
is highly efficient and can be effectively made robust to outliers in estimates Xij.
This makes the approach of motion averaging attractive in both of our above-
mentioned scenarios of SfM and 3D scan registration. We also remark here that
while our motivating problems pertain to 3D reconstruction, the idea of averaging
relative measurements to solve for global representations has a far wider range of
applicability. It will be easily recognized that the problem of specifying values
at vertices of a graph given edge measurements occurs in many other contexts
including wireless and sensor localization problems, SLAM in robotics and the
classic problem of multidimensional scaling.

By concatenating the relationships for each edge in the form of Eq. (7.3) we
obtain a system of equations of the form AXg D 0. If the motion matrices in Xg

were elements of a vector space, then a solution can be obtained by solving the over-
determined linear system of equations AXg � 0. However, our motion models are
not elements of a vector space representation, rather they are elements of nonlinear
manifolds. Take for instance 3D rotation matrices R. While R has nine entries,
these individual entries need to satisfy six independent constraints specified by the
orthonormality property of rotation matrices, i.e., RRT D I where I is a 3�3 identity
matrix. Therefore, while R is a 3 � 3 matrix it has only three degrees of freedom.
Similarly, the 4�4 3D Euclidean motion model M has only six degrees of freedom.
Consequently, in solving the motion averaging problem represented by the system
of equations in Eq. (7.3), we need to ensure that the individual estimated motion
matrices in Xg satisfy the underlying geometric properties of the corresponding
motion model. Clearly, the linear solution of Eq. (7.3) will not result in a solution
of Xg that will satisfy the requisite constraints. Both the 3D rotation and Euclidean
motion models belong to a special class of nonlinear Riemannian manifolds, i.e.,
finite-dimensional Lie groups. To be able to develop our solution for averaging of
relative motions on Lie groups, we now very briefly describe the relevant properties
of Lie groups.

7.2 Lie Groups

In this section we provide an elementary introduction to Lie groups that will be
limited to concepts of relevance to our problem. The literature on Lie groups is
very extensive and an excellent treatment in the context of computer vision is
provided in [16]. Readers may also consult [3, 28] for more general introductions.
Throughout, we shall restrict ourselves to the class of square matrices that form
groups. A group G is a set whose elements .X;Y;Z 2 G/ satisfy the relations

X ı Y 2 G (closure)
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X ı .Y ı Z/ D .X ı Y/ ı Z (associativity)

9E 2 G 3 X ı E D E ı X D X (identity)

9X�1 2 G 3 X ı X�1 D X�1 ı X D E (inverse)

In addition to being a group, a Lie group is also a smooth, differentiable manifold.
For Lie groups, the operations X � Y 7! XY and X 7! X�1 are differentiable
mappings. Viewed locally, a Lie group has the topological structure of vector space
R

n. This vector space is also equipped with a bilinear operation Œ:; :� W m � m! m
known as the Lie bracket. For matrix groups, the bracket is the commutator,
i.e., Œx; y� D xy � yx. It is easy to verify in this case that the bracket satisfies
the relationships of Œx; y� D �Œy; x� (antisymmetry) and Œx; Œy; z�� C Œy; Œz; x�� C
Œz; Œx; y�� D 0 (Jacobi identity). The tangent space about a point on G is known as
the Lie algebra and is denoted as g. While we may locally describe a manifold by its
tangent space, for Lie groups moving along a direction in g is equivalent to moving
along a one-dimensional subgroup of G (homomorphism from Lie algebra to Lie
group).

The crucial relationship between a point on the Lie algebra and its mapping onto
the Lie group is given by the exponential mapping. We can develop an intuition for
this relationship by considering the simple case of rotations in the two-dimensional
plane. Let a point .x; y/ be rotated about the origin by an infinitesimal angle ı� to a
new position .x0; y0/, then we have

�
x0
y0
�
D
�

cos ı� � sin ı�
sin ı� cos ı�

� �
x
y

�
D .IC ı�

�
0 �1
1 0

�

„ ƒ‚ …
B

/

�
x
y

�
(7.4)

Now if we divide the rotation angle � into a sequence of n rotations of size
ı� D �

n , then in the limit n ! 1, the net transformation of .I C �
n B/

n
becomes

R D exp.�B/ where B spans the one-dimensional Lie algebra for two-dimensional
rotations. All two-dimensional rotations form a group denoted as SO.2/, i.e.,
Special Orthogonal group of dimension 2 with a corresponding Lie algebra denoted
as so.2/ which happens to be spanned by the matrix B as specified above. In the
case of three-dimensional rotations R 2 SO.3/ that is of special interest for us,
we can see that since 3D rotations have 3 degrees of freedom, the corresponding
Lie algebra so.3/ has to be three dimensional. If we use the conventional axis-
angle representation of rotating by angle � about an axis n, denoting ! D �n,
the Lie algebra is given as Œ!�� 2 so.3/ where Œx�� is the skew-symmetric form of
vector x. The corresponding 3D rotation is specified as R D exp.Œ!��/ 2 SO.3/.
Analogously, the mapping from the Lie group to the Lie algebra is the logarithm
operation, i.e., Œ!�� D log.R/. Similarly, all 3D rigid transformations form a group
known as the Special Euclidean group denoted as SE.3/ with a corresponding Lie
algebra denoted as se.3/.
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Unlike rotations in two dimensions, 3D rotations R 2 SO.3/ form a noncommu-
tative Lie group; therefore, in general R1R2 ¤ R2R1, i.e., eŒ!1��eŒ!2�� ¤ eŒ!1C!2�� .
Instead, the equivalent mapping is specified by the BCH form exey D eBCH.x;y/,
where BCH(.,.) is the Baker–Campbell–Hausdorff series [28] given by

BCH.x; y/ D xC yC 1

2
Œx; y�C 1

12
Œx � y; Œx; y��CO.j.x; y/j4/ (7.5)

Before proceeding further, we note a few aspects of SO.3/ and SE.3/ here. First,
we remark that while we have only considered the representation of 3D rotations as
elements of the Lie group SO.3/ there are other representations such as quaternions
that are commonly used. The reader is referred to [16] for a detailed discussion of
various representations of 3D rotations and their equivalent relationships and [15]
for a survey of averaging methods on SO.3/. It should also be noted that for the
SO.3/ group, the BCH series of Eq. (7.5) has a closed-form expression. Second, in
the case of 3D Euclidean transformations where we denote the elements of the Lie
group and Lie algebra as M 2 SE.3/ and m 2 se.3/, respectively, the following
relationships hold:

M D exp.m/ D
1X

kD0

mk

kŠ
D
"

R t
0 1

#
where m D

"
˝ u
0 0

#
(7.6)

i.e. R D exp.˝/ and t D Pu

where P D IC .1 � cos �/

�2
˝ C .� � sin �/

�3
˝2 and � D

r
1

2
tr.˝T˝/

(7.7)

An important property of Lie groups that we will use in our subsequent
discussions is the notion of a distance between elements of the group. We cannot
develop this idea fully here but will only provide an elementary sketch of an
argument. By appropriately integrating along paths, we can arrive at the length of
any arbitrary path between two points on a Riemannian manifold. When defined,
the shortest of all such paths is known as the geodesic distance and defines the
intrinsic distance between any two points on a manifold. In general, measuring
such geodesic distances can be a non-trivial problem. However, given its special
structure, we can easily measure the intrinsic distance between two points on a
matrix or Lie group. Let us consider two points X and Y that belong to a Lie
group G. Further let the distance between them be given by d.X;Y/. The distance
function d.:; :/ is left-invariant if d.PX;PY/ D d.X;Y/;8P 2 G. Similarly, d.:; :/
is right-invariant if d.XP;YP/ D d.X;Y/;8P 2 G [32]. A metric is bi-invariant
if it is both left- and right-invariant. While the metric on SO.3/ is bi-invariant, the
metric on SE.3/ is left-invariant. Assuming d.:; :/ is left-invariant, we can see that
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d.X;Y/ D d.I;X�1Y/ where I is the identity element of G. Therefore, we can now
measure the requisite distance as the distance required to move from the identity
element I along a one-dimensional subgroup to reach X�1Y. Using the BCH form
of Eq. (7.5), we can now recognize that

d.X;Y/ D d.I;X�1Y/ D jj log.X�1Y/jj (7.8)

7.3 Averaging on a Group

Given the above definition of distances on a Lie group, we can now derive a
method to solve for the average of many elements of a Lie group. Consider a set
of observations fX1; � � � ;XNg and, for the moment, ignore their group structure and
assume them to be members of a vector space R

n. When we treat observations as
being embedded in the extrinsic vector space R

n, it is easy to see that their average
is given by the arithmetic mean, i.e., X D 1

N

PN
iD1 Xi. In general, this extrinsic

average violates the geometric constraints of the underlying manifold, i.e., X … G. A
simple remedy is to treat this violation as being due to a perturbation that moves the
average away from the manifold. Hence a valid average is obtained by projecting the
arithmetic average onto the closest point on the corresponding group G. Instances
of this approach are the eight-point algorithm [13] and the SVD method to project a
matrix to its closest point on SO.3/ [17].

An estimate that implicitly satisfies the geometric constraints and lies on the
manifold G is known as the intrinsic average. We can motivate an approach to derive
the intrinsic average by interpreting the vector space average as the “variational

minimizer,” i.e., X minimizes the cost function
PN

iD1 d2.Xi;X/ DPN
iD1 jjXi � Xjj2,

i.e., sum of squared distances of points Xi from the mean X. Generalizing this notion
we have the intrinsic average on Riemannian manifolds [18] given by

arg min
X2G

NX
kD1

d2.Xk;X/ (7.9)

Although the intrinsic average is preferable since it satisfies the underlying
geometric constraints of G, it is often difficult to estimate for Riemannian manifolds.
In the special case of finite-dimensional Lie groups or matrix groups, the intrinsic
average can be computed efficiently. To motivate the solution, let us consider the

vector space average that minimizes the cost function C D PN
iD1 jjXi � Xjj2.

Suppose we want to solve for X by considering C as a cost function to be minimized
using gradient descent. Let the current estimate of the average be �, then the
gradient step is given by
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C D
NX

iD1
jjXi � �jj2 (7.10)

) @C

@�
D �2

NX
iD1
.Xi � �/

) � �C �
NX

iD1
.Xi � �/ Update step

In Eq. (7.10) we can see that the contribution of each observation Xi towards the
update step is in proportion to its distance from the current estimate. Obviously,
since the vector space R

n is curvature free, we can make Eq. (7.10) converge in
one step if we set � D 1

N . Now, recall that for a Lie group G, the distance is
d.X;Y/ D jj log.X�1Y/jj, which using the BCH form we can approximate as
d.X;Y/ � jj log.X/ � log.Y/jj D jjx � yjj. Thus, we have replaced the true
Riemannian distance by a “Euclidean” distance in the tangent space or Lie algebra
g. Given the sample average in the Lie algebra g we can see that the first-order
approximation of distance suggests that we move in the tangent space by 1

N

PN
iD1 xi

and therefore the matrix update is equivalently �� D exp. 1N
PN

iD1 xi/. Note
that while we have approximated the true Riemannian distance on the group G,
nevertheless our update matrix is geometrically valid, i.e., �� 2 G. Now, as in
the case of Eq. (7.10) for the vector space average, we can repeatedly update our
estimate of the mean with one difference. Unlike the vector space, at every step the
tangent space has to be redefined about the current estimate of �, for the first-order
approximation of the Riemannian distance to be valid. In other words, to account for
the curved nature of our space G, we need to recenter our “origin” at every iteration
and represent the observations Xi with respect to this new coordinate system. The
resultant algorithm for averaging on a Lie group is given in Algorithm 1.

The approach in Algorithm 1 is similar in spirit to the gradient-descent step
specified in Eq. (7.10) for vector space averaging. It has been shown in [20] that as
long as the observations Xi lie within an open ball of a specified radius, this iterative

Algorithm 1 Lie algebraic averaging
Input: fX1; � � � ;XNg 2 G (N observations)
Output: � 2 G (Intrinsic Average)
Initialization: � to an initial guess and �� to a large value

while jj��jj > 	 do
1. �Xi D ��1Xi

2. �xi D log.�Xi/

3. �� D exp. 1N
PN

iD1 �xi/

4. � D ���

end while
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approach is guaranteed to converge. In the case of Xi 2 SO.3/, this radius which is
related to the sectional curvature of the manifold is equal to �

2
. We also note here

that we could change our update step by considering higher-order terms in the BCH
expression or by considering second-order methods [19] which may result in faster
convergence. However, the choice of the order of approximation of distance in the
Lie algebra does not change the condition for convergence. In practice, for problems
in low-dimensional manifolds such as SO.3/ and SE.3/, Algorithm 1 which is a
first-order gradient descent-type method converges quite fast.

7.4 Averaging of Relative Motions

Using the idea of averaging on a Lie group as detailed above in Sect. 7.3, we can now
develop our approach for solving the problem specified by Eq. (7.3), i.e., averaging
of relative motions. Analogous to the fitting cost defined in Eq. (7.9), we can define
the problem of averaging relative motions as one of solving

arg min
Xg

X
.i;j/2E

d2.Xij;XjX�1i / (7.11)

In other words, we seek to find a global motion estimate Xg that is most consistent
with the individual relative motion observations on all edges of the viewgraph
E . If we consider a single observation relationship Xij D XjX�1i representing
a single edge, we can use a first-order approximation of the corresponding Lie
algebraic relationship as xij D xj � xi. It will be noted that while the Lie algebraic
representation xij is a matrix, for our purposes the equation xij D xj � xi signifies a
vectorial relationship. For example, in the case of SO.2/, the Lie algebraic form is
a 2� 2 matrix, i.e., the relationship xij D xj � xi is given �ijB D �jB� �iB where B
is as given in Eq. (7.4). However, since here x has only one degree of freedom, the
equivalent relationship is a scalar one, i.e., �ij D �j � �i . Similarly, for SO.3/ and
SE.3/, the equivalent forms for xij D xj � xi are relationships for vectors of size 3
and 6, respectively. In the following, for compactness of notation, we will denote this
vector relationship as xij D xj�xi where it is understood that the matrix form of the
relationship in the Lie algebra is reduced to its equivalent vectorial representation.

If we denote the collection of all the Lie algebraic representations of the global
motion model as xg D Œx1; � � � ; xN �

T , then the cost function in Eq. (7.11) translates
to the system of equations

xij D xj � xi D
� � � � � I � � � I � � � �„ ƒ‚ …

Aij

xg (7.12)

where in Aij, I and �I are placed as d�d blocks in the appropriate locations of j and
i, respectively, and d is the number of degrees of freedom for the Lie group, e.g.,
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Algorithm 2 Lie algebraic relative motion averaging
Input: fXij1; � � � ;Xijkg (jEj relative motions)
Output: Xg D fX1; � � � ;XNg (jVj absolute motions)
Initialization: Xg to an initial guess

while jj�xreljj > 	 do
1. �Xij D X�1

j XijXi

2. �xij D log.�Xij/

3. Solve A�xg D �xrel

4. 8k 2 Œ1;N�;Xk D Xk exp.�xk/

end while

d D 3 for SO.3/. Collecting all the relationships of the set of edges E , we have

Axg D xrel (7.13)

where A represents the concatenation of all individual Aij, and xrel is the vector
concatenation of the Lie algebraic representations of the observed relative motions,
i.e., xij. Although in this chapter every relative motion relationship is treated equally,
if we have reliable information of the relative significance of the relative motion
observation on each edge, we can incorporate it in Eq. (7.13) as an appropriate
weight. The result is an approach for averaging relative motions as detailed in
Algorithm 2.

We can interpret Algorithm 2 in a manner analogous to that of Algorithm 1.
Given a current estimate for Xg D fX1; � � � ;XNg, we wish to develop the
tangent space representation about each Xi in Xg. Resultantly, the Lie algebraic
representation of each observation developed about the current Xi is estimated in
steps 1 and 2 of the algorithm. As a result, using a first-order approximation the
residual or “unexplained” component �Xij can be seen to yield the system of
equations A�xg D �xrel, i.e., of the form of Eq. (7.13). Solving this system of
equations in step 3 yields the requisite Lie algebraic update. In step 4 the update is
carried out in the Lie group representation to yield the new estimate for Xg. This
process can be repeated till convergence.

It will be noted that as in the previous case, even though we are using a first-
order approximation, since we are using the correct exponential mapping in step
4 in Algorithm 2, at all points the estimate for Xg is geometrically valid. In other
words, ours is an intrinsic approach to averaging relative motions. It will also be
noted that in step 3 of Algorithm 2, we have not given a specific method of solving
for the system of equations. We have deliberately represented this step as a generic
solution since, in essence, different variants of motion averaging differ only in the
manner in which this step of averaging the residual relative motions in the tangent
space is carried out.



156 V.M. Govindu

7.5 Efficiency and Robustness of Averaging

In Algorithm 2, the specific solution for the system of equations A�xg D �xrel

in step 3 plays a crucial role in determining the overall behavior. In [10], this
system of equations was solved in a least-squares sense, resulting in step 3 of
Algorithm 2 being given as the closed-form solution �xg D A��xrel where A�

is the pseudo-inverse of A. It will be recognized that A is completely determined by
the specific set of edges being solved for. As a result, it is fixed during the iterations
of Algorithm 2 implying that for a given graph A� needs to be computed only once.
For most SfM or 3D registration problems, the number of camera–camera pairs
(equivalently scan–scan pairs) with common features tends to be small compared
to the maximum possible value of NC2 D N.N�1/

2
pairs. Moreover, from Eq. (7.12),

we can see that each row of A has only two nonzero entries of ˙1. This sparse
structure of A with entries of ˙1 has significant computational implications for
motion averaging, especially for large-sized problems. First, explicitly computing
A� may be expensive for large problems and also result in a large dense matrix
form. However, since A encodes a sparse graph, we can solve step 3 of Algorithm 2
efficiently by equivalently minimizing the cost function jjA�xg ��xreljj2. Second,
since A has nonzero entries of only ˙1, we note that during minimization any
floating-point multiplications of the form Ay can be computed using only addition
operations, thereby making the overall algorithm very efficient.

While solving the Lie algebraic averaging step of Eq. (7.13) as a nonlinear
minimization is efficient, one drawback of this least-squares approach is its lack
of robustness to outliers. It will be recalled the each individual relative motion Xij

which is an input to Algorithm 2 has to be estimated from either image or scan pairs.
It is often the case that some of these estimated Xij are erroneous. For instance in the
case of SfM in urban areas, since many urban facades such as windows and doors
are repetitive in nature, image feature matching methods may result in incorrect
matches. This will in turn result in erroneous estimates of Xij for the corresponding
image pairs. If we solve for step 3 in Algorithm 2 using an `2 cost minimization
as detailed above, the erroneous Xij will corrupt the final estimate of Xg. Hence,
we need to solve for the system of equations in Eq. (7.13) in a manner that is both
efficient and robust to the presence of outliers.

The approaches to robustness in averaging relative motions can be classified
into two broad categories. In the first category, different methods are employed to
identify erroneous or outlier edges and remove them from the set of observations.
Subsequently, averaging is carried out in the `2 sense detailed above. In [11],
a RANSAC approach [8] is adopted to identify the erroneous edges. From our
discussion in Sect. 7.1, it will be recognized that ideally a loop of transformations
should result in a net transformation equal to the identity element of the group.
If a loop contains one or more outliers, then this constraint will be violated. By
accumulating the statistics across many such loops in a graph, one can “disentangle”
the outlier edges from the set of cleaner observations Xij. This problem of
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classifying the observations into inliers and outliers is solved in [21, 31] using loopy
belief propagation. It may be noted that this approach is computationally expensive
especially with increasing size of the viewgraph G and therefore not recommended.

The second approach to robustness is to solve the averaging problem using all the
observations without requiring the explicit detection of outliers. These approaches
rely on the intrinsic robustness of estimation methods used to suppress the effect of
outlier edges. In [7], the problem of robust estimation is addressed by discretizing
the solution space into a set of discrete labels. Subsequently, the solution for
a robust version of averaging relative motions is obtained using discrete loopy
belief propagation. This results in a discretized estimate for entries in Xg which
are subsequently refined using nonlinear optimization, hence the name discrete-
continuous optimization (DISCO) for the work in [7]. As in the case of [31], this
approach is also cumbersome and computationally demanding. Another method in
this category of robust estimation is [14] that utilizes the fact that the `1 norm is
more robust to the presence of outliers compared to the `2 norm. Therefore, one
may achieve a robust estimate by considering the `1 analogue of Eq. (7.11), i.e.,P

.i;j/2E d.XijXi;Xj/. In [14], the authors utilize the fact that the Weiszfeld iteration
can be used to find the `1 average of vector space observations. In their case, step 3
of Algorithm 2 is solved by a nested iteration. If we consider an individual vertex
Xj, then each edge connected to vertex j implies an estimate for it, i.e., Xj D XijXi.
Hence, in the inner loop of [14], the `1 update for an individual vertex Xj is obtained
as the Weiszfeld average of the set of individual edge estimates fXijXij8i 2 N .j/g
where N .j/ is the set of vertices connected to vertex j. In the outer loop, this update
is applied to all vertices in turn. In other words, the Weiszfeld method of [14] solves
for the robust averaging of relative motions by repeatedly updating the estimates
for individual vertices in turn. It can be seen that each vertex is updated based only
on information provided by edges connected to it and the current estimate of its
neighboring vertices, i.e., the Weiszfeld approach for motion averaging falls into the
class of distributed consensus algorithms [26]. As the Weiszfeld approach of [14]
is a distributed algorithm, its convergence rate is slow, especially for large graphs.
Similarly, an interpretation of the work of [2] that pertains to 3D scan registration
as a distributed consensus algorithm is provided in [12].

Instead of a distributed approach, in [5] a batch method is presented for robust
and efficient averaging of relative motions. This approach is identical to that of
Algorithm 2 where step 3 is specified by a robust approach to solving Eq. (7.13).
The `1 equivalent here has the form jjA�xg ��xreljj`1 . To account for the presence
of outliers, we can model the corrupted observations as �xrel D A�xg C e
where e contains both the noise and outlier errors. Since A is known to be sparse,
minimization of the `1 cost can be efficiently carried out using recently developed
optimization methods for compressive sensing [4]. While the `1 optimization can
be efficiently solved in the presence of outliers, it will be noted that the `1 metric
is not necessarily the most desirable one for measuring the distance between the
observation Xij and the fitted value XjX�1i . For instance for the case of the SO.3/

group considered in [5, 14], the geodesic distance has a physical interpretation of
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the magnitude of 3D rotation angle. Hence it is desirable to refine the estimate
provided by the robust `1 approach with an `2 distance metric. In [5], this refinement
is carried out using the Iteratively Reweighted Least Squares (IRLS) approach. In
this case, the use of `1 minimization allows for a robust estimation of Xg in the
presence of outliers. Subsequently, this robust estimate is used as the initial guess
for an IRLS-based `2 refinement. Since the `1 estimate is of good quality, it can be
expected to fall within the basin of convergence of the IRLS step, thereby leading
to a composite method that is both robust and efficient.

7.6 Applications

In this section we shall briefly demonstrate the application of the motion averaging
principle for problems in SfM and 3D scan registration. As discussed in Sect. 7.1,
the SfM problem is typically solved using bundle adjustment which is a nonlinear
optimization method that estimates 3D points (structure) as well as 3D camera
motions (motion) that best explain the observed image projections. While there
have been many improvements in recent years [1, 30], for large-scale problems,
bundle adjustment remains computationally very expensive. Another important
consideration is the need for a good initial guess for the structure and motion
parameters for bundle adjustment. In contrast, the relative geometry between two
cameras specified by their epipolar geometry can be solved robustly and efficiently
either using the five-point algorithm [22] in a RANSAC loop or by two-frame
bundle adjustment [13, 24] which is far cheaper than bundle adjustment over all
frames. In SfM the overall scale factor is arbitrary, i.e. we can only recover the 3D
translation between two cameras up to an unknown scale factor. However, the 3D
rotation between two cameras can be fully recovered from the estimated epipolar
geometry. Therefore, instead of solving for the motion averaging problem for 3D
Euclidean models, a common strategy is to average only the relative rotations on the
SO.3/ group [5, 7, 14]. In Table 7.1, we present a comparison of the computational

Table 7.1 Comparison of
different methods for robust
averaging of relative rotations
for the Quad data set which
has 5530 cameras and
222; 044 relative rotations

Median rotation error Computational time

(ı) (s)

DISCO Weiszfeld RRA DISCO Weiszfeld RRA

[7] [14] [5] [7] [14] [5]

5.02 6.95 1.97 2983 5707 801

This table is adapted from [5]. Our approach of Algorithm 2
(denoted as RRA) can be seen to be both substantially more
accurate and efficient when compared with the DISCO [7] and
Weiszfeld [14] methods. The median error and computational
time for DISCO were obtained on a computer much more
powerful than that used for the RRA and Weiszfeld methods.
See [5] for details
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accuracy and time for these three methods on a large-scale real data set, i.e., Quad
data set that contains jVj D 5530 images and as many as jE j D 222044 edges in the
viewgraph. The computational time for the method of [7] is for a computer that is
substantially more powerful than that used for the methods of [14] and [5]. It will
be observed from Table 7.1 that the relative rotation averaging approach (denoted
as RRA) of Algorithm 2 is both significantly more accurate and faster than the
other methods. The method of [7] discretizes the representation space of SO.3/

thereby ignoring the underlying geometric Lie group structure of the problem.
Solving the resulting problem using loopy belief propagation is computationally
expensive and also requires expensive hardware. In contrast, while [14] operates on
the SO.3/ manifold, being a distributed algorithm, it takes a long time to converge.
This problem gets exacerbated for large-scale data sets such as the Quad data set
considered here. For such data sets, the graph diameter can be quite large implying
that distributed methods would become quite slow in convergence. In contrast, as
can be seen from Table 7.1, the approach of jointly estimating the relative rotations
update on the Lie algebra so.3/ is both efficient and accurate. Interested readers may
consult [5] for details.

Once the global rotations are solved, we can also average the translation direction
estimates to recover the 3D translation of the cameras, albeit up to one global scale
factor. Briefly, we recognize that the translation direction tij between cameras i and
j can be written as tij / .Tj � RjR�1i Ti/ where Ti is the 3D translation of camera
i with respect to the global frame of reference. In [9], the unknown scale factor in
the translation estimation is eliminated by taking a cross product with tij leading
to a system of equations of the form Œtij��.Tj � RjR�1i Ti/ D 0. This results in an
iterative reweighted algorithm for estimating global translations from the relative
translation directions. In [29], the problem is solved by considering the equivalent

system of equations of the form tij D Tj�RjR�1
i Ti

jjTj�RjR�1
i Tijj which is also solved iteratively.

Furthermore, to achieve robustness, [29] eliminates outliers from the set of relative
translations before solving for the global translations. In general, the approach of
eliminating unknowns using the cross product [9] is not preferable since the cross
product is rank-deficient resulting in a cost function that does not correctly penalize
deviations from the linear constraints in all directions. In this approach, the result is
a global estimate for 3D rotation and translation, i.e., 3D Euclidean motion. Given
these 3D camera motion estimates, we can use a variety of methods to solve for the
3D structure points using multi-view triangulation. An alternate strategy is based on
the observation that once the 3D rotations are estimated, both the 3D translations and
structure points can be considered as unknown in a system of projective equations.
In [5], this observation is used to robustly solve for both 3D translation and structure.

In Fig. 7.2 we present the result of reconstructing the well-known Notre Dame
cathedral data set (consisting of 715 images) using the approach of [5] where
first 3D rotations are solved, followed by a joint estimation of 3D translation and
structure. One may also use the results of 3D rotation and translation estimation
to get an initial estimate for 3D structure. This SfM reconstruction using motion
averaging can be subsequently used as an initial guess for a bundle adjustment
pipeline. Since the motion-averaged estimate provides an accurate, global SfM
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Fig. 7.2 Reconstruction of
the Notre Dame data set (715
images) using a motion
averaging approach. The
recovered 3D point cloud and
camera motions are shown
here. Result adapted from [5]

solution at a low-computational cost, using this as an initial guess greatly speeds up
the time to convergence for large-scale bundle adjustment approaches. The result
is significant savings in computational time. The computational advantages and
savings in computational time are extensively demonstrated in [7, 29] on a variety
of large-scale data sets.

7.6.1 3D Registration

Unlike the case of SfM using images, we can estimate the full 3D Euclidean
relative motion between two scans. Given enough corresponding 3D points from
two scans, it is easy to solve for the best 3D rotation and translation that registers
the points in a common frame of reference [27]. Since, in general, we are not
given 3D correspondences a priori, the most commonly used ICP algorithm solves
the correspondence and registration problem by greedy iterations that alternately



7 Motion Averaging in 3D Reconstruction Problems 161

solve for 3D correspondences and 3D motion while holding 3D motion and
correspondences fixed, respectively [23]. Although ICP is effective, being a greedy
algorithm it needs the initial 3D motion two scans to be small for convergence to
the correct registration. Apart from this limitation, ICP suffers from the drawback
of registering two scans at a time which often leads to poor quality results. Both of
these problems can be significantly mitigated by jointly solving for the registration
of all scans. When the 3D scans are systematically acquired so as to cover a whole
object or scene, it is often the case that the last scan has significant overlap with the
first one, or in general scans that are far apart in acquisition time can be viewing
the same parts of the scene. Although, such “loop closures” provide additional
constraints that the 3D registration estimates should satisfy, using pairwise ICP in
a sequential manner fails to exploit these additional constraints. This problem can
be remedied by incorporating motion averaging into the ICP iterations. We call the
resultant solution motion averaged ICP or MAICP. We briefly describe MAICP here
and the reader is referred to [12] for details.

Each iteration of MAICP consists of three steps: establishing correspondences,
estimating relative motions, and motion averaging. The correspondence step is a
straightforward extension from the standard two scan ICP approach. For all scan
pairs i and j that have overlapping regions, i.e., .i; j/ 2 E , we independently obtain
correspondences. Typically, for each point (or a subset of points) in scan i we
determine the closest point on scan j where distance is measured using the point-to-
plane approach. Along with this distance metric, many heuristics are used to weed
out potentially incorrect correspondences, see [12, 23] for details. Subsequently in
the motion step we estimate the relative 3D Euclidean motion between all valid scan
pairs i and j. Finally, the relative motion estimates obtained fMijj8.i; j/ 2 Eg are
averaged using Algorithm 2 to obtain the global motion update Mg to be applied to
all scans. This process is repeated till a convergence criterion is satisfied resulting
in an accurate registration of 3D scans.

In Fig. 7.3 we present results (adapted from [12]) that compare the performance
of sequential ICP and MAICP on two commonly used 3D registration data sets.
As can be seen from the cross sections shown, sequential ICP fails to correctly
register the scans. In contrast, MAICP is able to correctly register all of the scans as
it uses all pairwise relationships available in a motion averaging framework thereby
leading to correct 3D motion updates at each iteration. In Fig. 7.4 we present a result
of using MAICP to build a 3D model of a metallic bust of the Indian scientist
C.V. Raman. In this instance, the raw scans are obtained using the Kinect depth
camera and Fig. 7.4 shows the final reconstructed 3D model as well as the estimated
locations of individual scanners, i.e., Mg for the set of 21 scans used in this example.

7.7 Conclusion

In this chapter we have developed a method for averaging relative motions by
utilizing the geometric properties of the underlying Lie group. The resulting intrinsic
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Fig. 7.3 Comparison of performance of ICP and motion-averaged ICP (MAICP) for two data
sets. The cross-section regions are shown on the corresponding 3D models. It will be observed
that sequential registration using pairwise ICP does poorly whereas MAICP correctly registers all
scans to generate a single 3D model of the object scanned. Adapted from [12] where more results
are presented

Fig. 7.4 3D reconstruction
of a metallic bust using
MAICP. This result uses 21
raw scans obtained using the
Kinect depth camera and the
estimated locations of
individual scanners are also
indicated. Adapted from [6]

estimate satisfies the underlying geometric constraints, provides an accurate solu-
tion, and can be efficiently solved. We also develop suitable modifications of the
motion averaging method to incorporate robustness to the presence of outliers in
the observed relative motions. The applicability of the motion averaging approach
is demonstrated in the context of two 3D reconstruction problems, i.e., structure-
from-motion using camera images and 3D reconstruction using multiple scans of an
object or scene. Finally we note that while the exposition of this chapter is limited to
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the Lie groups corresponding to 3D rotations and Euclidean motions, the principle
of motion averaging is general and can be applied in a wide range of scenarios.

Acknowledgements The author thanks an anonymous reviewer and Avishek Chatterjee for
critical and useful comments.
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Chapter 8
Lie-Theoretic Multi-Robot Localization

Xiao Li and Gregory S. Chirikjian

Abstract This chapter presents a new distributed cooperative localization
technique based on a second-order sensor fusion method developed for the
special Euclidean group. Uncertainties in the robot pose, sensor measurements,
and landmark positions (neighboring robots in this case) are modeled as Gaussian
distributions in exponential coordinates. This proves to be a better fit for both
the prior and posterior distributions resulting from the motion of nonholonomic
kinematic systems with stochastic noise (as compared to standard Gaussians in
Cartesian coordinates). We provide a recursive closed-form solution to the multi-
sensor fusion problem that can be used to incorporate a large number of sensor
measurements into the localization routine and can be implemented in real time.
The technique can be used for nonlinear sensor models without the need for further
simplifications given that the required relative pose and orientation information
can be provided, and it is scalable in that the computational complexity does not
increase with the size of the robot team and increases linearly with the number of
measurements taken from nearby robots. The proposed approach is validated with
simulation in Matlab.

8.1 Introduction

In recent years the field of robotics and automation has undergone a dramatic
ascendency in terms of its significance in industrial and military applications
as well as its growing importance in service applications. Multi-robot systems
(also known as multi-agent systems) is a branch of robotics that deals with the
collaboration among teams of robots (either homogenous or heterogenous) in
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accomplishing certain tasks. This section reviews some of the work done in the
field of multi-robot localization followed by an overview of the remainder of this
chapter.

8.1.1 Introduction to Multi-Robot Localization

The path to true autonomy starts with robots knowing where they are in a given
workspace. Such a problem is known as robot localization. According to [15], the
localization problem can be categorized into two subproblems: (1) position tracking
(local localization) which aims to compensate for small dead reckoning errors using
sensor feedback; this approach is local in that the initial pose is assumed known
and (2) global localization in which the robot “figures out” its position given no
knowledge of its initial pose. A tremendous amount of effort has been devoted to
effectively and efficiently solving the localization problem and the field has seen
major advancements in the establishment of highly practical and easy to implement
algorithms with the EKF (extended Kalman filter)-based and PF (particle filter)-
based approaches the most widely accepted solutions to the problem. However, the
majority of existing approaches are tailored to localizing a single robot. The field of
multi-robot localization remains relatively fresh and to be explored [6].

Performing the localization task with multiple robots possesses the advantage
of information sharing. Robots within a team can exchange information with
other members so to increase the accuracy and reduce uncertainty in their own
estimates. This advantage is shown both in simulation and experimentally in [6] in
which two robots explore an indoor environment executing their own single robot
localization scheme when they are far away from each other. And the proposed
collaborative fusion algorithm is used when the two robots come into each other’s
detection range. Results show that such an algorithmic reinforcement has the
effect of significantly reducing the ambiguities existing in the original estimates.
A collaborative architecture of this sort can effectively reduce the hardware cost of
the entire team in that if at least one robot has a good knowledge of its location, then
other team members can use this information along with relative measurements to
infer their own position and reduce estimation errors.

8.1.2 Comparison of Existing Distributed Localization
Methods

The problem of cooperative localization has been tackled with a wide variety of
approaches over the years. And similar to single robot localization, many of the
existing algorithms can be considered variations of two main categories. The first
family of algorithms makes use of recursive Gaussian filters. Distributed versions
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of the Kalman filter are proposed in [1, 14] to solve the cooperative localization
problem. The extended Kalman filter (EKF) is utilized in [12] while also providing
analytical expressions for the upper bound of the estimate uncertainty. In [2] the
EKF is also used, but the algorithm is reinforced with an entropic criterion to
select optimal measurements that reduce global uncertainty. The advantage of using
recursive Bayesian filters to fuse information lies in they are incremental in nature,
which makes them applicable to real-time estimation. Closed-form expressions for
state estimation and update also facilitate computational speed. However, these
types of algorithms deal only with Gaussian noise which may not be the case for
some real systems. And EKF linearizes the system dynamics around the state of
estimate which is prone to failure when errors grow.

The second family of algorithms is built upon sampling-based nonparametric
filters. Monte Carlo localization methods are used in [9] to estimate the pose of
each member robot while using grid cells to describe the entire particle set. A global
collaborative localization algorithm is presented in [6] that also builds upon sample-
based Markov localization. In addition, [3, 8, 11] have all approached the problem
with different variations of the particle filter and have also applied their algorithm in
the SLAM (simultaneous localization and mapping) context. Further experimental
validation is provided in [11] and [3]. Grid-based and sampling-based Markov
localization techniques usually address the problem globally and can be improved
via carefully designed resampling processes to counteract localization failures. They
can also be used to accommodate non-Gaussian noise models. However, like all
sampling-based approaches, a large number of grids/samples are usually needed to
acquire reasonable outcomes, and the computational cost grows dramatically with
the dimension of the problem. A table comparing the two families of methods is
provided below.

These two main categories of localization techniques presented in Table 8.1
currently dominate the field. Both possess their own pros and cons and the choice
of which depend heavily on the type of applications they are desired for. The two
approaches can potentially be combined to yield superior outcomes. For more
details regarding the extended Kalman filter (EKF) applied to multi-robot systems
see [12, 14]. For details on collaborative Monte Carlo localization (MCL) see [6].

The following subsection explains how our approach differs.

8.1.3 Objectives, Contributions, and Outline

Existing approaches to the multi-robot localization problem usually consider only
uncertainties in each robot’s pose estimate and sensor measurement. The goal of
this chapter is to explore cooperative localization in a more generalized setting
where uncertainties in the sources of relative measurements (neighboring robots’
pose estimates) are also considered. The distributed localization approach proposed
in this chapter makes an effort to providing recursive closed-form expressions
for real time cooperative sensor fusion used for pose updates of robots within a
team. This work extends the method presented in [10], which considers cooperative
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Table 8.1 Comparison between distributed EKF And MCL

Distributed EKF Multi-Robot MCL

Restrictions on error
distribution

Requires Gaussian process and
measurement error

Nonparametric particle
representation of posterior
belief, no assumptions on
noise distribution

Global localization No Yes

State recovery No Possible given a
well-designed resampling
process

Localization accuracy Accurate when error is small Depends on the number of
particles used

Computational cost Small due to the closed-form
propagation and update equations

Depends on the number of
particles. Can increase
dramatically with the
dimension of the state space

Ease of
implementation

Simple Can be involved

Robustness Prone to error due to linearization Quite resistant to errors
given multiple beliefs are
maintained simultaneously

Process multiple
detections
simultaneously

No No

Complexity relative
to team size

Fully distributed. Complexity
independent of team size

Complexity independent of
team size

localization with only one exact noise-free measurement (relative to a neighboring
robot), whereas the technique proposed here can take into account any number of
relative measurements while also considering sensor noise. This method is devel-
oped under the framework of exponential coordinates for Lie groups which gives
this exotic sounding methodology a down-to-earth benefit: Gaussian distribution
in Cartesian coordinates, .x; y; �/-planar coordinates and heading angle, possesses
elliptical probability density contours for each fixed � and for marginal densities in
.x; y/, whereas the banana-shaped distribution resulting from incremental motions
of a stochastic differential-kinematic system (i.e., a probabilistic model of mobile
robots with nonholonomic kinematic constraints) is better represented by a Gaussian
in exponential coordinates which produce a more conformable density contour
(see Fig. 8.2a). This underlying framework allows the proposed algorithm to tolerate
higher errors without worrying about collapse of the normality assumption as
uncertainty grows. Unlike most existing cooperative localization schemes that
consider only uncertainty in the pose of the robot to be estimated and measurement
noise, the presented method has also taken into account the uncertainty in the pose
of nearby robots from which relative measurements are taken, making it a more
realistic and dynamical localization technique. This approach is second order in its
expansion of the Gaussians that describes the pose and measurement distributions
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using the Baker–Campbell–Hausdorff (BCH) formula [4], and no simplifications
are made regarding the system kinematics, thus preserving the full nonlinear
characteristics of the original system. Lastly, the form of sensor measurement in
this method is kept generic without assuming the type of sensor or any underlying
characteristics given the Gaussian-in-exponential-coordinate model can be applied.

The remainder of this chapter is outlined as follows. Section 8.2 introduces
the mathematical foundation on which the proposed approach is based, namely
the basics of matrix Lie groups and exponential mapping. Section 8.3 provides a
detailed derivation of the proposed technique. Section 8.4 describes the experimen-
tal setup in simulation and provides a discussion of the results. Section 8.5 concludes
this chapter.

8.2 Mathematical Background for the Group SE.n/

and Exponential Mapping

8.2.1 The Special Euclidean Group and Exponential
Coordinates

The Special Euclidean Motion Group

The proposed technique is largely based on the notion of Lie groups and their
parameterizations. According to [4], a group is defined as a pair .G; ı/ consisting
of a set G and a binary operator ı such that g1 ı g2 2 G whenever g1; g2 2 G, the
operator is associative in the sense that .g1 ıg2/ıg3 D g1 ı .g2 ıg3/ for all elements
g1; g2; g3 2 G, there exists an identity element e 2 G such that for all elements
g 2 G, gıe D eıg D g, and for each g 2 G there exists an inverse element g�1 2 G
such that g ı g�1 D g�1 ı g D e. For engineering applications, a group of great
interest is the Special Euclidean Group, SE.n/, that describes rigid-body motions
in n-dimensional Euclidean space. The elements of SE.n/ can be represented as
.nC 1/ � .nC 1/ homogeneous transformation matrices of the form

SE.n/ D
��

R t
0T 1

�ˇ̌
ˇ̌R 2 SO.n/; t 2 <n


; (8.1)

where SO.n/ is the special orthogonal group consisting of n�n rotation matrices and
<n is the n-dimensional vector space representing translations. The binary operation
in this context is simply the matrix multiplication. The Special Euclidean Group is
also a matrix Lie group since each element is a real-valued matrix, the whole set is
a differentiable manifold, and both the operations of multiplication and inversion of
homogeneous transformation matrices are smooth operations. We note that in most
practical problems n takes only two values: n D 2 for planar motion and n D 3 for
3-dimensional space motion.
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Now we introduce the concept of Lie Algebra. Again following [4], elements of
a matrix Lie group can be written as g D exp.X/ for X 2 G where the set G is
the matrix Lie algebra of G. The Lie Algebra for SE.2/ [denoted as se.2/] can be
represented by the linear combination of a set of basis

Ese.2/
1 D

2
40 0 10 0 0

0 0 0

3
5 ; Ese.2/

2 D
2
40 0 00 0 1

0 0 0

3
5 ; Ese.2/

3 D
2
40 �1 01 0 0

0 0 0

3
5 :

The exponential coordinates for an element of SE.2/ can be defined as xse.2/ D
Œv1; v2; ˛�

T and under this definition an element of the Lie algebra se.2/ can be
written as a 3 � 3 matrix

Xse.2/ D
2
40 �˛ v1˛ 0 v2
0 0 0

3
5 D

3X
iD1

Ese.2/
i xse.2/

i : (8.2)

The “hat” and “vee” notation is convenient to identify an element of se.2/ with a
vector in <3 as follows:

Oxse.2/ D Xse.2/ and Xse.2/_ D xse.2/:

The exponential map exp W se.2/! SE.2/ is surjective, but is not injective since
˛ D � and �� correspond to the same group element of SE.2/. But by removing
from SE.2/ the set of measure zero, M, corresponding to ˛ D � , it is possible to
define an inverse map log W .SE.2/ � M/ ! se.2/. Since the integrals of well-
behaved functions over SE.2/ and SE.2/ � M are the same, we do not distinguish
between SE.2/ and SE.2/ �M in the remainder of this chapter.

For SE.2/, exponentiation gives

R D
�

cos.˛/ sin.˛/
sin.˛/ cos.˛/

�
and t D

�
Œv2.cos.˛/ � 1/C v1 sin.˛/�=˛
Œv1.1 � cos.˛//C v2 sin.˛/�=˛

�
: (8.3)

Adjoint Matrices

The adjoint operators Ad.g/ and ad.X/ are two important concepts in the derivations
that follow, and so their definitions as well as relevant properties are introduced in
this section. To define the adjoints, we need to first define the inner product and
Lie bracket operations for Lie algebras. According to [4], an inner product between
arbitrary elements of the Lie algebra Y D P

i yiEi and Z D P
i ziEi can be defined

such that
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.Y;Z/ D
dX
i

yizi; (8.4)

where d is the dimension of G. In particular, for G D SE.n/ the dimension is d D
n.nC 1/=2. Choosing a basis fEig and requiring that .Ei;Ej/ D ıij, where ıij is the
Dirac delta function, defines an inner product for G and a metric for G.

The Lie bracket of Y;Z 2 G is defined as

ŒY;Z�
:D YZ � ZY: (8.5)

With the above definitions in place, and any g 2 G, the adjoint operators are

Ad.g/X
:D d

dt
.g ı exp.tX/ ı g�1/jtD0 D d

dt
exp.tgXg�1/

ˇ̌
tD0 D g X g�1;

ad.X/Y
:D d

dt
.Ad.etX/Y/

ˇ̌
ˇ̌
tD0

:

(8.6)

Since the adjoint operators are both linear operators, they can both be written as
matrices that represent linear mapping. We call these matrices adjoint matrices and
define them as (in component form) [4]

ŒAd.g/�ij D .Ei;Ad.g/Ej/ D .Ei; g Ej g�1/; Œad.X/�ij D .Ei; ad.X/Ej/ D .Ei; ŒX;Ej�/:

(8.7)

Written in terms of columns, the matrices have the form

ŒAd.g/� D Œ.gE1g
�1/_; : : : ; .gEng�1/_�; Œad.X/� D ŒŒX;E1�_; : : : ; ŒX;En�

_�:
(8.8)

Some important properties of the adjoint matrices that are used in the following
calculations are listed as follow:

1. Ad.exp.X// D exp.ad.X//, ad.X/X_ D 0, ad.X/Y D XY � YX D ŒX;Y�
2. ad.X/Y_ D ŒX;Y�_, ad.ŒX;Y�/ D ad.X/ad.Y/ � ad.Y/ad.X/, ad.X/Y_ D
�ad.Y/X_

3. Ad.g1/Ad.g2/X D g1.g2Xg�12 /g�11 D .g1g2/X.g1g2/�1 D Ad.g1g2/X
4. log_.g ı eX ı g�1/ D Ad.g/ log_.eX/

For SE.2/, the explicit form of the adjoint matrices are

Ad.g/ D
�

R Mt
0T 1

�
2 <3�3; ad.g/ D

��˛M Mv
0T 0

�
2 <3�3 (8.9)

where M D
�
0 1

�1 0
�

and R and t are defined by Eq. (8.1). .v; ˛/ D .v1; v2:˛/ are the

exponential coordinates of SE.2/.
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The Baker–Campbell–Hausdorff Formula

The Baker–Campbell–Hausdorf (BCH) formula [4] serves as the core of the second-
order estimation of Gaussian convolutions (described in more detail in the next
section). In essence, the BCH formula establishes a relationship between the Lie
bracket [defined in Eq. (8.5)] and the matrix exponential. Let X;Y 2 G and define
Z.X;Y/ D log.eXeY/, the BCH formula then takes the form

Z.X;Y/ D X C Y C 1

2
ŒX;Y�C 1

12
.ŒX; ŒX;Y��C ŒY; ŒY;X��/

C 1

48
.ŒY; ŒX; ŒY;X���C ŒX; ŒY; ŒY;X���/C � � � : (8.10)

This can be verified by expanding eX; eY using matrix exponential Taylor series
eX DP1kD0 Xk

kŠ and substitute into the Taylor series for matrix logarithm

log.eXeY/ D log.I C .eXeY � I// D
1X

kD1
.�1/kC1 .e

XeY � I/k

k
: (8.11)

Applying the _ operator to (8.10) results in

z D xC yC 1

2
ad.X/yC 1

12
.ad.X/ad.X/yC ad.Y/ad.Y/x/

C 1

48
.ad.Y/ad.X/ad.Y/xC ad.X/ad.Y/ad.Y/x/C � � � :

(8.12)

Equations (8.11) and (8.12) will be used extensively.

8.2.2 Gaussians on SE.n/ and Second-Order
Convolution Theory

A Gaussian on the SE.n/ is defined as

f .gI�;˙/ :D 1

C.˙/
exp

�
�1
2
Œlog_.��1g/�T˙�1Œlog_.��1g/�


; (8.13)

where �; g 2 SE.n/, C.˙/ � .2�/
d
2 kdet.˙/k 12 is the normalizing factor when

k˙k is small.
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For a domain of integration G D SE.n/, the mean of the above Gaussian is
defined by the value � 2 G for which

Z
G

log_.��1g/f .g/ dg D 0; (8.14)

and the covariance is given by

˙
:D
Z

G
Œlog_.��1g/�Œlog_.��1g/�T f .g/ dg: (8.15)

For details on how to integrate on SE.n/, please refer to [15, 16]. Given two
Gaussians f1.g/ D f .gI�1;˙1/ and f2.g/ D f .gI�2;˙2/ in the form of (8.13),
their convolution is defined as

.f1  f2/.g/ D
Z

G
f1.h/f2.h

�1g/ dh D
Z

G
1.�

�1
1 h/2.�

�1
2 h�1g/ dh;

with i.g/ D f .gI e; ˙i/ denoting a Gaussian centered at the identity. It is proven
(refer to [16]) that the convolution .f1  f2/.g/ results (to the second order) in a
Gaussian with mean and covariance

�1�2 D �1�2; ˙1�2 D AC BC F.A;B/ (8.16)

with the terms A, B, and F defined by

A D Ad.��12 /˙1Ad.��12 /T and B D ˙2; (8.17)

where

F.A;B/ D 1

4

dX
i;jD1

ad.Ei/ B ad.Ej/
TAij C 1

12

8<
:Œ

dX
i;jD1

A
00

ij �BC BT Œ

dX
i;jD1

A
00

ij �
T

9=
;

C 1

12

8<
:Œ

dX
i;jD1

B
00

ij �AC AT Œ

dX
i;jD1

B
00

ij �
T

9=
;

(8.18)
and

A
00

ij D ad.Ei/ad.Ej/Aij; B
00

ij D ad.Ei/ad.Ej/Bij: (8.19)

The above results will be used for SE.2/ in the next section, where the basis
elements Ei as well as Ad and ad matrices as defined in the previous section.
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8.3 Derivation of Second-Order Bayesian Sensor Fusion
on the SE Group

This section presents a detailed derivation of the proposed technique. Again the
technique focuses on fusing the relative measurements of neighboring robots and
their pose information to reduce the estimation uncertainty of the current robot.
A probabilistic approach is adapted where uncertainties in the robot positions
and sensor measurements are modeled by Gaussians (refer to [5] for a more
generalized formulation of nonlinear measurement model approximation on Lie
groups). In addition, since the motion of a stochastic system with differential
constraints is modeled more accurately with Gaussians in exponential coordinates
than that in Cartesian coordinates, the proposed technique is developed under
exponential coordinates. The theory will first be developed for a system of two
robots (which builds on [10] by taking sensor noise into consideration) and be
extended to the multi-robot scenario.

8.3.1 Localization for a Robot Pair

The problem is given by two mobile robots i and j moving in the plane whose
priors in position and orientation are Gaussians f .a�1i giI�i; ˙i/ and f .a�1j gjI�j; ˙j/.
Here ai; aj 2 SE.2/ are the known initial positions of the robots relative to the
world frame at t D 0. At time t, �i; �j 2 SE.2/ and ˙i; ˙j 2 R3�3 are the
means (defined relative to the initial frames ai; aj), and covariances obtained from
a previous prediction step which we will also assume to be known. In addition,
a sensor measurement of robot j relative to i is also obtained at time t and is
given by the homogeneous matrix mij 2 SE.2/. Since we assume the sensor has
Gaussian noise, its distribution is then characterized by a Gaussian of the form
Mij.gi; gj/ D f .gjI gimij; ˙m/ which says that according to the sensor, the position
of robot j with respect to robot i has a mean of mij and covariance of ˙m.

