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Abstract Metabolomics refers to the study of the whole set of metabolites in a bio-
logical sample that constitute a reflection of cellular functions. Cancer cells display 
significantly altered cellular processes, and thus metabolites, compared to normal 
cells. This can be detected in a number of ways, and is already exploited to a limited 
extent in the diagnosis of cancer. The host response to the tumor is perhaps equally 
important, as it either rejects or permits tumor growth, and this may also potentially 
result in a measurable metabolite signature. Analysis then of entire pools of metabo-
lites may yield critical information about both tumor presence and host response, 
and represent a possible novel collective biomarker for cancer behaviour that could 
allow prediction of relapse, response to therapy, or progression. Isolating meaning-
ful differences in the sea of metabolites and within the context of significant meta-
bolic heterogeneity both within and between patients remains a great challenge. 
This chapter will review current metabolomic research in breast cancer, with a focus 
on efforts to translate the technology into clinical practice.
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Introduction: What is Metabolomics?

At its most basic level, metabolomics refers to the study of some or all of the me-
tabolites in a biological sample, be it tissue, cells, serum, or other bodily fluid [1]. 
Whilst not a new science, advances in detection methods, statistical analysis and 
computing power have led to renewed interest in this area and its potential in the 
field of cancer. It forms a distinct branch of the ‘omics’ sciences, along with genom-
ics, proteomics or transcriptomics. Genomic analysis identifies the genes present, 
including mutations of functional genes. Yet only a subset will actually be expressed 
[2], meaning that the remainder may be of limited or no clinical significance. Fur-
thermore, it will not identify the normal genes that are being overexpressed by other 
processes. The transcriptome, as defined by the measurable RNA present, repre-
sents then the output of the genome, while the proteins produced (the proteome) 
are the most relevant product, being a step closer again to clinical effect. However, 
the interplay between these proteins, their relative enzymatic activity and the direct 
clinical effects can still vary. For example, the presence of altered PI3K signalling 
molecules from a PIK3CA gene mutation does not necessarily result in increased 
downstream signalling of the AKT mTOR pathway, and can depend on PTEN con-
centration [3, 4]. The metabolome, by contrast, represents the step ‘after the fact.’ 
It is the collection of molecules that exists as a result of cellular processes, which 
are themselves a result of the enzymatic processes catalysed by products of the ge-
nome. It is thus direct evidence of what actually exists or existed, ie the phenotype, 
as opposed to what could exist, and offers a complementary and multidimensional 
picture of both the tumor and the host.

All cellular processes produce metabolites, whether as a specific function (he-
patocytes) or as products of normal cellular activities such as maintenance of ho-
meostasis, replication, and activation of signalling pathways. These in turn are also 
influenced by many factors including diet, toxins, diseases and drugs [5]. These 
metabolites therefore can represent any number of molecular classes, from small 
molecules or amino acids, to lipids or carbohydrates, or any of their breakdown 
products [6]. Collectively they are referred to as the metabolome, which is repre-
sentative of all the processes occurring in a cell, an organ or the entire body at a 
particular time, and which necessarily varies over time according to the multitude 
of influences on the body, both normal and pathological.

Metabolites can be detected in any biological sample, ranging from blood (serum 
or plasma) to tissue, urine, sweat, tears, saliva, or even exhaled breath condensate 
[7, 8]. This represents a significant clinical advantage, as acquiring samples such 
as serum is straightforward yet may provide significant tumor-specific information, 
potentially representing a liquid biopsy and sparing the patient a more invasive pro-
cedure. The caveat to this is the sensitivity of the samples to incorrect handling—the 
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metabolic profile may change after sampling depending on a number of factors 
including temperature and changes in pH [9]—as well as the modulating effect of a 
number of variables discussed later.

Cancer Metabolism

In cancer, a number of metabolic processes are altered, either within the cancer cell, 
the tumor milieu, or in other parts of the body as a result of the cancer. Where this 
results in a measurable change in metabolites, such changes represent a potential 
biomarker of cancer presence or activity. Significantly altered metabolic pathways 
within cancer cells are well recognised. For example, many cancer cells employ 
aerobic glycolysis in place of the usual mitochondrial oxidative phosphorylation 
to generate adenosine triphosphate (ATP), a phenomenon known as the “Warburg 
effect” which is believed to confer a survival advantage in hypoxic conditions [10, 
11]. This feature of malignant cells is already exploited in cancer imaging: fluoro-
deoxyglucose (FDG)-positron emission tomography (PET) relies on the enhanced 
uptake of radio-labelled glucose by cancer cells to define tumors on imaging stud-
ies. Other common metabolic shifts in cancer result in changes in choline and fatty 
acid metabolism [12]. Choline is typically absent or at very low concentrations in 
normal tissue, and found in higher concentrations in tumor. Magnetic resonance 
imaging (MRI) can be adapted to include spectroscopic interrogation of parts of 
the image down to a single voxel to detect choline levels; areas of high choline 
concentration are very likely to represent presence of malignancy. This is currently 
employed in brain imaging of gliomas, and screening for early breast cancer in 
high-risk populations.

