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About the Breast Cancer Research Foundation

The Breast Cancer Research Foundation (BCRF) is committed to being the end of 
breast cancer by advancing the world’s most promising research. Since its found-
ing by Evelyn H. Lauder in 1993, BCRF has funded investigators who have been 
deeply involved in every major breakthrough in breast cancer prevention, diag-
nosis, treatment and survivorship. In 2015, BCRF committed nearly $54 million 
to support 240 scientists at leading medical institutions internationally, making it 
one of the world’s largest non-governmental funders of breast cancer research. By 
investing 91 cents of every dollar directly in its mission, BCRF remains one of the 
nation’s most fiscally responsible nonprofits. It is the only breast cancer organiza-
tion to hold an “A+” from CharityWatch and has been awarded Charity Navigator’s 
highest rating of four stars 13 times since 2002.  For more information, please visit: 
www.bcrfcure.org
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Preface

Today more than ever, we recognize that breast cancer is a collection of many 
unique diseases with some common features. Advances in technologies have al-
lowed researchers to simultaneously study alterations in thousands of genes or gene 
products that may be present in small amounts of tissue or in blood. Alterations in 
individual or multiple genes or gene products represent biomarkers that indicate 
ultimate outcomes (prognostic) or responses to treatment (predictive). Understand-
ing how to apply biomarkers in clinical settings requires a rigorous developmental 
process. Validated biomarkers may represent distinct characteristics that indicate 
differential outcomes and that could influence treatment recommendations for in-
dividual patients.

This volume represents a collection of chapters centered on standard and emerg-
ing biomarkers in the continuum of breast cancer. Distinguished authors review 
markers of risk, markers of chemoprevention, markers that predict response to stan-
dard therapy such as endocrine agents or anti-HER2 agents, and markers capable 
of influencing treatment decisions that include pharmacogenetics, metabolomics, 
tumor heterogeneity, circulating tumor cells, and circulating DNA. The authors are 
all experts in their respective fields and, in this volume, they provide not only a 
review of the current status of the biomarker, but also their own perspectives on 
how biomarkers may be used in treatment and in future research directions. New 
technologies coupled with novel clinical-trial designs will allow us to advance the 
science of biomarker discovery and validation in a manner that is as rigorous as the 
process for developing and approving new medicines.

 Vered Stearns MD
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Genomic Biomarkers for Breast Cancer Risk

Michael F. Walsh, Katherine L. Nathanson, Fergus J. Couch and  
Kenneth Offit

Abstract Clinical risk assessment for cancer predisposition includes a three-gener-
ation pedigree and physical examination to identify inherited syndromes. Addition-
ally genetic and genomic biomarkers may identify individuals with a constitutional 
basis for their disease that may not be evident clinically. Genomic biomarker testing 
may detect molecular variations in single genes, panels of genes, or entire genomes. 
The strength of evidence for the association of a genomic biomarker with disease 
risk may be weak or strong. The factors contributing to clinical validity and utility 
of genomic biomarkers include functional laboratory analyses and genetic epidemi-
ologic evidence. Genomic biomarkers may be further classified as low, moderate or 
highly penetrant based on the likelihood of disease. Genomic biomarkers for breast 
cancer are comprised of rare highly penetrant mutations of genes such as BRCA1 or 
BRCA2, moderately penetrant mutations of genes such as CHEK2, as well as more 
common genomic variants, including single nucleotide polymorphisms, associated 
with modest effect sizes. When applied in the context of appropriate counseling and 
interpretation, identification of genomic biomarkers of inherited risk for breast can-
cer may decrease morbidity and mortality, allow for definitive prevention through 
assisted reproduction, and serve as a guide to targeted therapy.



2 M. F. Walsh et al.

Keywords Genetics · Genomics · Breast oncology · Biomarkers · Prophylactic · 
Chemoprevention · Genetic counseling · Genetic testing · BRCA

As inherited variation in DNA sequence has been shown to correlate with future 
disease risk, genomic tests constitute objective “biomarkers” of an individual’s sus-
ceptibility to cancer [1]. A family history of breast cancer has long been thought 
to indicate the presence of inherited genetic events that predispose to this disease. 
Although familial breast cancer has been recognized since the nineteenth century, 
the detailed medical description of inherited breast (and ovarian cancer) in families 
took place in the 1970s [2, 3]. Subsequently, up to 15 % of patients diagnosed with 
invasive breast cancer were shown to have at least one first-degree female relative 
(mother, sister, or daughter) with the disease. Testing for genetic biomarkers of risk 
has evolved over the past two decades to complement family history and physical 
findings. The most notable of these genetic biomarkers emerged from genetic anal-
ysis of families affected by multiple cases of early-onset (50 years of age) breast 
cancer, leading to the discovery of the breast cancer susceptibility genes, BRCA1 
and BRCA2 [4–6]. The genetic mapping of BRCA1 strongly suggested an inher-
ited risk of breast cancer resulting from genetic alterations located on chromosome 
17q21 [7]. The subsequent discovery of BRCA1, and later BRCA2 [8, 9], initiated 
widespread interest in hereditary breast cancer. These discoveries also galvanized 
resource allocation to investigators exploring translation of this information to im-
prove clinical care for those with breast cancer susceptibility. In the late 1990s, 
mutations in BRCA1/2 were established as the main contributors to familial breast 
cancer, and population specific frequencies of mutations in these genes were com-
piled [10–14]. In the 10 years following, the clinical utility and the benefits of clini-
cal genetic biomarkers became evident, as genetic testing led to individualized risk 
reduction strategies including preventive surgeries, chemoprophylaxis and targeted 
therapies [15, 16].

Although genetic tests for cancer risk constitute “biomarkers” in a general sense, 
these genomic markers are distinct from non-genetic biomarkers in that they reflect 
the impact of modifiers of penetrance, population-specific differences in allele fre-
quencies, and influence of gene-environment interactions. As genomic testing con-
tinues to evolve, biomarkers of various strength and significance are being routinely 
detected and gene-gene and gene-environment interactions are beginning to emerge 
[17–22]. Understanding the functional significance of genomic alterations is con-
ceptually critical in assessing the potential utility of genetic variants as biomarkers. 
The type of alteration and the location of an aberration in a gene, i.e., a synonymous 
missense variant, a nonsense missense variant, a deletion/duplication, a transloca-
tion, or an inversion, all bear on the assessment of a gene test as a “biomarker” of 
inherited cancer risk. Thus, understanding the type of genetic change is as important 
as the fact that the gene is altered.

Novel biomarkers are being revealed by next generation sequencing and tend 
to be associated with low and moderate penetrance genomic loci [23]. As more is 
known, algorithms will be required to weigh multiple biomarkers simultaneously 
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and hence allow clinicians to most informatively provide recommendations per-
taining to risk reduction surgeries, surveillance guidelines, family planning, apply 
novel therapies, and modify and dose-adjust existing therapies.

Genetics in Breast Cancer Predisposition

Although the ease of testing for different genetic biomarkers is appealing in the 
“information age,” the ability to contextualize this information remains a challenge. 
Statements from the American Society of Clinical Oncology (ASCO) have stressed 
the process of offering predictive genetic testing and the elements pertaining to 
medical, social, and psychological consequences of positive, negative and yet to 
be determined results. Provided here is an updated algorithm of the contents of in-
formed consent for genomic testing for inherited genetic changes (Table 1).

Genetic testing for mutations in BRCA1, BRCA2, and other breast cancer suscep-
tibility genes has served as a model for the integration of genomics into the practice 
of personalized medicine, with proven efficacy required for enhanced screening 
and prevention strategies, and as markers for targeted therapy. The rapid pace of 
molecular sequencing still requires due diligence to assure that the basic tenets of 
genetic counseling are fulfilled. Historically, a clinical genetics visit entails rapport 
building, a detailed account of the family history in the form of a pedigree, docu-
mentation of medical history, a physical exam with specific focus on the presence 
or absence of syndrome stigmata (e.g. macrocephaly or skin findings which may 
be manifestations of alterations in specific breast cancer genes), review of genetic 
concepts, discussion of options for screening and early detection, an opportunity for 
questions, a link to supporting services and a plan for follow up. In cases whereby 
a genetic visit indicates testing, the basic elements of informed counseling remain 
the standard of care [24], although these may increasingly be conveyed and com-
municated in on-line via video conferencing as well as in-person contexts. In an era 
of increasing somatic genetic analysis of breast and other tumors for the purposes 
of “targeting” therapies, it will be important to distinguish whether the primary 
purpose of genomic analysis is to determine inherited susceptibilities, or whether 
this information may emerge as a secondary byproduct of tumor genomic analysis 
(Fig. 1).

The current number of individuals having been tested for mutations in BRCA1/2 
exceeds one million. Pathogenic mutations appear to account for ~ 30 % of high-
risk breast cancer families and explain ~ 15 % of the breast cancer familial relative 
risk (the ratio of the risk of disease for a relative of an affected individual to that for 
the general population) (Fig. 1) [4–6, 25]. Contextualizing disease risk of inherited 
mutations and sequence variants in BRCA1/2 can be complex, since the pathoge-
nicity of sequence variants is uncertain, and requires annotation and curation using 
existing databases (e.g. the Breast Cancer Information Core; www.research.nhgri.
nih.gov/bic).

http://www.research.nhgri.nih.gov/bic
http://www.research.nhgri.nih.gov/bic
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Fig. 1  Elements of informed consent

 

Table 1  HUGO Gene ID, inheritance pattern, clinical manifestations and context dependent 
guidelines for highly penetrant breast cancer predisposition syndromes
Characterization of breast cancer predisposition syndromes
Gene Syndrome Inheritance Overt 

stigmata
General 
surveillance

Context specific 
risk reduction 
considerations

Penetrance

BRCA1/
BRCA2

Hereditary 
breast and 
ovarian

AD No Exam, Imag-
ing (MRI, 
mammography)

Chemoprevention 
with tamoxifen, 
Mastectomy, 
TAH/BSO

High

TP53 Li 
Fraumeni

AD No Biochemical 
and endocrine 
testing, MRI 
whole body

+/− Mastectomy High

PTEN Cowden AD Yes Clinical exam, 
MRI, colo-
noscopy, skin 
exams

+/− Mastectomy High

STK11 Peutz-
Jeghers

AD Yes Clinical exam, 
mammography, 
colonoscopy, 
skin exam

Polypectomy, 
Mastectomy, 
TAH/BSO

High

CDH1 Familial 
gastric 
cancer

AD No Colonoscopy, 
esophogealduo-
denaloscopy, 
mammography, 
MRI

Gastrectomy High

AD autosomal dominant, MRI magnetic resonance imaging, TAH/BSO total abdominal hysterec-
tomy bilateral salpingo-oophorectomy
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Syndromes of Breast Cancer Predisposition

Hereditary Breast and Ovarian Syndrome

BRCA1 and BRCA2 are the predominant breast cancer susceptibility genes. Pre-test 
probability for BRCA2 testing is higher for families with male and female breast 
cancer and for BRCA1 testing in families with both breast and ovarian cancer [26]. 
18,000 cases of breast cancer annually are associated with an obvious hereditary 
predisposition. Detection of breast cancer leads to a cure rate of more than 90 % if 
detected at an early stage. All told more than 200,000 breast cancer survivors in the 
United States developed their primary cancers as a result of a constitutional (inher-
ited) predisposition, highlighting the importance and rationale for genetic testing 
[27]. Estimates range from one in 150 to one in 800 individuals in the population 
who are genetically predisposed to developing breast cancer and in certain ethnic 
groups these estimates are as high as 1 in 40 [28, 29]. A woman carrying a mutation 
in BRCA1 has a lifetime breast cancer risk as high as 70 % by age 70 by epidemio-
logic analysis [29, 30–32]. In select families with a high frequency of early onset of 
breast or ovarian cancer risk, estimates further increase to as high as 90 % lifetime 
breast cancer risk [33].

Highly Penetrant Breast Cancer Genes

BRCA1 and BRCA2

The BRCA1 and BRCA2 genes function in DNA damage response and homologous 
recombination [34]. BRCA1 is a large gene located on chromosome 17 and is made up 
of 24 exons, 22 of which are coding and two of which are non-coding. BRCA2 spans 
greater than 70,000 bases and the gene is comprised of 27 exons (genenames.org).

Premature truncations of the BRCA1 and BRCA2 proteins by nonsense or frame-
shift alterations are the predominant genomic aberrations underlying susceptibility. 
Variants of uncertain significance were initially observed in up to a quarter of pa-
tients, however the frequency of these predominantly missense variants of unknown 
significance (VUS) dropped to between 2 and 5 % as large databases of genetic vari-
ants and “high-risk” kindreds were created [35, 36]. With the uptake of commercial 
testing by new laboratories, and the expansion of testing criteria beyond “high-risk” 
kindreds, this percentage of VUS may again increase [37].

Over 2000 distinct rare variants, in the form of intronic changes, missense muta-
tions, and small in-frame insertions and deletions, have been reported in BRCA1 and 
BRCA2 (Breast Cancer Information Core; www.research.nhgri.nih.gov/bic). The 
main domains of BRCA1, which are critical for DNA repair activity, are located in 
the RING finger and BRCT domains. In BRCA2, highly penetrant, pathogenic mis-
sense mutations reside mainly in the DNA binding domain [38, 39]. Large genomic 

http://www.research.nhgri.nih.gov/bic
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rearrangements or structural variations occur in BRCA1 (14 % of mutations) and 
BRCA2 (2.6 % of mutations). A reason for the relative increase in structural varia-
tions in BRCA1 compared to BRCA2 results from the large number of Alu repeats in 
the genomic region containing the BRCA1 gene [40].

Population specific or “founder” mutations in BRCA1/2 have been described. 
Some of the most common founder mutations occur in individuals of Ashkenazi 
(eastern European) Jewish ancestry, including two mutations in BRCA1 (185delG 
and 5382insC) and one mutation in BRCA2 (6174delT) [41–43]. A small number 
of patients in the Ashkenazi population with breast cancer have non-founder muta-
tions in BRCA1/2 (5 % of all mutations) and thus reflex full gene sequencing may 
be required if founder mutations are non-revealing [42, 43]. The Ashkenazi Jewish 
founder mutations are the best studied and described; 3 % of individuals in this 
population carry a founder mutation. Other examples of BRCA1 founder mutations 
are reported in the Dutch and Hispanic populations. Again for these populations, 
targeted sequencing for specific BRCA1/2 mutations is advised before reflex to full 
gene testing in cases of a negative result. Carriers ascertained from population stud-
ies demonstrate a lower penetrance of disease in comparison to those identified 
through kindred based studies, which is not surprising as a striking overt phenotype 
in the families prompted initial study.

Including follow up recommendations for screening and prevention for BRCA1 
mutation carriers remains as a standard of care given a ~ 57 % probability of de-
veloping breast cancer and a 40 % chance of developing ovarian cancer by age 70. 
BRCA2 mutation carriers are estimated to have a 49 % chance of breast cancer and 
an 18 % chance of ovarian cancer [44]. Contributing factors to the development of 
cancer include environment, modifying genomic alterations and the specific type 
of constitutional aberration in BRCA1/2. Statistical evidence has emerged suggest-
ing genotype-phenotype correlations with regard to ovarian cancer risk. The early 
literature correlated the location of mutations in BRCA1/2 with specific phenotypes 
and gleaned that nonsense and frameshift mutations located in the central regions 
of either coding sequence, termed ovarian cancer cluster regions (OCCR), were as-
sociated with a greater risk of ovarian cancer than similar mutations in the proximal 
and distal regions of each gene [45, 46]. Among the greater than 22,000 BRCA1/2 
mutation carriers enrolled in Consortium of Investigators of Modifiers of BRCA1/2 
(CIMBA) group, the relative increases in ovarian cancer and decreases in breast 
cancer risk for mutations in the central region of each gene and higher risk of breast 
cancer for mutations in the 5′ and 3′ regions of each gene have been observed. 
Further variability in risk is also partly explained by common genetic modifiers of 
breast and ovarian cancer risk in BRCA1/2 mutation carriers that have been identi-
fied through genome-wide association studies [19, 47–51]. [55, 117] (Fig. 2).

The genomic location of a patient’s BRCA1/2 mutation and the risk from modi-
fier genes suggests that the BRCA1 mutation carriers in the highest risk category 
may have an 81 % or greater chance of breast cancer and a 63 % or greater chance 
of ovarian cancer by age 80, whereas BRCA2 mutation carriers at greatest risk may 
have more than an 83 % chance of breast cancer by age 80 [19, 52]. In conjunction 
with other variables modifying risk in BRCA1/2 mutation carriers, these emerging 
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biomarker data on mutation location and modifier genes offer the potential for more 
precise risk estimates. It is also possible that such biomarkers may correlate with 
disease behavior. As breast cancer patients with BRCA1 mutations tend to have tu-
mors that display features of more aggressive disease [53–56], genomic biomarkers 
of risk may also impact on the phenotype (e.g. estrogen receptor status) of heredi-
tary disease.

As alluded to previously, VUS, including missense, intronic, and small in-frame 
insertion/deletion variants, continue to pose clinical challenges in terms of interpret-
ing test results. Although one large testing company has classified many BRCA1/2 
variants as neutral or pathogenic using data collected over years, that data have thus 
far not been placed into public access. Thus, laboratories now entering the clinical 
sequencing space have had challenges classifying variants encountered during test-
ing. In an effort to improve the classification process for variants in all genes now 
offered as part of clinic genetic testing, the Clinvar (www.ncbi.nlm.nih.gov/clinvar) 
database has been curating variants and attempting to capture clinical information, 
efforts pioneered for BRCA1/2 by the international Evidence-based Network for 
the Interpretation of Germline Mutant Alleles (ENIGMA) Consortium (see below). 
In 2014, the Global Alliance announced a demonstration project to create an inter-
national database of BRCA1/2 variants. These steps are crucial to allow the most 
accurate interpretation of these genetic biomarkers for inherited risk. In the absence 
of these definitive databases, evaluation of VUS has often relied on in-silico models 
or animal models that predict the functional impact of variants on the basis of amino 
acid conservation and/or structure or try equate the human disease to a different spe-
cies that is not a direct homologue to humans.

To provide algorithms to the interpretation of variants of uncertain significance, 
expert and evidence-based committees focused on the development of quantitative 
risk prediction methods. One such effort is ENIGMA, which has substantially im-
proved assessment of the pathogenicity of VUS [57]. The following elements are 
assessed for each variant: conservation, family history, tumor pathology, and the 
effects of RNA splicing [39, 57–59]. This effort also estimates the probability of 
pathogenicity for each variant using combined evolutionary sequence conservation 
(Align-GVGD) [39, 59–61], and has resulted in classification of many BRCA1/2 
VUS as pathogenic or of neutral/low effect [59]. Due to the lack of statistical power 
for rare variants or individual VUS, high throughput quantitative cell-based in vi-
tro assays have been developed to evaluate the effect of variants on established 
functions of the BRCA1 and BRCA2 proteins, with known controls of normal and 
pathogenic mutations as controls to asses sensitivity and specificity for VUS [39] or 
variant specific biomarker.

A special challenge in interpreting gene variants is the example of hypomorphic 
mutations, which retain some protein activity. Insights are being gained for some 
specific variants, i.e. the p. Arg1699Gln (R1699Q) missense mutation in the BRCT 
domain of BRCA1 that abrogates the repression of microRNA-155 [62] and is as-
sociated with a cumulative risk of breast cancer of 24 % by age 70 [57], and the 
well-known polymorphic stop codon in BRCA2, p.Lys3326X, which is associated 
with only a modest increase in breast cancer risk [odds ratio ( OR) = 1.26] [63] and 

http://www.ncbi.nlm.nih.gov/clinvar
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appears to have little clinical relevance. As more moderate risk variants or biomark-
ers in breast cancer predisposition genes are detected and clinically validated, per-
sonalized surveillance and prophylaxis measures may be developed.

Impact on Clinical Management for BRCA1 and BRCA2 Mutation Carriers

Genetic testing informs both medical decisions and family planning. While evi-
dence-based medicine continues to evolve, BRCA mutation carriers should undergo 
a triple assessment for breast surveillance, including self-examination, clinician ex-
amination and mammography/Magnetic resonance imaging (MRI) [64–66].

Mammography is of limited sensitivity in BRCA mutation carriers; in one study 
29 % of new tumors were missed by mammography [16]. This limitation may be 
due to higher breast density in younger women and as hereditary breast cancers are 
often more rapidly growing “triple negative” tumors (negative for estrogen and pro-
gesterone receptors and lacking HER2/neu overexpression or amplification) [67]. 
It is strongly recommended that women at hereditary risk begin annual mammog-
raphy/MRI screening at age 25 (http://www.nccn.org/professionals/physician_gls/
pdf/f_guidlines.asp#breast_risk) [68]. MRI detects twice as many breast cancers in 
BRCA1/2 mutation carriers as mammography or sonography [16], and is considered 
the standard of care. Alternatively, risk reducing mastectomy (RRM) decreases the 
risk of breast cancer by at least 90 % in BRCA1/2 mutation carriers [69, 70], but 
only 36 % of women in the United States and 22 % in Canada choose to undergo 
this surgery [71]. In contrast, risk-reducing salpingo-oophorectomy (RRSO) has 
become the standard of care for all women with BRCA1/2 mutations because ovar-
ian cancer screening methods using serum markers and imaging are ineffective [72, 
73]. RRSO has been shown to reduce the risk of BRCA-associated gynecologic 
cancer by 80–96 % [15, 69, 74] and to reduce the risk of breast cancer by ~ 50 %, 
most likely through the induction of premature menopause [15, 69, 75]. Most sig-
nificantly, RRSO reduces overall mortality of women with BRCA1/2 mutations by 
60 % [76]. This reduction in mortality occurs despite the 0.2 % annual risk of can-
cer of the peritoneal lining around the ovaries and fallopian tubes, which remains 
as these tissues cannot be surgically removed by RRSO [74]. Genetic testing for 
BRCA1/2 mutations and RRSO provided an early example of the deployment of 
‘personalized’ prevention through genetics [16, 77].

Data pertaining to chemoprevention based on inherited biomarkers such as 
BRCA1/2 are limited. Efficacy of tamoxifen for BRCA1/2 mutations carriers was 
conducted as a sub-analysis as part of the 13,388 women enrolled in the National 
Surgical Adjuvant Breast and Bowel Project Prevention Trial (NSABP-P1). In this 
study, 19 BRCA1/2 mutation carriers were identified among 288 that developed 
breast cancer, with risk ratios for developing breast cancer with tamoxifen estimated 
to be 1.67 (95 % confidence interval (CI): 0.32–10.7) for BRCA1 mutation carriers 
and 0.38 (95 % CI: 0.06–1.56) for BRCA2 mutation carriers [78]. In a larger study 
of 2464 mutation carriers, tamoxifen use after a first breast cancer was associated 
with a reduced risk of contralateral breast cancer [79]. More refined chemopreven-

http://www.nccn.org/professionals/physician_gls/pdf/f_guidlines.asp#breast_risk
http://www.nccn.org/professionals/physician_gls/pdf/f_guidlines.asp#breast_risk
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tion options for women with mutations in BRCA1/2 may evolve. In patients with no 
mutations in BRCA1/2, other selective estrogen receptor modulators and aromatase 
inhibitors have been shown to prevent breast cancer,(http://www.nccn.org/profes-
sionals/physician_gls/pdf/f_guidlines.asp#breast_risk). Some data have also begun 
to emerge suggesting that modulators of RANKL signaling may be a target for che-
moprevention [80].

Ovarian cancer chemoprevention studies have produced somewhat conflicting 
results bearing on benefits for BRCA mutation carriers [81–83], although most be-
lieve that oral contraception does decrease risk of hereditary as well as sporadic 
ovarian cancer. In that regard, treatment and standard of care for BRCA1/2 muta-
tion carriers must address ovarian cancer detection and prevention. Given the un-
proven methods of screening and the high mortality at time of diagnosis associated 
with ovarian cancer, definitive counseling and recommendations for prophylactic 
removal of ovaries after childbearing are standards of care for BRCA1/2 mutation 
carriers or for women with two or more first degree relatives with ovarian cancers 
in the family (http://www.nccn.org/professionals/physician_gls/pdf/f_guidlines.
asp#breast_risk). [15, 69, 84–88].

Finally, the identification of mutated genes as biomarkers has led to therapeu-
tic applications. In vitro and in vivo experiments and clinical trials have shown 
that platinum chemotherapy is effective against BRCA1 (and, by analogy, BRCA2) 
mutant tumors, in part because platinum generates interstrand cross-links that can 
only be adequately repaired by BRCA1- and BRCA2-dependent homologous re-
combination DNA repair [89]. A new class of drugs that inhibit poly(ADP-ribose) 
polymerase (PARP), an enzyme involved in base excision repair [90, 91] shows 
antitumor activity in the background of BRCA-associated defects in homologous 
recombination-mediated DNA repair [92]. Clinical trials have explored the efficacy 
of PARP inhibitors in the treatment of BRCA1/2 mutant breast, ovarian, pancreatic, 
prostate, and other cancers, and one such compound was recently licensed for use 
in the U.S. for patients with previously treated BRCA mutant ovarian tumors [93]. 
Not all BRCA mutation carriers respond to these agents; mutations in the N-terminal 
BARD1 binding domain of BRCA1, such as the relatively common p.Cys61Gly 
(C61G), may not confer hypersensitivity to PARP ihibitors [94, 95]. Acquired resis-
tance to PARP inhibitors has been associated with multiple mechanisms, including 
drug metabolism and efflux, post-transcriptional alterations of BRCA1/2, secondary 
mutations that restore the homologous recombination activity of BRCA1/2, and ac-
cumulation of somatic genetic alterations that counteract the sensitivity associated 
with BRCA1/2 mutations [95–97]. Whether combination therapies can overcome 
these complications remains to be determined.

http://www.nccn.org/professionals/physician_gls/pdf/f_guidlines.asp#breast_risk
http://www.nccn.org/professionals/physician_gls/pdf/f_guidlines.asp#breast_risk
http://www.nccn.org/professionals/physician_gls/pdf/f_guidlines.asp#breast_risk
http://www.nccn.org/professionals/physician_gls/pdf/f_guidlines.asp#breast_risk
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Other Highly Penetrant Breast Cancer Predisposing Genes

TP53 and CDH1

Compared to BRCA1/2 mutations, TP53 mutations are rare. However when testing 
for BRCA1/2 is non-revealing or determined not causative, testing of TP53 may be 
warranted in cases with a strong family history of cancer and negative BRCA1/2 
testing. Li-Fraumeni syndrome (LFS) is a multi-cancer predisposing syndrome 
driven by genomic alterations in the TP53 gene. TP53 encodes the tumor suppres-
sor protein p.TP53. Patients with TP53 mutations have an increased risk of breast 
cancer [98]. In determining the importance to variants detected by next generation 
sequencing similar steps taken by ENIGMA’s efforts in assessing the BRCA genes 
are required. The International Association Cancer Research (IARC) hosts the TP53 
locus specific database. The database curates frequency of variants, if the variant 
has been detected in the germline, been found in the tumor, seen in a cell line, segre-
gation information of the variants and functional prediction of the genomic variant 
on protein function. National guidelines for patients with Li-Fraumeni Syndrome 
support TP53 testing concurrently for women ≤ 35 years of age or as a follow- up 
test after negative BRCA1/2 testing (http://www.nccn.org/professionals/physician_
gls/pdf/genetics_screening.pdf).

For carriers of TP53 mutations, it seems reasonable to consider adding annual 
MRI starting at age 20–25 years of age or based on earliest age of onset in the 
family. When patients are found to harbor a TP53 mutation, there is some labora-
tory based evidence that radiation exposure may be deleterious, although this re-
mains incompletely documented. Ongoing trials are testing other approaches such 
as whole body MRI, PET, and other focused screening; patients should discuss ap-
proaches to novel screening and technology with their providers [99].

Reports of germline CDH1 mutations emerged in patients with hereditary dif-
fuse gastric cancer in the late 1990s [100–104] and it was soon observed that these 
families also included individuals with lobular breast cancer. In screening of over 
400 cases of breast cancer, three patients were found to harbor germline mutations 
in CDH1. Families with multi-generations affected with gastric cancer have a 30 % 
chance of harboring a mutation in E-Cadherin (CDH1), and 70 % of carriers of mu-
tations in this gene develop gastric cancer. In addition to the diffuse gastric cancer 
risk individuals with CDH1 mutations also have approximately a 40–50 % risk of 
lobular cancer of the breast (http://www.nccn.org/professionals/physician_gls/pdf/
genetics_screening.pdf).

While no formal testing recommendations are established for patients with 
CDH1 mutations and breast cancer, Petridis et al. recently proposed CDH1 muta-
tion screening should be considered in patients with bilateral lobular carcinoma 
in situ with or without invasive lobular breast cancer and with or without a family 
history. Gastrectomy for patients with CDH1 mutations is routinely advised. How-
ever, the identification of families with CDH1 mutations through multi-gene panel 
testing and no family history of gastric cancer are proving difficult to counsel, as 

http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf
http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf
http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf
http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf
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the risk of gastric cancer in those patients is unknown. Patients are also presented 
options regarding mastectomy given the frequency of breast cancer in these patients 
or cumulative risk for breast cancer for females by age 75 years is 52 % [104].

PTEN/STK11

The majority of patients that undergo inherited genetic testing do not have overt 
physical manifestations of a syndrome. However, a few constitutional syndromes 
with overt phenotypes and genetic testing or “biomarkers”  do have an increased 
risk of breast cancer such as Cowden syndrome/Bannayan-Riley-Ruvalcaba 
syndrome/PTEN hamartoma tumor syndrome (PHTS), and Peutz-Jeghers syndrome 
[105–107]. Major criteria to assess in diagnosing female patients suspected of hav-
ing Cowden syndrome include breast cancer, endometrial cancer, follicular thyroid 
cancer, multiple gastrointestinal hamartomas or ganglioneuromas, macrocephaly  
( > 97 %), and mucocutaneous lesions (trichilemmoma, palmoplantar keratosis, ex-
tensive mucosal papillomatosis or verrucous facial papules). Minor criteria include 
autism spectrum disorder, colon cancer, ≥ three esophageal glycogenic acanthosis, 
lipomas, intellectual disability, papillary or follicular variant of thyroid cancer, thy-
roid structural lesions, renal cell carcinoma, single gastrointestinal hamartoma or 
ganglioneuroma, testicular lipomatosis, and vascular anomalies. Individuals with 
a family member with a known mutation, patients with autism and macrocephaly, 
two or more biopsy proven trichilemmomas, two or more major criteria where one 
has to equal macrocephaly, three major criteria without macrocephaly or one major 
and three minor criteria and four minor criteria [108]. Screening for patients with 
Cowden is as per National Comprehensive Cancer Network (NCCN) guidelines; 
breast MRI is part of this strategy and preventive surgeries can also be considered 
(http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf) (Ta-
ble 1).

STK11

Peutz-Jeghers syndrome (PJS) is an autosomal dominant cancer predisposition syn-
drome with clinical characteristics of mucocutaneous pigmentation and gastrointes-
tinal polyps. Patients with PJS are at increased risk of colon cancer, breast cancer, 
ovarian (mucinous tumors and sex cord tumors with annular tubules) [109–112]. 
Most mutations are small deletions/insertions or single base substitutions resulting 
in aberrant protein function with loss of kinase activity. In the analysis of greater 
than 400 patients, and close to 300 of these individuals with known STK11 muta-
tions, the cancer risk for the development of breast cancer was 50 % by age 60 [113, 
114]. However, in the largest study to date of PJS patients no differences in breast 
cancer risk have been found [113, 114] but the absolute numbers of kindreds with 
this syndrome collected for study is still small.

The major phenotype of PJS is gastrointestinal polyps. Patients require frequent 
endoscopic surveillance with polypectomy, which decreases the rate of intussuscep-

http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf
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tion and potential bowel loss. Patients with PJS should be counseled required the 
high rate of breast cancer and the benefits of prophylactic mastectomy and bilateral 
salpingo-oophorectomy after the age of 35 to prevent malignancy. In addition to 
monitoring of the gastrointestinal tract, routine screening of the breast (e.g. mam-
mography and possibly MRI) should be standard of care for individuals with PJS. In 
addition, patients should be offered investigational pancreatic cancer screening (e.g. 
magnetic resonance cholangiopancreatography (MRCP) or endoscopic ultrasound) 
starting at an early age, as well as small bowel visualization, and pelvic exam with 
consideration of transvaginal ultrasound (although unproven, to address ovarian 
cancer risk) and annual physical exam [113, 114] .

Moderate Penetrance Breast Cancer Genes or Biomarkers: 
CHEK2, ATM, PALB2, BRIP1, RAD51C, RAD51D, BARD1

There are no standardized guidelines for the management of other cancer risks or for the 
relatives of carriers with moderate penetrance gene mutations; screening recommenda-
tion should be established based on the patient’s personal and family histories.

CHEK2

CHEK2 normally functions by preventing cellular entry into mitosis when DNA 
is damaged. In 2000, Lee et al. reported that CHEK2 function in DNA damage by 
phosphorylating BRCA1 [115]. Further experiments revealed CHEK2 and BRCA1 
interaction is necessary for BRCA1 to restore the survival after DNA damage. 
Heterozygous mutations were initially reported in a LFS-like family, suggesting 
CHEK2 serves as a tumor suppressor and mutations predispose individuals to can-
cer [116]. Subsequently mutations were shown to be associated with a moderate 
risk of breast cancer, rather having any association with LFS. Population studies 
have aimed to determine the role of CHEK2 in patients without an identifiable mu-
tation in BRCA1/2 but a suggestive family history [117]. The truncating mutation 
CHEK2*1100delC affecting kinase activity was revealed in 1.1 % of healthy indi-
viduals compared to 5.1 % coming from over 700 families with breast cancer (male 
and female breast cancers both included) and negative BRCA1/2 testing. These 
data suggest a greater than a two-fold increase of breast cancer risk in females 
and 10-fold increase in men with the CHEK2*1100delC. As a means to assess for 
additional mutations in BRCA negative families with breast cancer, Shutte et al. 
assessed 89 kindreds with  three or more individuals with breast cancer and did not 
find other appreciable site specific variation in CHEK2 [118]. Although studies are 
still in progress, it appears that the detection of a CHEK2 deleterious mutation in the 
setting of a strong family history of breast cancer may warrant clinical use of this 
biomarker in the pre-symptomatic assessment for screening. Whether the absolute 
level of CHEK2-associated risk meets threshold for MRI screening can be deter-
mined on an individualized basis, taking into account population derived as well as 
family history data.
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ATM

ATM is a gene encoding a protein that allows for the efficient repair of DNA. ATM 
when altered manifests phenotypes from bi-allelic and arguably mono-allelic ge-
nomic alterations. Individuals with two mutations or bi-allelic or homozygous 
mutations develop severe disease of the immune system and are predisposed to 
developing leukemia and lymphoma, called Ataxia-Telangiectasia (A-T). Various 
degrees of evidence support or refute individuals harboring a single mutation in the 
ATM gene as having an increased risk of developing breast cancer, stomach, ovar-
ian, pancreatic, or lung cancer [119–122, 123]. Approximately 1 % of the popula-
tion is heterozygous for mutations in the ATM gene.

Mutant specific evidence for ATM p.S49C and p.F858L in association with in-
creased breast cancer susceptibility show an odds ratio of 1.44 combining data from 
an American and Polish study [124]. When mutations that have been identified spe-
cifically in patients with ATM have been studied in mono-allelic carriers the esti-
mated relative risk for familial breast cancer was = 2.37. The data are based on the 
evaluation of individuals from 443 familial breast cancer kindreds [120, 125–127]. 
Breast cancer-associated ATM mutations tend to be missense mutations whereas 
missense mutations are uncommon in individuals with A-T, even in the same host 
population [121].

Individuals who are carriers for ATM gene mutations should be aware that they 
might be sensitive to radiation, although the magnitude of this radiation sensitivity 
requires further study. There are no ATM mutation specific sets of recommendations 
for therapy, treatment, or tailored management options [128–131]. No definitive 
evidence has emerged regarding increased risk of mammograms in ATM mutation 
carriers, however, MRIs and ultrasound remain an important screening strategy. 
Annual breast MRI screening is recommended for women with a lifetime risk for 
breast cancer of 20–25 % or greater and it is generally recommended that MRI be 
used in conjunction with mammogram.