The goal is then to calculate a posterior for the position of robot i using the
sensor measurement to update its prior. Because the sensor provides a relative mea-
surement, we first formulate the joint prior of robots i and j making the assumption
that the priors are independent of each other, giving

pij.gi; gj/ D f .a�1i giI�iI˙i/f .a
�1
j gjI�jI˙j/: (8.20)

Then according to Bayes’ Theorem, the joint posterior is given by

pij D �1pijMij; (8.21)

where �1 is a constant normalizing factor. Similar normalizing factors result in
all fusion processes that follow and will be denoted by �i. To save space in the
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derivations, we will denote i.�
�1
i gi/ D f .giI�iI˙i/ and the rest follows where

i.g/ is a Gaussian with mean at the identity. The marginal distribution of the joint
posterior for robot i is then

pi.gi/ D f .giI�i; ˙ i/ D �2
Z

G
pij.gi; gj/Mij.gi; gj/ dgj

D �2i.�
�1
i a�1i gi/

Z
G
j.�

�1
j a�1j gj/m.m

�1
ij g�1i gj/ dgj:

(8.22)

The goal is to find closed-form expressions for �i and ˙ i. Since m is symmetric
around the mean, we have m.m�1ij g�1i gj/ D m.g�1j gimij/. Letting g0 D gimij,
Eq. (8.22) becomes

pi.gi/ D �2i.�
�1
i a�1i gi/

Z
G
j.�

�1
j a�1j gj/m.g

�1
j gimij/ dgj

D �2i.�
�1
i a�1i gi/

Z
G
j.�

�1
j a�1j gj/m.e

�1g�1j g0/ dgj;

(8.23)

where e 2 SE.2/ is the identity element of SE(2). According to the definition of
convolution in Sect. 8.2, the integral in Eq. (8.23) defines a convolution .f1  f2/.g0/
where f1.g0/ D f .g0I aj�j; ˙j/ and f2.g0/ D f .g0I e; ˙m/. Let f1�2.g0I�1�2;˙1�2/ D
.f1  f2/.g0/, then (8.16)–(8.19) can be used to calculate the closed-form expressions
of �1�2 (which equals to aj�j) and ˙1�2. With the integral taken care of, (8.23)
becomes

pi.gi/ D f .giI�i; ˙ i/ D �2f .��1i a�1i giI e; ˙i/f .gimijI aj�j; ˙1�2/: (8.24)

For a posterior of robot i formulated in the form of (8.24), the fusion technique
developed in [10] can be used to derive the closed-form expressions for �i and ˙ i.

8.3.2 Localization for Multi-Robot Team

Now we are ready to extend the technique to multi-robot localization. Similar
to the previous subsection, the posterior of robot i is what we are trying to
estimate, but instead of taking measurement from a single neighboring robot,
multiple measurements are taken from however many neighboring robots that are
in the sensing range (for derivation purposes we label the neighboring robots as
1; 2; : : : ; n). Following a similar approach we have the joint prior

pi;1;:::;n D f .a�1i giI�iI˙i/f .a
�1
1 g1I�1I˙1/ : : : f .a

�1
n gnI�nI˙n/

D i.�
�1
i a�1i gi/1.�

�1
1 a�11 g1/ : : : n.�

�1
n a�1n gn/:

(8.25)
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Let Min D f .gnI gimin; ˙in/ be the distribution of the sensor measurement of robot n
relative to robot i and assume independence among all the measurements. Then we
have the joint measurement distribution

Mi;1;:::;n D Mi1Mi2 : : :Min: (8.26)

To further save space, we will write in short i D i.�
�1
i a�1i gi/ as the position priors

and in D in.m�1in g�1i gn/ D Min as the measurement distributions. We will further
define g0in D gimin. The posterior for robot i is then

pi.gi/ D f .giI�i; ˙ i/ D �3
Z

G

Z
G
: : :

Z
G

pi;1;:::;nMi;1;:::;n dg1 dg2 : : : dgn

D �3i

	Z
G
1i1 dg1


	Z
G
2i2 dg2



: : :

	Z
G
nin dgn



:

(8.27)

Let fn.g0in/ D f .g0inI an�n; ˙n/ and fin.g0in/ D f .g0inI e; ˙in/, then (8.27) becomes

pi.gi/ D f .giI�i; ˙ i/ D �3i.�
�1
i a�1i gi/.f1  fi1/.g

0
i1/.f2  fi2/.g

0
i2/ : : : .fn  fin/.g

0
in/:

(8.28)
Calculating the convolutions using (8.16)–(8.19), we finally arrive at

pi.gi/ D f .giI�i; ˙ i/ D �3f .�
�1
i a�1

i giI e; ˙i/f .gimi1I a1�1;˙1�i1/� : : :� f .giminI an�n; ˙n�in/

(8.29)

An extension of the method provided by [10] (which fuses only one measurement)
gives the equations to calculate �i and ˙ i and is presented as follows:

For neighboring robots 1; : : : ; k; : : : :; n

1. Define qk D mik�
�1
k a�1k ai�i, exp.Oxk/ D qk., �k D .IC 1

2
ad.Oxk//, Si D � T

i ˙
�1
i �i

2. Define Sk D � T
m Ad�T.mik/˙

�1
k�ikAd�1.mik/�k

3. S
0 D Si C

nP
kD1

Sk, x0 D NS0�1
nP

kD1
Skxk

With the above definitions, the posterior distribution for robot i can be calculated by

˙ i D N� 0 NS0�1 N� 0T

�i D �i exp.�ONx0/
(8.30)

with the operator ^ and _ defined in section 8.2.1.
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8.3.3 A Complete Distributed Localization Algorithm Using
Bayesian Filter in Exponential Coordinates

The fusion technique introduced above defines the state update step for the proposed
localization method. However, like all Bayesian filters a complete recursive filter for
state estimation consists of a state prediction step as well as a state update step. This
section serves to provide the proposed algorithm in such a form.

Similar to the above setting, suppose at time tk robot i is the robot to be
localized, robots 1; : : : ; k; : : : ; n are its n neighbors. Their means are �i.tk/; �k.tk/
and covariances ˙i.tk/;˙k.tk/, respectively. Let the stochastic differential equation
(SDE) governing the motion of the robots be of the form

.g�1 Pg/_dt D hdtC Hdw; (8.31)

where h is constant. When g � e and for a sampling time �t a constant command
u is given to the system resulting in motion of the system from tk to tkC1, the
distributed localization scheme that estimates the location of robot i at time tkC1
follows two steps (letting �t D tkC1 � tk). These are the prediction and update
steps.

Prediction

�i.�t/ D exp

	Z �t

0

Ohi d�




˙i.�t/ D
Z �t

0

Ad.��1i .t � �//HiH
T
i AdT.��1i .t � �// d�

�i.t
�
kC1/ D �i.tk/ ı �i.�t/

˙i.t
�
kC1/ D Ai.tk/C Bi.tk/C F.Ai.tk/;Bi.tk//

(8.32)

where

Ai.tk/ D Ad.�i.�t/�1/˙i.t
C
k /Ad.�i.�t/�1/T ; Bi.tk/ D ˙i.�t/

Ai.tk/
00

ij D ad.Ei/ad.Ej/Ai.tk/ij; Bi.tk/
00

ij D ad.Ei/ad.Ej/Bi.tk/ij
(8.33)
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Fi.Ai.tk/;Bi.tk// D 1

4

dX
i;jD1

ad.Ei/Bi.tk/ad.Ej/
TAi.tk/ij

C 1

12

8<
:
"

dX
i;jD1

Ai.tk/
00

ij

#
Bi.t/C Bi.t/

T

"
dX

i;jD1
Ai.t/

00

ij

#T
9=
;

C 1

12

8<
:
"

dX
i;jD1

Bi.tk/
00

ij

#
Ai.tk/C Ai.tk/

T

"
dX

i;jD1
Bi.tk/

00

ij

#T
9=
;

(8.34)

The second equation in (8.32) follows from equation (19) in [13] given by

˙i.�t/ D
Z �t

0

Ad�1Œ��1i .�/�i.t/�HiH
T
i Ad�T Œ��1i .�/�i.t/� d�: (8.35)

Since in our context the mean takes the form of � D exp.Xt/ where X 2 G is a
constant, it follows that ��1i .t/�i.�/ D �i.�/�

�1
i .t/ D ��1i .t � �/. Combined with

the property of adjoint Ad�1.�/ D Ad.��1/ gives the final expression in (8.32).
Also in the above equations, �i.�t/ and ˙i.�t/ define the incremental distribu-

tion resulting solely from the input given at the �t time frame with location given
with respect to �i.tk/, not the fixed world frame. In order to take into account the
uncertainties already present at time t given by ˙i.tk/, the distribution at time tk is
convolved with the incremental distribution resulting in the predicted distribution
given by �i.t�kC1/;˙i.t�kC1/.

Update

Now to incorporate the relative measurements, for each of the neighboring robots
1; : : : ; k; : : : ; n, obtain the measurement distribution mik.t/;˙ik.t/, then

Aik.tk/ D Ad.mik.tk/
�1/˙k.tk/Ad.mik.tk/

�1/T ; Bik.tk/ D ˙ik.tk/

Aik.tk/
00

ij D ad.Ei/ad.Ej/Aik.tk/ij; Bik.tk/
00

ij D ad.Ei/ad.Ej/Bik.tk/ij
(8.36)

and using (8.18),

˙k�ik.t.tk// D Aik.tk/C Bik.tk/C F.Aik.tk/;Bik.tk// (8.37)

1. Define qk.tk/ D mik.tk/�k.tk/�1a�1k ai�i.t�kC1/, exp.Oxk.tk// D qk.tk/
2. Define �k.tk/ D .I C 1

2
ad.Oxk.tk///, Si.tk/ D �i.tk/T Œ˙i.t�kC1/��1�i.tk/

3. Define Sk.tk/ D �m.tk/TAd�T.mik.tk//˙k�ik.tk/�1Ad�1.mik.tk//�k.tk/

4. S
0
.tk/ D Si.tk/C

nP
kD1

Sk.tk/, x0.tk/ D NS0.tk/�1
nP

kD1
Sk.tk/xk.tk/
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Then

˙i.t
C
kC1/ D N� 0.tk/NS0.tk/�1 N� 0.t/tk ; �i.t

C
kC1/ D �i.t

�
kC1/ exp.�ONx0.tk// (8.38)

8.4 Simulation and Discussions

This section provides verification for the proposed technique in a Matlab-simulated
environment. A team of two-wheeled differential drive robots are moving in the
field. The given inputs are such that all robots move along a straight line or a circular
arc. However, due to the stochastic nature of the systems, errors accumulate over
time such that odometry or dynamics alone is insufficient in estimating the robot
poses. The results from the previous sections can therefore be used to update the
robots’ knowledge of their poses with the help of measuring their positions relative
to neighboring robots.

Figure 8.1 depicts a simple model of the two-wheeled differential drive robot
which is very useful in modeling segway-like mobile bases and various multi-
robot experimental platforms (E-pucks, iRobot create, Khepera, etc.). According
to [10], the kinematics of such a mobile robot can be characterized by the stochastic
differential equation

.g�1 Pg/_dt D
2
4

r
2
.!1 C !2/

0
r
2
.!1 � !2/

3
5 dtCpD

2
4

r
2

r
2

0 0
r
l � r

l

3
5
�

dw1
dw2

�
; (8.39)

where g 2 SE.2/ is the homogenous matrix representing the pose of the robot, r is
the wheel radius, l is the axle length, !1; !2 are the wheel angular velocities, dwi

Fig. 8.1 Simple model for a
two-wheeled differential
drive mobile system
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are unit strength Wiener processes, and D is a noise coefficient. This stochastic
differential system can be simulated using Euler–Maruyama method described
in [7]. Equation (8.39) can be written in short as

.g�1 Pg/_dt D hdtCHdw (8.40)

when g is close to the identity, given an input pair Œ!1; !2�T , the mean and covariance
of system (8.39) can be estimated by

�.t/ D exp

	Z t

0

Oh d�



;

˙.t/ D
Z t

0

Ad.��1.t � �//HHTAdT.��1.t � �// d�:

(8.41)

For simple motions like straight-line motion when !1 D !2, (8.41) can be evaluated
analytically as

�.t/st D
2
41 0 r!t
0 1 0

0 0 1

3
5 ; ˙.t/st D

2
64
1
2
Dr2t 0 0

0 2D!2r4t3

3l2
D!r3t2

l2

0 D!r3t2

l2
2Dr2t

l2

3
75 : (8.42)

The same can be done with circular motion of constant curvature

�.t/cir D
2
4cos. P̨ t/ � sin. P̨ t/ a sin. P̨ t/

sin. P̨ t/ cos. P̨ t/ a.1 � cos. P̨ t//
0 0 1

3
5 ; ˙.t/cir D

2
4�11 �12 �13�21 �22 �23
�31 �32 �33

3
5 :

(8.43)

where

�11 D c

8
Œ.4a2 C l2/.2 P̨ tC sin.2 P̨ t//C 16a2. P̨ t � sin.2 P̨ t//�;

�12 D �21 D �c

2
Œ4a2.�1C cos.2 P̨ t//C l2� sin. P̨ t=2/2;

�13 D �31 D 2ca. P̨ t � sin.2 P̨ t//;
�23 D �32 D �2ca.�1C cos. P̨ t//;
�33 D 2c P̨ ;

c D Dr2

l2 P̨ :

(8.44)
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With the pose priors calculated with (8.41)–(8.44), (8.36)–(8.38) are then applied
with sensor measurements to update the priors. For arbitrary inputs .!1; !2/ an
approximation will be applied to (8.41) which will be discussed in the next section.

This example simulates localization of a robot team in straight and circular
motion. In the setup of this simulation, the model based parameters are set as
r D 0:033; l D 0:2. The simulation parameters for straight-line motion are D D
5; v D 0:5;T D 1:3, !1 D !2 D v

r , and T D 2, !1 D 26:166; !2 D 21:408 (for
circular motion). The true robot motions are simulated 500 times using the Euler–
Maruyama method [7] and the end position of each trial is plotted in the following
figures. It can be observed that the posterior of such a stochastic differential system
(SDE) results in a banana shaped distribution as is also discussed in [15].

In this simulation, all four robots are given the command to travel in a straight
line for 1.3 % at 0.5 m/s or along an arc of constant curvature of 1 m at 45 deg/s
for 1 s. The blue dashed lines in the figures represent the desired path of travel
with the blue points at the two ends representing initial to final position. However,
due to process noise each robot will eventually end up somewhere near the desired
goal and our objective is to estimate its true position along with a quantification
of our confidence of this estimate. Specifically for this example, the true pose of
the middle robot (cyan colored) is what we are trying to estimate which we will
call robot i, while the neighboring robots (yellow) are members of this team where
relative measurements are obtained from. Among all the sampled end positions, one
position for each robot is chosen as the true end pose (red point) and this is used to
generate the mean of the measurement distribution min.

As the first step, the prior mean and covariance of robot i is calculated using
(8.42) and (8.43), and plotted in Fig. 8.2a, b, the resultant prediction aligns perfectly
with the desire path (blue dash line), and the error “ellipse” marginalized over the
heading angle is also plotted from the calculated covariance (magenta loop). Since
this error “ellipse” is a contour of the resultant distribution, it can be observed
that a Gaussian distribution under exponential coordinates is a much better fit for
characterizing the uncertainties in an SDE of this kind than that under Cartesian
coordinates. It is obvious that this prediction gives the same resultant distribution
regardless of the true position and is only effected by the system dynamics and input
commands. Therefore the next step is to update this prediction with measurements
relative to neighboring robots.

It is assumed that robot i can exchange information with its neighbor when it
comes into its sensing range, which means when a relative measurement is taken
of neighbor j relative to robot i, the belief (mean and covariance in this case) that
j holds for its current position can be communicated to i so that i can make use of
this information in its localization process (update step). In this example, this belief
(�j; ˙j) for each neighboring robot j is taken to be the pose prediction calculated
from (8.42) or (8.43), but in reality this can very well be the posterior from its own
localization results. The covariance of the measurement distribution is chosen to be
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Fig. 8.2 Localization with only the prediction model. (a) Straight-line motion. (b) Circular motion
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Figures 8.3a, b show the updated posterior of robot i calculated from fusing the
relative measurements taken from its three neighbors. The result indicates a more
accurate position mean (black dot) and a shrinked error “ellipse” representing higher
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Fig. 8.3 Pose update after sensor measurement and fusion. (a) Straight-line motion. (b) Circular
motion

confidence in the estimate. Since this is a distributed localization technique aimed to
be implemented on the embedded processor of each individual robot, the procedure
is demonstrated only for one robot and the same goes for all other.
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8.5 Conclusion

This chapter proposed a distributed cooperative localization technique that can
incorporate multiple sensor measurements to achieve higher estimation accuracy.
Robots in a team can take measurements and exchange information among each
other to update their knowledge of the current position. Simulation is used to
validate the performance of the approach in Matlab. Results from the Matlab
simulation show a good localization accuracy of the presented approach. The
proposed multi-robot localization technique is distributed in that each robot can
perform this localization process without the help of a centralized processor and
is scalable for the computation time does not increase as the robot team enlarges
and increases only linearly with the number of measurements taken. The generality
of this scheme lies in the fact that uncertainties in the belief of the current
robot, neighboring robots, and sensor measurements have all been considered
which yields a more realistic estimate. Unlike sampling-based approaches, the
proposed approach provides closed-form expressions which significantly increases
computational efficiency. Most existing cooperative localization schemes possess a
subset of the above attributes but rarely all. Lastly, this technique is of second order
in its estimation of an updated posterior which is expected to be more accurate and
reliable than first-order methods.

The limitation of this method is its dependency on Gaussian noises. Moreover,
at present this is a local technique in that it depends on known initial poses and
does not recover from localization failures (defined by [15]). In its current state, this
approach does not possess the ability to serve as the sole scheme to localize a team
of robots in that as errors accumulate in the beliefs of neighboring robots, erroneous
information will be given to the current robot that leads to localization failures.
However, this technique is local and prone to error accumulation only when none
of the member robots have a reasonable estimate of their positions. As long as one
robot possesses a good knowledge of its current pose (via more accurate sensors or
sophisticated but computationally expensive algorithms) then this information can
be used to drastically reduce the uncertainty of the entire team which introduces a
level of robustness to the system and can also significantly reduce hardware and
computational cost of the team. Table 8.2 shows a comparison of the proposed
method with two of the most representative and accepted approaches.

The accuracy of the exponential localization method is expected to see great
increase compared to results shown previously if the algorithm parameters (initial
pose covariance, process and measurement noise covariances, etc.) can be fine-
tuned. Establishing a systematic way of tuning these parameters can be a topic of its
own. It is also incredibly beneficial if the proposed method can be combined with
sampling-based approaches for their global localization and state recovery abilities.
Lastly, experiments on hardware are required to fully establish the advantage of
the proposed scheme. Overall this chapter has provided an alternative distributed
cooperative localization technique in the domain of Lie group and exponential
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Table 8.2 Final comparison

Distributed EKF Multi-Robot MCL Exponential localization

Restrictions on error
distribution

Requires Gaussian
process and measurement
error

Nonparametric particle
representation of posterior
belief, no assumptions on
noise distribution

Gaussian

Global localization No Yes No

State recovery No Possible given a
well-designed resampling
process

No

Localization
accuracy

Accurate when error is
small

Depends on the number of
particles used

Accurate within an error
range

Computational cost Small due to the
closed-form propagation
and update equations

Depends on the number of
particles. Can increase
dramatically with the
dimension of the state
space

Small due to closed form
equations

Ease of
implementation

Simple Can be involved Simple

Robustness Prone to error due to
linearization

Quite resistant to errors
given multiple beliefs are
maintained simultaneously

Less susceptible to errors
given the well conformity
to the motion model

Process multiple
detections

No No Yes

Complexity relative
to team size

Fully distributed.
Complexity independent
of team size

Complexity independent
of team size

Linear to the number of
measurements processed

coordinates and has validated in simulation the potential of this technique as the
next state of the art.
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Part III
Shapes, Surfaces, and Trajectories

This part presents fundamental representations and algorithms for analysis of
trajectories, shapes, surfaces in 2D and 3D data.



Chapter 9
Covariance Weighted Procrustes Analysis

Christopher J. Brignell, Ian L. Dryden, and William J. Browne

Abstract We revisit the popular Procrustes matching procedure of landmark shape
analysis and consider the situation where the landmark coordinates have a com-
pletely general covariance matrix, extending previous approaches based on factored
covariance structures. Procrustes matching is used to compute the Riemannian
metric in shape space and is used more widely for carrying out inference such as
estimation of mean shape and covariance structure. Rather than matching using
the Euclidean distance we consider a general Mahalanobis distance. This approach
allows us to consider different variances at each landmark, as well as covariance
structure between the landmark coordinates, and more general covariance structures.
Explicit expressions are given for the optimal translation and rotation in two
dimensions and numerical procedures are used for higher dimensions. Simultaneous
estimation of both mean shape and covariance structure is difficult due to the
inherent non-identifiability. The method requires the specification of constraints to
carry out inference, and we discuss some possible practical choices. We illustrate
the methodology using data from fish silhouettes and mouse vertebra images.

9.1 Introduction

The need to describe and compare the shapes of objects has become very important
in a wide variety of fields, including computer vision, biology, medicine and
bioinformatics [3, 6, 14, 22]. The shape of an object is defined as the geometrical
information that remains when location, rotational and scale effects are filtered
out [6, 10, 11, 16, 18, 19]. However, the analysis of shapes is not straightforward
as the non-linear constraints due to rotation and scale invariance lead to shape
spaces having non-linear geometry. Riemannian manifolds are the natural home for
developing suitable statistical methodology.
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A key aim of statistical shape analysis is the estimation of mean shape and
shape variability on Riemannian manifolds, which can then be incorporated into
a prior model for Bayesian image analysis, or for carrying out investigations into
the statistical significance of differences between populations. Commonly an object
can be represented by a finite number of points, called landmarks, that are points
of correspondence between and within populations. Probably the most widely used
method of statistical shape analysis is Procrustes analysis [8, 9]. Procrustes analysis
involves the matching of objects by minimising the Euclidean distance between
the configurations, i.e. objects are translated, rotated and rescaled so that their
landmarks match as closely as possible using a least squares criterion. The space
in which the objects lie after removing translation, rotation and scale is a quotient
space, and in particular is called Kendall’s shape space, which is endowed with a
Riemannian metric and positive curvature [12]. The quotienting out of the similarity
transformations involves optimal estimation of translation, rotation and scale using
Procrustes matching. Practical implementation of Procrustes methods is available
in the shapes library in R, for example using the command procGPA [5].
However, Procrustes analysis is almost always carried out under the assumption
of isotropic covariance structures, e.g. measurement error models, which is often
rather dubious as a model for a general population of objects. In this chapter we
consider extensions where completely general covariance structures are handled.
The familiar Riemannian distance in shape space is replaced with a Mahalanobis
type of distance.

9.2 Covariance Weighted OPA

9.2.1 Weighted Procrustes

Procrustes methods have been extended from the usual isotropic case by Goodall
[8] by using weighted least squares (WLS) and iteratively reweighted least squares
(IRLS). Within WLS the covariance structure is assumed known, but in IRLS
is unknown and estimated. Generally [8] uses a factored covariance structure
˙ D ˙m ˝ ˙k, where ˙m is the covariance matrix at each landmark and ˙k

is the covariance matrix across landmarks. This structure means one can have
non-identical variability at each landmark and non-identical variability between
the dimensions, but this formulation is not completely general. The method when
˙m D Im replaces configurations X by QX and � by Q�, where QTQ is the
Cholesky decomposition of ˙�1k . This accounts for the centring, and the rotation
is estimated as with i.i.d. covariance. When ˙m ¤ Im, from [8] there is no known
explicit expression for the Procrustes rotation. In this case the iterative algorithm
of [13] can be used, where they consider a diagonal weights matrix, D. Theobald
and Wuttke [20] also consider the factored covariance model and use an empirical
Bayes procedure for inference. However, our aim is to consider Procrustes methods
for a completely general covariance matrix, although we do also consider factored
covariance structures as special cases.
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9.2.2 Partial Covariance Weighted OPA

Definition 9.1. The method of partial covariance weighted ordinary Procrustes
analysis (partial CW OPA) involves the least squares matching of one configuration
to another using rigid-body transformations. Estimation of the translation and
rotation parameters, � and � , is carried out by minimising the Mahalanobis norm

D2
pCWP.X; �I˙/ D k� � X� � 1k�

Tk2˙ ; (9.1)

where ˙ .km � km/ is a symmetric positive definite matrix, � is an m � 1 location
vector and � is an m � m special orthogonal rotation matrix, and

kXk2˙ D vec.X/T˙�1vec.X/:

The translation which minimises Eq. (9.1) is given by Result 9.2.1. In general,
the minimising rotation is solved numerically; however, when m D 2 there is only
one rotation angle and a solution is given by Result 9.2.2.

Result 9.2.1. Given two configuration matrices, X and �, and a symmetric positive
definite matrix, ˙ , the translation, as a function of rotation, which minimises the
Mahalanobis norm, D2

pCWP.X; �I˙/, is

O� D Œ.Im ˝ 1k/
T˙�1.Im ˝ 1k/�

�1.Im ˝ 1k/
T˙�1vec.� � X� /: (9.2)

Result 9.2.2. Consider m D 2, let A D Œ.Im˝ 1k/
T˙�1.Im˝ 1k/�

�1.Im˝ 1k/
T˙�1

and denote the partitioned submatrices as

A D
�

A11 A12
A21 A22

�
; X D �X1 X2

�
; � D ��1 �2 � ;

where the Aij have dimension .1�k/ and Xi; �i have dimension .k�1/ for i; j D 1; 2,
then given two configuration matrices, X and �, and a symmetric positive definite
matrix ˙ , the rotation which minimises the Mahalanobis norm, D2

pCWP.X; �I˙/, is
given by

cos O� D S.2� � 2Q/C TR

.2� � 2P/.2� � 2Q/ � R2
;

sin O� D T.2� � 2P/C SR

.2� � 2P/.2� � 2Q/ � R2
; (9.3)

where

P D
�
.X1 C 1kı1/

.X2 C 1kı2/

�T

˙�1
�
.X1 C 1kı1/

.X2 C 1kı2/

�
;
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Q D
�
.X2 � 1k�1/

�.X1 C 1k�2/

�T

˙�1
�
.X2 � 1k�1/

�.X1 C 1k�2/

�
;

R D �2
�
.X1 C 1kı1/

.X2 C 1kı2/

�T

˙�1
�
.X2 � 1k�1/

�.X1 C 1k�2/

�
;

S D �2
�
.X1 C 1kı1/

.X2 C 1kı2/

�T

˙�1
�
.�1 � 1k˛1/

.�2 � 1k˛2/

�
; (9.4)

T D 2
�
.X2 � 1k�1/

�.X1 C 1k�2/

�T

˙�1
�
.�1 � 1k˛1/

.�2 � 1k˛2/

�
;

˛i D Ai1�1 C Ai2�2; ıi D �Ai1X1 � Ai2X2; �i D Ai1X2 � Ai2X1;

and � is the real root less than 1
2

�
PC Q �p.P � Q/2 C R2

�
of the quartic

equation:

16�4 � 32.PC Q/�3 C Œ16.P2 C Q2/C 64PQ � 4.S2 C T2/ � 8R2��2

CŒ8R2.PC Q/ � 32PQ.PC Q/C 8.QS2 C PT2 � STR/�� (9.5)

C16P2Q2 C R4 � R2.S2 C T2/C 4RST.PC Q/

�4P2T2 � 4Q2S2 � 8PQR2 D 0:

Note that a unique solution of Eq. (9.5) that satisfies the constraint may not exist
and it may be necessary to evaluate D2

pCWP.X; �I˙/ for several choices of � or use
numerical methods. In our experience, however, this is rarely required.

We will now demonstrate the use of CW Procrustes registration in practice.
Figure 9.1 shows the partial ordinary covariance weighted Procrustes registration
of one second thoracic mouse vertebra to another for three different weighting
matrices, ˙ . Note there are k D 6 landmarks in m D 2 dimensions taken at points
of maximum curvature from a cross section. The algorithm for extracting the points
from the original microscope images was described by Dryden [4, Chap. 5]. Starting
at the far left and going clockwise, the landmarks are numbered: 4, 3, 2, 6, 1, 5. The
weighting matrices used are

˙1 D Ikm; ˙2 D Im ˝˙k; ˙3 D ˙m ˝˙k; (9.6)

where

˙m D
�
10 0

0 0:1

�
; ˙k D

2
66666664

0:1 0 0 0 0 0

0 0:1 0 0 0 0

0 0 10 0 0 0

0 0 0 10 0 �9
0 0 0 0 10 0

0 0 0 �9 0 10

3
77777775
:
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Fig. 9.1 The partial ordinary covariance weighted Procrustes registration of a mouse vertebra
(dotted) to a template, using ˙1 (left), ˙2 (middle) and ˙3 (right)

The first weighting matrix is the same as isotropic OPA, giving the same
weighting to all coordinates and minimising the total distance between all pairs
of landmarks. The second choice weights landmarks one and two more heavily than
the others, and the third weighting matrix goes a stage further, and weights the y
direction more heavily than the x direction.

9.2.3 Full Covariance Weighted OPA

Definition 9.2. The method of full covariance weighted ordinary Procrustes
analysis (full CW OPA) involves the least squares matching of one configuration to
another using similarity transformations. Estimation of the translation, rotation and
scaling parameters, � , � and ˇ, is carried out by minimising the Mahalanobis norm

D2
CWP.X; �I˙/ D k� � ˇX� � 1k�

Tk2˙ ; (9.7)

where ˙ .km � km/ is a symmetric positive definite matrix, � is a m � 1 location
vector, � is an m � m special orthogonal rotation matrix and ˇ > 0 is a scale
parameter.

In general, the minimising rotation is solved numerically and the minimising
translation and scaling are given by Result 9.2.3. However, when m D 2 all the
similarity transformation parameters can be obtained by Result 9.2.4.

Result 9.2.3. Given two configuration matrices, X and �, and a symmetric positive
definite matrix, ˙ , the translation and scaling, as a function of rotation, which
minimise the Mahalanobis norm, D2

CWP.X; �I˙/, are

"
O�
Ǒ
#
D B�1

�
.Im ˝ 1k/

T˙�1vec.�/
vec.X� /T˙�1vec.�/

�
; (9.8)
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where

B D
�
.Im ˝ 1k/

T˙�1.Im ˝ 1k/ .Im ˝ 1k/
T˙�1vec.X� /

vec.X� /T˙�1.Im ˝ 1k/ vec.X� /T˙�1vec.X� /

�
:

Result 9.2.4. Consider m D 2, let A D Œ.Im˝ 1k/
T˙�1.Im˝ 1k/�

�1.Im˝ 1k/
T˙�1

and define P, Q, R, S and T as in Eq. (9.4), then given two configuration matrices,
X and �, and a symmetric positive definite matrix, ˙ , the similarity transformation
parameters which minimise the Mahalanobis norm, D2

CWP.X; �I˙/, are given by

O� D Avec.� � ǑX O� /; Ǒ D C

q
 2
1 C  2

2 ;

cos O� D  1

C

q
 2
1 C  2

2

; sin O� D  2

C

q
 2
1 C  2

2

;

where

 1 D RT � 2QS

4PQ � R2
;  2 D RS � 2PT

4PQ � R2
: (9.9)

9.2.4 Special Case: ˙ D Im ˝ ˙k

Note that if X and � are replaced by XQ D QX and �Q D Q� respectively, where
˙�1k D QTQ is the Cholesky decomposition, then the estimates of O� and Ǒ for
matching X to � with ˙ D Im ˝ ˙k are equivalent to the estimates of O� and
Ǒ for matching XQ to �Q with ˙ D Ikm, as claimed by Goodall [8]. The above

results reduce to the same estimators, and for example we consider the m D 2 case
explicitly in the next result.

Result 9.2.5. If m D 2 and˙ is of the form Im˝˙k, where˙k.k�k/ is a symmetric
positive definite matrix, and assume without loss of generality that X and � are
located such that 1T

k˙
�1
k X D 0 D 1T

k˙
�1
k �, then

O� D 0; Ǒ D .S2 C T2/1=2

2P
;

cos O� D �S

.S2 C T2/1=2
; sin O� D �T

.S2 C T2/1=2
;

where

P D XT
1 ˙
�1
k X1 C XT

2 ˙
�1
k X2;

S D �2.XT
1 ˙
�1
k �1 C XT

2 ˙
�1
k �2/;

T D 2.XT
2 ˙
�1
k �1 C XT

1 ˙
�1
k �2/:
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9.3 Covariance Weighted GPA

9.3.1 Definition and Algorithm

In Sect. 9.2 covariance weighted ordinary Procrustes analysis was defined as obtain-
ing the Procrustes estimators to minimise the Mahalanobis norm D2

CWP.X; �I˙/ D
k� � XPk2˙ , where one configuration, X, is translated, rotated and possibly scaled
with respect to a reference configuration, �. In this section CW OPA is extended to
define covariance weighted generalised Procrustes analysis for a more general data
set with n 	 2 configurations, X1;X2; : : : ;Xn. This allows inferences to be made
regarding the sample mean shape.

Definition 9.3. The method of full covariance weighted generalised Procrustes
analysis (full CW GPA) involves the least squares matching of n configurations
relative to each other using similarity transformations, and the procedure is appro-
priate under the model

Xi D ˇi.�C Ei/�i C 1k�
T
i ;

where Ei are zero mean k � m independent random error matrices, � is the k � m
matrix of the mean configuration and �i, �i and ˇi are nuisance parameters for
translation, rotation and scale. A quantity proportional to the sum of squared
Mahalanobis norms of pairwise differences,

GCWP.X1; : : : ;XnI˙/ D 1

n

n�1X
iD1

nX
jDiC1

��.ˇiXi�i C 1k�
T
i / � .ˇjXj�j C 1k�

T
j /
��2
˙
;

(9.10)

is minimised subject to the constraint on the size of the centred average shape,
k NXk2 D 1; where �i 2 SO.m/, ˇi > 0 and

NX D 1

n

nX
iD1
.ˇiXi�i C 1k�

T
i /:

Partial covariance weighted generalised Procrustes analysis can be similarly
defined using rigid-body transformations and without a constraint on the size of
the mean shape. Minimising the sum of squared Mahalanobis norms of pairwise
differences is equivalent to minimising the distance between each configuration and
the mean of the configurations:

GCWP.X1; : : : ;XnI˙/ D inf
ˇi;�i;�i

1

n

n�1X
iD1

nX
jDiC1

��.ˇiXi�i C 1k�
T
i / � .ˇjXj�j C 1k�

T
j /
��2
˙

D inf
ˇi;�i;�i

nX
iD1

��.ˇiXi�i C 1k�
T
i / � NX

��2
˙
:
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An alternative is to minimise the distance from the ith shape to the mean of the
rest of the sample:

GCWP.X1; : : : ;XnI˙/ D inf
ˇi;�i;�i

nX
iD1

������.ˇiXi�i C 1k�
T
i / �

1

n

nX
jD1
.ˇjXj�j C 1k�

T
j /

������
2

˙

D inf
ˇi;�i;�i

nX
iD1

������
n � 1

n
.ˇiXi�i C 1k�

T
i / �

1

n

nX
jD1;j¤i

.ˇjXj�j C 1k�
T
j /

������
2

˙

D inf
ˇi;�i;�i

nX
iD1

.n � 1/2
n2

���.ˇiXi�i C 1k�
T
i / � NX�i

���2
˙
;

where

NX�i D 1

n � 1
nX

jD1;j¤i

.ˇjXj�j C 1k�
T
j /: (9.11)

Once the transformation parameters that minimise Eq. (9.10) have been identi-
fied, it is possible to make the following definitions:

Definition 9.4. The full covariance weighted Procrustes fit of the each Xi is
given by

XP
i D ǑiXi O�i C 1k O�T

i ; (9.12)

where O�i, O�i and Ǒi are the minimising parameters of Eq. (9.10), for i D 1; : : : ; n.

Definition 9.5. The full covariance weighted Procrustes estimate of the mean shape
is given by

O� D 1

n

nX
iD1

XP
i ; (9.13)

where XP
i is the full covariance weighted Procrustes fit of Xi, i D 1; : : : ; n.

The partial covariance weighted Procrustes fit and the partial covariance
weighted Procrustes estimate of the mean shape can be similarly defined by
omitting the ˇ parameter. The similarity transformation parameters which minimise
Eq. (9.10) can be obtained by the following algorithm.

The algorithm is guaranteed to converge because GCWP.X1; : : : ;XnI˙/ is non-
increasing at each step and bounded below. Step 2 of the algorithm translates and
rotates all the shapes relative to the axes to speed up the rate of convergence.
The location of the mean shape is arbitrary, but the orientation of the mean
shape is not. If ˙ has been defined with respect to some user-specified reference
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Covariance Weighted GPA Algorithm
1. Initial registration: Given symmetric positive definite matrix, ˙ , and n shapes, X1;X2; : : : ;Xn,
calculate NX as the mean shape resulting from the isotropic GPA algorithm.
2. Centre, scale and orientate mean shape: Centre and scale NX such that S. NX/ D 1, and apply
the same translation and scaling to each Xi. Further, apply an identical rotation to NX;X1; : : : ;Xn to
minimise GCWP.X1; : : : ;XnI˙/.
3. CW OPA: For i D 1; : : : ; n register Xi to NX�i using covariance weighted OPA to minimise
D2

CWP.Xi; NX�iI˙/.
4. Repetition. Repeat steps (2) and (3) until GCWP.X1; : : : ;XnI˙/ cannot be reduced further.

configuration, �0, then minimising DOPA. NX; �0/ or D2
CWP.Xi; �0I˙/ instead of

GCWP.X1; : : : ;XnI˙/ at step 2 keeps the shapes in that frame of reference.
Alternatively, if ˙ has been chosen with respect to the axes, then the rotation in
step 2 can be calculated numerically for m 	 3, or by Result 9.3.1 for m D 2.

Result 9.3.1. For m D 2, let the rotation matrix � D
�

cos � sin �
� sin � cos �

�
, then

GCWP.X1; : : : ;XnI˙/ D inf
ˇi;�i;�i;�

nX
iD1
k.ˇiXi�i C 1k�

T
i � NX/� k2˙

is minimised when � is a solution of

tan.2�/ D 2r

p � q
;

where

p D
nX

iD1
vec.Ri/

T˙�1vec.Ri/; q D
nX

iD1
vec.R?i /T˙�1vec.R?i /;

r D
nX

iD1
vec.Ri/

T˙�1vec.R?i /;

Ri D .ˇiXi�i C 1k�
T
i � NX/ D

�
Ri1 Ri2

�
; R?i D

��Ri2 Ri1

�
;

where R?i is used to denote that it is orthogonal to Ri, i.e. RT
i R?i D 0.

We now return to our example of mouse vertebrae considered in Sect. 9.2.2.
Figure 9.2 shows the partial generalised covariance weighted Procrustes registration
of 30 thoracic mouse vertebrae for three different weighting matrices, ˙ . Two of
the vertebrae were considered earlier. The three weighting matrices used are given
in Eq. (9.6). The first weighting matrix is the same as isotropic GPA, giving the
same weighting to all coordinates and showing approximately the same variability at
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Fig. 9.2 The partial generalised covariance weighted Procrustes registration of 30 mice vertebrae,
using ˙1 (left), ˙2 (middle) and ˙3 (right). The mean shape is shown with a solid line

each landmark. The second choice weights landmarks 1 and 2 (bottom and top-most,
respectively) more heavily than the others, and this is reflected in these landmarks
forming lines pointing towards each other, and more variability being introduced
elsewhere, particularly at landmark 4 (far left landmark). The third weighting matrix
weights the y direction more heavily than the x direction. This forces large rotations
to ensure landmarks 1 and 2 have similar y values across all configurations and gives
large variability to the other landmarks.

9.3.2 Relating CW GPA to the Multivariate Normal
Distribution

If the data set X1;X2; : : : ;Xn comes from a multivariate normal distribution with
unknown mean shape, �, and known covariance matrix, ˙ , that is vec.Xi/ �
Nkm.vec.�/;˙/ then the CW GPA algorithm can be used to maximise the likelihood
of the model and provide the maximum likelihood estimate (MLE) of the mean
shape.

Result 9.3.2. Maximising the likelihood of the multivariate normal model
vec.Xi/ � Nkm.vec.�/;˙/ for a given ˙ is equivalent to minimising
GCWP.X1; : : : ;XnI˙/, and the MLE of the mean shape is

O� D 1

n

nX
iD1

XP
i ; (9.14)

where XP
i is the full covariance weighted Procrustes fit of Xi.
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9.4 CW GPA with Unknown Covariance Matrix

Previously, we have assumed the covariance matrix, ˙ , is known or specified by
the user. We now consider the more general case where ˙ is unknown, and we use
a maximum likelihood approach to estimating the transformation parameters, mean
shape and covariance matrix for the multivariate normal model. This is subject to
the constraint that˙ is positive definite, in order that the transformation parameters
can be re-estimated.

Let X1;X2; : : : ;Xn be shapes from the multivariate normal distribution vec.Xi/ �
Nkm.vec.�/;˙/. The MLE of the mean shape was found in Sect. 9.3, and the MLE
of ˙ can be shown to be

Ȯ D 1

n

nX
iD1

vec.Xi � NX/vec.Xi � NX/T :

Often in applications, we wish to constrain ˙ to be of the form ˙m ˝˙k, in which
case the MLE is found by iteratively solving

Ȯm D 1

nk

nX
iD1
.Xi � NX/T Ȯk.Xi � NX/; Ȯk D 1

nm

nX
iD1
.Xi � NX/ Ȯm.Xi � NX/T ;

as shown by Dutilleul [7]. This estimate can only be solved up to a multiplicative
constant, since ˙m ˝ ˙k D q˙m ˝ .1=q/˙k, for some constant q > 0. If
˙ is singular, this parameterisation potentially removes some singularities. Other
forms of constraints are possible but in general, for ˙ to be positive definite,
c D r.2km � r C 1/=2 individual entries of ˙ need to specified. This means
constraints can be written in the form Avech.˙/ D b where the vech operator lists
the s D km.kmC 1/=2 distinct elements of ˙ and A is a c � s matrix and b is a
vector of length c.

One method of constraining ˙ is to specify the amount of variability in r
directions, where r is the number of transformation parameters to be estimated.
Suppose X D ˇ�� C 1k�

T , then after full Procrustes registration of the shape,
variability due to translation, rotation and scaling has been removed. Let m D 3,
then r D 7, and assuming the angles of rotations, �x, �y and �z are small, cos � and
sin � can be approximated using the Taylor expansions to the first order, so

� D
2
41 0 0

0 cos �x sin �x

0 � sin �x cos �x

3
5
2
4 cos �y 0 sin �y

0 1 0

� sin �y 0 cos �y

3
5
2
4 cos �z sin �z 0

� sin �z cos �z 0

0 0 1

3
5

D
2
41 0 0

0 1 �x

0 ��x 1

3
5
2
4 1 0 �y

0 1 0

��y 0 1

3
5
2
4 1 �z 0

��z 1 0

0 0 1

3
5C O.�2x /C O.�2y /C O.�2z /:
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We write O.�2/ D O.�2x /C O.�2y /C O.�2z /, and we have

vec.X/ D ˇvec
��
�x �y �z

�
�
�C vec

��
1k�x 1k�y 1k�z

��

D ˇ
2
4 �x � �y�z � �z�y C O.�2/
�x�z C �y � �z�x C O.�2/
�x�y C �y�x C �z C O.�2/

3
5C

2
41k�x

1k�y

1k�z

3
5

D ˇ
2
4�x

�y

�z

3
5C ˇ

2
4 0k ��z ��y

��z 0k �x

�y �x 0k

3
5
2
4 �x

�y

�z

3
5C

2
41k 0k 0k

0k 1k 0k

0k 0k 1k

3
5
2
4�x

�y

�z

3
5C O.�2/

D ˇv1 C ˇ�xv2 C ˇ�yv3 C ˇ�zv4 C �xv5 C �yv6 C �zv7 C O.�2/; (9.15)

where

v1 D
2
4�x

�y

�z

3
5 ; v2 D

2
4 0k

��z

�y

3
5 ; v3 D

2
4��z

0k

�x

3
5 ; v4 D

2
4��y

�x

0k

3
5 ;

v5 D
2
41k

0k

0k

3
5 ; v6 D

2
40k

1k

0k

3
5 ; v7 D

2
40k

0k

1k

3
5 :

Therefore, there is approximately no variability in the direction of vj for j D 1; : : : ; r
following isotropic registration. These vectors are linearly independent and, using
the Gram–Schmidt process, can be transformed into r orthonormal vectors, uj,
which is simpler if the mean shape is centred. Specifying a non-zero amount of
variability, �j, for the direction uj, for j D 1; : : : ; r, will be sufficient to ensure ˙
is positive definite. Note, that if m D 2 then r D 4 in the case of full Procrustes
analysis, and Eq. (9.15) simplifies to vec.X/ D ˇu1C ˇ�u2C �xu3C �yu4CO.�2/
where

u1 D 1

k�k

"
�x

�y

#
; u2 D 1

k�k

"
��y

�x

#
; u3 D 1p

k

"
1k

0k

#
; u4 D 1p

k

"
0k

1k

#
:

Constraining˙ to have eigenvectors aligned to the axes simplifies the estimation of
the covariance weighted Procrustes estimate of the translation, as demonstrated by
the following result.

Result 9.4.1. Let ˙ D Pr
jD1 �jujuT

j C
Pkm�r

jD1 �j�j�
T
j where uj are orthonormal

vectors on which variability has been constrained to be �j, and �j and �j are the
remaining eigenvalues and eigenvectors orthogonal to uj. Then, assuming m of
the vectors uj are the columns of .Im ˝ 1k/=

p
k, Xi are centred and vec.Xi/ �

Nkm.vec.�/;˙/, the likelihood is maximised with translation parameter � D 0.
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This leads to the following algorithm, which combines CW Procrustes estimates
of the transformation parameters and maximum likelihood estimates of the mean
shape and covariance matrix to maximise the likelihood in the space orthogonal to
the constraint vectors, for the model vec.Xi/ � Nkm.vec.�/;˙/. Different starting
points for the data may be tried to see if the likelihood can be further improved.
Possible starting points may include the output of isotropic GPA or Bookstein
registrations of a baseline, see [1].

1. Centre shapes: Centre X1;X2; : : : ;Xn.
2. Evaluate mean shape and covariance matrix: Calculate the maximum likeli-

hood estimates of the mean shape, O�, and the covariance matrix, Ȯ . Evaluate the
projection matrix, U D Ikm �Pr

jD1 ujuT
j .

3. Evaluate log-likelihood: Calculate the variability in Ȯ orthogonal to the
constraint vectors, Q̇ D U ȮUT . Replace the last r eigenvalues of Q̇ with �j

for j D 1; : : : ; r and label it Ȯ �. Evaluate the log-likelihood as

log L D �n

2

kmX
jD1

log.2� O�j/�1
2

nX
iD1

�
vec.ˇiXi�i � O�/T. Ȯ �/�1vec.ˇiXi�i� O�/

�
;

where O�j is the jth eigenvalue of Ȯ �.
4. CW OPA: Estimate ˇi and �i using CW OPA to register Xi to NX, using Ȯ � as

the covariance matrix.
5. Repetition: Repeat steps (2)–(4) until log L cannot be increased further.

We will now illustrate the method with an example from computer vision. Figure 9.3
shows the registration of 65 fish outlines obtained from the Kimia database of [17].
The data used here are five Gaussian perturbations of n D 13 fish silhouettes,
where in each image k D 20 landmarks have been placed by hand on the outlines.
Constructing shape models in this manner is useful as a prior model in computer
vision [3]. The data have been registered using the isotropic GPA algorithm and
the covariance weighted Procrustes algorithm. Note that if �j is small then the
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Fig. 9.3 The partial covariance weighted Procrustes registration of 65 fish outlines, using isotropic
GPA (left) and CW Procrustes under the constraints �j D 0:003 (middle) and �j D 0:01 (right)
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registration following CW Procrustes is similar to that obtained by isotropic GPA.
However, if �j is allowed to increase then variability is allowed to remain in the
directions of rotation and translation.

9.5 Simulation Study

In order to highlight the benefits compared to isotropic Procrustes analysis, CW
Procrustes analysis was carried out on simulated data sets from two multivariate
normal distributions, vec.Xi/ � Nkm.vec.�/;˙/. The examples were first suggested
by Lele [15]:

Example 1: vec.X/ � Nkm.vec.�A/;˙A D Im ˝˙k/

Example 2: vec.X/ � Nkm.vec.�B/;˙B D ˙m ˝˙k/

where ˙m D diag.0:001; 1/ and

�A D �B D

2
664

0 5

40 0

0 �5
�40 0

3
775 ; ˙k D

2
664
0:01 0 0 0

0 10 0 �9:999
0 0 0:01 0

0 �9:999 0 10

3
775 :

A total of 130 configurations were sampled from each distribution. In Example 1 we
use �j D 25 and in Example 2, �j D 10. To assess the difference between isotropic
GPA and covariance weighted Procrustes, N D 1000 Monte Carlo samples of each
example were generated. Following registration, the data were rotated to minimise
the Euclidean distance between O�, the estimated mean shape, and �, the true mean
shape of the model, and Ȯ and Ȯ � could then be calculated. This step removes the
arbitrary rotation of the mean shape, and O� was also translated to give the partial
Procrustes fit onto �. The bias of O� and the root mean square error of O�, Ȯ and Ȯ �
were calculated using

Bias. OA/ D 1

N

NX
iD1
OA � A; RMSE. OA/ D

vuut 1

N

NX
iD1
k OA � Ak2;

where OA is an estimator of the parameters in A (here equal to either � or ˙ ). The
results for each of the examples are given in the tables.

In Example 1, the estimates of the mean shape from both algorithms are broadly
similar, largely due to the even variability in the x and y directions at each landmark.
CW Procrustes, however, preserves some of the variability at the outer landmarks
in the y direction, where isotropic GPA does not. The first two principal component
scores from the CW Procrustes algorithm are approximately even and orthogonal
to each other, as we would expect. The isotropic GPA principal components imply
most of the variability is in the scaling, which is a false assessment.



9 Covariance Weighted Procrustes Analysis 203

Example 1 Isotropic GPA CW Procrustes

Bias( O�A)

2
6664

0 �0:015
0:119 0

0 0:016

�0:119 0

3
7775

2
6664

00 �0:033
0:018 0

0 0:033

�0:018 0

3
7775

RMSE( O�A) 0.588 0.596

RMSE( ȮA) 4.489 3.849

RMSE( Ȯ �
A ) 1.412 1.416

Example 2 Isotropic GPA CW Procrustes

Bias( O�B)

2
6664

0 �0:015
0:124 0

0 0:015

�0:124 0

3
7775

2
6664

0 �0:01
�0:026 0

0 0:011

0:026 0

3
7775

RMSE( O�B) 0.428 0.261

RMSE( ȮB) 4.472 2.309

RMSE( Ȯ �
B ) 0.285 0.228

In Example 2, isotropic GPA has removed nearly all variability at the outer
landmarks, because the primary source of variability is in the direction of a rotation,
which isotropic GPA successfully filters out. In turn this pushes the outer landmarks
further away and introduces a sizeable bias into the estimate of the mean shape.
However, CW Procrustes maintains a large proportion of the variability, because it
lies in the direction of a rotation, which has been constrained to a non-zero value. As
a consequence, the estimate of the covariance matrix has much less error than the
isotropic estimate. In summary, covariance weighted Procrustes gives much better
estimates of the true covariance matrix.

9.6 Discussion

As well as the maximum likelihood-based procedure with constraints considered
here, an alternative is to use a Bayesian procedure where the constraints are replaced
by prior modelling assumptions. Theobald and Wuttke [20, 21] have provided a
method for non-isotropic Procrustes based on an empirical Bayes procedure with
factored covariance models. Their algorithm, called THESEUS, employs an inverse
gamma prior model for the covariance parameters, and the parameters of the prior
are estimated from the data. The advantage of using an empirical Bayes prior
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is that one does not need to state specific values for �j. However, it is worth
highlighting that there is nothing in the data that gives information about what
constraints should be used, so whether one chooses to fix constraints on �j as we
have done or uses an empirical Bayes prior is completely up to the user. Alternative
approaches for Bayesian covariance weighted shape analysis were given by Brignell
[2, Chap. 3] using Markov chain Monte Carlo algorithms to simulate from the
posterior distribution with a Wishart prior for inverse of the covariance matrix.