Whilst metabolomic studies are used to detect individual metabolites that might 
serve as predictive biomarkers, this is not the only application. Furthermore, al-
though several metabolites have been identified that correlate with the progression 
and development of breast cancer, this has not resulted in any significant clini-
cal gains. Current metabolomics research aims to take this considerably further by 
looking at groups of metabolites or indeed the metabolome as a whole. These col-
lections of data will contain patterns that then represent the metabolic signature of 
the sample, which can be compared to the patterns of other samples without the 
need to identify any of the individual molecules. This has the advantage of incor-
porating known and unknown metabolites of all the upstream events: gene expres-
sion and activated cellular pathways from the tumor; reactive and immunological 
responses from the host; as well as integrated signalling pathway cross talk and 
environmental influences, by far a more comprehensive picture, albeit embedded in 
a vast sea of other metabolite data.
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Fig. 1   NMR MAS spectrum of ovarian cancer tissue. Each of the numbered spikes represents 
a seperate metabolite, with the relative heights (signal strength) related to concentration. Fourty 
have been identified here, but a sample may contain hundreds. (Adapted from Ben Sellem et al., 
“Metabolomic Characterization of Ovarian Epithelial Carcinomas by HRMAS-NMR Spectros-
copy,” Journal of Oncology, vol. 2011, Article ID 174019, 9 pages, 2011. doi:10.1155/2011/174019. 
Permission for reproduction available under the Creative Commons Attribution License 3.0 (http://
creativecommons.org/licenses/by/3.0/)

 

Metabolomic Techniques

Two standard techniques for metabolomic analysis are nuclear magnetic resonance 
(NMR) spectroscopy and mass spectrometry (MS). MS has higher sensitivity than 
NMR, and requires lower amounts of samples.

NMR is faster, less expensive and more reproducible [13]. Another advantage 
of NMR is that the sample requires only a minimal handling prior to the analysis. 
Because NMR does not damage analytes, it is particularly useful for studying me-
tabolite levels in intact tissues, such as tumor biopsy samples, which can then be 
used in further experiments. In recent years, the development of high resolution 1H 
magic angle spinning (MAS) made the acquisition of data on small slices of tissue 
without any treatment feasible: with the rapid spinning of the sample at the magic 
angle of 54.7°, the line broadening effects and the associated loss of information are 
reduced [14–16], resulting in high resolution spectra (Fig. 1).
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Both techniques have their role in metabolomic research, depending on the aim 
of the investigation. In particular NMR can be used for rapid, untargeted screen-
ing; then, once metabolic pathways of interest are discovered, MS can be used in a 
targeted way to detect specific metabolites that could not be revealed in the NMR 
spectra due to the low concentration.

Analysis

Metabolomic data are high-dimensional in nature. As many as several hundred me-
tabolite (relative) concentrations may be measured by means of NMR or MS plat-
forms, usually on a limited number of samples. Biological information is retrieved 
from these data by means of univariate and multivariate statistical methods [17, 
18]. Multivariate methods use the relationships among the variables, in contrast to 
univariate methods that focus solely on the mean and variance of a single variable. 
Commonly used univariate methods are t-test and analysis of variance [19]. Mul-
tivariate methods constitute a broad category that can be further divided into two 
types of data analysis: supervised and unsupervised.

Unsupervised analysis looks at the measured data on their own, to try to identify 
patterns. As such, the analysis is unbiased to the results, and is more open to dis-
covery of novel metabolites or patterns of metabolite presence or concentration. It 
can be used to look for inherent patterns or intrinsic clustering that occurs within 
the samples, without knowing any outcome data, and may be more appropriate in 
exploratory experiments. On the other hand, it often involves extremely large quan-
tities of data, requiring complicated mining methods to extract meaningful peaks or 
patterns. Once patterns have been established, they can be tested in a sample with 
known characteristic or outcomes, to see if the patterns offer genuine discriminat-
ing power, eg for diagnosis, prognosis, or prediction of response to treatment. Some 
examples are principal component analysis (PCA) [20], and the recently published 
KODAMA [21].

Supervised analysis involves obtaining data referenced to a known established 
control. This might be any number of previously identified metabolites. Statistical 
methods like multiple regression [22] or partial least squares discriminant analy-
sis (PLS-DA) [23] and machine-learning techniques like artificial neural networks 
[24], random forest [25] and support vector machines [26] are used as supervised 
techniques in metabolomics [17, 27, 28].

One concern is that using established prognosis calculators to supervise and thus 
define the profile may risk developing yet another calculator of similar power, and 
thus no enhanced utility. Current prognostication based on tumor grade, size, bio-
marker status and nodal status, such as Adjuvant! Online, or even gene expression 
profiling, still misclassifies a significant proportion of patients, and it is for this 
very reason that improved techniques are being sought. Thus, unsupervised analysis 
must be the initial technique, rather than supervising with established risk factors. 
Then, to validate the result, the gold standard is to design large cohort prospective 
studies.

Metabolomics in Breast Cancer: Current Status and Perspectives
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Fig. 2 The metabolome consists of metabolites from all cellular process, which is influenced 
by intrinsic and extrinsic factors. Metabolites produced by cancer cells are superimposed on this 
landscape

 

The science of measuring and interpreting correlations in metobolomics to infer 
significance and true inter-relatedness is in itself an evolving science [29]. As more 
metabolomic data are obtained and understanding of pathways is improved, these 
can be shared on public networks to try to offer a comprehensive picture of human 
metabolism [30, 31]. The Human Metabolome Database, for example, is one of 
several databases, and lists approximately 7900 metabolites [32].

Challenges

The metabolic profile of an individual is not static, but rather in constant flux ac-
cording to the constant variation in cellular process in response to a number of 
factors, including normal homeostasis, exercise, diurnal rhythm, diet, hormones, 
and drugs [13]. This introduces many variables that can be difficult to control for. 
For example, certain metabolites can vary depending on how recently a person ate, 
or what time they took their regular medications. This creates increased noise in 
data acquisition, rendering these difficult to interpret. Furthermore, if these data 
are controlled carefully in experimental stage, the reproducibility in the real world 
may be difficult, where patients may be less likely to cooperate with dietary or other 
lifestyle factors [33, 34].