Regarding prevention, prophylactic mastectomy has not been evaluated exten-
sively in individuals who are carriers for ATM gene mutations. There is no evidence 
concerning the effectiveness of chemoprevention in the ATM gene carrier popula-
tion, although there is also no evidence that it will not be as effective as in the 
general population.

PALB2

PALB2 is a gene encoding a necessary protein of the Fanconi complex and is also 
known as the partner and localizer of BRCA2 and FANCN. PALB2 interacts with 
the BRCA2 protein and work together to correct and fix DNA breaks. PALB2, as it 
helps control the rate of cell growth and division, is a tumor suppressor (http://ghr.
nlm.nih.gov/gene/PALB2). Moreover, by limiting mistakes in DNA repair, PALB2 
aids in maintaining the stability of genetic information.

http://ghr.nlm.nih.gov/gene/PALB2
http://ghr.nlm.nih.gov/gene/PALB2
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Literature is emerging in regards to the contribution of germline mutations of 
PALB2 and hereditary breast cancer. Approximately a dozen mutations have been 
identified in PALB2 and familial breast cancer. Mutations in PALB2 are estimated 
to lead to a two-fold increase in breast cancer risk. In 2007, investigators sequenced 
the PALB2 gene in close to 1000 individuals with breast cancer who were negative 
for BRCA1/2 mutations [132]. Ten out of 923 harbored PALB2 mutations conferring 
a 2.3-fold higher risk of breast cancer. The Q775X variant was identified in 1/50 
high-risk women or 2/356 breast cancer cases and not present in any of  > 6000 con-
trols [133]. Assessing 559 women with contralateral disease and 565 women with 
unilateral disease as controls, fine truncating pathogenic mutations were identified. 
A study of Australian and New Zealand women who were negative for BRCA1/2 
mutations underwent PALB2 testing and 26 out of 747 women were detected hav-
ing PALB2 genomic alterations. Two women harbored nonsense mutations and two 
frameshift mutations. Investigators concluded that ~ 1.5 % of Australasian women 
in families with multiple members affected with breast cancer segregate PALB2 
mutations in their families.

Recent studies analyzing the risk of breast cancer in  > 150 families assessing 
truncating, splicing or deletions in PALB2 and family history estimated the risk of 
breast cancer for female carriers compared to the general population was eight to 
nine times as high among women younger than 40, six to eight times as high among 
those 40–60 years of age and five times as high for those females older than 60 
years of age [134]. The estimated cumulative risk of breast cancer among female 
mutations carriers was 35 % by age 70 and the absolute risk ranged from 33 to 58 % 
depending on the extent of family history [134]. The investigators of this study con-
cluded the breast cancer risk from PALB2 potentially overlap with that for BRCA2 
mutation carriers and that loss of function mutations account for roughly 2.4 % of 
familial aggregation of breast cancer [134]. These data would support the role for 
MRI breast screening in this genetically defined population.

BRIP1

BRIP1, or alternatively named FANCJ, similar to PALB2 manifests disease in both 
the heterozygous and homozygous state. BRIP1 is also known as the BRCA inter-
acting helicase. Patients with constitutional bi-allelic mutations in these two genes 
are notable for a Fanconi anemia phenotype. One study suggests that constitutional 
heterozygous carriers have a relative risk of breast cancer of 2.0 [135], however 
further validation studies need to be done.

RAD51C and RAD51D

Nonsense, frameshift, splice and non-functional missense mutations have been de-
scribed in RAD51C, however the evidence that they are a driver of familial breast 
cancer is limited [136, 137]. Evidence of RAD51C mutations in familial ovarian 
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cancer is greater than familial breast cancer [137, 138]. In a cohort of familial breast 
and ovarian cancer cases a distinct difference was noted between ovarian and breast 
cancer i.e., data revealed a relative risk of 5.88 in mutation carriers for ovarian can-
cer and 0.91 for breast cancer [139].

Loveday et al. also demonstrated a similar risk ratio for patients harboring muta-
tions in RAD51D. Regarding therapeutics, the group showed that cells deficient in 
RAD51D are sensitive to treatment with a PARP inhibitor, suggesting a possible 
therapeutic approach for RAD51D mutant patients with a family history of breast 
and predominantly ovarian cancer.

BARD1

In Finnish families with breast and/or ovarian cancer, 5.6 % of individuals were 
detected to have a cys557-to-ser substitution (C557S) in the BARD1 gene compared 
to healthy controls (5.6 vs. 1.4 %, p = 0.005) [140]. The highest prevalence of C557S 
was detected in a subgroup of 94 patients with breast cancer whose family history 
did not include ovarian cancer (7.4 vs 1.4 %, p = 0.001). The C557S mutation is 
located in a region of BARD1 needed for induction of apoptosis and possibly also 
transcriptional regulation. The investigators concluded that C557S may be a breast 
cancer-predisposing allele.

Low Penetrant Polygenes

Other single nucleotide variations or single nucleotide polymorphisms have been 
detected conferring a moderate to low penetrant breast cancer genes or biomarkers 
[23] (Fig. 2). Genome-wide association studies (GWAS) have identified common 
genetic variants in 76 loci associated with small increases in the risk of breast can-
cer (Fig. 1) [63, 141]. However, most of these variants have weak effects on risk 
(OR  < 1.10) [63]. Little is known about the relevance of these risk factors to the 
different molecular subtypes of breast cancer, although three of these loci ( MDM4, 
19p13.1, and TERT-CLPTM1L rs10069690) are exclusive to triple-negative breast 
cancer [142–145] and BRCA1-associated breast cancer [19]. Although the identifi-
cation of causal variants and mechanism of action for most remain unclear, some 
variants are near known genes such as BRCA2, TGFBR2, MYC, and TET2 [63]. One 
mechanism of action of common variants is on gene transcription, as evidenced by 
the 11q31.1 locus and Cyclin D1 expression via a transcriptional enhancer and a 
silencer of the CCND1 gene [146], and FGFR2 expression via induction of FOXA1, 
ERa, and E2F1 binding to enhancers [142].

The clinical utility of these common variants as a paradigm of polygenic risk as-
sessment for human cancer remains a work in progress [144–146]; breast cancer–as-
sociated common variants combined with traditional breast cancer risk markers had 
minimal impact on risk prediction models [147] or discriminatory accuracy [148]. A 
polygenic risk score calculated as the sum of the ORs for each allele, correlated with 
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risk of early onset breast cancer ( OR = 3.37, P = 0.03) [148] and other such studies 
are now under way [145], with the goal of leading to better identification of women 
who will benefit from enhanced screening and intervention [22].

New Paradigms for Genomic Biomarkers of Risk

Two decades of molecular biologic and genetic epidemiologic research have re-
sulted in tests for inherited genomic variants as useful biomarkers for breast cancer 
risk. Tests for highly penetrant (high-risk) genetic mutations have been incorporated 
into clinical practice. Currently, “panel” tests for large numbers of genes, includ-
ing some of unclear clinical utility, are commercially available. A pressing chal-
lenge posed by these developments is the interpretation and actionability of the 
large number of variants and “low penetrance” mutations discovered. To address 
this challenge, in 2014, the Prospective Registry of Multiplex Testing (PROMPT) 
began as an academic-commercial-and patient-centered initiative, and readers are 
encouraged to access it at https://connect.patientcrossroads.org. Such longitudinal 
studies would also add to the evidence base for targeted screening and prevention in 
genetically defined high-risk cohorts. Other federal initiatives are underway to cata-
logue and interpret the emerging array of genomic biomarkers of inherited cancer 
risk, which will only increase as screening of entire exomes and genomes becomes 
more feasible.
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Epigenetic Biomarkers of Breast Cancer 
Risk: Across the Breast Cancer Prevention 
Continuum

Mary Beth Terry, Jasmine A. McDonald, Hui Chen Wu, Sybil Eng and 
Regina M. Santella

Abstract Epigenetic biomarkers, such as DNA methylation, can increase cancer 
risk through altering gene expression. The Cancer Genome Atlas (TCGA) Net-
work has demonstrated breast cancer-specific DNA methylation signatures. DNA 
methylation signatures measured at the time of diagnosis may prove important for 
treatment options and in predicting disease-free and overall survival (tertiary pre-
vention). DNA methylation measurement in cell free DNA may also be useful in 
improving early detection by measuring tumor DNA released into the blood (sec-
ondary prevention). Most evidence evaluating the use of DNA methylation markers 
in tertiary and secondary prevention efforts for breast cancer comes from studies 
that are cross-sectional or retrospective with limited corresponding epidemiologic 
data, raising concerns about temporality. Few prospective studies exist that are 
large enough to address whether DNA methylation markers add to the prediction 
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of tertiary and secondary outcomes over and beyond standard clinical measures. 
Determining the role of epigenetic biomarkers in primary prevention can help in 
identifying modifiable pathways for targeting interventions and reducing disease 
incidence. The potential is great for DNA methylation markers to improve can-
cer outcomes across the prevention continuum. Large, prospective epidemiological 
studies will provide essential evidence of the overall utility of adding these markers 
to primary prevention efforts, screening, and clinical care.

Keywords Biomarker · Breast cancer · DNA methylation · Plasma · Prevention · 
Prognosis · Recurrence · Serum · Survival · Breast tissues

Introduction

Breast cancer mortality rates have steadily decreased since 1990; however, breast 
cancer remains the second leading cause of cancer deaths in women in the United 
States [1]. Breast cancer is the most common cancer in women in the United States, 
and the incidence is increasing dramatically in very young women under age 40 
years [2]. Women at higher risk of breast cancer due to family history and/or specif-
ic genetic alternations have an earlier age of onset than women at average risk and 
screening mammography is less sensitive in younger women [3]. Early detection 
of breast cancer increases treatment options, including surgical resection and thera-
peutic interventions [4]. Thus, finding markers that can help detect cancer early, 
particularly in younger women, that complement and/or improve existing methods 
will help in reducing incidence and mortality from breast cancer.

Biomarkers can be a useful tool for monitoring disease risk and prognosis. For 
example, in cardiovascular disease, blood pressure and blood markers such as lipid 
levels are measured routinely throughout adulthood. These markers prove particu-
larly useful when combined with other cardiovascular disease risk factors in pre-
dicting risk through models that can readily be employed in the community and 
clinic. Breast cancer risk assessment models provide estimates of the absolute risk 
of breast cancer within a fixed time horizon (e.g., 5 or 10 years) or for the remaining 
lifetime of a woman. For example, women with a 5-year risk of 1.67 % or higher 
are classified as “high-risk” and are eligible for taking tamoxifen or raloxifene to 
reduce breast cancer risk based on the FDA guidelines. The Gail model is the most 
frequently used risk prediction tool in United States clinics; however, the model is 
not recommended for high-risk women such as those with a strong family history 
of breast cancer [5, 6]. Breast cancer risk assessment methods, just like cardiovas-
cular disease models, may benefit from the addition of biomarker and intermediate 
marker information. However, at present, there are no existing validated plasma/
serum biomarkers for breast cancer. Only a few biomarkers (such as estrogen recep-
tor) have utility for diagnosis and prognosis (reviewed in [7]). Thus, there is a great 
need for sensitive biomarkers to detect early neoplastic changes and to facilitate the 
detection of breast cancer at an early treatable stage.
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Epigenetic modifications (e.g., DNA methylation) refer to heritable and modifi-
able markers that regulate gene expression without changing the underlying DNA 
sequence. DNA methylation may play an important role in tumorigenesis by si-
lencing tumor suppressor genes [8–12]. Emerging evidence suggests that aberrant 
DNA methylation can begin very early in breast tumor progression [13] and can 
be detected in body fluids [14]. Similarities between methylation patterns found 
in primary tumor specimens and in blood plasma indicate the potential utility of 
blood-based molecular detection of breast cancer [15–18]. Emerging evidence has 
shown that DNA methylation of select genes measured in plasma results in sensi-
tivities > 90 % for detecting breast cancer [15, 19]. These results suggest that DNA 
methylation has promise for screening. As we review, however, the evidence base is 
far from complete with many small studies and of a cross-sectional design that limit 
any inferences about temporality. Where there are gaps, we suggest study designs 
and the types of evidence that may prove useful in addressing these gaps.

Breast cancer is a heterogeneous disease with very different therapeutic respons-
es and outcomes. Gene expression profiles have been used for breast cancer clas-
sification and have served as prognostic and therapeutic predictors. However, there 
are still major challenges in accurate early prediction of breast cancer incidence, 
detection and prognosis. Given that DNA methylation changes are plausibly critical 
components of the molecular mechanisms involved in breast cancer, distinct DNA 
methylation profiles may help improve the accuracy of prediction of incidence, de-
tection and prognosis. The number of genes identified as being aberrantly methyl-
ated in breast cancer is rapidly growing (reviewed in [20]). These genes encompass 
multiple pathways leading to malignancy, including the six alterations proposed 
by Hanahan and Weinberg required to transform a healthy cell into a cancer cell: 
unlimited replication potential, self-sufficiency in growth signals, insensitivity to 
growth-inhibitory signals, evasion of programmed cell death, sustained angiogen-
esis, and tissue invasion and metastasis [21].

In this chapter, we review the methods used to assay DNA methylation in human 
studies and the evidence to date from clinical and epidemiological studies on DNA 
methylation and breast cancer. We focus our review on describing the most common 
measurement techniques used to ascertain DNA methylation in human studies and 
then evaluate the evidence base for DNA methylation to enhance tertiary prevention 
(reduction of morbidity after diagnosis and improving overall survival), second-
ary prevention through early detection of disease, and primary prevention as a risk 
marker to reduce overall breast cancer incidence.

DNA Methylation, Definitions and Measurement Methods

Epigenetics is defined as changes in gene expression in the absence of changes in 
DNA sequence. Levels of DNA methylation, histone modifications and microRNA 
expression are the three main epigenetic drivers of altered gene expression. As the 
evidence base is largest for DNA methylation biomarkers, here, we concentrate 
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on studies of DNA methylation, specifically 5-methylcytosine (5mC), which re-
sults from the addition of a methyl group to the 5′ position of cytosine primarily in 
CpG sequences. DNA methylation is essential in development and cell differentia-
tion, silencing of transposable elements, genomic imprinting and X-chromosome 
inactivation. In cancer, it is well established that tumors have lower levels of total 
5mC than adjacent tissues (reviewed in [22]). This hypomethylation is primarily in 
repetitive elements which make up the majority of our DNA and leads to their re-
activation, increased illegitimate recombination, and genomic instability. This loss 
of methylation is an early event in carcinogenesis. Gene-specific hypomethylation 
can also occur and results in the re-expression of affected genes. Gene-specific 
hypermethylation, particularly in CpG island promoters, is the more common and 
well-studied event and is associated with gene inactivation. Thus, we now know 
that inactivation of tumor suppressor genes is not only the result of mutation but 
also of DNA methylation. In breast cancer, as discussed below, a large number of 
genes have been identified as having hypermethylated CpG island promoters and 
include those involved in DNA repair, cell-cycle regulation, apoptosis, chromatin 
remodeling, cell signaling, transcription and tumor cell invasion.

In addition to 5mC, which is present at levels of about 4 % of the cytosines, 5-hy-
droxymethylcytosine (5hmC) is present but at much lower levels. This is the result 
of Tet enzyme oxidation of 5mC [23]. This family of enzymes can further oxidize 
5hmC to 5-formylcytosine and 5-carboxylcytosine, both of which are substrates for 
thymidine–DNA glycosylase, a DNA repair enzyme. This pathway of oxidation and 
base removal and repair is believed to be a mechanism for removal of the methyl 
group from cytosine.

A large number of methods have been developed for analysis of DNA meth-
ylation including evaluation of total 5mC; levels of methylation in repetitive ele-
ments that are a large fraction of the human genome as an indirect measure of 
global methylation; and levels in specific genes, primarily in CpG-rich promoter 
regions, but also in gene bodies and regions more distant from genes. While a large 
number of methods have been developed for the analysis of DNA methylation (re-
viewed in [24–28]), a much more limited range of assays has been applied to hu-
man health studies. These methods as well as their strengths and limitations are 
given in Table 1. Early studies digested DNA to nucleosides and analyzed levels 
of 5-methyldeoxycytidine (5mdC) by high performance liquid chromatography 
(HPLC) or used antibodies to bind to 5mC to obtain qualitative data. More recently, 
liquid chromatography-mass spectrometry (LC/MS) that allows the use of an in-
ternal standard for highly accurate and sensitive quantitation has been used [29]. 
This has also facilitated the quantitation of 5hmdC; however, this method as well as 
HPLC generally requires 1μg of DNA [30]. Another method takes advantage of the 
ability of the SssI prokaryotic methylase enzyme to indiscriminately methylate all 
unmethylated CpG sequences using [3H]S-adenosylmethionine as the methyl group 
donor [31]. Therefore, the ability of DNA to incorporate [3H] methyl groups in vitro 
is inversely related to endogenous DNA methylation. Another method that looks at 
general levels of DNA methylation is the luminometric methylation assay (LUMA) 
which specifically analyzes 5mC in CmCGG regions. It takes advantage of a pair of 
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isoschizomer restriction enzymes that cut DNA differentially based on methylation 
status. Sequencing of the product allows determination of methylation but only in 
CCGG sequences [32].

A major advance in analysis of DNA methylation resulted from the demon-
stration that treatment of DNA with sodium bisulfite resulted in deamination (the 
removal of an amine group) of unmethylated cytosines converting them to uracil 
while leaving 5mC intact. Since uracil pairs with adenine, polymerase chain reac-
tion (PCR) primers can be designed with either an A or a G opposite the position of 
the C in CpG sequences. Cs in non CpG sequences, since generally not methylated, 
will be converted to U and an A will be used in the PCR primer. Upon PCR, the U 
is amplified as a T. Thus, Cs in unmethylated CpG sites are converted to Ts while 
methylated CpG sites remain as Cs. In methylation specific PCR (MSP), two sets 
of primers are designed specifically for the modified DNA strand encompassing 
several CpG sites, one assumes a C and the other a T in Cs in CpG sites. PCR is then 
followed by gel analysis for qualitative determination of whether methylated and/or 
unmethylated DNA is present [33].

This basic bisulfite treatment methodology has also been applied to real time 
fluorescence PCR eliminating the need to run gels, as well as to microarray analy-
sis, sequencing and other types of assays. There are a number of variations of the 
real time assays, some using a combination of methylated and unmethylated prim-
ers with cyber green for quantification of amplified DNA and others using a control 
gene [21–23]. A specific variation of real time PCR, the MethyLight assay uses Taq-
Man probes for quantification [34]. The fluorescence-based PCR assays are much 
more sensitive than MSP, but also allow high throughput since they can be run on 
96- or 384-well plates. All the PCR methods that use methylation specific primers/
probes detect only those DNA strands that are fully methylated for the CpG sites 
that are interrogated by the primers or probe; they cannot discriminate between 
5mdC and 5hmdC. While small quantities of DNA are required for each PCR re-
action, bisulfite modification is generally carried out on a minimum of 250 ng of 
DNA. All bisulfite-based assays also are dependent on the complete conversion of 
C to T for accurate data. In addition, differential PCR efficiency with methylated 
and non-methylated primers can impact results.

Bisulfite sequencing has been used extensively in epidemiologic studies for 
analysis of methylation. For both analysis of specific genes as well as repetitive ele-
ments (e.g., LINE-1, Alu), pyrosequencing has been the method of choice due to its 
relatively low cost [35]. In contrast to real time PCR, primers do not contain CpGs 
so that both methylated and unmethylated DNA will be amplified. The sequencing 
probe that sits adjacent to the region of interest also does not contain CpG sites. 
Synthesis of the DNA strand from the 5′ to 3′ direction is carried out one base at a 
time by incubation with the appropriate triphosphate (dNTP) based on known DNA 
sequence. Each incorporation event is accompanied by the release of pyrophosphate 
(PPi) in a quantity equimolar to the amount of incorporated nucleotide. ATP sulfu-
rylase coverts the PPi to ATP in the presence of adenosine 5′phosphosulfate and this 
ATP drives an enzymatic reaction that generates light. When sequencing through 
positions that might contain either a C or a T, both G and A dNTPs are sequen-
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tially added, which allows calculation of average level of methylation of each CpG 
site in the region sequenced, which is generally < 300 base pairs in length. Allele-
specific methylation data, or methylation along a single strand of DNA, can only 
be obtained if PCR products are cloned prior to sequencing, but this is not feasible 
in epidemiologic studies. Pyrosequencing is also not accurate at very low or high 
levels of methylation. The sensitivity limitation for pyrosequencing is ~ 5 %. Next 
generation bisulfite sequencing is the most comprehensive method of analysis as it 
allows determination of methylation of multiple regions at the same time or even 
across the genome. Different platforms utilize different technologies, but all pro-
vide large amounts of data even with relatively small amounts of DNA. However, 
there are cost limits in the utilization of these platforms in epidemiological studies.

Bisulfite treated DNA has also been analyzed using Illumina Infinium Human-
Methylation BeadChips that evaluate methylation of > 27,000 or > 450,000 CpGs. 
Two types of chemistries are used on the 450 K chips that lead to some differences 
in data, but both provide beta values or percent of methylation at each site. The low 
cost per data point and ease of data interpretation have made these arrays commonly 
used in epidemiologic studies. While results are frequently referred to as genome-
wide analysis data, they are limited to the specific CpG sites on the chip. However, 
the 450 K array covers 99 % of RefSeq genes, with an average of 17 CpG sites per 
gene region distributed across the promoter, 5′UTR, first exon, gene body, and the 
3′UTR [36]. The 450 K array covers 96 % of CpG islands, with additional cover-
age in island shores and the regions flanking them. One challenge with methylation 
studies is knowing which region of the DNA to analyze [37]. Most gene-specific 
methylation studies evaluate promoter regions upstream and downstream of tran-
scription start sites. While these regions are clearly important, we now know that 
that intra-genic CpG sites as well as CpG shores may also be important (reviewed in 
[38, 39]). While levels of gene expression are often of primary interest, the relation 
between methylation levels and gene expression is rarely evaluated.

DNA methylation is dynamically changing over the lifecourse, but most studies 
only have samples from one time point. Here, we describe how DNA methylation 
markers may be useful in improving prognosis and overall survival (tertiary preven-
tion), early detection (secondary prevention) and primary prevention. The impor-
tance of DNA methylation markers across all stages of the prevention continuum is 
strengthened by the recent data from The Cancer Genome Atlas (TCGA) on DNA 
methylation of over 800 breast tumors using Illumina Infinium HumanMethylation 
BeadChips. The data have dramatically expanded the number of genes identified 
as aberrantly methylated in breast cancer [40]. Knowing whether these aberrantly 
methylated genes in the tumor tissue are influenced by modifiable factors across 
the lifecourse, and/or affect early detection and tumor growth, and/or response to 
treatment and overall survival will have major implications for primary, secondary, 
and tertiary prevention efforts. In TCGA, unsupervised clustering analysis of the 
methylation array data identified five distinct DNA tumor groups. Group 3 showed 
a hypermethylation phenotype, was significantly enriched in the luminal-B mRNA 
subtype, and was under-represented for PIK3CA, MAP3K1 and MAP2K4 muta-
tions. Group 5 showed the lowest levels of DNA methylation, overlapped with the 
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basal-like mRNA subtype, and had a high frequency of TP53 mutations. Other stud-
ies examining the associations between whole-genome DNA methylation and breast 
cancer classification found that there were distinct methylation patterns by hormone 
receptor status [41, 42] and by BRCA mutation state [43]. Methylation profiling was 
also shown to reflect the cell type composition of the tumor microenvironment, spe-
cifically T lymphocyte infiltration [44]. In addition, methylation patterns in selected 
genes were significantly associated with disease progression [41, 42] and survival 
[45]. Thus, DNA methylation markers by enhancing molecular characterization of 
breast tumors show potential utility in population health prevention and screening 
and clinical care. Here we review the evidence to evaluate its potential across the 
cancer prevention continuum starting with improving outcomes after diagnosis and 
ending with primary prevention.

DNA Methylation Markers and Tertiary Prevention and 
Role in Prognosis

Extensive data examining DNA methylation in tissue samples at the time of diag-
nosis exist, however, there are far fewer studies that have prospectively followed 
breast cancer cases to examine how DNA methylation patterns at the time of di-
agnosis relate to overall survival and prognosis after breast cancer diagnosis. For 
example, although there have been several thousand studies that report DNA meth-
ylation and breast cancer, when we used the following search strategy in MEDLINE 
from the earliest available publication to September 2014 (the following search 
terms included forms of methylation + breast cancer + prognosis or recurrence or 
survival + serum or plasma in varied combinations) using two separate and indepen-
dent reviewers, we only found 82 studies of DNA methylation in tissue or plasma 
at the time of diagnosis that examine DNA methylation and prognosis. Of these 82 
studies, we reviewed the subset that specifically followed up patients longitudinally 
to evaluate whether DNA methylation markers are related to overall prognosis and 
mortality and that met the following additional criteria: (1) reported on either dis-
ease-free survival (DFS) or overall survival (OS) using survival regression methods 
and (2) had at least 30 events of either relapse or death (Table 2). We used these cri-
teria because we specifically wanted to focus on whether DNA methylation markers 
predicted DFS or OS, over and beyond the standard clinical prognostic markers. As 
evidenced by TCGA, many DNA methylation markers map to subtypes of tumors 
[40]. For clinical utility, it is necessary to know whether new markers add to the pre-
diction of DFS and OS after considering standard clinical metrics like stage, grade, 
tumor size, and nodal status. To do so, multivariable regression models are needed; 
such models require large sample sizes to yield precise estimates. For example, in 
one study that we did not include in Table 2 because it did not meet the criterion for 
the number of events, the overall unadjusted association of methylation in the NEU-
ROD1 gene with relapse free survival was 0.8 (relative risk (RR) = 0.8, 95 % confi-
dence interval (CI) = 0.3–1.8) but the adjusted association was  over  six-fold (relative 
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risk (RR) = 6.2, 95 %CI = 1.6–24) after adjusting for tumor size, grade, lymph node 
metastases, and menopausal status [46]. There were only 10 events in the group 
with low methylation in NEUROD1 and 11 events in the group with high methyla-
tion [46]. Thus, with so few events, large associations in multivariable models may 
result from model over-fitting.

As reviewed in Table 2, only 17 studies of 82 studies on DNA methylation met 
the criteria that were large enough to adequately address the relation between tissue-
based DNA methylation markers and DFS or OS have identified a number of mark-
ers that are independently related to outcomes after diagnosis. For example, the 
methylation patterns in selected genes including RASSF1A have been associated 
with disease progression [42, 47] and relapse-free survival [13, 42, 47–49]. Paired-
like homeodomain transcription factor 2 ( PITX2) DNA methylation has also been 
validated using a robust assay for paraffin-embedded tissue for clinically relevant 
outcome prediction in early breast cancer patients treated by chemotherapy [50], 
suggesting that DNA methylation signatures have important therapeutic implica-
tions in guiding the use of epigenetic drugs in anticancer therapy [51]. The Long 
Island Breast Cancer Study Project, a population-based case-control study that fol-
lowed cases for prognosis and survival, evaluated ten genes in breast tumors of 
670 invasive cancers and found that methylation of the tumor suppressor genes 
GSTP1, Twist and RARβ was significantly associated with higher breast cancer-spe-
cific ( n = 86) mortality with a mean follow-up time of 8 years [47, 49]. Compared 
to cases with an unmethylated promoter in tumor tissues, those with a methylated 
promoter had a 71, 67 and 78 % increased risk of dying from breast cancer at the 
end of follow up for methylated GSTP1 (hazard ratio (HR) = 1.71, 95 % 1.10–2.65), 
Twist (HR = 1.67, 95 %CI 1.01–2.79), and RARβ (HR = 1.78, 95 %CI 1.15–2.76), re-
spectively. Similar associations between methylation status and all-cause mortality 
( n = 161) were observed [47].

In Table 2, with one exception [52], all studies have a follow-up of at least 5 
years. Among the studies that do not report mean or median follow-up time, based 
on the Kaplan Meier curves, we assume follow-up time spanned at least 5 years. 
Few studies examined recurrence [50, 53–55] with only two observing significant 
associations with methylation [50, 54]. Among chemotherapy-treated patients, 
higher methylation of PITX2, a gene associated with tumor aggressiveness and 
tamoxifen resistance, was associated with time to distant metastasis [50]. Gene-
specific methylation, the number of methylated genes, as well as global gene meth-
ylation were all significantly associated with poor DFS (HR 2–3 fold) [54, 56–58] 
and poor OS (HRs in the range of 1.2–3.0) [54, 57, 59–61]. One study exceeded 
these observed effect sizes. Among women treated with adjuvant chemotherapy, 
BRCA1 methylation was associated with poor survival with effect sizes between 
12–16 fold; however, measures were imprecise given the large confidence intervals 
[57]. While the majority of studies found methylation associated with poor prognos-
tic outcomes, methylated NT5E, another gene linked to tumor aggressiveness, was 
associated with improved survival [62]. Table 2 also demonstrates that when exam-
ining methylation and tertiary prevention, the association between methylation and 
prognosis can vary in direction and magnitude across subpopulations which can be 
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based on tumor (e.g. triple-negative) and/or sociodemographic characteristics (e.g. 
age). In addition to these studies, three large studies that do not report event rates, 
with median follow-up time exceeding 5 years, found higher methylation associated 
with worse OS in single gene analyses [63] or gene panels [64, 65]. As is evidenced 
in Table 2, a number of important genes for breast cancer are also methylated and 
the methylation status affects outcomes. In summary, although limited prospective 
evidence exists, studies reported to date suggest that promoter methylation, par-
ticularly for a panel of tumor suppressor genes, has the potential to be used as a 
biomarker for predicting breast cancer prognosis; however, the data so far are very 
limited and the predictive value of the small number of DNA methylation signatures 
that have been identified is unclear.

Although the bulk of the epidemiologic evidence is with breast-tissue specific 
methylation, associations of plasma and serum DNA methylation and prognosis 
have also been observed. For example, patients with methylated RASSF1A and APC 
had worse prognosis than those without [66]. Several studies have examined re-
currence [67–69] and survival [52, 64, 66, 67, 70–73]; with some focusing on the 
prognostic value of serum/plasma DNA methylation post therapeutics [64,69,66]. 
The source of the blood sample for the sera or plasma can also vary and may lead 
to different prognostic results. Peripheral blood plasma and bone marrow plasma 
samples were collected from 428 breast cancer patients during primary surgery 
with a median observation time of 51 months (interquartile range 35–68 months). 
In Kaplan-Meier analyses, methylated PITX2 and RASSF1A in peripheral blood 
plasma were significantly associated with DFS and OS while associations were 
weaker in bone marrow plasma. Moreover, there was stronger prognostic value for 
DFS and OS when combining methylated PITX2 and RASSF1A [70] indicating that 
plasma source, as well as gene panels, are important factors when testing prognostic 
biomarkers. Studies have also shown that methylation patterns change over time 
[74–76]. In one study, using cell-free plasma DNA, methylation patterns changed 
after surgery and tamoxifen treatment suggesting that methylation may also be used 
to monitor treatment [77]. Serum markers may also have prognostic utility. Studies 
have shown that tumor methylation patterns are highly correlated with serum meth-
ylation [15–17]. For example, the correlation coefficient of GSTM1 methylation 
in breast tumor tissues and serum was 0.365 [15]. Therefore, DNA methylation in 
plasma or serum is an attractive prognostic tool as it can be measured repeatedly 
and may help monitor response to therapeutics, DFS, and OS over time. In addi-
tion, plasma or serum DNA is an easier sample to procure in comparison to tissue 
samples.

In summary, the evidence that markers of DNA methylation, both in breast tis-
sue, plasma, and serum collected at diagnosis may be important prognostic markers 
is intriguing and growing. As the evidence to date has primarily been relatively 
weak with breast cancer specific outcomes (e.g., breast cancer specific mortality), 
and also with only a select sample of markers, larger prospective studies that ad-
dress a panel of markers are needed. It will be critical to identify those studies 
that collect extensive data on other clinical markers so that the contribution these 
methylation biomarkers make over standard clinical markers such as stage, grade, 
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tumor size and molecular subtype in predicting DFS and OS can be determined. In 
addition to general prospective observational cohorts, clinical trial data using stored 
breast tissue and plasma samples from diagnosis, where available, have the advan-
tage of examining the impact of gene-methylation over and beyond detailed thera-
peutic information among a cohort of individuals who may be more homogenous 
with respect to stage and overall treatment than participants in an observational 
epidemiologic study. In addition to the markers measured at baseline, it will be very 
useful to evaluate if repeated plasma samples can be useful to complement screen-
ing protocols after diagnosis.

DNA Methylation Markers for Secondary Prevention and 
Early Detection

Regular mammographic screening has greatly improved breast cancer mortality 
among women ages 40–74 [78, 79]; however, mammography has limited sensitiv-
ity and specificity particularly in women with dense breasts [80, 81] and in younger 
women [82, 83]. Moreover, breast cancer is a complex disease that is difficult to 
detect in early stages by a single-marker approach. A variety of different markers 
and risk factors combined and weighted using robust and validated statistical mod-
els are needed to improve disease screening sensitivity [84]. Thus, identification of 
other markers for improved early detection is critical. In addition, more accurate 
risk assessment and risk stratification will improve the population effectiveness of 
these screening modalities.

While plasma and serum biomarkers have been used as a prognostic tool to de-
termine treatment and diagnosis, there has been limited use of blood biomarkers as a 
reliable secondary prevention screening tool. For a plasma/serum biomarker to have 
adequate screening ability, the marker must be able to identify as positive those with 
the disease (high sensitivity) and be able to identify as negative those without the 
disease (high specificity). The most well-known examples of plasma/serum cancer 
screening biomarkers are the prostate-specific antigen (PSA) test for the detection 
of prostate cancer and CA-125 for ovarian cancer. While both screening tools are 
widely used, the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial 
has demonstrated that neither PSA nor CA-125 screening meet the criteria of a 
good sensitive and specific screening tool [85, 86]. Cancer research continues to 
identify serum/plasma biomarkers as independent and synergistic cancer screening 
tools for secondary prevention as the biological processes involving cancer detec-
tion in blood is well established.

That cell-free DNA is released from tumors and can be found circulating in the 
plasma was first discovered by analysis of mutations in KRAS and P53 [87, 88]. 
Although they can vary widely, in general, levels of circulating DNA are higher in 
cancer cases than controls, ranging from 0 to > 1 µg/ml of plasma; healthy individu-
als generally have < 25 ng/ml (reviewed in [89, 90]). In individuals without cancer, 
an increase in DNA in the blood can be caused by exercise, inflammation, and 
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tissue injury [91]. In cancer cases, tumor circulating DNA is thought to originate 
from necrotic and apoptotic tumor cells. While initial studies analyzed mutations in 
circulating DNA, it was also found to contain methylation patterns similar to those 
found in primary tumors, suggesting the potential utility of blood-based molecular 
detection of cancer including breast cancer (reviewed in [89, 92–94]).

DNA hypermethylation of selected biomarkers, such as RASSF1A and RARß2, 
was found to occur early in breast cancer development, suggesting that plasma DNA 
methylation might be useful as an early marker of disease [13]. Multiple genes 
that are now more frequently evaluated include CDH1, RASSF1A, APC, BRCA1, 
GSTP1, RARβ, and others (reviewed in [19, 93, 94]), with many studies showing 
reasonably consistent results. However, methylation of a single gene often results 
in low sensitivity; using a panel of epigenetic markers seems to achieve a more 
reasonable sensitivity with high specificity in breast cancer detection [93]. Most 
studies of methylation in serum/plasma DNA used samples collected at or just after 
breast cancer diagnosis. This retrospective design can result in bias if methylation 
levels are affected by disease progression or treatment. In order to evaluate the 
usefulness of DNA methylation markers in plasma as potential screening tools, it 
is important to understand whether methylation markers can be detected in plasma 
years prior to diagnosis. In a pilot study, we measured methylated RASSF1A in 
plasma DNA collected before diagnosis from 28 women with breast cancer and 10 
of their unaffected siblings as well as from 33 women with breast cancer and 29 
age- and ethnicity-matched population-based controls [95]. We found 18 % of cases 
were positive for methylation of RASSF1A in their plasma DNA collected before 
diagnosis, while only 5 % of controls were positive. Tumor tissue was available for 
12 cases and all were positive for RASSF1A methylation. Our results suggest that 
aberrant promoter hypermethylation in serum/plasma DNA may be common among 
high-risk women and may be present years before cancer diagnosis. However, an-
other study measured methylation in RASSF1A, GSTP1, APC and RARβ2 using a 
nested case-control ( n = 50 cases and 100 controls) study design within the prospec-
tive New York University Women’s Health Study cohort [96]. While the frequency 
of methylation in each gene was lower than expected among cases and higher than 
expected among controls, the frequencies did not differ between cases and controls.