In conclusion, in this chapter we have revisited the popular Procrustes matching
procedure of landmark shape analysis and developed the methodology to the situa-
tion where the landmark coordinates have a completely general covariance matrix.
This work extends previous approaches that were based on factored covariance
structures, and we have demonstrated the methodology in several examples and
applications.
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Appendix

Proof of Result 2.1. Let v D vec.� � X� /, then

D2
pCWP.X; �I˙/ D .v � .Im ˝ 1k/�/

T˙�1.v � .Im ˝ 1k/�/

D vT˙�1v � 2vT˙�1.Im ˝ 1k/�

C�T.Im ˝ 1k/
T˙�1.Im ˝ 1k/�:

The minimising translation is found by setting the first derivative equal to zero:

dD2
pCWP

d�
D �2.Im ˝ 1k/

T˙�1v C 2.Im ˝ 1k/
T˙�1.Im ˝ 1k/� D 0:

The second derivative is clearly positive because˙�1 is positive definite. Therefore,
D2

pCWP is minimised when � D Œ.Im ˝ 1k/
T˙�1.Im ˝ 1k/�

�1.Im ˝ 1k/˙
�1v. �

Proof of Result 2.2. From Eq. (9.2) the minimising translation is O� D Avec.� �
X� /, so for m D 2,

� O�1
O�2
�
D
�
˛1 C ı1 cos � C �1 sin �
˛2 C ı2 cos � C �2 sin �

�
; because, � D

�
cos � sin �
� sin � cos �

�
:

Therefore,

vec.� � X� � 1k�
T/

D
�
.�1 � 1k˛1/ � .X1 C 1kı1/ cos � C .X2 � 1k�1/ sin �
.�2 � 1k˛2/ � .X2 C 1kı2/ cos � � .X1 C 1k�2/ sin �

�
;
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and D2
pCWP.X; �I˙/ D CC P cos2 � CQ sin2 � C R cos � sin � C S cos � C T sin �

where

C D
�
.�1 � 1k˛1/

.�2 C 1k˛2/

�T

˙�1
�
.�1 � 1k˛1/

.�2 C 1k˛2/

�
:

Let � be the real Lagrangian multiplier to enforce the constraint cos2 �C sin2 � D 1
and let L D D2

pCWP.X; �I˙/C �.1 � cos2 � � sin2 �/. Then,

@L

@.cos �/
D 2.P � �/ cos � C R sin � C S D 0;

@L

@.sin �/
D 2.Q � �/ sin � C R cos � C T D 0;

@L

@�
D 1 � cos2 � � sin2 � D 0:

Solving the first two equations simultaneously and substituting the solutions in the
third gives the expressions for cos � , sin � and the quartic equation, respectively. To
show this is a minimum of D2

pCWP, consider the matrix of second derivatives,

S� D
"

@2L
@.cos2 �/

@2L
@.cos �/@.sin �/

@2L
@.cos �/@.sin �/

@2L
@.sin2 �/

#
D
�
2.P � �/ R

R 2.Q � �/
�
:

Let �1 	 �2 be the eigenvalues of S�. Then, jS� � �iIj D .�i C 2�/2 � 2.P C
Q/.�i C 2�/C 4PQ � R2, so .�i C 2�/ D PC Q˙p.P � Q/2 C R2. Given ˙�1
is positive definite, P > 0 and Q > 0, then �2 is strictly positive if P C Q � 2� �p
.P � Q/2 C R2 > 0 which is true if the constraint on � is satisfied. �

Proof of Result 2.3. Let v D vec.�/ and � D vec.X� /, then

D2
CWP.X; �I˙/ D .v � ˇ� � .Im ˝ 1k/�/

T˙�1.v � ˇ� � .Im ˝ 1k/�/

D vT˙�1v � 2ˇ�T˙�1v � 2vT˙�1.Im ˝ 1k/� C ˇ2�T˙�1�

C2ˇ�T˙�1.Im ˝ 1k/� C �T.Im ˝ 1k/
T˙�1.Im ˝ 1k/�:

This implies

dD2
CWP

d�
D �2.Im ˝ 1k/

T˙�1v C 2ˇ.Im ˝ 1k/
T˙�1�

C2.Im ˝ 1k/
T˙�1.Im ˝ 1k/�;

dD2
CWP

dˇ
D �2�T˙�1v C 2ˇ�T˙�1� C 2�T˙�1.Im ˝ 1k/�:
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Therefore, the minimum is at the solution of

B

�
�

ˇ

�
D
�
.Im ˝ 1k/

T˙�1vec.�/
vec.X� /T˙�1vec.�/

�
:

The matrix of second derivatives is clearly positive because˙�1 is positive definite.
�

Proof of Result 2.4. Replacing cos � with ˇ cos � and sin � with ˇ sin � in the
proof of Result 9.2.2 gives D2

CWP.X; �I˙/ D C C Pˇ2 cos2 � C Qˇ2 sin2 � C
Rˇ2 cos � sin � C Sˇ cos � C Tˇ sin � . Let  1 D ˇ cos � and  2 D ˇ sin � , then

dD2
CWP

d 1
D 2P 1 C R 2 C S;

dD2
CWP

d 2
D 2Q 2 C R 1 C T:

Setting these expressions equal to zero and solving them simultaneously gives the
required expressions for  1 and  2. Solving  1 D ˇ cos � and  2 D ˇ sin � subject
to the constraint that cos2 � C sin2 � D 1 gives the rotation and scale parameters.
Given these, the translation is obtained by letting v D vec.� � ˇX� / in the proof
of Result 9.2.1. �

Proof of Result 2.5. If ˙ D Im ˝ ˙k, then the similarity transformation estimates
of Result 9.2.4 can be simplified. For the translation,

O� D Œ.Im ˝ 1k/
T.Im ˝˙k/

�1

�.Im ˝ 1k/�
�1.Im ˝ 1k/

T.Im ˝˙k/
�1vec.� � ˇX� /

D ŒIm ˝ .1T
k˙
�1
k 1k/�

�1ŒIm ˝ .1T
k˙
�1
k /�vec.� � ˇX� /

D ŒIm ˝ .1T
k˙
�1
k 1k/

�1.1T
k˙
�1
k /�vec.� � ˇX� /:

Therefore, O�T D .1T
k˙
�1
k 1k/

�11T
k˙
�1
k .� � ˇX� /, which is zero given 1T

k˙
�1
k X D

0 D 1T
k˙
�1
k �. Referring to the notation of Result 9.2.2, if ˙ D Im ˝ ˙k then

A11 D A22 D .1T
k˙
�1
k 1k/

�11T
k˙
�1
k and A12 D A21 D 0T

k . Then, from Eq. (9.4), if X
and � are located such that 1T

k˙
�1
k X D 0 D 1T

k˙
�1
k �, then ˛i D ıi D �i D 0, for

i D 1; 2, and P, Q, R, S and T simplify to

P D Q D XT
1 ˙
�1
k X1 C XT

2 ˙
�1
k X2;

R D �2.XT
1 ˙
�1
k X2 � XT

2 ˙
�1
k X1/ D 0;

S D �2.XT
1 ˙
�1
k �1 C XT

2 ˙
�1
k �2/;

T D 2.XT
2 ˙
�1
k �1 � XT

1 ˙
�1
k �2/:

The minimising rotation and scaling can then be obtained and have been derived by
Brignell [2]. �
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Proof of Result 3.1.

GCWP.X1; : : : ;XnI˙/ D
nX

iD1
vec.Ri� /

T˙�1vec.Ri� /;

D
nX

iD1

�
Ri1 cos � � Ri2 sin �
Ri2 cos � C Ri1 sin �

�T

˙�1
�

Ri1 cos � � Ri2 sin �
Ri2 cos � C Ri1 sin �

�

D p cos2 � C q sin2 � C 2r cos � sin �

dGCWP

d�
D .q � p/ sin 2� C 2r cos 2�:

Therefore, the minimum of GCWP is when � is a solution of this last equation. �

Proof of Result 3.2. The log-likelihood of the multivariate normal model, vec.Xi/ �
Nkm.vec.�/;˙/, where Xi are shapes invariant under Euclidean similarity transfor-
mations, is

log L.X1; : : : ;XnI�;˙/ D �n

2
log j2�˙ j

�1
2

nX
iD1

vec.ˇiXi�i C 1k�
T
i � �/T˙�1vec.ˇiXi�i C 1k�

T
i � �/:

Therefore, the MLE of the mean shape is the solution of

d log L

d�
D

nX
iD1

˙�1vec.ˇiXi�i C 1k�
T
i / � n˙�1� D 0:

Hence, O� D NX D 1
n

Pn
iD1.ˇiXi�i C 1k�

T
i / and

log L D �n

2
log j2�˙ j � 1

2
inf

ˇi;�i;�i

nX
iD1
kˇiXi�i C 1k�

T
i � NXk2˙

D �n

2
log j2�˙ j � 1

2
GCWP.X1; : : : ;XnI˙/:

Therefore, minimising GCWP is equivalent to maximising L.X1; : : : ;XnI�;˙/. �

Proof of Result 4.1. Let the m columns of .Im ˝ 1k/ be 1j for j D 1; : : : ;m and
let �ij be the jth element of the translation vector for shape Xi, then the log of the
likelihood, L, for the multivariate normal model can be written:

log L D �n

2
log j2�˙ j � 1

2

nX
iD1

�
vec.ˇiXi�i � �/T˙�1vec.ˇiXi�i � �/

�

�1
2

nX
iD1

0
@�2

mX
jD1

�ij1
T
j ˙
�1vec.ˇiXi�i � �/C

mX
jD1

�2ij1
T
j ˙
�11j

1
A :
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Now, 1T
j ˙
�1 D ��1

jp
k
1T

j 1j1
T
j as all the eigenvectors of ˙ are orthogonal to 1j except

the one proportional to 1j. Therefore,

log L D �n

2
log j2�˙ j � 1

2

nX
iD1

�
vec.ˇiXi�i � �/T˙�1vec.ˇiXi�i � �/

�

�1
2

nX
iD1

0
@�2

mX
jD1

�ij

�j

p
k
1T

j 1j1
T
j vec.ˇiXi�i � �/C

mX
jD1

�2ij

�j

p
k
1T

j 1j1
T
j 1j

1
A :

Given Xi and � are all centred, 1T
j vec.ˇiXi�i � �/ D 0, and the maximizing

translation is clearly �ij D 0 for all i D 1; : : : ; n and j D 1; : : : ;m. �
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Chapter 10
Elastic Shape Analysis of Functions, Curves
and Trajectories

Shantanu H. Joshi, Jingyong Su, Zhengwu Zhang,
and Boulbaba Ben Amor

Abstract We present a Riemannian framework for geometric shape analysis of
curves, functions, and trajectories on nonlinear manifolds. Since scalar functions
and trajectories can also have important geometric features, we use shape as an all-
encompassing term for the descriptors of curves, scalar functions and trajectories.
Our framework relies on functional representation and analysis of curves and scalar
functions, by square-root velocity fields (SRVF) under the Fisher–Rao metric,
and of trajectories by transported square-root vector fields (TSRVF). SRVFs are
general functional representations that jointly capture both the shape (geometry) and
the reparameterization (sampling speed) of curves, whereas TSRVFs also capture
temporal reparameterizations of time-indexed shapes. The space of SRVFs for
shapes of curves becomes a subset of a spherical Riemannian manifold under
certain special constraints. A fundamental tool in shape analysis is the construction
and implementation of geodesic paths between shapes. This is used to accomplish
a variety of tasks, including the definition of a metric to compare shapes, the
computation of intrinsic statistics for a set of shapes, and the definition of probability
models on shape spaces. We demonstrate our approach using several applications
from computer vision and medical imaging including the analysis of (1) curves,
(2) human growth, (3) bird migration patterns, and (4) human actions from video
surveillance images and skeletons from depth images.
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10.1 Introduction and Background

This chapter describes several geometric ideas for the analysis of scalar functions,
curve shapes from boundaries, and trajectories of shapes from data recordings,
images, and video sequences. These different modalities are finding novel uses in
statistical pattern recognition, machine vision, medical imaging, and intelligent
informatics-based applications. Examples of functional data include growth curves,
mass spectrometry data, bio-signals, and human activity data [5, 14, 20, 21, 23,
30, 37]. Curve shapes are geometric descriptions of the underlying morphological
information of objects from images. Applications in computer vision and medical
imaging are often interested in analyzing well-defined continuous landmarks or
boundary characterizations of objects that give rise to contour (both open or closed)-
based representations of shapes [18, 19, 29, 35]. Trajectories of shapes can arise
from several different applications. For example, human activity recognition has
attracted tremendous interest in recent years because of its potential in applications
such as surveillance, security, and human body animation. The shape sequences
have also been called trajectories or curves on shape spaces [13, 15]. Figure 10.1
shows examples of data arising from functions, curves, and trajectories.

CurvesFunctions

α : [0 , 1] → M
Cell shape sequenceHuman action sequences
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Fig. 10.1 Examples of (a) functions from growth data [5], (b) curves from biomedical images
[6, 9, 10] and protein structure [17], and (c) trajectories from human action sequences [2] and a
cell video sequence [1]
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There are important reasons for studying such diverse descriptions of data
using a common underlying approach. These data can be efficiently represented
by continuous scalar-, vector- or tensor-valued functions. While curves have
obvious geometric features associated with them, it is observed that continuous
representations of functional data and trajectories also have local characteristic
patterns such as ridges and valleys that correspond to their shapes. Essential
tasks in performing curve, function, or trajectory analyses involve matching their
representations to obtain correspondences between them, quantifying the mismatch
by distances between them, and estimating statistical quantities such as means and
covariances of a collection of objects. Further, these objects can undergo certain
invariant transformations that preserve their shapes. For example, curves can be
rotated, translated, scaled, or reparameterized without changing their shapes. The
speed of trajectories can change without changing the form of the actions. Functions
can be uniformly scaled without changing their shapes. Finally, these objects can
also have additional local measures (for example, gene expression values along with
shape or thickness of corpus callosum curve boundaries) associated with them. What
is needed then is a methodology that will allow the representation, matching, and
analysis of functions, curves, and trajectories by using their shapes. Throughout this
chapter we will use the term shape to denote the invariant feature-rich geometric
information in functions, curves, and trajectories.

This motivates the need for a metric-based geometric approach where one can
have a geometric representation of shapes, construct a space of such representations,
and define an appropriate metric on the space. The spaces of such representa-
tions turn out to have a nonlinear geometry because of various constraints (such
as rotation or scale invariance) on the definitions of shapes. Riemannian approaches
are particularly well suited for the formulation and analysis of continuous-valued
representations arising from such complex applications, since they can efficiently
exploit the intrinsic nonlinearity of the representations and the geometry of the
underlying spaces of those representations. We also observe that this metric-based
approach is fundamentally different from the discriminative approach where one
is only interested in matching objects, without necessarily defining the underlying
space. A main advantage of the discriminative approach over the metric-based
approach is that it tends to be considerably faster, since it is mostly concerned
with finding distances between shapes only. This is helpful in problems such as
pattern recognition and classification for massive data sets. However, discriminative
approaches have several limitations. They generally lack tools to allow continuous
deformations between shapes, and thus there is no notion of correspondences
between shapes. This makes it difficult to understand local shape differences,
especially in biological applications. Importantly, they do not provide tools for com-
puting statistical quantities such as shape averages and covariances. Thus they do
not allow generative modeling of shapes, where one may be interested in sampling
from distributions imposed on shapes. As a result, they do not aid in the goal of
shape understanding, which is not only concerned with representing and matching
shapes, but is also broadly involved in performing statistical inferences on shapes.
The ground work for the metric-based approach was laid in Darcy Thompson’s [31]
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work where he imposed coordinate systems on geometric objects and suggested that
instead of comparing them directly, one could compare the transformations used
to warp them to each other. Kendall [12] and Dryden and Mardia [3] proposed a
geometric approach for analyzing landmark-based configurations. A new approach
that analyzed differential geometric representations of images in computer vision
and medical imaging was proposed by Grenander and Miller [4]. This approach
directly modeled transformations between objects as elements of differential groups
or manifolds and presented a method for computing distances between them.

In this chapter, we will follow the metric-based Riemannian approach, for the
analysis of the functional, curve, and trajectory data, where (1) we will define
a suitable continuous-valued representation, (2) construct a shape space of such
representations along with a set of invariant transformations that preserve the shape,
(3) define a suitable metric on the shape space, (4) find shortest paths (geodesics)
between shapes that enable matching as well as deformations between them, and
finally (5) introduce tools that allow statistical analysis of shapes. The underlying
representation for functions, curves, and trajectories makes use of the square-root
velocity formulation [7, 8, 25] that simplifies the representation as well as the
metric and leads to efficient shape comparisons between objects. Fundamental to
this approach is the notion of the Riemannian metric which turns out to be the
Fisher–Rao metric in special cases [7, 22, 25, 26]. The reader will also appreciate
the common features in the Riemannian framework that is used to analyze different
elements such as curves, functions, and trajectories.

10.2 Elastic Shape Analysis of Functions

Functional data analysis (FDA) is widely applicable to different problems in both
computer vision and statistics [14, 20, 21, 23, 30, 37]. Here, the objects of interest
are functions on a certain domain D, f W D! R, and one is interested in using them
to perform modeling, prediction, and regression for a variety of problems. These
observations are typically treated as square-integrable functions, with the resulting
set L2 forming an infinite-dimensional Hilbert space. The standard L

2 inner product,
hf1; f2i D

R
D f1.t/f2.t/dt, provides the Hilbert structure for comparing and analyzing

functions. For example, one can perform functional principal component analysis
(FPCA) of a given set ffig using this Hilbert structure. Similarly, a variety of
applications, such as functional linear regressions and partial least squares, have
been proposed for working with functional data.

A difficulty arises when the observed functions exhibit variability in their
arguments. In other words, instead of observing a function f .t/ on an interval,
say Œ0; 1�, one observes a “time-warped” function f .�.t// where � is a time-
warping function. The time-warping functions are defined as the set of orientation-
preserving diffeomorphisms of a certain interval, say Œ0; 1�. We use � to denote
all such time-warping functions, where � D f� W Œ0; 1� ! Œ0; 1�; �.0/ D 0;

�.1/ D 1; � is a diffeomorphismg. This extraneous effect of � , also termed phase
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variability, has the potential to add artificial variance in the observed data and
needs to be accounted for in statistical analysis. Let ffig be a set of observations
of a functional variable f . Then, for any time t, the observations ffi.t/g have some
inherent variability, termed amplitude variability. However, if we observe ffi ı �ig
instead, for random warpings �is, then the resulting variability in ffi.�i.t//g has been
enhanced due to random �is. The problem of removing the randomness in �is is
called functional registration or phase–amplitude separation [26, 33].

A natural idea of performing registration for a pair of functions f1; f2 is using
the criterion inf�2� kf1 � f2 ı �k, where k � k denotes the standard L

2 norm. But it
turns out to be problematic because of several issues. The first issue is that it is not
symmetric. The optimal alignment of f1 to f2 is different from the alignment of f2 to
f1, in general, i.e., inf�2� kf1 ı�� f2k ¤ inf�2� kf1� f2 ı�k. The second issue is that
it allows degeneracy, that is, one can reduce the cost arbitrarily close to zero even
when the two functions may be quite different. This is commonly referred to as the
pinching problem in the literature [21]. Pinching implies that a severely distorted �
is used to eliminate those parts of one function (f1) that do not match the other (f2).
The pinching problem can happen even when f1 and f2 are very different. To avoid
this problem, people may impose a roughness penalty on � such that the criterion
becomes inf� .kf1 � f2 ı �kC �R.�//, where R is a smoothness penalty on the � to
keep it close to �id D t. But important issues such as how to choose the parameter �
or how to align multiple functions still remain. The functional registration problem
suffers from these issues because kf1 � f2k ¤ kf1 ı � � f2 ı �k. We can understand
this point by the following way: if f1.t/ matches f2.t/ at the very beginning, then by
warping with � , now f1.�.t// matches f2.�.t//. Each pointwise registration remains
unchanged but its L

2 norm changes. Hence, the L
2 norm is not a proper metric

to solve the registration problem. We suggest that a solution could be achieved by
deriving an elastic metric that is better suited for registration of functions.

Representation of Functions Let f be a real-valued function on the domain Œ0; 1� W
f W Œ0; 1�! R such that f is absolutely continuous. Let F denote the set of all such
functions. For any function f 2 F , we define a new function called the square-root
velocity field (SRVF) according to

v W Œ0; 1�! R; v.t/ D
Pf .t/q
jPf .t/j

: (10.1)

If the original f is absolutely continuous, then the resulting v is square integrable.
Thus, we define the set of all SRVFs as L2.Œ0; 1�;R/, or simple L

2. For every v 2
L
2, one can precisely recover the function f using the equation: f .t/ D f .0/ CR t
0
v.s/jv.s/jds. Given f(0), the mapping f , v given by Eq. (10.1) is invertible. We

use v � � to denote the SRVF of f ı � , which can be calculated as

v � � D .Pf ı �/ P�q
j.Pf ı �/ P� j

D .Pf ı �/q
j.Pf ı �/j

p P� D .v ı �/p P�: (10.2)
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Elastic Riemannian Metric The motivation of using SRVF representation for
FDA is that an elastic Riemannian metric, which is invariant to the domain
warping, becomes the L2 metric under the SRVF representation [26]. That is, under
the Riemannian metric, we have dr.f1; f2/ D dr.f1ı�; f2 ı�/, where dr represents the
distance resulting from this Riemannian metric. But, this metric is hard to analyze
by the nature of its definition [26]. However, the SRVF transformation provides a
simple solution: under the SRVF representation, this Riemannian metric becomes
the standard L

2 metric: dr.f1; f2/ D kv1 � v2k. Therefore, for any two SRVFs given
by v1; v2 2 L

2 and � 2 � , we have kv1 � � � v2 � �k D kv1 � v2k. This property
allows us to solve the problem of registration of functions in a simple manner.

Pairwise and Multiple Functions Alignment With the help of the elastic Rieman-
nian metric, the registration (phase–amplitude separation) between functions can be
solved as follows. For two functions f1; f2 that need to be registered and their SRVFs
v1; v2, we minimize the following objective function:

inf
�2� kv1 � .v2 ı �/

p P�k D inf
�2� kv2 � .v1 ı �/

p P�k: (10.3)

The optimization can be performed using the well-known numerical procedure
called the dynamic programming algorithm. Here, not only does the optimal �
help to register the functions f2 and f1 but the infimum value of the objective
function also becomes a proper metric (i.e., it satisfies nonnegativity, symmetry,
and triangle inequality) for comparing two functional objects. Thus it defines a
distance between two functions, which we call the amplitude difference. This metric
enables statistical analysis of functions, for example, one can calculate the mean
function, perform functional principal component analysis, and develop statistical
models for capturing observed functional variations and performing hypothesis
tests. Figure 10.2 shows an example of this alignment between two Gaussian density
functions. After optimization, the two functions are nicely aligned, as shown in the
middle panel, and the resulting optimal warping �� is shown in the right panel. In
case we have multiple functions that need to be aligned, we can extend the previous
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i s

pairwise alignment as follows. Equation (10.3) defines a proper metric in a certain
quotient space (L2=� ), and we can use this metric to define a mean function, e.g.,
Karcher mean [11]. This mean function serves as a template for aligning other
functions, i.e., each function is aligned to this mean function. Given a collection
of functions f1; f2; : : : ; fn, let v1; v2; : : : ; vn denote their SRVFs, respectively. The
problem of multiple alignment of these functions and Karcher mean computation
are formulated and solved jointly using an iterative procedure: initialize the mean
function � and iteratively solve for

�i D arg inf
�2� k� � .vi ı �/

p P�k; i D 1; 2; � � � ; n; and

� D 1

n

nX
iD1
.vi ı �i/

p P�i: (10.4)

Two synthetic examples of multiple function alignment are shown in Fig. 10.3. The
leftmost panel shows the original functions whose heights and locations of peaks
are different. The aligned functions are shown in the middle panel, and the optimal
warping functions ��i s are shown in the right panel.

In the next experiment, we show an example (Fig. 10.4) of the multiple functions
alignment for real functional data, the Berkeley growth data set, which contains 54
female and 39 male subjects. To better illustrate, we analyze the first derivatives
of the growth curves. The top row of Fig. 10.4 shows the alignment for 54 female
subjects and the bottom row shows the alignment for 39 male subjects. The left
column shows the original data given by the first derivative of the growth curves.
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Fig. 10.4 Alignment of growth data. The top row shows the growth data for 54 females and the
bottom row shows the growth data for 39 males

The middle column shows the aligned data, and the right column shows the mean
˙ (cross-sectional) standard deviation after alignment. The functional alignment
results reveal that while the growth spurts for different individuals occur at slightly
different times, several important growth spurts occur between the ages 3 and 5, 6
and 8, 9 and 11, and 13 and 14 years for males.

10.3 Elastic Shape Analysis of Curves

In Sect. 10.2, we studied the problem of registration of functions, where we tried
to find a time-warping function � that achieves an optimal matching between f1
and f2 ı � . In this section, the objects of interest are shapes of curves, which are
continuous functions from Œ0; 1� to R

n. The warping function � in this case performs
the role of reparameterization of curves, which is a shape-preserving transformation,
and needs to be explicitly modeled in the task of comparing shapes in an elastic
manner. Similar to Sect. 10.2, we will represent shapes of curves using SRVFs and
use the fully invariant elastic Riemannian metric to enable matching between them.

Representation and Shape Space of Curves The shape of an n-dimensional open
parameterized curve ˇ, such that ˇ.s/ W Œ0; 1� ! R

n;8s is defined by a function
[7, 8, 25] q W Œ0; 1�! R

n as
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q.s/ D
P̌.s/q
jj P̌.s/jjRn

2 R
n; (10.5)

where n D 2; 3 for two- and three-dimensional curves. In this section we will
assume n D 2without loss of generality. This vector-valued function q is the tangent
vector normalized by the square root of the instantaneous speed along the curve and
is a local descriptor of the geometry of the curve. It is observed that in the absence of
the square-root sign, the function q is a unit tangent vector to the curve. The original
curve ˇ can be reconstructed up to a translation using ˇ.s/ D R s

0
jjq.t/jj q.t/ dt.

The scale invariant shape representation is given by normalizing the function q by
its magnitude as qqR 1

0 .q.s/;q.s//R2ds
. The norm in the denominator is a Euclidean norm,

and .�; �/R2 is the standard Euclidean inner product in R
2. Throughout this section,

the function q refers to this scale-invariant form unless indicated otherwise.
Due to this unit-scaling constraint, the space of all translation and scale-invariant

shapes becomes a Hilbert sphere denoted by Q. Formally, the space Q is defined as

Q �
�

q 2 L
2j
Z 1

0

.q.s/; q.s//R2ds D 1; q.s/ W Œ0; 1�! R
2


: (10.6)

Ultimately, we are interested in analyzing curves in a fully invariant manner,
i.e., we would like to consider an invariant space of shapes given by the quotient
space modulo “shape preserving” transformations including rigid rotations and
reparameterizations. Rotations are modeled by multiplication of a rotation matrix O�
q.s/ D Oq.s/;8s, where O 2 SO.2/. However, the invariance to reparameterization
is the most interesting shape-preserving transformation and facilitates elastic shape
analysis of curves. Reparameterization gives rise to a change in speed of the curve
without changing its shape. It is represented by a nonlinear differentiable map (with
a differentiable inverse) also referred to as a diffeomorphism, which is defined as
� 2 � in Sect. 10.2. Analogous to Eq. (10.2), a reparameterization of a shape q by
� is given by q � � D . q ı �/p P� . Thus the elastic shape space of open curves is
defined as the quotient space,

So D Q=.SO.2/ � � /: (10.7)

This framework also allows us to represent closed boundaries (ˇ.s/ W Œ0; 2�� !
R
2;8s) of objects by imposing an additional closure constraint on the curves.

This closure constraint is written as
R 2�
0
P̌.s/ds D 0, in terms of the coordinate

function, and is specified as
R 2�
0

q.s/jjq.s/jjds D 0, in terms of the shape
function. One can then define the set of such translation, scale-invariant, and
closed representations as the pre-shape space of the curve shapes and denote it by
C � ˚

qjq 2 Q;
R

q.s/jjq.s/jjds D 0�. This pre-shape space C is actually a subset
of an infinite-dimensional unit sphere as a result of the scale-invariant constraint
and represents all closed elastic curves invariant to translation and uniform scaling.
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Fig. 10.5 Illustration of the shape space of open curves (left) and closed curves (right). Also
shown are the illustrations for quotient spaces and the geodesics for open and closed curves,
respectively

The elastic shape space for closed curves is then given by the quotient space
Sc D C=.S1 � SO.2/ � � /. Figure 10.5 shows a schematic of the shape space
of open and closed curves.

For simplicity, we will describe the theory for open curves in this chapter. The
reader is referred to [7, 8, 25] for the theory and implementations for closed curves
in detail.

Parameterization-Invariant Elastic Metric An important geometrical construct
for the statistical analysis of the shapes is the definition of a tangent space. The
tangent space allows for local linearization of the shape space and enables the use
of Euclidean shape statistics for a population. The tangent space of Q is given by

Tq.Q/ �
˚
v 2 L

2jv ? Q
�
: (10.8)

We equip the tangent spaces of Q with a smoothly varying Riemannian metric that
measures infinitesimal lengths on the pre-shape space. This inner product is first
defined generally on L

2 and then induced on the tangent space of Q. Given a pair of
tangent vectors u; v 2 Tq.Q/ the metric is defined as

hu; vi D
Z 1

0

.u.s/; v.s//R2ds: (10.9)

This metric is fully invariant to rigid motions as well as reparameterizations. Owing
to the reparameterization due to invariance, this metric is an elastic metric on the
shape space of curves.

Elastic Shape Matching Similar to Sect. 10.2, we use geodesics between two
points on the shape space for comparing shapes. The length of the geodesic
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determines an elastic quantitative distance between two shapes, whereas the
full geodesic path achieves a continuous elastic deformation between them. The
geodesic is computed under the Riemannian metric defined in Eq. (10.9). Since the
space Q is a Hilbert sphere, the geodesic between two points (shapes) q1 and q2 can
be expressed analytically as

�t.q1I f / D cos
�
t cos�1hq1; q2i

�
q1 C sin

�
t cos�1hq1; q2i

�
f ; (10.10)

where t 2 Œ0; 1� and the initial tangent vector f 2 Tq1 .Q/ is given by f D q2 �
hq1; q2iq1. Then, the geodesic distance between the two shapes q1 and q2 in Q is
given by

d.q1; q2/ D
Z 1

0

p
h P�t; P�tidt (10.11)

The quantity P�t is also referred to as the velocity vector along the geodesic path �t.
It is also noted that �0.q1/ D q1 and �1.q1/ D q2: The geodesic is computed using
a path-straightening method [7, 8, 25] that initially connects the two points q1 and
q2 using an arbitrary path in Q and then iteratively straightens it to form the shortest
path. The elastic geodesic distance between shapes of open curves is then defined as

dSo.q1; q2/ D min
O2SO.2/;�2� d.q1; .Oq2/ � �/: (10.12)

The above geodesic is also computed iteratively using the path-straightening
method. At each step, the optimal rotation O� is found by carrying out a singular
value decomposition O� D R 1

0
q1.s/q2.s/Tds. The optimal reparameterization �� at

each step can be efficiently found as the minimizer

�� D argmin
�

	Z 1

0

�jjq1 � � � eq2jj2� ds



; (10.13)

where eq2 D O�q2. Again similar to Sect. 10.2, Eq. (10.13) can be solved numerically
using dynamic programming. Figure 10.6 shows examples of geodesics between
both open and closed curves using nonelastic (��.s/ D s) and elastic matching. It is
observed that elastic geodesics preserve local geometric features when deforming
curves thus leading to better shape matching.

10.4 Elastic Shape Analysis of Trajectories on Manifolds

In Sects. 10.2 and 10.3, we modeled functional data and shape boundaries of objects
in images. There the focus was on function/shape representation, matching, and
analysis. In this section, our aim is to model a temporal sequence of such objects
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Fig. 10.6 Examples of geodesics between shapes of curves for nonelastic (��.s/ D s) and elastic
matching. (a) An example of matching toy curves along with the correspondence between them.
(b) Examples of hand and human shapes
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b

Fig. 10.7 Color (a) and depth (b) video streams filmed by a Kinect-like camera from the Cornell
activity data set. The body boundaries are extracted to yield close curve shape representation or
the body joints are estimated to obtain a skeletal shape representation from videos

instead of the objects themselves. Specifically we address the problem of regis-
tration, modeling and comparison, and statistical analysis of shapes of trajectories
on Riemannian manifolds. Shown in Fig. 10.7 are two examples of temporal shape
representations by trajectories (animations) on a Riemannian manifold. The figure
illustrates video streams of color and depth images collected by a depth-consumer
camera. When the camera detects a person, an important problem in computer vision
is to recognize his/her action or activity. To tackle this problem the following two
temporal representations can be considered; (1) the body contours detected from
the flow of color images and (2) the body joints (3D skeleton) estimated from the
depth images [24]. In the first case, one can use static shape representation given
in Sect. 10.3 and extend it to trajectories (animation of curve shapes) to model
the temporal evolution. In the second case, trajectories on Kendall’s shape space
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Fig. 10.8 Left: a trajectory
on S

2, Right: mean trajectory
(shown in black) and
point-wise variance of this
trajectory (shown by yellow
ellipses) observed under
arbitrary parameterizations

Trajectory on S2 Mean and variance
under arbitrary parameterizations

(of 3D landmark configurations) [3, 12] provide a natural representation suitable for
temporal shape analysis, as will be described later in this section.

An important issue here is that trajectories are often observed under arbitrary
temporal evolutions. If this temporal variability is not accounted for in the analysis,
then the resulting statistical summaries will not be precise. The mean trajectory
may not be representative of individual trajectories and the cross-sectional variance
will be artificially inflated. This, in turn, will greatly reduce the effectiveness of
any subsequent modeling or analysis based on the estimated mean and covariance.
As a simple example consider the trajectory on S

2 shown in the left of Fig. 10.8.
We simulate a set of random, discrete observation times and generate observations
of this trajectory at these random times. These simulated trajectories are identical
in terms of the points traversed but their evolutions or parameterizations are quite
different. The results for the cross-sectional mean and variance are shown on the
right. We draw the sample mean trajectory in black and the sample variance at
discrete times using tangential ellipses. Not only is the mean fairly different from
the original curve, the variance is purely due to randomness in observation times
and is somewhat artificial. This problem does not exist if we observe the trajectory
at fixed, synchronized times instead.

Another issue is that shape observations are typically not in Euclidean spaces.
Instead, the underlying spaces are Riemannian manifolds. This fact presents a
formidable challenge in developing a comprehensive framework for analyzing such
data. Although there has been progress in the removal of temporal variability in
Euclidean spaces [14, 32, 33], there has not been any treatment of trajectories
on Riemannian manifolds. Since activities can be performed at different execution
rates, their corresponding shape curves will exhibit distinct evolution rates. Veer-
araghavan et al. [34] accounted for the time-warping variability but their method
has some fundamental problems. The cost function is not a proper distance. In fact,
it is not even symmetric. We describe this problem in mathematical terms as follows.
Let ˛ denote a smooth trajectory on a Riemannian manifold of interest M, where
M is endowed with a Riemannian metric h�; �i. Let M denote the set of all such
trajectories: M D f˛ W Œ0; 1� ! Mj˛ is smoothg. Let � be a diffeomorphism as
defined in Sect. 10.2. If ˛ is a trajectory on M, then ˛ ı � is a trajectory that follows
the same sequence of points as ˛ but at the evolution rate governed by � . More
technically, the group � acts on M, M � � !M, according to .˛; �/ D ˛ ı � .
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Given two smooth trajectories ˛1; ˛2 2 M, we want to register points along
the trajectories and compute a time-warping invariant distance between them. For
performing comparison of trajectories, we need a metric and, at first, we consider a
more conventional solution. Since M is a Riemannian manifold, we have a natural
geodesic distance dm between points on M. Using dm, one can compare any two
trajectories: ˛1; ˛2 W Œ0; 1� ! M, as dx.˛1; ˛2/ D

R 1
0

dm.˛1.t/; ˛2.t//dt : Although
this quantity represents a natural extension of dm from M to M, it suffers from the
problem that dx.˛1; ˛2/ ¤ dx.˛1 ı �1; ˛2 ı �2/ in general. It is not preserved even
when the same � is applied to both the trajectories, i.e., dx.˛1; ˛2/ ¤ dx.˛1ı�; ˛2ı�/
generally. If we have an equality in the last case, for all �s, then one can develop
a fully invariant distance and use it to register trajectories properly, as described
later. So, the failure to have this equality is in fact a key issue that forces us to look
for other solutions in situations where trajectories are observed at random temporal
evolutions.

We introduce a quantity that provides both a cost function for temporal regis-
tration and a proper distance for comparison of trajectories [27, 28]. This distance
is used to define statistical summaries, such as sample means and covariances, of
synchronized trajectories and “Gaussian-type” models to capture their variability
at discrete times. It is invariant to identical time warpings (or temporal reparame-
terizations) of trajectories. This is based on a novel mathematical representation of
trajectories, termed transported square-root vector field (TSRVF), and the L

2 norm
on the space of TSRVFs.

Representation and Space of Trajectories Let c be a point in M that we will
designate as a reference point. For any smooth trajectory ˛ 2 M, the transported
square-root vector field (TSRVF) is a parallel transport of a scaled velocity vector
field of ˛ to a reference point c 2 M according to

h˛.t/ D P̨ .t/˛.t/!cpj P̨ .t/j 2 Tc.M/ ;

where j � j is defined by the Riemannian metric on M and the tangent space at c is
denoted by Tc.M/. Since ˛ is smooth, so is the vector field h˛ . Let H D fh˛j˛ 2Mg
be the set of smooth curves in Tc.M/ obtained as TSRVFs of trajectories in M.
If M D R

n with the Euclidean metric then h is exactly the square-root velocity
function defined in [7, 8, 25] and in Sect. 10.3 of the present chapter.

Rate-Invariant Metric for Comparison and Registration Since a TSRVF is a
path in Tc.M/, one can use the L

2 norm to compare such trajectories. Let ˛1 and
˛2 be two smooth trajectories on M and let h˛1 and h˛2 be the corresponding

TSRVFs. The distance between them is dh.h˛1 ; h˛2/ D
�R 1

0
jh˛1.t/ � h˛2.t/j2dt

� 1
2
.

The main motivation of this setup—the TSRVF representation and L
2 norm—

comes from the following fact. For any ˛1; ˛2 2 M and � 2 � , the distance
dh satisfies dh.h˛1ı� ; h˛2ı�/ D dh.h˛1 ; h˛2/. In geometric terms, this implies that
the action of � on H under the L

2 metric is by isometries. Now we are ready to
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define the quantity that will serve as both the cost function for registration and the
distance for comparison. This quantity is essentially the shortest distance dh between
parameterized trajectories, defined as

ds.h˛1 ; h˛2/ D inf
�1;�22�

dh.h˛1ı�1 ; h˛2ı�2/ : (10.14)

It can be shown that ds is a proper distance and invariant to arbitrary time warpings.
The optimal correspondence between ˛1 and ˛2 can be solved according to

�� D argmin
�2�

	Z 1

0

jh˛1.t/ � h˛2.�.t//
p
P�.t/j2dt


 1
2

: (10.15)

Statistical Summaries of Trajectories An additional advantage of this framework
is that one can compute an average of several trajectories and use it as a template
for future classification. Furthermore, this template can be used for registering
multiple trajectories. We use the notion of the Karcher mean [11] to define and
compute average trajectories. Given a set of sample trajectories ˛1; : : : ; ˛n on M,
the Karcher mean is defined as � D argmin˛2M

Pn
iD1 ds.h˛; h˛i/

2 : For computing
and analyzing the second and higher moments of a sample trajectory, the tangent
space T�.t/.M/, for t 2 Œ0; 1�, is used. This is convenient because it is a vector space
and one can apply more traditional methods here. Let OK.t/ be the sample covariance
matrix, with the trace O.t/ D trace. OK.t//. This O.t/ represents a quantification of
the cross-sectional variance, as a function of t, and can be used to study the level
of alignment of trajectories. Also, for capturing the essential variability in the data,
one can perform principal component analysis (PCA) on the tangent spaces. An
important use of means and covariances of trajectories is in devising probability
models for capturing the observed statistical variability and for using these models
in evaluating p-values of future observations. One can use the tangent space to
impose a probability model since this is a vector space. Then, the p-value is defined
as the proportion of random trajectories that will have lower probability density
under a given model when compared to the test trajectory.

As a simple example, we apply this framework to bird migration data first, where
the observations are on unit spheres. This data set has 35 migration trajectories
of Swainson’s Hawk, measured from 1995 to 1997, each having geographic
coordinates measured at some random times, where the underlying space is M D S

2.
Several sample paths are shown at the top row in Fig. 10.9a. In the bottom panel
of Fig. 10.9a, we show the optimal warping functions f��i g used in aligning them
and this clearly highlights a significant temporal variation present in the data.
In Fig. 10.9b,c, we show the Karcher mean � and the cross-sectional variance O
without and with registration, respectively. In the top row, � is displayed using
colors, where red areas correspond to higher variability. In the bottom row, the
principal modes of variation are displayed by ellipses on tangent spaces. We use
the first and second principal tangential directions as the major and minor axes of
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Fig. 10.10 Registration of two trajectories on the shape space of planar contours

ellipses and the corresponding singular values as their lengths. We observe that
(1) the mean after registration better preserves the shapes of trajectories and (2)
the variance ellipses before registration have their major axes along the trajectory
while the ellipses after registration exhibit the actual variability in the data. Most
of the variability after registration is limited to the top end where the original
trajectories indeed have differences. Next we construct a “Gaussian-type” model
for these trajectories using estimated summaries for two cases (with and without
temporal registration), as described previously, and compute p-values of individual
trajectories using Monte Carlo simulation. The results are shown in Fig. 10.9d,
where we note a general increase in the p-values for the original trajectories after
the alignment. This is attributed to a reduced variance in the model due to temporal
alignment and the resulting movement of individual samples closer to the mean
values.

Motivated by the problem of analyzing human activities using video data, we
are interested in alignment, comparison, and averaging of trajectories on the shape
space of planar, closed curves. There are several mathematical representations
available for this analysis, and we use the representation of [25]. The benefits of
using this representation over other methods are discussed in Sect. 10.3. So here M
is the elastic shape space of planar closed curves. An example of registering two
trajectories of planar closed curves from the same class is shown in Fig. 10.10.
The distance dh between the two trajectories decreases from 4.27 to 3.26. The
optimal �� for this registration is shown in the right panel. We give an example of
averaging and registration of multiple trajectories in Fig. 10.11. The aligned sample
trajectories within the same class are much closer to each other than before temporal
alignment. For this activity data set we computed the full pairwise distance matrix
for trajectories, using dh (without registration) and ds (with registration). The leave-
one-out nearest neighbor classification rate (1-NN as described earlier) for ds is
95 % as compared to only 87.5 % when using dh.

The recent growth in cheap and mobile range imaging sensors [36] has pushed
forth a new research direction where one explores an additional channel of informa-
tion called depth. An important advantage of these data is that it is relatively easy to
remove background and to isolate and track human body. More specifically, depth
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Fig. 10.11 Registration and summary of multiple trajectories

sensors such as Microsoft KinectTM can provide reliable range data that can be used
to estimate parameters (joint locations and orientations) describing human skeletons
at each observed time [24]. These skeletons, or rather their temporal variations,
provide efficient representations of actions being performed by human subjects.
Since human skeletons are characterized by sets of registered points (or landmarks),
it is natural to use Kendall’s approach [3, 12] to perform shape analysis here.
The specification of a shape manifold M and the corresponding metric enables
us to compare arbitrary skeletons in terms of their shapes, using geodesic lengths.
Additionally, the development of shape tools, such as computation of sample mean
and sample covariance statistics, and the transfer of deformations using parallel
transports also becomes straightforward. Then, it is also convenient to define an
action as a sequence of skeletal shapes or, more precisely, a parameterized trajectory
on this manifold of skeleton shapes.

Again, let us consider ˛ the observation of an action over the time interval Œ0; 1�.
For each time t 2 Œ0; 1�, the skeleton at time t has a shape denoted by ˛.t/ 2 M
(here, M denotes the shape space of skeletons as we will describe later). We are
focusing only on the shape of the skeleton at any time, ignoring its scale, position,
and pose [2]. To this end, we consider the set of all centered-scaled configurations
of n landmarks in R

3. Because our goal is also to filter out the rotations (elements
of the rotation group SO.3/), we consider first the pre-shape space of all centered-
scaled configurations, termed M0, then define the shape space M as a quotient space
of the original space given by M D M0=SO.3/. To remove the rotation (pose)
variability, we define for each X 2 M0 equivalence class that represents all rotations
of a configuration X. Actually, the original space M0 is a unit sphere in R

3.n�1/;
thus, its geometry is well known and the definition of tangent spaces, geodesics,
the exponential map and its inverse, and the parallel translation are known and can
be easily adapted to M. Then, the space of trajectories can be generally written
as M D MŒ0;1�. Note that the parameterization of a trajectory denotes the rate
at which the corresponding action was performed. As described previously, our
goal is to perform action recognition in a time-invariant fashion. We will again
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Fig. 10.12 Registration of two trajectories on the shape space of skeletons M. On the top left: the
trajectories ˛1 and ˛2 to be aligned; on the bottom left: the trajectories after temporal alignment ˛1
and ˛2 ı ��, on the middle left: are shown the trajectories ˛2 and ˛2 ı ��. On the right is reported
the best reparameterization function �� to align ˛1 and ˛2

adopt the solution proposed in [27] and described previously to temporally align
the skeletal trajectories in action classification. Figure 10.12 illustrates an example
of non-synchronized trajectories (of skeletons), ˛1 and ˛2, as well as the result after
performing the alignment ˛2 ı ��.

In order to perform action classification, we can take one of two approaches—
metric based or model based. In a model-based approach one defines a statistical
model, using generative or discriminative models, and uses it to classify future
actions. In the metric-based approach, the main ingredient is the choice of a
distance, with appropriate properties, that can be combined with a classifier, such
as the nearest-neighbor classifier or SVM, for performing classification. Taking a
metric approach, we seek a metric on the space M that can be used to distinguish
between different activities. From the perspective of classification an action is
invariant to its execution rate and, therefore, we need a distance between trajectories
that is invariant to their arbitrary reparameterizations. Two ideas have been tested
on the MSR Action 3D data set [16] which consists of a total of 20 types of
segmented actions collected by Kinect. Each action starts and ends with a neutral
pose and is performed two or three times by each of the 10 subjects. Following
the cross-subject experimental setting described in [16] and used later in other
papers, we use the five first subjects for training and the last five for testing. The
two classifiers mentioned previously—NN classifier, and SVM classifier—are used
for classification purposes. With NN classifier using ds (defined in Eq. (10.14)) our
approach achieves 69% average recognition rate (compared to 42% with dh). This
result highlights the importance of aligning trajectories when performing the action
classification. The SVM classifier is applied differently as following, the TSRVFs
are time derivatives of ˛ computed using shooting vectors between successive points
along trajectories, i.e., h˛.t/ D v.t/˛!ŒC�=

pjv.t/j, where v.t/ D exp�1˛.t/.˛.t C ı//
where ı D 2; 3; 4 : : : . The resulting TSRVF, denoted by h˛.t/, is still a curve
in the tangent space TŒc�.M/ and can be treated as a Euclidean representation of
a trajectory ˛. This makes sense since finite difference with a larger time step is
akin to approximating derivative after smoothing ˛. This approach achieved higher
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performance compared to the previous one, the average recognition rate is 89 % on
the Action 3D dataset, when performing the alignment, compared to 60 % without
the temporal alignment.

10.5 Summary

We present a Riemannian approach for the shape analysis of functions, curves,
and trajectories. The SRVF and the TSRVF formulations not only admit compact
representations of shapes but also simplify the Riemannian metric, while enabling
efficient matching via geodesics. This approach studies shapes as intrinsic elements
of a quotient space, and thus naturally allows calculation of statistical quantities on
the shape space. This is different from the conventional two-step registration-based
analysis approach where one first establishes correspondences between shapes
(usually under an L

2 metric) and then carries out the statistical analysis subsequently
in the ambient space. In other words, our metric-based shape analysis framework
not only achieves correspondence-based registration but also integrates tools for
intrinsic statistical analysis into an elastic matching framework.
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Chapter 11
Why Use Sobolev Metrics on the Space of Curves

Martin Bauer, Martins Bruveris, and Peter W. Michor

Abstract In this chapter we study reparametrization invariant Sobolev metrics on
spaces of regular curves. We discuss their completeness properties and the resulting
usability for applications in shape analysis. In particular, we will argue that the
development of efficient numerical methods for higher-order Sobolev-type metrics
is an extremely desirable goal.

11.1 Introduction

Over the past decade Riemannian geometry on the infinite-dimensional spaces of
parametrized and unparametrized curves has developed into an active research
area. The interest has been fueled by the important role of these spaces in the
areas of shape analysis and computer vision. Contributions in these fields include
applications to medical image diagnostics [18], target and activity recognition in
image analysis [38], plant leaf classification [23], and protein structure analysis
[26] or human motion analysis in computer graphics [17]. In these research areas
one is interested in studying the variability within a certain class of shapes. As a
consequence an important goal is the development of statistical tools for these
spaces.

Riemannian metrics provide the additional structure that is needed to capture
the nonlinearity of the space and at the same time linearize it sufficiently to
enable computations. In this chapter we want to acquaint the reader with some of
the metrics, that can be defined on the space of curves and discuss their properties
with a view towards applications in shape analysis. We will concentrate particularly
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on completeness properties: do geodesics exist, when do they stop existing, and how
does it depend on the metric. For a more wide-ranging overview of Riemannian
metrics on spaces of functions, see [13].

Parametrized Curves In this chapter we will discuss Riemannian metrics on two
different spaces: first, the space of smooth, regular, closed curves in R

n

Imm.S1;Rd/ D ˚c 2 C1.S1;Rd/ W c0.�/ ¤ 0; 8� 2 S1
� I (11.1)

here Imm stands for immersion. This is an open set in the Fréchet space C1.S1;Rd/

of all smooth functions and as such it is itself a Fréchet manifold. As an open
subset of a vector space, its tangent space at any curve is the vector space
itself, T Imm.S1;Rd/ Š Imm.S1;Rd/ � C1.S1;Rd/. A Riemannian metric on
Imm.S1;Rd/ is a smooth map

G W Imm.S1;Rd/ � C1.S1;Rd/ � C1.S1;Rd/! R;

such that Gc.�; �/ is a symmetric, positive definite bilinear form for all curves c. An
example of a Riemannian metric is the L2-metric Gc.h; k/ D

R
S1hh; kijc0j d� , which

we will look at more closely in Sect. 11.2. When studying particular Riemannian
metrics, it will be useful to consider larger spaces of less regular curves, but
Imm.S1;Rd/ will always be the common core.

Unparametrized Curves The other space, which we will consider, is the space
of unparametrized curves, sometimes also denoted shape space. There are several
closely related but slightly differing ways to define this space mathematically. We
will consider an unparametrized curve or shape to be an equivalence class of
parametrized curves that differ only by a reparametrization. In other words, c1 and
c2 represent the same shape, if c1 D c2 ı' for some reparametrization ' 2 Diff.S1/;
mathematically Diff.S1/ is the diffeomorphism group of the circle, that is, the set
of all smooth invertible maps ' W S1 ! S1. With this definition the space of
unparametrized curves is the quotient

B.S1;Rd/ D Imm.S1;Rd/=Diff.S1/:

Apart from isolated singular points, the space B.S1;Rd/ is also an infinite-dimen-
sional manifold and the projection p W c! Œc� assigning each curve its equivalence
class is a submersion.1

1In applications one often wants to consider curves and shapes modulo Euclidean motions, leading
to the spaces Imm.S1;Rd/=Mot and B.S1;Rd/=Mot, where Mot D SO.d/ Ë R

d denotes the
Euclidean motion group. All metrics discussed in this chapter are invariant under the motion group
and therefore induce a Riemannian metric on the quotients Imm.S1;Rd/=Mot and B.S1;Rd/=Mot.
In Sect. 11.3 we will encounter metrics that live naturally on the space Imm.S1;Rd/=Tra of curves
modulo translations.
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Reparametrization Invariant Metrics To define a Riemannian metric on the
space B.S1;Rd/ we will start with a Riemannian metric G on Imm.S1;Rd/, that
is invariant under the action of Diff.S1/; such metrics are called reparametrization
invariant. This means G has to satisfy

Gcı'.h ı '; k ı '/ D Gc.h; k/;

for all curves c, tangent vectors h; k, and reparametrizations '. Then we can use the
formula

GŒc�.X;X/ D inf fGc.h; h/ W Tcp:h D Xg

to define a Riemannian metric on shape space B.S1;Rd/ such that the projection p
is a Riemannian submersion.