The metabolome of an individual [35, 36] will also vary significantly from that 
of another, regardless of the presence or not of malignant disease [5]. This is be-
cause it can reflect any number of small differences inherent, including race, sex, 
age, comorbidities, gut microflora, as well as factors mentioned above [37].

Thus we see that there can be both intra-patient and inter-patient variability 
(Fig. 2). Any putative biomarker, be it a single metabolite or a metabolic signature, 
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must be reliably discernible through this background variation if it is to become a 
useful and robust tool.

No standard reference exists yet for metabolomics, due to the great inherent vari-
ability from one patient population to the next, and the complex variety of chemo-
metric techniques that can be employed in analysis. As such, each new experiment in 
metabolomics that looks to differentiate two groups first requires a training set to es-
tablish the specific patterns and levels that are associated with the outcome of inter-
est, such as disease relapse following adjuvant chemotherapy. Once this is achieved, 
it must then be tested against the remaining data, or against multiple subsets of the 
data, to validate these patterns as having genuine correlation with the outcome of in-
terest. Examples of this in breast cancer research will be detailed in the next section.

Metabolomics in Breast Cancer

In breast cancer, as in other tumor streams, metobolomic research remains in the 
experimental stage, with as yet little translation into clinical application. A number 
of potential applications have been and continue to be explored (Table 1).

Metabolites as Biomarkers

Metabolomic analyses have detected a number of potential biomarkers which could 
proceed to further validation. An example is the ratio of glutamine to glutamate 
in tumor tissue, where it has been shown to correlate with estrogen receptor (ER) 
status, tumor grade and overall survival [38]. This illustrates how a broader analysis 
allowed appreciation of the importance of examining more than one metabolite at 
once. Glutamine or glutamate levels individually bear only rough and unreliable 
correlation with cancer presence, yet this study demonstrates that their levels rela-
tive to one another become more informative. Whether this will lead to enhanced 
predictive or prognostic ability is yet to be assessed, but the hypothesis-generating 
ability is in itself valuable.

Prediction of Stage

Studies of NMR spectra of fine needle aspirates of suspected early breast cancer 
showed that malignant tissue, nodal involvement and tumor vascular invasion could 

Novel metabolite discovery
Determination of prognostic factors
Prediction of treatment effect or toxicity
Early diagnosis

Table 1  Applications of 
metabolomics in breast 
cancer

Metabolomics in Breast Cancer: Current Status and Perspectives
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be predicted with high accuracy [39], and could be used to predict grade, ER and 
progesterone receptor (PgR) status, or axillary spread [40, 41]. Larger numbers 
are needed to validate these results, and unless the profiles can be shown to of-
fer superior prognostication to current methods, then clinical utility is debatable. 
 Nevertheless, it is evidence that the metabolic signature tells of the aggressiveness 
of the phenotype.

Prediction of Treatment Effect

Prediction of response to neoadjuvant chemotherapy using metabolomic data has 
been achieved using combined MS and NMR data [42]. Levels of four metabolites, 
threonine, glutamine, isoleucine and linolenic acid, were identified that correlated 
strongly with pathologic complete response (pCR) following neoadjuvant chemo-
therapy. What remains unclear, however, are the metabolic pathways implicated in 
the changing metabolite levels, and their roles in cancer development and treatment 
response. Furthermore, the predictive benefit needs to be compared to that already 
offered by clinicopathological features to ensure it increases prediction power and 
confers a clinical advantage.

Early Detection of Recurrence

Compared to standard approaches, recurrence can be predicted earlier with metabo-
lomics, shown in a study by Asiago et al. [43]. The investigators combined both 
NMR and MS techniques to analyze stored patient sera from resected early breast 
cancer patients. Multiple samples over time were available for each patient. A num-
ber of metabolites were found to be strongly associated with relapse, and a model 
was developed that predicted for relapse with sensitivity of 86 % and a specificity of 
84 %. Compared to detection by standard clinical means, the profile was able to de-
tect recurrence 13 months earlier on average in 55 % of patients. Whilst to date there 
is no proven clinical utility for early detection of metastatic disease, early diagnosis 
of local recurrence is associated with a survival advantage [44], and these results 
are exciting. This could form a basis for further studies into the benefits of early 
initiation of treatment for relapsed disease. It could also allow early recognition of 
failure of adjuvant endocrine therapy, preventing continuation of futile treatment or 
indicating new intervention to counteract resistance.

Predicting Recurrence Risk in Early Breast Cancer

Several studies have been performed to test whether metabolomic profiles have any 
prognostic power in early breast cancer, in terms of predicting relapse. It is worth 
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going into the details of some of these trials to illustrate the techniques required for 
metabolomic analysis, the limitations of the studies, and the potential benefits.

In the field of early breast cancer, the improvement in prognostication remains 
a priority. This is because current practice favors over-treatment of women with 
systemic therapy due to an inability to identify and isolate those for whom adjuvant 
treatment is more likely to be beneficial. We know from early studies that even in 
high-risk node-positive disease, a subset of these women will be cured with local 
therapy alone. Seminal studies performed by the Milan group [45] comparing the 
CMF combination (cyclophosphamide, methotrexate, 5-fluorouracil) to no adju-
vant therapy in women with node-positive early breast cancer, with over 25 years 
clinical follow up, demonstrated that 22 % of these clinico-pathologically high-risk 
women who had no adjuvant therapy remained disease free. Women with node-
negative, ER-negative disease receiving no adjuvant treatment had higher survival 
of 40 %, with 20 years follow up [45]. Even allowing for the improved risk stratifi-
cation offered by modern gene expression profiling, there is room for improvement: 
in the National Surgical Adjuvant Breast and Bowel Project (NSABP) B20 study 
comparing chemotherapy plus tamoxifen to tamoxifen alone in women with node-
negative, ER-positive, resected early breast cancer, those with tumors classified 
as high-risk by the OncotypeDX 21 gene recurrence score had long term survival 
well over 60 % with tamoxifen alone [46, 47]. Today, many of those women would 
almost invariably be offered systemic therapy, and likely chemotherapy, with all the 
inherent risks and cost.