While many studies have used plasma for early detection [14, 59, 70, 97–99], 
studies of plasma DNA methylation must take into account the technical aspects of 
plasma collection. For example, the time between blood collection and processing 
may impact the amount of DNA obtained due to the potential for lysis of white 
blood cells (WBC). The ratio of tumor to normal DNA in plasma may also be low 
given that plasma DNA can come from all tissues. There are conflicting data on the 
percentage of circulating DNA that comes from the tumor, with a range of 10–90 % 
reported (see review in [89]). Another limitation is that circulating DNA is highly 
fragmented, typically 160–180 bp in length [100]. So care must be taken in the 
design of PCR primers to ensure that most samples will give a PCR product. In our 
own studies of plasma DNA in liver cancer, we found that the success of PCR de-
creased from 80 to 100 % for reactions with products < 200 bp to 63 % for one reac-
tion with a 248 bp product [101]. Finally, it is clear that plasma DNA is lost rapidly 
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when the source is removed. This was first observed in studies of pregnancy where 
it was found that fetal DNA disappeared from the mother’s blood within hours of 
delivery [102]. Much optimization remains to be done, both in terms of increasing 
the sensitivity of both assays and guarding against false positives.

The great potential of plasma markers for screening enhancement is that it could 
complement the existing protocol of Magnetic Resonance Imaging (MRI) and 
mammography in very young women if the plasma markers are sensitive and spe-
cific. Currently, according to National Cancer Institute (NCI) Guidelines [103] as 
well as the National Comprehensive Cancer Network (NCCN) [104], women who 
are high-risk should be screened with MRI and also mammography starting as early 
as 25. Criteria to define high-risk vary by guidelines but include ( BRCA1 or BRCA2 
carrier, lifetime risk of > 20 % as defined by models that are largely dependent on 
family history, or 5-year risk of > 1.7 %. This means that a woman with lower DNA 
repair capacity because of mutations in BRCA1 or BRCA2, among other genes, 
typically may have 15–20 mammograms by their early 40s. Instead, if MRI could 
be coupled with sensitive plasma markers for monitoring, this would translate into 
a substantially lower radiation dose. In order to evaluate this, prospective observa-
tional cohorts, ideally utilizing a range of sample collection and/or repeated blood 
collection so that a panel of genes can be evaluated in the plasma would be essential 
for uncovering whether or not plasma markers can enhance the potential of screen-
ing with MRI. For average risk women who are already postmenopausal, mammog-
raphy has already been shown to be highly effective at reducing mortality [1, 105] 
so the main question for subsequent research would be whether plasma markers can 
help make the findings from mammography more useful in terms of informing the 
screening interval (number of years between screens) as well as improve the overall 
specificity of mammography to reduce the false positives.

In addition to plasma markers, an intraductal approach to early breast cancer de-
tection, which includes nipple aspiration, ductal endoscopy, and ductal lavage (DL), 
has also been explored within the context of DNA methylation (as reviewed in [94, 
106, 107]). Epigenetic analysis of DNA methylation in DL fluid for early breast 
cancer detection has been evaluated [108–111] including in women at high genetic 
risk of breast cancer [112, 113]. Analysis of methylation of Cyclin D2, RAR-β, and 
Twist using cells from DL fluid found cancer-specific methylation in patients with 
ductal carcinoma in situ (DCIS); abnormal methylation in cells from some of the 
healthy women, who later developed breast cancer was also observed. These results 
provided the first direct evidence that DNA methylation can be used to detect cancer 
in asymptomatic individuals with non-suspicious mammograms and normal breast 
examinations [108]. However, the Breakthrough Breast Cancer Research group has 
provided evidence that, while DNA methylation detected in DL fluid may be a 
strong prognostic marker for cancer patients, such methylation lacks specificity. 
DNA methylation was assessed in six tumor suppressor genes from tumor tissue, 
adjacent tissue and bilateral DL fluid of cases and from normal tissue and DL fluid 
of healthy controls. Between bilateral DL fluid and tumor tissue, the highest sensi-
tivity for methylation markers was observed for SCGB3A1 (90 %), CDH13 (91 %), 
and RAR-β (83 %). There was poor discriminatory ability of DL biomarkers. The 
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area under the curve (AUC) for the receiver operator characteristic curve for can-
cer DL DNA methylation ( n = 54 samples) compared to healthy control DL DNA 
methylation ( n = 46 samples) was 0.76 with a specificity, or error, of 22 % [109]. 
Biomarkers present promising utility for high-risk populations and limited studies 
have examined DL fluid and epigenetic analysis for women at high genetic risk 
[112, 113]. A prospective study of 34 BRCA mutation carriers (16 BRCA1 and 18 
BRCA2) measured hypermethylation of CDKN2A, RASSF1A, Twist, and RAR-β in 
DL fluid collected prior to breast cancer development in seven women. There was 
a significant association between RASSF1A methylation and the development of 
breast cancer and hypermethylation of CDKN2A was associated with BRCA1 muta-
tion status [112]. Larger prospective epidemiological studies are needed with larger 
gene panels to determine if DL fluid is a promising, non-invasive, screening tool for 
early breast cancer detection or diagnosis.

Studies examining the correlation of DNA methylation in breast tumor tissues 
and plasma show similarities between methylation patterns found in primary tu-
mor specimens and those in plasma, indicating the potential utility of blood-based 
molecular detection of breast cancer. Overall, DNA methylation is a candidate bio-
marker because of numerous characteristics: (1) in the process of carcinogenesis, 
promoter hypermethylation is a more frequent event than mutations [114], with es-
timates varying from 600 to 1000 aberrantly methylated genes per tumor [115], (2) 
methylation has been shown to be an early event in breast tumorigenesis [116–118], 
(3) not only the malignant cells but also the surrounding tissue shows methyla-
tion defects [15–18, 119], (4) DNA methylation is stable and can be amplified by 
PCR, which means that aberrations can be relatively easily analyzed in very small 
amounts of DNA [120] as opposed to other approaches such as gene expression 
profiling, (5) a hypermethylated sequence forms a positive signal against an un-
methylated background, which makes it more easily detectable than genetic altera-
tions such as loss of heterozygosity [121]. Emerging evidence has shown that DNA 
methylation of select genes measured in plasma results in sensitivities > 90 % for 
detecting breast cancer. These results suggest that DNA methylation has promise for 
screening. Yet, these small clinical studies were cross-sectional with no or limited 
corresponding epidemiologic data. Further, unlike more easily collected blood, tis-
sue is not suitable for use as a screening method. Of those studies that used blood, 
samples were collected at diagnosis, raising concerns about temporality.

DNA Methylation Markers and Primary Prevention

In addition to studies of tertiary and secondary prevention, DNA methylation mark-
ers have been evaluated to see if they are useful biomarkers for ascertaining risk. In 
these studies of individuals with and without breast cancer, the primary source for 
the DNA methylation markers are peripheral blood cells, as it is often difficult to get 
breast tissue in women without breast cancer and plasma markers measure circulat-
ing tumor cells may not be useful to examine in samples collected many years prior 
to cancer diagnosis.
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Studies examining the relationship between methylation of DNA from peripheral 
blood cells and breast cancer risk have largely been case-control investigations in 
which blood samples are collected from cases after the diagnosis of breast cancer. 
This study design feature makes it challenging to determine whether any observed 
differences in case vs. control DNA methylation levels are a consequence of the dis-
ease (or treatment), as opposed to a causative factor for breast cancer development. 
These studies have evaluated both gene specific and global methylation (reviewed 
in [122, 123]).

One early case-control study evaluated global methylation levels in WBC DNA 
using both the 5mdC and LINE-1 methodologies, initially in a subset of 19 breast 
cancer cases and 18 controls [124]. Blood from all cases in the study were collected 
prior to surgery or any chemotherapy. Levels of 5mdC were significantly lower in 
cases than controls, but there was no difference observed in LINE-1 methylation, 
nor did level of 5mdC correlate with LINE-1 methylation within this subset. The 
5mdC assay was subsequently used to ascertain global methylation levels in a total 
of 179 cases and 173 controls, and lower methylation was significantly associated 
with breast cancer (odds ratio (OR) and 95 % CI comparing lowest tertile of methyl-
ation to highest tertile of methylation = 2.86 (1.65–4.94)). Xu and colleagues made 
use of data from the Long Island Breast Cancer Study Project, a population-based 
case-control study, utilizing both the LUMA assay and analysis of LINE-1 methyla-
tion to assess global DNA methylation in WBC DNA isolated from 1055 cases and 
1101 controls [125]. Blood was collected from cases following diagnosis and it was 
possible to stratify the case population into those from whom blood samples were 
pre- vs. post-chemotherapy and also pre- vs. post-radiation therapy. No relationship 
with breast cancer was found for LINE-1, but for LUMA, higher levels of global 
methylation were associated with increased risk (OR 95 %CI) comparing quintile 5 
of methylation to quintile 1 of methylation (OR = 2.41, 95 % CI 1.83–3.16). This is 
likely due to the fact that LUMA, which evaluates CCGG sites, is primarily measur-
ing methylation in promoter regions. This over two-fold increase in breast cancer 
risk persisted when comparing prechemotherapy cases to controls and preradiation 
cases to controls, suggesting that the association was likely not a treatment effect. 
In our case-control studies, global methylation levels in Sat2 were correlated be-
tween 40 breast tumor tissues and matched WBC DNA isolated from blood samples 
collected from cases at the time of surgery and prior to chemotherapy [126]. Al-
though intriguing, the literature is far from consistent and we did not observe an 
association with LUMA and breast cancer risk in a family registry of women at 
high-risk of breast cancer [127], and another case-control study found lower levels 
of methylation by the LUMA assay to be associated with breast cancer risk [128]. In 
addition to LUMA, other markers of global methylation have been examined, and 
we compared methylation of repetitive elements (Sat2, LINE-1, and Alu) in WBC 
and granulocyte DNA isolated from blood samples donated by sisters discordant 
for breast cancer development (282 cases and 347 sister controls; cases donated 
blood following breast cancer diagnosis) [129]. WBC DNA Sat2 hypomethylation 
was again associated with breast cancer risk, but no association was observed with 
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granulocyte DNA Sat2 methylation, suggesting that differential global DNA meth-
ylation of some repetitive elements may be associated with blood cell type counts.

In contrast to retrospective case-control studies, the nested-case control design 
has the same efficiency as in case-control studies but also ensures temporality, an 
important attribute for biomarker studies. A nested case-control study conducted 
within the prospective Breakthrough Generations Study and European Prospective 
Investigation into Cancer and Nutrition (EPIC) examined global DNA methylation 
in the LINE-1 repetitive element among the WBC DNA from 640 cases and 741 
controls, but did not find any differences [130]. The Sister Study is another of the 
few prospective studies to examine global DNA methylation in WBC and breast 
cancer risk [131] and is methodologically strong because of its case-cohort design, 
with blood collected from cases prior to diagnosis. A total of 294 incident breast 
cancer cases and a sample of 646 non-cases in the study were selected for examina-
tion of global DNA methylation of LINE-1. Hypomethylation of WBC DNA LINE-
1 was associated with subsequent development of breast cancer comparing quartile 
1 of methylation to quartile 4 (HR = 1.75, 95% CI 1.19–2.59).

With respect to gene-specific WBC DNA methylation, one of the earliest epig-
enotyping case-control studies made use of data on cases and age-matched controls 
from the ESTHER study [132]. The investigation utilized a multistep method con-
sisting of selection of a broad array of 49 genes of interest based on those known to 
be methylated in breast cancer; methylation analysis of these genes in a small group 
( n = 83) of healthy, postmenopausal women to narrow down the genes investigated 
to 25, based on observed methylation patterns as related to a priori hypotheses; 
and examination of methylation of this smaller group of 25 genes among periph-
eral blood cell DNA isolated from individuals in the larger ( n = 353 cases and 730 
controls) case-control study. Adjusting for age and family history of breast cancer, 
the authors found differences in methylation of five out of 25 genes between cases 
and controls, with cases in each of these situations exhibiting lower levels of meth-
ylation. The genes with observed methylation differences were estrogen receptor-2 
(ER-2) target genes ( NUP155, ZNF217) and polycomb group target genes (PCTG) 
that play a role in stem cell biology ( TITF1, NEUROD1, SFRP1). Lack of DNA 
methylation at these gene loci conferred a statistically significant 1.4- to 1.5-fold in-
creased risk of breast cancer. In addition, invasive ductal and invasive lobular breast 
cancer was characterized by methylation of different sets of genes and methylation 
of ER-α target genes predicted estrogen receptor-positive breast cancer. Elevated 
BRCA1 methylation has been observed in cases compared to controls in several 
case-control studies [17, 133]. In one study that enrolled 255 cases diagnosed with 
breast cancer prior to age 40 years and compared them to 169 controls, the preva-
lence of detectable WBC BRCA1 methylation tended to increase as the tumors from 
cases contained more BRCA1 mutation-associated morphologic features and meth-
ylation of BRCA1 in WBC DNA was associated with a 3.5-fold (95 % CI 1.4–10.5) 
increased risk of breast cancer [17]. However, the largest case-control study carried 
out to date of BRCA1 methylation did not observe a significant difference between 
cases and controls, although there was a trend of BRCA1 promoter hypermethyl-
ation in cases vs. controls [134]. Other studies have evaluated the relationship be-
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tween methylation of ATM in WBC DNA and breast cancer [130, 135], with the 
single prospective nested case-control examination reporting an increased risk of 
breast cancer associated with higher levels of methylation at the ATMmvp2a locus 
comparing quintile 5 of methylation to quintile 1 of methylation (OR = 1.89, 95 % 
CI 1.36–2.64) [130].

The prospective Sister Study also used an efficient approach of a case-cohort 
design to study WBC methylation and breast cancer risk [136]. Specifically, they 
applied the Illumina Infinium 27k CpG HumanMethylation BeadChips arrays and 
identified 250 differentially methylated CpG sites between cases and controls in 
WBC DNA [136]. The AUC for the receiver operator characteristic curve estimated 
for five of these methylation markers (66 %) was larger than for the Gail model 
(56 %) or nine highly ranked single nucleotide polymorphisms from genome-wide 
association studies of breast cancer (56 %). The mean time from baseline blood 
draw to diagnosis among the breast cancer cases was only 1.3 years in the Sister 
Study [136]. Thus, the data cannot tell us whether epigenetic changes can predict 
risk years into the future or are, instead, a response to underlying disease. In ad-
dition, the differences in mean percent methylation for the identified sites, while 
statistically significant, were very small and almost entirely within two percent-
age points. Cohort studies with longer follow-up time and serial blood collections 
are needed to estimate lead times, clarify biology, and apply appropriate methods 
for evaluating predictive value of DNA methylation for diagnosis [137]. It is also 
necessary to validate data from Illumina arrays, which can be problematic at very 
high or low methylation levels. For example, in trying to validate some of the top 
candidates in the Sister Study in our subjects, we found that several sites with low 
methylation (~ 10 %) in the original Illumina data showed nondetectable methyla-
tion by pyrosequencing. In addition, there are also a number of potential problems 
with Infinium data such as cross-reactive probes, probes containing single nucleo-
tide polymorphism (SNP) sites and probes giving high intensity data, which further 
underscores the importance of array data validation by other methodologies such as 
pyrosequencing [138].

A limitation of WBC DNA analysis is the concern that results may be related 
to differences in cell populations. This is particularly problematic for bloods col-
lected at the time of diagnosis, since it is known that cancer patients have altered 
proportions of specific cell types compared to healthy controls [139]. We have dem-
onstrated that global methylation profiles vary by different blood cell types [140]. 
A method has been reported that allows the use of DNA methylation array data to 
estimate WBC populations [141, 142]. A second limitation is that DNA methylation 
is known to be impacted by age, genetics, and environmental as well as lifestyle 
factors (reviewed in [122, 143]). Smoking, air pollution, heavy metals, micronu-
trients, and even stress have all been shown to alter DNA methylation in WBC. As 
mentioned above, differences in DNA methylation between cases and controls are 
small. The biological significance of these small differences is terms of gene ex-
pression and function is not clear. Finally, there have been objections to the use of 
WBC for DNA methylation analysis, given the lack of information on relationship 
to target tissue, in this case breast tissue. One paper has evaluated the use of WBC 



56 M. B. Terry et al.

DNA as a surrogate for evaluating imprinted loci methylation in mammary tissue 
[144]. Of the six loci studied, after correction for multiple comparisons, for only 
one was there a correlation between tissue and blood and only for invasive tumor 
tissues not benign breast disease.

In addition to primary prevention studies of WBC DNA methylation, limited 
studies examined DNA methylation in breast tissue from mammoplasty patients. 
For example, one study of DNA methylation enrolled 141 healthy European and 
African American women (mean age (standard deviation (SD)) = 35 years (11) and 
mean body mass index (BMI) (SD = 32 kg/m2 (7)) undergoing non-surgical breast 
reduction [145]. The focus of the study was to detect the likelihood of promoter 
methylation of CDKN2A/p16INK4, BRCA1, ER-α, and RAR-β across a spectrum of 
breast cancer risk factors. In age-adjusted models, family history of cancer was as-
sociated with a two to seven fold greater odds of p16INK4, BRCA1 or ER-α hyper-
methylation compared to those without a family history of cancer. In race-stratified 
analyses of European-American women, hypermethylated p16INK4 was indepen-
dently associated with having a family history of any cancer and ever consuming 
alcohol. In African-American women, a family history of cancer was associated 
with BRCA1 hypermethylation. While the large number of mammoplasty samples 
is a strength in this study, there was limited power, especially in the race-stratified 
analyses. Some of the cell counts had as few as two events, thus the results need to 
be interpreted with caution. In addition, though the women represent a high breast 
cancer risk population given their elevated average BMI, results of this study may 
not be generalizable. Confirmation in a larger population is required, but, mammo-
plasty samples are difficult to procure, as underscored by the recruitment timeline 
for this study [145].

In summary, the evidence base for DNA methylation markers and breast cancer 
incidence is accumulating but major gaps remain. First, most data come from ret-
rospective studies where disease itself or cancer treatment may affect blood, saliva, 
and tissue methylation, limiting a determination of temporality and with methyla-
tion changes being a consequence rather than a cause. Second, the prospective stud-
ies that do exist, although growing, generally lack repeated measures making it 
difficult to establish whether environmental exposures change the levels of DNA 
methylation markers and, in turn, whether these changes alter breast cancer risk. 
Third, the evidence base until recently has focused on selected gene targets and 
markers of global methylation. As techniques improve to scan for a larger set of 
genes, using prospective studies with extensive environmental data, the evidence 
base for using DNA methylation markers as biomarkers will build.

Summary and Next Steps

Although the scientific literature on DNA methylation and breast cancer is exten-
sive, for specific questions about primary, secondary and tertiary prevention, as de-
scribed above, the literature is in its infancy. In particular, methodological consider-
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Table 3  Methodological considerations when conducting DNA methylation study across the 
breast cancer prevention continuum

Primary prevention Secondary prevention Tertiary prevention
Types of questions to 
address

Are DNA methyla-
tion markers related 
to breast cancer 
incidence?

Can DNA methyla-
tion markers augment 
standard screening?

Can DNA methylation 
markers predict prog-
nosis (disease-free and 
overall survival)?

Study design 
considerations

Prospective stud-
ies needed to assure 
temporality

Repeated measures 
over time, prospective

Prospective studies 
with enough events 
to adjust for standard 
clinical markers

Source of DNA WBC DNA DNA methylation 
markers measured in 
plasma

DNA methylation 
markers in breast tis-
sue at diagnosis

Some markers in 
saliva have very 
different levels than 
blood

DNA methylation 
markers in plasma 
repeated over time for 
recurrence

Breast tissue will 
mean sample may be 
less generalizable

ations for the type of prevention study need to be carefully considered. Table 3 sum-
marizes some of the key methodological considerations that we have observed to 
be lacking from many of the existing studies. A significant consideration is whether 
or not the study design is prospective or retrospective, with the former needed to 
determine temporality. Another important consideration is whether the study design 
is large enough to have sufficient number of events for multivariable modeling to 
allow for assessment of the independence of the DNA marker over and beyond 
standard clinical markers.

Common to all types of studies is a consideration of the source of DNA. Us-
ing data from multiple DNA sources from the same individuals, we have observed 
variation in genomic DNA methylation within specific WBC types [140]. Given 
the variation in function and gene expression levels of specific WBC types, it is not 
surprising the both gene-specific and global methylation levels vary by type. This 
complicates investigation of the association of DNA methylation with disease. It is 
well known that there are differences in total WBC counts in healthy individuals, 
with a range of 5000–10,000/µl, but there are also differences in cell populations. 
Cancer patients also demonstrate alterations in specific cell types. For example, 
neutrophil and lymphocyte counts were elevated and reduced, respectively, in ad-
vanced stage uterine cervical cancer [139]. It is also clear that in metastatic cancer, 
there is a dynamic range of circulating tumor DNA [146]. Martin [147] suggested 
that definitive analyses require specific methodologies to account for shifts in cel-
lular population heterogeneity. Moreover, a significant proportion of DNA variation 
might be due to the disparity in protocols for sample processing [148], and in time 
of storage of blood samples [149]. In addition, as future studies will need to address 
repeated measures of DNA methylation markers, issues surrounding the temporal 
stability of DNA methylation need to be understood. For example, comparing DNA 
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methylation levels in blood collected at two visits, we have observed that changes in 
DNA methylation over time are highly associated with baseline values of the assay 
and vary by assay type [76]. These findings suggest that assays that change more 
over time may warrant consideration for studies that use DNA methylation as bio-
markers. An additional challenge is that different assays measure varying aspects 
of DNA methylation. For example, MSP measures the relative amounts of fully 
methylated regions, while pyrosequencing measures average methylation levels at 
several CpG sites in a pool of DNA. It is important to verify and validate differences 
in DNA methylation using various assays.

These methodological considerations can be overcome by more research utiliz-
ing large, prospective studies that have careful biospecimen collection. The great 
potential of DNA methylation markers across the prevention continuum and in im-
proving risk assessment may soon be realized. Absolute risk prediction models pro-
vide useful information for health care providers and patients and aid in the design 
and recruitment phase of studies of preventive interventions [150–152]. Clinical 
prediction modes such as Gail [153], and Breast and Ovarian Analysis of Disease 
Incidence and Carrier Estimation Algorithm (BOADICEA) [154] have been devel-
oped to estimate absolute age-specific breast cancer risk. The most frequently used 
risk prediction tool in United States clinics is the Gail model, which takes only first-
degree family history into account and focuses on nongenetic risk factors [153]. 
Although the Gail model has been found to be well calibrated for women at average 
risk, its discriminatory ability is moderate and limits its clinical applicability, partic-
ularly for screening [155]. Moreover, the Gail model has not been recommended for 
high-risk women such as those with a strong family history of breast cancer [4,6]. 
Using information from the New York site of breast cancer family registry (BCFR), 
we previously reported that models developed using extended family and genetic 
data, such as the IBIS model, showed better discrimination (AUC = 69.5 %) than did 
the Gail model [6]. As mentioned above, Xu et al. [136], using prospectively col-
lected blood samples, identified five methylation markers (AUC = 66 %). Extending 
such models to include additional genetic or epigenetic information may improve 
performance in women across the breast cancer risk continuum.

In summary, DNA methylation markers are compelling candidate biomarkers 
because of numerous characteristics: (1) in the process of carcinogenesis, promoter 
hypermethylation is a more frequent event than mutations [114], with estimates 
varying from 600 to 1000 aberrantly methylated genes per tumor [115], (2) methyl-
ation has been shown to be an early event in breast tumorigenesis [116–118], (3) not 
only the malignant cells but also the surrounding tissue shows methylation defects 
[15–18,119], (4) DNA methylation is stable and can be detected by PCR methods, 
which means that aberrations can be relatively easily analyzed within very little ma-
terial [120] as opposed to other approaches such as gene expression profiling, and 
(5) a hypermethylated sequence forms a positive signal against an unmethylated 
background, which makes it more easily detectable than genetic alterations such as 
loss of heterozygosity [121]. It will be essential as we move forward to fully evalu-
ate and quantify the potential gains that can be made in primary, secondary, and 
tertiary prevention efforts by measuring through large, prospective studies the im-
pact DNA methylation markers have in predicting incidence and OS after diagnosis.
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Incorporating Biomarkers in Studies of 
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Abstract Despite Food and Drug Administration approval of tamoxifen and raloxi-
fene for breast cancer risk reduction and endorsement by multiple agencies, uptake 
of these drugs for primary prevention in the United States is only 4 % for risk eli-
gible women likely to benefit from their use. Side effects coupled with incomplete 
efficacy and lack of a survival advantage are the likely reasons. This disappointing 
uptake, after the considerable effort and expense of large Phase III cancer incidence 
trials required for approval, suggests that a new paradigm is required. Current pre-
vention research is focused on (1) refining risk prediction, (2) exploring behavioral 
and natural product interventions, and (3) utilizing novel translational trial designs 
for efficacy.

Risk biomarkers will play a central role in refining risk estimates from traditional 
models and selecting cohorts for prevention trials. Modifiable risk markers called 
surrogate endpoint or response biomarkers will continue to be used in Phase I and 
II prevention trials to determine optimal dose or exposure and likely effectiveness 
from an intervention. The majority of Phase II trials will continue to assess benign 
breast tissue for response and mechanism of action biomarkers. Co-trials are those 
in which human and animal cohorts receive the same effective dose and the same 
tissue biomarkers are assessed for modulation due to the intervention, but then ad-
ditional animals are allowed to progress to cancer development. These collabora-
tions linking biomarker modulation and cancer prevention may obviate the need for 
cancer incidence trials for non-prescription interventions.

Keywords Risk biomarker · Surrogate endpoint biomarker · Proliferation · 
Mammographic density · Clinical trials
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Need for New Approaches to Breast Cancer Prevention

Tamoxifen and Raloxifene Effective for Primary Prevention

Positive results of the landmark National Surgical Adjuvant Breast and Bowel Proj-
ect (NSABP) P-1 trial comparing 5 years of tamoxifen to placebo in high-risk pre- 
and postmenopausal women over the age of 35 was announced in 1998 with Food 
and Drug Administration (FDA) approval for risk eligible women the same year 
[1]. Longer term follow-up of the NSABP P-1 trial, and similar trials conducted in 
Europe, continue to underscore the benefit of prevention with tamoxifen not only 
while taking the drug but for more than 5 years after completion [2–7]. The magni-
tude of effect according to a recent meta-analysis is substantial with a 44 % reduc-
tion in risk of invasive cancer and 38 % reduction in risk for carcinoma in situ [8]. 
Raloxifene, another selective estrogen receptor modulator (SERM) received FDA 
approval for breast cancer risk reduction in 2007 following demonstration of re-
duced breast cancer risk in postmenopausal women [9] and a head to head compari-
son of raloxifene and tamoxifen showing fewer side effects for raloxifene although 
a slightly greater efficacy for tamoxifen [10].

Poor Uptake of Tamoxifen and Raloxifene for Primary Prevention

Despite effectiveness, uptake of tamoxifen and raloxifene in the United States for 
primary prevention by risk eligible women is reported as only 4 % [11]. In 2010, it 
was estimated that ~ 21,000 women were taking tamoxifen and ~ 97,000 were taking 
raloxifene for prevention of breast cancer [12], a small fraction of the 2.5 million 
women whose risk is high enough to derive benefit [13]. There has been essentially 
no change in uptake of a SERM for primary breast cancer prevention since 2005 
despite endorsement for use in risk appropriate women by the American Society 
of Clinical Oncology (ASCO), National Comprehensive Cancer Network (NCCN) 
National Clinical Practice Guidelines, and the US Preventive Task Force [14–18]. 
The primary reasons for poor uptake appears to be fear of side effects combined 
with incomplete efficacy and lack of a survival advantage [7] as education about 
risks and benefits from chemoprevention with these drugs is negatively associated 
with uptake [19]. Once tamoxifen is started, almost half discontinue prior to the 
prescribed period of 5 years with an average drop rate of 10 % per year [20].

Tissue Biomarkers Identify Women Likely to Receive the Greatest 
Benefit from Endocrine Therapies and May Enhance Uptake

Uptake of prevention interventions is positively correlated with perceived risk [11, 
20] in that biomarkers such as atypical hyperplasia which are associated with both 
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increased risk and benefit from an intervention are likely to enhance uptake of che-
moprevention. Women with a prior diagnosis of atypical hyperplasia or lobular car-
cinoma in situ (LCIS) frequently have an absolute risk of 1 % per year or higher, 
five times that of the average risk of a 55 year old. The higher relative risk reduc-
tion with tamoxifen in women with precancerous lesions (75–86 % with atypical 
hyperplasia) is probably due to the higher proportion of estrogen receptor-positive 
cells and proliferative rate than is seen in normal tissue [1, 2, 21–25]. Thus, it is not 
surprising that in a recently reported Boston series the uptake of chemoprevention 
after a diagnosis of atypical hyperplasia was ~ 20 % [26]. Although the majority 
of high-risk women have never had a biopsy, benign breast tissue can be sampled 
inexpensively in a minimally invasive fashion by random periareolar fine needle as-
piration (RPFNA). With this non-lesion directed technique, hyperplasia with atypia 
appears to provide similar short term risk stratification [27], and is associated with 
increased uptake of prevention therapies [28].

Prevention Trials with Later Generation SERMs and Aromatase 
Inhibitors

Biomarkers can also be used to objectively assess toxicity. Attempts to decrease 
uterine side effects and improve both bone mineral density and risk of breast cancer 
gave rise to trials with the later generation SERMs arzoxifene and lasofoxifene in 
postmenopausal women [7, 29, 30]. Both showed significant reduction in breast 
cancer risk, bone mineral density preservation, and lack of uterine agonist effects 
[7, 29, 30]. Despite the lack of uterine side effects, neither arzoxifene nor lasofoxi-
fene are likely to be pursued for an FDA indication for breast cancer risk reduction 
because, like tamoxifen and raloxifene, both increase the risk of thromboembolism.

Women randomized to receive aromatase inhibitors in adjuvant therapy trials 
had fewer recurrences than those randomized to receive tamoxifen [31]. Although 
there are no direct comparative prevention trials, aromatase inhibitors appear to be 
associated with a higher degree of relative risk reduction (50–65 %) than tamoxifen 
or raloxifene, without the excess thromboembolic risk [8, 32, 33]. However, the 
increased incidence of arthralgias, bone mineral loss, fatigue, and estrogen depriva-
tion symptoms [8, 33, 34] make poor uptake and adherence as likely for aromatase 
inhibitors in the primary prevention setting as tamoxifen and raloxifene [35].

Roles That Biomarkers Will Play in Development of New 
Prevention Therapies

Biomarkers will play a major role in improving accuracy of risk prediction and 
development of new more acceptable risk reduction approaches with fewer side 
effects. In this chapter we will discuss biomarkers used in breast cancer prevention 
research and how they are incorporated into chemoprevention trials.
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Risk Biomarkers

The most important biomarker for prevention trials is the risk biomarker as if it is 
modifiable it also may serve as an indicator of response as a surrogate for cancer 
incidence [36].

Ideal Characteristics of Risk Biomarkers

An ideal risk biomarker has all of the following properties:

• biologically plausible
• associated with cancer in prospective cohort studies
• high discriminatory accuracy (can separate individuals into high vs low prob-

ability of developing cancer)
• is present in a reasonable proportion of a high-risk population
• obtainable by minimally invasive techniques
• minimally influenced by normal physiologic processes
• assessment method is readily reproduced

Although many biomarkers have been associated with risk for breast cancer, none 
truly meet all the above ideal criteria. Table 1 indicates various classes of risk bio-
markers (discussed in detail below) and in general how well they meet risk criteria.

Germline Mutations

High penetrance germline mutations such as BRCA1, BRCA2, P53, PTEN, and 
PALB2 satisfy all the above criteria for an ideal risk biomarker except that they are 
present in a small minority (~ 5 %) of women with breast cancer and in less than 1 % 
of the general population [37–39]. Despite their rarity, high penetrance mutations 
dramatically influence type of screening, age at screening initiation, and prevention 
modalities and clinical trial interventions selected. Currently women with deleteri-
ous mutations in BRCA2, P53, PTEN, and PALB2 have a 40 % or higher lifetime 
chance of breast cancer and often a 10–20 fold relative risk of breast cancer in their 
30s and 40s compared to average risk women. Approximately 70 % of cancers in 
women with BRCA1 mutations do not express estrogen receptor (ER) which raises 
concerns about the use of a SERM or an aromatase inhibitor for primary prevention. 
A recent large study in BRCA1 or BRCA2 mutation carriers suggests that tamoxifen 
reduces risk of contralateral breast cancer whether the woman has a mutation in 
BRCA1 or BRCA2 (cancers developing in BRCA2 mutation carriers unlike those 
in BRCA1 mutation carriers are most often hormone receptor-positive) [40]. Most 
women with BRCA1 mutations are likely to be most interested in prevention in-
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terventions which target prevention of both ER-negative and ER-positive cancers. 
Since screening starts at age 25, young women with BRCA1/2 mutations are good 
candidates for natural product or behavioral intervention trials that will not interfere 
with fertility.

Women age 35 and older are likely to have undergone prophylactic salpingo-
oophorectomy, but given the information that the combination of salpingo-oopho-
rectomy and yearly magnetic resonance imaging (MRI) produces similar survival as 
salpingo-oophorectomy and bilateral mastectomy [41], carriers often opt to forgo or 
delay a commonly recommended option, prophylactic mastectomy, for these wom-
en [21], until or unless they actually develop breast cancer. BRCA1/2 mutation car-
riers who wish to preserve their breasts after salpingo-oophorectomy are also ideal 
candidates for prevention trials.

Table 1  Risk biomarkers commonly used for cohort selection or as response indicators in preven-
tion trials
Risk factors Associated relative risk Reference
High penetrance breast cancer susceptibility 
genes ( BRCA1/BRCA2)

10–20 (age dependent) [39]

Mammographic breast density
< 5 vs 75 % 4–5 [82]
< 5 vs 50 % 3
Breast histology
Hyperplasia 1.4–2 [55]
Atypical hyperplasia 4–5 [21]
In situ cancer 10–20
Total estradiol
Postmenopausal < 5 vs 9 pg/ml 2 [89]
Free estradiol
Postmenopausal < 0.064 vs > 1.48 pg/ml 2 [89]
Follicular total estradiol
Premenopausal < 29 vs >  66 pg/ml 2 [93]
Follicular free estradiol
Premenopausal < 0.4 vs > 0.56 pg/ml 2 [93]
Total testosterone
Postmenopausal <15 vs >26 ng/dl 1.6 [89]
Premenopausal <  20 vs >  32 ng/dl 2 [93]
Free testosterone
Postmenopausal < 0.016 vs > 0.32 ng/ml 1.8 [89]
Premenopausal <0.15 vs > 0.21 ng/ml 2 [93]
Body mass index
Premenopausal >age 35
<  25 vs 25–30 kg/m2 1.6 [100]
<    25 vs > 30 kg/m2 1.7 [100]
Postmenopausal 28–30 kg/m2 1.2–1.5 [101]
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Single Nucleotide Polymorphisms

Single nucleotide polymorphisms (SNPs) are more common than the high pene-
trance breast cancer susceptibility gene mutations described above; risk increase 
is modest when used independently [42]. SNPs are being explored to help stratify 
risk based on common assessment models such as the Gail model which has a con-
cordance little better than chance [43, 44]. A case control study from the Women’s 
Health Initiative suggests that addition of a SNP panel to the Gail model increases 
the c-statistic from 0.55 to 0.59 but that SNP associated risk was nearly independent 
of Gail model risk [45]. Other studies combining SNP panels with breast density 
or SNP panels with body mass index (BMI) +/− breast density suggest the concor-
dance statistic can be raised from 0.55 with the Gail model to over 0.60 with SNPs 
plus mammographic density [46, 47].