Geodesic Distance An important concept in shape analysis is the notion of distance
between two curves or shapes. A Riemannian metric leads to a natural distance
function, the induced geodesic distance. The distance measures the length of
the shortest path between two curves. If c0; c1 2 Imm.S1;Rd/ are two parametrized
curves, the distance between them is defined as

distI.c0; c1/ D inf
�.0/Dc0
�.1/Dc1

Z 1

0

q
G�.t/.�t.t/; �t.t// dt;

where the infimum is taken over all smooth paths � that connect the curves c0 and c1.
Whether there exists a path, realizing this infimum, is an interesting and non-trivial
question in Riemannian geometry.

If we start with a reparametrization invariant metric G and it induces a Rie-
mannian metric on shape space B.S1;Rd/, then we will be interested in computing
the geodesic distance on B.S1;Rd/. The geodesic distances for parametrized and
unparametrized curves are related by

distB.Œc0�; Œc1�/ D inf
'2Diff.S1/

distI.c0; c1 ı '/: (11.2)

For applications in shape analysis it is important to find a stable and fast method
to numerically compute this quantity for arbitrary shapes Œc0� and Œc1�. We will
comment in the later sections, for which metrics a reparametrization ' realizing
the above infimum, exists, and what the obstructions to its existence are in other
cases.

Organization We will look at three families of metrics: first, the L2-metric in
Sect. 11.2, which is among the simplest reparametrization invariant metrics, but
unfortunately unsuitable for shape analysis; then, first-order Sobolev metrics in
Sect. 11.3, which are very well suited for numerical computations and therefore
among the most widely used Riemannian metrics in applications; finally, we will
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look at higher-order Sobolev metrics in Sect. 11.4 and argue why their theoretical
properties make them good candidates for use in shape analysis. At the end we
will explain how these metrics can be generalized to spaces of parametrized and
unparametrized surfaces.

11.2 The L2-Metric

The arguably simplest Riemannian metric on the space of smooth, regular curves
that is invariant under reparametrizations is the L2-metric

Gc.h; k/ D
Z

S1
hh; ki ds;

where we use ds D jc0j d� to denote arc length integration. It is integration with
respect to ds rather than d� that makes this metric reparametrization invariant, as
can be seen from the following calculation:

Gcı'.h ı '; k ı '/ D
Z

S1
hh ı '; k ı 'i .jc0j ı '/ '0 d� D Gc.h; k/:

Similarly if we wanted to include derivatives of h; k in the metric and keep the metric
reparametrization invariant, we would need to use the arc length differentiation
Dsh D 1

jc0jh
0 rather that h0 D @�h.

Geodesic Equation The geodesic equation of the L2-metric is a nonlinear, second-
order PDE for the path c.t; �/. It has the form

.jc� jct/t D �
1

2

	 jctj2
jc� j c�



�

(11.3)

where c� D @�c D c0 and ct D @tc denote the partial derivatives. While the equation
is as simple as one can hope for—the geodesic equations for higher-order metrics
have many more terms—there are currently no existence results available for it.

Open Question Given a pair of an initial curve and an initial velocity .c0; u0/ 2
T Imm.S1;Rd/, does the geodesic equation admit short-time solutions with the given
initial conditions?

We know that we cannot hope for long time existence, since it is possible to shrink
a circle along a geodesic path down to a point in finite time. Numerical evidence in
[29, Sect. 5.3] suggests that geodesics should exist as long as the curvature of the
curve remains bounded.



11 Why Use Sobolev Metrics on the Space of Curves 237

Geodesic Distance The lack of existence results for the geodesic equation is not
the biggest problem of the L2-metric. The crucial property that makes it unsuitable
for applications in shape analysis is that the induced geodesic distance vanishes.

The geodesic distance between two curves c0; c1 2 Imm.S1;Rd/ is defined as the
infimum over the lengths of all paths � , connecting the two curves, i.e.,

distI.c0; c1/ D inf
�.0/Dc0
�.1/Dc1

Z 1

0

q
G�.t/.�t.t/; �t.t// dt:

It was found [8, 28, 29] that for the L2-metric the geodesic distance between any
two curves is zero.2 What does this mean? If � is a smooth, nonconstant path, then
@t�.t/ cannot be identically zero and so the length

R 1
0

p
G� .�t; �t/ dt will be strictly

positive. The meaning of distI.c0; c1/ D 0 is that we can find arbitrary short paths
connecting c0 and c1. No path will have zero length, but given any " > 0, we can find
a path with length< ". How do these paths look like? They are easier to visualize for
the geodesic distance on the space of unparametrized curves, which we will describe
next.

For the L2-metric the geodesic distance between the unparametrized curves
Œc0�; Œc1� 2 B.S1;Rd/, represented by c0; c1, can be computed as the following
infimum:

distB.Œc0�; Œc1�/ D inf
�

Z 1

0

q
G� .�?t ; �?t / dtI

here �.t/ is a path starting at c0 and ending at any curve in the equivalence class
Œc1�, that is �.1/ D c1 ı ' for some ' 2 Diff.S1/. We denote by �?t D �t � h�t; viv,
with v D Ds� , the projection of the vector �t.t; �/ 2 R

d to the subspace orthogonal
to the curve �.t/ at � .

A short path connecting two concentric circles can be seen in Fig. 11.1. The key
observation is that the sawtooth-shaped curves have a large tangential velocity, but
only a small normal velocity. Since for the geodesic distance on B.S1;Rd/ we only
measure the normal part of the velocity vector, these paths have a short length. The
more teeth we use, the smaller the normal component of the velocity and the smaller
the length of these paths.

The vanishing of the geodesic distance started the search for stronger metrics that
would be more useful to shape analysis.

Almost Local Metrics One class of metrics, designed to have nonvanishing
distance while being as simple as possible, is the class of almost local metrics.

2We encounter the vanishing of the geodesic distance for L2-metrics on several spaces: on the space
Imm.M;N/ of immersions between two manifolds M, N of arbitrary dimension, M compact; on the
Virasoro–Bott group [8]; and even for Sobolev metrics on the diffeomorphism group of a compact
manifold, provided the order of the metric is < 1

2
[9, 10].
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gt ⊥
〈gt, v〉

gt

Fig. 11.1 Left side: a short curve with respect to the L2-metric in the space B.S1;R2/ of
unparametrized curves connecting two concentric circles. We see that the intermediate curves are
sawtooth shaped. Right side: Along a sawtooth the tangential component h�t; viv is large, while
the normal component �? becomes small, the steeper the slope of the sawtooth

The motivating idea behind almost local metrics was the observation that for paths
with short length in the L2-metric, the intermediate curves are long and have
large curvature. Thus one hopes that by adding weights that depend on length and
curvature to the metric, these paths will be sufficiently penalized and the geodesic
distance will become nonzero. Almost local metrics3 are metrics of the form

Gc.h; k/ D
Z

S1
˚.`c; �/hh; ki ds; (11.4)

with ˚ some function of the two variables `c D
R

S1 ds (length) and � (curvature).
If ˚ depends only on `c, the resulting metric Gc.h; k/ D ˚.`c/

R
S1hh; ki ds is a

conformal rescaling of the L2-metric [34, 41]. Other choices for ˚ include ˚.�/ D
1 C A�2 with A a positive constant [29] or the scale invariant metric ˚.`c; �/ D
1
`3c
C �2`c [30].
For all these metrics it has been shown that they induce a point-separating

distance function4 on the space B.S1;Rd/ of unparametrized curves. However
similarly to the L2-metric, little is known about solutions of the geodesic equation
and while the geodesic distance is point separating on the space B.S1;Rd/, it is not
point separating on the space Imm.S1;Rd/ of parametrized curves. In the next two
sections we will discuss a different strategy to strengthen the L2-metric, leading to
the class of Sobolev metrics.

3These metrics are not local, because the length `c is not a local quantity; however, it is only a mild
non-locality, and hence the name “almost local” metrics.
4A distance function d.�; �/ is point separating, if d.x; y/ > 0 whenever x ¤ y. This is stronger
than nonvanishing, which would only require two points x; y with d.x; y/ ¤ 0.
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11.3 First-Order Metrics and the Square Root
Velocity Transform

One way to deal with the degeneracy of the L2-metric is by adding terms that involve
first derivatives of the tangent vectors. Such metrics are called first order Sobolev
metrics or, short, H1-metrics. An example is the metric

Gc.h; k/ D
Z

S1
hh; ki C hDsh;Dski ds;

with Dsh D 1
jc0jh
0 denoting the arc length derivative and ds D jc0j d� . If we omit the

L2-term, we arrive at Gc.h; k/ D
R

S1hDsh;Dski ds, which is a metric on the space
Imm.S1;Rd/=Tra of regular curves modulo translations. The scale-invariant version
of this metric has been studied in [42, 43] and it has the remarkable property that
one can find explicit formulas for minimizing geodesics between any two curves.

We will concentrate in this section on a related metric, obtained by using different
weights for the tangential and normal components of Dsh,

Gc.h; k/ D
Z

S1
hDsh

?;Dsk
?i C 1

4
hDsh; vihDsk; vi dsI (11.5)

here v D Dsc D 1
jc0jc
0 is the unit length tangent vector along c and Dsh? D Dsh �

hDsh; viv is the projection of Dsh to the subspace fvg? orthogonal to the curve.
This is a Riemannian metric on Imm.S1;Rd/=Tra and it is the metric used in the
square root velocity (SRV) framework [37]. The reason for singling out this metric
is that the SRV framework has been used successfully in applications [23, 38, 40]
and the SRV transform has a simple and accessible form. We will comment on other
H1-metrics at the end of the section.

The Square Root Velocity Transform The square root velocity transform (SRVT)
is the map

R W Imm.S1;Rd/! C1.S1;Rd/ ; c 7! 1pjc0jc
0;

assigning each curve c a function q D R.c/.
Every vector space .V; h�; �i/ with an inner product can be regarded as a

Riemannian manifold: the Riemannian metric g at each point x 2 V is simply the
inner product, gx.�; �/ D h�; �i. The SRVT is an isometry between the Riemannian
manifold

�
Imm.S1;Rd/=Tra;G

�
, where G is the Riemannian metric (11.5), and the

space C1.S1;Rd/ with the L2-inner product hu; viL2 D
R

S1hu; vi d� .

The SRVT for Open Curves Things are simple on the space of open curves
Imm.Œ0; 2��;Rd/=Tra. The SRVT is a one-to-one mapping between the space
Imm.Œ0; 2��;Rd/=Tra and the set C1.S1;Rd n f0g/ of functions that do not pass
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through the origin in R
d. This is an open subset of all functions and thus geodesics

with respect to the metric (11.5) correspond to straight lines under the SRVT: the
path c.t/ D R�1.q0 C th/ is a geodesic in Imm.Œ0; 2��;R2/=Tra, and given two
curves c0; c1, the geodesic connecting them is

c.t/ D R�1..1 � t/q0 C tq1/ ;

with qi D R.ci/.

The SRVT for Closed Curves Things are slightly more complicated for closed
curves. The inverse of the SRVT is given by the formula

R�1.q/.�/ D
Z �

0

qjqj d�;

and we see that if we want the curve c D R�1.q/ to be closed, i.e., c.0/ D c.2�/,
then we need

R
S1 qjqj d� D 0. Indeed the image of Imm.Œ0; 2��;Rd/=Tra under the

SRVT is the set

Im.R/ D
�

q 2 C1.S1;R2/ W q.�/ ¤ 0 and
Z

S1
jqjq d� D 0


:

We have the condition q0.�/ ¤ 0 as before to ensure that c0.�/ ¤ 0 and an additional
constraint so that the curves c D R�1.q/ are closed. Even though we do not have
a closed expression for the geodesics, it is still possible to compute the geodesics
numerically without much difficulty.

Minimizing Geodesics for Parametrized Curves Let us first look at open curves.
In the SRV representation, qi D R.ci/, the minimizing path between q0 and q1
is the straight line q.t/ D .1 � t/q0 C tq1. In particular the minimizing path always
exists. It can happen, however, that the straight line between q0.�/ and q1.�/ passes
through the origin; at points .t; �/, where this happens the derivative of the curve
c.t; �/ D R�1.q.t//.�/ vanishes, i.e., c0.t; �/ D 0 and thus the curve is not regular at
those points. Apart from that, any two curves can be joined by a unique minimizing
geodesic, which can be computed via an explicit formula, and we know when the
intermediate curves will fail to be regular.

For closed curves the situation is less explicit, because now we also have to
satisfy the nonlinear constraint

R
S1 qjqj d� D 0. This is a d-dimensional constraint

on an otherwise infinite-dimensional space and furthermore the function q 7!R
S1 qjqj d� is continuous with respect to the L2-topology. Numerical evidence

suggests that minimizing geodesics continue to exist between any two curves. In
particular, computing minimizing geodesics between parametrized curves is a fast
and stable operation; an example of a geodesic can be seen in Fig. 11.2.

Smoothness of the minimizing geodesics is another issue. The natural target
space for the SRVT is the space L2.S1;Rd/ of square-integrable functions. If the
SRVT of a curve lies in L2.S1;Rd/, the curve itself is only absolutely continuous.
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Fig. 11.2 Minimal geodesics between two pairs of parametrized curves. Images taken from [11]

Unfortunately the Riemannian metric Gc.h; k/, given by (11.5), does not have to
be finite for absolutely continuous curves c and tangent vectors h; k; the term
Dsh D 1

jc0jh
0 may well become infinite. We are approaching the frontier of the

Riemannian framework now: any two (open) curves can be joined by a minimizing
path; however, the space, where the path lives—the completion of the space of
smooth curves, if one wants to use the term—is not a Riemannian manifold any
more.

Minimizing Geodesics for Unparametrized Curves If we want to find mini-
mizing geodesics between two unparametrized curves C0;C1 2 B.S1;Rd/=Tra,
represented by the curves c0; c1 2 Imm.S1;Rd/=Tra, one way to do this is to mini-
mize distI.c0; c1 ı'/ over ' 2 Diff.S1/ or equivalently over all parametrized curves
c1 ı ' representing the shape C1; indeed, the geodesic distance on B.S1;Rd/=Tra is
given by

distB.C0;C1/ D inf
'2Diff.S1/

distI.c0; c1 ı '/: (11.6)

If the infimum is attained for  2 Diff.S1/ and if we denote by c.t/ the minimizing
geodesic between c0 and c1 ı  , then the curve Œc.t/� in B.S1;Rd/=Tra is the
minimizing geodesic between C0 and C1. Thus we are interested whether the
infimum (11.6) is attained and if it is, in what space.

Let us look at distI.c0; c1 ı '/, first for open curves in the SRV representation.
Let qi D R.ci/. We have R.c1 ı '/ D p'0 q1 ı ' and

distI.c0; c1 ı '/2 D
Z 2�

0

jq0.�/ �
p
'0.�/q1.'.�//j2 d�:

Assume that  minimizes this expression, fix � 2 S1 and set Q� D  .�/. Even
though finding  has to be done over the whole interval Œ0; 2�� simultaneously, it is
very instructive to look at just one point at a time. Consider the infimum
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Fig. 11.3 Left side: solution
to the finite-dimensional
minimization problem. In the
halfplane below the dotted
line, the solution is given byp
'0.�/ D 0. On the

halfplane above the dotted
line the solution is given by
the unique value

p
'0.�/

such that
p
'0.�/q1. Q�/ lies

on the dotted circle. Right
side: effect of the
reparametrization action on
the space of SRVTs

q0(q)

q0

q1

q1(q)˜

infp
'0.�/�0

jq0.�/ �
p
'0.�/q1. Q�/j2:

This is a d-dimensional minimization problem that can be solved explicitly; its
solution is visualized in Fig. 11.3. Denote by ˛ the angle between q0.�/ and q1. Q�/.
If �

2
� ˛ � 3�

2
, then the infimum is attained for

p
'0.�/ D 0. In other words,

for q1. Q�/ lying in the half-plane “opposite” q0.�/, the optimal reparametrization
would scale it to 0. Next we look at close by points. If the optimal scaling at � isp
'0.�/ D 0 and � C�� is close enough, then the angle between q0.� C��/ and

q1. Q�/ will also lie inside Œ �
2
; 3�
2
� and so

p
'0.� C��/ D 0 as well. But this would

lead to ' being constant on a whole subinterval of Œ0; 2��.
The true situation is more complicated than that, in particular, for closed curves,

where we additionally have the nonlocal constraint
R

S1 qjqj d� D 0 to satisfy. But we
do observe the scaling-to-zero behavior in numerical computations; see for example
Fig. 11.4.

Incompleteness The key conclusion is this: we should expect the solution  of the
minimization problem inf' distI.c1; c2ı'/ to have intervals, where it is a constant—
that is true, even if we solve the problem on a finite-dimensional approximation
space. If I is such an interval and  jI D �I 2 S1, then this means that the whole
segment c1.I/ of the first curve corresponds to the point c2.�I/ on the second curve.
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Fig. 11.4 Left side: initial curve. Middle figure: target curve. Right figure: minimal geodesic on
shape S.S1;R2/ between an ellipse and an ellipse with a large fold. One can see that the fold grows
out of a singular point. Image taken from [11]

Now we can switch c1 and c2. Then the optimal reparametrization is  �1.
However since  is constant on the interval I, its inverse  �1 will have a jump
at the point �I . What does this mean for minimizing geodesics? If c.t/ is a length-
minimizing path between c2 and c1 ı  �1, then the point c2.�I/ will “open up” to
the whole segment c1.I/.

A geodesic is supposed to encode the differences between the shapes represented
by c1 and c2 in its initial velocity @t�.0/. However the geodesic starting at c2 sees
only the parametrized curve c1 ı �1 and since  �1 has a jump at �I , jumping over
the interval I, this interval is missing from the curve c1 ı  �1. How then can the
geodesic encode the shape differences, if it does not “see” them?

We understand that this is not a rigorous proof.5 However there is numerical evi-
dence pointing in the same direction. In Fig. 11.4 we see an attempt to numerically
compute the minimizing geodesic between an ellipse and an ellipse with a large
fold, both considered as unparametrized curves. The picture on the right shows the
point-to-point correspondences after we have minimized over the reparametrization
group. We can see that indeed one point on the ellipse wants to correspond to the
part of the fold, where the tangent vector points in the opposite direction to the
tangent vector of the ellipse.

In the example of Fig. 11.4 we could have cleverly selected the shape with the
fold as the initial curve and compute our geodesic starting from there. Then there
would be no problem of one point wanting to become a whole segment. However
for two general curves c1, c2, we would expect to encounter mixed behavior: some
segments of c1 would collapse to points on c2 and other points on c1 would expand
to segments of c2.

This effect is not caused by the global “curvedness” of the manifold of shapes; it
is rather a manifestation of the incompleteness. We expect to see this as soon as we
match two curves whose tangent vectors point in opposite directions. Since in the
SRV representation distances are measured in the L2-norm, this behavior can occur
for a pair of curves with arbitrary small (geodesic) distance. The fold in Fig. 11.4
can be arbitrary small, but the behavior will be the same.

5See [43, Sect. 4.2] for a rigorous proof that this behavior indeed occurs for the metric Gc.h; k/ D
1
`c

R 2�
0 hDsh;Dski ds on the space of unparametrized open curves modulo translations.
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Let us fix a representative curve c for the shape Œc� and let us look at the space
of unparametrized curves through the lens of the exponential map, while standing
at the curve c. We look at a shape Œc1�, represented by a curve c1, by finding a
reparametrization  1, s.t. distI.c; c1 ı  / is minimal, and then we compute v1 D
exp�1c .c1ı 1/. This vector v1 is what we see, when we look at the shape Œc1�. Now, if
the reparametrization has jumps, then the curve c1ı 1 will miss parts of the shape
Œc1�; furthermore, there will be several shapes Œc2�, distinct from Œc1� only in the part
that is missing from c1ı 1, such that the corresponding optimal representing curves
c2 ı 2 coincide with c1 ı 1. This implies that v2 D exp�1c .c2 ı 2/ coincides with
v1, while the shapes Œc2� and Œc1� differ. In other words, we look at different shapes,
but see the same thing. In fact there are many regions in shape space that cannot be
distinguished using the exponential map, and these regions start arbitrary close to
the starting shape Œc�.

Joint Reparametrizations It is possible that searching for one reparametrization
is the wrong problem. Mathematically an equivalent way to define the geodesic
distance on B.S1;Rd/=Tra is via

distB.C1;C2/ D inf
'1;'22Diff.S1/

distI.c1 ı '1; c2 ı '2/:

Using the invariance of distI under reparametrizations we can recover (11.6). Now
we are looking for reparametrizations of both curves such that the infimum is
attained. The advantage of this approach is that we can avoid jumps that would
necessarily appear in the one-reparametrization strategy, by instead setting the other
reparametrization to be constant on the corresponding interval.

The underlying behavior does not change: points on one curve can be matched
to intervals on the other and vice versa. If  1;  2 represent a pair of optimal
reparametrizations for two curves c1; c2 and  1 is constant on the interval I with
 1jI D �I , then the point c1.�I/ will correspond to the interval c2. 2.I//. Instead
of jumping over the interval  2.I/, we now reparametrize c1 and the reparametrized
curve c1 ı  1 waits at �I until  2 has moved past I.

The strategy of joint reparametrizations was proposed in [24, 33], where the
authors consider only curves without the periodicity constraint. Even for open
curves, it is not known whether for any two absolutely continuous curves there
exists a pair of reparametrizations realizing the geodesic distance; in [24] this is
shown only under the additional assumption that one of the curves is piecewise
linear.

Other H1-Metrics There are many different H1-metrics to choose from. For a start,
the constants 1 and 1

4
are rather arbitrary and we could look at the full family of

metrics of the form

Gc.h; k/ D
Z

S1
a2hDsh

?;Dsk
?i C b2hDsh; vihDsk; vi ds;
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with a; b > 0. This family has been given the name elastic metrics and has
been studied for plane curves in [11, 31]. All metrics in this family are uniformly
equivalent, i.e., if G and H are two elastic metrics with possibly different constants
a; b, there exists a constant C such that

C �1Hc.h; h/ � Gc.h; h/ � CHc.h; h/

holds for all curves c and all tangent vectors h.
All H1-metrics can be made invariant with respect to scalings by multiplying

them with an appropriate power of the length `.c/, for example the following metric
is scale-invariant:

Gc.h; k/ D
Z

S1
`�3c hh; ki C `�1c hDsh;Dski ds:

A modified H1-metric was introduced in [39] with the property that scalings,
translations, and general deformations of the curve are all orthogonal to each other;
this metric was then applied to tracking moving objects.

We have looked at completeness properties only for the H1-metric corresponding
to the SRVT; a similar, more rigorous discussion can be found for the scale-invariant
version of elastic metric corresponding to the choice a D b in [43] and we conjecture
that all H1-metrics share the same qualitative behavior. We will see in the next
section, what happens, if we additionally penalize second and higher derivatives
of the tangent vectors.

11.4 Higher-Order Sobolev Metrics

Riemannian metrics involving first derivatives of the tangent vectors can lead to
very efficient computations, but some of their mathematical properties are less
convenient. Now we will make the metric dependent on higher derivatives. It is not
easy to give a definition of a general Sobolev-type Riemannian metric that is both
general enough to encompass all known examples and concrete enough so that
we can work easily with it. We will approach this class by looking at families of
examples instead, noting common features as well as differences.

A very useful family is that of Sobolev metrics with constant coefficients. These
are metrics of the form

Gc.h; k/ D
Z

S1
a0hh; ki C a1hDsh;Dski C � � � C anhDn

s h;Dn
s ki ds; (11.7)

with constants a0; : : : ; an. The largest n such that an ¤ 0 is called the order of the
metric. We require aj 	 0 for the metric to be positive semi-definite, an > 0 for
it to be a metric of order n, and a0 > 0 for it to be nondegenerate. If a0 D 0,
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then constant tangent vectors are in the kernel of G and, provided there is at
least one nonzero coefficient, G defines a nondegenerate metric on the quotient
space Imm.S1;Rd/=Tra of regular curves modulo translations. Most of the metrics
encountered in Sect. 11.3 were of this type.

Using integration by parts we can rewrite (11.7) to obtain

Gc.h; k/ D
Z

S1
a0hh; ki C a1h�D2

s h; ki C � � � C anh.�1/nD2n
s h; ki ds; (11.8)

enabling us to write the metric in the form Gc.h; k/ D
R

S1hLch; ki ds, with Lc DPn
jD0.�1/jaj D2j

s , a differential operator of order 2n.

Metrics with Nonconstant Coefficients We could loosen our restrictions on the
coefficients aj and permit them to be functions that depend on the curve c and
quantities derived from it, e.g., aj D aj.`c; �;Ds�; : : : /. In Sect. 11.2 we have
considered such metrics of order zero, the almost local metrics. Several examples
of higher order metrics with nonconstant coefficients have been investigated in
the literature. The completeness properties of first- and second-order metrics with
coefficients depending on the length are studied in [27]. The idea in [4, 35] is to
decompose a tangent vector h D hk C h? into a part tangent and a part normal
to the curve and consider derivatives of these quantities. Some special examples of
second-order metrics can be found in [14].

Geodesic Equation The geodesic equation of a Sobolev metric with constant
coefficients is a nonlinear PDE, second order in time and of order 2n in the space
variable. It is given by

@t

0
@ nX

jD0
.�1/jaj jc0jD2j

s ct

1
A D� a0

2
jc0jDs .hct; ctiDsc/

C
nX

kD1

2k�1X
jD1
.�1/kCj ak

2
jc0jDs

�hD2k�j
s ct;D

j
sctiDsc

�
:

We can see that if aj D 0 for j 	 1, then this equation reduces to the geodesic
equation (11.3) of the L2-metric. The left-hand side of the geodesic equation is the
time derivative of the momentum, Lcct jc0j. For metrics of order n 	 1 the geodesic
equation is locally well posed [30].

Now we come to the main difference between Sobolev metrics of order one and
metrics of higher order. In a nutshell, first-order Sobolev metrics are only weak
Riemannian metrics, while Sobolev metrics of higher order, if extended to a suitable,
larger space, are strong Riemannian metrics.

Weak Sobolev Metrics Let G be a Sobolev metric of order one,

Gc.h; k/ D
Z

S1
hh; ki C hDsh;Dski ds D

Z
S1
hh; kijc0j C hh0; k0ijc0j�1 d�:
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Fix the curve c and look at the inner product Gc.�; �/. The natural space to
define Gc.�; �/ is the Sobolev space H1.S1;Rd/ of functions with square-integrable
derivatives, together with the inner product

hh; kiH1 D
Z

S1
hh; ki C hh0; k0i d�:

If c is smooth enough, say c 2 C1, then we see that Gc.�; �/ defines an inner product
on H1, which is equivalent to the standard inner product. Unfortunately we cannot
allow c itself to be an H1-function. We need uniform control on the derivative c0
to guarantee that the integral

R
S1hh0; k0ijc0j�1 d� is finite, but the H1-norm does not

provide that. The best we can do is to extend G to the space

G W C1Imm.S1;Rd/ � H1.S1;Rd/ � H1.S1;Rd/! R:

In this sense G is a weak Riemannian metric6; the topology induced by the inner
product Gc.�; �/, in this case the H1-topology, is weaker than the manifold topology,
here the C1- or C1-topology.

Strong Sobolev Metrics The situation is different for Sobolev metrics with
constant coefficients of order 2 or higher. Let us look at the example

Gc.h; k/ D
Z

S1
hh; ki C hD2

s h;D2
s ki ds;

with Dsh D 1
jc0jh
0 and D2

s h D 1
jc0jh
00 � hc0;c00i

jc0j h0. Again the natural space for Gc.�; �/ is

the Sobolev space H2.S1;Rd/ and it would appear that we need c 2 C2 for the inner
product to be well defined. However a careful application of Sobolev embedding and
multiplier theorems—see [16, Sect. 3.2]—shows that we can extend G to a smooth
inner product on the space

G W I2.S1;Rd/ � H2.S1;Rd/ � H2.S1;Rd/! RI

here we denote by I2.S1;Rd/ D fc 2 H2 W c0.�/ ¤ 0 8� 2 S1g the space of H2-
curves with nonvanishing tangent vectors. The crucial fact is the Sobolev embedding
H2 ,! C1, implying that the H2-norm controls first derivatives uniformly. This also
implies that I2 is an open set in H2. Thus G becomes a strong Riemannian metric
on I2.S1;Rd/; the topology induced by each inner product Gc.�; �/ coincides with
the manifold topology.

6An infinite-dimensional Riemannian manifold .M; g/ is called strong, if g induces the natural
topology on each tangent space, or equivalently, if the map g W TM ! .TM/0 is an isomorphism.
If g is merely a smoothly varying nondegenerate bilinear form on TM we call .M; g/ a weak
Riemannian manifold, indicating that the topology induced by g can be weaker than the natural
topology on TM or equivalently g W TM! .TM/0 is only injective.
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Similarly Sobolev metrics of order n with constant coefficients induce strong
metrics on the space In.S1;Rd/ of regular Sobolev curves, provided n 	 2.

Note however that Sobolev metrics of order 2 and higher are strong metrics only
when considered on the larger space In.S1;Rd/, not on the space Imm.S1;Rd/ of
smooth curves. On Imm.S1;Rd/ the metric is still a weak metric. That said the
difference between metrics of order 1 and those of higher order is that for higher-
order metrics we are able to pass to the larger space In.S1;Rd/—one could say we
are “completing” the space of smooth curves—on which it becomes a strong metric,
while for first-order metrics such a completion does not exist.

Properties of Strong Metrics The following is a list of properties we get “for free”
simply by working with a smooth, strong Riemannian metric as opposed to a weak
one:

• The Levi-Civita covariant derivative exists and the geodesic equation has local
solutions, which depend smoothly on the initial conditions.

• The exponential map exists and is a local diffeomorphism.
• The induced geodesic distance is point separating and generates the same

topology as the underlying manifold.

The theory of strong, infinite-dimensional Riemannian manifolds is described in
[20, 25]. For weak Riemannian manifolds all these properties have to be established
by hand and there are examples where they fail to hold. The geodesic distance for
the L2-metric discussed in Sect. 11.2 on the space of curves vanishes identically [28,
29]; it is not known whether the geodesic equation for the L2-metric has solutions
and [12] presents a weak Riemannian manifold that has no Levi-Civita covariant
derivative.

We would like to note that the distinction between weak and strong Riemannian
metrics arises only in infinite dimensions. Every Riemannian metric on a finite
dimensional manifold is strong. Therefore phenomena, like the vanishing of
the geodesic distance or the failure of geodesics to exist, can only arise in infinite
dimensions. For better or for worse, this is the setting, where the joy and pain of
shape analysis occurs.

Completeness Properties What are the operations on the manifold of curves that
are used in shape analysis?

1. We want to use the Riemannian exponential map expc W TcM ! M to pass
between the tangent space at one point and the manifold itself. Its inverse logc D
exp�1c allows us to represent the nonlinear manifold or at least a part thereof in a
vector space.

2. Given two curves, we want to compute the geodesic distance between them, that
is, the length of the shortest path joining them. Often we are also interested in
the shortest path itself; it can be used to transfer information between two curves
and the midpoint can serve as the average of its endpoints.

3. Given a finite set fc1; : : : ; cng of curves, we are interested in the average of this
set. On a Riemannian manifold this is usually the Fréchet or Karcher mean, i.e.,
a curve c�, minimizing the sum of squared distances, c� D argminc

P
i d.c; ci/

2,
where d is the geodesic distance.
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This is by no means an exhaustive list, but describes rather the basic operations,
one wants to perform. The ability to do so places conditions on the manifold of
curves and the Riemannian metric. Let us look at these conditions:

1. On a general Riemannian manifold the exponential map expc W U ! M is
defined only on an open neighborhood U 
 TcM of 0 and it is rarely known
exactly how U looks like. For us to be able to freely map tangent vectors to
curves, we want a globally defined exponential map. Since the exponential map
is defined as expc.h/ D �.1/, where � is the geodesic with initial conditions
.c; h/, and using the property expc.th/ D �.t/, we can see that a globally
defined exponential map is equivalent to requiring that geodesics exist for all
time. This property is called geodesic completeness.

(1’) Asking for the exponential map to be invertible is more difficult. On a strong
Riemannian manifold this is always the case locally. Imposing it globally is a
very restrictive condition. The Weil–Peterson metric [36] comes closest; it is
a metric with negative sectional curvature, meaning that the derivative of the
exponential map is everywhere invertible.

2. Here we want to know whether any two curves can be joined by a minimizing
geodesic, i.e., a geodesic, whose length realizes the geodesic distance. On a
finite-dimensional manifold geodesic completeness would imply this property;
this is not the case in infinite dimensions [1]. This is not to say that we cannot
hope for minimizing geodesics to exist, but rather that it will have to be proven
independently of (1).

3. Ensuring that the Fréchet mean exists for all finite collections of curves is
difficult. But there is a theorem [3] stating that the mean exists and is unique
on a dense subset of the n-fold product M � � � � � M, provided the manifold
is metrically complete. This means that the manifold .M; d/ together with the
induced geodesic distance is complete as a metric space.

Properties (1), (2), and (3) for Riemannian manifolds are called completeness
properties. In finite dimensions the theorem of Hopf–Rinow states that (1) and (3)
are equivalent and either one implies (2). For infinite-dimensional strong Rieman-
nian manifolds the only remaining implication is that metric completeness implies
geodesic completeness.7

Completeness for Sobolev Metrics Let us look at the situation for Sobolev metrics
on the space of parametrized curves. We have argued in Sect. 11.3 that we should
not expect H1-metrics to be geodesically or metrically complete. Things look better

7A counterexample, showing that in infinite dimensions metric and geodesic completeness together
do not imply existence of minimizing geodesics, can be found in [1]; similarly, that geodesic
completeness does not imply metric completeness is shown in [2].
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for Sobolev metrics of higher order. In fact it is shown in [15, 16] that these metrics
satisfy all the above-mentioned completeness properties.8

Theorem 11.1. Let n 	 2 and let G be a Sobolev metric of order n with constant
coefficients. Then

1. .In.S1;Rd/;G/ is geodesically complete;
2. Any two elements in the same connected component of In.S1;Rd/ can be joined

by a minimizing geodesic;
3. .In.S1;Rd/; distI/ is a complete metric space.

The geodesic equation for Sobolev metrics has a smoothness preserving property.
If the initial conditions are smoother that Hn—let us say the initial curve and
initial velocity are C1—then the whole geodesic will be as smooth as the initial
conditions. Therefore the space .Imm.S1;Rd/;G/ of smooth immersions with a
Sobolev metric of order n is also geodesically complete.

Completeness for Unparametrized Curves Similar completeness properties hold
for unparametrized curves. The correct space, where to look for completeness, is the
quotient

Bn.S1;Rd/ D In.S1;Rd/=Dn.S1/

of regular curves of Sobolev class Hn modulo reparametrizations of the same
regularity; the group Dn.S1/ D f' 2 Hn.S1; S1/ W '0.�/ > 0g is the group of
Hn-diffeomorphisms. We have the following theorem [15]:

Theorem 11.2. Let n 	 2 and let G be a Sobolev metric of order n with constant
coefficients. Then

1. .Bn.S1;Rd/; distB/ with the quotient metric induced by the geodesic distance on
.In;G/ is a complete metric space;

2. Given C1;C2 2 Bn in the same connected component, there exist c1; c2 2 In with
c1 2 ��1.C1/ and c2 2 ��1.C2/, such that

distB.C1;C2/ D distI.c1; c2/I

equivalently, the infimum in

distB.�.c1/; �.c2// D inf
'2Dn.S1/

distI.c1; c2 ı '/

is attained;

8A related result holds for the space of curves of bounded second variation, together with a Finsler
BV2-metric. It is shown in [32] that any two curves in the same connected component of the space
BV2.S1;R2/ can be joined by a length-minimizing path.
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3. Any two shapes in the same connected component of Bn.S1;Rd/ can be joined by
a minimizing geodesic.

The only drawback is that the space Bn.S1;Rd/ of Sobolev shapes is not a
manifold any more.9 It is however a topological space and equipped with the
geodesic distance function a metric space. We have to understand a minimizing
geodesic in the sense of metric spaces, i.e., a curve � W I ! Bn is a minimizing
geodesic, if

distB.�.t/; �.s// D �jt � sj
holds for some � > 0 and all t; s 2 I.

We would like to point out that part (2) of Theorem 11.2 is the counterpart of the
incompleteness discussion in Sect. 11.3. This theorem states that given two shapes,
represented by two parametrized curves, we can find an optimal reparametrization
' of the second curve. The fact that ' 2 Dn.S1/ guarantees that ' is at least a C1-
diffeomorphism of the circle; thus no intervals are collapsed to single points and
neither ' nor '�1 has any jumps.

Numerical Computations We have argued that Sobolev metrics of sufficiently
high order have nice mathematical properties, which are relevant to applications
in shape analysis. What we have not done is present convincing applications,
showcasing their superior performance. This is because the numerical computation
of minimizing geodesics between parametrized or unparametrized curves is still an
open problem. First attempts at discretizing special cases of H2-metrics can be found
in [4, 32]. While first-order metrics have nice representations in terms of the SRVT
or the basic mapping [43], which greatly simplifies the numerics, there is no such
analogon for higher-order metrics.10 Finding a robust and stable discretization of
metrics of order 2 and higher remains a challenge.

11.5 Riemannian Metrics on the Space of Surfaces

In the previous sections we have presented several reparametrization invariant
metrics on the space of curves. We want to conclude the exposition with a short
excursion to the space of regularly parametrized surfaces, i.e., Imm.M;Rd/ D ff 2

9This has to do with smoothness properties of the composition map in Sobolev spaces. While the
smooth reparametrization group Diff.S1/ acts smoothly on the space Imm.S1;Rd/ of smooth curves
[21], the group of Sobolev reparametrizations Dn.S1/ acts only continuously on Sobolev curves
In.S1;Rd/. Moreover, the smooth shape space B.S1;Rd/ is (apart from isolated singularities) a
manifold, but the Sobolev shape space Bn.S1;Rd/ is only a topological space. This is the price we
have to pay for completeness. See [15, Sect. 6] for details.
10In [14] a representation of second-order metrics, similar to the SRVT, was developed. However
image of the resulting transformations has infinite co-dimension, which, compared to the SRVT,
complicates the situation.
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C1.M;Rd/ W Txf injective 8x 2 Mg with M a compact two-dimensional manifold
without boundary. Typical choices for M are the sphere S2 and the torus S1 � S1. In
particular we will describe how the previously described metrics can be generalized
from Imm.S1;R2/ to Imm.M;Rd/. We will follow the presentation of [5, 6].

Sobolev Metrics To generalize Sobolev metrics (11.8) from the space of curves to
the space of surfaces, we need the right replacements for the arc length derivative
Ds and integration ds. For an immersion f 2 Imm.M;Rd/, we denote by g D
gf D f �h�; �i the pullback of the Euclidean metric to M. This makes .M; g/ into
a Riemannian manifold with a Laplace operator �g D � divg ı gradg and volume
form volg. We will use �g and volg as replacements for �D2

s and ds. A Sobolev
metric of order n on Imm.M;Rd/ is given by

Gf .h; k/ D
Z

M
a0hh; ki C a1h�gh; ki C � � � C anh.�g/nh; ki volgI (11.9)

here the tangent vectors h; k are seen as maps h; k W M ! R
d and the Laplace

operator acts on each coordinate separately.11

The associated operator Lf , allowing us to write Gf .h; k/ D
R

S1hLf h; ki ds, is
given by Lf DPn

jD0 aj .�
g/j˝volg. Every metric in this family is invariant under the

action of the diffeomorphism group Diff.M/ and induces a Riemannian metric on
the quotient space of unparametrized surfaces B.M;R3/ D Imm.M;R3/=Diff.M/.

Similarly as in the previous section one can also allow the coefficients aj to
depend on the surface f . Coefficients depending on the total volume, the mean
curvature, and the Gauß curvature have been considered in [7]. The class of almost
local metrics on surfaces has also been studied [6].

Geodesic Distance For the geodesic distance we obtain similar results as for
curves: the geodesic distance vanishes for the L2-metric on Imm.M;Rd/. Both
higher-order Sobolev metrics and almost local metrics depending on mean curvature
or total volume induce point-separating distances on the space of unparametrized
surfaces. Whether higher-order Sobolev metrics induce a point-separating distance
function on Imm.M;Rd/ itself is not known.

Geodesic Equation The formulas for the geodesic equations for Sobolev met-
rics (11.9) become very quickly very technical; see [5]. As an example we present

11On Imm.M;Rd/ there is no canonical way to define Sobolev metrics. We could have also used
the definition

Gf .h; k/ D
Z

M
a0hh; ki C � � � C anh.rg/nh; .rg/nki volg;

where rg is the covariant derivative on M. Then the differential operator associated to this metric
is Lf D Pn

jD0 aj ..rg/�/
n .rg/n ˝ volg, with .rg/� D Tr.g�1rg/ denoting the adjoint of rg.

When n � 2, the operator ..rg/�/
n .rg/n differs from .�g/n in the lower-order terms—they are

connected via the Weitzenböck formulas.
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the geodesic equation of the H1-metric with coefficients a0 D a1 D 1; this is the
metric induced by the operator field Lf D 1C�g:

@t
�
Lf ft ˝ volg

� D
	

Tr
�
g�1Sf g�1hrgft;rgfti

� � 1
2

Tr
�
g�1rghrgft; fti

�
:Hf

� 1
2
hLf ft; fti:Hf � Tf :hLf ft;rgfti]



˝ volgI

here Sf denotes the second fundamental form, Hf D Tr.g�1Sf / is the vector valued
mean curvature, and rg is the covariant derivative of the surface f .

Outlook On spaces of surfaces the theory of Sobolev metrics is significantly less
developed than on the space of curves. We conjecture that Sobolev metric of order
n 	 3 will again be strong Riemannian metrics on the space In.M;Rd/ of Sobolev
surfaces. Nothing is known about completeness properties of these metrics.

An analogue of the SRVT transform has been developed for surfaces in [19, 22].
However questions regarding the invertibility of the transform and the characteri-
zation of its image remain open. So far no numerical experiments for higher-order
Sobolev metrics on the space of surfaces have been conducted.
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Chapter 12
Elastic Shape Analysis of Surfaces and Images

Sebastian Kurtek, Ian H. Jermyn, Qian Xie, Eric Klassen, and Hamid Laga

Abstract We describe two Riemannian frameworks for statistical shape analysis of
parameterized surfaces. These methods provide tools for registration, comparison,
deformation, averaging, statistical modeling, and random sampling of surface
shapes. A crucial property of both of these frameworks is that they are invariant
to reparameterizations of surfaces. Thus, they result in natural shape comparisons
and statistics. The first method we describe is based on a special representation
of surfaces termed square-root functions (SRFs). The pullback of the L

2 metric
from the SRF space results in the Riemannian metric on the space of surfaces. The
second method is based on the elastic surface metric. We show that a restriction of
this metric, which we call the partial elastic metric, becomes the standard L

2 metric
under the square-root normal field (SRNF) representation. We show the advantages
of these methods by computing geodesic paths between highly articulated surfaces
and shape statistics of manually generated surfaces. We also describe applications of
this framework to image registration and medical diagnosis.
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12.1 Introduction

Shape is an important physical property of 3D objects that helps characterize
their appearance. As a result, statistical shape analysis, which is concerned with
quantifying shape as a random object and developing tools for generating shape
registrations, comparisons, deformations, averages, probability models, hypothe-
sis tests, Bayesian estimates, and other statistical procedures on shape spaces,
plays an important role in many applications including medical imaging, biometrics,
bioinformatics, 3D printing, and computer graphics. Medical imaging is a primary
example of an application where shape statistics can play a very important role.
Advances in noninvasive imaging technology, such as magnetic resonance imaging
(MRI), have enabled researchers to study biological variations of anatomical
structures. Studying shapes of 3D anatomies is of particular interest because many
complex diseases can potentially be linked to alterations of these shapes. Thus,
statistical shape analysis can be a central tool in disease diagnosis and design
of novel treatment strategies. The two methods described in this chapter have
been successfully applied to classification of attention deficit hyperactivity disorder
(ADHD) [31, 32, 47] and mathematics deficiency [35] using shapes of subcortical
structures, and statistical modeling of endometrial tissues [41] in the presence of
endometriosis.

In this chapter, we focus on shape analysis of parameterized surfaces. In
particular, we describe two recent Riemannian frameworks that allow comparison,
matching, deformation, averaging, and statistical modeling of observed shapes.
This work was motivated by the widespread success of elastic Riemannian shape
analysis of curves [27, 37, 40, 42, 51]. The main benefit of Riemannian shape
analysis is in the breadth of mathematical tools at our disposal, resulting in a
principled statistical shape analysis framework. We note that there are currently
very few Riemannian approaches to shape analysis of 3D objects. Similar to curves,
researchers have proposed many different representations of surfaces. Many groups
study shapes of surfaces by embedding them in volumes and deforming these
volumes under the large deformation diffeomorphic metric mapping (LDDMM)
framework [11, 12, 20, 26, 46]. While these methods are both prominent and
pioneering in medical image analysis, they are typically computationally expensive
since they try to match not only the objects of interest but also some background
space containing them. An important benefit of the LDDMM framework is that it
utilizes the Riemannian geometry of the reparameterization group to compute shape
comparisons and deformations. A closely related approach utilizes inner metrics
to describe shape deformations, which are prescribed directly on the surface [3].
Others study 3D shapes using manually generated landmarks under Kendall’s shape
theory [15], level sets [39], curvature flows [22], point clouds [2], or medial axis
representations [5, 19].

However, the most natural representation for studying the shape of a 3D object
would seem to be a parameterized surface. In this case, there is an additional
difficulty in handling the parameterization variability. Specifically, a reparame-
terization of a surface (achieved using an appropriate function � 2 � made
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precise later) does not change the shape of the object. Thus, a main goal in
shape analysis is to define Riemannian metrics and subsequent statistical analyses,
which are invariant to the introduction of an arbitrary parameterization in shape
representations. Methods such as SPHARM [6, 29] or SPHARM-PDM [17, 44]
tackle this problem by choosing a fixed parameterization that is analogous to the
arc-length parameterization on curves. Kilian et al. [30] presented a technique
for computing geodesics between triangulated meshes (discretized surfaces) but at
their given parameterizations, thus requiring the registration problem to be solved
manually or using some other available method. In fact, a large set of papers in the
literature treat surface registration as a preprocessing step [28]. In such methods,
points across surfaces are first registered using some predefined energy functions
such as the entropy [8] or the minimum description length [13]. Once the surfaces
are registered, they are compared using standard procedures. There are several
fundamental problems with such approaches; first, the energy used for registration
does not lead to a proper distance on the shape space of surfaces. Second, the
registration procedure is typically completely unrelated to the rest of the analysis.
In other words, the two tasks are performed under different metrics. Figure 12.1
displays the various representations of surfaces used for shape analysis.

The remainder of this chapter describes two Riemannian frameworks for statis-
tical shape analysis of parameterized surfaces that overcome the above presented
difficulties. In particular, the defined Riemannian metrics are invariant to reparam-
eterizations of surfaces and allow shape comparisons via geodesic paths in the
shape space. Geodesics can in turn be used to define statistics on shape spaces
including the Karcher mean and covariance. Tools for other statistical procedures are
also presented including principal component analysis and random sampling from

Fig. 12.1 Different representations of surfaces for shape analysis. (courtesy of Srivastava
et al. [43])
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Gaussian-type shape models. Finally, an application to classification of attention
deficit hyperactivity disorder is presented, where the benefits of these methods are
seen through a superior classification rate.

12.2 Surface Representations and Riemannian Metrics

Let F be the space of all smooth embeddings f W D ! R
3, where D represents

the surface domain. Depending on the application of interest D can be the sphere
for closed surfaces, disk for hemispherical surfaces, or square for quadrilateral
surfaces. Each such embedding defines a surface f .D/ � R

3. Let � be the set of
all diffeomorphisms of D. � will act as the reparameterization group for surfaces.
It acts naturally on F by composition: .f ; �/ 7! f ı� . Thus, the space of surfaces can
be thought of as the quotient space F=� , i.e. the space of equivalence classes under
the action of � endowed with appropriate structures.

Since F is a vector space, the tangent space at any point f 2 F denoted
by Tf .F/ can be identified with F . Given the Lebesgue measure ds on D, one
can define a Riemannian structure on F as follows. For ıf1; ıf2 2 Tf .F/, define
the L

2 Riemannian metric as hıf1; ıf2i D
R

D hıf1.s/; ıf2.s/i ds, where the inner
product inside the integral is the Euclidean inner product in R

3. The resulting
squared L

2 distance between two surfaces f1; f2 2 F is
R

D jf1.s/ � f2.s/j2ds. In
this expression, j � j denotes the standard two-norm of a vector in R

3. While simple,
this metric has a critical defect: just as in the case of curves, the action of � does
not preserve distances. In other words, the group � does not act on the space F by
isometries under the L2 metric. This is easily seen through the following expression:
d.f1 ı �; f2 ı �/2 D

R
D jf1.�.s// � f2.�.s//j2ds D R

D jf1.Qs/ � f2.Qs/j2J� .s/�1dQs ¤
d.f1; f2/2, where J� is the determinant of the Jacobian of � . In this equation, we
have used the substitution Qs D �.s/ and J� .s/ds D dQs. The inequality comes
from the fact that, in general, � is not area preserving and thus the determinant
of the Jacobian is not one at all points. The lack of isometry means that the shape
space F=� does not inherit the structure of a Riemannian manifold from F , thereby
making this metric difficult to use for analyzing shapes of parameterized surfaces.
One solution is to restrict attention to area-preserving diffeomorphisms [21], but
this restriction proves to be very limiting in practice. Another solution is to develop
a new representation of surfaces such that the action of � preserves L

2 distances.
Then, one can use the pullback of the L

2 metric from the new representation space
to define a Riemannian structure on the space F . We take this approach and present
two different representations of surfaces that satisfy these conditions: the square-
root function (SRF) and the square-root normal field (SRNF).
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12.2.1 Square-Root Function Representation
and Pullback Metric

Let .x; y/ W D ! R
2 be coordinates on D; then, fx.s/ D @f

@x .s/ and fy.s/ D @f
@y .s/.

To endow F with a Riemannian metric, we begin by defining a new representation
of surfaces called square-root functions or SRFs [32, 33, 38]:

Definition 1. Define the mapping Q W F ! L
2 as Q.f /.s/ D q.s/ D pjn.s/jf .s/,

where n.s/ D fx.s/ � fy.s/ is the normal vector to the surface f at point s.

The factor jn.s/j can be interpreted as the ratio of infinitesimal areas of the surface
at f .s/ and the domain at s, the “area multiplication factor.” For any f 2 F , we will
refer to q.s/ D Q.f /.s/ as the SRF of f . Since we defined F as the space of smooth
surfaces, Q.F/ is a subset of L2.D;R3/, henceforth denoted L

2. If a surface f is
reparameterized by � , then its SRF changes to .q; �/ D .q ı �/pJ� . This can be
extended to a right action of � on L

2.
We choose the natural L2 metric on the space of SRFs: the inner product of

any two elements ıq1; ıq2 2 Tq.L
2/ is hıq1; ıq2i D

R
D hıq1.s/; ıq2.s/i ds. This

metric has the key property that � acts by isometries on L
2. As a result, if we

pullback this metric to F , the resulting Riemannian metric is also preserved by the
action of � , unlike the plain L

2 metric on F mentioned at the beginning of this
section. To obtain the pullback metric, we must first derive the differential of the
mapping Q at any surface f , denoted by Q�;f . This is a linear mapping between
tangent spaces Tf .F/ and TQ.f /.L

2/. For a tangent vector ıf 2 Tf .F/, the mapping
Q�;f W Tf .F/! TQ.f /.L

2/ is given by

Q�;f .ıf / D 1

2jnj 32 .n � nıf /f C
pjnj ıf : (12.1)

The quantity nıf depends on both f and ıf and is defined as fx � ıfy C ıfx � fy. The
pullback metric on F is then defined as usual.

Definition 2. For any f 2 F and any ıf1; ıf2 2 Tf .F/, define the inner product

hhıf1; ıf2iif D ˝
Q�;f .ıf1/;Q�;f .ıf2/

˛
; (12.2)

where the inner product on the right side is the standard inner product in L
2.