The search for biomarkers to improve stratification of patients with early breast 
cancer to detect those who will benefit from chemotherapy, and those for whom 
the toxicity outweighs the benefits, is vital. Current risk stratification relies on data 
taken from the biopsy and resected tumor: ER, PR, HER2, Ki-67, tumor grade, and 
extent of nodal involvement. Genome expression profiling has refined this, particu-
larly in the node-negative cohort (Oncotype DX, 70 gene recurrence score), yet still 
a large proportion of women who were cured by surgery alone are not identified and 
are subsequently treated unnecessarily.

Common to these approaches is risk assessment based on features of the primary 
cancer alone, once it has been removed. Whilst offering clear prognostic benefit as 
surrogate markers, these may not reflect the biology of residual disease. In the post 
operative setting in breast cancer, the decision to offer adjuvant therapy is based on 
the likelihood of relapse, which in turn is linked to the presence of micrometastatic 
disease, the residual tumor cells which may be genetically or phenotypically differ-
ent from the primary cancer, and thus the cells that need to be addressed. Circulating 
tumor cells (CTC) or disseminated tumor cells may offer a more targeted approach, 
and are known to confer a worse prognosis [48]. However, detection and collection 
in non-metastatic setting is difficult, such cells may still not be representative of 
all remaining cancer cells, and this approach may still fail to appreciate the host 
response.

Metabolomics offers a unique perspective, as it takes into consideration signals 
from the host, the tumor microenvironment, and the tumor cells themselves, as well 
as any interactions between them. This residual pool of cancer cells, and the host 
response to them, may result in a detectable change in the metabolic profile that 
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might differentiate those who are likely to be cured by surgery alone from those 
who are more likely to relapse. It is for this reason that metabolomics may provide 
complementary and possibly more comprehensive information that could be added 
to current stratification models and aid in prognostication.

Establishing the Metastatic Metabolomic Signature

An initial test of the hypothesis that such signatures may be detectable and discrimi-
nating was performed by our group using one-dimensional proton NMR spectra of 
serum samples [49]. Fortyfour patients with early breast cancer had serum taken for 
metabolomic analysis both pre and postoperatively. As a control, 51 patients with 
advanced breast cancer also had serum taken. The aim was to see if serum metabolic 
profiles of early breast cancer patients differed from those with advanced disease; 
whether this changed after surgery; and whether the profiles could be used to gener-
ate a risk score that had prognostic power comparable to an existing prognosis cal-
culator (Adjuvant! Online). A further 45 patients with early disease provided a post 
operative blood sample that would be used as a validation series, ie to determine if 
risk scores generated in a new post operative group have a similar correlation with 
prognosis compared to the initial group, demonstrating reproducibility and validity.

Once spectra were obtained from the serum samples, a series of analytical steps 
was required to allow meaningful comparisons, including data reduction using or-
thogonal projection to latent structure (OPLS), a technique used to convert each 
spectrum to a single point on a two dimensional graph to allow simple comparison 
of the different fingerprints. This demonstrated significant separation of the pre-
operative and metastatic groups into distinct clusters, illustrating that the finger-
prints did indeed differ from one population to the other to varying extents. Double 
cross validation was then used to assess prediction ability of the model, showing a 
discrimination sensitivity of 75 %, specificity of 69 %, and predictive accuracy of 
72 %, with some patients with metastatic disease being consistently misclassified as 
early, and some early patients as metastatic.

A ‘metabolomic risk score’ was then established for each early breast cancer 
patient based on how much their profile resembled the metastatic profile, measured 
as an inverse function of the distance to the barycentre of the metastatic cluster. 
In other words, the more the fingerprint resembled that of patients with metastatic 
disease, the higher the risk score. This is based on the premise that the presence of 
the primary and/or micrometastatic disease is more likely to yield a metastatic pro-
file, and that its presence makes relapse more likely. High metabolomic risk score 
in preoperative patients was found to be highly correlated with misclassification as 
metastatic.

The metabolomic risk based on the preoperative serum was then compared to 
the 10 year breast cancer mortality estimate from Adjuvant! Online, for each pa-
tient, with the arbitrary threshold of 10 %, 10-year mortality risk for low-and high-
risk. Here, concordance was low. However, once the primary tumor was removed, 
there was considerable change in metabolomic risk, with 86 % of patients initially 
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 assessed as having high metabolomic risk switching to low metabolomic risk, sug-
gesting that the signal was coming entirely from the primary cancer in this group. 
Interestingly, 8 of 10 patients assessed as both high preoperative metabolomic risk 
and high Adjuvant! Online risk moved to low metabolomic risk postoperatively. 
Only 6 out of 21 patients with high Adjuvant! Online risk had high postoperative 
metabolomic risk.

When the same technique was repeated with the validation set (post operative 
serum samples), a similar pattern was observed, with high concordance of low me-
tabolomic risk with low Adjuvant! Online risk, but only 32 % of high Adjuvant! 
Online risk patients showing high metabolomic risk. Thus we see that this metabo-
lomic risk score generally classifies more patients as low risk.

Key points from this trial are that a detectable metabolomic signature is present 
in patients’ serum that can indicate the presence of breast cancer, and distinguish 
early from metastatic disease in a high proportion of patients. The shift in signature 
from a high-risk (metastatic) to low-risk following removal of the primary tumor in 
86 % of patients supports this. Where a metastatic signature exists post-operatively, 
this is more likely to be associated with a high-risk status according to traditional 
measures, yet fewer post-operative patients overall are classified as high-risk. This 
has the potential therefore to offer greater discriminatory power in selecting those 
who are less likely to require adjuvant therapy.