Whether SNP panels will come into common clinical use as adjuncts to risk as-
sessment with commonly used models such as Gail and Tyrer–Cuzick [48, 49] and/
or give women more confidence in their model risk estimates remains to be seen. 
However, select SNPs are likely to be utilized as part of prevention trials to select or 
exclude individuals from participation in a study of a particular intervention or ex-
plain aberrant results. Although it no longer seems that CYP2D6 alleles are of major 
critical importance in tamoxifen response, a recent report suggests that variant al-
leles in ZNF423 and CTSO genes involved with BRCA1 regulation can predict up to 
five fold difference in response to SERMs [50]. Polymorphic alleles of other genes 
may impact new agents being evaluated in ongoing prevention trials such as CYP17 
polymorphisms important in lignan metabolism and arachidonate 5-lipoxygenase 
( ALOX5) gene variants important in metabolism of the marine omega-3 fatty acids, 
eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) [51–53].

Breast Hyperplasia and Atypical Hyperplasia

After high penetrance mutations for hereditary breast cancer, chest radiation before 
age 30, and carcinoma in situ, atypical hyperplasia found in 3.5–10 % of diagnostic 
biopsies is associated with the highest term risk of any of the biomarkers (Table 1). 
Recent long-term follow-up data from the Mayo Clinic suggest that the absolute 
risk for either invasive cancer or ductal carcinoma in situ (DCIS) after a biopsy 
showing atypical ductal hyperplasia or atypical lobular hyperplasia is close to 1 % 
per year and was predicted to be 30 % at 25 years from diagnosis [54]. The Vander-
bilt series [55] originally suggested that women with a biopsy showing atypical 
hyperplasia and a family history of breast cancer had twice the relative risk as those 
with atypical hyperplasia alone. However, if other unfavorable histologic variables 
such as multiple atypical foci and limited lobular involution are considered, then 
family history was not significant [54]. This is not surprising as women with a 
strong family history of breast cancer may be more likely to have multifocal pre-
cancerous changes and thus multiple atypical foci.
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Women with atypical hyperplasia are often referred to specialty clinics for risk 
counseling and risk reduction management. For women with atypical hyperplasia, 
the Gail model generally underestimates risk and the Tyrer–Cuzick (IBIS) model 
generally overestimates risk with a concordance statistic for both close to 0.5 [56, 
57]. A new model, the BBD-BC based on findings from the Mayo Benign Breast 
Disease cohort which requires knowledge of number of lobules with atypical foci 
and extent of lobular involution [58], has a concordance statistic of 0.62 in women 
with atypical hyperplasia [59]. The BBD-BC model is not likely to be widely used 
unless the number of atypical foci and the extent of lobular involution becomes a 
matter of routine reporting by pathologists.

Surgical re-excision after a core biopsy showing atypical ductal hyperplasia is 
considered standard of care because of a 10–30 % possibility of upgrading, usually 
to DCIS [21]. Although controversy remains, there is again movement away from 
automatic surgical re-excision of atypical lobular hyperplasia if pathology and radi-
ology findings are concordant, as upgrading in this circumstance is only 0–6 % [21]. 
Despite a lifetime risk of 25 % or more, neither yearly surveillance breast MRI nor 
prophylactic mastectomy is recommended by NCCN guidelines and is not likely to 
be covered by insurance. The observation in the Mayo Clinic Benign Breast Disease 
cohort that women with atypical hyperplasia and three or more identified atypical 
foci have a breast cancer incidence approaching 50 % at 25 years [21] may result in 
greater third party coverage for surveillance MRI and prophylactic mastectomy for 
women with high-risk atypical hyperplasia.

At present, anti-hormonal therapy with a SERM or aromatase inhibitor is consid-
ered the standard prevention option after local excision for women with a diagnosis 
of atypical hyperplasia. Those who do not wish to do so (currently the majority) are 
an ideal cohort for prevention trials.

Because women with atypical hyperplasia, particularly atypical ductal hyper-
plasia, are likely to have had the index lesion excised, use of histologic evidence 
of atypical hyperplasia as a response biomarker in Phase II chemoprevention trials 
is not practical as the lesion cannot be resampled. However, presence of cytologic 
atypia in RPFNA in high-risk women has been associated with a five-fold increase 
of DCIS and invasive breast cancer at a median follow-up time of 4 years similar to 
its histologic counterpart [27]. Evidence of hyperplasia with atypia in RPFNA may 
then be used as a risk biomarker for cohort selection for chemoprevention trials and 
as a response biomarker as well.

Proliferation (Ki-67), ER, Methylation, and Other Molecular 
Markers in Benign Breast Tissue

The proportion of breast epithelial cells in terminal lobular duct units expressing ER 
and Ki-67 varies with age, menstrual cycle phase, menopausal status, and type of 
benign breast disease (Fig. 1). In normal premenopausal breast epithelium, prolifer-
ation (Ki-67) correlates with systemic concentrations of progesterone, not estradiol, 
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and is lowest in the follicular phase (~ 1 %) and highest in the luteal phase (2–3 %) 
[60, 61]. Ki-67 labeling averages 0–1 % in normal postmenopausal epithelium [61]. 
A Ki-67 labeling index of 2 % or higher in usual ductal hyperplasia or atypical hy-
perplasia is associated with increased risk of breast cancer compared with women 
with lower levels of proliferation in hyperplastic foci [62, 63].

ER-alpha expression in normal breast epithelial cells displays an opposite pat-
tern from Ki-67 and is lowest in the luteal phase (0–5 %) and highest in the fol-
licular phase (10 %) of premenopausal women. With declining systemic hormone 
levels, ER-alpha expression increases to ~ 30 % of cells in the terminal lobule duct 
unit of postmenopausal women [22, 61, 64, 65]. ER-alpha also shows progressive 
increases to 45 % or more of epithelial cells in usual duct hyperplasia and 90 % or 
higher for atypical ductal hyperplasia [22, 54, 61] (Fig. 1). The proportion of cells 
positive for ER-beta (over 90 % in normal lobules) relative to ER-alpha declines in 
hyperplasia (~ 75 %) and invasive breast cancer (60 %) [23].

Few cells in the normal terminal lobule duct unit co-express ER-alpha and Ki-
67. In premenopausal women, this is 0.01 % of normal epithelial cells with higher 
levels in postmenopausal women despite a lower overall labeling with Ki-67 [61]. 
The proportion of dual labeled cells increases in hyperplasia and in atypical hy-
perplasia the negative association between ER-alpha and Ki-67 is lost. High cy-
clooxygenase-2 (COX-2) immunocytochemical expression in women with atypical 

Fig. 1  The association between histologic abnormality and relative risk (RR) for development of 
invasive breast cancer. (Modified from Fig. 1 in Fabian et al. [66], with added information from 
Allred et al. [22]. ADH atypical ductal hyperplasia, DCIS ductal carcinoma in situ, LCIS lobular 
carcinoma in situ, TDLU terminal ductal lobular units, UL unfolded lobule)
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hyperplasia, has also been associated with risk of subsequent risk of cancer in the 
Mayo Clinic Benign Breast Disease cohort [67].

Ki-67 in hyperplastic or atypical foci and/or dually staining Ki-67/ER-alpha-
positive cells is likely to be a good risk biomarker in premenopausal women or 
postmenopausal women taking hormone replacement therapy. Terminal duct lobule 
involution is negatively associated with higher serum estradiol and testosterone in 
postmenopausal women [68]. Assays can be readily performed in tissue sections 
from core needle biopsies or surgical resections (Fig. 2) or on breast epithelial cells 
acquired by RPFNA (Fig. 3) [69–72].

However, Ki-67 is not a practical risk or response biomarker for most post-
menopausal women who often have near complete lobular involution, few epithe-
lial cells, and little detectable Ki-67.

Methylation of the promoter regions of multiple tumor suppressor genes that 
code for p16(INK4), BRCA1, ER-alpha, RASSF1A, TWIST1, HIN1, and RAR-beta 
in benign breast tissue, ductoscopy washings, ductal fluid, and blood has also been 
associated with breast cancer risk [73–76]. Promotor methylation is probably an 
early event in carcinogenesis, particularly in the evolution of the Luminal B subtype. 
Relative risks have not been well-defined and may vary depending on the methyl-
ated gene and/or the number of methylated tumor suppressor genes identified [77].

Fig. 2  Assessment of proliferation by MIB-1 immunohistochemical staining in normal breast tis-
sue to invasive breast cancer. (Images provided by Ossama W. Tawfik, M.D., Ph.D., Department 
of Pathology, University of Kansas Medical Center. ADH atypical ductal hyperplasia, DCIS ductal 
carcinoma in situ)
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Benign breast tissue expression of estrogen response genes that code for ER-
alpha and ER-beta, pS2, PR, GREB-1 and GREB-2; and genes associated with cell 
cycle or proliferation regulators such as Cyclin D1, Cyclin B1, or BRCA1 may 
eventually be identified as important risk modifiers or response indicators in a pre-
vention trial and can be assessed in very small quantities of formalin fixed or frozen 
tissue by reverse transcription polymerase chain reaction (RT-qPCR) [78, 79].

Alterations in protein and phosphoprotein expression have been identified in 
multiple pathways important in carcinogenesis. Assessment of a large number of 
proteins and phosphoproteins can be performed on very small amounts of tissue 
using reverse phase protein arrays and similar assays. These assessments are highly 
dependent on type of tissue specimen and pre-analytic processing. Protein arrays 
are currently not used in risk assessment but are used in clinical trials as mechanism 
of action biomarkers [80].

Mammographic Breast Density

As opposed to germline genetic testing and breast biopsies, most women 50 years 
of age and older have a mammogram every 1–2 years as part of screening for breast 
cancer. Thus, mammographic density expressed as either absolute dense area or 
percent dense area relative to the total area of the breast can be readily and inex-
pensively obtained for use as a risk or surrogate response endpoint [81]. Women 
with > 75 % breast density have a risk of breast cancer four to five times that of an 
individual with no density (about 10 % in each of the extremes). A meta-analysis 
suggests that percent dense area versus absolute dense area is the strongest pre-
dictor of risk [81–83]. It is clear that not all conditions associated with increased 
cancer risk are also associated with increased breast density. Obesity is associated 
with increased breast cancer risk but reduced percent dense area on a mammogram. 

Fig. 3  Assessment of pro-
liferation by Ki-67 immu-
nocytochemical staining in 
benign breast epithelial cells 
acquired by random peri-
areolar fine needle aspiration 
( RPFNA)
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Likewise 10-year risk of breast cancer is generally lower in young premenopausal 
women which often have the highest breast density. In the International Breast 
Cancer Intervention Study (IBIS)-1 trial of tamoxifen vs placebo, breast density 
adjusted for age and BMI was a stronger measure of breast cancer risk than unad-
justed percent dense area [81]. For studies in which a single measurement of density 
is meant to classify risk, correction of the density measurement for BMI and age 
is recommended but is probably not needed in prevention studies using change in 
mammographic density as an endpoint. Recently, there has been considerable effort 
devoted to using automated volumetric approaches to assess breast density directly 
from digital mammography [84] and to correlate these with MRI assessment of 
fibroglandular tissue [85, 86] for use in risk prediction.

High density has long been recognized as having a strong hereditary compo-
nent [87]. A recent genome-wide association study (GWAS) involving over 18,000 
women with cancer identified a number of genes as correlated both with density and 
breast cancer of which AREG associated with amphiregulin, ESR1 associated with 
the ER, a Zinc finger gene, and IGF1 were some of the most important [88].

Blood Hormones and Growth Factors

Endogenous total and free estradiol and testosterone concentrations in postmeno-
pausal women have been consistently associated with increased risk for breast can-
cer in prospective cohort, case-cohort, and case control studies [89, 90]. The increase 
in relative risk between highest and lowest groups is generally in the two-fold range 
[89] (Table 1). Estradiol and testosterone appear to stratify risk based on the Gail 
model [91]. No association was noted between serum estradiol, testosterone and sex 
hormone binding globulin (SHBG) and the risk biomarker mammographic breast 
density after adjustment for BMI in the Women’s Health Initiative [92].

Results from serum hormone studies in premenopausal women are not entirely 
in agreement probably due to different sampling times in the cycle and different 
assays. In the large nested case-control study from the Nurses’ Health Study II in 
which blood was obtained in both the mid-follicular and luteal phases, there was a 
two-fold increase in risk in the highest compared with the lowest quartiles of total 
and free follicular phase estradiol. No association was observed with luteal phase 
estradiol concentrations [93] (Table 1). A two-fold higher risk was also noted for 
highest vs lowest quartile of luteal phase total and free testosterone with no associa-
tion for SHBG, estrone, or estrone sulfate [93]. A nested case-control study within 
the EPIC cohort noted no difference in risk between quartiles of serum estradiol 
obtained from a single blood sample obtained during a non-specified portion of the 
cycle. An increase in relative risk (1.7) for the highest compared with the lowest 
quartiles of testosterone was reported as well as a decrease in risk between the high-
est and lowest quartiles of serum progesterone (0.60) [94]. A nested case-control 
study in the New York University Women’s Health Study also found a 1.8 relative 
increase in risk with the highest compared to the lowest quartiles of free and total 



80 C. J. Fabian and B. F. Kimler

testosterone [95]. These data would appear to indicate that in both pre- and post-
menopausal women, endogenous free or bioavailable testosterone may be used as 
a risk and a response biomarker. The same is true of free and total estradiol in 
postmenopausal women and probably follicular phase free and total estradiol in 
premenopausal women. The finding in the Nurses’ Health Study that higher endog-
enous progesterone in premenopausal women is protective deserves follow-up but 
higher endogenous progesterone was associated with greater terminal lobular duct 
involution in a recently published study utilizing normal breast tissue and blood 
[68].

Blood Lipid Metabolism and Inflammatory Markers

Although breast cancer has traditionally been thought of as a hormonally promoted 
cancer, it is increasingly acknowledged that inflammation may play a role in the 
development of more aggressive ER-negative and ER-positive cancers [96]. Breast 
inflammation may be part of a systemic disorder such as that observed in obesity re-
lated insulin resistance, with reduced adiponectin:leptin ratio, elevated pro-inflam-
matory cytokines and eicosanoids; and increases in aromatase activity and estrogen 
production in adipose [97–99]. BMI > 30 kg/m2 has long been associated with a 
modest increase in risk of postmenopausal breast cancer but increasing evidence 
suggests a high BMI in premenopausal women > 35 years of age is also associated 
with increased risk [100, 101] (Table 1). Evidence is increasingly suggesting that it 
is the presence or lack of metabolic health (defined by normal serum insulin levels, 
lack of insulin resistance, and normal levels of pro-inflammatory cytokines) which 
is truly the operative risk factor—not weight or BMI [102]. Serum concentrations 
of C-reactive protein (CRP), insulin-like growth factor -1 (IGF-1), and homeostasis 
model of insulin resistance (HOMA IR) are positively associated and the adipokine 
adiponectin and adiponectin:leptin ratio negatively associated with increased risk of 
benign breast disease and cancer [97, 103–107].

However, proliferative breast disease, even in the absence of obesity and sys-
temic elevation of cytokines, is also an inflammatory process, although perhaps a 
more localized one. A progressive increase in activated macrophages and T cells 
between normal breast tissue, proliferative breast disease, and breast cancer has 
been observed which might be due to abnormal antigen presentation or tissue break-
down products [108]. We do know that activated macrophages are an important 
determinant of cytokine production in the microenvironment [109], and the pro-
inflammatory cascade results in mTOR activation which is acknowledged as impor-
tant in breast carcinogenesis [110]. There is some evidence that genetic variants in 
interleukin 6 (IL-6), tumor necrosis factor (TNF) alpha, and their receptors may be 
associated with altered breast cancer risk [111].

More work is needed in determining the relevance of elevated systemic and lo-
cal levels of a large number of inflammatory markers including IL-6, macrophage 
chemoattractant protein (MCP-1), plasminogen activator inhibitor 1 (PAI-1), and 
TNF-alpha.
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Use of Biomarkers in Prevention Intervention Trials

Risk Biomarkers to Select the Cohort

A certain level of risk is usually mandated to warrant the risk or inconvenience of 
clinical trial participation. Often biomarkers are used to supplement estimated risk 
based on family and personal history models. For example, eligibility criteria for a 
trial might specify any of the following as risk criteria for entry: a relative risk of 2X 
that of the average risk woman in her age group based on the Gail or Tyrer–Cuzick 
model, mammographic breast density > 50 %, RPFNA evidence of atypia, or muta-
tion in a moderate to high penetrance hereditary breast cancer gene.

Matching the Participant and Intervention

Biomarkers may also be used to enhance the probability of clinical trial success, i.e., 
precision medicine for prevention. Examples might be a germline BRCA1 mutation 
for a PARP inhibitor trial, high serum insulin or HOMA IR index for a metformin or 
weight loss trial [112], and a low ratio of EPA + DHA to arachidonic acid in eryth-
rocytes in women considering a marine omega-3 fatty acid supplementation trial.

Pharmacodynamic Measures

A biomarker that may have little to do with breast cancer risk but that can document 
that an agent is having a physiologic effect can be used for preliminary dose find-
ing as well as compliance. Increases in blood concentrations of enterolactone and 
enterodiol are examples for lignans, and decrease in triglycerides are examples for 
omega-3 fatty acids.

Surrogate Endpoint (Response) Biomarkers

Potential response biomarkers should satisfy a number of criteria, as delineated 
previously.

How some of the commonly used classes of risk/response biomarkers compare 
as far as satisfying the criteria is described in Table 2.

Optimally the risk biomarker would be validated as a response indicator or sur-
rogate endpoint biomarker by demonstrating that modulation is associated with 
reduction in breast cancer incidence in a Phase III prevention trial. None of the 
biomarkers we currently use as response indicators are truly validated but perhaps 



82 C. J. Fabian and B. F. Kimler

proliferative breast disease with and without atypia, Ki-67 in proliferative lesions, 
and mammographic density come the closest. Tamoxifen was associated with re-
duction in benign breast biopsies and a finding of atypical hyperplasia in NSABP 
P-1; but it is unclear if tamoxifen eradicates atypical hyperplasia and if so how long 
this would take [113]. Reduction in breast density appeared to be associated with 
reduction in risk of breast cancer with tamoxifen in IBIS-1 with little evidence of 
risk reduction in those with no change in density [114]; but density is not modulated 
with all anti-estrogenic therapy. Low Ki-67 after short term tamoxifen treatment or 
reduction in Ki-67 from baseline has been shown to be associated with reduced risk 
of recurrence in early cancer treatment trials [115] but we have little information as 
to whether decrease in Ki-67 in benign breast tissue with prevention treatment leads 
to decreased cancer incidence.

Proliferative breast disease and atypical hyperplasia are in the direct pathway 
of breast carcinogenesis, theoretically modifiable, minimally affected by normal 
physiologic processes such as phase of menstrual cycle, and would thus be the pre-
ferred surrogate response indicator. On the negative side it may not be attractive to 
participants to access tissue and this is likely to be a major study expense plus it is 
difficult to quantify morphologic change and the time course for reversing abnor-
malities is unclear.

Table 2  Utility of commonly used risk and response biomarkers. (Modified from Fabian et al. 
[66])

Morphology Proliferation Mam-
mographic 
density

Serum 
hormones/
growth 
factors

Serum 
inflam-
matory 
markers

Tissue 
molecular 
markersa

Biologically 
plausible

Y Y Y Y Y Y

Strong 
statistical 
association w/
cancer

Y Y Y +/− N +/−

Not affected 
by normal 
physiologic 
processes

Y N +/− N Y N

Can be 
measured 
in majority 
of at-risk 
population

Y Y Y Y Y Y

Easily 
sampled

N N Y Y Y N

Quantified +/− Y +/− Y Y ?
Modulated 
by known 
prevention 
drugs

Y Y Y Y +/− ?

a Includes genomics (mRNA and mRNA methylation by PCR), proteomics, and metabolomics
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Given these considerations and the 6–12 month treatment interval for most Phase 
II trials, change in Ki-67 in an area of hyperplasia or atypical hyperplasia may be a 
more practical surrogate response indicator than morphology alone and thus is one 
of the most common primary endpoints used for Phase II prevention trials. Since 
the majority of postmenopausal women not on hormone replacement, as well as 
many parous premenopausal women, have partial or complete lobular involution, if 
Ki-67 is chosen as the primary endpoint it is imperative to demonstrate measureable 
Ki-67 prior to participant entry onto a study. Due to low epithelial cell number and 
proliferation rates in postmenopausal women not on hormone replacement, Ki-67 is 
not a practical primary endpoint for this group of women.

Choice of tissue sampling method is largely principal investigator dependent. 
Ductal lavage is no longer used for studies requiring cells as ductal fluid is often 
poorly cellular [66, 116]. RPFNA is used as the sampling method for Phase II tri-
als by multiple investigators in the United States and works well in multi-site tri-
als [117]. Multiple random biopsies or biopsies directed towards sonographically 
dense areas are generally the most expensive sampling procedures and potentially 
the most complicated to arrange, particularly if the trial is in premenopausal women 
and sampling must be in a particular phase of the menstrual cycle. We use RPFNA 
and aspirate in the early follicular phase (day 1 to 10) as Ki-67 is thought to be most 
stable during this phase.

Tissue sampling also provides the opportunity to preserve fresh frozen tissue 
for gene expression or proteomics analysis for exploratory studies if the underly-
ing mechanism is not known or for hypothesis driven marker assessment [71, 79, 
118–120].

Mammographic density is quantifiable with computer assisted programs, is not 
invasive, and may be minimally expensive for the trial as yearly mammography 
is part of standard of care for most high-risk women 40 and older. Unfortunately, 
change in breast density is not an appropriate surrogate endpoint for all interven-
tions [121]. Although it is likely to be good surrogate for most SERMs [114], it is 
not modulated by aromatase inhibitors known to reduce breast cancer risk [122]. 
Weight reduction may actually increase percent dense area [119, 123]. Breast den-
sity, even with computer assisted calculations, is subjective and pre and post inter-
vention assessments should be performed by the same individual at the same setting 
with the rater blinded as to which image was baseline [124]. In addition there are 
a number of technical factors that can introduce error when change is being evalu-
ated including variation in type of imaging, positioning and degree of compression. 
Mammographic density is validated for trials involving tamoxifen [114]. However, 
despite the findings from IBIS-1, in which women with < 10 % reduction in breast 
density appeared not to have a reduced risk of breast cancer [114], it is premature to 
stop tamoxifen or other SERMs in women who do not have a measurable change in 
density after a year or more of treatment.

Selection of a biomarker as a surrogate response endpoint is often dependent on 
many variables including the intervention to be tested, how much is known about 
the molecular mechanisms responsible for effects, cohort characteristics, antici-
pated duration of intervention, and budget. A variety of biomarkers are available 
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from several sources (Fig. 4); however, particularly in Phase II trials, use of only 
serum markers as a primary endpoint is discouraged and in general for Phase II tri-
als at least one biomarker selected should be directly reflective of breast tissue or 
physiology.

Trial Models for Clinical Prevention Trials

Dose Finding

When the effective dose of an intervention is not known, a dose finding or Phase I 
trial is performed with the aim of establishing the lowest effective dose at which the 
desired biologic effect is likely to be reliably obtained. Phase IA trials usually assess 
multiple markers and multiple dose levels whereas Phase IB is placebo or no treat-
ment controlled and confirms modulation of both a pharmacodynamic and a risk 
biomarker at a given dose level [66]. One of the most popular dose finding models 
is the so called pre-surgical or window of opportunity trial (Fig. 5) in which women 
with DCIS or a small invasive cancer are randomized between one of several doses 
in the interval (usually 4 weeks) between biopsy and the definitive surgical proce-
dure. Change in Ki-67 in the cancer is generally used as the primary endpoint and 

Fig. 4  Sources for biomarker assessments used in prevention trials, including several approaches 
for the sampling of breast tissue
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8–10 women are enrolled per dose level. In Phase IIB the dose that is associated 
with change in Ki-67 is compared against a no treatment control arm or placebo 
[125, 126]. Generally speaking, due to a wound healing response after core needle 
biopsy, Ki-67 exhibits an increase in the placebo or no-treatment control group 
from baseline, usually minimal for ER-positive tumors and much larger (~5 %) for 
hormone receptor-negative tumors [127]. The statistically significant differences 
between control and intervention observed in these trials is due not just to Ki-67 
reduction in the intervention arm but also the increase in Ki-67 in the control arm.

Phase IIA pilots are generally performed when feasibility of the intervention 
needs to be demonstrated, it is uncertain which risk biomarkers may be modulated, 
and/or an effect size for the primary endpoint biomarker needs to be estimated for 
the purpose of determining sample size for a Phase IIB trial. Phase IIA pilots and 
full Phase IIB randomized trials typically involve healthy volunteers who are at 
high-risk for development of breast cancer, rather than patients who have already 
been diagnosed with in situ or invasive neoplasia. Phase II pilots may be single arm 
or placebo-controlled but rarely exceed 30–40 biomarker evaluable participants. 
The most frequent primary endpoint is change in Ki-67 in hyperplastic benign 
breast tissue acquired by RPFNA (Fig. 6) with a trial length of 6–12 months. If a 
change in Ki-67 or another strong risk biomarker is demonstrated, the intervention 
progresses to a Phase IIB trial.

Fig. 5  Schematic of the “window of opportunity” trial model. The diagnostic biopsy and the surgi-
cal specimen acquired clinically as standard of care provide the pre- and post-intervention sources 
for biomarker assessment. While there is no assurance that a specific biomarker will be expressed 
in both specimens, assays are amenable to batch processing to reduce variability. The treatment 
time is restricted to the clinically mandated interval between diagnosis and surgery. DCIS ductal 
carcinoma in situ
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A Phase IIB trial is always placebo-controlled and generally involves over 200 
biomarker evaluable participants. Benign breast tissue is generally sampled unless 
there was prior clear evidence of modulation of another strong risk biomarker such 
as mammographic density in the Phase II pilot. The primary endpoint is change in 
Ki-67 in women with hyperplasia or hyperplasia with atypia. Selecting a robust and 
meaningful primary endpoint biomarker for prevention trials in benign breast tissue 
of postmenopausal women not on hormone replacement is often problematic in that 
this cohort has a high proportion of women with lobular involution, a low rate of 
proliferation and low mammographic density. Depending on the intervention, as-
sessing blood risk biomarkers as a primary endpoint with breast tissue sampled for 
select gene expression, cytokines, and proteins and phosphoproteins in pathways of 
interest may be the best alternative.

A Phase IIB trial generally explores mechanism of action biomarkers through 
assessment of gene expression, proteomic, and/or cytokine change in breast tis-
sue; and hormonal, growth factor and cytokine changes in blood. A Phase IIB trial 
showing modulation of one or more response biomarkers combined with minimal 
side effects would generally signal the need to move to a Phase III trial of cancer 
incidence. While this approach is likely needed for FDA approval of a pharmaceu-
tical agent, other clinical benefit endpoints are possible such as reduction in the 
incidence of biopsies. For behavioral interventions and natural products not requir-
ing a prescription, Phase II-III trials in which biomarker modulation is the primary 
endpoint may be reasonable (see below).

Fig. 6  Schematic of the random periareolar fine needle aspiration ( RPFNA) trial model. A base-
line specimen is screened to confirm biomarker eligibility criteria are met. Eligible participants 
receive study agent for 6–12 months, followed by repeat RPFNA
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Future: Integrated Phase II Human and Phase II–III 
Animal Co-Trials

The cost of Phase III prevention trials combined with lack of uptake of effective in-
terventions for primary prevention has dramatically reduced if not halted the launch 
of large Phase III prevention trials of pharmaceutical agents in which cancer inci-
dence is the primary endpoint. The current focus is on development and testing of 
behavioral prevention interventions and natural products and their derivatives avail-
able without prescription and the need for FDA approval. Phase II trials with risk 
biomarkers as an endpoint are performed in conjunction with a similarly designed 
animal model studies which utilize a similar level of exposure and biomarker as-
sessment. In the animal model studies, however, designated cohorts are allowed to 
go on to cancer development such that biomarker modulation can be correlated with 
reduction of cancer incidence (Fig. 7). Several of these co-trials are ongoing.

Summary

A variety of biomarkers have been recognized/developed over the past two decades 
which can help stratify risk estimates based on traditional variables of personal 
reproductive and family history. Those associated with the highest relative and ab-
solute risks are useful in identifying women likely to be interested in standard risk 
reduction interventions or clinical trials. Further biomarkers which are modifiable 
and readily quantitated are useful as surrogate response indicators as a substitute for 
cancer incidence in Phase II trials. Currently the most frequently used surrogate re-
sponse indicator is Ki-67 in DCIS or small invasive cancers in short term window of 
opportunity trials as well as Ki-67 in hyperplastic benign breast epithelium longer 
term Phase II trials. Mammographic density is also used as primary or secondary 
endpoint particularly in Phase II trials of SERMs. Tissue and serum adipokines, 
cytokines and growth factors, methylation of oncogenes, and serum hormones are 
additionally used as risk and response indicators and may assume particular impor-
tance for clinical trials depending on the intervention and menopausal status of the 
cohort. Newer types of assessments such as RT-qPCR assessing gene expression in 
benign breast tissue and protein and phosphoprotein arrays targeting specific path-
ways are important in defining the underlying mechanism of action. The current 
emphasis on behavioral interventions and natural products combined with the lack 
of enthusiasm for large Phase III cancer incidence trials has resulted in development 
of novel Phase II-III translational trial design models for interventions not requir-
ing FDA approval. Human and animal co-trials are where both human and animal 
participants receive similar intervention exposure and have the same biomarkers 
assessed before and after the intervention. Whereas the human trial ends with re-
assessment of biomarkers in blood and benign breast tissue, cohorts of animals are 
allowed to continue on to cancer development allowing investigators to associate 
biomarker modulation with cancer development at least in the animal trial.
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Breast Molecular Profiling and Radiotherapy 
Considerations
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Abstract The last decade has seen major changes in the management of breast 
cancer. Heterogeneity regarding histology, therapeutic response, dissemination pat-
terns, and patient outcome is evident. Molecular profiling provides an accurate tool 
to predict treatment outcome compared with classical clinicopathologic features. 
The genomic profiling unveiled the heterogeneity of breast cancer and identified 
distinct biologic subtypes. These advanced techniques were integrated into the clini-
cal management; predicting systemic therapy benefit and overall survival. Utilizing 
genotyping to guide locoregional management decisions needs further character-
ization. In this chapter we will review available data on molecular classification 
of breast cancer, their association with locoregional outcome, their radiobiological 
properties and radiotherapy considerations.

Keywords Breast cancer · Molecular signature · Subtyping · Radiotherapy

Introduction

Radiotherapy (RT) plays an integral role in improving locoregional control and sur-
vival in patients with breast cancer following lumpectomy or mastectomy [1, 2]. 
The magnitude of benefit varies based on tumor size, extent of disease, lymph node 
involvement, and a patient’s age [3, 4]. Yet, the clinical outcome differs signifi-
cantly among patients sharing the same clinicopathologic features.

Ever since the discovery of estrogen receptor (ER) and progesterone receptor 
(PgR) expression in breast cancer cells [5], treatment strategies changed significant-
ly to adapt these markers in the treatment decision making. High throughput tech-
nology interrogating thousands of genes regarding their relative expression identi-
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fied four distinct breast cancer molecular subtypes [6]. The molecular subtypes, 
Luminal A (LumA), Luminal B (LumB), Basal-like and Human epidermal growth 
factor receptor (Her-2/neu) enriched subtypes (HER2), illustrated the heterogeneity 
of breast cancer disease spectrum and the limitations of classic clinicopathologic 
factors in predicting outcomes.

This classification was incorporated into the clinic to direct systemic therapy de-
cisions [7]. In contrast, inclusion of breast cancer subtyping in guiding local therapy 
needs further characterization [7] . The evidence supporting biologic marker use in 
RT treatment decisions has not been strong due to many reasons: conflicting find-
ings reported by different study designs, various end points, non-systematic RT use 
and multiple management paradigms spanning across time [8].

Breast cancer subtyping may refine the treatment decision in controversial situ-
ations such as:

1. Identifying patients without tangible RT benefits after wide excision of small 
early stage disease

2. Deferring treatment in patients at high-risk of radiation induced side effects
3. Recommending RT for patients with one to three positive axillary lymph nodes 

at high-risk of locoregional failure (LRF)
4. Excluding the patient subgroup not suitable for partial breast irradiation
5. Discovering new agents that target pathways enhancing radiation response and/

or reducing radioresistance.

Hints Based on Immunophenotypic Classification

In spite of immunohistochemistry (IHC) limitations [9] in reconstructing molecular 
subtypes, the use of ER, PgR, HER2, Ki-67 and Cytokeratin 5/6 (CK) as markers 
has been widely adopted as a surrogate to genotyping. The less prohibitive tissue 
requirement, cost, complexity and technical availability made IHC a practical ap-
proach instead of the logistically demanding molecular profiling [10]. Table 1 dem-

Table 1  Immunohistochemical criteria for constructing molecular subtypes
Subtypes ER PgR HER2 CK5/6 EGFR Ki-67
LumA Positive  ± Positive Negative Any Any Low
LumB Positive  ± Positive Negative Any Any High

ER-positive  ± Positive Positive Any Any Any
HER2 Negative Negative Positive Any Any Any
TN Basal Negative Negative Negative ± Positive ± Positive Any
TN 
non-Basal

Negative Negative Negative Negative Negative Any

ER estrogen receptor, PgR progesterone receptor, HER 2 human epidermal growth factor receptor 
type 2, TN triple-negative breast cancer, EGFR Epidermal growth factor receptor, CK5/6 Cyto-
keratin 5/6, LumA Luminal A
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onstrates the IHC based approximation including two hormone receptor-positive 
and two hormone receptor-negative subtypes. The hormone receptor-positive group 
(LumA and LumB) is characterized by prominent hormone receptor gene expres-
sion; with LumB displaying a comparatively higher expression of proliferative 
genes. The opposite expression pattern is seen in receptor-negative Basal and HER2 
subtypes. The Basal subtype, exhibiting strong myoepthilial expression pattern, is 
deficient in hormone receptors and HER2 markers; explaining the triple-negative 
breast cancer (TNBC) nomenclature. Conversely, HER2 subtype displays high level 
of HER2 receptor protein or amplifications of the gene (Table 1) [11].

These four subtypes are characterized by distinct biology, evident in their pre-
sentation [9], chemotherapy response [12, 13], and failure pattern [14–16]. In gen-
eral the TNBC subtype is more aggressive and is associated with poor prognosis in 
comparison to other subtypes, in particular LumA, which carries the best prognosis 
[17].

Triple Negative Breast Cancer: Clinical Characteristics and 
Outcome

Distribution and Characteristics

As shown in Table 2, TNBC subtype constitutes 7–24 % of all breast tumors [18]. 
In contrast to other tumor types, TNBC is more often associated with Black race 
[9], younger age [9, 19, 20], large tumor size [19, 20], high tumor grade [19], and 
the presence of BRCA1 mutations [15, 21]. Interestingly, lymphatic involvement is 
independent of this aggressive presentation and its rate is comparable with other 
subtypes [22].