To write the metric in Definition 2 in full detail, we use the expression for Q�;f .ıf /
given in Eq. (12.1):

hhıf1; ıf2iif D h 1

2jnj 32 .n � nıf1 /f C
pjnj ıf1; 1

2jnj 32 .n � nıf2 /f C
pjnj ıf2i

D
�
1

4jnj3 .n � nıf1 /f ; .n � nıf2 /f
�
C
�
1

2jnj Œ.n � nıf2 /ıf1 C .n � nıf1 /ıf2�; f
�
C hjnjıf1; ıf2i :
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As stated, because of the structure of Q, the action of � on F is by isometries
under this metric. That is, for any surface f 2 F , a � 2 � , and two tangent vectors
ıf1; ıf2 2 Tf .F/, we have hhıf1 ı �; ıf2 ı �iifı� D hhıf1; ıf2iif .

It is frequently important for shape analysis to be invariant to changes in the
positions, orientations, and sizes of the surfaces being compared. In other words,
the metric should be invariant to the action of the (direct) similarity group of
translations, rotations, and scalings. One way to achieve such invariance is by
normalizing, i.e. by picking a distinguished representative of each equivalence class
under the group action, and then computing distances only between these distin-
guished elements. Thus, translations may be removed by centering, fcentered.s/ D
f .s/ �

R
D f .s/jn.s/jdsR

D jn.s/jds
, while scalings may be removed by rescaling all surfaces to have

unit area, fscaled.s/ D f .s/pR
D jn.s/jds

. Slightly abusing notation, we denote the space

of such normalized surfaces also by F . Then, F forms the “preshape space” in
our analysis. Paired with the Riemannian metric hh�; �ii, it becomes a Riemannian
manifold.

Another, often equivalent, way to achieve invariance is by constructing the
quotient space under the group action, inducing a metric on the quotient space from
the covering space and then computing distances between points in the quotient
space (i.e. between equivalence classes). This is how we will deal with the actions
of the rotation group SO.3/ and � . The rotation group acts on F according to
.O; f / D Of , for O 2 SO.3/ and f 2 F . It is easy to check that this action
is by isometries. We have already seen that the action of � is by isometries too.
Furthermore, the actions of � and SO.3/ on F commute, allowing us to define an
action of the product group. The equivalence class or orbit of a surface f is given
by Œf � D fO.f ı �/jO 2 SO.3/; � 2 � g, and the set of all Œf � is by definition the
quotient space S D F=� D fŒf �jf 2 Fg. This quotient space is called the “shape
space.”

The next step is to define geodesic paths and distances in the shape space S .
This is accomplished using the following joint optimization problem. Let f1 and
f2 denote two surfaces and let hh�; �ii be the Riemannian metric on F . Then, the
geodesic distance between shapes of f1 and f2 is given by

d.Œf1�; Œf2�/ D min
.O;�/2SO.3/��

0
BBBBB@

min
F W Œ0; 1�! F

F.0/ D f1; F.1/ D O.f2 ı �/

 Z 1

0
hhdF.t/

dt
;

dF.t/

dt
ii.1=2/ dt

!
1
CCCCCA
:

(12.3)

In this equation, F.t/ is a path in F indexed by t. The quantity L.F/ DR 1
0
hh dF.t/

dt ;
dF.t/

dt ii.1=2/ dt provides the length of the path F. The minimization inside
the brackets represents the problem of finding a geodesic path between the surfaces
f1 and O.f2ı�/, where O and � stand for an arbitrary rotation and reparameterization
of f2, respectively. This is computed using a path-straightening technique. We
omit the details of this method here and refer the interested reader to [34] for
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Fig. 12.2 Pictorial description of the process of computing geodesics in the shape space of
surfaces

details. The minimization outside the brackets seeks the optimal rotation and
reparameterization of the second surface so as to best match it with the first surface.
This optimization is performed iteratively using Procrustes analysis to solve for
optimal rotations and a gradient descent algorithm [32, 33] to solve for the optimal
reparameterization. A few details of this registration procedure are presented in the
next section. In simple words, the outside optimization solves the registration prob-
lem while the inside optimization solves for both an optimal deformation (geodesic
path, F�) and a formal geodesic distance between shapes. Figure 12.2 displays
the joint optimization problem defined in Eq. (12.3). Figure 12.3 displays several
examples of geodesic comparisons for complex surfaces with many articulated
parts. We note the clear benefit of finding optimal reparameterizations during the
geodesic computation. The geodesics in the shape space are much more natural
than those in the pre-shape space. Furthermore, the decrease in the distance due to
optimization over the reparameterization group is significant in all of the presented
examples. These properties will additionally lead to improved shape statistics and
more parsimonious shape models.

12.2.2 Application to Image Registration

The problem of image registration is common across multiple application areas.
Given a set of observed images, the goal is to establish point correspondence across
the domains of these images. Although the registration problem has been studied
for almost two decades, there continue to be some fundamental limitations in the
popular solutions that make them suboptimal, difficult to evaluate, and limited in
scope. To explain these limitations, let f1 and f2 represent two R

n-valued images.
A pairwise registration between these images is defined as finding a diffeomorphic
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Pre-Shape Geodesic Shape Geodesic

dF = 0.2223 dS = 0.0879

dF = 0.2263 dS = 0.1630

dF = 0.2023 dS = 0.1287

dF = 0.2888 dS = 0.1023

dF = 0.2582 dS = 0.1387

Fig. 12.3 Comparison of geodesics computed under hh�; �ii in the pre-shape space and shape space

mapping � of the image domain D to itself, such that pixels f1.s/ and f2.�.s//
are optimally matched to each other for all s 2 D. To develop an algorithm
for registration one needs an objective function for formalizing the notion of
optimality. A common type of objective function used in registration frameworks is
L.f1; f2 ı �/ D

R
D jf1.s/� f2.�.s//j2dsC �R.�/, where R is a regularization penalty

on � and � is a positive constant. This objective function has many shortcomings
including lack of symmetry (registration of f1 to f2 is different from registration
of f2 to f1). Next, we outline several important properties for image registration
and show that the framework for shape analysis of surfaces can be applied to the
image registration problem. Furthermore, this framework overcomes many of the
shortcomings of current registration methods.

In the case of images we extend the definition of F to all images on some
domain D that take value in R

n; n > 1. (When dealing with grayscale images,
we add the gradient of the image f to create an image in R

3.) We let � denote the
reparameterization group, also called the image-warping group. Let L.f1; .f2; �//
denote the objective function for matching f1 and f2 by optimizing over � (here � is
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assumed to be applied to f2 resulting in .f2; �/ 2 F). Then, the desired properties of
L are (for any f1; f2 2 F and � 2 � ): (1) symmetry; (2) positive definiteness;
(3) lack of bias: if f1; f2 are constant functions then L.f1; f2/ D L.f1; .f2; �//;
(4) invariance to identical warping: L.f1; f2/ D L ..f1; �/; .f2; �//; (5) triangle
inequality; and (6) � is a group with composition as the group action. These
properties have been discussed previously in [9, 45, 49].

Next, we define a representation of images, similar to the SRF, which allows
invariance to � under the L

2 metric [48, 49].

Definition 3. Define the mapping QQ W F ! L
2.D;Rn/, n > 1, as QQ.f /.s/ D Qq.s/ Dpja.s/jf .s/, where ja.s/j D jfx.s/ ^ fy.s/j, where ^ is the wedge product.

We will refer to this representation as the extended SRF. The extended SRF is
simply a generalization of the SRF used for surfaces to functions taking values in
R

n; n > 1. Assuming the original set of images to be smooth, the set of all extended
SRFs is a subset of L2. One can show that the action of � on L

2 is exactly the same,
mutatis mutandis, as that in the previous section. This implies that this group acts
on L

2 by isometries, satisfying property (4). This leads to the following definition
of the objective function.

Definition 4. Define an objective function for registration of any two images f1 and
f2, represented by their extended SRFs Qq1 and Qq2, as L.f1; .f2; �// D kQq1 � .Qq2; �/k.
The registration is then achieved by minimizing this objective function: �� D
arginf�2� L.f1; .f2; �// D arginf�2� kQq1 � .Qq2; �/k. The objective function L given
in Definition 4 satisfies all of the properties listed earlier. The L

2 norm between
extended SRFs of images becomes a proper measure of registration between images
since it remains the same if the pixel correspondence is unchanged. This leads to
a quantity that serves as both the registration objective function and an extrinsic
distance between registered images (kQq1� .Qq2; ��/k). It is important to note that the
proposed objective function has only one term (similarity term) and the regularity
term appears to be missing. However, the similarity term has built-in regularity,
since it includes the determinant of the Jacobian of the transformation � . Additional
regularity can also be introduced as in the LDDMM framework [4].

Gradient Descent Method for Optimization Over � The optimization problem
over � is a major component of this registration framework and we use a gradient
descent method to solve it. Since � is a group, we use the gradient to solve for the
incremental warping � , on top of the previous cumulative warping �o, as follows.
First, define a cost function with respect to � as E.�/ D kQq1 � �Qqo

2
.�/k2, where

�Qq W � ! ŒQq� is defined to be �Qq.�/ D .Qq; �/ and Qqo
2 D .Qq2; �o/ with �o being the

current registration function. Given a set of orthonormal basis elements, say B, of
T�id .� /, the gradient at �id takes the form rE.�id/ DPb2BhQq1 � �Qqo

2
.�id/; �Qqo

2;�.b/.
In this equation, �Qqo

2;�.b/ denotes the differential of �Qq at �id in the direction of b
and brackets denote the L

2 inner product. We omit the derivation of �Qq;� and note
that it is the same as presented in [33]. We note that this gradient-based solution can
also be employed in the search for optimal � in the case of parameterized surfaces.
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Fig. 12.4 Registration of two synthetic grayscale images. �12 D argmin�2� L.f2; .f1; �// and
�21 D argmin�2� L.f1; .f2; �//. kq1�q2k D 0:2312, kQq1� .Qq2; �21/k D 0:0728, and k.Qq1; �12/�
Qq2k D 0:0859. (Courtesy of Xie et al. [49])

There, one has to perform an additional search over the rotation group SO.3/, and
then solve for the geodesic using path straightening.

In Fig. 12.4 we display an example of registering two smooth grayscale images
using this framework. The correspondence appears to be good, and more impor-
tantly, the resulting distance between the registered images is approximately
symmetric and the registration is inverse consistent. That is, the compositions
�21 ı�12 and �12 ı�21 result in the identity mapping. This provides empirical support
for the claim that this method satisfies all properties outlined earlier.

12.2.3 Elastic Riemannian Metric

While the SRF representation has its advantages, it has two important drawbacks.
First, there is no intuitive interpretation or justification for the use of the metric,
unlike the elastic Riemannian metric used in the case of curves; rather, it was solely
devised for the convenience of being able to compare the shapes of parameterized
surfaces using the L

2 metric in the SRF space. Second, the associated metric is not
translation invariant; translating two shapes equally does not preserve the distance
between them, which can cause some issues during statistical analysis. To overcome
these two drawbacks, while preserving the advantages of the SRF representation, a
different representation of surfaces was introduced in [25]: the square-root normal
field, or SRNF, the details of which we present next.

We first recall the elastic metric in the case of curves [42]. Let ˇ W D ! R
2

be a curve, where D temporarily denotes either the circle S1 or the interval. Let
r ds D j P̌j ds be the induced metric measure, where ds is Lebesgue measure on D,
and let Qn be the normalized normal vector to the curve. We can represent the curve
uniquely up to translations by the pair .r; Qn/. Then, the family of elastic metrics
takes the form
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hhh.ır1; ı Qn1/; .ır2; ı Qn2/iii.r;Qn/ D 2�
Z

D

ır1.s/ır2.s/

r.s/
dsCc

Z
D
hı Qn1.s/; ı Qn2.s/i r.s/ds ;

(12.4)

where .ıri; ı Qni/, i 2 f1; 2g are tangent vectors at the curve .r; Qn/, and �; c 2 RC.
Although this metric was defined for curves, it can immediately be applied to

surfaces, with r D jnj denoting the induced metric measure and Qn D n
r denoting

the unit normal vector. We thereby define a new Riemannian metric on the space
of parameterized surfaces known, for reasons that will become clear, as the “partial
elastic metric.” To understand this metric, consider that a small change in f on an
infinitesimal patch in the surface around the point f .s/ can be decomposed into a
change in the normal direction of the patch (“bending”) and a change in its geometry
(“stretching”). Since a change in Qn.s/ corresponds to a change in normal direction
and a change in r corresponds to a change in the area of the patch, we see that this
metric has an interpretation directly analogous to its interpretation in the case of
curves.

However, when D is two-dimensional, the change in area does not completely
characterize a change in the geometry of a patch. A change in geometry can be
decomposed into a change in area and an area-preserving change of shape [10, 14].
The partial elastic metric measures the first type of change, but does not measure
changes in f that change the shape of a patch while preserving its area and normal
direction. This limitation came about because the correspondence that we used
between the quantity r in the case of curves and in the case of surfaces was in fact
incomplete. We interpreted r for curves as the induced metric measure, but r2 is also
the full induced metric; in one dimension there is no difference. This suggests that
instead of using .r; Qn/ to represent a surface, we should use .g; Qn/, where g D f �h
is the full pullback metric (with h the metric on R

3). The metric g contains more
information than r, because r is just jgj 12 , where j � j indicates the determinant.

This in turn suggests that Eq. (12.4) is merely a special case of a more general
elastic metric for surfaces, and indeed this is the case. This “full elastic metric” is
defined, up to an overall scale, by

h.ıg1; ı Qn1/; .ıg2; ı Qn2/i.g;Qn/

D
Z

D

�
tr.g�1ıg1g

�1ıg2/C �

2
tr.g�1ıg1/tr.g

�1ıg2/C c hı Qn1; ı Qn2i
�jgj 12 ds; (12.5)

where, for positivity, � > �2
3

and c 2 RC.1

To see that the partial metric is indeed a special case of this full metric, note that
the term multiplied by � can be written as

1It is interesting to note that the first two terms in the full elastic metric form the unique family
of ultralocal metrics on the space of Riemannian metrics on which diffeomorphisms act by
isometries [14]. The � D 0 case of this metric on Riemannian metrics has been studied in
e.g., [10, 16, 18].
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Z
D

dsjgj 12 tr.g�1ıg1/tr.g�1ıg2/ D 4
Z

D
dsjgj� 12 ı1.jgj 12 /ı2.jgj 12 /: (12.6)

Since r D jgj 12 , this is the same as the first term in Eq. (12.4), while the last term
is the same in each case. Unlike the partial metric, however, the first two terms in
Eq. (12.5) measure not only changes in local area but also any “stretching” of the
surface, i.e., changes in both the area and the shape of local patches. The third
term continues to measure changes in the normal direction, that is, “bending.” The
intuitive interpretation of the metric thus remains unchanged, but now all types of
change in f are measured. Indeed, the map from F to the .g; Qn/ representation is
bijective, up to translations (although it is not surjective) [1].

Having defined this metric for surfaces, i.e., codimension-1 embedded subman-
ifolds of R

3, it is easy to see that it applies in fact to codimension-1 embedded
submanifolds in any number of dimensions, and, with a simple generalization of
the third term, to embedded submanifolds of any codimension in any number of
dimensions. In particular, when D is one-dimensional, and thus g is a scalar, the
first two terms become the same, so that the full metric becomes identical to the
partial metric (which is thus no longer partial), which is, in turn, just the elastic
metric for curves. Equation (12.5) is thus the most general form of the elastic metric
and deserves further study. However, we defer further analysis of its properties to
another place. We now focus on the partial metric.

12.2.4 Square-Root Normal Field Representation of Surfaces

An important and remarkable property of the partial elastic metric in Eq. (12.4)
is that, despite appearances, for a particular choice of the ratio of � and c, it
is Euclidean: i.e., we can find a transformation of the representation such that
this metric takes on the simple L

2 form. This is strictly analogous to the case of
the elastic metric for curves, which gave rise to the square-root velocity function
(SRVF) [42]. Just as in this case, and in the case of the SRF, the existence of a
representation that transforms the metric to L

2 form means that parts of the shape
analysis framework can be dramatically simplified.

This new, convenient representation of surfaces is called the square-root normal
field (SRNF) and is defined as follows [25]:

Definition 5. Define the mapping H W F ! L
2 as H.f /.s/ D h.s/ D p

r.s/Qn.s/ D
n.s/p

r.s/
D n.s/pjn.s/j .

This is strictly analogous to the SRVF defined for curves, except that there the
tangent vector is used instead of the normal vector/form. Since jhj2 D r, the L

2

norm of h is just the area of the surface (again, cf. the case of curves, where the L
2

norm of the SRVF gives the length of the curve). Thus, just as in the case of SRFs,
the space of SRNFs is also a subset of L2.D;R3/ or simply L

2.
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We now show that the L
2 metric in the SRNF space is the same as that in

Eq. (12.4). The derivative map between the tangent spaces at .r; Qn/ and h 2 L
2

is given by

ıh.s/ D 1

2
p

r.s/
Qn.s/ır.s/C

p
r.s/ı Qn.s/: (12.7)

Taking the L
2 inner product between two such vectors, we obtain

hıh1; ıh2ih D
1

4

Z
D

ır1.s/ır2.s/

r.s/
dsC

Z
D

r.s/ hı Qn1.s/; ı Qn2.s/i ds (12.8)

since hQn.s/; ı Qni.s/i D 0. This is just the partial elastic metric for � D 1=8 and
c D 1. We thus find that if c=� D 8, the SRNF representation acts as “Euclidean
coordinates” for the partial elastic metric, bringing it to L

2 form.
As in the case of SRFs, we must also remove all shape-preserving transforma-

tions in order to generate shape comparisons. A major advantage of the SRNF is that
it (and consequently the partial and full elastic metrics) is automatically invariant
to translations, simply because it depends only on derivatives of f . As previously,
we can scale all surfaces to have unit area. It is easily checked that rotating a
surface f 7! Of sends h 7! Oh and reparameterizing a surface f 7! f ı � sends
h 7! .h; �/ D .q ı �/pJ� . It is also easy to verify that just as in the SRF case, the
action of � on the space of surfaces under the partial elastic metric is by isometries.
This allows the use of this metric for parameterization-invariant shape analysis.

In order to generate comparisons of shapes using geodesic paths and distances,
we take a similar approach to that presented in Sect. 12.2.1 for the SRF repre-
sentation. Because the action of � on the SRNF space is the same as that on the
SRF space, the gradient descent algorithm to compute optimal reparameterizations
remains unchanged. To compute geodesics, we also use the path-straightening
approach [41]. In Fig. 12.5, we again provide a comparison of geodesics computed
in the pre-shape space and shape space under the partial elastic metric. We use
the same examples as in Fig. 12.3. As previously, the geodesics in the shape space
have much lower distances due to the additional optimization over � . They are
also much more natural due to the improved correspondence of geometric features
across surfaces. When comparing the shape space results in this figure to those in
Fig. 12.3, we notice that the partial elastic metric provides better registrations than
the pullback metric from SRF space. This is expected due to the nice stretching and
bending interpretation of this metric.

12.3 Shape Statistics

In this section, we present tools for computing two fundamental shape statistics, the
mean, and the covariance. We then utilize these quantities to estimate a generative
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dF = 1.0373 dS = 0.3809

dF = 1.1970 dS = 0.9441
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dF = 1.5349 dS = 0.7132

dF = 1.5043 dS = 0.9375

Fig. 12.5 Comparison of geodesics computed under hhh�; �iii in the pre-shape space and shape
space

Gaussian model and draw random samples from this model. These methods have
been previously presented for SRFs and SRNFs in [31, 36].

First, we define an intrinsic shape mean, called the Karcher mean. Let
ff1; f2; : : : ; fng 2 F denote a sample of surfaces. Also, let F�i denote a geodesic
path (in the shape space) between the shape of some surface f and the shape of
the ith surface in the sample, fi. Then, the sample Karcher mean shape is given by

ŒNf � D argmin
Œf �2S

nX
iD1

L.F�i /2. A gradient-based approach for finding the Karcher mean

is given in, for example, [15] and is omitted here for brevity. Note that the resulting
Karcher mean shape is an entire equivalence class of surfaces.

Once the sample Karcher mean has been computed, the evaluation of the
Karcher covariance is performed as follows. First, find the shooting vectors from
the estimated Karcher mean Nf 2 ŒNf � to each of the surface shapes in the sample,

�i D dF�
i

dt jtD0, where i D 1; 2; : : : ; n and F� denotes a geodesic path in S . This is
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accomplished using the inverse exponential map, which is used to map points from
the representation space to the tangent space. Then, perform principal component
analysis by applying the Gram–Schmidt procedure (under the chosen metric hh�; �ii)
to generate an orthonormal basis fBjjj D 1; : : : ; kg, k � n, of the observed f�ig.
Project each of the vectors �i onto this orthonormal basis using �i � Pk

jD1 ci;jBj,
where ci;j D hh�i;Bjii. Now, each original shape can simply be represented using the
coefficient vector ci D fci;jg. Then, the sample covariance matrix can be computed
in the coefficient space as K D .1=.n � 1//Pn

iD1 cicT
i 2 R

k�k. One can use the
singular value decomposition of K to determine the principal directions of variation
in the given data. For example, if u 2 R

k corresponds to a principal singular vector
of K, then the corresponding tangent vector in TNf .F/ is given by v D Pk

jD1 ujBj.
One can then map this vector to a surface f using the exponential map, which
is used to map points from the tangent space to the representation space. The
exponential map must be computed under one of the nonstandard metrics introduced
earlier, which is not a simple task. This can be accomplished using a tool called
parallel transport, which was derived for the SRNF representation of surfaces by Xie
et al. [50]. For brevity, we do not provide details here but rather refer the interested
reader to that paper. We also note that when computing the following results we
approximated the exponential map using a linear mapping.

Given the mean and covariance, we can impose a Gaussian distribution in the
tangent space at the mean shape. This will provide a model, which can be used
to generate random shapes. A random tangent vector v 2 TNf .F/ can be sampled

from the Gaussian distribution using v D Pk
jD1 zj

p
SjjujBj, where zj

iid� N.0; 1/,
Sjj is the variance of the jth principal component, uj is the corresponding principal
singular vector, and Bj is a basis element as defined previously. One can then map
this element of the tangent space to a surface shape using the exponential map to
obtain a random shape from the Gaussian distribution.

We present an example of computing shape statistics for a toy data set in
Figs. 12.6 and 12.7. The data in this example was simulated in such a way that
one of the peaks on each surface was already matched perfectly while the position
of the second peak was slightly perturbed. All surfaces in this data set are displayed
in the top panel of Fig. 12.6. We computed three averages in this example: simple
average in the pre-shape space (bottom left of Fig. 12.6), Karcher mean under the
SRF pullback metric hh�; �ii (bottom center of Fig. 12.6), and Karcher mean under
the partial elastic metric hhh�; �iii (bottom right of Fig. 12.6). The pre-shape mean
is not a very good summary of the given data. One of the peaks is sharp while
the other is averaged out due to misalignment. The Karcher mean under the SRF
pullback metric is much better, although it also shows slight averaging out of the
second peak. The best representative shape is given by the Karcher mean computed
under the partial elastic metric where the two peaks are sharp as in the original data.
In Fig. 12.7, we display the two principal directions of variation in the given data
computed by those three methods. The result computed in the pre-shape space does
not reflect the true variability in the given data. In fact, as one goes in the positive
second principal direction, the resulting shapes have three peaks. This result is again
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Given Data

Pre-Shape Mean Mean under 〈〈·,·〉〉 Mean under  〈〈〈·,·〉〉〉

Fig. 12.6 Top: given data. Bottom: shape means computed (1) in the pre-shape space, (2) under
the SRF pullback metric, and (3) under the partial elastic metric

improved under the SRF pullback metric. But, there is still some misalignment,
which can be seen in the second principal direction where a wide peak evolves into
a thin peak. The best result is observed in the case of the partial elastic metric. Here,
all of the variability is contained in the first principal direction of variation where
the peak naturally moves without any distortion. Based on the given data, this is
the most intuitive summary of variability.

In Fig. 12.8, we show two random samples from the Gaussian distribution defined
(1) in the pre-shape space, (2) in the shape space under the SRF pullback metric, and
(3) in the shape space under the partial elastic metric. The two random samples in
the pre-shape space do not resemble the given data as they both have three peaks.
While method (2) produced random samples with two peaks, one can see that in
both cases one of the peaks has a strange shape (either too thin or too wide). Method
(3) produces the best random samples, which clearly resemble the structure in the
given data.

12.4 Classification of Attention Deficit Hyperactivity
Disorder

In this last section, we present an application of the described methods to medical
imaging: the diagnosis of attention deficit hyperactivity disorder (ADHD) using
structural MRI. The results presented here have been previously published in [31,
32, 47]. The surfaces of six left and right brain structures were extracted from
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Principal Directions of Variation in Pre-Shape Space

PD1

PD2
Principal Directions of Variation under  〈〈·,·〉〉

PD1

PD2
Principal Directions of Variation under  〈〈〈·,·〉〉〉

PD1

PD2

Fig. 12.7 The two principal directions of variation (from �2� to C2�) for (1) pre-shape mean
and covariance without optimization over � , (2) pullback metric under SRF representation, and
(3) partial elastic metric

Random Samples from Gaussian Model
Pre-Shape Under 〈〈·,·〉〉 Under 〈〈〈·,·〉〉〉

Fig. 12.8 Random samples from Gaussian model computed (1) in the pre-shape space, (2) under
the pullback metric under SRF representation, and (3) under the partial elastic metric

T1-weighted brain magnetic resonance images of young adults aged between 18
and 21. These subjects were recruited from the Detroit Fetal Alcohol and Drug
Exposure Cohort [7, 23, 24]. Among the 34 subjects studied, 19 were diagnosed
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Caudate Pallidus Putamen Thalamus

Fig. 12.9 Left subcortical structures used for ADHD classification. (Courtesy of Kurtek et al. [32])

Table 12.1 Classification accuracy (%) for five different techniques

Method SRNF Gauss SRF Gauss SRF NN ICP SPHARM-PDM

structure (%) [47] [31] [32] Harmonic [2] [44]

L. Caudate 67.7 – 41.2 64.7 32.4 61.8

L. Pallidus 85.3 82.4 76.5 79.4 67.7 44.1

L. Putamen 94.1 88.2 82.4 70.6 61.8 50.0

L. Thalamus 67.7 – 58.8 67.7 35.5 52.9

R. Caudate 55.9 – 50.0 44.1 50.0 70.6

R. Pallidus 76.5 67.6 61.8 67.7 55.9 52.9

R. Putamen 67.7 82.4 67.7 55.9 47.2 55.9

R. Thalamus 67.7 – 58.8 52.9 64.7 64.7

with ADHD and the remaining 15 were controls (non-ADHD). Some examples
of the left structures used for classification are displayed in Fig. 12.9. In order to
distinguish between ADHD and controls, we utilize several methods for compari-
son: SRNF Gaussian, SRF Gaussian, SRF distance nearest neighbor (NN), iterative
closest point (ICP) algorithm, L2 distance between fixed surface parameterizations
(Harmonic), and SPHARM-PDM. The classification performance for all methods is
reported in Table 12.1. The results suggest that the Riemannian approaches based
on parameterization-invariant metrics perform best in this setting due to improved
matching across surfaces. Furthermore, the use of Gaussian probability models
outperforms standard distance-based classification.

12.5 Summary

This chapter describes two Riemannian frameworks for statistical shape analy-
sis of 3D objects. The important feature of these methods is that they define
reparameterization-invariant Riemannian metrics on the space of parameterized
surfaces. The first framework develops the metric by pulling back the L2 metric from
the space of square-root function representations of surfaces. The main drawbacks
of this method are the lack of interpretability of the resulting Riemannian metric
and the lack of invariance to translations. The second framework starts with a full
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elastic metric on the space of parameterized surfaces. This metric is then restricted,
resulting in a partial elastic metric, which becomes the simple L

2 metric under
the square-root normal field representation of surfaces. This metric has a nice
interpretation in terms of the amount of stretching and bending that is needed to
deform one surface into another. We show examples of geodesic paths and distances
between complex surfaces for both cases. Given the ability to compute geodesics in
the shape space, we define the first two moments, the Karcher mean and covariance,
and use them for random sampling from Gaussian-type shape models. Finally, we
showcase the applicability of these methods in an ADHD medical study.
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Part IV
Objects, Humans, and Activity

This part presents applications to several high-level vision problems including
object recognition, face recognition, and activity recognition.



Chapter 13
Designing a Boosted Classifier on Riemannian
Manifolds

Fatih Porikli, Oncel Tuzel, and Peter Meer

Abstract It is not trivial to build a classifier where the domain is the space
of symmetric positive definite matrices such as non-singular region covariance
descriptors lying on a Riemannian manifold. This chapter describes a boosted
classification approach that incorporates the a priori knowledge of the geometry
of the Riemannian space. The presented classifier incorporated into a rejection
cascade and applied to single image human detection task. Results on INRIA and
DaimlerChrysler pedestrian datasets are reported.

13.1 Introduction

Detecting and locating different types of objects in visual data is one of the funda-
mental tasks in computer vision. Object detection be considered as a classification
problem where each candidate image region is evaluated by a learned classifier
for being from the specific object class or not. This can be accomplished by
generative and discriminative learning [6, 23]—two of the major paradigms for
solving prediction problems in machine learning, each offering distinct advantages.

In generative approaches [7, 28], one models conditional densities of object
and non-object classes, and parameters are typically estimated using a likelihood-
based criterion. In discriminative approaches, one directly models the mapping from
inputs to outputs (often via a prediction function); parameters are estimated by
optimizing objectives related to various loss functions. Discriminative approaches
have shown better performance given enough data, as they are better tailored to the
prediction task and appear more robust to model mismatches. Most of the leading
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approaches in object detection can be categorized as discriminative models such as
neural networks (NNs) [13], support vector machines (SVMs) [3] or boosting [22],
and convolutional neural nets (CNNs) [1, 24]. These methods became increasingly
popular since they can cope with high-dimensional state spaces and are able to select
relevant descriptors among a large set. In [20] NNs and in [16] SVMs were utilized
as single strong classifiers for detection of various categories of objects. The NNs
and SVMs were also utilized for intermediate representations [5, 15] for final object
detectors. In [27], multiple weak classifiers trained using AdaBoost were combined
to form a rejection cascade.

In this chapter, we apply local object descriptors, namely region covariance
descriptors, to human detection problem. Region covariance features were first
introduced in [25] for matching and texture classification problems and later were
extended to many applications from tracking [19], event detection [12], and video
classification successfully [29]. We represent a human with several covariance
descriptors of overlapping image regions where the best descriptors are determined
with a greedy feature selection algorithm combined with boosting. A region
covariance descriptor is a covariance matrix that measures of how much pixel-
wise variables, such as spatial location, intensity, color, derivatives, and pixel-wise
filter responses, change together within the given image region. The space of these
covariance matrices does not form a vector space. For example, it is not closed
under multiplication with negative scalars. Instead, they constitute a connected
Riemannian manifold. More specifically, non-singular covariance matrices form a
symmetric positive definite manifold that has Riemannian geometry.

It is not possible to use classical machine learning techniques to design the
classifiers in this space. Consider a simple linear classifier that makes a classification
decision by dividing the Euclidean space based on the value of a linear combination
of input coefficients. For example, the simplest form a linear classifier in R

2, which
is a point and a direction vector in R

2, defines a line which separates R2 into two.
A function that divides the manifold is rather a complicated notion compared with
the Euclidean space. For example, if we consider the image of the lines on the 2-
torus, the curves never divide the manifold into two. Typical approaches map such
manifolds to higher-dimensional Euclidean spaces, which corresponds to flattening
of the manifold. They map the points on the manifold to a tangent space where
traditional learning techniques can be used for classification. A tangent space is
an Euclidean space relative to a point. Processing a manifold through a single
tangent space is restrictive, as only distances to the original point are true geodesic
distances. Distances between arbitrary points on the tangent space do not represent
true geodesic distances. In general, there is no single tangent space mapping that
globally preserves the distances between the points on the manifold. Therefore, a
classifier trained on a single tangent space or flattened space does not reflect the
global structure of the data points. As a remedy, we take advantage of the boosting
framework that consists of iteratively learning weak learners in different tangent
spaces to obtain a strong classifier. After a weak learner is added, the training
data are reweighted. Misclassified examples are set to gain weight and correctly
classified examples to lose weight. Thus, consecutive weak learners focus more
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on the examples that previous weak learners misclassified. To improve speed, we
further structure multiple strong classifiers into a final rejection cascade such that if
any previous strong classifier rejects a hypothesis, then it is considered a negative
example. This provides an efficient algorithm due to sparse feature selection, besides
only a few classifiers are evaluated at most of the regions due to the cascade
structure. A previous version of the classification method presented in this book
chapter has been published in [26].

For completeness, we present an overview of Riemannian geometry focusing on
the space of symmetric positive definite matrices in Sect. 13.2. We explain how to
learn a boosted classifier on a Riemannian manifold in Sect. 13.3. Then, we describe
the covariance descriptors in Sect. 13.4 and their application to human detection in
Sect. 13.5 with experimental evaluations in Sect. 13.6.

13.2 Riemannian Manifolds

We refer to points on a manifold with capital letters X 2 M, whereas symmetric
positive definite matrices with capital bold letters X 2 SymCd and points on a
tangent space with small bold letters � 2 TX . The matrix norms are computed by
the Frobenius norm kXk2 D trace.XXT/, and the vector norms are the `2 norm.

13.2.1 Manifolds

A manifold M is a topological space which is locally similar to an Euclidean
space. Every point on the manifold has a neighborhood for which there exists
a homeomorphic mapping the neighborhood to R

m. Technically, a manifold M
of dimension d is a connected Hausdorff space for which every point has a
neighborhood that is homeomorphic to an open subset of Rd.

A differentiable manifold Mc is a topological manifold equipped with an equiv-
alence class of atlas whose transition maps are c-times continuously differentiable.
In case all the transition maps of a differentiable manifold are smooth, i.e., all its
partial derivatives exist, then it is a smooth manifold M1.

For differentiable manifolds, it is possible to define the derivatives of the curves
on the manifold and attach to every point X on the manifold a tangent space TX ,
a real vector space that intuitively contains the possible directions in which one
can tangentially pass through X. In other words, the derivatives at a point X on the
manifold lies in a vector space TX , which is the tangent space at that point. The
tangent space TX is the set of all tangent vectors at X. The tangent space is a vector
space, thereby it is closed under addition and scalar multiplication.
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13.2.2 Riemannian Geometry

A Riemannian manifold .M; g/ is a differentiable manifold in which each tangent
space has an inner product g metric, which varies smoothly from point to point.
It is possible to define different metrics on the same manifold to obtain different
Riemannian manifolds. In practice, this metric is chosen by requiring it to be
invariant to some class of geometric transformations. The inner product g induces a
norm for the tangent vectors on the tangent space k � k2X D< �;� >XD g.�/.

The minimum length curve connecting two points on the manifold is called the
geodesic, and the distance between the points d.X;Y/ is given by the length of this
curve. On a Riemannian manifold, a geodesic is a smooth curve that locally joins
its points along the shortest path. Suppose �.r/ W Œr0; r1� 7! M be a smooth curve on
M. The length of the curve L.�/ is defined as

L.�/ D
Z r1

r0

k� 0.r/kdr: (13.1)

A smooth curve is called geodesic if and only if its velocity vector is constant along
the curve k� 0.r/k D const. Suppose X and Y be two points on M. The distance
between the points d.X;Y/ is the infimum of the length of the curves such that
�.r0/ D X and �.r1/ D Y . For each tangent vector � 2 TX , there exists a unique
geodesic � starting at �.0/ D X having initial velocity � 0.0/ D �. All the shortest
length curves between the points are geodesics but not vice versa. However, for
nearby points the definition of geodesic and the shortest length curve coincide.

The exponential map, expX W TX 7! M, maps the vector y in the tangent
space to the point reached by the geodesic after unit time expX.y/ D 1. Since the
velocity along the geodesic is a constant, the length of the geodesic is given by
the norm of the initial velocity d.X; expX.y// D kykX . An illustration is shown in
Fig. 13.1. Under the exponential map, the image of the zero tangent vector is the
point itself, expX.0/ D X. For each point on the manifold, the exponential map
is a diffeomorphism (one-to-one, onto, and continuously differentiable mapping in
both directions) from a neighborhood of the origin of the tangent space TX onto a
neighborhood of the point X.

In general, the exponential map expX is onto but only one-to-one in a neighbor-
hood of X. Therefore, the inverse mapping logX W X 7! TX is uniquely defined only
around a small neighborhood of the point X. If for any Y 2 M, there exists several

Fig. 13.1 Illustration of a
manifold M and the
corresponding tangent space
TX at X for point Y
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y 2 TX such that Y D expX.y/, then logX.Y/ is given by the tangent vector with the
smallest norm. Notice that both operators are point dependent.

From the definition of geodesic and the exponential map, the distance between
the points on manifold can be computed by

d.X;Y/ D d.X; expX.y// D< logX.Y/; logX.Y/ >XD k logX.Y/kX D kykX :

(13.2)

13.2.3 Space of Symmetric Positive Definite Matrices

The (d � d)-dimensional non-singular covariance matrices, i.e., region covariance
descriptors, are symmetric positive definite SymCd and can be formulated as a
connected Riemannian manifold. The set of symmetric positive definite matrices
is not a multiplicative group. However, an affine invariant Riemannian metric on the
tangent space of SymCd is given by [17]

< y; z >XD trace
�

X� 12 yX�1zX� 12
�
: (13.3)

The exponential map associated to the Riemannian metric

expX.y/ D X
1
2 exp

�
X� 12 yX� 12

�
X

1
2 (13.4)

is a global diffeomorphism. Therefore, the logarithm is uniquely defined at all the
points on the manifold

logX.Y/ D X
1
2 log

�
X�

1
2 YX�

1
2

�
X

1
2 : (13.5)

Above, the exp and log are the ordinary matrix exponential and logarithm operators.
Not to be confused, expX and logX are manifold-specific point-dependent operators,
i.e., X 2 SymCd .

For symmetric matrices, these ordinary matrix exponential and logarithm opera-
tors can be computed easily. Let ˙ D UDUT be the eigenvalue decomposition of a
symmetric matrix. The exponential series is

exp.˙/ D
1X

kD0

˙ k

kŠ
D U exp.D/UT ; (13.6)

where exp.D/ is the diagonal matrix of the eigenvalue exponentials. Similarly, the
logarithm is given by
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log.˙/ D
1X

kD1

.�1/k�1
k

.˙ � I/k D U log.D/UT : (13.7)

The exponential operator is always defined, whereas the logarithms only exist for
symmetric matrices with positive eigenvalues, SymCd . From the definition of the
geodesic given in the previous section, the distance between two points on SymCd is
measured by substituting (13.5) into (13.3):

d2.X;Y/ D < logX.Y/; logX.Y/ >X

D trace
�

log2.X� 12 YX� 12 /
�
: (13.8)

An equivalent form of the affine invariant distance metric was first given in [9],
in terms of joint eigenvalues of X and Y as

d.X;Y/ D
 

dX
kD1
.ln�k.X;Y//2

! 1
2

; (13.9)

where �k.X;Y/ are the generalized eigenvalues of X and Y, computed from

�kXvk � Yvk D 0 k D 1 : : : d (13.10)

and vk are the generalized eigenvectors. This distance measure satisfies the metric
axioms, positivity, symmetry, triangle inequality, for positive definite symmetric
matrices.

13.2.4 Vectorized Representation for the Tangent Space
of SymC

d

The tangent space of SymCd is the space of d � d symmetric matrices and both
the manifold and the tangent spaces are d.d C 1/=2 dimensional. There are only
d.d C 1/=2 independent coefficients which are the upper triangular or the lower
triangular part of the matrix. The off-diagonal entries are counted twice during norm
computation.

For classification, we prefer a minimal representation of the points in the tangent
space. We define an orthonormal coordinate system for the tangent space with the
vector operation. The orthonormal coordinates of a tangent vector y in the tangent
space at point X is given by the vector operator

vecX.y/ D vecI.X�
1
2 yX� 12 /; (13.11)
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where I is the identity matrix and the vector operator at identity is defined as

vecI.y/ D Œy1;1
p
2y1;2

p
2y1;3 : : : y2;2

p
2y2;3 : : : yd;d�

T : (13.12)

Notice that the tangent vector y is a symmetric matrix, and with the vector operator
vecX.y/we get the orthonormal coordinates of y which is in R

d. The vector operator
relates the Riemannian metric (13.3) on the tangent space to the canonical metric
defined as

< y; y >XD kvecX.y/k22: (13.13)

13.2.5 Mean of the Points on SymC
d

Let fXigiD1:::N be a set of symmetric positive definite matrices on Riemannian
manifold M. Similar to Euclidean spaces, the Riemannian center of mass [11] is
the point on M which minimizes the sum of squared Riemannian distances

� D arg min
X2M

NX
iD1

d2.Xi;X/; (13.14)

where in our case d2 is the distance metric (13.8). In general, the Riemannian
mean for a set of points is not necessarily unique. This can be easily verified by
considering two points at antipodal positions on a sphere, where the error function
is minimal for any point lying on the equator. However, it is shown in several
studies that the mean is unique and the gradient descent algorithm is convergent
for SymCd [8, 14, 17].

Differentiating the error function with respect to X, we see that mean is the
solution to the nonlinear matrix equation

NX
iD1

logX.Xi/ D 0; (13.15)

which gives the following gradient descent procedure [17]:

�tC1 D exp�t

"
1

N

NX
iD1

log�t.Xi/

#
: (13.16)

The method iterates by computing first-order approximations to the mean on the
tangent space. The weighted mean computation is similar to (13.16). We replace
inside of the exponential, the mean of the tangent vectors, with the weighted mean

1PN
iD1 wi

PN
iD1 wilog�t.Xi/ as shown in Fig. 13.2.
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Fig. 13.2 Illustration of iterative mean computation by mapping back and forth to tangent space

13.3 Classification on Riemannian Manifolds

We use a boosted classification approach that consists of iteratively learning weak
learners in different tangent spaces to obtain a strong classifier. After a weak learner
is added, the training samples are reweighted such that the weights of the misclassi-
fied examples are increased and the weights of the correctly classified examples are
increased with respect to a logistic regression rule. Boosting enables future learners
focus more on the examples that previous weak learners misclassified.

Furthermore, we adopt a rejection cascade structure such that if any previous
strong classifier rejects a hypothesis, then it is considered a negative example.
This provides an efficient algorithm as majority of hypotheses in a test image are
negatives that are dismissed early in the cascade.

Let f.Xi; li/giD1:::N be the training set with class labels, where li 2 f0; 1g. We aim
to learn a strong classifier F.X/ W M 7! f0; 1g, which divides the manifold into two
based on the training set of the labeled items.

13.3.1 Local Maps and Weak Classifiers

We describe an incremental approach by training several weak classifiers on the tan-
gent spaces and combining them through boosting. We start by defining mappings
from neighborhoods on the manifold to the Euclidean space, similar to coordinate
charts. Our maps are the logarithm maps, logX, that map the neighborhood of points
X 2 M to the tangent spaces TX. Since this mapping is a homeomorphism around
the neighborhood of the point, the structure of the manifold is locally preserved. The
tangent space is a vector space, and we use standard machine learning techniques to
learn the classifiers on this space.

For classification task, the approximations to the Riemannian distances computed
on the ambient space should be as close to the true distances as possible. Since we
approximate the distances (13.3) on the tangent space TX,

d2.Y;Z/ � kvecX.logX.Z// � vecX.logX.Y//k22 (13.17)
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is a first-order approximation. The approximation error can be expressed in terms of
the pairwise distances computed on the manifold and the tangent space,

	 D
NX

iD1

NX
jD1

�
d.Xi;Xj/ �

��vecX.logX.Xi// � vecX.logX.Xj//
��
2

�2
; (13.18)

which is equal to

NX
iD1

NX
jD1

	����log

	
X
� 12
i XjX

� 12
i


����
F

�
���log

�
X�

1
2 XiX�

1
2

�
� log

�
X�

1
2 XjX�

1
2

����
F


2

(13.19)
for the space of symmetric positive definite matrices using (13.5) and (13.13).

The classifiers can be learned on the tangent space at any point X on the manifold.
Best approximation, which preserves the pairwise distances, is achieved at the
minimum of 	. The error can be minimized with respect to X which gives the best
tangent space to learn the classifier.

Since the mean of the points (13.14) is the minimizer of the sum of squared
distances from the points in the set and the mapping preserves the structure of
the manifold locally, it is also a good candidate for the minimizer of the error
function (13.19). However, for this a theoretical proof does not exist. For some
special cases it can be easily verified that the mean is the minimizer. Such a case
arises when all the points lie on a geodesic curve, where the approximation error is
zero for any point lying on the curve. Since mean also lies on the geodesic curve,
the approximation is perfect. Nevertheless, for a general set of points, we only have
empirical validation based on simulations. We generated random points on SymCd ,
many times with varying d. The approximation errors were measured on the tangent
spaces at any of the points TXiD1:::N and at the mean TX— . In our simulations, the
errors computed on the tangent spaces at the means were significantly lower than
any other choice and counter examples were not observed. The simulations were
also repeated for weighted sets of points, where the minimizers of the weighted
approximation errors were achieved at the weighted means of the points.

Therefore, the weak learners are learned on the tangent space at the mean
of the points. At each iteration, we compute the weighted mean of the points
through (13.16), where the weights are adjusted through boosting. Then, we map the
points to the tangent space at the weighted mean and learn a weak classifier on this
vector space. Since the weights of the samples which are misclassified during the
earlier stages of boosting increase, the weighted mean moves towards these points
and more accurate classifiers are learned for these points. The process is illustrated
in Fig. 13.3. To evaluate a test example, the sample is projected to the tangent
spaces at the computed weighted means, and the weak learners are evaluated. The
approximation error is minimized by averaging over several weak learners.



290 F. Porikli et al.

Fig. 13.3 Two iterations of boosting on a Riemannian manifold. The manifold is depicted with
the surface of the sphere and the plane is the tangent space at the mean. The samples are projected
to tangent spaces at means via log�. The weak learners g are learned on the tangent spaces T�.
Left: sample X is misclassified therefore its weight increases. In the second iteration of boosting
(right), the weighted mean moves towards X

13.3.2 LogitBoost on Riemannian Manifolds

Consider the binary classification problem with labels li 2 f0; 1g on vector spaces.
The probability of � being in class 1 is represented by

p.�/ D eF.�/

eF.�/ C e�F.�/ F.�/ D 1

2

KX
kD1

fk.�/: (13.20)

The LogitBoost algorithm learns the set of regression functions ffk.x/gkD1:::K (weak
learners) by minimizing the negative binomial log-likelihood of the data .l; p.�//

�
NX

iD1
Œli log.p.�i//C .1 � li/ log.1 � p.�i//� (13.21)

through Newton iterations. At the core of the algorithm, LogitBoost fits a weighted
least squares regression, fk.�/ of training points �i 2 R

d to response values zi 2 R

with weights wi where

zi D li � p.�i/

p.�i/.1 � p.�i//
wi D p.�i/.1 � p.�i//: (13.22)

The LogitBoost algorithm [10] on Riemannian manifolds is similar to the
original LogitBoost, except a few differences at the level of weak learners. In our
case, the domain of the weak learners are in M such that fk.X/ W M 7! R. Following
the discussion of the previous section, we learn the regression functions on the
tangent space at the weighted mean of the points. We define the weak learners as

fk.X/ D gk.vec�k
.log�k

.X/// (13.23)
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Fig. 13.4 LogitBoost on Riemannian manifolds

and learn the functions gk.�/ W Rd 7! R and the weighted mean of the points
�k 2 M. Notice that the mapping vec�k

(13.11) gives the orthonormal coordinates
of the tangent vectors in T�k

.
The algorithm is presented in Fig. 13.4. The steps marked with .�/ are the

differences from original LogitBoost algorithm. For functions fgkgkD1:::K , it is
possible to use any form of weighted least squares regression such as linear
functions and regression stumps, since the domain of the functions is in R

d.

13.4 Region Covariance Descriptors

Let fzigiD1::S be the d-dimensional features (such as intensity, color, gradients,
filter responses, etc.) of pixels inside a region R. The corresponding d � d region
covariance descriptor is

CR D 1

S � 1
SX

iD1
.zi � �/.zi � �/T ; (13.24)

where � is a vector of the means of the features inside the regions. In Fig. 13.5, we
illustrate the construction of region covariance descriptors. The diagonal entries of
the covariance matrix represent the variance of each feature and the nondiagonal
entries their respective correlations. Region covariance descriptors constitute the
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Fig. 13.5 Region covariance descriptor. The d-dimensional feature image ˚ is constructed from
input image I. The region R is represented with the covariance matrix, CR, of the features fzigiD1::S

space of positive semi-definite matrices Sym0;C
d . By adding a small diagonal matrix

(or guaranteeing no features in the feature vectors would be exactly identical), they
can be transformed into SymCd .

There are several advantages of using covariance matrices as region descriptors.
The representation proposes a natural way of fusing multiple features which
might be correlated. A single covariance matrix extracted from a region is usually
enough to match the region in different views and poses. The noise corrupting
individual samples are largely filtered out with the average filter during covariance
computation. The descriptors are low dimensional and due to symmetry CR has
only d.dC 1/=2 different values (d is often less than 10) as opposed to hundreds of
bins or thousands of pixels. Given a region R, its covariance CR does not have any
information regarding the ordering and the number of points. This implies a certain
scale and rotation invariance over the regions in different images. Nevertheless,
if information regarding the orientation of the points is represented, such as the
gradient with respect to x and y, the covariance descriptor is no longer rotationally
invariant. The same argument is also correct for illumination, too.

13.5 Application to Human Detection

For human detection, we define the features as

�
x y jIxj jIyj

q
I2x C I2y jIxxj jIyyj arctan

jIxj
jIyj

�T

; (13.25)

where x and y are pixel location, Ix; Ixx; :: are intensity derivatives, and the last term
is the edge orientation. With the defined mapping, the input image is mapped to a
d D 8-dimensional feature image. The covariance descriptor of a region is an 8 � 8
matrix, and due to symmetry only upper triangular part is stored, which has only 36
different values. The descriptor encodes information of the variances of the defined
features inside the region, their correlations with each other and spatial layout.

Given an arbitrary-sized detection window R, there are a very large number of
covariance descriptors that can be computed from subwindows r1;2;:::. We perform
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sampling and consider all the subwindows r starting with minimum size of 1=10
of the width and height of the detection window R, at all possible locations. The
size of r is incremented in steps of 1=10 along the horizontal or vertical, or both,
until r D R. Although the approach might be considered redundant due to overlaps,
there is significant evidence that the overlapping regions are an important factor in
detection performances [4, 30]. The greedy feature selection mechanism, which will
be described later, allows us to search for the best regions during learning classifiers.

Although it has been mentioned that the region covariance descriptors are
robust towards illumination changes, we would like to enhance the robustness
to also include local illumination variations in an image. Let r be a possible
feature subwindow inside the detection window R. We compute the covariance of
the detection window CR and subwindow Cr using integral representation [18].
The normalized covariance descriptor of region r, OCr, is computed by dividing the
columns and rows of Cr with the square root of the respective diagonal entries of CR:

OCr D diag.CR/
� 12 Crdiag.CR/

� 12 ; (13.26)

where diag.CR/ is equal to CR at the diagonal entries and the rest is truncated to zero.
The method described is equivalent to first normalizing the feature vectors inside
the region R to have zero mean and unit standard deviation, and after that computing
the covariance descriptor of subwindow r. Notice that under the transformation, OCR

is equal to the correlation matrix of the features inside the region R. The process
only requires d2 extra division operations.

13.5.1 Training the Cascade for Human Detection

Due to the significantly large number of possible candidate detection windows R in
a single image as a result of search in multiple scales and locations, and due to the
considerable cost of the distance computation for each weak classifier, we adopt a
rejection cascade structure to accelerate the detection process.

The domain of the classifier is the space of eight-dimensional symmetric positive
definite matrices, SymC8 . We combine K D 30 strong LogitBoost classifiers on
SymC8 with rejection cascade, as shown in Fig. 13.6. Weak learners gm;k are linear
regression functions learned on the tangent space of SymC8 . A very large number
of covariance descriptors can be computed from a single detection window R.
Therefore, we do not have a single set of positive and negative features, but
several sets corresponding to each of the possible subwindows. Each weak learner
is associated with a single subwindow of the detection window. Let rm;k be the
subwindow associated with k-th weak learner of cascade level m.