What is missing from this trial however is follow-up data, which would offer far 
greater evidence of predictive power than comparison with another risk calcula-
tor. Simply using established prognosis calculators to validate the profile may risk 
developing another calculator of similar power, and thus will not enhance utility. 
Furthermore, the trial requires further validation in different patient cohorts.

Predicting Clinical Outcome

To these ends, Tenori et al. [50] performed a similar study in which they exam-
ined serum 1H-NMR metabolic profiles in both early and metastatic breast cancer 
patients, again with the aim to demonstrate that the spectra could differentiate be-
tween the two groups, and also to establish a risk score that might predict relapse. 
Importantly though, in this case there were clinical follow-up data for the patients 
with early breast cancer, which had to be available for a minimum of 5 years or 
until relapse. Serum samples were selected from a biobank at the Memorial Sloan 
Kettering Cancer Center (MSKCC) in New York in which left-over patient samples 
are stored for scientific use, with patient consent. Eighty samples from patients 
with early breast cancer were selected, with the criteria that they must have post-
operative serum available, taken up to 90 days post surgery, but prior to commenc-
ing adjuvant therapy.

Ninety-five samples from patients with metastatic disease were obtained, and 
their NMR spectra obtained to create the metastatic fingerprint. The early stage 
group was split into two groups of 40 samples; the first half was used to generate 
a reference spectral patterns for early disease and to develop a risk score (training 

Metabolomics in Breast Cancer: Current Status and Perspectives
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set), and the other half was used to test the risk score for concordance and accu-
racy (validation set). The underlying hypothesis was that sera of patients with early 
breast cancer with micrometastatic disease would have metabolic fingerprints more 
closely resembling those of the metastatic cohort, and that these patients would be 
more likely to experience disease relapse. Ten out of 40 patients in the training set, 
and 11 out of 40 in the validation set, had documented evidence of relapsed disease.

Random Forest (RF) classification was used to classify samples as either meta-
static or early, based on the spectra. This is an analytical technique that can take 
large numbers of variables into consideration, is less prone to error or over-fitting, 
and does not require cross validation. This was performed on three different spectra 
for each sample using different NMR techniques: NOESY1D, CPMG, diffusion-
edited. Similar to the previous study, there was high accuracy in predicting early or 
metastatic status, with correct prediction in 84–87 % of cases across the three NMR 
techniques.

A RF risk score was generated, based on the risk of a patient with early breast 
cancer specimen being classified as metastatic, and this score was taken as an in-
dicator for clinical relapse. The RF risk scores generated from each of the spectra 
were then compared to the known outcomes of the patients using eceiver operating 
characteristic (ROC) analysis. CPMG spectra resulted in the greatest area under the 
curve (AUC) on the ROC curve (0.863), and were selected for use in the validation 
set. From here, a cut-off for the RF risk score was determined, aiming for maximum 
accuracy with appropriate sensitivity and specificity. The RF risk score of ≥ 53 was 
used, yielding sensitivity, specificity and accuracy of 90, 67 and 73 %, respectively 
for predicting likelihood of relapse.

This CPMG risk score model was then applied to the validation set in an unsu-
pervised analysis (ie blind to the clinical outcome). Here the correlation between 
predicted relapse and actual relapse was high, with AUC 0.824, demonstrating 
that in this cohort the risk calculator was robust. Sensitivity was 82 %, specificity 
72 %, and predictive accuracy 75 %. Nevertheless, 25 % of patients were misclassi-
fied, and, if used to dictate adjuvant chemotherapy decisions, 18 % of patients who 
would have relapsed would not receive adjuvant treatment.

The model was tested further by comparing it to already-validated prognostic 
methods that employ clinicopathological features of the primary disease. Tumor 
size, nodal status and RF score all had significant association with recurrence, but 
on multivariate analysis none remained significantly associated (tumor grade was 
not included, as all early cancers were grade 3). When compared to Adjuvant! On-
line in multivariate analysis, only RF score showed statistically significant associa-
tion with relapse, indicating that the RF score offered prognostic power over and 
above that offered by Adjuvant! Online in this cohort.

There were some potential confounders in the trial, some of which were ac-
counted for. First, when searching the MSKCC database for patients early disease, 
only cases with ER-negative disease were selected for the relapse-free cohort, as 
5 years follow up was deemed insufficient for ER-positive early breast cancer. No 
selection for ER status was made on the relapsed cohort or the metastatic cohort. 
Subsequent analyses showed that ER-positivity could not be predicted from the me-
tabolomic spectra, and the authors concluded that differences in ER status between 
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the early and the advanced breast cancer cohorts could not explain the observed 
results. This was further validated by confining the study to ER-negative patients 
only and repeating the analysis, subsequently achieving similar sensitivity, speci-
ficity and accuracy. Second, the time interval between surgery and blood sampling 
varied from 5 to 80 days, but again further analysis demonstrated that metabolomic 
spectra could not be used to differentiate early sampling (time interval < 30 days) 
from late (30–80 days).

Limitations

The first study controlled for a number of variables by confining the patient popu-
lation to a single institution, and by taking blood samples specifically for metabo-
lomic analysis after an overnight fast and with a diary of the previous day’s food 
intake and medication. This reduces a number of potential confounders, but in doing 
so also reduces the generalisability. Furthermore it lacked outcome data for its early 
patients, instead comparing its risk score stratification to standard clinicopathologi-
cal prediction. But it served as a proof of concept.