TNBC immunophenotypic pattern was used as a proxy to Basal breast cancer, 
whereas, the later represents a gene expression profile [23] described initially by 
Sørlie et al. [24]. The Basal TNBC is distinguished from the non-Basal subtype by 
overexpression of epidermal growth factor receptor (EGFR), Basal CK 5/6/17, and 
c-Kit [24]. Therefore, sole reliance on the low hormone receptor and HER2 expres-
sion results in up to 30 % misclassification rate [25, 26]. Apart from Millar et al. 
[27] and Voduc et al. [14], most investigators grouped Basal and non-Basal sub-
types TNBC. Out of the 498 patients with breast cancer, in the Millar study, TNBC 
was observed in 68 patients that included 52 patients satisfying the Basal subtype 
five markers requirement [27]. In the Voduc study, the entire patient cohort (2985) 
included 9.8 and 8.7 % Basal-like and non-Basal TNBC, respectively [14]. Howev-
er, this distinction did not reveal a significant difference in 10-year local or regional 
free survival. In this review we will use TNBC as a proxy to a Basal subtype.
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Interdependent Association of Subtype and Covariates on Locoregional 
Failure and its Implications on Radiotherapy Decision Making

Independent of the more aggressive clinicopathologic features or treatment received 
[28], TNBC subtype is characterized by inferior progression-free survival (PFS) 
and overall survival (OS) [9, 29]. In the era prior to the availability of trastuzumab, 
both hormone receptor-negative subtypes (HER2-positive and TNBC), were associ-
ated with early relapse, and propensity to lung and brain metastasis [29–31]. The 
prognosis following local recurrence [32, 33] or distant metastasis was poor with 
short median survival [34]. Furthermore, two meta-analyses confirmed the high 
LRF observed in patients with TNBC [18, 35] in several studies [14, 16, 20, 27], but 
the results were not shared by others [15, 36–39].

The patient population, surgical intervention and distribution of subtypes in these 
studies were variable (Table 2). Many factors have been conventionally linked to a 
higher LRF probability, such as multiple positive lymph nodes [3, 40], large tumor 
size [3, 41], presence of lymphovascular invasion [41], younger age [42], positive 
surgical margins [41], high tumor grade [42], pectoral fascia involvement [41], skin 
invasion [41], lymph node ratio > 0.2 [40] and extra-capsular extension [40]. The 
conflicting reports on TNBC LRF may be resolved by analyzing pattern of failure 
by the breast cancer subtypes while adjusting for the previously mentioned classic 
risk factors.

Based on the adopted surgical approach (mastectomy or lumpectomy), the stud-
ies are grouped into two broad categories to minimize the variability within the 
patient population. Although the majority of patients with TNBC included in the 
studies (Table 3) had early stage breast cancer managed with breast conserving 
therapy (BCT), the 5-year LRF in these select studies varies widely (4.7–17 %). A 
similar wide range is demonstrated in the post mastectomy setting where the 5-year 
LRF rate ranges from 7.4 to 14 % (Table 4).

Follow Up Duration

The variable follow up time may be a potential confounder due to possible higher 
event rate in one subtype versus the others. For instance, shorter follow up could 
only accentuate the LRF difference between TNBC and other subtypes, with the 
formal having a notorious early relapse pattern [29, 30].

Age

Most studies report an association between young age and high LRF risk [43, 44]. 
Moreover, a larger proportion of patients with TNBC present at a young age [17, 
19, 45]. To clarify this confounding variable, Arvold et al. analyzed the LRF pattern 
by age groups and breast cancer subtype [20]. In this study, 11.9 % of the patients 
( n = 1434) undergoing BCT had TNBC. Young age and TNBC status were the most 
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important prognostic factors independently predicting poor LRF on multivariable 
analysis (MVA). For example, the LRF in patients with TNBC was 10.2, 8.9, 8.3 
and 6.5 % in ages 23–46, 47–54, 55–63 and > 63 year old, respectively. Notably, 
both HER2-positive breast cancer and TNBC were associated with higher LRF in 
each age quintile. A similar finding was reported by Voduc et al.; age less than 40 
and hormone receptor-negative subtypes were the most significant independent re-
gional recurrence predictors in patients who undergo BCT. The Hazard ratio (HR) 
for regional failure was 2.2 ( p = 0.035) and 2.7 ( p = 0.009) for younger age and 
Basal subtype, respectively [14]. In the post mastectomy setting, age did not retain 
significance; while tumor size, high grade, positive lymph nodes and non-Luminal 
subtypes were independent predictor of high LRF. Conversely, another study dem-
onstrated the significant association between young age and LRF risk in the post-
mastectomy setting (HR 3.32, p = 0.02) [46].

Tumor Size and Lymph Node Involvement

With the exception of few studies that did not reveal the effect of TNBC subtype 
on LRF rate, either alone or in relation with other covariates [15, 47], the data 
regarding the effect of tumor size and lymph node positivity on LRF risk- in the 
BCT and Total Mastectomy ™ setting- are more consistent. Gabos et al. for ex-
ample, reported that tumor size larger than 2 cm, TNBC status and positive lymph 
nodes were associated with increased LRF on MVA. However, when analyzing the 
LRF pattern by surgery type (approximately one third of patients underwent BCT), 
TNBC status and lymph node positivity were significant only in the TM group (HR 
4.72; p = 0.0069 and HR 3.23; p = 0.0047, respectively) [37]. Contrary to the previ-
ous results, more than three positive lymph nodes and hormone receptor-negative 
tumor subtypes were associated with high LRF in both BCT- (HR 3.2 and 2.7, re-
spectively) and TM-treated patients (HR 2.28 and 4.22, respectively) [14]. Adjust-
ing for lymph node positivity, an inferior disease-free survival (DFS) and OS was 
observed in patients with TNBC presenting with node-positive disease, specifically 
DFS HR was 2.1 ( p = 0.001) in women undergoing BCT and 2.6 ( p < 0.001) in those 
undergoing TM. In contrast, patients with node-negative TNBC did not display sta-
tistically worse DFS or OS when compared with other node-negative subtypes [30]. 
In addition to a non-Luminal subtype, the lymph node positivity, was consistently 
reported as being the most significant predictor of LRF in multiple studies, either 
alone or in association with other risk factors such as lymphovascular invasion [46], 
extra-capsular extension [39], number of lymph nodes [27, 39, 46], extensive intra-
ductal carcinoma [27] or tumor grade [14, 27].

Type of Surgical Approach

Voduc et al. reported on the LRF in 2985 breast cancer patients treated with differ-
ent approaches (BCT: 1461; TM: 1492; TM and RT: 508). On MVA, local failure 
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HR in TNBC were 1.2 ( p = 0.048) and 1.9 ( p = 0.018) in BCT and TM, respectively; 
and regional recurrence HR were 2.7 ( p = 0.009) and 4.22 ( p < 0.001), respectively 
[14].

At first glance, this high LRF rate may justify a more aggressive surgical ap-
proach; however, the LRF rate in this study was comparable between the BCT and 
TM groups. The meta-analysis, conducted by Lowery et al., displayed a similar 
conclusion (Fig. 1 and 2); Compared to TNBC, the LRF HR in hormone receptor-
positive tumors were 0.49 (0.33–0.73) and 0.66 (0.53–0.83) for BCT and TM, re-
spectively [18]. Congruent with this philosophy, Ho et al. reported an excellent 
5-year local control (95 %) in patients with TNBC treated with BCT [36]; implying 
that an aggressive surgery is not warranted in this subtype and that a limited surgery 
and RT in the BCT setting achieves equivalent outcome.

Response to Neoadjuvant Chemotherapy

Neoadjuvant chemotherapy provides an attractive treatment option in patients with 
large operable breast cancer desiring BCT while maintaining equivalent DFS and 
OS to the administration of adjuvant chemotherapy [48]. Moreover, achieving path-
ological complete response (pCR) following neoadjuvant chemotherapy has been 
constantly associated with an improved disease outcome [49, 50].

Regarding breast cancer subtypes and the impact of achieving pCR on locore-
gional control, Caudle et al. reported a 38 % pCR rate to neoadjuvant chemotherapy 
in a TNBC group (193 out of 595 patients) compared with 9 % pCR rate in LumA 

Fig. 1  Locoregional recurrence relative risk (RR) in patients with triple negative (TN) breast 
cancer compared with other subtypes after breast conserving therapy (BCT) [18]
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subtype. On MVA, TNBC subtype and more than four positive lymph nodes were 
significant for increased LRF risk (HR 5.7 and 2.9, respectively), while, achieving 
pCR was associated with lower LRF risk (HR 0.22, p = 0.01) [51]. In addition to 
the traditional covariates (number of positive lymph nodes, extra-capsular exten-
sion), the univariable (UVA) model identified that post treatment tumor size and 
stage were significantly associated with LRF risk in 149 patients with breast can-
cer receiving neoadjuvant chemotherapy for their locally advanced disease. In this 
analysis the relatively low number of events did not allow for MVA to examine the 
relation between subtypes and pCR [39].

Many reports confirmed that intrinsic breast cancer subtypes varies in their re-
sponse to neoadjuvant chemotherapy with a pCR rate reaching as high as 30 % in 
hormone receptor-negative tumors compared to < 10 % in hormone receptor-posi-
tive tumors [12]; potentially representing a promising treatment strategy for these 
aggressive subgroups associated with advanced presentation and inferior prognosis 
[51, 52].

Adjuvant Systemic Therapy

The chemosensitive breast cancer subtypes are expected to derive a locoregional 
protective effect from adjuvant systemic therapy. As highlighted in Table 4, the LRF 
rate was lower when chemotherapy was used more systematically. Both TNBC and 
adjuvant systemic therapy administration were independent prognostic factors of 
LRF on MVA with the latter being protective [14, 53]. This conclusion is not uni-

Fig. 2  Locoregional recurrence relative risk (RR) in patients with triple negative (TN) breast 
cancer compared with other subtypes after mastectomy [18]
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versal though; as the majority of patients with TNBC received chemotherapy, some 
studies either did not adjust for chemotherapy receipt [38, 54], or chemotherapy 
was not a significant covariate when adjusting for other variables [27, 30, 46, 55].

Adjuvant Radiotherapy

Reducing the two components of LRF, local and regional, may result in reduction of 
distant metastasis [56] and potentially improve survival in patients with TNBC [57].

Reduction of the high LRF with the use of RT, resulted in 14 % OS benefit in a 
prospective study in which 681 patients with stage I-II TNBC were randomized to 
chemotherapy and post-mastectomy radiotherapy (PMRT) or chemotherapy alone 
[58]. Contrary to these results, Kyndi et al. noted that PMRT did not improve sur-
vival in patients with TNBC despite their high LRF; suggesting possible radiore-
sistance [16]. Consistent with these data, radiation use improved survival (HR 0.3; 
p = 0.0004) in the patients with TNBC undergoing BCT but not in the PMRT setting 
(HR 0.79; p = 0.38) [59]. Even in patients with T1-2N0 TNBC, RT reduced the LRF 
by 6 % in those treated with BCT (including RT) compared with those treated with 
modified radical mastectomy (MRM) without RT [53], suggesting that this sub-
group does not benefit from an extensive surgery, and that LRF reduction with RT 
use is a viable approach.

Kyndi and collegues suggested that the high LRF rate, observed in TNBC in a 
Danish study, is due to a predominantly locally advanced breast cancer population 
[16], unlike the Haffty study where 75 % of patients presented with node-negative 
early stage disease [15]. Interestingly, the isolated LRF in patients with TNBC was 
significantly higher in the Haffty study (6 % vs. 1 %; p = 0.05) [15]. Similarly Ab-
dulkarim et al. exclusively included patients with early stage, node-negative disease 
and reported that, almost half of the LRF were regional [53]. By inspecting the rates 
of isolated regional failure separately (from the combined local and regional failure 
rates), a higher pattern is observed in TNBC denoting the need to revisit regional 
nodal irradiation (RNI) role in this patient population. Indeed, Wo et al. analyzed 
regional LRF in a cohort of 1000 women, attempting to establish a subset of patients 
that would benefit from RNI. On UVA, higher regional failure was associated with 
hormone receptor-negative subtypes, positive lymph nodes, lymphovascular inva-
sion and high grade. RNI, delivered in approximately one third of the patients, was 
not a significant factor on UVA. The authors concluded that, although non-HR sub-
types are associated with higher risk of regional failure, the rate is not sufficiently 
high to consider lymphatic irradiation in patients with low regional disease burden 
such as those with fewer than four positive nodes [60].

Collectively, the intrinsic biology of TNBC suggests a high propensity to LRF 
that may require modification of RT fields and dose. Thus, breast cancer subtyp-
ing may refine the RT decision when considered in concert with other risk factors. 
The information derived from subtyping may reflect intrinsic radioresistance while 
other risk factors may point to the disease burden and other competing failure pat-
terns; both should be considered to refine the treatment decision.
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For instance, true recurrence (within 3 cm from tumor bed) is relatively more 
common in hormone receptor-negative tumors. TNBC (HR 4.8; p = 0.01) and tumor 
size (HR 2.1; p = 0.04) were independent predictors of true recurrence as opposed 
to younger age, which was a predictor of elsewhere in-breast recurrence [61]. This 
notion may have implications on selecting patients for partial breast irradiation 
(PBI). In a recent dose escalation study treating patients with 32 Gy PBI, the 5-year 
actuarial local recurrence rate in TNBC was 33 % compared with 2 % in patients 
with non-TNBC [62]. A similar conclusion was found in the Vernonesi et al. PBI 
trial that included 1822 patients; along with age younger than 50 and tumor size 
larger than 2 cm, molecular subtyping was an important predictor of subsequent 
in-breast failure on MVA. All non-LumA subtypes were associated with high rates 
of breast recurrence (both, true and elsewhere) with a HR reaching 5.26 ( p = 0.002) 
for TNBC [63]. Conversely, two retrospective PBI studies demonstrated low rates 
of local in-breast failure in patients with TNBC comparable with those seen in other 
tumor types [64, 65]. Variable techniques and different patient characteristics can 
explain the conflicting failure rate reported in patients with TNBC treated with this 
technique. Alternatively, hormone receptor-positive tumors may display more else-
where (more than 3 cm from tumor bed) in-breast recurrences due to higher inci-
dence of a new primary [66], suggesting that PBI is not suitable for certain breast 
cancer subtypes. However, such recommendation cannot be made without consider-
ing other factors such as age or margin status, nor without allowing for sufficient 
follow up time (accounting for other competing risks such as death or metastasis) 
to separate true recurrence (in the lumpectomy region) from elsewhere in-breast 
recurrence (versus new breast primary). Certainly, a prospective PBI trial analyzing 
failure pattern by subtype could help answer that question.

Regarding dose fractions and the eagerness to adopt a shorter, more convenient 
radiation schedule, hypofractionated whole breast irradiation (HWBI) in early stage 
breast cancer disease, was widely accepted as a viable alternative to standard frac-
tionation due to equivalent tumor control rate and comparable toxicity profile [67, 
68]. Standardization of radiotherapy in breast cancer (START) trials A and B did 
not assess the receptor status; however, using tamoxifen as a surrogate for ER posi-
tivity, the percent of patients with hormone receptor-negative tumors were 12.2 % 
and 11.7 % in START-A and START-B, respectively. In these two trials, the HWBI 
treatment effect was equivalent regardless of age, tumor size, nodal status, grade 
or systemic therapy used [67]. Moreover, the mature results of the Ontario ran-
domized trial confirmed HWBI (42.5 in 16 fractions) non-inferiority to standard 
fractionation (50 Gy in 25 fractions) in patients with early stage breast cancer [68]. 
Likewise, the treatment effect of HWBI was equivalent regardless of age, tumor 
size, systemic therapy use or ER status (ER-negative disease constituted 26.1 % of 
the study population). However, HWBI appeared to be less effective in high-grade 
disease [68].

As a great proportion of TNBC and HER2-positive tumors present with high-
grade histology, evaluation of the effect of hypofractionated scheme on different 
biologic subtype requires further clarification. Bane et al. reconstructed the mo-
lecular subtype in 989 out of the 1234 patients included in Ontario hypofraction-
ated study. Interestingly, the 10-year local recurrence rate was equivalent for LumA 
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and TNBC (4.5 %), and significantly lower than LumB (7.9 %) and HER2-positive 
(16.9 %) subtypes ( p < 0.01). Yet, neither tumor grade nor molecular subtype were 
significant predictors of response to hypofractionation [69]. Besides the heteroge-
neity of patients and treatment characteristics in these studies, it should be noted 
that the majority of patients in the trials presented with hormone receptor-positive 
tumors leading to underpowered results regarding hypofractionation effect in differ-
ent breast cancer subtypes. Currently although whole breast hypofractionation data 
in TNBC and HER2-positive subtypes are not as prevalent, there does not appear to 
be a higher risk of local relapse comparing standard and hypofractionation.

Biologic Causes of Radioresistance, BRCA1 and Triple Negative Subtype

Breast cancer susceptibility protein 1 (BRCA1) is an integral part of homologous 
recombination, repairing double strand DNA breaks. BRCA1 mutation is associ-
ated with defective DNA repair, accumulation of genetic damage, and ultimately, 
increased cancer susceptibility [70]. Carriers of BRCA1 deleterious mutation are 
likely more susceptible to DNA damaging agents such as RT increasing their can-
cer risk. Notably, the tumor associated with this mutation is expected to be more 
radiosensitive.

BRCA1 carriers and those with the TNBC subtype share many molecular and 
phenotypic features [71]. TNBC occurred in 57 % of BRCA1 mutation carriers [72], 
and approximately 20 –25 % of patients with TNBC carry BRCA mutations [15, 73]. 
Even in the absence of BRCA mutation in patients with sporadic TNBC, the gene 
function can be hindered by BRCA promoter methylation [74]. Influencing RT man-
agement decisions, TNBC tumors with defective BRCA are expected to be more 
radiosensitive with a potential of increased new primary breast cancer risk and/or 
toxicity. Yet, there is no clinical evidence supporting these hypotheses; there was no 
increased radiation induced toxicities in BRCA mutation carriers treated with BCT 
compared with controls [75]. However, the 15-year local in-breast (not accounting 
for regional failure) events were 23.5 % vs. 5.5 % ( p = .0001) without survival dif-
ference between 302 BCT treated versus 353 TM treated patients [76]. In addition 
to refuting increased radiosensitivity claims, these results suggest that BCT is a 
viable option; while acknowledging the increased life time risk of ipsilateral and 
contralateral breast cancer events in this patient population.

Compared to the expected radiosenstivity (due to close association with BRCA 
defective DNA repair), mechanisms of TNBC radioresistance are complex and un-
der active research. For instance, 53BP1 loss was postulated to rescue cells from 
triggering imperfect DNA repair induced by BRCA deficiency [77]. In associa-
tion with TNBC, absence of 53BP1- a DNA damage response gene- will reverse 
BRCA1 defect by preventing error prone repair of accumulated DNA breaks in-
duced by radiation; thus, rendering cells radioresistant [78]. As with radiation, 
BRCA1-deficient cells are suspected to be hypersensitive to poly-ADP-ribose poly-
merase (PARP) inhibitors due to blocking a second DNA damage repair machinery 
(necessitating homologous recombination); potentially highlighting agents that can 
be used to enhance radiosensitization of TNBC [79]. Yet again, 53BP1 absence 
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leads to suppression of both spontaneous and agents induced radial chromosome 
formation; granting BRCA1-deficient cells immunity against DNA damaging 
agents (radiation, Platinum compound and PARP inhibitors) [78]. A recent study 
displayed a significant association between 53BP1 expression and TNBC in 514 
patients treated with BCT. Remarkably, low 53BP1 was related to inferior outcome 
in all end points, including ipsilateral breast recurrence (76.8 % vs. 90.5 %; p = 0.01) 
and this low expression level retained significance as an independent predictor on 
MVA. To ensure that TNBC is not a potential confounder, a separate analysis was 
conducted on the TNBC population demonstrating a significant lower recurrence-
free survival (37.8 % vs. 83.7 %; p = 0.001), distant metastasis-free survival (48.2 % 
vs. 86.8 %; p = 0.004) and ipsilateral breast recurrence-free survival (72.3 % vs. 
93.9 %; p = 0.036) [80]. Additionally, mutation of p53 tumor suppressor gene which, 
observed in as high as 50 % in TNBC [15], is an independent risk factor of inferior 
response to RT [81] and OS [82].

Taming of the HER2-Positive Subtype

Her-2-neu (HER2)  is one of four members of the human epidermal growth factor 
receptor (EGFR) family that has tyrosine kinase activity [83]. HER2 gene ampli-
fication or overexpression is observed in 30 % of breast cancers [84], including 
LumB and HER2 subtypes. Limiting the scope on HER2-positive subtype, char-
acterized by hormone receptor negativity, the incidence varies from 4 to 15 % as 
shown in Table 2. This HER2 protein mediates a cascade of signaling molecules 
such as phosphatidylinositol-3-kinase (PI3-K) and mitogen-activated protein kinase 
(MAPK) which, in turn, result in activating mitogenic and survival signal trans-
duction pathways that play a vital role in HER2-positive cancer cell survival, and 
metastasis [85]. In the era prior to trastuzumab availability, HER2-positive tumors 
were associated with high LRF rate comparable with TNBC [14, 20, 37]. The 5-year 
LRF ranged from 4.6 to 12.5 % in the BCT setting (Table 3) and from 12.6 to 14.7 % 
in the TM setting (Table 4), a rate that is relatively higher compared with the Lu-
minal subtypes. The relatively high LRF observed in HER2 subtype hinted to a 
potential radioresistance mechanism. Indeed, Piertas el al. demonstrated that, cell 
lines transfected with HER2 display 25 % increase in the dose required to reduce 
cell survival to 10 %; denoting increased in their radioresistant ability with the pres-
ence of HER2 [86]. Another confirmatory study demonstrated that breast cancer 
cells, in which HER2 amplification is silenced by small interfering RNA, exhib-
ited reduction in HER2 and p-AKT with subsequent enhancement of radiosensitiv-
ity [87]. Congruently, targeting HER2 with trastuzumab reduced HER2 levels and 
down-regulated the phosphorylation levels of Akt and MAPK in HER2-positive 
MCF7 cell lines, and sensitized these cells to RT. Specifically, administration of 
8 Gy resulted in 0.02, 0.14 and 0.03 survival fraction in MCF7, MCF7-HER and 
MCF7-HER treated with trastuzumab [88].

These translational studies were confirmed in the clinical setting. In a matched 
control cohort (32 patients with local relapse versus control patients without recur-
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rence matched with respect to age, tumor size, and radiation dose), investigators 
sought to evaluate the prognostic impact of HER2 overexpression on locoregional 
control after BCT. Patients whose tumor overexpressed HER2 sustained more LRF 
(56 % vs. 18 %; p = 0.03) [89]. In spite of the radioresistant properties of the HER2-
positive subtype, patients with this subtype do appear to benefit from adjuvant RT 
compared to chemotherapy alone [90].

In the BCT setting, a meta-analysis of 15 studies addressing locoregional con-
trol by reconstructed breast subtype revealed that the relative risk (RR) of LRF 
at 5 years was 0.34 (95 % confidence interval [CI]: 0.26–0.45) in Luminal ver-
sus HER2-positive subtypes. Comparing with the TNBC subtype, HER2-positive 
breast cancer displayed a significantly higher LRF RR 1.44 (95 % CI 1.06–1.95). 
In the post- mastectomy setting, Luminal subgroup had a lower LRF RR of 0.69 
compared to HER2-positive tumors subtype; 0.69 (95 % CI 0.54–0.89). Conversely, 
HER2-positive and TNBC subtypes did not show significant difference in LRF RR 
0.91 (95 % CI 0.68–1.22) [18].

With the standard use of trastuzumab, approximately 50 % reduction in LRF is 
expected [91]. The more recent studies showed a lower LRF in trastuzumab treat-
ed HER2-positive tumors, approaching Luminal subtypes’ LRF rates [46, 54]. As 
shown in Table 4, the 5-year LRF rate varied from 2 to 3.8 % in HER2-positive 
tumors treated with adjuvant systemic therapy containing trastuzumab [46, 54], and 
5 % when the systemic therapy is administered on neoadjuvant basis [39]. Even in 
low risk node-negative disease, trastuzumab use improved 3-year locoregional con-
trol from 90 to 99 % ( p = 0.01) in 192 patients undergoing BCT [92].

As previously described in TNBC, HER2-positive breast cancer is associated 
with increased LRF and relative radioresistance in association with other risk fac-
tors. Consequently, HER2 subtype supplements rather than substitute other risk fac-
tors when considering the radiation treatment decision. However the widespread 
use of anti-HER2 agents in patients overexpressing HER2 likely significantly re-
duces or eliminates HER2 overexpression as a risk factor for local relapse.

Luminal Subtypes

It was postulated that the estrogen driven acceleration G1 to S phase is the mecha-
nism of Luminal subtypes radiosenstivity [16]. However, compared with HER2-
positive and TNBC, the relative paucity of metastatic, invasiveness and radiation 
resistance pathways is primarily the mechanism explaining the superior outcomes 
seen with Luminal type tumors, aside from their association with other good risk 
features; such as older age, less propensity to nodal spread, histologic differentia-
tion, and hormonal therapy response.

LumB subtype is defined by high Ki-67 that is HER2-negative and hormone 
receptor-positive, or by both hormone receptor-positive and HER2-positive. The 
distinction between Luminal subtypes is based primarily on Ki-67 (proliferative 
marker) with a cut point set at 13.25 % [93]. By itself, Ki-67 did not predict for 
worse overall outcome [94] and, therefore, LumB is further differentiated by other 
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proliferative markers such as Cyclin B1 and MKI67 in addition to EGFR and HER2 
expression. Depending on the identification method, LumB constitutes 4.6–21.7 % 
of breast cancer (Table 2). However, the triple positive subtype (LumB-HER2-
positive) can range from 7.3 to 29 % of breast cancer while the percentage of non-
HER2-positive LumB varies from 13.6 to 45.4 %. In the BCT setting, the 10 year 
LRF can reach 8.7 % in LumB versus 3.6 % in LumA [27]. In the post- mastectomy 
setting, a similar pattern is present with 5-year LRF ranging from 4 to 9.6 % in 
LumB versus 2.4–3.4 % in LumA as shown in Table 4.

Other Subtypes

The Normal breast variant is poorly characterized with very limited data regarding 
its biologic behavior or interaction with RT. Possibly, accounting for about 5–10 % 
of breast cancer, this type has an intrinsic pattern similar to fibroadenoma and nor-
mal breast tissue with absent hormone receptor and HER2 expression and, distinc-
tive from Basal subtype, they are also deficient in CK5 and EFGR. Microdissection 
of breast cancer cancerous cells was used in an attempt to remove possible contami-
nation from normal breast tissue revealing absence of the normal breast subtype; 
casting doubt on its true existence [95]. Future studies will potentially shed more 
light on this inconsistently reported subtype.

Claudin Low is another rare subtype (10 % of breast cancer) characterized by 
poor prognosis despite low expression of proliferative markers [96]. The Claudin 
Low subtype was recently reported [97] as characterized by low level expression of 
tight junction genes [98] and high expression of immune response genes, separating 
it from the Basal type. Apart from intermediate response rate to neoadjuvant chemo-
therapy (between Basal and Luminal subtypes) [96], Claudin Low’s behavior, LRF 
pattern and radiation response remain to be determined.

As the potential to improve RT outcome is limited by the intrinsic radioresis-
tance of each breast cancer subtype, molecular profiling can improve outcome by 
assisting in selecting agents that modify molecular pathways; PARP inhibitors in 
TNBC with normal 53BP1 or anti EGFR agents in other TNBC subtypes, trastu-
zumab or other HER2-targetting tyrosine kinase inhibitors in HER2 subtype, or 
anti-angiogenic agents when tumor cells express hypoxia markers.

Stepping Into the Molecular Era

Improved Resolution; Improved Individualization

Resorting to limited number of markers to reconstruct breast cancer subtypes was 
the practical answer to the costly and logistically prohibitive molecular profiling. 
Yet, the resolution of breast cancer profiling improves with the incorporation of ad-
ditional genetic markers.
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Maggie et al. compared the prognostic significance of defining Basal subtype 
based on three versus five markers (CK 5/6 and EGFR in addition to ER, PR, 
HER2); the five markers definition was more predictable of breast cancer specific 
survival on MVA [26]. Recent subtyping using PAM50 quantitative real time poly-
merase chain reaction (qRT-PCR) revealed 30 % misclassification rate in patients 
with TNBC previously identified within the Basal subgroup [99]. These data are 
consistent with a study using gene expression analysis on 587 TNBC to further 
classify this subclass to six subtypes [100]. Similarly, an unsupervised clustering 
of multi-gene signatures distinguished three subclasses within 58 HER2-amplified 
breast cancer; highlighting the within subtype molecular variability and the need of 
better prognostication tools [101].

As previously mentioned, high throughput genetic analysis refuted our view of 
breast cancer as a single disease; the seminal publications employing molecular 
profiling [6, 23] underlined at least four distinct breast cancer entities character-
ized by unique clinicopathological features. Establishing the intrinsic molecu-
lar subtypes is more consistent in separating Basal from the other subtypes [95], 
mostly driven by proliferative, hormone receptor and HER2-related genes [71]. 
Beside ignoring the heterogeneity of cancer due to tumor evolution [102] or due to 
the inherent intra-tumor variability [103], the lack of complete characterization of 
the number and definition of each subtype was a major limitation of adopting this 
technology in clinic [104]. Yet, the majority of studies embarked on defining mo-
lecular signatures, composed of a set of candidate genes through supervised class-
prediction; thus, producing a commercial tool that permits the separation of breast 
cancer subtypes into classes (based on these signatures) and forecasts the outcome 
of patients with breast cancer [105–108]. Many signature based microarray [109, 
110], or qRT-PCR [107, 111] were validated and are currently commercially avail-
able. In an attempt to find a consensus among these different signatures (including 
different set of genes), a meta-analysis demonstrated that, based predominantly on 
proliferative markers, there is general agreement across the different platforms on 
the classification of poor risk patients with breast cancer and that these genetic 
signatures complement- rather than substitute- other classic clinicopathologic fac-
tors (such as tumor size and positive lymph nodes) [112]. Apart from the two-gene 
expression signature [108], a comparative study, evaluating five platforms [106, 
108, 109, 113], demonstrated their prognostic concordance in accurately predicting 
PFS and OS; thus providing another confirmation on the validity of these tools in 
the clinical setting despite the diversity of genes set included in each platform [114]. 
However, the majority of these platforms were used to predict systemic, rather than 
local, failure pattern with little characterization of the role of RT on local control.

Molecular Signature and Local Control Prediction

Awaiting further evidence, genotyping based RT consideration is still evolving 
(Table 5). For example, the genomic predictors of breast cancer locoregional re-
currence risk after mastectomy had an overall accuracy of 75–78 % in Cheng et al. 
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publication [115]. Two sets of signature (258 and 34 genes) were used in DNA mi-
croarrays studies conducted on 94 patients undergoing mastectomy as their primary 
surgical treatment. On MVA, the genomic predictive index below 0.8 set point (HR 
22; p < 0.0001) and ER-negative status (HR 3.4; p = 0.04) were independent predic-
tor of 3-year LRF, reaching 9 % versus 60 % ( p = 0.008) in patients with more ver-
sus less than 0.8 predictive index. Without significant difference in the predictable 
power of the two models (258 versus 34-gene model), the later model may select 
post-mastectomy patients who might benefit from adjuvant RT.

In another study, a classifier, based essentially on wound gene signature, achieved 
87.5 % sensitivity in predicting 10-year local recurrence rate (5 % versus 29 % in pa-
tient with favorable versus unfavorable profile) after lumpectomy and RT [116]. In 
this early stage breast cancer population subjected to BCT, 78 % were younger than 
40 years old. In the patients who experienced local recurrence (10.5 %), the seventy-
gene profile could not establish high and low risk separation, having low sensitivity 
and specificity 63 and 50 %, respectively. Neither did the hypoxia-response gene 
profile with 75 % sensitivity and 44 % specificity on the validation set; displaying a 
non-significant 10-year recurrence risk of 13 % versus 15 % in low versus high-risk 
hypoxia gene profile. When applying the wound response signature, the 10-year re-
currence risk was 5 % versus 29 % ( p = 0.0008) in low versus high-risk, respectively 
in the validation set. MVA Cox regression, adjusting for age, tumor size, RT boost 
use revealed that the wound signature is the only significant prognostic indicator of 
local relapse (HR 16; p = 0.01). Through a possible association between cancer cells 
and wound healing, governed mainly by fibroblast response, the wound-response 
gene signature was proposed as a possible surrogate to tumor progression and po-
tential prediction of local failure (Table 5)  [117].

Another study used 21-gene based Oncotype DX recurrence score (RS), essen-
tially used to estimate distant recurrence risk- to predict local recurrence in patients 
with ER-positive, node-negative breast cancer [118]. The RT-PCR was successful 
in 1023 and 651 patients enrolled in National Surgical Adjuvant Breast and Bowel 
Project (NSABP) B14 and B20, respectively. In both studies, patients with low risk 
(Luminal subtype) breast cancer were randomized to tamoxifen versus placebo in 
B14 or Tamoxifen with or without cyclophosphamide, methotrexate and 5-fluoro-
uracil (CMF) in the B20 study. Adjuvant RT was used in the lumpectomy treated 
patients (43 %). RS based on 21-gene signature (composed of five reference, five 
proliferative, four estrogen, two invasion, two HER2, GSTM1, CD68, and BAG1 
Genes) was categorized into low, intermediate and high. In the placebo group (355 
patients), the 10–year LRF of 10.8, 20 and 18.4 % (log-rank p = 0.022) in low, in-
termediate and high RS, respectively. Regarding the 424 patients randomized to 
chemotherapy plus tamoxifen, RS was significantly associated with LRF risk; 1.6, 
2.7 and 7.8 (log-rank p = 0.028) in low, intermediate and high RS, respectively. 
Whereas in the 895 patients randomized to Tamoxifen alone, the MVA Cox regres-
sion analysis showed that- after adjusting for age, tumor size, initial local treatment 
and grade- RS significantly predicts LRF risk (HR 2.16; p = 0.007). In this subgroup 
(895 patients), 390 were treated with BCT and their 10-year LRF was 6.8, 10.8, 
and 14.6 % (log-rank p = 0.043) in low, intermediate and high RS, respectively. In 
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BCT treated patients, age younger than 50 was associated with higher LRF rate. 
A similar association between RS and age was not found in mastectomy treated 
patients whose LRF estimates were 2.3, 4.7, and 16.8 % for low, intermediate, and 
high RS, respectively (log-rank p < 0.001). This seminal study revealed that, even 
within the low risk Luminal breast cancer subtype, the molecular profile could dis-
tinguish a subgroup with a high LRF risk justifying RT recommendation in that 
setting. Moreover, that the tools for molecular profiling are readily available for 
prime incorporation in the clinic. As higher score predicts higher local recurrence 
risk, the same technology can be used in guiding RT indications in patients with 
node-positive disease.

Recently, Oncotype DX score was shown to predict local recurrence after lumpec-
tomy for breast ductal carcinoma in-situ (DCIS) [119]. Among the patients enrolled 
on Eastern Cooperative Oncology group (ECOG) E 5194 study, the tissue avail-
able for analysis was present in 327 patients. The 10-year ipsilateral breast event 
risks were 10.6, 26.7, and 25.9 and the 10-year invasive breast cancer events were 
3.7, 12.3, and 19.2 % in low, intermediate and high DCIS RS, respectively (log-rank 
p ≤ 0.006). In addition to tumor size and menopausal status, DCIS score was an inde-
pendent predictor of events occurrence on MVA (HR 2.37; p = 0.02). After validation 
of the study findings, this readily available technology may select patients with high 
recurrence score and who are most likely to benefit from adjuvant RT.

Conversely, Kreike et al. failed to find a gene expression pattern to predict lo-
cal failure in 50 patients with breast cancer undergoing BCT. Using 18K cDNA 
microarrays and hierarchal clustering classification, the 19 patients who developed 
breast recurrence did not display a specific signature to distinguish them from the 
31 patients free of recurrence. The short median follow up, small sample size and 
unadjusting for cofounding variables such as age and grade may have contributed 
to lack of detecting local recurrence gene set [120].

To avoid previous confounders, Swedish investigators analyzed the gene expres-
sion profile in 143 patients treated with BCT with negative lymph nodes and nega-
tive surgical margins. In their analysis, they divided they study population into four 
groups based on local failure occurrence and adjuvant RT delivery. In the 77 pa-
tients receiving RT, the gene expression profile (16,895 genes) supplemented other 
clinical factors (age and grade) to predict LRF pattern in the 30 patients who failed 
locally despite receiving adjuvant RT; the receiver operating characteristic (ROC) 
was 0.91 in patients with ER-positive disease and 0.74 in patients with ER-nega-
tive, outperforming wound-response signature whose ROC scored 0.75 in both ER-
positive and ER-negative breast cancer patients. The author concluded that tumor 
with this aggressive molecular profile would benefit from other alternatives such as 
mastectomy due to their high chance of not responding to post-operative RT [121].