Let RCi and R�i refer to the Np positive and Nn negative samples in the
training set, where N D Np C Nn. While training the mth cascade level, we
classify all the negative examples fR�i giD1:::Nn with the cascade of the previous
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Fig. 13.6 Cascade of LogitBoost classifiers. The mth LogitBoost classifier selects normalized
covariance descriptors of subwindows rm;k

.m� 1/ LogitBoost classifiers. The samples which are correctly classified (samples
classified as negative) are removed from the training set. Any window sampled from
a negative image is a negative example; therefore, the cardinality of the negative set,
Nn, is very large. During training of each cascade level, we sample 10; 000 negative
examples.

We have varying number of weak learners Km for each LogitBoost classifier m.
Each cascade level is optimized to correctly detect at least 99:8% of the positive
examples, while rejecting at least 35% of the negative examples. In addition,
we enforce a margin constraint between the positive samples and the decision
boundary. Let pm.R/ be the learned probability function of a sample being positive
at cascade level m, evaluated through (13.20). Let Rp be the positive example that
has the .0:998Np/th largest probability among all the positive examples. Let Rn be
the negative example that has the .0:35Nn/th smallest probability among all the
negative examples. We continue to add weak classifiers to cascade level m until
pm.Rp/ � pm.Rn/ > 0:2. When the constraint is satisfied, the threshold (decision
boundary) for cascade level m is stored as �m D Fm.Rn/.

A test sample is classified as positive by cascade level m if Fm.R/ > �m or
equivalently pm.R/ > pm.Rn/. With the proposed method, any of the positive
training samples in the top 99:8 percentile have at least 0.2 margin more probability
than the points on the decision boundary. The process continues with the training of
.mC 1/th cascade level, until m D 30.

We incorporate a greedy feature selection method to produce a sparse set of
classifiers focusing on important subwindows. At each boosting iteration k of
the mth LogitBoost level, we sample 200 subwindows among all the possible
subwindows and construct normalized covariance descriptors. We learn the weak
classifiers representing each subwindow and add the best classifier that minimizes
the negative binomial log-likelihood (13.21) to the cascade level m. The procedure
iterates with training the .k C 1/th weak learner until the specified detection rates
are satisfied.
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The negative sample set is not well characterized for detection tasks. Therefore,
while projecting the points to the tangent space, we compute the weighted mean of
only the positive samples. Although rarely happens, if some of the features are fully
correlated, there will be singularities in the covariance descriptor. We ignore those
cases by adding very small identity matrix to the covariance.

The learning algorithm produces a set of 30 LogitBoost classifiers which are
composed of Km triplets Fm D

˚
.rm;k;�m;k; gm;k/

�
kD1:::Km

and �m, where rm;k is the
selected subwindow, �m;k is the mean, and gm;k is the learned regression function
of the k-th weak learner of the mth cascade. To evaluate a test region R with mth
classifier, the normalized covariance descriptors constructed from regions rm;k are
projected to tangent spaces T�m;k

and the features are evaluated with gm;k

sign ŒFm.R/ � �m� D sign

"
KmX

kD1
gm;k

�
vec�m;k

�
log�m;k

� OCrm;k

���
� �m

#
:

(13.27)

The initial levels of the cascade are learned on relatively easy examples, thus there
are very few weak classifiers in these levels. Due to the cascade structure, only a few
are evaluated for most of the test samples, which produce a very efficient solution.

13.6 Experiments and Discussion

We conduct experiments on INRIA and DaimlerChrysler datasets. Since the sizes
of the pedestrians in a scene are not known a priori, the images are searched at
multiple scales. There are two searching strategies. The first strategy is to scale the
detection window and apply the classifier at multiple scales. The second strategy
is to scale the image and apply the classifier at the original scale. In covariance
representation we utilized gradient-based features which are scale dependent.
Therefore, evaluating classifier at the original scale (second strategy) produces
the optimal result. However, in practice up to scales of 2 � we observed that the
detection rates were almost the same, whereas in more extreme scale changes the
performance of the first strategy degraded. The drawback of the second strategy is
slightly increased search time, since the method requires computation of the filters
and the integral representation at multiple scales.

INRIA pedestrian dataset [4] contains 1774 pedestrian annotations (3548 with
reflections) and 1671 person free images. The pedestrian annotations were scaled
into a fixed size of 64�128windows which include a margin of 16 pixels around the
pedestrians. The dataset was divided into two, where 2416 pedestrian annotations
and 1218 person free images were selected as the training set, and 1132 pedestrian
annotations and 453 person free images were selected as the test set. Detection on
INRIA pedestrian dataset is challenging since it includes subjects with a wide range
of variations in pose, clothing, illumination, background, and partial occlusions.
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Fig. 13.7 Left: comparison with methods of Dalal and Triggs [4] and Zhu et al. [30] on INRIA
dataset. The curves for other approaches are generated from the respective papers. Right: detection
rates of different approaches for our method on INRIA dataset

First, we compare our results with [4] and [30]. Although it has been noted that
kernel SVM is computationally expensive, we consider both the linear and kernel
SVM method of [4]. In [30], a cascade of AdaBoost classifiers was trained using
HOG features, and two different results were reported based on the normalization
of the descriptors. Here, we consider only the best performing result, the `2-norm.
In Fig. 13.7-left, we plot the detection error trade-off curves on a log–log scale. The
vertical axis corresponds to the miss rate FalseNeg

FalseNegCTruePos , and the horizontal axis

corresponds to false positives per window (FPPW) FalsePos
TrueNegCFalsePos . The curve for

our method is generated by adding one cascade level at a time. For example, in our
case the rightmost marker at 7:5 � 10�3 FPPW corresponds to detection using only
the first 11 levels of cascade, whereas the marker positioned at 4 � 10�5 FPPW
corresponds to cascade of all 30 levels. The markers between the two extremes
correspond to a cascade of between 11 and 30 levels.

To generate the result at 10�5 FPPW (leftmost marker), we shifted the decision
boundaries of all the cascade levels, �m, to produce less false positives at the cost of
higher miss rates. We see that at almost all the false positive rates, our miss rates are
significantly lower than the other approaches. The closest result to our method is the
kernel SVM classifier of [4], which requires kernel evaluation at 1024 dimensional
space to classify a single detection window. If we consider 10�4 as an acceptable
FPPW, our miss rate is 6:8%, where the second best result is 9:3%.

Since the method removes samples which were rejected by the previous levels
of cascade, during the training of last levels, only very small amount of negative
samples, of order 102, remained. At these levels, the training error did not generalize
well, such that the same detection rates are not achieved on the test set. This can be
seen by the dense markers around FPPW< 7�10�5. We believe that better detection
rates can be achieved at low false positive rates with introduction of more negative
images. In our method, 25% of false positives are originated from a single image
which contains a flower texture, where the training set does not include a similar
example. We note that, in [21], a pedestrian detection system utilizing shapelet
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features is described which has 20–40 % lower miss rates at equal FPPWs on INRIA
dataset, compared to our approach. The drawback of the method is the significantly
higher computational requirement.

We also consider an empirical validation of the presented classification algorithm
on Riemannian manifolds. In Fig. 13.7-right, we present the detection error trade-
off curves for four different approaches: (1) The original method, which maps the
points to the tangent spaces at the weighted means. (2) The mean computation
step is removed from the original algorithm and points are always mapped to the
tangent space at the identity. (3) We ignore the geometry of SymC8 , and stack the
upper triangular part of the covariance matrix into a vector, such that learning is
performed on the vector space. (4) We replace the covariance descriptors with HOG
descriptors, and perform original (vector space) LogitBoost classification.

The original method outperforms all the other approaches significantly. The
second best result is achieved by mapping points to the tangent space at the
identity matrix followed by the vector space approaches. Notice that our LogitBoost
implementation utilizing HOG descriptors has 3% more miss rate at 10�4 FPPW
than [30] which trains an AdaBoost classifier. The performance is significantly
degraded beyond this point.

DaimlerChrysler dataset [15] contains 4000 pedestrian (24,000 with reflections
and small shifts) and 25,000 non-pedestrian annotations. As opposed to INRIA
dataset, non-pedestrian annotations were selected by a preprocessing step from
the negative samples, which match a pedestrian shape template based on average
Chamfer distance score. Both annotations were scaled into a fixed size of 18 � 36
windows, and pedestrian annotations include a margin of 2 pixels around. The
dataset was organized into three training and two test sets, each of them having
4800 positive and 5000 negative examples. The small size of the windows combined
with a carefully arranged negative set makes detection on DaimlerChrysler dataset
extremely challenging. In addition, 3600 person free images with varying sizes
between 360 � 288 and 640 � 480 were also supplied.

In [15], an experimental study was described comparing three different feature
descriptors and various classification techniques. The compared feature descriptors
were the PCA coefficients, Haar wavelets, and local receptive fields (LRFs) which
are the output of the hidden layer of a specially designed feed forward NN. We
compare our method with the best results for each descriptor in [15]. The same
training configuration is prepared by selecting two out of three training sets. Since
the number of non-pedestrian annotations was very limited for training of our
method, we adapted the training parameters. A cascade of K D 15 LogitBoost
classifiers on SymC8 is learned, where each level is optimized to detect at least
99:75% of the positive examples, while rejecting at least 25% negative samples.

In Fig. 13.8-left, we plot the detection error trade-off curves. The cascade of 15
LogitBoost classifiers produced a FPPW rate of 0:05. The detection rates with lower
FPPW are generated by shifting the decision boundaries of all the cascade levels
gradually, until FPPW D 0:01. We see that our approach has significantly lower
miss rates at all the false positive rates. This experiment should not be confused with
the experiments on INRIA dataset, where much lower FPPW rates were observed.
Here, the negative set consists of hard examples selected by a preprocessing step.
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Fig. 13.8 Left: comparison with [15] on DaimlerChrysler dataset. The curves for other approaches
are generated from the original paper. Comparison of covariance and HOG descriptors on
DaimlerChrysler dataset

We also set up a different test configuration on DaimlerChrysler dataset. The
3600 person free images are divided into two: 2400 images are selected as the
negative training set and 1200 images are selected for the negative test set. For
both the covariance descriptors and the HOG descriptors, we trained cascade of 25
classifiers. We observed that the object sizes were too small for HOG descriptors to
separate among positive and negative examples at the later levels of cascade. The
classifiers trained utilizing HOG descriptors failed to achieve the specified detection
(99:8%) and the rejection rates (35:0%). We stopped adding weak learners to a
cascade level after reaching Km D 100. The detection error trade-off curves are
given in Fig. 13.8-right where we see that the covariance descriptors significantly
outperform HOG descriptors.

Utilizing the classifier trained on the INRIA dataset, we generated several detec-
tion examples for crowded scenes with pedestrians having variable illumination,
appearance, pose, and partial occlusion. The results are shown in Fig. 13.9. The
images are searched at five scales using the first strategy, starting with the original
window size 64 � 128 and two smaller and two larger scales of ratio 1:2. The white
dots are all the detection results and we filtered them with adaptive bandwidth mean
shift filtering [2] with bandwidth 0:1 of the window width and height. Black dots
show the modes and ellipses are generated by averaging the detection window sizes
converging to the modes.

13.7 Remarks

The presented LogitBoost learning algorithm is not specific to SymCd and can be
used to train classifiers for points lying on any connected Riemannian manifold.
In addition, the approach can be combined with any boosting method including
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Fig. 13.9 Detection examples. White dots show all the detection results. Black dots are the modes
generated by mean shift smoothing and the ellipses are average detection window sizes. There are
extremely few false positives and negatives

GentleBoost and AdaBoost classifiers on Riemannian manifolds using LDA, deci-
sion stumps, and linear SVMs as weak learners. In our experiments, the results of
the methods were comparable.
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Chapter 14
A General Least Squares Regression Framework
on Matrix Manifolds for Computer Vision

Yui Man Lui

Abstract Least squares regression is one of the fundamental approaches for
statistical analysis. And yet, its simplicity has often led to researchers overlooking it
for complex recognition problems. In this chapter, we present a nonlinear regression
framework on matrix manifolds. The proposed method is developed based upon two
key attributes: underlying geometry and least squares fitting. The former attribute
is vital since geometry characterizes the space for classification while the latter
exhibits a simple estimation model. Considering geometric properties, we formulate
the least squares regression as a composite function. The proposed framework
can be naturally generalized to many matrix manifolds. We show that this novel
formulation is applicable to matrix Lie groups, SPD.n/, Grassmann manifolds, and
the product of Grassmann manifolds for a number of computer vision applications
ranging from visual tracking, object categorization, and activity recognition to
human interaction recognition. Our experiments reveal that the proposed method
yields competitive performance, including state-of-the-art results on challenging
activity recognition benchmarks.

14.1 Introduction

Multiple regression is one of the fundamental tools in statistical analysis and
machine learning. It manifests the relationship between observation and training
data. Among many regression methods, the most straightforward model may be
least squares regression. It is simple and often outperforms complicated models
when the number of training samples is small [12]. However, researchers often
prefer complicated models when the recognition tasks are intricate, resulting in a
larger set of parameters.

Alternatively, we can focus on a simple statistical model with emphasis on
the geometrical aspect of data. In particular, high-dimensional data often arise in
various computer vision applications and may be modeled on matrix manifolds.
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For instance, Lin et al. [21] have modeled visual flows through geometric transfor-
mations which are the elements of matrix Lie group. Furthermore, the separation
between foreground and background of a video stream has been realized on the
Grassmann manifold [13]. Lighting and alignment variations have also been char-
acterized using domain adaptation on a product manifold for face recognition [14].
Su et al. [37] have analyzed temporal evolution patterns on the Riemannian manifold
for visual speech recognition.

Among many statistical tools, regression analysis is a popular technique for
estimating relationships among data and has been widely used in pattern recogni-
tion. While traditional regression methods perform regression analysis in Euclidean
space, these techniques may not be applicable to matrix manifolds where data are
represented as matrices; in other words, such data are sampled from a manifold.
Recently, many regression paradigms have been introduced on matrix mani-
folds [4, 8, 27, 28, 30, 31, 38]. Nevertheless, a unified scheme for matrix manifolds
is still lacking. Here, we propose a unified framework for least squares regression
analysis. The key element of our regression framework is accounting for the
underlying geometry on matrix manifolds. In doing so, we formulate least squares
regression as a composite function; our regression framework naturally generalizes
to Euclidean and non-Euclidean spaces as long as the mappings between manifolds
and tangent spaces are well defined. This makes our method suitable to many matrix
manifolds and applications.

We evaluate the proposed regression framework on four matrix manifolds
including matrix Lie groups, SPD.n/, Grassmann manifolds, and the product of
Grassmann manifolds for visual tracking, object categorization, activity recognition,
and human interaction recognition. We illustrate the merits of our regression
framework by underpinning the importance of latent geometry using simple feature
representations. For visual tracking, we model the underlying motion as a matrix
Lie group and utilize a particle filter for state transition and PCA for appearance
characterization. For object categorization, we employ position, color, and gradient
vectors to form a symmetric positive definite matrix on a Riemannian cone; in
addition, the proficiency of using Grassmann manifolds is studied. For human
activity and interaction recognition, video sequences are expressed on a product
manifold where we exploit grayscale pixels as the feature representation. As such,
we do not extract silhouette images or apply dynamic time warping, which simplifies
feature selection. All of these applications are modeled using the proposed least
squares regression framework.

The primary contribution of this work is revealing the generalizability of least
squares regression on a number of matrix manifolds and its applicability to a variety
of computer vision applications. We demonstrate that competitive results can be
achieved using the proposed regression framework when the intrinsic geometry is
appropriately addressed.

The remainder of this chapter is organized as follows: Related work and a math-
ematical preliminary are given in Sects. 14.2 and 14.3, respectively. The regression
framework in non-Euclidean spaces is introduced in Sect. 14.4. Application descrip-



14 A General Least Squares Regression Framework 305

tions are provided in Sect. 14.5. Experimental results are reported in Sect. 14.6.
Finally, discussion and conclusions are given in Sect. 14.7.

14.2 Related Work

Regression techniques have been studied and applied to a variety of machine
learning and computer vision applications. Here, we review some related work.

Human detection is an integral part of human action recognition. Schwartz
et al. [35] combined HOG, color frequency, and co-occurrence matrices and
employed partial least squares (PLS) fitting for dimension reduction. QDA was then
employed for classification. Unlike traditional methods like PCA, PLS takes class
labels into account while performing dimension reduction.

Liu et al. [22] proposed ordinal regression via manifold learning. The order
information from a neighborhood graph was optimized by maximizing the margin
between two consecutive ranks while preserving the underlying geometry. This
framework was extended to a multilinear representation and applied to face and
digit classification using a k-NN classifier.

The Lie group theory has been widely used in motion estimation. Davis et al. [4]
characterized the shape changes in anatomy using kernel regression in which the
intrinsic shapes were modeled by SO.3/. Tuzel et al. [38] proposed a regression
forest model while Porikli and Pan [31] employed importance sampling for object
tracking. Both of these methods updated the motion parameters in the Lie algebra.
Recently, Fletcher [8] has introduced a geodesic regression method in the Kendall’s
shape space where curves are fitted on a manifold. This geodesic regression was
applied to fit the shape of the corpus callosum as it changes at different ages.

Pham and Venkatesh [30] studied the applicability of multivariate lasso regres-
sion on Stiefel manifolds for face recognition. This method employed dual pro-
jections for dimension reduction and data fitting. Because of the orthogonality
constraint of the projection matrix, the steepest descent method was applied to find
the optimal projection on the Stiefel manifold.

Meyer et al. [27] addressed a regression model under fixed-rank constraints on a
Riemannian manifold. Since fixed-rank matrices do not reside in Euclidean space,
quotient geometry was considered. Matrices were first factorized using balanced and
polar factorizations. Line-search algorithms were then employed to seek the optimal
projection. This regression model was applied to the Movie-Lens collaborative
filtering data.

While previous methods have demonstrated the effectiveness of regression
analysis on some specific problems, we introduce a unified view of least squares
regression on a variety of matrix manifolds and show its applicability to visual
tracking, object categorization, activity recognition, and human interaction recog-
nition. Before discussing the proposed regression framework, we briefly review the
preliminary mathematics on matrix manifolds used in this chapter.
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14.3 Mathematical Preliminary

In this section, we briefly illustrate the definitions of some matrix manifolds and
their operators. These manifolds include matrix Lie groups, SPD.n/, Grassmann
manifolds, and the product of Grassmann manifolds. For details of matrix manifolds
see [1, 2, 6, 19, 29].

14.3.1 Matrix Lie Groups

A matrix Lie group, GM , is both a group and a smooth manifold and is a subgroup
of general linear group GL.n/ [2]. A group G is defined as a nonempty set together
with group operations

Multiplication W G � G �! G

Inversion W G �! G

where the multiplication is associative and the inversion is bijective. The GL.n/ is
closed under group operations.

While smooth manifolds are globally curved, they are locally like R
n. As such,

one may map an element from a matrix Lie group to the Lie algebra and from the
Lie algebra back to the matrix Lie group. These maps are called logarithmic and
exponential maps defined as

logX.Y/ D log.X�1Y/ (14.1)

expX.�/ D X exp.�/ (14.2)

where X and Y are elements in a matrix Lie group,� is the tangent vector in the Lie
algebra which is locally Euclidean, and log and exp are the matrix logarithmic and
exponential operators.

The geodesic distance on a smooth manifold is measured by the length of a
curve. Using the Baker–Campbell–Hausdorff (BCH) formula and taking the first-
order term, the intrinsic distance in the matrix Lie group can be approximated by

d.X;Y/ Dk log.X�1Y/ kF (14.3)

14.3.2 SPD(n)

The set of n � n symmetric positive definite (SPD) matrices can be endowed with a
geometric structure on a Riemannian manifold [29]. Formally,
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SymCn D fY 2 R
n�n W YT D Y;Y > 0g (14.4)

where Y > 0 denotes xTYx > 0 for any x 2 R
n n f0g. As such, the set of all SPD

matrices forms a space of an open convex cone. Sometimes, this space is referred to
a Riemannian cone or manifold of SPD matrices.

Similar to matrix Lie groups previously discussed, we can map an element
from SymCn to its tangent space and from the tangent space back to SymCn using
logarithmic and exponential maps, respectively. The logarithmic and exponential
maps for SymCn may be defined as

logX.Y/ D X
1
2 log.X

�1
2 YX

�1
2 /X

1
2 (14.5)

expX.�/ D X
1
2 exp.X

�1
2 �X

�1
2 /X

1
2 (14.6)

where X and Y are elements of SymCn and � is the tangent vector at X. Because
elements of SymCn are symmetric matrices, the log and exp operators can be
efficiently computed using spectral decomposition. Furthermore, the geodesic
distance on the space of SymCn may be computed as

d.X;Y/ D trace.log2.X
�1
2 YX

�1
2 // (14.7)

14.3.3 Grassmann Manifolds

The set of p-dimensional linear subspaces of R
n may be viewed as points on a

Grassmann manifold Gn;p where elements are considered as being equivalent if there
exists a p� p orthogonal matrix mapping one point into the other. This map may be
identified by

.Y;Qp/ 7�! YQp 2 span.Y/ (14.8)

where Y is an n� p orthogonal matrix, Qp is a p� p orthogonal matrix, and span(Y)
is an element on a Grassmann manifold [6].

Similar to matrix Lie groups and SPD.n/, logarithmic and exponential maps
are used to chart elements between the Grassmann manifold and its tangent space.
These maps can be defined as

logX.Y/ D U1�1V
T
1 (14.9)

expX.�/ D XV2 cos.˙2/C U2 sin.˙2/ (14.10)

where X and Y are elements on a Grassmann manifold, X?XT?Y.XTY/�1 D
U1˙1VT

1 , �1 D arctan.˙1/, X? is the orthogonal complement to X, and � is the
tangent vectors at X and � D U2˙2VT

2 .
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While many metrics can be placed on the Grassmannian topology, we chose
the chordal distance as the measure of geodesic distance since it is differentiable
everywhere [3]. The chordal distance is defined as

d.X;Y/ Dk sin � k2 (14.11)

where � are canonical angles (also known as principal angles) and each angle is
recursively computed as

�k D min
x2span.X/
y2span.Y/

cos�1.xTy/ D cos�1.xT
k yk/ (14.12)

subject to

k x k D k y k D 1

xTxi D 0; yTyi D 0; i D 1; : : : ; k � 1:

14.3.4 Product of Grassmann Manifolds

The product of Grassmann manifolds has recently been introduced in [24, 25] for the
characterization of high-order data tensors, particularly in video data. Considering
a video represented as a third-order tensor T , we can apply a high order singular
value decomposition [18] (HOSVD) to factorize the data tensor as

T D S �1 V.1/
v-motion �2 V.2/

h-motion �3 V.3/
appearance (14.13)

where �k denotes the mode-k multiplication, S is the core tensor, and V.k/ is the
orthogonal matrix spanning the row space of the unfolded matrix T.k/ associated
with nonzero singular values. In the context of video data, V.1/, V.2/, and V.3/

express the horizontal motion, vertical motion, and appearance, respectively. By
imposing a quotient geometry of an orthogonal group to the orthogonal matrices
V.k/, the spanning sets of these matrices are elements on three Grassmann manifolds.
The product of these factor manifolds forms a product manifold formulated as

M˘ D M1 �M2 �M3

D
(
.x1; x2; x3/ W

x1 2 M1;

x2 2 M2;

x3 2 M3

)
(14.14)

where � denotes the Cartesian product, Mk represents a factor manifold, and xk is
an element in Mk. Here, the Cartesian product establishes a smooth manifold whose
topology is equivalent to the product topology [19]. Thus, the geodesic distance may
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be characterized using the chordal distance given in Eq. (14.11) where the canonical
angles are computed from each factor manifold. Consequently, higher data tensors
are abstracted to points and their intrinsic distances may be computed accordingly.

14.4 Regression in Non-Euclidean Spaces

Linear regression is one of the fundamental techniques in data analysis and machine
learning. It often outperforms complicated models when the number of training data
is insufficient [12]. The aim of this work is to formulate a least squares regression
model on matrix manifolds.

14.4.1 Linear and Nonlinear Least Squares Regressions

Perhaps the most straightforward data prediction technique is least squares regres-
sion. Here, we demonstrate the effectiveness of regression by considering the
underlying geometry. Our regression framework can achieve competitive perfor-
mance on a variety of computer vision applications. Before we discuss the geometric
extension, we will first review the standard form of least squares fitting.

Consider a regression problem y D Aˇ where y 2 R
n is the regression value,

A.Œa1ja2j � � � jak�/ 2 Rn�k is the training set, and ˇ 2 Rk is the fitting parameter. The
residual sum-of-squares can be written as

R.ˇ/ Dk y � Aˇ k2 (14.15)

and the fitting parameter ˇ can be obtained by minimizing the residual sum-of-
squares error from Eq. (14.15). Then, we have

Ǒ D .ATA/�1ATy (14.16)

The fitted pattern from the training set has the following form:

Oy D A Ǒ D A.ATA/�1ATy (14.17)

We can further extend the linear least squares regression from Eq. (14.17) to a
nonlinear form by incorporating a kernel function. Here, the multiplications in
Eq. (14.16) are replaced by a nonlinear operator shown in the following

A.A ? A/�1.A ? y/ (14.18)
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where ? is a nonlinear similarity operator. Obviously, ? is equal to xTy in the linear
space. Here, the elements of A ? A and A ? y are computed using the RBF kernel
given as

x ? y D exp

	
�k � k

�



(14.19)

where � is set to 2 in all our experiments, and k � k is a distance measure associated
with a particular matrix manifold discussed in Sect. 14.5.

14.4.2 Nonlinear Least Squares Regression
in Non-Euclidean Spaces

Non-Euclidean geometry often arises in many real-world applications. The key
contribution of this work is the characterization of least squares regression in non-
Euclidean spaces modeled by matrix manifolds. In traditional applications, the
patterns A in Eq. (14.18) generally represent a data matrix from a training set, i.e., a
set of training instances. To incorporate high-dimensional data on matrix manifolds,
the patterns A will represent the training set composed by a set of matrices, i.e., a
high-order tensor. Similarly, the regression value Y is also a matrix.

We now take a closer look to what the computation of a similarity operator gives
us. Given p training instances, .A?A/�1 produces a p�p matrix from the training set
and .A?Y/ would create a p�1 vector. Thus, the similarity map yields a weighting
vector that characterizes the training samples on a manifold as

w D .A ?A/�1.A ? Y/ (14.20)

where the weighting vector, w, is in a vector space V .
Recall that A is a set of training instances residing on a matrix manifold M. To

join the manifold data with the weighting vector in a vector space, we propose a
composite function F ıH where H WM �! V and F W V �!M. As a result, the
least squares regression on matrix manifolds is formulated as

�.Y/ D A � f.A ?A/�1.A ? Y/g (14.21)

where � is an operator realizing the composite function that maps data between
a matrix manifold and a vector space. By introducing an additional operator, we
ensure that both the domain data Y and the range data �.Y/ reside on a matrix
manifold.

One possible way to accomplish such mapping F ıH is to modify the Rieman-
nian center of mass (a.k.a. Grove–Karcher mean) computation [16]. The calculation
of Grove–Karcher mean takes the geometry aspect into account and iteratively
minimizes the distance between the updated mean and all data samples. Since w is
the weighting vector, it naturally produces the weight between training data. All we
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Algorithm 1 Least Squares Regression on Matrix Manifolds
1: Compute the weighting vector
2: Initialize a base point on a matrix manifold
3: while not converge do
4: Apply the logarithmic map to the training samples to the base point
5: Compute the weighted average on the tangent space at the base point
6: Update the base point by applying the exponential map on the weighted average
7: end while
8: Output the base point

need is to use the weighting vector to weight the training data on a matrix manifold.
This is equivalent to computing the weighted Grove–Karcher mean which is indeed
an element on the manifold; therefore, the composite function is realized.

To illustrate the computation of least squares regression on matrix manifolds,
we sketch the pseudo-code in Algorithm 1. As Algorithm 1 reveals, the first step
is to compute the weighting vector. Second, we need to initialize a base point on a
manifold. In our experiments, we set it to the identity matrix. Then, we iteratively
update the base point on the manifold. The updated procedure involves the standard
logarithmic and exponential maps defined in the previous section for a specific
matrix manifold. Finally, the converged base point is the regressed output.

For classification, the class label is determined from the regression models as

l� D argmin
l

d.Y; �l.Y/ (14.22)

where l is the class regressed model, Y is the test instance, and d is the geodesic
distance associated with a particular matrix manifold which we will discuss in the
next section.

Finally, we note that when the kernel operator is ? D xTy, logx.y/ D y, and
expx.�/ D xC�, the regression model in Eq. (14.21) becomes the canonical least
squares regression in Euclidean space. This example reinforces the generalizability
of the proposed regression framework.

14.5 Computer Vision Applications

We demonstrate the effectiveness and applicability of the proposed regression
framework on four matrix manifolds, the matrix Lie group GM , the Riemannian
manifold SymCn , the Grassmann manifold Gn;p, and the product of Grassmann
manifold M˘ , with four computer vision applications. The applications span the
areas of visual tracking, object categorization, activity recognition, and human
interaction recognition. Recent advances in matrix manifolds for computer vision
can be found in [23].
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Our regression framework can be generalized to various matrix manifolds as
long as the operator that realizes the composite function given in Eq. (14.21) is
well defined. To specify the proposed regression framework for a particular matrix
manifold or application, we need to determine two elements. They are the measure
of intrinsic distance on a matrix manifold k � k given in Eq. (14.19) and the feature
representation for the application. The following subsections discuss how these
elements may be constructed.

14.5.1 Visual Tracking

For visual tracking, we model the underlying motion as affine transformations.

The group of affine transformations can be written as

�
A T
0 1

�
where A is a 2 � 2

non-singular matrix and T 2 R
2. The set of all affine transformations forms the

matrix Lie group representation of SE(2) characterizing scale, rotation, skew, and
translation. As far as visual tracking is concerned, such space is our state space
which is obviously nonlinear.

Next, we need to employ the distance measure k � k associated with the
intrinsic distance. That is,

pk log.X�1Y/ kF where X and Y are elements of affine
transformations and log is the matrix logarithmic operator. The visual tracking
is realized via a sequential Monte Carlo technique [9] also known as a particle
filter. This tracking algorithm is particularly effective for non-Gaussian data. The
aim here is to track the affine transformation represented by a particle (state) that
characterizes the underlying motion. The tracked particle is obtained by applying
our least squares regression in the matrix Lie group. In addition, we employ the
standard PCA for appearance characterization. Consequently, both motion and
appearance are considered. We note that such formulation can also be casted to a
Bayesian subspace tracking problem [36].

14.5.2 Object Categorization

For object categorization, we consider two sorts of matrix manifolds. First, we take
a set of simple features [x y R G B jIxj jIyj] where x and y are the pixel location,
R, G, and B are the color channels, and Ix and Iy are the intensity derivatives. These
features can be used to form a covariance matrix which is a 7�7 symmetric positive
definite (SPD) matrix. Thus, these features are characterized on the space of SymCn .
In addition, we choose the distance measure k � k as k logI.x/ � logI.y/ kF where
logI stands for a logarithmic map at the identity matrix and logI.x/ is computed
using Eq. (14.5).



14 A General Least Squares Regression Framework 313

Second, we consider grayscale pixels as the feature pattern represented by an
element of the Grassmann manifold Gn;p. By imposing a rotation invariant to
the patterns, elements on the Grassmann manifold are subspaces spanned by the
columns of orthogonalized data. We choose the distance measure k � k as k sin � k2
shown in Eq. (14.11) where � are the canonical angles between subspaces. Thus, this
distance measure characterizes the intrinsic geometry of quotient space.

Once the feature patterns and the intrinsic distances are provided, we can plug
these elements into our regression framework and perform object categorization
using Eq. (14.22).

14.5.3 Human Activity and Interaction Recognition

Human activity and interaction are often subjects of interest due to the large number
of potential applications. Such data are typically collected from video. This gives
rise to spatiotemporal characterizations that may be modeled using the product of
Grassmann manifolds M˘ . The key idea here is to use three Grassmann manifolds
to depict horizontal motion, vertical motion, and appearance [24], and consider the
product topology. Thus, the setup for human activity and interaction recognition is
similar to the Grassmann manifold where the distance measure k � k is chosen as
k sin � k2. On the other hand, the feature patterns are obtained from the unfolded
matrices of a video tensor. This operation can be achieved via a higher-order singular
value decomposition [18] yielding three orthogonal matrices and may be imposed
on three Grassmann manifolds. For more details of this realization refer to [24].

After extracting the feature patterns from video, regression is performed using
three sub-least squares regression models �.j/, where j is the sub-regression model
index [see Eq. (14.22)], on three Grassmann manifolds. The final geodesic distance
is computed from the product manifold.

We have discussed the primary aspects of our regression framework on matrix
manifolds for visual tracking, object categorization, and human activity and inter-
action recognition. Next, we will examine the effectiveness of the proposed
framework.

14.6 Experiments

This section summarizes our empirical results and demonstrates the proficiency
of the proposed regression framework on a number of computer vision appli-
cations including visual tracking, object categorization, activity recognition, and
human interaction recognition. We evaluate our performance using four public data
sets including the Dudek sequence [32], ETH-80 [20], UT-tower activity [33], and
UT-interaction [33] data sets.
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Fig. 14.1 Samples of tracking results using the proposed least squares regression framework on
the matrix Lie group

Before discussing our experimental findings, we remind the readers that the
notations of the matrix Lie group, SPD.n/, Grassmann manifold, and product of
Grassmann manifold are denoted as GM , SymCn , Gn;p, and M˘ , respectively.

14.6.1 Visual Tracking

Visual tracking is one of the key preprocessing steps in video analysis. We
demonstrate our regression framework on the Dudek video [32]. The video is
acquired using a handheld camera exhibiting both camera motion and human motion
concurrently. The Dudek video is annotated with seven hand-labeled ground-truth
positions for 573 frames which facilitates quantitative comparison.

We model the underlying motion as affine transformations which are elements
of GM . Since our tracker is particle based, we benchmark our regression framework
against IVT [32] using 600 particles on both methods. We select the top 50 particles
for least squares fit due to speed considerations. The samples of tracking results are
shown in Fig. 14.1 and the quantitative results are given in Fig. 14.2.1 The average
RMSE for IVT is 18:2 while our regression framework achieves 8:6. This result
is encouraging because IVT exploits incremental learning with PCA whereas our
tracker employs a standard PCA.

To further illustrate the effectiveness of our method, we test two variants in
the matrix Lie group: Greedy and Lie group average. The Greedy method selects
the particle with the highest probability resulting in 20:9 average RMSE. On the
other hand, the Lie group average computes the average in the Lie algebra from the
resampled population; so it is a weighted average resulting in 13:6 average RMSE.
Thus, performing regression on the matrix Lie group yields a better result than the
conventional scheme for visual tracking.

1Figure 14.2 is best viewed in color.
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Fig. 14.2 Root mean square error (RMSE) on the Dudek video sequence

14.6.2 Object Categorization

Object categorization is an important research area in computer vision. We demon-
strate the effectiveness of our regression framework using the ETH-80 data set. The
ETH-80 data set contains eight categories of natural and artificial objects including
apple, car, cow, cup, dog, horse, pear, and tomato. Each category consists of ten sets
and each set has 41 orientations. Sample images are shown in Fig. 14.3. We follow
the experimental protocol from [11] which is tenfold cross validation for image-set
matching.

We assess the proposed regression framework on two matrix manifolds, SymCn
and Gn;p. First, all images are resized to 32�32. For SymCn , we extract seven standard
features [x y R G B jIxj jIyj] to compute the covariance matrix. For Gn;p, we use the
grayscale pixels. The experimental results are given in Table 14.1. As Table 14.1
indicates, the least squares regression on Gn;p outperforms the one on SymCn and
is comparable to state-of-the-art methods. We note that the performance of GDA
(projective kernel) is superior on the ETH-80 data set, but the recognition result is
selected from the best number of eigenvectors empirically.
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Fig. 14.3 Sample images (apple, car, cow, cup, dog, horse, pear, and tomato) on the ETH-80 data
set

Table 14.1 Categorization
results on the ETH-80 data
set where the best result is
highlighted in bold

Method Accuracy (%)

GDA (projective kernel) [11] 97.5
GDA (Binet–Cauchy kernel) [11] 93.8

Discriminant CCA [17] 88.8

Our least squares regression on SymC
n 87.5

Our least squares regression on Gn;p 95.0

14.6.3 Activity Recognition

Activity recognition has received attention in recent years due in part to its potential
applications. We report the proficiency of our regression model on the product
manifold M˘ using the UT-Tower activity data set. Unlike most activity data sets,
the UT-tower activity data set is collected from a low-resolution aerial view camera
presenting another avenue of challenge.

The UT-tower activity data set was used in the aerial view activity classification
challenge which is a part of the semantic description of human activities (SDHA)
challenge [33] in 2010. The data set comprises nine different activities performed
12 times by six different people. These video sequences exhibit extremely low
resolution in which the average height of human figures is around 20 pixels. The
data set comes with bounding boxes for localization as well as foreground masks
for activities. All localized videos are resized to 32 � 32 � 24 where the middle 24
frames from a video sequence are extracted due to the lower frame rate (10 fps).
In our experiments, we do not exploit the foreground masks. Sample frames on the
UT-tower activity data set are shown in Fig. 14.4.

The experimental protocol [33] for the UT-tower activity data set is the leave-
one-out (LOO) cross validation. Table 14.2 reports our experimental results with
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Fig. 14.4 Sample frames (stand, point, dig, walk, carry, run, wave1, wave2, and jump) on the
UT-tower activity data set

Table 14.2 Recognition results on the UT-tower activity data set
where the best result is highlighted in bold

Method Accuracy (%)

Covariance manifold+sparsity (Guo et al. [10]) 97.2
HMM+histogram (Vezzani et al. [39]) 96.3

Hough-Voting (Waltisberg et al. [40]) 95.4

Our least squares regression on M˘ 97.2

The benchmark results are obtained from the SDHA report [33]

three final contestants. Empirical results show that our method obtains 97.2 %
recognition rate which is very competitive with the best result in this contest. While
Guo’s method [10] employs silhouette tunnels as feature representation, our feature
patterns are extracted from a video tensor making it easier to apply. The confusion
matrix given in Fig. 14.5 reveals that our method performs well across all activities.

14.6.4 Human Interaction Recognition

Another challenge of the SDHA [33] was the high-level human interaction recog-
nition. While the aim of activity recognition is for single person recreation,
human interaction focuses on recognizing activity that involves more than one
person. The UT-interaction data set consists of six human interactions ranging from
handshaking, hugging, kicking, and pointing to punching and pushing. The data set
was further divided into two subsets: set 1 and set 2. For each subset, there are
six interactions per sequence and a total of ten sequences. The interactions of set
1 are collected from mostly static backgrounds whereas the interactions of set 2
have more camera jittering. In addition, there is pedestrian interference in the scene
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Fig. 14.5 Confusion matrix on the UT-tower activities

Fig. 14.6 UT-interactions where (a) and (b) show the sample frames from set 1 and set 2,
respectively

during some interactions in the set 2 data set making it a more challenge data set
(Fig. 14.6).

The UT-interaction data set provides segmented video clips containing one
interaction per sequence. In both subsets, the experimental protocol is the LOO cross
validation (tenfold cross validation). We resize all video sequences to 32� 32� 150
because of the higher frame rate (30 fps). We extract the middle 150 frames for the
longer sequences; otherwise, linear interpolation is applied to standardize the frame
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Table 14.3 Recognition results on the UT-interaction data sets (set 1 and set 2)

Method Accuracy (set 1) (%) Accuracy (set 2) (%)

Hough-Voting (Waltisberg et al. [40]) 88.3 76.7

Cuboid [5] + SVM (best) 85.0 70.0

Laptev [34] + SVM (best) 68.3 65.0

Our least squares regression on M˘ 91.7 75.0

The benchmark results are obtained from the SDHA report [33] where the (best)
indicates the use of best codebook generated from ten trial runs

size. Since the interaction could occur either from left to right or from right to left,
we also flip the video horizontally and find the nearest match.

The results of UT-interaction set 1 and set 2 are summarized in Table 14.3.
Two baseline algorithms, Cuboid [5] + SVM and Laptev [34] + SVM, are the
classic bag-of-features methods which employ cuboids and spatiotemporal features.
The reported results were obtained from the best codebook generated from 10
trial runs. The best reported result for the UT-interaction challenge is the Hough-
Voting method [40]. Table 14.3 reveals that our regression framework on M˘ also
performs well on these data sets achieving 91:7% recognition rate on set 1 and
75% recognition rate on set 2. The proposed regression framework significantly
outperforms the traditional bag-of-features models and is competitive with the
Hough-Voting method. Our confusion matrices for set 1 and set 2 are given in
Figs. 14.7 and 14.8, respectively. While our regression model performs perfectly
for shaking, hugging, kicking, and pointing in set 1, there is more confusion in set
2 except for hugging and pointing. Similar findings have been reported from other
methods. Further research is needed in such interaction recognition.

14.7 Discussion and Conclusions

The principle of our regression framework is based upon latent geometry in the data.
Taking geometric aspects to the least squares regression framework, we formulate
it as a composite function. Here, we require the computation of logarithmic and
exponential maps associated with a given matrix manifold. We note that these
differential operators for some spaces are easier to compute than for others. The
proposed regression framework is applicable to many matrix manifolds as long as
the logarithmic and exponential maps are well defined.

As far as statistical fitting is concerned, a regularization parameter may be
augmented to the proposed regression framework. Such regularization provides
shrinkage to reduce the effect of high variance of a statistical model easing the effect
of overfitting. Furthermore, one of the key operators in our regression framework is
the kernel operator which maps a distance to a similarity measure. While we employ
the standard RBF kernel in our experiments, other kernels over matrix manifolds
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Fig. 14.7 Confusion matrix on the UT-interaction set 1

Fig. 14.8 Confusion matrix on the UT-interaction set 2

can also be applied. In fact, inducing a valid Mercer kernel on a matrix manifold is
an intriguing and important research topic. The generalization between Euclidean
space and Riemannian manifolds via RBF kernels can be found in [15].

There are still many interesting matrix manifolds and applications that we
have not discussed. We briefly summarize some recent developments here. High-
dimensional data visualization is a crucial tool for data analysis. Fiori [7] employed
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the multidimensional scaling (MDS) technique to visualize data on Riemannian
manifolds; in particular, SO.n/, Sn�1, and SymCn . The key notion of MDS is to
reduce the dimensionality of patterns while keeping the proximity structures. The
special orthogonal group SO.3/ may also be utilized to characterize spherical
displacement. Ma et al. [26] employed both SO.3/ and so.3/ to model the coplanar
constraints which lead to a product of a Stiefel manifold. Newton’s method is
then performed to seek the optimal matrix for rigid motion recovery. Furthermore,
visual dynamics has been depicted using geometric flow analysis. Lin et al. [21]
consider motion of points over a spatial region and a temporal interval on a Lie
algebra. By examining the underlying geometry, the flow of motion estimation is
more consistent than optical flows. Recently, the characterization of deformations
has been modeled using parallel transport. Wei et al. [41] approximated the
deformations of an object on a matrix Lie group where the deformation is adapted
via the parallel transport to the associated Lie algebra. Given so much active
research focusing on matrix manifolds, we shall expect more fruitful results when
the latent geometry is emphasized.

In conclusion, we have shown that our regression framework is generalizable
to many matrix manifolds including matrix Lie groups, SPD.n/, Grassmann, and
product manifolds for visual tracking, object categorization, activity recognition,
and human interaction recognition. While we employ fairly standard feature rep-
resentations, the proposed least squares regression gives competitive performance
on four public data sets. This realization is achieved by considering the underlying
geometry of matrix manifolds. We conclude that the role of manifold geometry is
vital for computer vision.

References

1. Absil PA, Mahony R, Sepulchre R (2008) Optimization algorithms on matrix manifolds.
Princeton University Press, Princeton

2. Belinfante J, Kolman B (1972) A survey of lie groups and lie algebras with applications and
computational methods. SIAM, Philadelphia

3. Conway J, Hardin R, Sloane N (1996) Packing lines, planes, etc.: packings in grassmannian
spaces. Exp Math 5(2):139–159

4. Davis BC, Fletcher PT, Bullitt E, Joshi S (2007) Population shape regression from random
design data. In: International conference on computer vision

5. Dollar P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recognition via sparse spatio-
temporal features. In: IEEE VS-PETS workshop, pp 65–72

6. Edelman A, Arias R, Smith S (1999) The geometry of algorithms with orthogonal constraints.
SIAM J Matrix Anal Appl 2:303–353

7. Fiori S (2011) Visualization of riemannian-manifold-valued elements by multidimensional
scaling. Neurocomputing 174:983–992

8. Fletcher PT (2011) Geodesic regression on riemannian manifolds. In: Third international
workshop on mathematical foundations of computational anatomy

9. Gordon N, Salmond D, Smith A (1993) A novel approach to non-linear and non-gaussian
Bayesian state estimation. IEE Proc F 140:107–113



322 Y.M. Lui

10. Guo K, Ishwar P, Konrad J (2010) Action recognition using sparse representation on covariance
manifold of optical flow. In: IEEE international conference on advanced video and signal-based
surveillance, Boston

11. Hamm J, Lee D (2008) Grassmann discriminant analysis: a unifying view on subspace-based
learning. In: International conference on machine learning, Helsinki, pp 376–383

12. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining,
inference, and prediction. Springer, New York

13. He J, Balzano L, Szlam A (2012) Incremental gradient on the grassmannian for online
foreground and background separation in subsampled video. In: IEEE conference on computer
vision and pattern recognition

14. Ho H, Gopalan R (2014) Model-driven domain adaptation on product manifolds for uncon-
strained face recognition. Int J Comput Vis 109:110–125

15. Jayasumana S, Hartley R, Salzmann M, Li H, Harandi M (2015) Kernels on riemannian
manifolds. In: Turaga P, Srivastava A (eds.) Riemannian computing in computer vision.
Springer, New York (2015)

16. Karsten G, Hermann K (1973) How to conjugate c1-close group actions. Math Z 132:11–20
17. Kim TK, Kittler J, Cipolla R (2007) Discriminative learning and recognition of image set

classes using canonical correlations. IEEE Trans Pattern Anal Mach Intell 29(6):1–14
18. Lathauwer LD, Moor BD, Vandewalle J (2000) A multilinear singular value decomposition.

SIAM J Matrix Anal Appl 21:1253–1278
19. Lee J (2003) Introduction to smooth manifolds. Springer, New York
20. Leibe B, Schiele B (2003) Analyzing appearance and contour based methods for object

categorization. In: IEEE conference on computer vision and pattern recognition
21. Lin D, Grimson E, Fisher J (2009) Learning visual flows: a lie algebraic approach. In: IEEE

conference on computer vision and pattern recognition
22. Liu Y, Liu Y, Chan KCC (2011) Ordinal regression via manifold learning. In: Twenty-fifth

AAAI conference on artificial intelligence, pp 398–403
23. Lui YM (2012) Advances in matrix manifolds for computer vision. Image Vis Comput

30:380–388
24. Lui YM (2012) Human gesture recognition on product manifolds. J Mach Learn Res

13:3297–3321
25. Lui YM, Beveridge JR, Kirby M (2010) Action classification on product manifolds. In: IEEE

conference on computer vision and pattern recognition, San Francisco, pp 833–839
26. Ma Y, Kosecka J, Sastry S (1998) Motion estimation in computer vision: Optimization on

stiefel manifolds. In: IEEE conference on decision and control, Tempa, pp 3751–3756
27. Meyer G, Bonnabel S, Sepulchre R (2011) Linear regression under fixed-rank constraints: a

riemannian approach. In: International conference on machine learning
28. Pelletier B, Bataillon PE (2006) Non-parametric regression estimation on a closed riemannian

manifold. J Nonparametric Stat 18:57–67
29. Pennec X, Fillard P, Ayache N (2006) A riemannian framework for tensor computing. Int J

Comput Vis 66(1):728–735
30. Pham DS, Venkatesh S (2008) Robust learning of discriminative projection for multicategory

classification on the stiefel manifold. In: IEEE conference on computer vision and pattern
recognition

31. Porikli F, Pan P (2009) Regressed importance sampling on manifolds for efficient object
tracking. In: IEEE international conference on advanced video and signal-based surveillance

32. Ross D, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J
Comput Vis 77:125–141

33. Ryoo MS, Chen CC, Aggarwal JK, Roy-Chowdhu A (2010) An overview of contest on
semantic description of human activities (sdha). Http://cvrc.ece.utexas.edu/SDHA2010/

34. Schüldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local svm approach. In:
International conference on pattern recognition, Cambridge

35. Schwartz WR, Kembhavi A, Harwood D, Davis LS (2009) Human detection using partial least
squares analysis. In: International conference on computer vision

Http://cvrc.ece.utexas.edu/SDHA2010/


14 A General Least Squares Regression Framework 323

36. Srivastava A, Klassen E (2004) Bayesian, geometric subspace tracking. Adv Appl Probab
36(1):43–56

37. Su J, Srivastava A, de Souza F, Sarkar S (2014) Rate-invariant analysis of trajectories on
riemannian manifolds with application in visual speech recognition. In: IEEE conference on
computer vision and pattern recognition

38. Tuzel O, Porikli F, Meer P (2008) Learning on lie groups for invariant detection and tracking.
In: IEEE conference on computer vision and pattern recognition

39. Vezzani R, Baltieri D, Cucchiara R (2010) Hmm based action recognition with projection
histogram features. In: Recognizing patterns in signals, speech, images and videos, pp 286–293

40. Waltisberg D, Yao A, Gall J, Gool LV (2010) Variations of a hough-voting action recognition
system. In: Recognizing patterns in signals, speech, images and videos, pp 306–312

41. Wei D, Lin D, Fisher J (2012) Learning deformations with parallel transport. In: European
conference on computer vision (2012)



Chapter 15
Domain Adaptation Using the Grassmann
Manifold

David A. Shaw and Rama Chellappa

Abstract Modern data analysis is flush with large databases and high-dimensional
inference problems. Often the size of these problems directly relates to the fact
that given data may have variations that can be difficult to incorporate into well-
known, classical methods. One of these sources of variation is that of differing data
sources, often called domain adaptation. Many domain adaptation techniques use
the notion of a shared representation to attempt to remove domain-specific variation
in given observations. One way to obtain these representations is through dimension
reduction using a linear projection onto a lower-dimensional subspace of the
predictors. Estimating linear projections is intrinsically linked with parameters lying
on the Grassmannian. We present some historical approaches and their relationship
to recent advances in domain adaptation that exploit the Grassmannian through
subspace estimation.

15.1 Introduction

Modern data sets are, almost by definition, big. Continuous streams of data result
in a large number of data points being observed, while the increasing computing
power and storage capacity allow us to take an increasing number of measurements
of each data point. “Data deluge,” “big data,” and the “curse of dimensionality”
characterize various ways in which analysis can be hindered by large databases,
though these difficulties can lead to methods that handle many different types of
inference problems. The large size of these modern data sets often indicates that
data may come from multiple sources with differing distributions, and data may
even be highly multimodal within a single source. Domain adaptation has come
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into view in recent years as an attempt to overcome the problems inherent in these
differing variations in data sources and distributions.

Many classical problems relate to domain adaptation and big data. In the statistics
literature, survey methodology [24] seeks to extrapolate inferences from small
samples to the population as a whole. Sample selection bias [15] focuses on
econometric problems, though tackles a general problem in assuming sampled
observations are nonrandomly selected. Length-biased sampling [42] poses the
problem of multiple data sources with a known, parametric difference between
the distributions. Covariate shift [35] proposes importance weighting methods to
improve predictive tasks when data may not arise from a single source. Meta-
analysis [7], popular in many clinical fields, seeks methods to combine multiple
inferences from potentially differing sources.

Unfortunately, many of these classical techniques were designed for univariate
problems, and most big data problems are not only multivariate but also high dimen-
sional. Additionally, we are not necessarily interested in estimating population totals
from a subsample, but perhaps transporting model parameters to an entirely separate
domain [29], and we do not wish to assume a large amount of data from any source.
We explore methods of overcoming these problems through dimension reduction in
the following sections.

15.2 High-Dimensional Inference

We assume access to features x1; : : : ; xn 2 R
p, each independent and distributed as

some random variable X. Corresponding to each feature we have response values
y1; : : : ; yn 2 Y distributed as some random variable Y . We assume further that Y
is the discrete set f1; : : : ;Cg for C a fixed, finite constant, meaning all inference is
classification based.

We assume the features are high dimensional, that is, the dimension p is large,
though in all cases we assume the features have a structured dependency of a much
lower dimension than p. It is not often standard what a “large” p means specifically,
and we only assume p is large in a qualitative sense, possibly with p� n though not
necessarily. In many cases, we say X comes from a manifold of dimension d � p
[39], which in much of the following we assume to be a lower-dimensional space
in R

p that has the property of local linearity—that is, for any sufficiently small
neighborhood around a point x, all distances can be approximated using Euclidean
distance.