The second study again also used serum from a single institution, but here the 
serum had been stored for a variable length of time, and did not control for fasting 
state or time of blood collection. Whilst potentially confounding, this may render 
positive results more robust, as the likely effect of such variation is dilution or 
disguise of genuine metabolomic profile differences. More importantly, perhaps, a 
large proportion of the early breast cancer patients went on to receive chemothera-
py, undoubtedly influencing the outcome data. Thus its predictive ability here may 
be limited to identifying those who are likely to relapse in spite of chemotherapy.

Other groups have demonstrated the presence of a metabolic signature from 
breast cancer. A similar study aiming to create a model to differentiate early and 
metastatic breast cancer using 1H-NMR spectra was performed by Jobard et al. [51], 
using a training cohort of 46 early and 39 metastatic breast cancer patients, and an 
independent validation cohort of 61 early and 51 metastatic breast cancer patients. 
Their model was also reported to have even higher discriminating power. Crucially 
however, serum samples for the early patients were taken preoperatively, ie with the 
primary cancer in situ. Thus it represents more a discriminator of tumor bulk, rather 
than tumor presence. Furthermore it did not examine the model against any clinical 
outcome, and its utility in prognostication or prediction remains unknown. Com-
mon to all these trials is the problem of small numbers of participants.

Specific Metabolites

In each of the studies described, certain individual metabolites were identified that 
showed significant correlation with the presence of metastatic disease (Table 2). 
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In the Tenori study, reduced serum histidine and increased glucose and lipids were 
significantly correlated with metastatic disease [50]. In the Jobard study however, 
nine different metabolites were identified, which included low histidine [51]. Glu-
cose and lipids had a trend to significance. Much greater reproducibility will be 
needed before any particular metabolite can be used clinically. Moreover, this tends 
to move away from the unique benefit of metabolomics, ie the consideration of the 
combined picture of tumor and host response. Many single metabolites, including 
amino acids, have been shown to correlate with the presence of cancer, yet none 
have proven discriminatory enough to be clinically meaningful [52, 53].

Further Trials

These exploratory trials give support to the potential of metabolomics in the detec-
tion of micrometastatic disease and the prediction of relapse, but require further 
validation in larger cohorts. A proposed trial by our group aims to repeat the experi-
ment performed by Tenori et al. using a larger data set. Serum samples from some 
600 early (post-operative) and metastatic breast cancer patients with documented 
follow up data from a number of centres will be analysed, a risk score generator cre-
ated, and prediction of outcome compared to actual clinical outcome. While aiming 
to achieve similar results to the first study and demonstrate reproducibility, it will 
also shed light on transferability to other populations.

Metastatic Breast Cancer

Studies of metabolomics within metastatic breast cancer have been less productive. 
This is likely in part due to the greatly increased mutational load and hetereogene-
ity in advanced disease, that leads to far more complex, variable and inconsistent 
metabolic profiles. Another study by Tenori et al. [54] aimed to predict responses to 

Table 2  The identified discriminating metabolites detected in four metabolomic studies. Note 
the low rate of concordance between studies. MBC, metastatic breast cancer; NS, not statistically 
significant
Study Higher in MBC Lower in MBC
Oakman Phenylalanine, glucose, proline, lysine, 

N-acetyl cysteine
Lipids

Jobard Phenylalanine, glutamate, N-acetyl cysteine, 
mannose, pyruvate, glycerol, acetoacetate, 
lipids (NS)

Histidine, alanine (NS), 
betaine (NS)

Tenori Glucose, lactate, tyrosine, lipids Histidine
Asiago Tyrosine (NS), lactate (NS) Histidine formate proline choline, 

N-acetyl glycine, ketone body
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treatment based on changes in metobolomic profile before and after treatment, but 
were unable to demonstrate any discriminatory power. In a small subset of HER2-
positive patients, metobolomic analysis was able to predict response to lapatinib 
plus paclitaxel, but the results in this cohort were discouraging.

A proposed investigation will aim to study the serum metabolic profiles of a 
large cohort of metastatic breast cancer patients over time as part of a much broader 
prospective longitudinal cohort study, and follow their progress over time. It is hy-
pothesised that metobolomic analyses may demonstrate prognostic or predictive 
power for response to therapy and disease time course, identify novel biomarkers 
and help to refine data derived from ‘upstream’ analysis such as gene expression 
profiling.

Conclusions

Metobolomic studies in breast cancer have shown that a metabolic signature of 
cancer exists and can be detected in patient serum. It has the potential to allow early 
identification of relapsed disease, predict likelihood of relapse, and act as a bio-
marker of disease activity and response to treatment. It is limited by its complexity, 
requiring high-cost specialised equipment and analysis, which may hinder its prog-
ress into larger patient population studies, while retrospective analysis of completed 
clinical trials is frequently unfeasible.

It would be ideal, for example, to go back to early placebo controlled trials in the 
adjuvant treatment of early breast cancer to assess differences between the metabo-
lomic spectra of those who were cured with surgery alone and those who relapse. 
Unfortunately of course this is not possible for a number of reasons, not least of 
which is a lack of stored serum. Given this barrier, one may conclude that it will be 
impossible to develop evidence strong enough to convince clinicians and patients 
to ignore a traditional ‘high-risk’ assessment, and forego adjuvant therapy, based on 
a novel risk score without the backing of a placebo controlled trial, and that such a 
trial would be ethically impossible. The dream of sparing ‘cured’ patients adjuvant 
therapy, at least by metobolomic methods, may indeed be unattainable.