In contrast to the Swedish study that identified patients at high-risk of recurrence 
(even after adjuvant RT), the Danish group employed gene expression profiling 
to predict patient at low risk of recurrence after mastectomy and thus can safely 
avoid PMRT [122]. The successful microarray analysis of the fresh frozen tumor 
samples of the Danish 82b and 82c patients identified 7 key genes associated with 
high local failure risk ( HLA DQA, RGS1, DNALI1, hCG2023290, IGKC, OR8G2, 
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and ADH1B). In the patients’ group not randomized to PMRT, the 20-year LRF was 
57 % vs. 8 % ( p < 0.0001) in high-risk versus low-risk genetic signature. The molec-
ular signature was an independent predictor of recurrence after adjusting for lymph 
node status and primary tumor presentation on MVA. Remarkably, PMRT reduced 
the LRF from 57 to 12 % ( p < 0.0001) in patients with high-risk profile; whereas, 
patients whose tumors exhibited low risk signature did not benefit from PMRT; 
LRF 8 % vs. 9 % ( p = 0.93). The author concluded that molecular subtyping using 
the seven-gene signature could identify a patient population that would not benefit 
from PMRT regardless of their traditional high-risk clinicopathologic features.

Markers at Recurrence

At recurrence, the molecular subtype may still impact on overall outcome. A re-
cent study included 185 patients who underwent BCT, with histologically proven 
ipsilateral breast recurrence, to evaluate the impact of reconstructed subtype (ap-
proximated using ER, HER2 and Ki-67 markers) on the overall outcome. The 
5-year DFS was 86.3, 57.1, 65.9 and 56.6 % in LumA, LumB, HER2 and TNBC 
subtypes respectively (Log-Rank p = 0.0074). On MVA, breast cancer subtype was 
an independent predictor of outcome in addition to other features such as: time to 
recurrence, tumor location, and lymphovascular invasion [33]. Adapting the man-
agement strategy to accommodate for the breast cancer subtype aggressiveness at 
time of recurrence may impact the survival. Parikh et al. demonstrated that 5-year 
disease metastasis-free survival drops from 90.8 to 48.6 % if the recurrence is of 
the TNBC subtype. Even after adjusting for other covariates and chemotherapy ad-
ministration, TNBC subtype breast recurrence was a significant predictor of poor 
disease metastasis-free survival (HR 5.91; p < 0.01) [32].

Molecular Profile and Radiation Induced Toxicity

In addition to the information provided by tumor profiling to individualize the treat-
ment decision, the patient genetic make-up (including normal tissue radiation re-
sponse) may impact this decision. The radiation induced toxicity in breast cancer 
such as fibrosis and telangiectasia increase over time [123]. The severity of these 
toxicities is both, treatment dependent (dose, fields, fractionation, overall treatment 
time) [124] and patient dependent (age, comorbidity, skin sensitivity) [123, 125]. 
However, genetic profile has been also implicated in the development and in the 
severity of acute and long-term normal tissue toxicity [126]. Developing radiation 
induced toxicity molecular profile is challenging due to variation of the toxicity pat-
tern across different sites, time and individuals [127].

A recent study evaluated polymorphisms in genes involved in DNA repair 
(APEX1, XRCC1, XRCC2, XRCC3, XPD) and damage response gene ( TP53, P21) 
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in 409 patients with breast cancer; TP53 variant was associated with a significant 
increase in the late skin toxicity (telangiectasia odd ratio = 1.97; 95 % CI: 1.11–3.52) 
[128]. Another study assessed 17 single nucleotide polymorphisms (SNP) in sev-
eral genetic markers ( TGFB1, SOD2, XRCC1, XRCC3 and APEX) [129]. Although, 
Severe radiation reaction was linked to seven of these SNPs, only XRCC3 retained 
significance; potentially used in sparing this specific SNP carriers the morbidity of 
RT if the benefits don’t outweigh the toxicity risk. New studies are needed to link 
the diverse human genetic profile, radiation dose and toxicity [130].

Conclusion and Future Directions

Data continue to unfold the underlying biology of breast cancer subtypes suggesting 
that molecular profiling will be integrated into the locoregional management. Ul-
timately, individualizing the local treatment strategy based on the genetic makeup 
of the host and the molecular profile of the tumor may prove beneficial in address-
ing the distinct LRF pattern and optimal approach. Prospective studies and addi-
tional validation studies are clearly needed before routinely integrating molecular 
profiling into the decision making process. In addition, prospective evaluation of 
targeted agents, to be used in combination with radiation, in those tumors that are 
less responsive to conventional therapy, is an area ripe for future investigations. 
While integration of molecular profiling and personalized or precision medicine 
into local-regional management lags behind its integration into systemic therapy 
decision making, there has been significant progress and discoveries recently that 
pave the way for future studies and trials which can incorporate molecular profiling 
into local-regional management, with the ultimate goal of further improving patient 
outcomes and quality of life.
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Abstract The estrogen-dependent nature of breast cancer is the fundamental basis 
for endocrine therapy. The presence of estrogen receptor (ER), the therapeutic tar-
get of endocrine therapy, is a prerequisite for this therapeutic approach. However, 
estrogen-independent growth often exists de novo at diagnosis or develops during 
the course of endocrine therapy. Therefore ER alone is insufficient in predicting 
endocrine therapy efficacy. Several RNA-based multigene assays are now avail-
able in clinical practice to assess distant recurrence risk, with majority of these 
assays evaluated in patients treated with 5 years of adjuvant endocrine therapy. 
While MammaPrint and Oncotype Dx are most predictive of recurrence risk within 
the first 5 years of diagnosis, Prosigna, Breast Cancer Index (BCI), and EndoPre-
dict Clin have also demonstrated utility in predicting late recurrence. In addition, 
PAM50, or Prosigna, provides further biological insights by classifying breast can-
cers into intrinsic molecular subtypes. Additional strategies are under investiga-
tion in prospective clinical trials to differentiate endocrine sensitive and resistant 
tumors and include on-treatment Ki-67 and Preoperative Endocrine Prognostic 
Index (PEPI) score in the setting of neoadjuvant endocrine therapy. These biomark-
ers have become important tools in clinical practice for the identification of low risk 
patients for whom chemotherapy could be avoided. However, there is much work 
ahead toward the development of a molecular classification that informs the biology 
and novel therapeutic targets in high-risk disease as chemotherapy has only modest 
benefit in this population. The recognition of somatic mutations and their relation-
ship to endocrine therapy responsiveness opens important opportunities toward this 
goal.
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Introduction and Overview

Endocrine therapy is prescribed to virtually all patients diagnosed with estrogen re-
ceptor (ER)-positive breast cancer. However, up to 50 % of patients with early stage 
breast cancer experience disease recurrence despite curative local therapy and long 
term adjuvant endocrine treatment [1, 2]. Differentiating endocrine sensitive versus 
resistant tumors is necessary for decision-making in the adjuvant setting so that 
patients with endocrine sensitive disease can be spared unnecessary chemotherapy. 
For patients with endocrine resistant disease, chemotherapy is the current standard 
although its anti-tumor effect on ER-positive breast cancer is modest at best [3, 
4]. Further biological investigation and drug development effort in the endocrine 
resistant population is clearly a priority for the scientific community. In addition, 
as more patients are considering extended endocrine therapy beyond 5 years based 
on results from the long-term (10 years versus 5 years) tamoxifen trials, includ-
ing Adjuvant Tmoxifen: Longer Against Shorter (ATLAS) trial [5] and the Adju-
vant Tamoxifen To Offer More (aTTOM) trial [6], and the NCIC MA17 trial which 
evaluated extended endocrine therapy with 5 years of letrozole following 5 years 
of tamoxifen [7], there is an increasing demand in tools to assess late recurrence 
risk. Although endocrine therapy is considered well-tolerated compared to chemo-
therapy, side effects are common and significant, including vasomotor symptoms, 
sexual dysfunction, and aromatase inhibitor-associated risk of osteoporosis, frac-
ture, musculoskeletal symptoms, and tamoxifen-related risk of endometrial cancer 
and venous thrombosis [2]. Prediction of low risk of late recurrence after 5 years of 
endocrine therapy could spare patients from unnecessary toxicities with extended 
endocrine therapy.

The traditional clinicopathological features including stage, grade, and ER, pro-
gesterone receptor (PgR), and HER2 status do not reflect the significant heteroge-
neity of ER-positive breast cancer. The introduction of genome-wide microarray 
analysis of gene expression led to the recognition of the four intrinsic molecular 
subtypes of breast cancer, including Luminal A, Luminal B, HER2-enriched, and 
Basal-like, that carry prognostic implications [8, 9]. Since then several RNA based 
multi-gene assays, including Oncotype Dx, MammoPrint, Prosigna, BCI, EndoPre-
dict, have been introduced in the clinical practice to categorize ER-positive breast 
cancer into different risk groups of recurrence, some of which have shown promise 
in predicting late recurrence (more than 5 years after initial diagnosis and treat-
ment). These assays each showed ability to provide added prognostic information 
to the standard clinicopathologic parameters and are most helpful in patients who 



127Prognostic and Predictive Biomarkers of Endocrine Responsiveness …

are classified in the low risk category for whom chemotherapy could be avoided. 
Patients in the low risk category by BCI, EndoPredict or Prosigna have shown to 
have extremely low risk of distant late recurrence, therefore perhaps extended ad-
juvant hormonal therapy could be avoided. While the use of these assays has led to 
a change in the recommendation of adjuvant chemotherapy in many patients, pro-
spective validations are still ongoing. An in-depth understanding of the underlying 
biology of the high-risk group is needed to design treatment based on the identifica-
tion of driver events in these tumors, as they are often resistant to chemotherapy. On 
the other hand, many patients experience late recurrence despite extended therapy, 
therefore investigation on the biology leading to late recurrence presents another 
research priority for the scientific community.

The neoadjuvant setting provides a platform for uncovering mechanisms associ-
ated with endocrine resistance, in particular de novo resistant tumors. Studies of 
neoadjuvant endocrine therapy trials indicated that biomarker response such as the 
degree of reduction in the level of the cell proliferation marker Ki-67 following 
at least 2 weeks of therapy and the preoperative prognostic index (PEPI) score at 
surgery based on tumor Ki-67, ER and tumor stage, are predictive of long term 
patient outcomes [10−12]. The application of next generation sequencing technol-
ogy on ER-positive breast cancers from patients treated in neoadjuvant clinical tri-
als led to a bioinformatics-based association of mutations such as TP53, BIRC6, 
CDKN1B, RUNX1 and the long non-coding RNA MALAT1 with Luminal B status, 
while MAP3K1 and MAP4K2 and GATA3 with Luminal A status [13]. Using Ki-
67 as a metric, TP53 mutation was associated with high baseline and on treatment 
proliferation, a pattern suggesting intrinsic resistance to AO therapy and MAP3K1 
had the opposite pattern. GATA3 mutations also appeared to potentially predict en-
docrine therapy sensitivity, because mutation was associated with a higher than av-
erage fall in Ki-67 values [13]. Sequencing studies of additional neoadjuvant trials 
are ongoing to further investigate the prognostic or predictive roles of genes that are 
less commonly mutated.

In the metastatic setting, although most patients derive benefit from initial endo-
crine therapy with disease stabilization or tumor shrinkage, eventual development 
of resistant disease invariably occurs. To uncover acquired endocrine resistance and 
predictive markers, analysis of recurrent disease is needed. An important discov-
ery in recent sequencing studies of tumors progressed on prior endocrine therapies 
is the ESR1 mutation acquired under the pressure of estrogen deprivation therapy 
[14−18]. These mutations cluster in the ligand-binding domain, leading to constitu-
tive ER activation and estrogen-independent tumor growth. In addition, other ge-
netic alterations, such as amplification, translocation, have been identified in the 
ESR1 locus. More studies of tumors in the advanced disease setting are needed to 
generate additional markers and therapeutic targets. Obviously the development of 
predictors of endocrine therapy is still a work in progress. In this chapter, we will 
provide an update on the current status of this topic.
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Estrogen Receptor

The relationship between ER positivity and tumor responsiveness to endocrine 
therapy has been well established. In the meta-analysis of individual patient data 
from 20 randomized trials ( n = 21,457) of about 5 years of tamoxifen versus not, 
the reduction of breast cancer recurrence by tamoxifen was limited to ER-positive 
disease (ER ≥ 10 fmol/mg by ligand-binding assay). The recurrence risk reduction 
was substantial (relative risk [RR] 0.67 [0.08]) even in marginally ER-positive dis-
ease (10–19 fmol/mg cytosol protein), although the proportional effect was slightly 
better at much higher ER (RR 0.52 [0.07] for ER ≥ 200 fmol/mg) [1]. Since there 
is a high degree of concordance between the contemporary immunohistochemistry 
(IHC) and ligand binding assays in determining ER positivity [19−21], these data 
justify the use of endocrine therapy in ER-positive breast cancers with 1 % or more 
cells staining of ER by IHC.

Subsequent studies in both adjuvant and neoadjuvant setting demonstrated 
a higher rate of endocrine responsiveness with increasing ER expression. In the 
neoadjuvant P024 trial, a randomized trial of letrozole versus tamoxifen for post-
menopausal women with early stage ER-positive breast cancer, the investigators 
observed a linear relationship between the pretreatment tumor ER Allred score 
and the clinical response to either tamoxifen or letrozole [22]. ER Allred score, 
ranges from 0 to 8, is calculated as the sum of an intensity score (range, 1–3) and 
a frequency score (range, 0–5), which is widely used in clinical practice to provide 
semi-quantitative measures of ER [23]. Similar relationship between ER level and 
clinical response was observed in the IMPACT trial, the Immediate Preoperative 
Anastrozole, Tamoxifen, or Combined with Tamoxifen, when H score, calculated 
as the product of intensity of staining (0–3) and percentage of cells (0–100 %), was 
used to quantify ER expression [24]. In the adjuvant setting, patients receiving ad-
juvant tamoxifen therapy who had tumors with a higher Allred score had improved 
disease free survival (DFS)  [19].

The importance of ER and PgR expression in predicting endocrine responsive-
ness led to a routine testing recommendation for all invasive breast cancers to guide 
therapeutic decisions. The original ligand binding assay (LBA), such as the dextran-
coated charcoal assay (DCCA), involves the competitive binding of radiolabeled 
ligand ([125I]-estradiol) to ER, with results expressed as femtomoles of ER per 
mg of total cytosol protein [25]. ER positivity is defined as ≥ 10 fmol/mg cytosol 
protein. The LBAs are technically challenging and expensive, requiring the use 
of radioactive reagents and a relatively large amounts of fresh frozen tissue, and 
are insensitive in tissues with low tumor cellularity. Since the 1990s, IHC, which 
involves the use of specific antibodies to ER, became the assay of choice. IHC is 
less expensive, more sensitive, and can be performed on fixed tissues. Multiple 
studies demonstrated that IHC is at least comparable or better than LBAs to predict 
endocrine responsiveness [19, 26−28]. However, the accuracy of IHC is subjected 
to both pre-analytical (ie, ischemia time, specimen processing, fixative type and du-
ration), analytical (ie, antibodies, reagents, and method), scoring and assay report-
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ing variations (ie, cutoff point for ER positivity) [29]. To reduce assay variability, 
guideline recommendations for ER and PgR testing have been established by the 
joint American Society of Clinical Oncology (ASCO) and the College of American 
Pathologists (CAP) [30, 31].

Progesterone Receptor (PgR)

PgR is a well-established prognostic marker for ER-positive breast cancer. Low 
PgR expression level was associated with a higher risk of recurrence in patients en-
rolled in adjuvant trials of tamoxifen and aromatase inhibitors [1, 32, 33]. However, 
PgR expression level was not predictive of endocrine therapy responsiveness in 
ER-positive breast cancer. In the Early Breast Cancer Trialists Cooperative Group 
(EBCTCG) Overview analysis, patients with PgR-positive and patients with PgR-
negative tumors showed similar benefit from tamoxifen [1]. Similar results were 
obtained in adjuvant trials of aromatase inhibitors, including the Arimidex, Tamoxi-
fen, Alone or in Combination (ATAC) adjuvant breast cancer trial and Breast In-
ternational Group (BIG) 1–98 trial, which demonstrated superiority of aromatase 
inhibitor to tamoxifen regardless of PgR status [32−34].

ER-negative PgR-positive breast cancers are rare, and the negative ER status in 
these tumors might be attributed to a false negative assay of ER. Indeed, as assays 
improve, fewer breast cancers have been reported as ER-negative PgR-positive (4 
% in the early 1990s but only 1 % in recent years based on Surveillance, Epidemi-
ology, and End Results (SEER) data) [1]. In the meta-analysis of tamoxifen trials, 
there appear to be some slight benefit from tamoxifen in this population [1]. There-
fore PgR is performed routinely in all invasive breast cancers and endocrine therapy 
is recommended for patients with ER-negative PgR-positive breast cancer and PgR 
IHC be performed according to the ASCO/CAP guidelines [30, 31].

HER2/neu

About 10 % of ER-positive breast cancers have HER2 gene amplification [35]. 
HER2 positivity has generally been accepted as a marker of endocrine resistance 
and tumor overexpression of HER2 is associated with poor prognosis [36]. In pre-
clinical studies, HER2 overexpression was able to activate MAPK and down regu-
late ER, which promoted estrogen-independent growth [37, 38]. In the adjuvant set-
ting, HER2 positivity was associated with reduced benefit to tamoxifen [39, 40]. In 
the neoadjuvant setting, suppression of tumor Ki-67 by either tamoxifen or letrozole 
was significantly less in these tumors than that in the ER-positive HER2-negative, 
suggesting therapeutic resistance [41]. In the BIG 1–98 trial, patients with HER2-
positive breast cancer experienced worse DFS regardless of adjuvant treatment with 
tamoxifen or letrozole [42]. Interestingly, superior DFS was observed in patients 
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with letrozole compared to tamoxifen, suggesting aromatase inhibitors could be 
better choices than tamoxifen for ER-positive HER2-positive breast cancer [42]. 
Nonetheless, these cancers warrant treatment with anti- HER2 agents, which im-
proves outcome in HER2-positive breast cancer regardless of ER status [43].

On-Treatment Ki-67 and PEPI Score

Ki-67 is a nuclear antigen that is present only in proliferating cells [44]. The Ki-67 
labeling index—the percentage of cells with positive Ki-67 nuclear staining—cor-
relates well with the S phase fraction and mitotic index [45]. In the neoadjuvant 
setting persistent Ki-67 elevation despite endocrine therapy (rather than the baseline 
Ki-67 value) identifies estrogen-independent proliferation that is clearly associated 
with increased risk of disease recurrence and death [10−12]. In the IMPACT trial, 
the 5-year recurrence-free survival rates were 85, 75, and 60 % for the lowest, mid-
dle, and highest values of 2-week Ki-67 expression, respectively [11]. In the P024 
trial, Ki-67 levels at surgery following 4 months of endocrine therapy had a robust 
association with relapse-free survival, and breast cancer–specific survival [12]. A 
10 % cut-off point for on-treatment Ki-67 effectively separated patients with sensi-
tive versus intrinsically resistant disease in the neoadjuvant endocrine trials [46]. 
Preliminary data from the ACOSOG Z1031 “Cohort B” indicated that about 20 % 
of patients are in this aromatase inhibitor-resistant category and treatment decision 
making based on on-treatment Ki-67 is feasible [3].

Furthermore, the effectiveness on Ki-67 suppression with short term treatment 
in the neoadjuvant setting consistently predicts the success of endocrine therapy 
agents in large adjuvant trials [47]. For example, the more dramatic suppression 
of Ki-67 with anastrozole than with tamoxifen alone or tamoxifen in combination 
with anastrozole following 2 weeks of neoadjuvant treatment observed in the IM-
PACT trial [10] mirrored the superiority of anastrozole over tamoxifen in DFS in 
the adjuvant ATAC trial [48]. Similarly, data on Ki-67 suppression at surgery from 
the P024 trial [49] and the ACOSOG Z1031 trial (A randomized neoadjuvant trial 
of three aromatase inhibitors) [50] predicted the outcome of the BIG 1–98 trial [51] 
and MA.27 trial [52], respectively.

In addition to Ki-67, three other factors, including pathologic tumor size, lymph 
node, and ER status of the resected tumor following neoadjuvant endocrine therapy 
were independently prognostic for long term outcomes for patients treated in the 
P024 trial [12]. The PEPI was therefore developed as a prognostic tool to further 
distinguish endocrine sensitive versus resistant disease [12]. The PEPI score of 0 
(pT1-2, N0, tumor Ki-67 ≤ 2.7 %, ER-positive) identified patents with very low risk 
of relapse with adjuvant endocrine therapy alone in the P024 and IMPACT trials 
[12]. These patients are at such low risk of recurrence that chemotherapy could be 
avoided.

The PEPI 0 rate in the neoadjuvant endocrine therapy trials conducted so far 
ranged from 17–37 % [12, 53]. The ongoing Alliance A011106 (ALTERNATE trial: 



131Prognostic and Predictive Biomarkers of Endocrine Responsiveness …

ALTernate approaches for clinical stage II or III Estrogen Receptor positive breast 
cancer NeoAdjuvant TrEatment in postmenopausal women: A Phase III Study, 
NCT01953588) (Fig. 1) is prospectively validating the hypothesis that PEPI 0 sta-
tus is associated with a 5-year relapse risk of less than 5 % without the administra-
tion of chemotherapy. In this trial, patients with on-treatment Ki-67 above 10 % at 
4 or 12 weeks are also triaged to chemotherapy or an investigational approach and 
genomic and proteomic investigations of these tumors are ongoing to identify driver 
events and predictors of endocrine resistance.

On-treatment Ki-67 and PEPI Score are promising approaches to differentiate 
endocrine sensitive versus resistant ER-positive breast cancer in the early stage set-
ting. However, at present it remains an investigational approach pending results 
from the ALTERANTE trial. The significant variations in the current analytical 
practice of Ki-67 IHC could also limit its eventual clinical application. Compre-
hensive recommendations on pre-analytical and analytical assessment, and inter-
pretation and scoring of Ki-67 have been put forward by the International Ki-67 in 
Breast Cancer Working Group [54]. Standard operating procedures that incorporate 
pathologist-guided digital imaging analysis and manual point-counting of select-
ed cases has been developed that allows efficient and consistent scoring of Ki-67 
needed in clinical trials, and demonstrated validity in predicting long term outcomes 

Fig. 1  ALTERNATE Trial. The first primary objective is to prospectively validate that modified 
PEPI 0 predicts > 95 % RFS. The second objective is to determine whether fulvestrant ( F), or 
fulvestrant ( F) plus anastrozole ( A), is superior to A in inducing a higher rate of modified PEPI 0. 
Secondary objectives include assessing recurrence-free survival ( RFS) for patients with endocrine 
resistant tumor, defined by Ki-67 > 10 % at 4 or 12 weeks, disease progression, or modified PEPI 
non-0, and pathologic response to neoadjuvant chemotherapy for resistant tumors. During the 
first phase of the trial, 1200 pts are randomized 1:1:1 to the F, A or F/A. This provides an 82 % 
chance, 1-sided alpha 0.025 chi-square test to detect at least 10 % difference in modified PEPI 0 
rate comparing F or F/A with A. During the second phase, an additional 540 patients in each arm is 
estimated to obtain 317 patients with PEPI score 0. This will have a 90 % chance, with a one-sided 
alpha = 0.025 nonparametric Brookmeyer-Crowley type one sample survival test, rejecting that 
5-year RFS rate is 95 %. The maximum sample size is 2820 pts
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[55, 56]. This standard operating procedure is currently applied for the central Ki-67 
analysis in the ALTERNATE trial and several other neoadjuvant endocrine thera-
py studies. The result of the ALTERNATE trial is however needed to provide the 
clinical validity for on-treatment Ki-67 based biomarker approach including PEPI 0 
score as a prognostic indicator of long term outcomes.

IHC4+C (4-Marker IHC Panel Plus Clinicopathologic 
Parameters)

The IHC4+C score is a prognostic tool based on quantitative values of four mark-
ers (IHC4: ER, PR, HER2 and Ki-67) and the clinicopathologic parameters (tumor 
grade, size, nodal burden, patient age, and treatment with aromatase inhibitor or 
tamoxifen) [57]. IHC4+C was developed in the retrospective analysis of TransA-
TAC trial, in which IHC4+C score was significantly associated with distant recur-
rence at 9 years in postmenopausal women with node-negative, hormone receptor-
positive disease treated with 5 years of adjuvant endocrine therapy [57]. Further 
validation was provided in an independent cohort of 786 women with early stage 
breast cancer in Nottingham from 1990 to 1998 [57]. IHC4+C showed similar de-
gree of prognostic information compared to the Oncotype DX recurrence score [57]. 
However, the clinical application of IHC4 is limited due to the lack of reproducibil-
ity of IHC assays. Although guidelines are available for standardized testing of ER, 
PR, and HER2 by ASCO/CAP [30, 31, 58], Ki-67 IHC remains a challenge before a 
uniform standard operating procedure is applied. Further research is needed on the 
analytical validity and clinical utility of IHC4+C score.

Gene-Expression Profiling

The introduction of genome-wide gene expression profiling technology has allowed 
the subclassification of ER-positive breast cancer into at least two “intrinsic” sub-
types (Luminal subtype A and subtype B) based on unsupervised analysis [8, 9, 59]. 
The Luminal subtype A tumors demonstrate the highest expression of the ER and 
ER-associated genes. On the other hand, the Luminal subtype B tumors have low-
to-moderate expression of luminal-specific genes but express some of the genes that 
are characteristic of ER-negative tumor, with more frequent occurrence of TP53 
mutation compared to Luminal subtype A tumors [8, 60]. Patients with Luminal 
subtype B tumors manifest significantly worse relapse-free and overall survival 
than those with Luminal subtype A ER-positive tumors [8, 9, 59]. These data sug-
gest that the prognosis of ER-positive breast cancer is determined by multiple genes 
that work in concert with ER to regulate the response to estrogen and multi-gene 
assays are needed to predict endocrine therapy responsiveness.
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Several RNA-based multigene expression assays including MammaPrint, On-
cotype DX, Prosigna, EndoPredict, and BCI have been developed to estimate the 
individual risk of recurrence of patients with breast cancer (Table 1). Among these, 
Prosigna, EndoPredict, and BCI have also shown promise in predicting risk of late 
recurrence (more than 5 years after diagnosis and treatment). This is of particular 
clinical relevance as approximately half of all disease recurrences of ER-positive 
breast cancer occur after 5 years of adjuvant antiestrogen therapy.

MammaPrint™ The MammaPrint™ (Agendia, Amsterdam, the Netherlands) is 
the first commercialized microarray-based multigene assay for prognostic predic-
tion in patients under age 61 with lymph node-negative breast cancer, regardless of 
ER status. The 70-gene signature predominantly comprises genes related to prolif-
eration, with additional genes involved in invasion, metastasis, and angiogenesis 
[61, 62]. The test gives a dichotomized result, indicating either a high or low risk 
of disease recurrence. The signature was developed by supervised analysis of gene 
expression microarray data on frozen tumor tissues from young patients (age < 55 
years) with tumor less than 5 cm, any ER or HER2, lymph node-negative disease 
[62]. The training set included 34 patients who developed distant metastasis within 
5 years (mean time to metastasis was 2.5 years) and 44 patients who were disease 
free without systemic therapy for at least 5 years after diagnosis (mean follow up 
was 8.7 years) [62]. MammaPrint was initially validated as an independent pre-
dictor of distant recurrence using fresh-frozen tissues from a cohort of 295 young 
patients (age ≤ 52 years) in the Netherland Cancer Institute with primary invasive 
breast cancer that was less than 5 cm and lymph node-negative ( n = 151) or positive 
( n = 144 N) [61]. Among the 295 patients, 180 had a poor prognosis signature and 
115 had a good-prognosis signature, and the mean (± standard error) overall 10-year 
survival rates were 54.6 ± 4.4 and 94.5 ± 2.6 %, respectively. The profile performed 
best as a predictor of distant metastases during the first 5 years after treatment. This 
is not surprising as the signature was trained in patients with early recurrence [62]. 
This initial validation study was criticized by including 61 patients from the initial 
training set. In addition, 10 patients with node-negative disease and 120 patients 
with node-positive disease received adjuvant systemic therapy consisted of chemo-
therapy ( n = 90), hormonal therapy ( n = 20), or both ( n = 20).

Further validation of MammaPrint was conducted using frozen tumor samples in 
an independent cohort of 307 women younger than 61 years old at diagnosis with 
T1–T2 (≤ 5 cm), ER-positive or ER-negative, lymph node-negative breast cancer 
who had not received adjuvant systemic therapy from five European centers (me-
dian follow-up of 13.6 years) [63]. The 70-gene signature outperformed the clinico-
pathologic risk assessment. For node-positive disease, a separate validation study of 
MammaPrint was conducted in 241 patients with T1-3, one to three node-positive 
breast cancer who did not receive adjuvant systemic therapy from two institutions 
[64]. Patients with MammaPrint™ good prognostic signature achieved 91 % distant 
metastasis-free survival (DMFS) and 96 % breast cancer specific survival (BCSS) 
at 10 years, while those with poor prognostic signatures had 76 % DMFS and 76 % 
BCSS [64]. The study concluded that the low risk group by MammaPrint could be 
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spared from chemotherapy because of their excellent prognosis in the absence of 
systemic treatment.

In conjunction with Adjuvant! Online [65] the utility of the MammaPrint as-
say in outcome prediction in early stage breast cancer is being prospectively stud-
ied in the ongoing Microarray in Node-Negative and one to three node-positive 
Disease May Avoid Chemotherapy Trial (MINDACT) (Fig. 2) [66]. In this trial, 
women with node-negative breast cancer will undergo clinical risk assessment and 
the 70-gene signature. Patients with discordant clinical and genomic predictions are 
randomly assigned to receive or not receive adjuvant chemotherapy. This trial has 
completed accrual, and we await results to be presented.

MammaPrint has not been widely used in the United States due to the initial 
requirement of fresh frozen tissues which are not routinely available. The assay has 
recently been adapted for use with formalin-fixed paraffin-embedded (FFPE) tissue 
[67]. Using FFPE analyte, the MammaPrint assay demonstrated an overall equiva-
lence of 91.5 % (95 % CI, 86.9–94.5 %) between the 211 independent matched 
FFPE and fresh tumor samples [67]. In this study, the precision was 97.3 %, and re-
peatability was 97.8 %, with highly reproducible results between replicate samples 
of the same tumor and between two laboratories (concordance, 96 %). However, the 
adapted FFPE MammaPrint assay has not been validated based on outcome studies.

Oncotype DX The Oncotype DX assay is a quantitative reverse transcriptase 
polymerase chain reaction (RT-PCR)–based test that measures 21 genes (16 can-
cer-related genes and 5 reference genes) in FFPE breast tumors that classifies ER-
positive breast cancer into three recurrence score (RS) risk categories, low (RS 
< 18), intermediate (RS 18–30), and high-risk (RS ≥ 31) [68]. The gene list was 
derived from an initial 250 candidate genes selected from the published literature 
and genomic databases and subsequent studies of their relationship with breast 
cancer recurrence [68]. The training set included three independent clinical stud-
ies of breast cancer involving a total of 447 patients, including the tamoxifen-only 
group of National Surgical Adjuvant Breast and Bowel Project (NSABP) trial B-20. 
The ability of Oncotype DX RS to predict the likelihood of distant recurrence was 
validated in postmenopausal women with node-negative, ER-positive breast cancer 
treated with 5 years of adjuvant tamoxifen in NSABP B-14 trial [68]. The propor-
tions of patients categorized as having a low, intermediate, or high-risk were 51, 22, 
and 27 % and 10-year distant recurrence rates of 6.8, 14.3, and 30.5 %, respectively, 
independent of age and tumor size but not grade [68]. RS was also found to be 
highly prognostic for DFS in the node-positive ER-positive breast cancer treated 
with tamoxifen alone in the SWOG 8814, although the risk remains high even in the 
low RS category [69]. The 10-year DFS estimates were 60, 49, and 43 % for low, 
intermediate, and high-risk categories, respectively [69]. The prognostic properties 
of the Oncotype DX assay is most robust for the first 5 years [69].

Data from the ATAC trial further confirmed the performance of Oncotype DX 
in postmenopausal women with hormone receptor-positive breast cancer treated 
with 5 years of tamoxifen or anastrozole [70]. The 9-year distant recurrence rates in 
low, intermediate, and high RS categories were 4, 12, and 25 %, respectively, in N0 
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Fig. 2  MINDACT Trial. Patients with early stage breast cancer (T1-3, N0-1, ER-positive, or ER-
negative, HER2-positive or HER2-negative) will enroll to the study after surgery and pathology 
and MammaPrint Testing. C-low (low clinical risk) is defined as having a 10-year breast can-
cer–specific survival rate of greater than 92 % for ER-negative disease or greater than 88 % for 
ER-positive disease by Adjuvant! Online. C-high (high clinical risk) is defined as having a 10-year 
breast cancer–specific survival rate of less than 92 % for ER– disease or less than 88 % for ER-
positive disease by Adjuvant! Online. G-high (high genomic risk)  is determined based on high-
risk by the MammaPrint result. G-low (low genomic risk) is determined based on low risk by the 
MammaPrint result
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population and 17, 28, and 49 %, respectively, in women with node-positive breast 
cancer [70]. The relative risk reduction for anastrozole compared to tamoxifen was 
similar across different values of the RS.

RS was evaluated to predict clinical benefits from chemotherapy. In the NSABP 
B-20 trial, which randomized patients with ER-positive, node-negative breast can-
cer to either tamoxifen or CMF/MF (cyclophosphamide, methotrexate, 5-fluoro-
uracil) chemotherapy, patients with high RS were found to benefit the most from 
chemotherapy (NSABP B-20 trial) [71]. In the low RS category, there was no differ-
ence in 10-year distant relapse free survival (DRFS) between patients treated with 
tamoxifen alone (DRFS: 96.8 %, n = 135) or tamoxifen plus chemotherapy (DRFS: 
95.6 %, n = 218), while in the high RS category, addition of chemotherapy improved 
the 10-year DRFS from 60.5 % (95 % CI 46.2–74.8 %, n = 47) with tamoxifen alone 
to 88.1 (95 % CI 82–94.2 %, n = 117) ( p < 0.001). The effect of chemotherapy in the 
intermediate RS category was less clear, with the 10-year DRSF of 90.9 % ( n = 45) 
in the tamoxifen alone arm compared to 89.1 % ( n = 89) in the combination arm. 
The study has been criticized by the fact that the NSABP-B20 tamoxifen alone arm 
was included in the initial training set for the development of the 21-gene assay and 
the RS [68], therefore potentially confounding the interpretation of the data. In the 
node-positive ER-positive breast cancer treated with tamoxifen in the SWOG-8814 
trial, the benefit of CAF (cyclophosphamide, doxorubicin, and 5-fluorouracil) was 
observed in the high, not low, RS category [69]. However, the risk of distant recur-
rence at 10 years in patients with high RS remains high despite chemotherapy, 11.9 
% with node-negative disease (NSABP B-20 trial), and 32 % with node-positive 
disease (SWOG-8841 trial), arguing the need for better treatment approaches in this 
patient population.

The use of Oncotype DX to tailor chemotherapy decisions in patients with 
ER-positive HER2- breast cancer is being prospectively evaluated in the Trial As-
signing Individualized Options for Treatment (Rx), or TAILORx trial (Fig. 3a) for 
node-negative patients [72] and the clinical trial Rx for Positive Node, Endocrine 
Responsive breast cancer (RxPONDER) (Fig. 3b) in patients with 1–3 positive 
lymph nodes involvement. However, the primary objective of the TAILORx trial is 
to determine whether patients in the RS 11–25 group have non-inferior DFS with 
hormonal therapy than with chemotherapy plus hormonal therapy. The study does 
not prospectively evaluate chemotherapy benefit in patients with RS < 11 (Arm 
A) or RS > 25 (Arm D), who are assigned to hormonal therapy alone (Arm A), or 
chemotherapy plus hormonal therapy (Arm D). The primary objective of the Rx-
PONDER trial is to determine chemotherapy benefit (if exist) depends on the RS 
score in the RS ≤ 25 group treated with endocrine therapy. Similarly to TAILORx 
trial, patients with RS > 25 are assigned to chemotherapy plus endocrine therapy, 
with the assumption that chemotherapy is needed in this population. TAILORx has 
completed enrollment, and accrual to the RxPONDER trial is ongoing.