We assume features arise from a globally linear manifold throughout, a strict
assumption that aids in analysis and exposition. In other words, we seek a linear
projection of points from the p-dimensional ambient space onto a d-dimensional
subspace of Rp. Often this assumption is too strict, and methods can be extended
to overcome nonlinearity, though for purposes of illustration we operate under the
linear assumption.
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15.2.1 The Grassmannian

A slightly different notion of a manifold is that of the Grassmannian. As opposed to
globally linear manifolds, the Grassmannian G.r; s/ is a special manifold: the space
of all s-dimensional subspaces of Rr for r 	 s. This intuitive formulation shows
that the Grassmannian is useful to use as a parameter space when seeking lower-
dimensional representations of high-dimensional data, as we see in the following
sections.

Formally, G.r; s/ is the quotient space

G.r; s/ D R.r; s/= �;

where R.r; s/ is the space of all r�s matrices of rank s, and, for U;V 2 R
r�s, U � V

if there exists a nonsingular L 2 R
s�s such that V D UL [3]. As an example, note

span.A/ 2 G.r; s/ if A is an r � s full rank matrix.
We define the underlying structure of G.r; s/ as many methods seek to exploit

it. We fix representations Q;R 2 R
r�s, which can be thought of bases for s-

dimensional subspaces of Rr, with Q?;R? 2 R
r�.r�s/ the orthogonal complements,

and assume

Q>Q D Is; R>R D Is; Q>Q? D 0; R>R? D 0:

We write the geodesic flow ˚ W Œ0; 1� W! G.r; s/ as [12]

˚.tIQ;R/ D Q U1 #.t/ �Q? U2†.t/; (15.1)

where U1;U2; # , and † are given by the generalized singular value decomposition

Q> R D U1 # V>; .Q?/>R D �U2†V> : (15.2)

We define #.t/ and †.t/ as diagonal matrices with cos.t � �i/ and sin.t � �i/ on the
diagonal for i D 1; : : : ; s and # and † are #.1/ and †.1/, respectively.

The geodesic flow defines a path between two points on the Grassmannian that
is related to the “shortest path” between these points. In general we may not always
find a unique geodesic flow between two points, but in practical situations the above
formulation yields a method for obtaining ˚ .

Along with the geodesic flow, the Grassmannian structure admits another useful
construction: the exponential and inverse exponential maps. The exponential map is
a mapping from the tangent space of the Grassmannian about a point to a point on
the manifold itself. To motivate the idea of the tangent space of G.r; s/, we first look
into the tangent space of a simpler ambient space: Rn. We can think of the tangent
space to R

n as the set of all pairs in R
n�Rn describing the locations and orientations

of vectors in R
n [36]. For more exotic submanifolds M of Rn, the tangent space is

defined instead by collections of points on M with the associated tangent vectors in
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R
d where d is the intrinsic dimension of M. We can specifically think of the tangent

space about a point p 2M as the collection of all vectors tangent to M anchored at
the point p. The benefit of considering tangent spaces of manifolds is that they are
Euclidean spaces, and thus standard operations such as addition can be defined and
executed on them, a property most manifolds do not afford us.

Since G.r; s/ is a manifold of dimension s.r � s/, we can think of the tangent
space about a point on G.r; s/ as a collection of vectors in R

s.r�s/ centered at a point
on G.r; s/. Then we have

exp.�Ip/ W TpG.r; s/! G.r; s/

and

exp�1.�Ip/ W G.r; s/! TpG.r; s/;

where TpG.r; s/ � R
s.r�s/ is the tangent space of our Grassmannian about a point p.

We can efficiently compute both exp and exp�1 using values obtained from (15.2)
(see [14]). The exponential and inverse exponential maps are useful in that they
operate on our assumption of local linearity of manifolds. We may now map points
on a non-Euclidean object into standard Euclidean space, and this can simplify
certain methods that require a Euclidean structure, e.g., assuming observations are
Gaussian.

15.2.2 Inference in Computer Vision

The nature of images is inherently high dimensional with a lower-dimensional
intrinsic structure. For example, naïve estimation using images as features could
treat the grayscale level of each pixel as a separate feature, meaning for each
observation we have a measurement from Œ0; 1�p. As an example, a relatively
small 100 � 100 grayscale image indicates an ambient predictor dimension of
10,000, which can possibly be unwieldy for many classical approaches. See the
left column of Fig. 15.2 in Sect. 15.4 for examples of 100 � 100 grayscale images.
We could gain more information using color images, though this would increase the
ambient dimension further, and video sequences become even more of a problem.
Fortunately visual data typically have a much lower intrinsic dimension than
ambient dimension. It is often problem specific how low this intrinsic dimension is
[17, 28], but even the most complicated images of interest have a strong dependence
between each pixel.
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Structured Data

We consider a special case of visual data in which the structure of the data is
known beforehand: features that lie on the previously defined Grassmannian. As
an example, a set of r instances of two-dimensional landmark points contained
in a matrix A 2 R

r�2 can be used in various problems, such as age estimation
[11, 40] and Procrustes analysis [8]. Unfortunately, a database of landmark points
will typically have large amounts of unwanted variation, like rotations and shears.
We can remove affine transformations of shape by considering instead an orthogonal
basis for span.A/ [13, 40]. In other words, for these points contained in A, all affine
transformations of shape can be obtained by right multiplication of A by a 2� 2 full
rank matrix B. After normalization through a singular value decomposition so that
A> A D I2, each set of landmark points will lie on G.r; 2/—that is, the space of all
two-dimensional subspaces of Rr.

The FG-NET database is a typical source for benchmarking tasks like age
estimation. The database consists of 1002 images of individuals’ faces, as well as
landmark points for each individual. Additionally, attributes such as an individual’s
age or gender are given for each observation. See Fig. 15.1 for examples. The
landmark points in the bottom half of Fig. 15.1 represent a point on G.r; 2/ and
will be equivalent to the upright, rotated versions corresponding to the images in the
top half.

For databases with observations lying on the Grassmannian, we can use the
methods defined in the previous section to aid analysis. We solve the problem of
prior structure by applying the inverse exponential map as described previously,
that is,

exp�1.�I�/ W G.r; 2/! R
2.r�2/

defined on the Grassmannian that allows mapping between G.r; 2/ at a specified
point � 2 G.r; 2/ and the corresponding tangent space.

One problem with this method is we must choose �, often thought of as the
“mean” of the given points. However, since x1; : : : ; xn do not lie in Euclidean space,
straightforward addition does not apply and we turn to the Fréchet mean. This
“mean” is defined as the point O� that satisfies (provided it exists)

O� D argmin
�2G.r;2/

1

n

nX
iD1

d2.xi; �/;

where d2.�; �/ W G.r; 2/ � G.r; 2/ ! R
C is a distance function. Note however that

d2 requires representative projection matrices as input, thus implying an extrinsic
approach to estimating O�. One extrinsic method involves fixing the distance function
d2 as

d2.xi; �/ D trfId � x>i ��> xig;
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Fig. 15.1 Sample images from FG-NET originals (top) and landmark points (bottom). Images
taken from [10]. The landmark points have had affine transformations factored out, and so each
configuration corresponds to the same upright configuration

and in most cases we will use this to define a distance between two points on G.r; 2/.
For technical details, see [1, 3]. Similarly, one can obtain rough estimates of O� by
computing the sample mean directly and projecting to G.r; 2/ through singular value
decomposition or Gram–Schmidt procedures [30]. For data in a concentrated subset
of G.r; 2/, this can reduce computation while still obtaining a useful mean estimate.
While all of these approaches detail extrinsic estimates of a mean value, one can
calculate O� intrinsically, e.g., through an iterative procedure [41].

15.2.3 Dimension Reduction

One of the main goals in assuming a manifold structure in the predictors is to
find a lower-dimensional embedding or representation that can be used in analysis.
Typically, we use linear and nonlinear dimension reduction methods to estimate
these representations.
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We define the data matrix of the features as

X D

2
64

x>1
:::

x>n

3
75 :

Often features are mean centered to simplify certain analyses, though we shall not
do so in order to outline specific properties of some techniques.

Principal component analysis (PCA, [19]) is a classical dimension reduction tool
in which we seek a linear dimension reduction parameter � 2 R

p�d, such that �
projects the predictors into directions of maximum variation, i.e.,

O� D arg max
�

trf�>†x�g; such that �>� D Id;

where †x D X
>
CX is proportional to the covariance matrix of the data X, Id is

the d-dimensional identity matrix, C D In�11>=n is a centering operator, and trf�g
denotes matrix trace. Note that the constraint �>� D Id assumes that � is a basis
for a d-dimensional subspace of Rp, effectively seeking coefficients � that lie on the
Grassmannian G.p; d/.

We can write the PCA estimate as a maximum likelihood estimator, which will
enable us to generalize to other, potentially more useful methods. We pose the error
model [4]

X D �x C � � C 	; 	 � N.0; �/; (15.3)

where 	 is a vector of random errors, � are unknown coefficients, here equal to
�>.X � �x/, and � > 0 is a covariance matrix. Setting � D �2 Ip, we see that the
log-likelihood function for � is

L.�IX/ D �np

2
log.2�/ � np

2
log.�2/ � 1

2�2
Œ QX>.Ip�� �>/ QX�;

where QX is the mean-centered version of X. Suppressing constant terms we see that

O� D arg max
�

L.�/; such that �>� D Id;

is equivalent to

O� D arg max
�

trf�>†x�g; such that �>� D Id :

The estimate O� here coincides with the PCA estimate above.
We are typically interested in the subspace span.�/, with � simply a specific basis

for this subspace. In this case, � can be thought of as an element of the Grassmannian
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G.p; d/. This fact is often used to construct various optimization problems for
dimension reduction [4], and we write the above optimization compactly as

O� D arg max
�2G.p;d/

trf�>†x�g:

We note that, while PCA gives a useful initial estimate of a lower-dimensional
subspace for our features, it makes a number of strict assumptions. For example, we
assume no relation of the dimension reduction parameter � on the label variable Y ,
as well as the assumption that the dependence of X on � is linear. For this second
assumption, we have many generalizations in the machine learning literature, LLE
[27] and ISOMAP [38] being early instances. A number of these techniques are
outlined in [21]. We analyze the first assumption in the following section.

Label-Dependent Dimension Reduction

Many techniques desire transformations that exploit label information, seeking
lower-dimensional representations that are useful for classification problems. One
such example of this is linear discriminant analysis (LDA, [26]), in which we seek

O� D arg max
�

trf�>†xb�g; such that �>†x� D Id;

as the solution to a generalized eigenvalue problem where †xb is the “between-
class” covariance matrix, that is,

†xb D
X

y

.�x
y � �x/.�x

y � �x/>;

where �x
y is the within-class mean of X for class label y. This method is somewhat

different from the previously outlined dimension reduction methods in that d can be
no larger than C�1, meaning we are not necessarily finding a subspace that exploits
the structure of X but rather estimating a predictive model based on XjY . Another
key difference is that the constraint depends on the random variable X, indicating
our parameter does not directly lie on the Grassmannian as before. This can be seen
in the modified case in which predictors are premultiplied by †�1=2 and we seek

O� D arg max
�2G.p;d/

trf�> Q†xb�g;

where

Q†xb D †�1=2†xb†�1=2:



15 Domain Adaptation and the Grassmannian 333

However, note that in many high-dimensional cases †x will not be full rank and
so †�1 will be ill defined, requiring methods such as regularization or using a
pseudoinverse.

Sliced inverse regression (SIR, [22]) attempts to incorporate response informa-
tion through the within-class first moments. Estimates for � are obtained as the top
d eigenvectors of .†x/�1M M> where M is the Rp�C matrix of within-class means.
The dependence of the parameter estimate on the inverse of †x is a problem in
many high-dimensional problems and indicates SIR similarly has its constraint set
depending on X.

Sufficient dimension reduction [4] estimates � so that

fYj�>Xg � fYjXg:

Likelihood-acquired directions (LAD, [5]), a type of sufficient dimension reduction
method, are estimated by maximizing

L.�IX; y/ D 1

2
log j�>†x�j � 1

2

CX
yD1

ny

n
log j�>†x

y �j (15.4)

for � 2 G.p; d/, where L.�/ is proportional to a likelihood function, ny is the number
of observations in X with label y, †x

y is the within-class covariance corresponding
to label y, and j � j denotes the absolute value of the determinant. This optimization
is done through conjugate gradient ascent on G.p; d/, with details given in [9].
A benefit of this likelihood-based approach is that we can consider estimating
parameters directly on the Grassmannian and do not have any constraints on the
intrinsic dimension d, while estimating a lower-dimensional subspace that exploits
the structure of X and incorporates information about the response.

15.3 Domain Adaptation Through Dimension Reduction

In many practical problems, we assume homogeneity of distributions between
training and testing—that is, we assume both training and testing data come from
the same distribution, or that our observations are identically distributed, perhaps
conditional on some other variable. For example, parameter selection and error
reporting are typically done by assuming we have training data x1; : : : ; xn to
estimate model parameters with additional data x�1 ; : : : ; x�m to use for testing. We
could use x�i for selecting optimal parameters by finding those parameters that
minimize some cross-validation criterion; we could similarly use these test data
to report how well a method can predict response values for unseen data. In most
classical settings, we assume that both data xi and x�j are distributed similarly,
namely as the random variable X. Often in practical situations the distributions
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between the training and testing phases will not be homogeneous, which can
result in poor predictive performance and present difficulties in determining optimal
tuning parameters through cross-validation.

Problems in which there exist discrepancies between training and testing data are
common and have seen a lot of recent attention. Most domain adaptation problems
in computer vision either use the covariate shift assumption [6, 35] or the transfer
learning assumption [25]. The methods presented here attempt to solve the domain
adaptation problem operating under the covariate shift assumption where we assume
the joint distribution between the labels Y and features X changes from training
to testing by way of the marginal distribution of the features. In other words, we
assume that while the feature distribution might change between two domains,
the distribution YjX does not. Several approaches have been devised to tackle
this problem, such as methods seeking features invariant under certain domain
shifts [2, 23, 34], metric learning methods [20, 29], and dictionary methods [33].
Many methods in domain adaptation are closely linked to the dimension reduction
approaches that have been outlined previously in that they attempt to estimate
a “shared” or “common” representation in which the distribution of the lower-
dimensional features is similarly distributed.

In domain adaptation literature, data from X is known as “source” or “training”
data, while data from X� is known as “target” or “testing” data. As we assume
knowledge of some data from X� for training, we call the distribution X� the
“target” distribution. Often interest lies in adapting to multiple different domains,
a problem which we do not consider presently, but one that is a relatively
straightforward extension.

Many domain adaptation methods that do not use dimension reduction tech-
niques attempt to bring the source and target distributions together through instance
weighting [18, 35, 37]. These importance weighting methods have issues in handling
source and target data that arise from potentially different underlying structures.
For example, the “covariate shift” approach assumes that supp.X �/ � supp.X /,
which is often not the case in computer vision problems. Presently we only consider
dimension reduction techniques for domain adaptation.

15.3.1 Intermediate Subspaces

The intermediate subspace approach (IS, [14]) seeks a latent feature representation
by obtaining intermediate feature spaces that help to quantify the shift from the
source to the target space. In IS, the latent variables are obtained by sampling
points along a geodesic on the Grassmannian G between the d-dimensional subspace
spanned by the source data set and the d-dimensional subspace spanned by the target
data set. First, we estimate descriptive subspaces for both the source and the target
data sets; this is done through PCA. Using this method, we obtain an element of the
Grassmannian G.p; d/ for each data source, called �x and �x� .
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Given these two elements of G.p; d/, we recall the geodesic flow

˚.tI �x; �x�/ D �x U1 #.t/ � �?x U2†.t/: (15.5)

We then use ˚ to sample points along the “path” between the source and target
subspaces. Though different sampling strategies can be used, we take a uniformly
spaced sampling along ˚ .

After we sample a fixed number of intermediate subspaces, we concatenate all
representations into one overall representation. For example, if we sample �1; : : : ; �k

from ˚ , we create the overall representation as

Q� D Œ�x �1 : : : �k �x� � 2 R
p�d.kC2/:

We perform partial least squares (PLS, [43]) on the extrapolated data using Q� to
obtain a low-dimensional model operating on these expanded data sets.

The IS method suffers from a few drawbacks, the main one being that the
method of sampling intermediate subspaces is not necessarily optimal. Moreover,
one must choose a large number of tuning parameters, such as the number of
intermediate subspaces, the intrinsic dimension, and the initial representations �x

and �x� . Additionally, extrapolating the source and target data results in a high
dimensionality that must be overcome through PLS.

15.3.2 Geodesic Flow Kernel

Geodesic flow kernel (GFK, [12]) is an extension of the IS method. It attempts to
remove the need for the uniform sampling along the geodesic between the source
and target subspaces. In this case, we again take the geodesic flow between �x and
�x� as in (15.5). However, instead of sampling directly from ˚ , we wish to use all
t 2 .0; 1/. Unfortunately, this is computationally infeasible, so we instead proceed
through a kernel by writing

< u; v >˚D
Z 1

0

.˚.t/>u/>.˚.t/> v/ dt D u>G v :

Here, G 2 R
p�p is positive semi-definite and by definition taken as

G D
Z 1

0

˚.t/˚.t/> dt:

We can define G with the elements obtained from the generalized singular value
decomposition in (15.2).

We perform prediction using G in a kernel nearest-neighbor classifier, i.e., we
use < �; � >˚ as a distance metric in a standard nearest-neighbor classifier. We take
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as the label for a single test point x� as the label corresponding to Ox taken as

Ox D argmin
x

< x�; x >˚

using our data-dependent kernel.
GFK, similar to IS, is highly dependent on an initial choice of �x and �x� , which

in practice is typically estimated through PCA or PLS, depending on whether or not
label information is available. Additionally, it is possible that the geodesic between
these two subspaces may not be the optimal choice for inference tasks.

15.3.3 Combined Direction Estimation

Combined direction estimation (CDE, [31]), another extension of the IS method,
seeks a model-based approach that can incorporate a number of useful constructions
into the method, such as directly including the conditional distribution, assuming
more general distributions on the subspaces (as opposed to the Gaussian distribution
assumed by the initial PCA), and including additional penalties on the lower-
dimensional transformation (e.g., those that encourage sparsity).

We seek the transformation � as the solution to the regularized optimization
problem

argmin
.ˇ;�/

EY;XL.Y; �>XIˇ/C �0 � J.�/;

where L is a loss function depending on � and a model parameter ˇ 2 R
d, �0 is a

positive regularization parameter, and

J.�/ D �1
2

tr

�
1

�2x�
†x � �> C 1

�2x
†x� � �>


: (15.6)

Here, J is obtained through placing a normal model on both random variables X and
X� and taking the Kullback–Leibler divergence between the two distributions.

We can extend this method to incorporate local structure through assuming a
nonparametric density for the random errors. For example, in (15.6) we make
the assumption that the data come from a normal distribution and take the
KL-divergence. A nonparametric approach assumes instead that the error model
in (15.3) can be replaced with a Nadaraya–Watson-style kernel estimate as opposed
to a normal distribution. We achieve computational speedups by assuming a mixed
Gaussian framework for a fixed, small number of mixtures instead of an entirely
nonparametric one.

We can use this method in cases where data have a prior structure. Here, a normal
distribution is not conformable, and we consider a matrix Langevin error model
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[3] instead of a Gaussian, as it operates directly on Grassmannian data points. We
assume the data are generated from

f .XI�; kx/ D a.kx/ � etrfkx � �x>Xg;

where etrf�g denotes expŒtrf�g�, kx 2 R is a scale parameter, and �x is a mean point,
estimated through methods outlined in section “Structured Data”. Most alternative
methods cannot directly handle data on the Grassmannian, and first map all points
to the tangent space about a fixed point in order to use standard Euclidean methods.

The CDE method overcomes some of the drawbacks from IS and GFK but still
has a number of its own issues. As there is no closed-form expression to estimate
�, we must perform gradient ascent on G.p; d/ [9]. Unfortunately, this is not always
guaranteed to converge to a global maximum and can potentially be affected by poor
initial estimates. CDE also requires a large number of tuning parameters, including
the additional regularization parameter �0.

15.3.4 Regularized Likelihood Directions

Regularized likelihood directions (RLD, [32]) is a modified approach to LAD (see
section “Label-Dependent Dimension Reduction”) that is useful in cases where the
dimension between the source and target distribution changes [20]. It seeks � and �
so that

.Y; �>X/ � .Y; �>X*/:

We attempt to estimate subspaces in which the joint distributions of the labels and
features are similarly distributed between source and target in the reduced space,
similar to most other dimension reduction techniques for domain adaptation.

We make a distributional assumption on the within-class observations, namely
that for each label y the features X are Gaussian with differing means and
covariances per class. We then recall the likelihood L.�/ in Eq. (15.4) and proceed
by estimating

arg max
.�;�/

L.�/C ��.�; �/;

where

��.�; �/ D �

2

CX
yD1
jj�>�x

y � �>�x�
y jj2
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for a fixed � > 0 and �x
y and �x�

y are the means for X and X* given class y. As
we do not assume our within-class covariances are equal, ideally we would want to
constrain the second moments as well; however, in practice these constraints often
do not yield any improvements in estimation. Additionally, though we define �
as requiring within-class target means, we can simply replace �x�

y with �x� for
unsupervised estimation.

RLD is similar to CDE—both are penalized maximum likelihood approaches—
as well as KMM [18] as it attempts to constrain within-class means to be similar
to one another. RLD can handle cases with nonlinearity by localizing about a given
observation and constructing local versions of the means and covariances, though
this approach is computationally intensive.

Drawbacks to RLD are similar to those from CDE. As we depend on optimization
along the Grassmannian, we must rely on an iterative method for estimating optimal
parameters, and the number of tuning parameters is still large. Additionally, now we
must estimate two parameters of interest, � and � , as opposed to the single �. While
this allows the method more flexibility in handling features of differing dimension,
it also requires more data as a greater number of parameters must be estimated.

15.4 Illustration

We illustrate the outlined domain adaptation techniques on two data sets.

15.4.1 Object Recognition

The object recognition data set from [29] comprises 4110 images of 31 object
classes, where each image comes from one of three data sources: amazon.com,
DSLR captures, and webcam captures. We use standard feature extraction methods
to obtain histograms of oriented gradients (HOG) with eight bins on 8 � 8 patches,
then standardize features to have zero mean and standard deviation one. While
we can obtain better performance with more bins [12] or with domain adaptation-
specific features from the data [16], all of our techniques assume a similar difference
in distribution between the source and target observations; we use these features as
a demonstration of the relative value of each method. We also consider the above
task where we rescale each observation to a 10 � 10 grayscale image for the target
data set. We give example realizations in Fig. 15.2.

We randomly sample 20 observations per class from the source data and three
observations per class from the target, both with replacement, and replicate the study
10 times, reporting the mean improvement of the classification rate over PCA. All
methods except GFK use a least-squares classifier, as it is computationally efficient
and yields a general model [31]. For GFK, we use one nearest neighbor as suggested
by the authors and outlined in Sect. 15.3.2.
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Fig. 15.2 Sample images from amazon.com (top), webcam (middle), and a DSLR camera
(bottom). Reduced images are scaled to 100 � 100 from 10 � 10 for visualization. Images taken
from [29]

Table 15.1 Object
recognition results, source:
HOG features, target: HOG
features

A:W A:D W:A W:D D:A D:W

IS 2.7821 1.1272 1.9546 2.7127 1.4456 4.4222

GFK 1.6028 0.5742 1.9092 3.7403 1.4630 8.0992

CDE 2.9466 1.1705 2.0048 2.4862 1.4116 3.7660

Numbers reported are the relative improvement over PCA.
All results are on unseen target data. Here, A:W denotes
amazon.com as source and webcam as target, A:D denotes
amazon.com as source and DSLR as target, etc.

For both source and target as HOG data, we provide results in Table 15.1. We
see that all methods are able to gain improvements over PCA, with some methods
performing better than others in different cases. As RLD is designed to handle
cases in which the source and target dimensions differ, we do not estimate it in this
example. We see the largest improvements in the DSLR-to-webcam study, which
is reasonable as the data have similar backgrounds and lighting, with DSLR data
having a higher resolution.

When the dimension between source and target domains differs, in all methods
except RLD, we use PCA to obtain features that have the same dimension, and
then use the domain adaptation methods as described. Table 15.2 shows that this
preprocessing can hinder many approaches, yielding results that are in fact worse
than simply using PCA on the source and target. RLD, however, shows consistent
improvement over PCA in all cases, most likely because of its construction of
two separate transformations and attempt to exploit label information throughout
estimation.
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Table 15.2 Object recognition results, source: HOG features, target: raw
image data

A:W A:D W:A W:D D:A D:W

IS 0.2479 �0:2287 �0:0714 �0:1572 �0:0275 �0:1026
GFK 0.1538 �0:1741 �0:0159 �0:2174 �0:0296 �0:0064
CDE 0.1880 �0:0887 0:0760 �0:3445 �0:0137 �0:4359
RLD 1.3846 1:3823 1:7120 1:2475 1:6015 0:9872

Numbers reported are the relative improvement over PCA. All results are on
unseen target data. Here, A:W denotes amazon.com as source and webcam
as target, A:D denotes amazon.com as source and DSLR as target, etc.

Table 15.3 Age classification results

Same dimension Different dimension

Source: Centered Source: Rotated Source: Centered Source: Rotated

IS 0.5933 0.5371 �0.0713 0.1112

GFK 0.3022 0.2023 �0.0491 0.0567

CDE 0.5968 0.5447 0.2514 0.2458

RLD — — 0.1575 0.2821

Numbers reported are the relative improvement over PCA. All results are on unseen
target data

15.4.2 Age Classification

We perform a similar study to the one above on the previously defined landmark
point data set, examples given in Fig. 15.1. This data set is interesting because of its
prior Grassmannian structure, and in order to apply many standard techniques we
must first map points to a particular tangent space. We again randomly sample with
replacement 20 observations per class from the source data and three observations
per class from the target, where classes here have been defined by thresholding an
individual’s age at the one-third and two-thirds quantiles. We replicate the study
10 times and report the relative performance in classification rate over PCA in
Table 15.3.

The first column of Table 15.3 corresponds to source data as landmark points
and target data as the landmark points artificially rotated. These artificial rotations
can be removed using methods described in section “Structured Data”, but for
illustration we assume they have not yet been factored out. The second column is
the reverse—that is, artificially rotated points are used as source data. The third and
fourth columns correspond to the same study, though with the artificially rotated
data having one-fourth of landmark points removed, yielding a case of differing
dimension. We see all methods perform well when compared with PCA, with the
exception of IS and GFK in the first case where the dimension between source and
target differs, and no method consistently outperforms all others.
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15.5 Discussion

We have outlined a variety of techniques for reducing the dimension of high-
dimensional data and extensions of those techniques to the problem of domain
adaptation. All techniques are inherently related to the Grassmannian in that they
attempt to estimate low-dimensional subspaces of high-dimensional data. Moreover,
some data in computer vision problems themselves lie on the Grassmannian,
requiring similar techniques. We use the Grassmannian to exploit the structure of
parameter spaces for domain adaptation problems and can see improvements over
classical dimension reduction techniques. The Grassmannian itself is useful mainly
as a parameterization of subspaces—that is, the structure of the Grassmannian is
typically seen as a technical hurdle to overcome for specific optimization tasks. We
see this in both the classical label-based dimension reduction techniques and the
more recent domain adaptation methods, and considering this underlying structure
yields better results on some visual classification tasks.
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Chapter 16
Coordinate Coding on the Riemannian Manifold
of Symmetric Positive-Definite Matrices
for Image Classification

Mehrtash Harandi, Mina Basirat, and Brian C. Lovell

16.1 Introduction

Over the years, coding—in its broadest definition—has proven a crucial step in
visual recognition systems [4, 7]. Many techniques have been investigated, such
as bag of words [1, 9, 16, 18, 19, 31], sparse coding [21, 34], and locality-based
coding [33, 35]. All these techniques follow a similar flow: Given a dictionary
of code words, a query is associated to one or multiple dictionary elements with
different weights (i.e. let@tokeneonedot, binary or real). These weights, or codes,
act as the new representation for the query and serve as input to a classifier (i.e.,
support vector machine (SVM)) after an optional pooling step.

This work introduces techniques to perform coding on symmetric positive-
definite (SPD) matrices. More specifically, unlike traditional sparse coding schemes
that work on vectors, in this study we discuss how SPD matrices can be described
by combination of dictionary atoms, where the atoms are also SPD matrices.
Our motivation stems from pervasive role of SPD matrices in machine learning,
computer vision, and related areas. For example, SPD matrices have been used in
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medical imaging, texture classification [10–12, 29], action recognition, and gesture
categorization [27], as well as face recognition [10, 22].

Extending coding methods to SPD matrices is not trivial, as such matrices form
the interior of the positive-semidefinite cone. In other words, simply vectorizing
SPD matrices and employing Euclidean geometry (e.g., Euclidean norms) do
not lead to accurate representations [15, 23, 30]. To overcome the drawbacks of
Euclidean structure, Pennec et al. [23] introduced a Riemannian structure, referred
to as SPD or tensor manifold, to analyze SPD matrices. Explicitly taking into
account the geometry of SPD manifolds can be highly beneficial for discrimination
ability [10, 12, 15, 23, 30].

In this work, we extend the notion of coordinate coding [35] to the SPD
manifolds. In coordinate coding, nearby atoms to a query determine the coding
weights. This as discussed in [33, 35] can result in sparsity (which is widely used
for coding images and videos). To this end, we propose an intrinsic solution to
perform coordinate coding on the SPD manifolds. Interestingly, the proposed coding
scheme, unlike sparse coding, has a closed-form solution. In an attempt to reduce the
computation load of the intrinsic method, we propose to flatten the SPD manifold
prior to coding. We consider two types of flattening here. First, we use the tangent
space of the manifold to flatten the manifold. Second, we propose to embed the
SPD manifold in an infinite-dimensional reproducing kernel Hilbert space (RKHS)
by exploiting two types of the Bregman divergences.

We continue this chapter as follows. Section 16.2 briefly reviews the geometry
of SPD manifolds, the Bregman divergences and their properties. Section 16.3
which elucidates various coordinate coding schemes can be performed on the SPD
manifolds. This includes the intrinsic, log-Euclidean, and kernel coordinate coding
(kCC). In Sect. 16.4 the performance of the proposed methods is assessed on the
task of classifying face images. The main findings and possible future directions are
presented in Sect. 16.5.

16.2 Riemannian Geometry of SPD Manifolds

In this section, we discuss some notions of geometry of SPD manifolds. Throughout
this chapter we will use the following notation: SnCC is the space of real n � n SPD
matrices; In 2 R

n�n is the identity matrix; GL.n/ is the general linear group, i.e.,
the group of real invertible n � n matrices. The principal matrix logarithm log.�/ W
SnCC ! Sym.n/ is defined as

log.X/ D
1X

rD1

.�1/r�1
r

.X � In/
r D UDiage .ln.�i//UT ; (16.1)

with X D UDiage .�i/UT . The principal matrix exponential exp.�/ W Sym.n/ !
SnCC is defined as
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exp.X/ D
1X

rD0

1

rŠ
Xr D UDiage .exp.�i//UT ; (16.2)

with X=UDiage .�i/UT . The vector representation of a symmetric matrix X 2
Sym.n/ is

vecI.X/ D
�
ŒX�1;1;

p
2ŒX�1;2; : : : ;

p
2ŒX�1;n; ŒX�2;2;

p
2ŒX�2;3; : : : ; ŒX�n;n

�T
:

(16.3)

Definition 16.1. A real and symmetric matrix X 2 R
n�n is said to be SPD if vTXv

is positive for any nonzero 0 ¤ v 2 R
n.

The space of n�n SPD matrices is obviously not a vector space since multiplying
an SPD matrix by a negative scalar results in a matrix which does not belong
to SnCC. Instead, SnCC forms the interior of a convex cone in the n.n C 1/=2-
dimensional Euclidean space. The SnCC space is mostly studied when endowed
with a Riemannian metric and thus forms a Riemannian manifold [23]. A natural
way to measure closeness on a manifold is by considering the geodesic distance
between two points on the manifold. Such a distance is defined as the length of
the shortest curve connecting the two points. The geodesic curves are analogous
to straight lines in R

n. The affine invariant Riemannian metric (AIRM) is probably
the most popular Riemannian structure for analyzing SPD matrices [23]. Let P be a
point on SnCC. The tangent space of SnCC is Sym.n/ and the AIRM for two tangent
vectors V;W 2 TPSnCC is defined as

hV;WiP :D hP�1=2VP�1=2;P�1=2WP�1=2i D Tr
�
P�1VP�1W

�
: (16.4)

Definition 16.2. The geodesic distance ıg W SnCC � SnCC ! Œ0;1/ induced by the
AIRM is defined as

ıg.X;Y/ D k log.X�1=2YX�1=2/kF ; (16.5)

where log.�/ is the matrix principal logarithm.

The AIRM has several useful properties which are discussed in Sect. 16.2.1. For
the AIRM, the exponential and logarithms maps are given by

expP.X/ D P1=2 exp.P�1=2XP�1=2/P1=2 ; (16.6)

logP.X/ D P1=2 log.P�1=2XP�1=2/P1=2 : (16.7)

Beside the AIRM, the Bregman divergences have been successfully employed for
analyzing SPD matrices. Here, we are interested in two divergences derived from
the Bregman matrix divergence.
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Definition 16.3. Let � W SnCC ! R be a strictly convex and differentiable function
defined on the symmetric positive cone SnCC. The Bregman matrix divergence d� W
SnCC � SnCC ! Œ0;1/ is defined as

d�.X;Y/ D �.X/ � �.Y/ � hr�.Y/;X � Yi ; (16.8)

where hX;Yi= Tr
�
XTY

�
is the Frobenius inner product and r�.Y/ represents the

gradient of � evaluated at Y.

The Bregman divergence is asymmetric, nonnegative, and definite (i.e.,
d�.X;Y/ D 0; iff X D Y). While the Bregman divergence enjoys a variety of
useful properties [17], its asymmetric behavior is often a hindrance. In this chapter
we are interested in two types of symmetrized Bregman divergences, namely the
Jeffrey and the Stein divergences.

Definition 16.4 (Symmetric Positive-Definite Matrices: Jeffrey Divergence).
The J divergence (also known as Jeffrey or symmetric KL divergence) is obtained
from the Bregman divergence of Eq. (16.8) by using �.X/ D � ln det.X/ as the seed
function where j � j denotes determinant:

J.X;Y/ , 1

2
d�.X;Y/C 1

2
d�.Y;X/

D 1

2
Tr.X�1Y/ � 1

2
ln det.X�1Y/C 1

2
Tr.Y�1X/ � 1

2
ln det.Y�1X/ � n

D 1

2
Tr.X�1Y/C 1

2
Tr.Y�1X/ � n : (16.9)

Definition 16.5 (Symmetric Positive-Definite Matrices: Stein Divergence). The
Stein or S divergence (also known as Jensen–Bregman LogDet divergence [6])
is obtained from the Bregman divergence of Eq. (16.8) by again using �.X/ D
� ln det.X/ as the seed function but through Jensen–Shannon symmetrization:

S.X;Y/ , 1

2
d�

	
X;

XC Y
2



C 1

2
d�

	
Y;

XC Y
2




D ln det

	
XC Y
2



� 1
2

ln det.XY/ : (16.10)

16.2.1 Properties of J and S Divergences

The J and S divergences have a variety of properties which are akin to those of
AIRM. We present the pertinent properties which inspired us to seek coding on SnCC
using such divergences. The key message worth noting is the Hilbert space embed-
ding property of the J and S divergences, which does not hold for AIRM [10, 15].
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Invariance Property

An especially attractive property for the computer vision community is the invari-
ance of J and S divergences to affine transforms. More specifically (and similar to
AIRM), for A 2 GL.n/, we have

J.X;Y/ D J.AXAT ;AYAT/;

S.X;Y/ D S.AXAT ;AYAT/:

This property postulates that the metric between two SPD matrices is unaffected by
the action of the affine group. In the specific case where the SPD matrices are region
covariance descriptors [29], this implies that the distance between two descriptors
will remain unchanged after an affine transformation of the image features, such as
a change of illumination when using RGB values. Furthermore, similar to AIRM,
both divergences are invariant to inversion, i.e.,

J.X;Y/ D J.X�1;Y�1/;

S.X;Y/ D S.X�1;Y�1/:

Proofs for the above statements can be readily obtained by plugging the affine
representations (e.g., AXAT ) or inverses into the definition of J and S divergences.

Averaging Property

Definition 16.6. Given a metric ı and two tensors A;B 2 SnCC, the geometric mean
is defined as

A]ıB D arg min
X2Sn

CC

ı.X;A/C ı.X;B/: (16.11)

Theorem 16.1. For two matrices A;B 2 SnCC, the geometric mean of J divergence
A]JB and AIRM A]gB are the same.

Proof. For the J divergence, we note that

@fJ.X;A/C J.X;B/g
@X

D 1

2

�
A�1 C B�1 � X�1.AC B/X�1

�
:

Therefore, A]JB is the solution of

X.A�1 C B�1/X D AC B; (16.12)

which is a Riccati equation with only one positive-definite solution [3]. We note that
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A]gB D expB

�1
2

logB.A/
�
D expA

�1
2

logA.B/
�

D A
1
2

�
A�

1
2 BA�

1
2

� 1
2
A

1
2 : (16.13)

It can be readily shown that A]gB satisfies Eq. (16.12) which concludes the proof.

Theorem 16.2. The average of a set of points
˚
Xi
�N

iD1; Xi 2 SnCC based on
J divergence is defined as

M , arg min
X2Sn

CC

NX
iD1

J.Xi;X/ (16.14)

and admits a closed-form solution in the form of

M D L�1=2
�
L1=2� L1=2

�1=2
L�1=2 (16.15)

with L DPN
iD1 X�1i and � DPN

iD1 Xi.

Proof. The theorem can be readily proved. To this end, the solution of

@
PN

iD1 J.Xi;X/
@X

D 0 (16.16)

must be obtained. Similar to the proof of previous theorem, Eq. (16.16) has the form
of Riccati equation with a unique and closed-form solution. A slightly different
proof is also provided in [32].

For the S divergence and similar to AIRM, the average of a set of points has no
closed-form solution and can be obtained by an iterative scheme using the convex–
concave procedure [36] as explained in [6]. Nevertheless, the average of two points
based on S-divergence coincides with the AIRM mean as the following theorem
states.

Theorem 16.3. For two matrices A;B 2 SnCC, the geometric mean of S divergence
A]SB and AIRM A]gB are the same.

Proof.

@fS.X;A/C S.X;B/g
@X

D 0

) �
XC A

��1 � 1
2

X�1 C �XC B
��1 � 1

2
X�1 D 0

) X�1
�
XC A

� D In C
�
XC B

��1�
XC A

�
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) �
XC B

�
X�1

�
XC A

� D �XC B
�C �XC A

�
) XA�1X D B (16.17)

) X D A
1
2

�
A�

1
2 BA�

1
2

� 1
2
A

1
2 : (16.18)

Again, we note that Eq. (16.17) is a Riccati equation with the unique solution as
depicted in Eq. (16.18) which is exactly the AIRM mean in Eq. (16.13).

Hilbert Space Embedding Property (SPD Kernels)

Both J and S divergences admit a Hilbert space embedding in the form of RBF
kernel. More specifically, for the J divergence it has been shown that the kernel

kJ.X;Y/ D expf�ˇJ.X;Y/g (16.19)

is conditionally positive definite (CPD) [13]. The class of CPD kernels corresponds
to Hilbertian metrics and has wide applications in machine learning. For example,
it has been shown that the solution and optimization problem of the SVMs only
depend on Hilbertian metrics [13]. We note that in [20] the kernel kJ.�; �/ was
claimed to be positive definite. However, a formal proof is not available according
to our best knowledge. For the Stein divergence, the kernel

kS.X;Y/ D expf�ˇS.X;Y/g (16.20)

is not positive definite for ˇ > 0 [28]. However, bounds on ˇ do exist which
guarantee the positive definiteness of the kernel. The following theorem states the
condition under which Stein kernel is positive definite.

Theorem 16.4. Let ˝ D fX1;X2; : : : ;XNgIXi 2 SnCC be a set of Riemannian
points. The N � N matrix Kˇ D Œkˇ.i; j/�I 1 � i; j � N, with kˇ.i; j/ D kS.Xi;Xj/,
defined in Eq. (16.20), is positive definite iff

ˇ 2
�
1

2
;
2

2
; : : : ;

n � 1
2


[
�
� 2 R W � > 1

2
.n � 1/


: (16.21)

Interested readers can follow the proof in [28]. For values of ˇ outside of the above
set, it is possible to convert a pseudo kernel into a true kernel, as discussed for
example in [5].
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16.3 Riemannian Coordinate Coding

Given a query X 2 SnCC, such as an image descriptor, we are interested in
transforming X into a more compact, and hopefully discriminative, representation,
hereafter referred to as code. A general formulation that englobes many different
coding techniques can be expressed as

min
y

���X �
N]

jD1
Œy�j ˇ Dj

���2
ı
C ��.yIX;D/ s:t: y 2 C: (16.22)

Here, D D fDigNiD1; Di 2 SnCC is the N dictionary elements, �.�/ is a prior on the
codes y, and C is a set of constraints on y. Note that this formulation allows the prior
to be dependent on both the query X and the dictionary D. Before proceeding on
possible solutions of Eq. (16.22), we take a detour and explain how the dictionary D

can be obtained through k-Means algorithm.

16.3.1 Creating Visual Dictionary

In computer vision, k-Means is a prevalent technique in generating visual dictio-
naries. Let .M; ı/ be a metric space. Given a set of samples fXigmiD1; Xi 2 M,
k-Means minimizes the following cost function to determine N cluster centers
fDjgNjD1; Dj 2M:

e.X;D/ D
mX

iD1

N
min
jD1 ı

2.Xi;Dj/: (16.23)

This is achieved by first selecting the initial centers randomly from fXigmiD1. The
k-Means algorithm then iterates through two main steps. In the first step, given
the current estimation of the cluster centers, the closest samples to each center
are determined. Then the cluster centers are updated by computing the mean of
the closest samples. In our case, M is SnCC and the metric could be the AIRM,
S or J divergence. As for AIRM, the mean of a set of points can be obtained
through computing the Karcher mean [23] which uses the exponential and logarithm
maps. The mean of a set of points on SnCC is obtained using methods described
in Sect. 16.2.1. More specifically, for the J divergence, a closed-form solution for
computing the mean of a set of points is available as described in Sect. 16.2.1.
As for the Stein divergence, an efficient procedure is proposed in [26] which can
be employed to obtain the mean. Algorithm 1 illustrates k-MeansCC clustering
on SnCC which benefits from a more involved procedure in initializing the cluster
centers.
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Algorithm 1 k-MeansCC algorithm for dictionary learning on SnCC
Input: Training data: fXigmiD1; Xi 2 Sn

CC
; number of clusters: k;

Output: The cluster centers: fDigkiD1; Di 2 Sn
CC

;
Initialization.
Take first center D1, chosen uniformly at random from fXigmiD1;
D D1

for j 2 to k do
for i 1 to m do

d.Xi/ D minD ı2.Xi;D/

end for
for i 1 to m do

p.Xi/ d.Xi/P
l d.Xl/

end for
Take center Dj randomly from the distribution p.Xi/;
D D[ Dj

end for
Processing.
repeat
for i D 1 1 to m do

aŒi�  arg minj ı
2.Xi;Dj/ {//assignment; ı2 is either J or S-divergence (see Eq. (16.9) and

Eq. (16.10))//}
end for
for j D 1 1 to N do

Dj  arg minD
P

aŒi�DDj
ı2.Xi;D/ {//updating centers//}

end for
until Convergence;

16.3.2 Intrinsic Coordinate Coding

Given a dictionary D D fDigNiD1; Di 2 SnCC , and a query X 2 SnCC, we propose to
write Eq. (16.22) as

min
y

��X
i

yi logX.Di/
��2

X C ��.yIX;D/ s:t: y 2 C: (16.24)

To see the logic behind Eq. (16.24), consider the logarithm map on SnCC. We note
that logX.X/ D 0 and ı2g.X;Di/ D k logX.Di/k2X. Moreover, the tangent space at
X is a vector space. Therefore, one can seamlessly choose vector space operators
(addition, subtraction, and scalar product) to perform

U
, �, and ˇ. As such,

Eq. (16.24) is effectively the same as Eq. (16.22). However, Eq. (16.24) suffers from
a trivial solution if no constraint is envisioned for coding. That is, without a proper
C, y D 0 will be the solution of Eq. (16.24).

To this end, we propose to use the constraint yT1 D 1 to solve Eq. (16.24).
This affine constraint results in independency to the origin of the coordinate
system defined on TX and has been used for example in [14] for sparse coding on
Riemannian manifolds and in [8, 25] for the purpose of dimensionality reduction
and manifold learning.
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To see the independency to coordinate system, assume x 2 R
d is encoded by

three atoms d1, d2, and d3 with weight vector y D .Œy�1; Œy�2; Œy�3/T . That is, x D
Œy�1d1 C Œy�2d2 C Œy�3d3. Changing the coordinates by translating the origin to t
results in having x � t, d1 � t, d2 � t and d3 � t as query and dictionary atoms,
respectively. Under this change, x � t cannot be encoded by the weight vector y.
However, if we enforce the weight vector to be affine invariant, i.e., yT1 D 1, then
it is easy to verify that x � t D Œy�1.d1 � t/C Œy�2.d2 � t/C Œy�3.d3 � t/.

Turning our attention to the function �.yIX;D/, we note that sparse coding can
be achieved by choosing �.yIX;D/ D kyk1.

This is of course what Ho et al. proposed in their work [14]. However, some
studies favor to perform coding based on the distances between dictionary atoms and
the query [33, 35]. That is, it is preferable to have coding schemes where only nearby
atoms to a query contribute to the coding weights. This, which we call coordinate
coding, can be achieved with the following penalty function:

�.yIX;D/ D kEyk22 ; with Eii D exp
�
�ı2g.X;Di/

�
; and Eij D 0; i ¤ j ;

(16.25)

Obviously, Eq. (16.25) will incur a heavy penalty if ı2g.X;Di/ is large and hence
force the coding weights to be dependent more on nearby atoms. This ultimately can
result in sparsity (as a parameter of � ) while the other way around is not necessarily
true, i.e., sparsity cannot guarantee locality.

A special case, which we will use later in our experiments, is the case where
a hard thresholding is performed on the prior kEyk22. More specifically, to enforce
locality, we could construct a local dictionary BX by considering the NB nearest
atoms from D, i.e., BX 3 Di; iff ı2.X;Di/ � ı2.X;Dj/; Dj 62 BX. Having BX, we
define the following scheme as intrinsic coordinate coding (iCC) on SnCC

min
y

��� X
Di2BX

yi logX.Di/
���2

X
s:t: yT1 D 1: (16.26)

Interestingly, the solution of Eq. (16.26) can be obtained in closed form and as
a least-squares problem. Hence, unlike sparse coding where codes are obtained
through an iterative algorithm, the iCC method achieves its solution in a single step.
Algorithm 2 provides all the details for performing iCC on SnCC.

16.3.3 Log-Euclidean Coordinate Coding

The aforementioned intrinsic method requires one to project all atoms in the local
dictionary onto the tangent space of a query point through the logarithm map. This
is computationally expensive for high-dimensional manifolds as well as large local
dictionaries. To reduce the computational load, it is possible to flatten the manifold
through its identity tangent space which identifies the Lie algebra of SnCC. More
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Algorithm 2 Intrinsic coordinate coding (iCC)
Input: Dictionary D D fDigNiD1; Di 2 Sn

CC
; the query X 2 Sn

CC
; size of local dictionary NB.

Output: The iCC codes y�

Processing.
y�  0N�1

for i 1 to N do
ı.i/ ı2g.X;Di/

end for
active_set indexes of the NB smallest ı.i/; 1 � i � N
for i 1 to NB do

bi  vecI

�
log

�
X�1=2Dactive_set.i/X�1=2

��
end for
B Œb1; b2; � � � ; bNB � {// create the local dictionary Bn.nC1/=2�NB //}
Solve the linear equation system BT By D 1

Oy y=1T y
y�.active_set/ Oy

specifically, we can rewrite Eq. (16.22) with the affine constraint as

min
y

����.X/ �
NX

jD1
Œy�j�.Dj/

���2 C ���yI �.X/; �.D/�s:t: yT1 D 1: (16.27)

Here, �.�/ W SnCC ! R
n.nC1/=2 is defined as �.X/ D vecI

�
log.X/

�
. Similar to

Eq. (16.25), we utilize the following prior for coding

�
�
yI �.X/; �.D/� D kEyk22 ; with Eii D exp

�
�k�.X/ � �.Di/k2

�
; and Eij D 0; i ¤ j :

(16.28)

The closed-form solution of Eq. (16.27) with the prior described in Eq. (16.28)
can be obtained in two steps: First, one needs to solve the system of equations

�
�.D/T�.D/ � 1T ˝ �.X/C �E2

�
y D 1; (16.29)

where ˝ denotes the Kronecker product. The solution obtained from Eq. (16.29) is
then normalized to have unit `1 norm.

This, as compared to the solution described in Sect. 16.3.2, is computationally
less demanding (only one logarithm is computed per query) but appreciates the true
geometry of SnCC less. With the hard thresholding on prior (which will be used in
the experiments), one first needs to determine a local dictionary BX by stacking
the NB closest atoms from �.D/ to �.X/. Then the solution can be obtained using
BX as illustrated in Algorithm 3. We shall refer to this straightforward approach as
Log-Euclidean coordinate coding (leCC), following the terminology used in [2].
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Algorithm 3 Log-Euclidean coordinate coding (leCC)
Input: Dictionary D D fDigNiD1; Di 2 Sn

CC
; the query X 2 Sn

CC
; size of local dictionary NB.

Output: The leCC codes y�

Initialization.
for i 1 to N do

di  vecI
�

log.Di/
�

end for
Processing.
x vecI

�
log.X/

�
y�  0N�1

for i 1 to N do
ı.i/ kx� dik2

end for
active_set indexes of the NB smallest ı.i/; 1 � i � N
B S

i2active_set
di {//create the local dictionary Bn.nC1/=2�NB //}

Solve the linear equation system
�
BT B� 1T ˝ x

�
y D 1

Oy y=1T y
y�.active_set/ Oy

16.3.4 Kernel Coordinate Coding

The idea of coordinate coding can be kernelized as follows. Given an embedding
� from SnCC to an RKHS H, i.e., � W SnCC ! H a Riemannian dictionary D D
fDigNiD1; Di 2 SnCC, we first kernelize the prior � as

�.yIX;D/ D kEyk22 ; with Eii D exp .�k�.X/ � �.Di/k2/ ; and Eij D 0; i ¤ j:
(16.30)

We note that

Eii D exp
�
�
p

k.X;X/ � 2k.X;Di/C k.Di;Di/
�
: (16.31)

Now, the problem of coordinate coding on SnCC can be cast as

min
y

�����X/ �
NX

jD1
Œy�j�

�
Dj/
���2
2
C ��.yIX;D/ s:t: yT1 D 1: (16.32)

Following similar steps to Sect. 16.3.3, we can find a closed-form solution for
Eq. (16.32). More specifically, by expanding Eq. (16.32)

����.X/ �
NX

jD1
Œy�j�.Dj/

���2
2
C ���Ey

��2

D k.x; x/ � 2yTk.x;D/C yT
�
K.D;D/C �E2

�
y;
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Algorithm 4 Kernel coordinate coding (kCC)
Input: Dictionary D D fdigNiD1; di 2 R

d; the query x 2 R
d , a positive-definite kernel

k W Rd � R
d ! R.

Output: The kCC codes y�

Processing.
y�  0N�1

for i 1 to N do
ıi  k.di; di/� 2k.x; di/

end for
active_set indexes of the NLLC smallest ıi; 1 � i � N
for i 1 to NB do

bi  dactive_set.i/

end for
for i 1 to NB do
Œk.x;B/�i  k.x; bi/

end for
for i; j 1 to NB do
ŒK.B;B/�i;j  k.bi; bj/

end for

Solve the linear equation system

	
K.B;B/�

�
1T ˝ k.x;B/

�

y D 1

Oy y=1T y
y�.active_set/ Oy

we see that again the solution is obtained by first solving the equation system

�
K.D;D/ � 1T ˝ k.x;D/C �E2

�
y D 1; (16.33)

followed by normalizing the solution to have unit `1 norm.
As for hard thresholding the prior, the local dictionary B by performing kernel

nearest neighbor between the dictionary elements and the query. This lets us write
the kCC in H as

min
y
k�.x/ � �.B/yk22 s:t: 1Ty D 1; (16.34)

which has a form similar to Eq. (16.32) with no prior. Algorithm 4 provides the
pseudo-code for performing kCC.