A more achievable goal may be to focus on the lower risk groups who would tra-
ditionally forgo adjuvant chemotherapy, and attempt to predict relapse. A prospec-
tive study could then assess the benefit of adding adjuvant chemotherapy to those 
deemed more likely to relapse. For example, future studies might combine genomic 
risk with metabolomic risk in patients with ER-positive early breast cancer, and 
observe for differences in outcome between those assessed as low genomic and 
low metabolomic risk, and those with low genomic but high metabolomic risk, all 
treated with adjuvant hormone therapy alone. In this way it may be seen if metabo-
lomics offers complementary risk stratification power.

For now, in this field at least, metabolomics remains exploratory, until a robust 
algorithm for analysing metabolic spectra can be achieved that both accurately pre-
dicts the presence of cancer and the clinical outcome, and is resistant to the influ-
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ence of the multitude of normal variables that impact the metabolome. Only then 
can it be prospectively validated as a meaningful tool to aid in risk stratification and 
decision making about adjuvant therapy.

References

 1. Nicholson JK (2006) Global systems biology, personalized medicine and molecular epidemi-
ology. Mol Syst Biol 2:52. Epub 2006 Oct 3

 2. Shah SP, Roth A, Goya R et al (2012) The clonal and mutational evolution spectrum of pri-
mary triple-negative breast cancers. Nature 486(7403):395–399. doi:10.1038/nature10933

 3. Miller TW, Pérez-Torres M, Narasanna A et al (2009) Loss of Phosphatase and Tensin ho-
mologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor 
signaling to promote antiestrogen resistance in breast cancer. Cancer Res 69(10):4192–4201. 
doi:10.1158/0008-5472.CAN-09-0042

 4. Fu X, Creighton CJ, Biswal NC et al (2014) Overcoming endocrine resistance due to reduced 
PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of 
rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Res 
16(5):430

 5. Bollard ME, Stanley EG, Lindon JC et al (2005) NMR-based metabonomic approaches for 
evaluating physiological influences on biofluid composition. NMR Biomed 18:143–162

 6. Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561
 7. Aimetti M, Cacciatore S, Graziano A et al (2012) Metabonomic analysis of saliva reveals 

generalized chronic periodontitis signature. Metabolomics 8:465–474
 8. Ivano Bertini I, Claudio Luchinat C, Massimo Miniati M et al (2014) Phenotyping COPD by 

1 H NMR metabolomics of exhaled breath condensate. Metabolomics 10(2):302–311
 9. Serkova NJ, Brown MS (2012) Quantitative analysis in magnetic resonance spectroscopy: 

from metabolic profiling to in vivo biomarkers. Bioanalysis 4(3):321–341. doi:10.4155/
bio.11.320

10. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314
11. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: 

the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. doi:10.1126/
science.1160809

12. Yang C, Richardson AD, Smith JW et al (2007) A comparative metabolomics of breast can-
cer. Pac Symp Biocomput 181–92

13. Claudino WM, Quattrone A, Biganzoli L et al (2007) Metabolomics: available results, current 
research projects in breast cancer, and future applications. J Clin Oncol 25(19):2840–2846

14. Tomlins A, Foxall PJ, Lindon J et al (1998) High resolution magic angle spinning 1 H nuclear 
magnetic resonance analysis of intact prostatic hyperplastic and tumor tissues. Anal Commun 
35(3):113–115

15. Cheng LL, Chang IW, Louis DN et al (1998) Correlation of high-resolution magic angle 
spinning proton magnetic resonance spectroscopy with histopathology of intact human brain 
tumor specimens. Cancer Res 58:1825–1832

16. Garrod S, Humpfer E, Sprau lM et al (1999) High-resolution magic angle spinning 1 H NMR 
spectroscopic studies on intact rat renal cortex and medulla. Magn Reson Med 41(6):1108–1118

17. Brown M, Dunn WB, Ellis DI et al (2005) A metabolome pipeline: from concept to data to 
knowledge. Metabolomics 1(1):39–51

18. Liland KH (2011) Multivariate methods in metabolomics–from pre-processing to dimension 
reduction and statistical analysis. TrAC Trends Anal Chem 30:827–841

19. Miller RG, Brown BW (1997) Beyond ANOVA: basics of applied statistics. Chapman & 
Hall/CRC, New York



233

20. Jolliffe IT (2012) Principal component analysis: a beginner’s guide—I. Introduction and ap-
plication. Weather 45(10):375–382

21. Cacciatore S, Luchinat C, Tenori L (2014) Knowledge discovery by accuracy maximization. 
Proc Natl Acad Sci U S A 111(14):5117–5122

22. Draper NR, Smith H (1998) Applied regression analysis (Wiley series in probability and 
statistics), 3rd edn. Wiley, Hoboken. doi:10.1002/9781118625590.scard

23. Wold S, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab 
Syst 58(2):109–130

24. Lowe D, Broomhead D (1988) Multivariable functional interpolation and adaptive networks. 
Complex Syst 2:321–355

25. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
26. Cortes C, Vapnik V (1995) Support-vector networks. J Mach Learn Res 20(3):273–297
27. Hendriks MM, Eeuwijk FA, Jellema RH et al (2011) Data-processing strategies for metabo-

lomics studies. TrAC Trends Anal Chem 30(10):1685–1698
28. Hendriks MM, Smit S, Akkermans WL et al (2007) How to distinguish healthy from dis-

eased? Classification strategy for mass spectrometry-based clinical proteomics. Proteomics 
7(20):3672–3680

29. Camacho D, de la Fuente A, Mendes P (2005) The origin of correlations in metabolomics 
data. Metabolomics 1:53–63. doi:10.1007/s11306-005-1107-3

30. Thiele I, Swainston N, Fleming RMT et al (2013) A community-driven global reconstruction 
of human metabolism. Nat Biotech 31:419–425. doi:10.1038/nbt.2488