EndoPredict EndoPredict (EP) is a quantitative RT-PCR based assay of eight cancer-
related and three reference genes in FFPE tumor tissues to calculate a risk score that 
classifies ER-positive, HER2-negative breast cancer into low and high-risk categories 
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[73]. The EP risk score and its combination with the clinical risk factors, tumor size and 
nodal status (EPclin), were generated in a large training set of 964 ER-positive, HER2-
negative breast cancers from patients treated with adjuvant tamoxifen only. EndoPre-
dict risk scores and cutoff values were validated in two independent external validation 
cohorts of 1702 patients enrolled in two large randomized Austrian Breast and Colorec-
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Fig. 3  aTAILORx Trial. The primary endpoint of TAILORx trial is disease-free survival ( DFS) in 
patients in the “Primary Study Group (RS 11–25)” ( n = 6860). Patients in this group are randomly 
assigned to receive hormonal therapy (Arm B) or chemotherapy and hormonal therapy (Arm C). 
The study uses a non-inferiority design and was powered to determine whether hormonal therapy 
is not inferior to chemotherapy plus hormonal therapy in patients in this risk group. A decrease in 
the 5-year DFS rate from 90 % with chemotherapy to 87.0 % or lower on hormonal therapy alone 
would be considered unacceptable. A secondary objective is to validate whether patients with RS 
< 11 (Arm A: all patients are assigned to hormonal therapy alone) have failure rates that are low 
enough that adjuvant chemotherapy is unlikely to be of much absolute benefit. Patients in the high 
RS category (RS > 25) are assigned to chemotherapy plus hormonal therapy (Arm D), with the 
assumption that chemotherapy is needed in this patient population. Other secondary objectives 
include comparison of outcomes projected by Adjuvant! and to develop more precise estimates of 
the relationships between RS and chemotherapy treatment effect, if any, at the upper range of the 
RS 11-25 group. bRxPonder Trial. A phase III randomized clinical trial of standard adjuvant Endo-
crine therapy + /− chemotherapy in patients with one to three positive nodes, Hormone receptor-
positive and HER2-negative breast cancer with recurrence score ( RS) of 25 or less. The trial plans 
to screen 9400 women in order to enroll 4000 women with an RS of 25 or less. The primary objec-
tive of this trial is to determine the effect of chemotherapy in patients with one to three positive 
nodes, and hormone receptor ( HR)-positive, HER2-negative breast cancer with RS ≤ 25 treated 
with endocrine therapy, whether the difference in disease-free survival ( DFS) for patients treated 
with chemotherapy compared to no chemotherapy depends directly on the magnitude of RS. If 
benefit depends on the RS score, the trial will determine the optimal cutpoint for recommending 
chemotherapy or not. Secondary objectives include comparison of Oncotype DX and PAM50 risk 
of relapse (ROR) scores and measurement of quality-of-life effects
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tal Cancer Study Group (ABCSG) phase III trials [ABCSG-6: n = 378, ABCSG-8: n 
= 1324] [73]. EPclin low-risk patients had a 10-year distant recurrence risk of 4 % and 
EPclin high-risk patients had a 10-year distant recurrence risk of 28 % (ABCSG-6) and 
22 % (ABCSG-8) with adjuvant endocrine therapy alone. The EPclin score stratified 64 
% of patients at risk after 5 years into a low-risk subgroup with an absolute 1.8 % risk of 
late distant recurrence at 10 years of follow-up [74]. This is comparable to the PAM50 
risk of recurrence (ROR) score for the low risk group in the ABCSG-08 cohort (see 
below in the section of Prosigna) .

Prosigna Prosigna™ Breast Cancer Gene Signature Assay (NanoString Tech-
nologies, Seattle) was developed based on the Prediction Analysis of Microarray 
(PAM)50 model. It is a FDA 510(k) cleared assay for the assessment of 10-year 
risk of distant recurrence for postmenopausal women with early stage, hormone 
receptor-positive, invasive breast cancer using FFPE tumor tissues. It provides a 
risk category (low, intermediate, high) and a numerical ROR score (0–100). Intrin-
sic subtype assignment is also reported in countries outside of United States. In 
contrast to other multi-gene assays, Prosigna is approved for decentralized testing 
in qualified laboratories by using the nCounter® Dx Analysis System and assay kits 
from NanoString Technologies, Inc.

The original PAM50 identifies a minimum set of 50 genes with the ability to 
assign individual breast cancers into intrinsic subtypes, including Luminal A, Lumi-
nal B, HER2-enriched, and Basal like [75]. The training set for the PAM50 subtype 
prediction consisted of 189 breast tumor samples (114 ER-positive and 77 ER-) and 
29 normal samples from heterogeneously treated patients [75]. The initial PAM50 
ROR models, and cut points for low, intermediate, and high-risk categories, for 
prognosis were trained in untreated patients with node-negative disease from the 
cohort of the Netherlands Cancer Institute (NKI, n = 141) [61, 75]. The subtype 
prediction and ROR models were then independently tested for prognosis using 
data from 761 patients (710 node-negative, 35 node-positive) who received no sys-
temic therapy [61, 76−79] and for chemotherapy response using a separate data set 
consisted of 133 patients treated with neoadjuvant T/FAC (paclitaxel followed by 
5-fluorouracil, doxorubicin, cyclophosphamide) [80]. Of the 626 ER-positive sam-
ples, 73 % were Luminal (A or B), 11 % were HER2-enriched, 5 % were Basal-like, 
and 12 % were normal-like, demonstrating a significant molecular heterogeneity of 
ER-positive disease. The intrinsic subtypes showed prognostic significance in mul-
tivariable analyses that incorporated standard clinical and pathologic parameters in-
cluding ER status, histologic grade, tumor size, and node status. The ROR score by 
weighting the expression profile of the 50 genes and pathologic tumor size provided 
superior prognostic information than clinical factors or subtype model alone [75]. 
The final model, which incorporates a clinical factor (T size) and a weighting for an 
index based on the expression of genes associated with proliferation was developed 
using an qPCR analysis of samples in from women diagnosed in British Columbia 
between 1986 and 1992 who received 5 years of tamoxifen [81]. Application of the 
qPCR ROR model to-negative or node-positive tamoxifen-treated premenopausal 
women enrolled in the NCIC MA.12 trial to ROR score was more prognostic than 
clinical parameters [82]. Patients with Luminal A tumors likely benefited the most 
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adjuvant tamoxifen therapy in MA.12 [82]. Furthermore, the intrinsic subtype and 
ROR score accurately identified patients with tumors with non-responding tumors 
to neoadjuvant T/FAC [75].

To develop a simplified workflow and an assay which could be performed in 
local pathology laboratories, Prosigna™ Breast Cancer Gene Signature Assay, 
the PAM50 was adapted to use the nCounter Analysis System [83], which mea-
sures gene expression by multiplexed gene-specific fluorescently-labeled probe 
pairs, without the PCR amplification step [84, 85]. The analytical performance of 
NanoString Prosigna test was validated using FFPE breast specimens across mul-
tiple clinical testing laboratories [83]. The measured standard deviation (SD) was 
less than one ROR unit within the analytical precision study and 2.9 ROR units 
within the reproducibility study [83].

The clinical utility of Prosigna as an independent prognostic model was further 
validated in both ATAC trial [86] and ABCSG-8 trial [87], which provided level 1b 
evidence for its clinical application [88]. In the ATAC trial of 1007 patients with 
ER-positive breast cancer treated with either anastrozole or tamoxifen, ROR (with 
or without weighing tumor size) provided more prognostic information for distant 
relapse beyond the clinical treatment score (nodal status, tumor size, histopatho-
logic grade, age, and anastrozole or tamoxifen treatment). ROR (with or without 
weighing tumor size), provided significantly more information than Oncotype RS 
in the overall population and in all four subgroups: node-negative, node-positive, 
HER2-negative, and HER2-negative/node-negative [87]. ROR provided better dif-
ferentiation of intermediate- and higher-risk groups than Oncotype RS; more pa-
tients were classified as high-risk and fewer as intermediate risk by ROR than by 
RS, therefore reduced the proportion of patients for whom chemotherapy benefit is 
uncertain.

In the ABCSG-8 trial, ROR score added significantly more prognostic infor-
mation to the clinical predictors (nodal status, tumor grade, tumor size, age, trial 
treatment) in the set of 1478 postmenopausal women with ER-positive early breast 
cancer treated with tamoxifen for 5 or 2 years of tamoxifen followed by 3 years of 
anastrozole who did not receive adjuvant chemotherapy [87]. Among node-negative 
patients, ROR assigned 47 % to the low-risk group, 32 % to the intermediate risk 
group, and 21 % to the high-risk group. The 10-year metastasis risk was < 3.5 % in 
the ROR low risk population.

Importantly, ROR score provided significant additional prognostic information 
with respect to late distant recurrence free survival beyond 5 years after diagnosis 
and treatment in the analysis of 1246 patients enrolled in the ABCSG-8 trial [89]. 
Between years 5 and 15, the absolute risk of distant recurrence was 2.4 % in the low 
ROR risk group, as compared with 17.5 % in the high ROR risk group. A combined 
analysis of 2137 patients who did not have a recurrence 5 years after diagnosis 
from the ATAC and ABCSG-8 trials was recently performed to correlate ROR score 
with risk of late recurrence at 5–10 years, in which ROR score was significantly 
prognostic [90]. In the node-negative, HER2–negative subgroup, more prognostic 
value for late distant recurrence was added by the ROR score compared with the 
clinical treatment score [90]. These data suggests a potential role of Prosigna as a 
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tool to assess the need for additional years of endocrine therapy upon completion 
of 5 years of treatment.

Breast cancer index (BCI) BCI is a RT-PCR based gene expression assay of seven 
genes analyzed within two biomarkers—the HOXB13 to IL17BR (H:I) ratio and 
the molecular grade index (MGI)—along with four reference genes, which pro-
vide a dichotomous index to classify patients into high versus low risk groups [91]. 
The test was developed using a cohort of tamoxifen-treated patients from the ran-
domized prospective Stockholm trial of adjuvant tamoxifen and has been shown to 
significantly predict 0- to 10-year risk of recurrence beyond standard clinicopatho-
logic factors [91, 92]. The BCI model was validated by retrospective analyses of 
tumor samples from tamoxifen-treated patients from a randomized prospective trial 
(Stockholm TAM, n = 317) and a multi-institutional cohort ( n = 358) [93]. Within 
the Stockholm TAM cohort, BCI risk groups stratified the majority (~ 65 %) of 
patients as low risk with less than 3 % distant recurrence rate for 0–5 years and 5–10 
years. In the multi-institutional cohort, which had larger tumors, 55 % of patients 
were classified as BCI low risk with less than 5 % distant recurrence rate for 0–5 
years and 5–10 years. For both cohorts, continuous BCI was the most significant 
prognostic factor beyond standard clinicopathologic factors for 0–5 years and more 
than 5 years.

The prognostic ability of the BCI assay, Oncotype Dx RS, and IHC4 for both 
early (0–5 years) and late recurrence (5–10 years) was compared in patients with 
ER-positive, node-negative (N0) disease from the ATAC trial, all assays had sig-
nificant prognostic ability for early distant recurrence (BCI-L Hazard Ratio [HR] 
2.77 [95 % CI 1.63–4.70]; 21-gene RS HR 1.80 [1.42–2.29], p < 0.0001; IHC4 HR 
2.90 [2.01–4.18], p < 0.0001); however, only BCI-L was significant for late distant 
recurrence (BCI-L HR 1.95 [95 % CI 1.22–3.14], p = 0.0048; 21-gene recurrence 
score HR 1.13 [0.82–1.56], p = 0.47; IHC4 HR 1.30 [0.88–1.94], p = 0.20). These 
data indicates that BCI could help to identify patients at high-risk for late distant 
recurrence who might benefit from extended endocrine or other therapy [94].

Somatic Mutations

• SMGs in Luminal breast cancer
 As cancer is largely a disorder of the genome, mutation patterns are rational 

candidates as predictors of endocrine sensitivity in ER-positive breast cancer. In 
the last several years, next generation sequencing technologies have allowed in-
depth study of somatic mutations in over 1000 breast cancer samples. A striking 
difference in mutation spectrums exists for the four intrinsic subtypes of breast 
cancer [60]. Luminal type breast cancers harbored the most diverse and recur-
rent significantly mutated genes (SMG: genes with mutations occurring more 
frequent than background mutation rate), despite a lower mutation rate overall 
compared to the Basal-like and HER2-enriched subtype, suggesting a causative 
role of these genes in Luminal breast cancers [60].
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  The most frequent mutation observed in Luminal A breast cancer is PI3K cata-
lytic subunit-α ( PIK3CA) (45 %) and mutations including MAP3K1, GATA3, 
CDH1 and MAP2K4 which occur almost exclusively in Luminal A type breast 
cancer. A low mutation rate in TP53 (12 %) was observed, which is uncommon 
for epithelial cancers. Approximately 12 % of Luminal A breast cancers carried 
mutations in either MAP3K1 or MAP2K4 in a mutually exclusive manner. Lu-
minal B type breast cancer had a higher rate of mutations in TP53 and a slight 
lower rate of mutations in PIK3CA (29 % each). Some of these mutations have 
been associated with endocrine responsiveness, but many are not.

• Mutations in TP53, MAP3K1 and GATA3. To uncover relationships between 
somatic mutation patterns and the effectiveness of aromatase inhibitor treatment 
of primary breast cancer massively parallel sequencing of 77 pre-treatment tu-
mor biopsies from patients treated with neoadjuvant aromatase inhibitor therapy 
was conducted [13]. The clinical significance of three of the highest frequency 
SMG, TP53, MAP3K1 and GATA3, were assessed to correlate with prognosis 
and treatment response by Ki-67 (Fig. 4). TP53 was correlated with the poor 

Fig. 4   DiPSC plot (dipstick) illustrates correlations between mutations, biomarkers, and sub-
types. (Adapted from Goldstein et al. [101]. Correlation of mutations with Luminal subtype, Ki-67 
and PEPI score)
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prognosis Luminal B signature and high Ki-67 levels before and after treatment, 
whereas mutations in MAP3K1 associated with the Luminal A subtype and low 
levels of Ki-67 throughout the treatment course [13]. Interestingly GATA3 muta-
tion correlated with greater Ki-67 suppression after aromatase inhibitor treat-
ment but not baseline Ki-67 levels, suggesting that GATA3 mutation is a predic-
tive marker for endocrine therapy response [13]. Further verification of these 
results will require analysis of samples with long-term follow up to confirm the 
hypotheses that patients carrying tumors with MAP3K1 or GATA3 mutations will 
have a favorable outcome and TP53 mutation worse outcomes.

• PIK3CA mutation Mutations in PIK3CA, the alpha catalytic subunit of PI3K, 
is the most common genetic event in ER-positive breast cancer, occurring at a 
frequency of 45 and 29 % in Luminal A and B, respectively, which presents an 
attractive therapeutic target [60]. Up to 80 % of PIK3CA mutations are missense 
mutations clustered in the helical domain (HD) and the kinase domain (KD) 
and have been shown to be activating mutations [95]. Several studies reported 
that PIK3CA mutation was associated with better prognosis [96−99]. However, 
PIK3CA mutation has not been associated with clinical or Ki-67 response to 
endocrine treatment in neoadjuvant studies [100].

• BIRC6, CDKN1B, RUNX1 and the long non-coding RNA MALAT1 Using an 
informatics tool to dissect pathway activation events (PARADIGM), MAP2K4 
mutations were found to be potentially associated with favorable tumor features 
(Luminal A, low PEPI scores), which is logical since MAP2K4 is a substrate for 
MAP3K1. In addition to TP53, BIRC6, CDKN1B, RUNX1 and the long non-cod-
ing RNA MALAT1 were connected to high Ki-67 values and Luminal B status 
through pathway informatics (Fig. 4) [101].

• ESR1 point mutation, translocation and amplification and alterations in ER 
pathway genes

 ESR1 point mutation. Estrogen receptor 1 ( ESR1; which encodes ERα) muta-
tion in the C terminal ligand binding domain which renders ligand-independent 
activation of ER is an acquired aromatase inhibitor resistance mechanism. ESR1 
mutation is identified at a frequency of 11–55 % in ER-positive breast cancers 
progressed on endocrine therapy [14−18], in contrast to the rare occurrence in 
treatment-naïve primary breast cancers [60, 102, 103]. Most patients with tu-
mors harboring ESR1 mutations experienced a protracted clinical course prior 
to sample collection for sequencing and the ESR1 mutations were absent in the 
matched primary tumors at diagnosis, supporting the idea that ESR1 mutation 
is largely an acquired resistance mechanism that emerges after long-term treat-
ment with endocrine therapy. The mutations cluster in the ligand-binding do-
main (LBD) with Y537S, C or N and D538G being the most common. These 
mutations confer ligand (estrogen)-independent target gene activation and cell 
proliferation in preclinical studies [14−17]. Structural modeling of the mutant 
ERs demonstrate a constitutive agonist conformation through the formation of 
hydrogen bonds between S537 or G538 and N351 in helix 12 [14]. In preclinical 
studies, treatment with tamoxifen and fulvestrant was effective, but higher drug 
concentrations were required.
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 ESR1 translocation. An additional recently uncovered genetic endocrine therapy 
resistance mechanism is ESR1 chromosomal translocation. Several in-frame fu-
sion genes preserving the first 6–7 exons of ESR1 (e6 or e7), including the DNA 
binding domain and hinge region, spliced in-frame into the C-terminus of an-
other gene have been identified to date. Examples include Yes-associated protein 
1 ( ESR1-e6>YAP1), DNA polymerase η ( ESR1-e7>POLH), and A kinase anchor 
protein 12 ( ESR1-e6>AKAP12) [16, 104]. The ESR1-e6>YAP1 fusion protein is 
best documented since this fusion gene was identified in an endocrine therapy-
resistant patient-derived xenograft (PDX) model derived from the breast tumor 
of a patient presenting with primary endocrine resistant stage IV breast cancer. 
In transfection studies ESR1-e6>YAP1 induced strong hormone independent 
growth and activation of classic estradiol regulated genes (TFF1 and PgR) [16]. 
Thus, the YAP1 sequences effectively mimic the ligand activated transactivation 
domain in the C-terminus of ESR1.

 Another class of translocation involving the ESR1 gene are localized gene rear-
rangements on chromosome 6 between ESR1 and the “coiled-coil domain con-
taining 170” ( CCDC170) gene. CCDC170 resides immediately centromeric to 
ESR1. These fusions join the 5’-untranslated region of ESR1 to the coding re-
gion of CCDC170 generating the overexpression of amino-terminally truncated 
ΔCCDC170 proteins. These gene fusion events were found in 8 of 200 primary 
ER-positive breast cancers and was enriched in more aggressive Luminal B tu-
mors [105]. ΔCCDC170 may engage the GRB2-associated binding protein 1 
(GAB1) signalosome to potentiate growth factor signaling and reduce endocrine 
sensitivity [105].

 ESR1 amplification. Amplification of ESR1 has also been reported as an ac-
quired aromatase inhibitor resistance mechanism. For example, an ESR1 ampli-
fication event was identified in a PDX model and in the corresponding human 
ER-positive cancer progressed on aromatase inhibitor therapy [16]. The ampli-
con in this study extended across both the promoter and coding regions of ESR1 
and was associated with high levels of ER expression. Similar to the clinical 
response in the patient who provided the tumor specimen, treatment of the PDX 
with estradiol paradoxically induced tumor regression rather than tumor growth 
[106] While ESR1 amplification is likely an adaptation to estrogen deprivation, 
and high level amplification was also detected in MCF7 cells after long-term 
endocrine therapy, the mechanism of estradiol induced regression remains un-
der investigation. Interestingly estradiol induced apoptosis can be blocked with 
a SRC inhibitor in experimental models with restoration of estradiol-induced 
growth [107]. The hypothesis provoked by this observation that a SRC inhibitor 
could be used to “restore” endocrine therapy sensitivity is supported by a Phase 
2 clinical trial of the SRC inhibitor dasatinib [108]. The prevalence of ESR1 
amplification in breast cancer has been a subject of controversy, reported from 
rare to over 20 % [109−119]. The variability of the data could be a result of 
non-standardized detection methodologies, which have inconsistent sensitivity, 
specificity and cut-off-point issues that remain unresolved [115, 120].



147Prognostic and Predictive Biomarkers of Endocrine Responsiveness …

 Overall, ESR1 alteration, whether point mutation, translocation or amplifica-
tion, lead to driver roles in acquired resistance to aromatase inhibitor treatment, 
less commonly intrinsic resistance, which could serve as predictors of endocrine 
therapy response. In addition, genetic alteration of ER co-regulators could render 
endocrine therapy resistance, which remains to be confirmed as these events are 
uncommon.

• Other genetic or epigenetic alterations
 Theoretically, genetic or epigenetic alterations in genes that could lead to de-

regulated growth factor receptor signaling, PI3K, MAPK pathway activation, 
cell cycle progression, resistant to apoptosis and senescence could contribute to 
endocrine resistance. For example amplification or overexpression of cyclin D, 
or Myc, or deletion of PTEN or negative regulators of cell cycle machinery could 
lead to uncontrolled tumor growth that is independent of estrogen [121−123]. 
However, further evaluation of these candidate genes are needed to confirm their 
prognostic and predictive role in ER-positive breast cancer and endocrine re-
sponsiveness.

In general the genomic studies discussed above support the hypothesis that aroma-
tase inhibitor resistance is encoded by the mutation patterns present in individual tu-
mor genomes, but detailed and validated information has yet to emerge. The muta-
tional map developed from the neoadjuvant aromatase inhibitor studies emphasizes 
the genomic heterogeneity that underlies the clinical heterogeneity of the disease. 
The next phase of this research is to screen a much larger number of samples to 
determine the ‘endocrine phenotype’ of recurrent somatic mutations in Luminal-
type breast cancer and understand how their interactions drive prognosis, patterns 
of metastasis and drug response.

Conclusion

 Progress has been made in recent years with the introduction of several RNA-based 
multi-gene assays to risk stratify patients when treated with adjuvant endocrine 
therapy. These assays have shown clinical utility in identify patients with suffi-
ciently low risk ER-positive disease on endocrine therapy alone that chemotherapy 
could be avoided. In addition, several assays have shown promise in predicting late 
recurrence for selection of patients for extended endocrine therapy. However, there 
is uncertainty regarding chemotherapy decision making in patients classified in the 
intermediate risk category. In addition, although chemotherapy is likely beneficial 
in the high-risk category by these assay, these patients remain at high-risk for re-
currence despite adjuvant chemotherapy. There is a significant unmet clinical need 
to understand the biology of these tumors for novel the development of nrw thera-
peutic approaches. Genomic sequencing studies have shed light on the potential 
association of somatic mutations as resistant or sensitive mechanisms of endocrine 
therapy. These studies have the potential to improve precision in the prediction of 
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endocrine sensitivity and also provide therapeutic hypothesis for the design of in-
vestigational agents. The neoadjuvant setting provides a platform for clinical identi-
fication of endocrine resistant tumors and for genomic discoveries, while molecular 
analysis of recurrent tumors are required to uncover biomarkers related to acquired 
endocrine resistance. Large scale studies in both settings are in progress. We envi-
sion the eventual development of assays that integrate the current multi-gene assays 
with mutational or genomic profiles that allow a more complete understanding of 
the key molecular drivers of outcome in ER-positive breast cancer.
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Abstract The HER2 receptor is amplified or overexpressed in approximately 
20 % of all breast cancers, but despite significant efforts of the clinical research 
community and a growing number of anti-HER2 agents, a significant number of 
patients with HER2-positive breast cancer either progress or suffer disease relapse 
within 5–10 years. The development of robust biomarkers that predict response to 
anti-HER2 agents is therefore an important clinical need to prevent overtreatment 
and to enable earlier assignment of patients to more optimal therapies. Here we 
review some of the recent advances in the field by focusing on pathways mediating 
resistance to anti-HER2 therapies, and the role of the immune system and cancer 
stem cells in therapy response. We also review preoperative treatment strategies and 
research paradigms that show promise in identifying novel biomarkers of response 
while also enabling the delineation of the mechanisms underlying clinical benefit 
from anti-HER2 therapies.

Keywords HER2 · Targeted therapy · Preoperative therapy · Genomics · 
Proteomics · Cancer stem cells · ErbB2 · Immune system
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Introduction

The HER2 receptor is amplified or overexpressed in approximately 20 % of all 
breast cancers [1, 2]. Early stage HER2 driven cancers are rapidly proliferative and 
prone to metastatic spread, with a worse outcome in the absence of targeted therapy 
[1, 3]. Trastuzumab, a monoclonal antibody that binds to the extracellular domain 
(Subdomain IV) of HER2, was evaluated in more than 13,000 women enrolled in 
five prospective adjuvant Phase III trials with combination systemic chemotherapy 
and trastuzumab and showed a reduction in recurrence rate and improvement in 
overall survival [4]. As a result, systemic chemotherapy plus trastuzumab, is the 
standard of care for early-stage breast cancer. However, strikingly, when a 10 year 
follow up of the North Central Cancer Treatment Group (NCCTG)/N831 and Na-
tional Surgical Adjuvant Breast and Bowel Project (NSABP) combined trials was 
recently reported, up to 23 % of women with early-stage HER2-positive disease 
relapse within 5–10 years [5]. Genomic profiling of HER2-positive breast cancer 
has shown that these tumors are clinically and biologically heterogeneous. Addi-
tional HER2-targeted therapies (lapatinib, pertuzumab, and T-DM1) have been de-
veloped in order to improve outcome and have been evaluated in combination with 
or after trastuzumab in the preoperative, adjuvant and metastatic settings [6]. The 
increasing number of anti-HER2 therapy options (Fig. 1) and the innate heterogene-
ity of HER2-positive breast cancer points to the essential need for the discovery and 
translation of biomarkers that predict a patient’s response to anti-HER2 therapy to 
improve outcome and limit toxicity in HER2-positive breast cancer.

In this chapter, we review the current state-of-the-art in the quest for predictive 
biomarkers for anti-HER2 therapy, ranging from preclinical efforts to studies in-
volving tumor and germline samples derived from patients in clinical trials.

Pathways Mediating Resistance to Anti-HER2 Therapy

Substantial research has been performed to interrogate pathways that are respon-
sible for HER2 signaling [7–13]. These findings have significant implications for 
mechanism-of-action and therapeutic resistance of anti-HER2 therapy (Fig. 1). 
Down regulation of PI3K/AKT pathway activity has been proposed as one of the 
mechanisms of action of trastuzumab [14]. Pre-clinical models suggest that trastu-
zumab represses PI3K/AKT pathway activity through down-regulation of HER2 
signaling [15] or by PTEN activation [16]. Furthermore, analysis of The Cancer 
Genome Atlas (TCGA) breast cancer dataset shows that genes in the PI3K/AKT 
axis (eg. PIK3R1, PIK3CA, PTEN and AKT1) are significantly mutated in some 
HER2-positive tumors [17]. Preclinical and clinical studies have been performed 
in an effort to elucidate the role of the PI3K/AKT axis and resistance to anti-HER2 
therapies.
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Berns et al. used a functional genetic screen to assess the role of mutations in 
P13K and PTEN and resistance to trastuzumab [14]. The investigators demonstrated 
that this pathway was critical for resistance to trastuzumab in vitro and supportive 
evidence was presented in patient samples. In addition, a study evaluating PTEN 
loss using immunohistochemistry (IHC) and PIK3CA mutation showed a signifi-
cant association of PI3K pathway activation and poor response to trastuzumab in 
the metastatic setting [18]. Furthermore, a study of 63 patients with HER2-ampli-
fied metastatic breast cancer revealed a higher frequency (77 %) of PTEN loss and 
activating mutations in PIK3CA amongst the trastuzumab-refractory tumors com-
pared to 44 % within an unexposed cohort ( p = 0.007) [19].

Unfortunately, results from studies of early-stage disease have been mixed, fur-
ther complicating the picture. Somatic hotspot mutations were evaluated in 20 genes 
in tumors from 700 breast cancer patients in a Phase III adjuvant trial (FinHER) 
[20]. PIK3CA mutations were found in 25.3 % of patients and were associated with 
estrogen receptor positivity and the Luminal-A phenotype but were not significantly 
associated with prognosis or trastuzumab benefit [20]. In a separate study involving 
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the oral inhibitor of HER2 lapatinib, tumors coexpressing phosphorylated HER2 
(pHER2) and phosphorylated HER3 (pHER3) were more likely to respond to lapa-
tinib whereas loss of PTEN did not preclude response to lapatinib [21].

PTEN expression, on the other hand, was significantly associated with patho-
logic complete response (pCR) in the preoperative setting [22, 23]. It was observed 
that patients with higher levels of PTEN responded to trastuzumab better than those 
with lower levels. To further support this finding, protein level was also investigated 
and it was observed that increased localization of PTEN to the cell membrane was 
correlated with better response to treatment [22, 23].

However, a large adjuvant trial evaluating PTEN expression by IHC [24] did not 
show an association with response to trastuzumab. While there may be explanations 
for the difference in these findings, ranging from technical variability to the under-
lying heterogeneity of HER2-positive tumors, these studies suggest that there are 
more mechanisms of resistance to trastuzumab than can be explained by one gene 
or pathway. In this context, it is important to note that crosstalk between HER2 and 
other pathways such as insulin growth factor signaling could also result in modulat-
ing the clinical benefit from anti-HER2 therapies.

Early pre-clinical studies showed that increased levels of IGF-IR signaling 
seemed to interfere with the action of trastuzumab in breast cancer cell lines that 
overexpress HER2 [25]. In addition, stimulation of the MCF7 breast cell line with 
IGF-1 resulted in induction of IGF-1 response genes enriched for transcriptional tar-
gets of EGFR and HER2 pathways, and activation of an IGF-1R activity signature 
showed strong correlation with poor patient outcome [26]. Furthermore, an IGF-1 
ligand signature that is inversely correlated with the IGF-1R activation signature 
showed strong association with good prognosis in multiple studies [27]. Finally, the 
recent biomarker analyses in the CLEOPATRA trial showed that high levels of IGF-
1R membrane expression was associated with resistance to pertuzumab (interaction 
test p = 0.041), although the study did not consider this to be a predictive effect due 
to overlaps in confidence intervals and potential impact of multiple testing [28]. 
Taken together, these studies suggest that IGF-1 receptor activity may be associ-
ated with the Luminal phenotype and may portend reduced benefit to trastuzumab. 
However, the baseline IGF-1R signature has not been shown to be sufficiently ro-
bust in predicting response to trastuzumab to warrant the development of a clinical 
biomarker assay.

The knowledge that signal transduction by HER2 occurs through heterodimer-
ization with other receptors of the HER family (HER1, HER3, HER4) has result-
ed in the hypothesis that the dual inhibition of HER2 and HER3 by targeting the 
HER2-HER3 complex, using either antibodies such as pertuzumab [29] or dual-
inhibition of HER1 and HER2 with tyrosine kinase inhibitors such as lapatinib [30, 
31] or neratinib are likely to be more beneficial than HER2 inhibition with one 
agent. The paradox that HER2-targeting agents have shown higher clinical activity 
than the tyrosine kinase inhibitors, despite the fact that they are weaker inhibitors 
of HER2 signaling, has led to increased focus on alternative dimensions underly-
ing the clinical activity of HER2-targeting antibodies [32]. The role of the HER2-
targeting antibodies in provoking endogenous immunologic responses has opened 
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up new avenues of biomarker discovery efforts related to therapy-induced immune 
response as well as alternative therapeutic approaches to engender effective immu-
nogenic response against the tumor cells.

The Immune System and Response to Anti-HER2 Therapy

The interactions between cancer cells and the microenvironment affect both tumor 
growth and progression, with an increasing accumulation of preclinical and clinical 
evidence that the immune system may play a significant role in the therapeutic ef-
fects of HER2 targeted agents [33]. Trastuzumab has been shown to inhibit HER2 
expressing tumor cells via antibody-dependent cellular cytotoxicity (ADCC), where 
antigen-specific antibodies help direct natural killer cells to antigen-expressing can-
cer cells (Fig. 2). Antigen presenting cells then capture the opsonized cancer cell 
fragments and present them to lymphocytes, thus eliciting the induction of the adap-
tive immune response (Fig. 2). Indeed, studies have demonstrated that the adminis-
tration of trastuzumab resulted in the recruitment of natural killer cells at the site of 
the tumor, leading to ADCC [34, 35].

Fig. 2  The role of the immune system in clinical benefit from anti-HER2 therapy (Reproduced 
from “The immune system and response to HER2-targeted treatment in breast cancer” [33])
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Several studies have focused on the development of immune markers that can 
predict the efficacy of treatment using IHC-based assessment of macrophages, natu-
ral killer cells, T and B lymphocytes. The BIG 02–98 investigators evaluated the 
role of tumor-infiltrating lymphocytes (TILs) in the adjuvant setting and reported 
an association of intratumoral and stromal lymphocytic infiltration with benefit 
from higher-dose anthracycline [36]. In addition, the predictive value of TILs was 
seen in a prospective-retrospective study of FinHER, a Phase III adjuvant trial of 
chemotherapy with or without trastuzumab [37]. In the HER2-positive breast can-
cer subgroup, each 10 % increase in lymphocytic infiltration was associated with 
decreased distant recurrence in patients randomized to the trastuzumab arm [37]. 
Overall survival data in this study are immature, and the cut-off used for lympho-
cytic infiltration requires validation. However, the FinHER study does suggest the 
evaluation of immune markers may predict benefit from trastuzumab.

The study of transcriptional programs of immune-related functions has led to 
the identification of gene signatures predictive of trastuzumab benefit that provide 
potential biological insights into the mechanisms mediating clinical response. A 
prospective-retrospective study of mRNA expression in 1282 patients enrolled on 
to the adjuvant NCCTG-N981 trial [38] identified a signature of immune func-
tion genes to be predictive of relapse-free survival in patients treated with trastu-
zumab plus chemotherapy, but not in patients treated with chemotherapy alone. 
In addition, the NeOAdjuvant Herceptin (NOAH) trial investigators demonstrated 
that increased expression of an immunoglobulin metagene was linked to higher 
frequency of pCR in patients that received trastuzumab and chemotherapy when 
compared to chemotherapy alone [33]. Furthermore, two serial preoperative clinical 
trials, Dana-Farber Cancer Institute 03-311 (DFCI 03-311) and Brown University 
Oncology Group 211B (BrUOG 211B), were able to identify specific subytpes of 
HER2 tumors that benefit from trastuzumab-containing preoperative therapy. Using 
a novel, ‘run-in’ paradigm, Harris et al. found that a single dose of trastuzumab can 
define which patients will benefit most from the subsequent HER2 targeted regi-
men [39, 40]. Consistent with other studies [41], the DFCI 03-311 and the BrUOG 
211B trials showed increased pCR rates in the HER2-enriched PAM50 subtype 
[39]. However, in these two trials, a predefined 140-gene expression-based Immu-
neScore [42], was significantly induced after one dose of trastuzumab only in the 
HER2-enriched intrinsic subtype and not in the Luminal B or Basal subtypes [39]. 
More importantly, this induction was only seen in tumors that eventually achieved a 
pCR ( p = 0.03) suggesting it may be an important mechanism of response to trastu-
zumab-based therapy and not simply a feature of the HER2-enriched subtype. Most 
importantly, this same signature was validated as predictive of pCR in the 211B 
trial ( p = 0.05), showing the unique value of this paradigm. Of note, a single dose of 
nab-paclitaxel did not produce these associations, suggesting this was a trastuzum-
ab-specific effect. Taken together, these data suggest that trastuzumab modulates 
activity of immune-specific transcriptional programs, which may be responsible for 
the mechanism of benefit of trastuzumab-containing therapy in specific subtypes of 
HER2-positive breast cancer. This unique preoperative paradigm is worthy of pur-
suit as it may provide patients with HER2-positive tumors and their providers the 
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ability to predict if therapy is going to be effective and the opportunity to change to 
(or add) another HER2 targeted therapy to improve outcome.