16.4 Empirical Evaluation

We used the “b” subset of the FERET data set [24], which includes 1800 images
from 200 subjects for the face recognition task. The images were closely cropped
around the face and downsampled to 64 � 64. Examples are shown in Fig. 16.1.
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Fig. 16.1 Examples from the FERET face data set [24]. (a) ba, (b) bj, (c) bk, (d) bd, (e) be, (f) bf,
(g) bg

We performed six tests with various pose angles. Training data were composed
of images marked “ba,” “bj,” and “bk” (i.e., frontal faces with expression and
illumination variations). Images with “bc,” “bd,” “be,” “bf,” “bg,” and “bh” labels
(i.e., non-frontal faces) were used as test data.

Each face image is described by a set of 11 � 11 RCMs using the following
features:

f x;y D
0
@I.x; y/;

s	
@I.x; y/

@x


2
C
	
@I.x; y/

@x


2
;

arctan

	
@I.x; y/

@y
=
@I.x; y/

@x



; G0;0.x; y/; : : : ; G1;3.x; y/


T

;

where I.x; y/ is the intensity value at position .x; y/, @I.x;y/
@� is gradient along x or y,

and Gu;v.x; y/ is the response of a difference of Gaussian (DOG) filter centered at
.x; y/ with orientation v and scale u. In particular, we extracted 49 RCMs from an
image where each RCM corresponded to a region of size 16 � 16. The descriptor
for an image is obtained by averaging the coordinate codes of its 49 RCMs, i.e., a
simple averaging was used for pooling.

Table 16.1 shows the performance of all the studied methods for the task of
face recognition. This includes the iCC, leCC, as described in Sect. 16.3.3, the
intrinsic coordinate coding, iCC, as described in Sect. 16.3.2, and the iCC, kCC, as
described in Sect. 16.3.4. We show the kCC algorithm with the Jeffrey and the Stein
divergences by kCC-J and kCC-S, respectively. For each method, three dictionaries
of size 128, 256, and 512 were learned using the k-Means++ algorithm as described
in Sect. 16.3.1.

First we note that exploiting the Riemannian structure of SPD manifolds boosts
the performance significantly as evidenced when iCC algorithm is compared against
leCC. For example, the difference between iCC and leCC surpasses 12 % points
when a dictionary of size 512 was utilized. By increasing the size of the dictionary,
the performance of both leCC and iCC increases at the price of heavier computation
load.

Comparing kCC algorithm against iCC shows that the kernel method is prefer-
able. We conjecture that this is a by-product of embedding SPD manifolds into
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Table 16.1 Recognition accuracy (in %) for the FERET face data set [24]

Method bc (%) bd (%) be (%) bf (%) bg (%) bh (%)

leCC (128 atoms) 18.5 44.0 78.5 83.0 52.0 19.0

leCC (256 atoms) 21.0 55.0 90.0 91.5 65.5 30.5

leCC (512 atoms) 21.0 55.0 90.0 94.0 66.0 26.0

iCC (128 atoms) 21.0 42.0 74.0 85.0 49.5 17.5

iCC (256 atoms) 26.5 59.0 88.0 92.0 67.0 29.0

iCC (512 atoms) 32.0 69.0 94.0 97.5 78.5 35.0

kCC-J (128 atoms) 23.0 58.0 77.0 88.0 73.0 41.5

kCC-J (256 atoms) 34.5 74.0 94.0 96.5 86.5 46.5

kCC-J (512 atoms) 40.0 85.0 96.5 98.0 91.0 62.0
kCC-S (128 atoms) 34.5 72.5 94.0 92.0 76.0 37.5

kCC-S (256 atoms) 38.5 80.0 97.0 97.5 82.5 46.5

kCC-S (512 atoms) 42.0 82.0 98.5 98.0 90.0 53.5

infinite-dimensional spaces through kernels which might have increased the dis-
criminatory power among classes. Among the Jeffrey and the Stein divergences,
there is no clear winner as kCC-S achieves the highest recognition accuracy in three
experiments. However, in general kCC-J seems to be slightly better.

16.5 Main Findings and Future Work

With the aim of addressing coding on SPD manifolds, we proposed iCC which
exploits the tangent bundle of the SPD manifolds to perform coding. We also
proposed to seek the solution through embedding the manifolds into RKHS with
the aid of two Bregman divergences, namely Stein and Jeffrey divergences. This
was motivated by the success of many learning algorithms arises from their use
of kernel methods. Therefore, one could expect embedding a Riemannian manifold
into higher dimensional RKHS, where linear geometry applies, facilitates inference.

Experiments on the task of face recognition show that the proposed approaches
achieve notable improvements in discrimination accuracy. Future venues of explo-
ration include devising structured coding and learning.
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Chapter 17
Summarization and Search Over
Geometric Spaces

Nitesh Shroff, Rushil Anirudh, and Rama Chellappa

Abstract The last decade has seen an explosion in the amount of data being
generated, in part due to the prevalence of image and video sensors. As a result,
searching through these data for relevant information or even getting a gist of the
data is increasingly becoming difficult. The task is further complicated when the
data have a non-Euclidean geometric interpretation. In this chapter, we address
these limitations by discussing techniques to (a) summarize the data and (b) search
through the data to find the nearest neighbor, in the general case of data lying on
non-Euclidean manifolds. First, we consider the “précis” problem of sampling K
representative yet diverse data points from a large data set. We formulate a general
theory which encompasses not only traditional techniques devised for vector spaces
but also non-Euclidean manifolds, thereby enabling these techniques for shapes,
human activities, textures, and many other image and video-based data sets. We
discuss the intrinsic manifold measures for measuring the quality of a selection
of points with respect to their representative power, and their diversity. We also
extend our formulation to the infinite-dimensional manifolds. We then address the
problem of nearest-neighbor search in curved spaces. Towards this end, we discuss
geodesic hashing which employs intrinsic geodesic-based functions to hash the data
for realizing approximate but fast nearest-neighbor retrieval. The proposed family
of hashing functions, although intrinsic, is optimally selected to empirically satisfy
the locality sensitive hashing property.
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17.1 Introduction

Large databases of images and videos are increasingly becoming commonplace
due to the growth of personal collections and Internet archives. Getting a gist
of these data or searching through the enormous amounts of data to find the
relevant information is increasingly becoming difficult as the size of the data sets
is constantly increasing. Several applications require us to overcome this limitation
and make these data sets more easily accessible to users. This has necessitated the
development of methods that allow fast retrieval and access to information.

For instance, in applications such as content-based image retrieval, texture
classification, biometrics, and video mining, the problem is frequently reduced to
searching for exemplars similar to a query in a large database. This is more formally
known as similarity search or the nearest-neighbor (NN) problem. The problem
of NN search has been studied for many years in the database and algorithms
communities involving searching in an n-dimensional Euclidean space. Several
advances have been made here in the last couple of decades. However, the research
has mainly focused on utilizing the geometry of the Euclidean space for a faster NN
search. Hence, several of these techniques are not immediately applicable to data
which has an underlying geometry that is non-Euclidean.

Another set of applications frequently requires us to sample K representative
data points from a large data set. For instance, consider analyzing large data sets
of shapes, objects, documents or large video sequences, etc. Analysts spend a large
amount of time sifting through the acquired data to familiarize themselves with the
content, before using them for their application-specific tasks. This has necessitated
the problem of optimal selection of a few representative exemplars from the data
set as an important step in exploratory data analysis. Other applications include
Internet-based video summarization, where providing a quick overview of a video is
important to improve the browsing experience. Similarly, in medical image analysis,
picking a subset of K anatomical shapes from a large population helps in identifying
the variations within and across shape classes, providing an invaluable tool for
analysts.

In this chapter, we address these two problems and discuss techniques that are
tailored to utilizing the geometry of the data. We first discuss a diverse sampling
technique on the geometric spaces called the manifold précis. Subsequently, we
generalize this to infinite-dimensional manifolds. Later in this chapter, we discuss
an efficient algorithm for the nearest-neighbor search on non-Euclidean manifolds.
Before getting into this, let us first look into various scenarios where such geometric
representations are used and the various statistical learning techniques that have
been developed.

Computations on Nonlinear Manifolds In the computer vision literature, over the
past several years there has been significant research about what are good features
and models for representing images and videos. Images and videos are usually
represented by a concise set of features or models—such as shape, color/intensity
histograms, SIFT, histogram of gradients, linear dynamical systems, and covariance
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matrices. Many of these features and models do not lie in the Euclidean space. What
this means is that the underlying distance function on the space is not the usual `2=`p

norm but a highly nonlinear function which is also in most cases computationally
hard to compute.

Over the years, many advances have been made to understand the geometric
properties of these varied spaces, and they have been utilized to devise more accurate
inference and classification algorithms [18, 24, 39, 42, 45]. These works have
addressed inferences, clustering, dimensionality reduction, etc. in non-Euclidean
spaces. Understanding the geometry allows one to define distances, leading to
geodesics, etc. on these manifolds. While one could try to solve the problem by
obtaining an embedding of a given manifold into a larger ambient Euclidean space,
it is desirable to have a solution that is more intrinsic in nature. This is because
the chosen embedding is often arbitrary and introduces peculiarities that result
from such extrinsic approaches. Further manifolds such as the Grassmannian or the
manifold of infinite-dimensional diffeomorphisms do not admit a natural embedding
into a vector space.

In this chapter, we develop techniques for summarizing and searching over
the data sets. Summarization of a collection of data points is formulated as a
subset selection problem. An efficient technique that optimizes for two conflicting
criteria—representation and diversity—is developed. We then extend this formu-
lation to infinite-dimensional manifolds. We then turn our attention towards the
problem of searching over the non-Euclidean manifolds. Specifically, we focus on
the problem of approximate nearest-neighbor search on the manifold. We discuss a
technique called the geodesic hashing which extends the idea of locality sensitive
hashing on the manifolds.

17.2 Subset Selection on Analytic Manifolds

In this section we discuss the problem of selecting a subset of K exemplars from
a data set of N points when the data have an underlying manifold structure. We
formulate the notion of representational error and diversity measure of exemplars
while utilizing the non-Euclidean structure of the data points, followed by an effi-
cient annealing-based optimization algorithm to solve for the exemplars. Towards
this end, we develop a mathematical framework to concisely represent videos with
an objective to gain a quick overview of the video while minimizing the loss of
details. The problem is formulated as a subset selection problem with the objective
to select representative yet diverse exemplars.
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17.2.1 Related Work

Depending upon the application, several subset selection criteria have been pro-
posed in the literature. However, there seems to be a consensus in selecting
exemplars that are representative of the data set while minimizing the redundancy
between the exemplars. Liu et al. [33] proposed that the summary of a document
should satisfy the “coverage” and “orthogonality” criteria. Shroff et al. [36]
extended this idea to selecting exemplars from videos that maximize “coverage”
and “diversity.” Simon et al. [37] formulated scene summarization as one of picking
interesting and important scenes with minimal redundancy. Similarly, in statistics,
stratified sampling techniques sample the population by dividing the data set into
mutually exclusive and exhaustive “strata” (subgroups) followed by a random
selection of representatives from each stratum [11]. The splitting of population into
strata ensures that a diverse selection is obtained. The need to select diverse subsets
has also been emphasized in information retrieval applications [6, 49].

Column Subset Selection (CSS) [5, 17, 26] has been one of the popular
techniques to address this problem. The goal of CSS is to select the K most “well-
conditioned” columns from the matrix of data points. One of the key assumptions
behind this and other techniques is that objects or their representations lie in the
Euclidean space. Unfortunately, this assumption is not valid in several cases when
the data lie in non-Euclidean manifolds.

The problem of subset selection has also been studied by the communities of
numerical linear algebra and theoretical computer science. Most work in the former
community is related to the Rank-Revealing QR factorization (RRQR) [7, 25, 26].
Given a data matrix Y , the goal of RRQR factorization is to find a permutation
matrix ˘ such that the QR factorization of Y˘ reveals the numerical rank of
the matrix. The resultant matrix Y˘ has as its first K columns the most “well-
conditioned” columns of the matrix Y . On the other hand, the latter community
has focused on Column Subset Selection (CSS). The goal of CSS is to pick K
columns forming a matrix C 2 R

m�K such that the residual jj Y � PCY jj� is
minimized over all possible choices for the matrix C. Here PC D CC� denotes
the projection onto the K-dimensional space spanned by the columns of C, and �
can represent the spectral or Frobenius norm. C� indicates the pseudo-inverse of
matrix C. Along these lines, different randomized algorithms have been proposed
[5, 15, 17, 20]. Various approaches include a two-stage approach [5] and subspace
sampling methods [17].

Clustering techniques [22] have also been applied for subset selection [16, 19].
In order to select K exemplars, data points are clustered into ` clusters with .` � K/
followed by the selection of one or multiple exemplars from each cluster to
obtain the best representation or low-rank approximation of each cluster. Affinity
Propagation [19] is a clustering algorithm that takes similarity measures as input and
recursively passes message between nodes until a set of exemplars emerges. As we
discuss in this chapter, the problems with these approaches are that (a) the objective
functions optimized by the clustering functions do not incorporate the diversity of
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the exemplars, hence can be biased towards denser clusters, and also by outliers, and
(b) seeking low-rank approximation of the data matrix or clusters individually is not
always an appropriate subset selection criterion. Furthermore, these techniques are
largely tuned towards addressing the problem in a Euclidean setting and cannot be
applied for data sets in non-Euclidean spaces.

We overcome these limitations by formulating the subset selection as the
optimization of two criteria—representation and diversity. Both the criteria are
individually formulated in a manner that utilizes the geometry. Let us first look
into the formulation of the representational error.

17.2.2 Representational Error on Manifolds

Let us assume that we are given a set of points X D fx1; x2; : : : xng which belong to
a manifold M. The goal is to select a few exemplars E D fe1; : : : eKg from the set
X, such that the exemplars provide a good representation of the given data points
and are minimally redundant. For the special case of vector spaces, two common
approaches for measuring representational error are in terms of linear spans and
nearest-exemplar error. The linear span error is given by

min
z
kX � Ezk2F (17.1)

where X is the matrix form of the data and E is a matrix of chosen exemplars. The
nearest-exemplar error is given by

X
i

X
xk2˚i

kxk � eik2 (17.2)

where ei is the ith exemplar and ˚i corresponds to its Voronoi region.
Of these two measures, the notion of linear span, while appropriate for matrix

approximation, is not particularly meaningful for general data set approximation
problems since the “span” of a data set item does not carry perceptually meaningful
information. For example, the linear span of a vector x 2 R

n is the set of points
˛x; ˛ 2 R. However, if x were an image, the linear span of x would be the set
of images obtained by varying the global contrast level. All elements of this set
however are perceptually equivalent, and one does not obtain any representational
advantage from considering the span of x. Further, points sampled from the linear
span of few images would not be meaningful images. This situation is further
complicated for manifold-valued data such as shapes, where the notion of linear
span does not exist. One could attempt to define the notion of linear spans on the
manifold as the set of points lying on the geodesic shot from some fixed pole towards
the given data set item. But, points sampled from this linear span might not be very
meaningful, e.g., samples from the linear span of a few shapes would give physically
meaningless shapes.
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Hence, it is but natural to consider the representational error of a set X with
respect to a set of exemplars E as follows:

Jrep.E/ D
X

i

X
xj2˚i

d2g.xj; ei/ (17.3)

Here, dg is the geodesic distance on the manifold and ˚i is the Voronoi region
of the ith exemplar. This boils down to the familiar K-means or K-medoids cost
function for Euclidean spaces. In order to avoid combinatorial optimization involved
in solving this problem, we use efficient approximations, i.e., we first find the mean
followed by the selection of ei as data point that is closest to the mean. The algorithm
for optimizing Jrep is given in Algorithm 1. Similar to K-means clustering, a cluster
label is assigned to each xj followed by the computation of the mean �i for each
cluster. This is further followed by selecting representative exemplar ei as the data
point closest to �i.

17.2.3 Diversity Measures on Manifolds

The next question we consider is to define the notion of diversity of a selection
of points on a manifold. We first begin by examining equivalent constructions for
R

n. One of the ways to measure diversity is simply to use the sample variance of
the points. This is similar to the construction used recently in [36]. For the case of
manifolds, the sample variance can be replaced by the sample Karcher variance,
given by the function:

Algorithm 1 Algorithm to minimize Jrep

Input :X 2M, k, index vector !, �
Output: Permutation Matrix ˘
Initialize ˘  In�n

for �  Œ1 : : : � � do
Initialize ˘.�/ In�n

ei  x!i for i D {1,2,. . . ,k}
for i Œ1 : : : k� do
˚i  {xp : argminj dg.xp; ej/ D i }
�i  mean of ˚iOj argminj dg.xj; �i/

Update: ˘.�/ ˘.�/ ˘i$Oj
end for
Update: ˘  ˘ ˘.�/, ! !˘.�/

if ˘.�/ D In�n then
break

end if
end for
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.E/ D 1

K

KX
iD1

d2g.�; ei/ (17.4)

where � is the Karcher mean [29] and the function value is the Karcher variance.
However, this construction leads to highly inefficient optimization routines, essen-
tially boiling down to a combinatorial search over all possible K-sized subsets of X.

An alternate formulation for vector spaces that results in highly efficient opti-
mization routines is via Rank-Revealing QR (RRQR) factorizations. For vector
spaces, given a set of vectors X D fxig, written in matrix form X, RRQR [26]
aims to find Q, R, and a permutation matrix ˘ 2 R

n�n such that X˘ D QR reveals
the numerical rank of the matrix X. This permutation

X˘ D .XK Xn�K/ (17.5)

gives XK , the K most linearly independent columns of X. This factorization is
achieved by seeking ˘ which maximizes

�.XK/ D
Y

i

�i.XK/ (17.6)

the product of the singular values of the matrix XK .
For the case of manifolds, we adopt an approximate approach in order to measure

diversity in terms of the “well-conditioned” nature of the set of exemplars projected
on the tangent space at the mean. In particular, for the data set fxig 
 M, with
intrinsic mean �, and a given selection of exemplars fejg, we measure the diversity
of exemplars as follows: matrix TE D Œlog�.ej/� is obtained by projecting the
exemplars fejg on the tangent space at mean �. Here, log./ is the inverse exponential
map on the manifold and gives tangent vectors at � that point towards ej. Diversity
can then be quantified as

Jdiv.E/ D �.TE/ (17.7)

where �.TE/ represents the product of the singular values of the matrix TE.
For vector spaces, this measure is related to the sample variance of the chosen
exemplars. For manifolds, this measure is related to the sample Karcher variance. If
we denote TX D Œlog�.xi/�, the matrix of tangent vectors corresponding to all data
points, and if˘ is the permutation matrix that orders the columns such that the first
K columns of TX correspond to the most diverse selection, then

Jdiv.E/ D �.TE/ D det.R11/;where, TX˘ D QR D Q

	
R11 R12
0 R22



(17.8)
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Algorithm 2 Algorithm for diversity maximization

Input: Matrix V 2 R
d�n, k, Tolerance tol

Output: Permutation Matrix ˘
Initialize ˘  In�n

repeat

Compute QR decomposition of V to obtain R11;R12 and R22 s.t., V D Q

	
R11 R12
0 R22




ˇij  
q
.R�1
11 R12/2ij C jjR22˛jjj22jj˛T

i R�1
11 jj22

ˇm  maxij ˇij

.Oi; Oj/ arg maxij ˇij

Update: ˘  ˘ ˘i$.jCk/

V  V˘i$.jCk/

until ˇm < tol

Algorithm 3 Annealing-based alternation algorithm for subset selection on
manifolds

Input: Data points X D fx1; x2; : : : ; xng 2M, Number of exemplars k, Tolerance step ı
Output: E D fe1; : : : ekg 	 X
Initial setup:
Compute intrinsic mean � of X
Compute tangent vectors vi  log�.xi/

V  Œv1; v2; : : : ; vn�

! Œ1; 2; : : : ; n� be the 1� n index vector of X
tol 1

Initialize: ˘  Randomly permute columns of In�n

Update: V  V˘;! !˘ .
while ˘ ¤ In�n do

Diversity:
˘  Div(V; k; tol) as in Algorithm 2.
Update: V  V˘ , ! !˘ .
Representative Error:
˘  Rep(X; k; !,1) as in Algorithm 1
Update: V  V˘ , ! !˘ .
tol tolC ı

end while
ei  x!i for i D {1,2,. . . ,k}

Here, R11 2 R
K�K is the upper triangular matrix of R 2 R

n�n, R12 2 R
K�.n�K/,

and R22 2 R
.n�K/�.n�K/. The advantage of viewing the required quantity as the

determinant of a sub-matrix on the right-hand side of the above equation is that
one can obtain efficient techniques for optimizing this cost function. The algorithm
for optimizing Jdiv is adopted from [26] and described in Algorithm 2. Input to the
algorithm is a matrix V created by the tangent-space projection of X and output is
the K most “well-conditioned” columns of V . This is achieved by first decomposing
V into QR and computing ˇij, which indicates the benefit of swapping ith and jth
columns [26]. Algorithm 3 then selects pair .Oi; Oj/ corresponding to the maximum
benefit swap ˇm and if ˇm > tol, this swap is accepted. This is repeated until either
ˇm < tol or maximum number of iterations are completed.
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17.2.4 Representation and Diversity Trade-Offs for Subset
Selection

From (17.3) and (17.8), it can be seen that we seek a solution that represents a
trade-off between two conflicting criteria. As an example, in Fig. 17.1a we show two
cases, where Jrep and Jdiv are individually optimized. We can see that the solutions
look quite different in each case. One way to write the global cost function is as a
weighted combination of the two. However, such a formulation does not lend itself
to efficient optimization routines (c.f. [36]). Further, the choice of weights is often
left unjustified. Instead, we propose an annealing-based alternating technique of
optimizing the conflicting criteria Jrep and Jdiv. Optimization algorithms for Jrep and
Jdiv individually are given in Algorithms 1 and 2, respectively. We first optimize
Jdiv to obtain an initial set of exemplars and use this set as an initialization for
optimizing Jrep. The output of this stage is used as the current solution to further
optimize Jdiv. However, with each iteration, we increase the tolerance parameter
tol in Algorithm 2. This has the effect of accepting only those permutations that
increase the diversity by a higher factor as iterations progress. This is done to ensure
that the algorithm is guided towards convergence. If the tol value is not increased
at each iteration, then optimizing Jdiv will continue to provide a new solution at
each iteration that modifies the cost function only marginally. This is illustrated in
Fig. 17.1c, where we show how the cost functions Jrep and Jdiv exhibit an oscillatory
behavior if annealing is not used.

As shown in Fig. 17.1b, the convergence of Jdiv and Jrep is obtained very quickly
on using the proposed annealing alternation technique. The complete annealing-
based alternation algorithm is described in Algorithm 3. A technical detail to be
noted here is that for Algorithm 2, input matrix V 2 R

d�n should have d 	 k. For
cases where d < k, Algorithm 2 can be replaced by its extension proposed in [5].
Table 17.1(a) shows the notations introduced in Algorithms 1–3. ˘i$j is obtained
by permuting i and j columns of the identity matrix.

17.2.5 Complexity, Special Cases, and Limitations

In this section, we discuss how the proposed method relates to the special case of
M D R

n and to sub-manifolds of R
n specified by a large number of samples.

For the case of R
n, the cost functions Jrep and Jdiv boil down to the familiar

notions of clustering and low-rank matrix approximation, respectively. In this case,
Algorithm 3 reduces to alternation between clustering and matrix approximation
with the annealing ensuring that the algorithm converges. This results in a new
algorithm for subset selection in vector spaces.

For the case of manifolds implicitly specified using samples, one can approach
the problem in one of two ways. The first would be to obtain an embedding of
the space into a Euclidean space and apply the special case of the algorithm for
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Fig. 17.1 Subset selection for a simple data set consisting of unbalanced classes in R
4. (a) Data

projected on R
2 for visualization using PCA. While minimizing the representational error, Jrep

picks two exemplars from the dominant class. Jdiv picks diverse exemplars but from the boundaries.
The proposed approach strikes a balance between the two and picks one “representative” exemplar
from each class. Convergence analysis of algorithm 3: (b) with annealing and (c) without annealing

M D R
n. The embedding here needs to preserve the geodesic distances between all

pairs of points. Multi dimensional scaling can be used for this purpose. However,
recent methods have also focused on estimating logarithmic maps numerically from
sampled data points [32]. This would make the algorithm directly applicable for
such cases, without the need for a separate embedding. Thus the proposed formalism
can accommodate manifolds with known and unknown geometries.

Computational Complexity The computational complexity of computing expo-
nential map and its inverse is specific to each manifold. Let n be the number of data
points and K be the number of exemplars to be selected. Table 17.1(b) enumerates
the complexity of different computational step of the algorithm. The last two rows
show the complexity of an efficient algorithm proposed by [21] to compute the
exponential map and its inverse for the case of Grassmann manifold Gm;p.

17.2.6 Extension to Infinite-Dimensional Manifolds

The formalism described previously works well in cases where data lie on finite-
dimensional manifolds, but extending it to infinite-dimensional manifolds poses
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Table 17.1 (a) Notations
used in Algorithms 1–3 (b)
Complexity of Computational
Steps

(a)

Symbol Represents

� Maximum number of iterations

In�n Identity matrix

˚i Voronoi region of ith exemplar

˘i$j Permutation matrix that swaps columns i and j

˘.�/ ˘ in the � th iteration

V Matrix obtained by tangent-space projection of X

Hij .i; j/ element of matrix H

˛j jth column of the identity matrix

H˛j; ˛
T
j H jth column and row of matrix H, respectively

(b)

Computational step Complexity

M exp. map (assume) O.�/

M inverse exp. map (assume) O.�/

Intrinsic mean of X O..n�C �/� /
Projection of X to tangent space O.n�/

Geodesic distances in Algorithm 1 O.nK�/

K intrinsic means O..n�C K�/� /

Algorithm 2 O.mnK log n/

Gm;p exponential map O.p3/

Gm;p inverse exponential map O.p3/

challenges due to the difficulty in formulating the diversity cost function. Examples
of such manifolds are diffeomorphisms [43], space of closed curves [34], and trajec-
tories on manifolds [41], which find uses in several applications. For instance, most
smoothly varying features extracted from videos can be interpreted as trajectories
on the corresponding feature manifolds.

The diversity measure Jdiv can be formulated purely in terms of pairwise
geodesics, making it extensible to infinite-dimensional manifolds but it would have
made the optimization a significant bottleneck, as already discussed earlier. Instead,
we employ the Transport Square Root Velocity Function (TSRVF) [41]—a recent
development in statistics, which models trajectories on manifolds and continuous
curves in the Euclidean space [40] as functions. In both the cases, the resulting
metric between two sequences on the functional space remains unchanged to
identical time warpings. We use the TSRVF representation to model all trajectories
as deviations from an “average trajectory” using tangent vectors.

Algorithm 4 describes the procedure to obtain exemplar sequences using précis.
Here, the term V.i/ can be interpreted as a “sequence tangent,” in that it takes us
from the average activity, �.t/, to the ith activity in unit time. V.i/ contains the
shooting vectors, which are the tangent vectors one would travel along, starting
from the average sequence �.t/ at � D 0 to reach the ith action Q̨ i.t/ at time � D 1.
Note here that � is the time in the TSRVF space which is different from t, which
is time in the original shape space. In comparison to traditional manifold précis,
the matrix V is equivalent to TX in Eq. (17.8). Since V can be high dimensional,
depending on the choice of the feature and length of each sequence, solving for
exemplars from a large set of sequences can still be computationally intractable.
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An alternative solution could be to project V onto a lower-dimensional space, which
can be achieved with any of the existing algorithms due to the Euclidean nature of V .
Finally, one can solve for exemplars in the projected space efficiently.

17.2.7 Experiments

Baselines We compare the proposed algorithm with two baselines. The first
baseline is a clustering-based solution to subset selection, where we cluster the
dataset into K clusters and pick as exemplar the data point that is closest to the
cluster centroid. Since clustering optimizes only the representation cost function, we
do not expect it to have the diversity of the proposed algorithm. This corresponds to
the special case of optimizing only Jrep. The second baseline is to apply a tangent-
space approximation to the entire data set at the mean of the data set and then apply
a subset-selection algorithm such as RRQR. This corresponds to optimizing only
Jdiv where the input matrix is the matrix of tangent vectors. Since minimization
of Jrep is not explicitly enforced, we do not expect the exemplars to be the best
representatives, even though the set is diverse.

Synthetic Illustration To gain some intuition, we first perform experiments on a
simple synthetic data set. For easy visualization and understanding, we generated
a data set with three unbalanced classes in Euclidean space R

4. Individual cost
functions Jrep and Jdiv were first optimized to pick three exemplars using Algo-
rithms 1 and 2, respectively. Selected exemplars are shown in Fig. 17.1a, where the
four-dimensional data set has been projected into two dimensions for visualization
using Principal Component Analysis (PCA). Despite unbalanced class sizes, when
optimized individually, Jdiv seeks to select exemplars from diverse classes but tends
to pick them from the class boundaries, while unbalanced class sizes cause Jrep to
pick two exemplars from the dominant cluster. Algorithm 3 iteratively optimizes for
both these cost functions and picks an exemplar from every class. These exemplars
are closer to the centroid of the individual classes.

Figure 17.1b shows the convergence of the algorithm for this simple data set
and compares it with the case when no annealing is applied (Fig. 17.1c). Jrep and
Jdiv plots are shown as the iterations of Algorithm 3 progresses. When annealing
is applied, the tolerance value (tol) is increased by 0:05 in each iteration. It can
be noted that in this case the algorithm converges to a steady state in 7 iterations
(tol D 1:35). If no annealing is applied, the algorithm does not converge.

Shape Sampling/Summarization We conducted a real shape summarization
experiment on the MPEG data set [31]. This dataset has 70 shape classes with
20 shapes per class. For our experiments, we created a smaller data set of ten
shape classes with ten shapes per class. Figure 17.2a shows the shapes used in
our experiments. We use an affine-invariant representation of shapes based on
landmarks. Shape boundaries are uniformly sampled to obtain m landmark points.
These points are concatenated in a matrix to obtain the landmark matrix L 2 R

m�2.
Left singular vectors (Um�2), obtained by the singular value decomposition of
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Fig. 17.2 (a) 10 classes from MPEG data set with ten shapes per class. Comparison of ten
exemplars selected by (b) Jrep, (c) Jdiv, and (d) proposed approach. Jrep picks two exemplars each
from two classes (“apple” and “flower”) and misses “bell” and “chopper” classes. Jdiv picks one
from eight different classes, two exemplars from class “car,” and none from class “bell.” It can be
observed that exemplars chosen by Jdiv for classes “glass,” “heart,” “flower” and “apple” tend to be
unusual members of the class. It also picks up the flipped car, while the proposed approach picks
one representative exemplars from each class as desired

matrix L D U˙VT , give the affine-invariant representation of shapes [3]. This
affine shape space U of m landmark points is a two-dimensional subspace of
R

m. These p-dimensional subspaces in R
m constitute the Grassmann manifold Gm;p.

Details of the algorithms for the computation of exponential and inverse exponential
maps on Gm;p can be found in [21].

Cardinality of the subset in the experiment was set to ten. As the number of
shape classes is also ten, one would ideally seek one exemplar from each class.
Algorithms 1 and 2 were first individually optimized to select the optimal subset.
Algorithm 1 was applied intrinsically on the manifold with multiple initializations.
Figure 17.2b shows the output with the least cost among these initializations. For
Algorithm 2, data points were projected on the tangent space at the mean using the
inverse exponential map and the selected subset is shown in Fig. 17.2c. Individual
optimization of Jrep results in one exemplar each from six classes, two each from two
classes (“apple” and “flower”) and misses two classes (“bell” and “chopper”), while,
individual optimization of Jdiv alone picks one each from eight classes, two from
the class “car,” and none from the class “bell.” It can be observed that exemplars
chosen by Jdiv for classes “glass,” “heart,” “flower,” and “apple” tend to be unusual
members of the class. It also picks up the flipped car. Optimizing for both Jdiv

and Jrep using Algorithm 3 picks one “representative” exemplar from each class
as shown in Fig. 17.2d.
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Diversely Sampling Human Actions To further demonstrate the generalization
of précis to infinite-dimensional manifolds, we look at diversely sampling human
actions from the UMD actions data set [46] which contains ten unique actions
such as bend, jog, squat, throw, etc. repeated ten times by the same actor. Due to a
relatively static background, we are able to extract the shape silhouette of the human,
following which we sample the silhouettes uniformly to represent each silhouette as
a point on the Grassmann manifold as described earlier. The smooth nature of human
actions allows us to model them as trajectories on the Grassmann manifold. Finally,
we choose exemplars, actions using Algorithm 4.

To show the effectiveness of précis, we constructed a collection of actions that
were chosen such that different classes had significantly different populations, a
distribution of the action classes is shown in Fig. 17.3a. As our baseline, we first
sampled this data set using K-medoids as shown in Fig. 17.3c. As expected, classes

Algorithm 4 Functional manifold précis
Input:˛1.t/; ˛2.t/ : : : ˛N.t/
Output: K Exemplar Sequences
Compute Karcher mean [41] �.t/, which also aligns Q̨1.t/; Q̨2.t/ : : : Q̨N.t/.
for i Œ1 : : :N� do

for t Œ1 : : :T� do
Compute shooting vectors v.i; t/ 2 T�.t/.M/ as v.i; t/ D exp�1

�.t/. Q̨i.t//
end for
Define V.i/ D Œv.i; 1/T v.i; 2/T : : : v.i;T/T �T

end for
Pass V to algorithm 2 to maximize diversity and to algorithm 1 to minimize representational
error.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6a

b c

Fig. 17.3 Sampling effectively from a skewed collection of sequences, particularly when the
proportion of classes is skewed. Our proposed Précis algorithm is able to sample uniformly from
all classes as compared to K-medoids which picks more samples (marked) from classes that have
a higher representation which are actions #1,#2, and #7 here. (a) A dataset with skewed class
proportions. (b) Row-wise: actions sampled by functional-Précis. (c) Row-wise: centers obtained
using functional K-medoids
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which have a higher population are overrepresented in the chosen samples. On the
other hand, précis samples these collection of actions without getting biased by the
distribution of the classes as shown in Fig. 17.3b.

Effect of Parameters and Initialization In our experiments, the effect of tolerance
steps (ı) for smaller values (< 0:1) has very minimal effect. After a few attempts,
we fixed this value to 0:05 for all our experiments. In the first iteration, we start
with tolD 1. With this value, Algorithm 2 accepts any swap that increases Jdiv. This
makes output of Algorithm 2 after first iteration almost insensitive to initialization.
While, in the later iterations, swaps are accepted only if they increase the value of
Jdiv significantly and hence input to Algorithm 2 becomes more important with the
increase in tol.

17.3 Fast Nearest Neighbor on Analytic Manifolds

Let us now switch gears and focus on the problem of searching for the nearest
neighbor over these Geometric spaces. Nearest-Neighbor search is a widely used
technique in pattern recognition and computer vision. It is a lazy learning technique
where all the training points are stored, and during testing, distance of the query
point from each training point is evaluated to identify the nearest training point.
This causes exhaustive NN search to grow linearly with the number of training
data points. This becomes significantly more computationally intense when distance
computation between every pair of points is intensive. For instance, consider
the Grassmann manifold .Gm;p/ which is the space of p-dimensional subspaces
embedded in R

m. Geodesic computation between a pair of points on Gm;p requires
O.p3/ time. This intensive nature of NN has led to interest in developing fast NN
search techniques both for Euclidean and non-Euclidean spaces.

In the relatively better understood domain of searching in Euclidean spaces,
numerous techniques that drastically reduce the search time (both algorithms and
structures) have been developed over the last couple of decades. These techniques
have been studied in many different fields and can be broadly categorized as
(a) exact and (b) approximate NN search techniques. Some recent surveys of
these techniques can be found in [9, 27, 35]. Another notable survey, especially
from computer vision perspective, is by Kumar et al. [30] which provides a
comprehensive comparison of exact search methods applied to patch-based image
searching.

Exact methods usually rely on space partitioning. Examples of this approach
include quad-trees, k � d trees, and ball trees. The resulting data structure is
represented as a tree with the root node being the entire data set, child nodes
representing partitions and leaf nodes representing individual data points. PCA trees
and k � d trees are “projective trees” as they split points based on their projection
into some lower-dimensional space. These techniques require the coordinates of the
points to split data hierarchically. This restricts the application of these techniques
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in metric spaces where only a metric is defined on the space. Another disadvantage
with k � d trees is that for dimensions larger than ten, the algorithm becomes
very inefficient and tends towards a linear scan algorithm. PCA trees overcome the
restriction of k� d trees by splitting data points such that the boundary is aligned to
one of the axes. So, now it can find the variance of the data and split according to
the hyperplane that splits the maximum variance.

Approximate methods in Euclidean spaces became popular when locality sensi-
tive hashing (LSH) algorithms [23, 28] were introduced. The original LSH algorithm
was proposed by Gionis et al. [23] which was tuned for “Hamming” spaces, i.e.,
spaces where the underlying distance function is the Hamming distance. This was
extended to Euclidean spaces in [14]. A good introduction and survey of these
methods can be found in [12]. The core idea of LSH techniques is to efficiently
construct binary codes for high-dimensional points while ensuring that points that
are nearby in high-dimensional space are close even in the binary code space. Brief
overview of LSH technique is discussed later in section “Hashing”.

All these methods rely heavily on the assumption that points are in R
n with the

underlying metric being the `2 norm. These methods can also be applied directly
to non-Euclidean data points if the manifold of interest can somehow be embedded
into the Euclidean space. In this part of the chapter, we discuss that it is important
to consider the Riemannian geometry of manifolds to more systematically address
this problem. This is because there exist several analytic manifolds which cannot in
any easy way be embedded into an ambient Euclidean space. For instance, the space
of linear subspaces or the Grassmann manifold is best treated as a quotient space of
the orthogonal group and there is no easy natural embedding into an ambient vector
space [38].

Nearest-neighbor search in metric spaces when only an underlying metric is
known has also been studied in literature. Several NN algorithms have been devised
for indexing data with arbitrary distance functions such as vantage point trees,
metric trees, and multi-vantage point trees. An excellent survey of these methods
can be found in [9]. These are exact methods of searching in metric spaces.
Unfortunately, tree-based indexing methods such as these often suffer from the
curse of dimensionality. For large dimensions the performance is not significantly
different from simple brute-force search. Approximate search methods in arbitrary
metric spaces have also been proposed [1]. Indyk and Motwani [28] provided
algorithms for approximate searches when the underlying distance function is the
`1 norm. In some cases the underlying non-Euclidean distance measure can be
replaced with another which can be efficiently computed. Several methods have
been proposed for embedding arbitrary spaces into Euclidean or pseudo-Euclidean
space [4, 47]. Embedding methods substitute a fast approximate distance for the
original distance and hence are approximate search methods.

We note that fast NN retrieval for manifold data points is still an emerging area
and hence the literature on it is scarce. The work of [13] shows how to adapt
the standard k-d tree algorithm to low-dimensional manifolds whose structure is
unknown. The work on approximate nearest subspace search [2] is an example of
indexing on non-Euclidean manifolds. However, this work is limited in applicability
to subspaces; moreover, it does not exploit the Riemannian geometric interpretation
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of subspaces. Recently, there has been two works addressing this problem of
adapting NN techniques from vector space to non-Euclidean manifolds. Turaga
and Chellappa [44] proposed an approximate NN technique via embedding of
data into the tangent space at a pole using the log-Euclidean mapping. Similarly,
Chaudhry and Ivanov [8] used log-Euclidean embedding to develop a spectral
hashing method. However, both these techniques are based on Euclidean embedding
of the Riemannian manifold through tangent spaces.

We overcome this limitation by proposing an approximate NN technique that
does not require the Euclidean embedding of the data. Before diving into the
approximate NN search, it is worth noting that the generalized clustering technique
discussed in the first half of the chapter can be easily extended to a hierarchical
clustering technique. This immediately provides us with an exact NN search
technique. However, the complexity of this technique would be still high. But, if
one would be willing to accept a small reduction in the accuracy for a large gain
in speed, efficient approximate NN techniques can be developed on non-Euclidean
manifolds. Towards this, we discuss a Geodesic Hashing technique which employs
intrinsic geodesic-based functions to hash the training data set.

17.3.1 Intrinsic Approximate Nearest-Neighbor Search

In this section, we introduce Geodesic Hashing, an intrinsic approach for approxi-
mate NN search on manifolds. But before that, we review the hashing technique and
the property of Locality Sensitive Hashing (LSH) method.

Hashing

Hashing was originally studied in the field of cryptography and text databases
which involved entities such as passwords, names, addresses, etc. where finding
exact matches was the key requirement. Hashing image and video data brought
additional challenges since no two semantically related images or videos are exactly
the same. This brought about a new class of techniques—LSH [23]—that could
answer approximate NN queries in a fast manner.

A good introduction and survey of LSH can be found in [12]. Here, we briefly
review the basic concepts of Euclidean LSH. LSH attempts to solve a problem called
the .r; 	/-neighbor problem. The problem is described as follows: Given a database
of points X D fxig in R

n and a query q, if there exists a point x 2 X such that
d.x; q/ � r, then with high probability, a point x0 2 X is retrieved such that d.x0; q/ �
.1C	/r. LSH solves this problem by constructing a family of hash functions H over
X called .r1; r2; p1; p2/ locality sensitive, if for any u; v 2 X

d.u; v/ � r1 ) Prh2H.h.u/ D h.v// 	 p1 (17.9)
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d.u; v/ 	 r2 ) Prh2H.h.u/ D h.v// � p2 (17.10)

A .r1; r2; p1; p2/ locality-sensitive family of hashing function solves the .r; 	/-
neighbor problem by choosing r1 D r and r2 D .1 C 	/r. Popular choices of h
include random projections, i.e., h.v/ D sgn.vTr/ where r is a randomly chosen
unit vector and sgn is the signum function. In this case, h is binary valued taking
values in fC1;�1g. A generalization of this is termed random projections using
“p-stable” distributions [14], where

h.v/ D
�
vTrC b

w

�

where r is a randomly chosen direction whose entries are chosen independently from
a stable distribution and b is a random number chosen between Œ0;w�. In this case,
the hash function takes on integer values. A k-bit hash is constructed by appending
k randomly chosen hash functions H.x/ D Œh1.x/; h2.x/; : : : ; hk.x/�. Thus, H 2 Hk.
Then, L hash tables are constructed by randomly choosing H1;H2 : : :HL 2 Hk.
All the training examples are hashed into the L hash tables. For a query point q,
an exhaustive search is carried out among the examples in the union of the L hash
buckets indexed by q. Appropriate choices of k and L ensure that the algorithm
succeeds in finding a .r; 	/-NN of the query q with a high probability.

Geodesic Hashing

We now discuss Geodesic Hashing (GH) which utilizes geodesics on the manifold
to hash data lying on a non-Euclidean manifold. Let M represent the manifold,
and X D fx1; x2; : : : xng 2 M be the database of n points. The first step in
our formulation is to define a family H of hash functions over M which is
.r1; r2; p1; p2/- sensitive. We obtain this by seeking the generalization of the binary-
valued random projection (h.v/ D sgn.vTr/) hashing function to the Riemannian
manifold.

In Euclidean space, this family of hash function is created by randomly picking
a projection direction r. Binary hash value for a data point v is then obtained by
looking at the orientation of v w.r.t. r. In Euclidean geometry, the notion of “origin”
is very well defined. Hence, hashing family is defined well by selecting a set of
directions. On the other hand, non-Euclidean manifolds do not have a point that
naturally serves as the “origin” for the manifold. One could attempt to define an
analog of the origin for manifolds by computing the intrinsic mean of the data
and use it as a “pole” to project data points on the tangent space of the pole.
This approach was recently taken by [44]. As the tangent space is Euclidean, LSH
techniques can directly be applied on the projected data. This approximation works
reasonably well if the data spread is small. But, as the data-spread increases, the
approximation increasingly becomes crude. In order to overcome this, Chaudhry
and Ivanov [8] proposed computing poles for individual clusters. Individual data
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points are then hashed in the tangent space of the closest pole. This reduces the error
in data approximation. However, this method relies heavily on finding the nearest
pole and incurs large errors for points near the boundary of two clusters. Moreover,
the choice of number of clusters could be critical to the performance of the hashing
technique.

Attempting to define one or few poles which serve as the analog of “origin”
for non-Euclidean manifolds followed by Euclidean embedding of data leads to
crude approximation of data. We can better generalize hashing for manifolds by
looking at the configuration of data points w.r.t. a randomly chosen geodesic on
the manifold. Geodesics on manifolds are analogs of “lines” in Euclidean spaces,
and computing a query point’s orientation w.r.t. the geodesic does not require us to
make any approximation. Consequently, this helps us to get rid of the reliance of
LSH techniques on the artificially created notion of origin. This, in turn, leads to a
better way of hashing antipodal points.

In order to formulate this, let ga;b represent a geodesic specified by the pair of
points (xa, xb) s.t. both xa, xb 2M. Now, given a query point q 2M, one can look
at the projection of q on ga;b. In Euclidean space, projection of a point on a vector
is a relatively cheaper operation. But, in Riemannian manifolds, projecting a query
point on a geodesic is a costly optimization problem [18]. Hence, choosing any
projection-based functions would significantly increase the query time. So, instead
we can look at the orientation of the point q w.r.t. the geodesic ga;b. Specifically, this
is obtained by defining a binary function h.xa;xb/.q/ WM! f�1;C1g such that

h.xa;xb/.q/ D sgn.Logxa
.xb/

TLogxa
.q// (17.11)

So, given a set of geodesics G, this provides us a family of hashing functions

HGH.G/ D fh.xa;xb/ j ga;b 2 Gg (17.12)

It can be noted here that the family of functions defined using Eq. (17.11) is a very
rich family and is specified completely by G. Having defined the family of hash
functions, we can append k-random binary hash functions h sampled from HGH.G/

to define a k-bit hash function. Then, L hash tables are constructed by randomly
choosing H1;H2; : : : ;HL 2 Hk. This way, we obtain an intrinsic indexing and
retrieval method on the manifold in the LSH framework.

Now, in order to verify the above-mentioned intuition, we synthetically generated
a dataset on G9;3. We adopted the procedure described in [10] to generate this dataset
which has 4 randomly generated clusters with 200 points each. We empirically
computed the probability of collision between two points .u; v/

Prh2H
�
h.u/ D h.v/

�

Fig. 17.4a shows the probability of collision with increase in the geodesic distance
between the points averaged over 5 such randomly generated data sets. We
computed this for both tangent space LSH [44] (blue curve) and Geodesic Hashing
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Fig. 17.4 (a) Comparison of probability of collision for tangent space LSH [44] with that for
geodesic hashing. It can be noted that Geodesic hashing has the desirable properties of (i) higher
probability of collision when the distance is smaller and (ii) smaller probability of collision when
the distance is large. (b) LSH property evaluation. Curves in blue show the empirical evaluation of
LSH properties for geodesic hashing. The blue curve marked as “pCollision” shows the monotonic
decrease in probability of collision with increase in distance. Similarly, p1 and p2 values, as defined
in Eqs. (17.9)–(17.10), are shown with radius values .r1; r2/, respectively on the x-axis. The red
curves show the improvement in collision probabilities along with improvements in p1 and p2 by
optimally selecting the set of geodesics
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(red curve). It can be noted that tangent space LSH due to approximate embedding of
data sees a deterioration in the collision probability even for points that are nearby.

Satisfying LSH Property In the previous section, given a set of geodesics G from
the manifold M, we created a family HGH.G/ of hashing functions. Now, we verify
if the proposed family satisfies the LSH properties which requires that HGH.G/

should satisfy Eqs. (17.9)–(17.10) over M. For this, similar to previous section,
we generated a synthetic data set on G9;3 and empirically evaluated the probability
of collision for a randomly chosen set of geodesics G. The collision probability,
thus computed, has been averaged over 20 random selection of G and is shown
in Fig. 17.4b. This figure shows that the probability of collision monotonically
decreases with increase in pairwise distance thus satisfying an important LSH
property. Moreover, as defined in Eq. (17.9), we computed the probability of
collision p1 for points within a ball of radius r1. Figure 17.4b shows the variation of
p1 with the increasing radius r1. Similarly, this figure also shows the variation of p2
with r2 defined in Eq. (17.10). It can be seen here that for any choice of .r1; r2/ such
that r2 > r1, corresponding collision probabilities satisfy p1 > p2 and p1 > 0:5,
hence guaranteeing the usefulness of this LSH family [23].

17.3.2 Reducing the Hashing Cost

When compared to the exact NN techniques, LSH techniques require us to compute
distance of a query point with a very small number of data points. Hence, in
Euclidean space, where the pairwise distance computation is relatively cheaper, it
suffices to have defined a family of hashing functions. However, as discussed earlier
in the case of non-Euclidean manifolds, geodesic distance computations are costly
operations. This implies that a further reduction in the average number of points
that collide with a query point for a hashing family HGH.G/ is required. This can
be achieved by optimally selecting the set of geodesics G, with an eventual goal to
significantly reduce the query time. Although optimal selection of G requires more
processing during training, it can significantly reduce the query time.

This requires us to address various criteria that the set of geodesics should
meet w.r.t. the statistics of the database X, in order to allow fewer collisions while
retaining high accuracy. On an individual level, a good geodesic should satisfy the
following criteria:

1. The binary sequence generated by a geodesic for X should have equal probability
of ones and zeros.

2. Geodesics should have large value of p1 and smaller value of p2.

Moreover, the group of geodesics G should satisfy an additional criterion that the
binary sequence generated by a geodesic should be independent of that generated
by another geodesic. Weiss et al. [48] presented a similar discussion from the
perspective of a good code. Formally, these criteria can be written as the following:
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Let us denote the probability of collision of nearby points by

Cr.q; p/ D Prh2HGH.G/ Œh.q/ D h.p/� when dg.q; p/ � r

Then, the optimization problem can be written as

max
G

Cr.q; p/

s.t. if ga;b 2 G, then

Prq2XŒh.xa;xb/.q/ D 1� D 0:5

and for ga0;b0 2 G

Prq2XŒh.xa;xb/.q/ D h.xa0 ;xb0 /.q/� D 0:5

Optimization An optimal selection of G, with jGj D � 	 kL, that satisfies the
above criteria can be achieved by the following procedure: The set of geodesics on
the manifold M is very large. So, in order to reduce the search space, we restrict
ourselves to the geodesics formed by randomly selecting a pair of points from X.
Let GX represent this set of geodesics. It should be noted here that even after this
reduction in search space, the number of possible geodesics

�jGXjDn
2

�
is still very

large. So, we randomly select a set of geodesics GR 
 GX with jGRj D m >> � .
This is followed by evaluating criterion 1 for individual geodesics over a smaller
uniformly sampled subset X 
 X. This provides us GE 
 GR, the set of geodesics
with equal probabilities of ones and zeros. For the set GE, p1 on X is computed. We
then greedily populate the set GO with geodesics of high p1 values on the condition
that they are not correlated to any geodesic ga;b already in GO.

Figure 17.4b shows the improvement in the probability of collision w.r.t.
distance, and p1 w.r.t. r1, and p2 w.r.t. r2. As expected, the optimized family
of geodesics increases the collision probability for nearby points and reduces
it for far away points. In other words, points close to a query point will have
better probability of colliding and points far away will have lesser probability of
colliding. This signifies that for the same accuracy, the number of colliding points is
reduced.

17.4 Conclusion

In this chapter, we addressed the problems of searching and summarizing large
data sets which has an underlying non-Euclidean geometry to it. We utilized the
geometric structure of the manifold to formulate the notion of picking exemplars
which minimize the representational error while maximizing the diversity of
exemplars. An iterative alternation optimization technique based on annealing has
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been discussed. We demonstrated the application of the subset selection in the
sampling of shapes and human actions. We then turned our attention towards the
nearest-neighbor search on the non-Euclidean manifolds. We discussed an intrinsic
geodesic hashing technique for the problem of approximate NN search on non-
Euclidean manifolds. This technique utilizes the orientation of a data point w.r.t.
a set of geodesics to hash the data. A technique is devised to optimally select the set
of geodesics, which in turn defines the hashing family.
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