31. Ma HW, Sorokin A, Mazein A et al (2007) The Edinburgh human metabolic network recon-
struction and its functional analysis. Mol Syst Biol 3:135

32. Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human metabolome database. Nucleic 
Acids Res 35(suppl 1):D521–D526. doi:10.1093/nar/gkl923

33. Wallner-Liebmann S, Gralka E, Tenori L et al (2015) The impact of free or standardized 
lifestyle and urine sampling protocol on metabolome recognition accuracy. Genes Nutr 
10(1):441

34. Emwas A-H, Luchinat C, Turano P et al (2014) Standardizing the experimental conditions for 
using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: 
a review. Metabolomics. doi:10.1007/s11306-014-0746-7

35. Assfalg M, Bertini I, Colangiuli D et al (2008) Evidence of different metabolic phenotypes in 
humans. Proc Natl Acad Sci U S A 10:51420–1424

36. Bernini P, Bertini I, Luchinat C et al (2009) Individual human phenotypes in metabolic space 
and time. J Proteome Res 8:4264–4271

37. Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism 
and personalized health care. Nat Rev Microbiol 3(5):431–438

38. Budczies J, Pfitzner BM, Györffy B et al (2014) Glutamate enrichment as new diagnostic 
opportunity in breast cancer. Int J Cancer. doi:10.1002/ijc.29152

39. Mountford CE, Somorjai RL, Malycha P et al (2001) Diagnosis and prognosis of breast can-
cer by magnetic resonance spectroscopy of fine-needle aspirates analysed using a statistical 
classification strategy. Br J Surg 88(9):1234–1240

40. Lean C, Doran S, Somorjai RL et al (2004) Determination of grade and receptor status from 
the primary breast lesion by magnetic resonance spectroscopy. Technol Cancer Res Treat 
3(6):551–556

41. Bathen TF, Jensen LR, Sitter B et al (2007) MR-determined metabolic phenotype of breast 
cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Res Treat 
104(2):181–189

42. Wei S, Liu L, Zhang J et al (2013) Metabolomics approach for predicting response to 
neoadjuvant chemotherapy for breast cancer. Mol Oncol 7(3):297–307. doi:10.1016/j.
molonc.2012.10.003

43. Asiago VM, Alvarado LZ, Shanaiah N et al (2010) Early detection of recurrent breast cancer 
using metabolite profiling. Cancer Res 70(21):8309–8318. doi:10.1158/0008-5472.CAN-10-
1319

Metabolomics in Breast Cancer: Current Status and Perspectives



234 C. D. Hart et al.

44. Houssami N, Ciatto S, Martinelli F et al (2009) Early detection of second breast cancers 
improves prognosis in breast cancer survivors. Ann Oncol 20(9):1505–1510. doi:10.1093/
annonc/mdp037

45. Bonadonna G, Moliterni A, Zambetti M et al (2005) 30 years’ follow up of randomised stud-
ies of adjuvant CMF in operable breast cancer: cohort study. BMJ 330(7485):217

46. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-
treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

47. Fisher B, Jeong JH, Dignam J et al (2001) Findings from recent National Surgical Adjuvant 
Breast and Bowel Project adjuvant studies in stage I breast cancer. J Natl Cancer Inst Monogr 
30(30):62–6

48. Lucci A, Hall CS, Lodhi AK et al (2012) Circulating tumor cells in non-metastatic breast 
cancer: a prospective study. Lancet Oncol 13:688–695

49. Oakman C, Tenori L, Claudino WM et al (2011) Identification of a serum-detectable metabo-
lomic fingerprint potentially correlated with the presence of micrometastatic disease in early 
breast cancer patients at varying risks of disease relapse by traditional prognostic methods. 
Ann Oncol 22(6):1295–1301. doi:10.1093/annonc/mdq606

50. Tenori L, Oakman C, Morris PG et al (2015) Serum metabolomic profiles evaluated after sur-
gery may identify patients with oestrogen receptor negative early breast cancer at increased 
risk of disease recurrence. Results from a retrospective study. Mol Oncol 9(1):128–139. 
doi:10.1016/j.molonc.2014.07.012. (Epub 2014 Aug 10)

51. Jobard E, Pontoizeau C, Blaise BJ et al (2014) A serum nuclear magnetic resonance-based me-
tabolomic signature of advanced metastatic human breast cancer. Cancer Lett 343(1):33–41. 
doi:10.1016/j.canlet.2013.09.011

52. Lai H-S, Lee J-C, Lee P-H et al (2005) Plasma free amino acid profile in cancer patients. 
Semin Cancer Biol 15:267–276

53. Miyagi Y, Higashiyama M, Gochi A et al (2011) Plasma free amino acid profiling of five 
types of cancer patients and its application for early detection. PLoS One 6(9):e24143. 
doi:10.1371/journal.pone.0024143

54. Tenori L, Oakman C, Claudino WM et al (2012) Exploration of serum metabolomic profiles 
and outcomes in women with metastatic breast cancer: a pilot study. Mol Oncol 6(4):437–444. 
doi:10.1016/j.molonc.2012.05.003


	Metabolomics in Breast Cancer: Current Status and Perspectives
	Introduction: What is Metabolomics?
	Cancer Metabolism
	Metabolomic Techniques
	Analysis
	Challenges
	Metabolomics in Breast Cancer
	Metabolites as Biomarkers
	Prediction of Stage
	Prediction of Treatment Effect
	Early Detection of Recurrence
	Predicting Recurrence Risk in Early Breast Cancer
	Establishing the Metastatic Metabolomic Signature
	Predicting Clinical Outcome
	Limitations
	Specific Metabolites
	Further Trials

	Metastatic Breast Cancer
	Conclusions
	References