Another avenue for the development of predictive biomarkers for trastuzumab 
benefit are polymorphisms found on the Fc Gamma receptors that are found on the 
surface of macrophages and natural killer cells. Based on the hypothesis that ADCC 
is one of the mechanisms of action trastuzumab that occurs when the Fc portion 
of the tumor-bound antibody is recognized by the Fc Gamma receptors, polymor-
phisms within Fc Gamma receptors may be associated with impaired regulatory 
activity. Norton et al. [43] evaluated specific polymorphisms within these receptors 
and found a significant interaction between a polymorphism in the inhibitory gene 
FCGR2B with trastuzumab benefit. These data suggest that mechansims other than 
ADCC may be at play in response to antibody-based anti-HER2 therapy.

The Preoperative Paradigm

Despite extensive efforts of the breast cancer research community, biomarkers de-
rived from single biopsies have not reliably predicted response to anti-HER2 therapy, 
much less guided the subsequent treatment choices. Part of this lies in the fact that 
biomarker studies of a robust nature are difficult to conduct due to limited availabil-
ity of adequately sized cohorts and optimally collected tissues. If positive findings 
are reported, further validation sets are often not available or the results are negative 
and tend to be underreported. The underlying reason why findings are not validated 
is complex but may be largely due to the heterogeneity of the ‘HER2 tumor subtype,’ 
which is a misnomer as HER2 is in fact an amplicon and may arise in several breast 
tumor lineages and host backgrounds [44]. From a patient perspective, what is more 
important is ‘is the therapy going to kill my cancer?’ and from this point of view 
our approach needs to consider what we can learn from the tumor during therapy. 
Hence, we and others have pursued the approach of requesting a second biopsy after 
one dose of targeted therapy to determine the likelihood of benefit from a particular 
regimen (Fig. 3a). There is strong evidence that this paradigm has and will provide 
useful results and should be pursued for patient benefit [39, 40].

As discussed in the context of tumor immunity, a significant change in immune 
activity can be seen in certain subgroups of HER2-positive tumors and this predict-
ed pCR to trastuzumab in a test and validation set [39]. In addition, previous studies 
of DFCI 03-311 found that IGF1 and AKT pathway activity upon brief exposure to 
trastuzumab predicts pCR using a predefined set of signatures [27, 45] (Fig. 3b). 
The activity signatures were again only predictive after brief-exposure and suggests 
not only that this paradigm is useful but provides a testable hypothesis to be pursed 
in the laboratory and in subsequent studies. These results have not yet been vali-
dated the overall dataset and will require further confirmation by next generation 
RNA sequencing.

The opposite end of the spectrum from treatment sensitivity, is treatment resis-
tance, and phenotypes found in these two extremes are markedly different. We have 
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examined transcriptional profiling in trastuzumab-resistant tumors and found that 
these signaling networks tend to be much more complex, involving multiple growth 
factor pathways, cytokines and downstream effectors [6]. In addition, but perhaps 
not surprisingly, genes that were characteristic of Basal-like breast cancer were seen 
in non-responding tumors, suggesting that defects in DNA repair and genomic in-
stability might be at play in this phenotype. In addition to lineage markers ( CK14, 
CK15, CK5, CK17, GABRP and BOC) the signature included anti-apoptotic genes 
(alpha B crystallin), Wnt family members and other indicators of the Basal pheno-
type and suggest potential targets for therapy. Both lineage and genomic instability 
are important features of HER2 tumor biology and may play a pivotal role yet in 
the development of drug resistance over time. In addition, the presence of breast 
cancer stem/progenitor cells contributes not only to progression but to likelihood of 
response to specific therapies (discussed below).
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dictors of therapy benefit (b) IGF1 and AKT activity signatures at baseline and after a single dose 
of preoperative trastuzumab across patients in the 03-311 preoperative trial

 



163Biomarkers for Predicting Response to Anti-HER2 Agents

Although enormous strides have been made in establishing preoperative therapy 
as a ‘standard of care’ the brief exposure paradigm is still somewhat new and re-
quires further study and emphasis. Intriguingly, a number of predictive biomarkers 
have been identified, and some have been validated in second trials [39, 40]. Nev-
ertheless, the validity and clinical significance of these markers needs validation in 
large prospective-retrospective trials such as the neoALTTO cohort. These studies 
lay the groundwork for such an undertaking and justify their being carried out in 
the near-term.

Cancer Stem Cells as Predictive Factors to Treatment 
Response

In the past decade, treatment strategies have been guided by molecular profiles that 
have divided breast cancer into four categories: Luminal A, Luminal B, HER2-am-
plified and Basal-like. However, issues such as resistance to treatment and disease 
progression have highlighted the necessity of looking for additional therapeutic tar-
gets. Recent data suggest that subpopulations of cancer cells with stem cell-like 
characteristics, (CSCs) are present in breast tumors and that these cells are more 
resistant to treatment.

The first report identifying CSCs in breast cancer combined expression of two 
cell surface markers: CD44+ and CD24−, and was found primarily in the basal-like 
subtype [46]. This population exhibited in vitro and in vivo stem cell-like prop-
erties such as mammosphere-forming ability, the capacity to regenerate a hetero-
geneous tumor in non-obese diabetic/severe combined immunodeficiency (NOD/
SCID) mice and invasive capability. After Ginestier and colleagues characterized 
a breast cancer specific marker, the enzyme aldehyde dehydrogenase 1 (ALDH1) 
[47], Charafe-Jauffret showed that the ALDH1 population could metastasize in vivo 
and carried a worse prognosis [48] and Creighton found that the CD44+/CD24− -MS 
signature was seen in therapy-resistant patient samples.

To explore the CD44+/CD24− phenotype in HER2-overexpressing breast can-
cer, Chang and colleagues compared the effect of chemotherapy and lapatinib on 
this population. The CD44+/CD24− population was upregulated with chemotherapy 
(4.7–13.6 %) but this was blocked in the lapatinib arm (10–7.5 %), although non-
significantly. Of note, the baseline level of CD44+/CD24− population was higher in 
the HER2-positive patients (10 % versus 4.7 %), which suggests a CSC phenotype 
is more prevalent in this population and potentially a good target for anti-HER2 
therapy [49]. Nevertheless, a non-significant result is not definitive and the role of 
the CSC population in HER2-positive tumors requires further study.

A study from Duru et al. suggest that the HER2-NF-kB-HER2 loop radioresis-
tance to HER2-positive tumors (Fig. 4) as patients with recurrent invasive tumors 
tended to be HER2-positive with worse outcome [50]. These data propose a mecha-
nism for radioresistance in CSC from HER2 tumors, requiring further confirmation.
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Liu and colleagues [51] developed a 17-gene signature that is specific for HER2-
amplified breast cancer (HER2-Tumor Initiating Cells enriched signature; HTICS). 
Using a mouse model, they utilized serial dilution and single cell transplantation 
assays to purify the CSC population identified in CD24+/JAG1− fraction that was 
then found to contain stem cell-like properties. In a subsequent cohort, the HTICS 
was associated with resistance to chemotherapy however they responded to combi-
nation chemotherapy with trastuzumab. This signature was found to be a powerful 
predictor of clinical response and was independent of additional clinical variables 
like age, tumor grade, size, lymph node involvement [51]. Taken together, there 
is mounting evidence of CSC populations in HER2-positive tumors that are more 
resistant to therapy that could be potentially overcome by anti-HER2 agents. Fu-
ture studies will need to ratify these findings in order to move the potential of CSC 
therapy into clinical practice.

Conclusions

The development of anti-HER2 targeted agents for treatment of HER2-amplified 
breast cancer has been a success story as introduction of agents such as trastuzumab 
has completely altered the course of this disease changing it from a death sentence 

Fig. 4  The role of cancer stem cells in clinical benefit from anti-HER2 therapy (Reproduced from 
“Breast cancer adaptive resistance: HER2 and cancer stem cell repopulation in a heterogeneous 
tumor society” [50])
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to a cure in many patients. However, despite the advances, the clinical benefit from 
anti-HER2 agents remains heterogeneous and biomarkers to identify which patients 
most benefit from specific anti-HER2 therapies are sorely needed. Despite the ex-
tensive efforts of the research community, no good predictors of response to trastu-
zumab are currently available for clinical use. Ongoing efforts are needed to vali-
date promising markers, to standardize the assays and to make them available to pa-
tients once analytic and clinical validity and clinical utility are proven. In addition, 
and perhaps most importantly, novel research strategies such as the brief exposure 
preoperative paradigm are needed to identify the specific therapy that will be most 
likely to cure the patient. These approaches will allow us to reach the ultimate goal, 
which is the highest cure rate possible for the patient with a HER2-positive tumor.
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Intratumor Heterogeneity in Breast Cancer
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Abstract Intratumor heterogeneity is the main obstacle to effective cancer treat-
ment and personalized medicine. Both genetic and epigenetic sources of intratumor 
heterogeneity are well recognized and several technologies have been developed for 
their characterization. With the technological advances in recent years, investiga-
tors are now elucidating intratumor heterogeneity at the single cell level and in situ. 
However, translating the accumulated knowledge about intratumor heterogeneity 
to clinical practice has been slow. We are certain that better understanding of the 
composition and evolution of tumors during disease progression and treatment will 
improve cancer diagnosis and the design of therapies. Here we review some of the 
most important considerations related to intratumor heterogeneity. We discuss both 
genetic and epigenetic sources of intratumor heterogeneity and review experimental 
approaches that are commonly used to quantify it. We also discuss the impact of 
intratumor heterogeneity on cancer diagnosis and treatment and share our perspec-
tives on the future of this field.
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Introduction

While the topic of heterogeneity is receiving substantial interest by both research-
ers and clinicians, heterogeneity within tumors has been recognized for a very 
long time. Rudolph Carl Virchow, one of the fathers of modern pathology and an 
influential biomedical scientist of the nineteenth century, had already pointed to 
the existence of distinct cellular phenotypes within tumors (historic perspective in 
[1]). Specifically in breast cancer, and also in the nineteenth century, the same phe-
nomenon was almost immediately recognized when the first core needle biopsies 
were performed (historic review in [2]). Later on, in the first half of the twentieth 
century, breast cancer phenotypic heterogeneity was casted with the publication of 
the first classification of breast tumors based on histological types [3]. Intratumor 
heterogeneity at the functional and genetic level was also beginning to be appre-
ciated in melanoma models [4]. Using more in-depth analysis in the second half 
of the twentieth century, pioneer studies of tumor heterogeneity were conducted 
where the existence of distinct subpopulations of cancer cells within tumors with 
different tumorigenicity, resistance to treatment, and ability to metastasize were 
described [4–6]. The clinical implications of tumor heterogeneity were recognized 
almost simultaneously. Breast cancer was one of the first solid tumor types in which 
the clinical and treatment implications of heterogeneity for cellular phenotypes was 
established while analyzing the expression of the estrogen receptors [7]. Specifical-
ly, researchers determined that variability for this biomarker could classify tumors 
into distinct subtypes guiding treatment decisions, but its variability within tumors 
posed a challenge in the clinical management of some of these patients [7]. Breast 
cancer research was also pioneering with the identification of intrinsic molecular 
subtypes based on global gene expression profiling studies and the rapid translation 
of this knowledge into clinical practice [8–10].

Due to advances in molecular biology methods, research in cancer stem cells 
(CSC), and the appreciation of its clinical impact, tumor heterogeneity is currently 
one of the most highly investigated areas in cancer research. It has also been ac-
knowledged that tumor heterogeneity is more than just a reflection of genetic diver-
sity within tumors resulting from genomic instability and clonal evolution. Newer 
tools and accumulating knowledge have led to the identification of important sourc-
es of non-genetic tumor heterogeneity such as epigenetic heterogeneity due to dif-
ferentiation hierarchies and stochastic mechanisms as well as non-hereditary cellu-
lar heterogeneity for various phenotypes [11, 12]. Today we recognize innumerous 
sources of phenotypic features that display substantial cell-to-cell intratumor vari-
ability. These include activation of signaling pathways, evasion of antitumor immu-
nity, induction of senescence, production of secreted factors, migration, metastatic 
potential, angiogenic capacity, genetic makeup, response to anticancer drugs and 
activation of metabolic pathways. However, even though this increased knowledge 
has led to the more in-depth understanding of tumor biology, there is still a signifi-
cant lag with its clinical translation and incorporation into diagnostic, prognostic, 
and therapeutic strategies. Though contemporary sounding, conclusions such as 
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“The possible existence of highly metastatic variant cells within a primary tumor 
suggests that we no longer should consider a neoplasm to be a uniform entity” were 
written almost 40 years ago [5]. Despite this recognition, no substantial clinical 
advances have been made considering the phenomena of intratumor heterogeneity.

In this chapter, we will review and discuss some of the sources of genetic and 
non-genetic intratumor heterogeneity with a special emphasis on breast cancer. 
Additionally, we will discuss current technologies that are applied in intratumor 
heterogeneity studies and the most pertinent clinical implications of intratumor het-
erogeneity.

Sources of Intratumor Heterogeneity

Genetic Heterogeneity

For decades, cancer biology and oncology have been dominated by a gene-centric 
view. Normal tissues exhibit low genetic heterogeneity being all phenotypic diversi-
ty attributable to non-genetic sources. In contrast, in cancer, phenotypic differences 
were thought to be due to defined genetic alterations. According to this perspective, 
genetic changes would accompany and drive the development of a neoplasm ensu-
ing progression to an increasingly malignant phenotype [13]. Descendants of the 
same cell are defined as a clone. Strictly speaking, the whole cancer is a clone, since 
tumors almost always initiate from a single transformed cell. Every time a cancer or 
a normal cell divides mutations may be acquired and the number of mutations that 
distinguish two cells marks the time from their common ancestry. Based on global 
mutational data, the clonal (or subclonal) architecture of the tumor can be defined. 
This clonal heterogeneity is overlaid by cellular genetic diversity, since due to high 
genomic instability every cancer cell can be genetically different within the same 
tumor. In a phenomenon analogous to speciation, in large tumors, cells located in 
distant regions harbor more differences than neighboring cells [14]. Similarly, larger 
tumors (as with larger populations) usually exhibit greater genotypic diversity [15], 
highlighting the importance of multiple rounds of cell divisions for tumor devel-
opment and diversification [16]. Phenotypic heterogeneity among clones leads to 
the selection for the ones with higher fitness advantage by a Darwinian selection 
process leading to a unique pattern of clonal architecture within tumors. As a direct 
consequence of this process, during tumor evolution only a fraction of all clones 
will be associated with distinct phenotypic traits and an even smaller fraction will 
have biological impact. In other words, only a small proportion of mutations will 
have direct phenotypic manifestations. However this is a rather simplistic view of 
clonal selection. Today we know that tumor growth can be driven even by a minor 
subpopulation, which enhances the proliferation of all cells within a tumor by over-
coming environmental constraints [17]. Additionally, mutations that are phenotypi-
cally silent in one condition can manifest in another due to interactions with other 
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silent mutations [18] or altered heat-shock responses, for instance [19]. Even in 
cases when the mutational landscape is well known, predictions on tumor evolu-
tion taking into account only the genetic sources of intratumor heterogeneity are 
still very inaccurate. Accounting for non-genetic intratumor heterogeneity sources 
is utterly needed for understanding the full complexity of intratumor heterogeneity.

Epigenetic Heterogeneity: Differentiation Hierarchies

Epigenetic alterations can be defined as changes in gene expression or phenotype 
caused by mechanisms other than changes in the DNA sequence. Since epigenetic 
alteration can condition the cancer cell phenotype and potentially provide fitness 
benefit, epigenetic mechanisms are an additional source of intratumor heterogene-
ity. In breast cancer, several epigenetic alterations have been described and usually 
occur within the larger context of extensive changes to chromatin structure related 
to altered patterns of histone modification, and methylation gains and losses on 
CpG dinucleotides within DNA sequences [20, 21]. These mechanisms, usually 
through epigenetic silencing, are responsible for the repression of multiple tumor 
suppressor genes and condition numerous important phenotypic traits. Hypermeth-
ylation profiles have been associated with hormone receptor and HER2 status [22, 
23]. Either by estrogen receptor (ER) silencing or through silencing of its promoter, 
hypermethylation is involved in the regulation of ER expression. ESR1 promoter 
methylation has been shown to be a better predictor of clinical response to adjuvant 
tamoxifen than hormone receptor status determination by immunohistochemistry 
(IHC) [24]. Epigenetic events have also been implicated in breast cancer progres-
sion including the epigenetic silencing of p16INK4A [25] and RASSF1A [26, 27]. Be-
sides establishing important phenotypic traits, epigenetic mechanisms add another 
layer of complexity to tumor heterogeneity as they are reversible. Nevertheless, the 
phenotypic traits set by epigenetic changes are not immutable, but rather stable or 
semi-stable and therefore still regarded as the “gray zone of tumor evolution” [11]. 
The magnitude of intratumor epigenetic diversity is even greater than genetic diver-
sity. However, there is still a significant gap in our understanding of the causes and 
consequences of epigenetic sources of intratumor heterogeneity. Despite currently 
available knowledge on epigenetic modifications with enormous potential for clini-
cal application, translation to clinical use with the identification and validation of 
prognostic markers as well as drugs targeting epigenetic mechanisms is still in its 
infancy.

The idea that phenotypic differences in tumors are somewhat representative of 
differentiation hierarchies observed in normal tissues has been around for a long 
time [28]. More recently, the concept of differentiation hierarchies in cancer was fu-
eled by the discovery of a subpopulation of cells in acute myeloid leukemia (AML) 
with stem cell-like characteristics [29] and the “boom” in CSC research that fol-
lowed it. In breast cancer, phenotypic heterogeneity mapped to distinct differen-
tiation states seems to be a better predictor of clinical behavior than that based on 
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mutational profiles [30] since basal and luminal features are strongly associated 
with invasive and metastatic potential [31]. But even though this is an appealing 
perspective, several caveats can be identified. First, the parallel between normal 
and tumor differentiation hierarchies is not straightforward owing to the massive 
epigenetic abnormalities acquired by cancer cells and multiple mutations that can 
result in unique deterministic phenotypes without a normal counterpart [12]. Sec-
ond, while the ability to dedifferentiate is not limited to cancer cells, oncogenic 
transformation increases the probability of this dedifferentiation and thus, increases 
epigenetic and phenotypic plasticity [32]. Although conceptually useful for under-
standing tumor biology, the idea of differentiation hierarchy within tumors does not 
provide on its own a comprehensive explanation for all forms of intratumor epigen-
etic heterogeneity (Fig. 1).

Fig. 1  Genetic, epigenetic, and microenvironmental heterogeneity in cancer. Cellular pheno-
types represent the integration of several inputs. In normal tissues, genotypes are homogeneous, 
there is a defined (stable) epigenetic landscape with low stochastic fluctuations and the microen-
vironment is highly structured, resulting in limited number of distinct niches. In contrast, in most 
tumors there is significant genetic heterogeneity, an unstable epigenetic landscape, and the micro-
environment is disorganized leading to a larger number of less well-defined niches. The integration 
of these influences result in a large repertoire of highly variable cellular phenotypes in neoplastic 
compared to normal tissues.
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Epigenetic Heterogeneity: Stochastic Mechanisms

Additional sources of intratumor epigenetic heterogeneity are via stochastic mecha-
nisms. Due to recent advances in single-cell analysis, it has been demonstrated that 
even members of a genetically identical group of cells or organisms in identical en-
vironments can exhibit different phenotypes [33]. In other words, even in isogenic 
cells that share the same deterministic phenotypic state, there are transient pheno-
typic variants. These variants are the result of stochastic changes in the biochemical 
processes within the cells. The best studied processes of stochastic intratumor het-
erogeneity are the variable gene expression and the “burst-like” way in which most 
eukaryotic genes are transcribed [11]. These processes are still puzzling and might 
involve changes in chromatin states and/or modulation of the turnover of mRNAs 
[34, 35]. Despite not being fully understood, stochastic mechanisms of intratumor 
heterogeneity appear to be influential in the differential sensitivity of cancer cells to 
cytotoxic therapies[36]. Spencer et al. showed that naturally occurring differences 
in the levels or states of proteins regulating receptor-mediated apoptosis are the 
primary causes of cell-to-cell variability in the timing and probability of cell death 
in human cell lines [36]. These stochastic mechanisms may also be responsible 
for transitions between cellular differentiation states and result in subpopulations 
of human breast cancer cells with distinct properties despite shared clonal origin 
and culture conditions [37]. For example, Fillmore and colleagues showed using 
eight different human breast cancer cell lines that cells with CD44+ CD24−ESA+ 
(epithelial-specific antigen) phenotype had significant tumor-initiating and self-
renewing abilities in vitro and that these cells would give rise to phenotypically 
diverse progeny with increased resistance to chemotherapy. Despite the stochastic 
gene expression, proteome fluctuations, and cell-to-cell variability in phenotypes, 
the full impact of cellular heterogeneity on pharmacologic responses and the treat-
ment of human disease is largely unknown. Additional advances in mathematical 
modeling methods and study designs are required to account for the stochasticity of 
biochemical processes in intratumor heterogeneity studies.

Characterization of Intratumor Heterogeneity

Genome-Wide Studies and Bulk Tumor Sequencing

Many of the first genomic studies of human cancer were conducted to evaluate het-
erogeneity between tumors rather than between subpopulations of cancer cells with-
in tumors. In breast cancer the first studies investigating differences in gene expres-
sion and genomic profiles (mostly copy number variations (CNV)) were conducted 
many years ago in the mid-late 1990s). However, in-depth genome-wide studies 
have been made possible only more recently with the development of new technolo-
gies. One of the most significant studies was performed by The Cancer Genome 
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Atlas (TCGA) Network initiative. New insights were provided into the previously 
defined intrinsic breast cancer subtypes based on comprehensive integrated view 
of CNVs, DNA methylation, exome sequencing, RNA-seq, microRNA sequencing, 
and reverse-phase protein array data [38]. Specifically, the authors confirmed the 
existence of four main breast cancer intrinsic subtypes, each showing significant 
molecular heterogeneity with common (> 10 % incidence) somatic point mutations 
occurring only in three genes ( TP53, PIK3CA, and GATA3) across all breast can-
cers. Another large scale study subjecting 2000 breast tumors to integrated genom-
ic and transcriptomic profiling, proposed a more detailed classification of breast 
cancer into 10 subtypes based on presumed molecular drivers [39, 40]. However, 
since these studies rely on sequencing of bulk tissues, only an average estimation 
per tumor/sample is provided thus reflecting only the broad mutational landscape 
of the majority of cells in the tumor [41]. As such, the possible underlying clonal 
complexity is averaged and the clonal frequencies of mutations and CNVs have to 
be inferred using computational methods. These methods estimate tumor purity and 
ploidy from the observed copy number profile and mutational landscape or using 
hierarchical Bayesian modeling [42, 43]. To better define intratumor clonal hetero-
geneity within tumors genome-wide analysis of topologically distinct areas of the 
same tumor have also been performed. Combining the use of macro-dissection with 
nuclei isolation by fluorescence-activated cell sorting (FACS) and performing array 
comparative genomic hybridization (aCGH) in different areas of breast carcinomas, 
attempts were made to more precisely study intratumor genetic heterogeneity in 
breast cancer [44]. Based on the analysis of different sectors of the same tumor, dif-
ferent clones were found to be either topologically segregated throughout the tumor 
or intermingled within the same sector [44].

Genome-wide studies have also been used to investigate clonal relations in 
breast cancer between primary tumors and metastasis. For example Ding et al. [45], 
performed genomic analyses of four DNA samples from different sites (peripheral 
blood, primary tumor, a brain metastasis and a xenograft derived from the primary 
tumor) from an African-American patient with Basal-like breast cancer. Using this 
approach, the authors showed that, in this Basal breast cancer, despite occurrences 
of additional somatic mutations, copy number alterations and structural variations 
during the clinical course of the disease, most of the original mutations and structur-
al variants present in the primary tumor are propagated during disease progression. 
However, the differential mutation frequencies and structural variation patterns in 
metastasis and xenograft compared with the primary tumor indicated that metastatic 
lesions might arise from a minority of cells within the primary tumor rather than 
from the dominant clone [45].

In summary, bulk tumor sample profiling can provide useful information about 
the tumor as a whole but cannot determine the cellular origin of the signal, topology 
within tumors or the degree of intratumor heterogeneity. Additionally, although to 
some extent the detection of subclonal populations using bulk tumor data is possible 
due to recently developed computational tools, these are limited by the error rate 
of the sequencing platform at the commonly used sequencing depths and aberra-
tions in rare cells that may escape detection [46]. Despite all these challenges and 
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caveats, genome-wide studies of bulk tumors still continues to remain a popular 
choice given its cost-effectiveness and straightforward study design implementa-
tion when compared to other methods.

Genome-Wide Studies in Single Cells

In recent years, technological advances have made it possible to conduct studies us-
ing single cell sequencing. Single cells can be obtained from a multitude of samples, 
but most commonly from fresh tumor samples or circulating tumor cells (CTC) 
in peripheral blood. Techniques applied to single cell studies in breast cancer can 
also vary from whole-genome and exome sequencing [47, 48] to high-resolution 
oligonucleotide aCGH and targeted sequencing of candidate genes [49]. Single cell 
sequencing is the most objective way to assess intratumor clonal heterogeneity, 
since it allows for the direct inference of clonal genotypes [41]. However, this tech-
nique has several limitations, the most important being the need for whole-genome 
amplification. While structural variations can be reliably assessed by single cell 
sequencing, genome-wide assessment of mutations is still challenging due to ar-
tifacts produced by whole genome amplification and sequencing errors [50]. To 
address this problem, Wang et al. [48] recently developed a high-coverage whole 
genome and exome single cell sequencing method called nuc-seq. Exploiting the 
fact that single cells duplicate their genome during S phase, Nick Nevins et al. iso-
lated nuclei from cells in the G2/M phase of the cell cycle and were able to achieve 
high-coverage data with low error rates. This technique enabled the demonstration 
that aneuploid rearrangements occur early in tumor evolution and remain highly 
stable as the tumor masses clonally expand. In contrast, point mutations seem to 
evolve more gradually, generating extensive clonal diversity [48]. The authors also 
showed that triple-negative tumors have an increased mutation rate compared to 
ER-positive ones.

Despite major advances in single cell sequencing technology, the current cost 
and time required make this technique prohibitive for routine clinical use. More 
importantly, the clinical relevance of single cell sequencing methods is still unclear 
since data from single cells may not provide information on the remaining of the 
tumor population and much of its interest relies on the potential use for character-
izations of CTCs. Nonetheless, it remains to be demonstrated whether CTCs are 
representative of the whole tumor (and all of its complexity) and if they are the cells 
that mediate the metastatic process [51].

In Situ Analysis of Intratumor Heterogeneity

Due to extensive topologic heterogeneity within tumors, the favored methods 
should allow for the evaluation of intratumor heterogeneity in situ. By preservation 
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of the tissue context, in situ techniques provide detailed topological information 
that is complementary to the information provided by bulk and single cell sequenc-
ing. Additionally, most of them can be applied to formalin-fixed paraffin-embedded 
(FFPE) samples, available in large cohorts in many pathology departments and tu-
mor banks.

Today, in situ techniques range from traditional IHC to in situ polymerase chain 
reaction (PCR) [52] and in situ target-primed rolling cycle amplification [53, 54]. 
The detection and evaluation of antigens in FFPE tissues can easily be achieved by 
IHC and immunofluorescence (IF). IHC is the standard ancillary technique in all 
pathology departments throughout the world and is the basis of ER, progesterone 
recpetor, and initial HER2 assessment in breast cancer. IHC is particularly useful 
for rapid analysis and semi-quantitative assessments of expression levels of the pro-
teins of interest, while preserving topological information close to a haematoxylin 
and eosin (H&E) stained section. Nowadays IHC is a robust technique that can be 
easily automated and allows for the study of immunophenotypic heterogeneity of 
tumors. The multiplexing capabilities of routine IHC are rather limited and it is not 
easy to visualize more than two proteins simultaneously. Thus, the evaluation of 
multiple targets is better performed with IF. IF can be easily multiplex to simultane-
ous detect two to three targets, but several techniques have been developed to in-
crease the multiplexing capacity. As an example, Gerdes et al. [55] recently reported 
the development of a novel method that allows multiplexed quantitative single-cell 
IF microscopy and used it to detect 61 protein antigens in a single FFPE slide. Thus, 
IF can be used to investigate co-expression of multiple proteins and specific signal-
ing pathways in different cell populations while keeping topological information 
intact and using quantitative methods [56].

In situ hybridization techniques have been used to detect RNA and DNA in fro-
zen and FFPE samples to provide information on copy number alterations, muta-
tion, and expression levels. Both DNA and RNA can be used as probes and labeled 
for detections with radioactive isotopes, enzymes or fluorochromes. Additionally, in 
many pathology departments, the technical component of the routinely used in situ 
hybridization techniques (i.e., HER2 by fluorescence in situ hybridization (FISH) 
to assess HER2 amplification) can now be performed automatically [57]. Further-
more, many of these techniques can be successfully combined. Using a combina-
tion of FISH and IF (immunoFISH or iFISH), Park et al. [58], investigated the 
association of commonly used markers of cellular differentiation states and genetic 
alterations in human breast carcinomas of different stages. According to the authors, 
there was a high degree of genetic heterogeneity both within and between distinct 
tumor cell populations that were defined based on markers of cellular phenotypes 
including stem cell–like characteristics, with the combined use of CD24 and CD44. 
Indeed, in several breast tumors, cell populations expressing CD44, a stem cell–
like marker and cell populations expressing the more luminal differentiated marker, 
CD24, were genetically distinct [58]. Also using iFISH, Almendro et al. [59] as-
sessed breast cancer intratumor heterogeneity during the course of neoadjuvant 
chemotherapy and showed that intratumor genetic diversity was tumor subtype spe-
cific and lower pre-treatment cellular genetic diversity was significantly associated 



178 F. Beca and K. Polyak

with pathologic complete response. Additionally intratumor genetic diversity did 
not change significantly in tumors with partial or no response to treatment but phe-
notypic diversity was different between pre- and post-treatment samples [59]. Im-
muno-FISH was also used to study intratumor heterogeneity at the single cell level 
and during metastatic breast cancer progression [60]. In this study, it was shown 
that genetic diversity was the highest in distant metastases compared to primary 
tumors and lymph node metastases and was generally concordant across lesions 
within the same patient. However, in treatment naïve patients, the cellular genetic 
heterogeneity indices of primary tumors and matched lymph node metastases were 
frequently more divergent. In contrast, cellular phenotypes were more discordant 
between distant metastases than between primary tumors and matched lymph node 
metastases. These two studies highlight the importance of integrated genotype and 
phenotype analysis of single cells in situ in intact tissues to infer tumor growth and 
evolutionary dynamics.

Lastly, other techniques traditionally not used in situ are now finding its way to 
such applications. PCR and reverse-transcription PCR (RT-PCR) can now be per-
formed in situ, combining the resolution to detect point mutations with topological 
information [61, 62] even in whole mount preparations [63]. Additionally, novel 
techniques such as in situ target-primed rolling cycle amplification [53] and DNA 
paint [64] are unlocking the potential to multiplex the detection of mutations in 
sections of fixed tumor samples and even combine in situ mRNA genotyping while 
simultaneously obtaining information on protein interactions or post-translational 
modifications [54].

In conclusion, with the in situ techniques available today, it is already feasible to 
trace back and integrate with topology many of the “hits” found by bulk or single 
cell sequencing approaches. Thus, the integrated analysis of tumors would not only 
provide information on the genetic events but also on the local interactions between 
tumor cells and the local microenvironment.

Clinical Impact

The Impact of Intratumor Heterogeneity on Diagnosis and 
Biomarker Studies

Diagnostic classification of tumors is still mostly based on immunophenotypic 
characteristics. In breast cancer, histological type and tumor grade are still some 
of the most informative prognostic characteristics. Additionally with the evaluation 
of ER, PgR, and HER2, all the necessary clinically relevant information is avail-
able for the selection of first line therapy in a newly diagnosed breast cancer case. 
Interestingly, despite its simplicity, the classification based solely on these markers, 
reflects meaningful biological differences with well-known distinct clinical prog-
nosis and response to treatment [8, 9]. After the seminal discovery of the intrinsic 
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molecular subtypes, several efforts were made to clinically implement this clas-
sification [10]. Current guidelines are designed to assign each patient to a specific 
subtype and maximizing patients that would benefit from target therapies. Perhaps 
the best example for this is the use of a 1 % cut-off of tumor cell positivity required 
to classify a tumor as ER expressing and to recommend the use of endocrine therapy 
[65]. Although aimed at maximizing benefits, this approach completely ignores in-
tratumor heterogeneity, which in turn limits the success of the classification, espe-
cially when distinct populations are unequally distributed within tumors [66]. In the 
case of HER2 quantification, similar situation occurs. Despite efforts to introduce 
a clinical definition of HER2 heterogeneity [67] and demonstration of differential 
disease-free survival in heterogeneous HER2 amplified cases [68], in the most re-
cent guidelines of the American Society of Clinical Oncology/College of American 
Pathologist (ASCO/CAP) the criteria for heterogeneity has been simplified [69]. In 
this updated guideline, cases with heterogeneous areas of HER2 amplification are 
considered, and each of the areas are to be scored and reported separately, but the 
overall case is interpreted as amplified if any one of the areas meets the standard 
criteria for HER2 amplification, which is only needed in > 10 % of invasive tumor 
cells [69]. Of course it is arguable whether using the 10 % of adjacent invasive 
tumor cells is a good cut-off, especially considering that HER2 frequently displays 
a “cell-to-cell” mosaic variation [67]. Most importantly, this approach maximizes 
eligible patients for targeted therapy but does not consider the clinical implications 
of intratumor heterogeneity. It remains to be proven whether HER2 heterogeneity as 
assessed using this new guideline’s criteria is clinically meaningful. Consequently, 
and considering that many of the routinely used breast cancer biomarkers can be 
analyzed at the single cell level, efforts to evolve to a more quantitative reporting of 
heterogeneity should be undertaken. Quantitative diversity measurements such as 
the Shannon index [70], should be further tested for its clinical usefulness as there 
is promising preliminary data available using FFPE patient samples in breast can-
cer [58–60]. If proven feasible and useful in routine clinical practice, standardized 
reporting of readily available and implemented biomarkers’ heterogeneity could 
provide valuable information in the short term to guide therapeutic decisions.

One additional challenge posed by intratumor heterogeneity, related to diagnosis, 
is the discordance in biomarker expression assessments between primary tumors 
and metastasis. Progression to metastatic disease has been predominantly viewed 
as a linear progression model. In this model, cancer cells pass through multiple suc-
cessive rounds of mutation and selection for competitive fitness in the context of 
the primary tumor [71]. After a certain number of rounds, the fittest to metastasize 
would seed secondary growths. Therefore, metastasis development is considered 
a late consequence of the evolution of the primary tumor and would recapitulate 
much of the genetic landscape of the primary tumor with eventual observed differ-
ences attributed to epigenetic regulation [71]. However, since the 1950s, this view 
has been challenged by an alternative parallel evolution model [72, 73]. This alter-
native view bas been slowly gaining acceptance and states that metastatic dissemi-
nation can occur at early stages of the disease, and primary and metastatic tumors 
may co-evolve in parallel. Regardless of the progression model, each individual 
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tumor location has its own unique phenotype. In the case of breast cancer where 
tumor biomarker characteristics such as ER, PR, and HER2 determine the choice of 
therapy, discordance between primary tumor and metastasis can have major clini-
cal implications. Such discrepancies between primary breast cancer and metastasis 
have been shown to be as frequent as up to 30 % for the hormonal receptors and up 
to 10 % for HER2 [74, 75]. Amir et al. [74] demonstrated that divergence between 
primary and metastatic lesions would alter the choice of therapy in 14 % of patients. 
Using samples from metastatic sites of breast cancer and FISH, Wilking et al. [75] 
showed that intra-patient agreement for HER2 status was only 76 %. Importantly, 
the authors also showed that patients with change in HER2 status during metastatic 
progression had significantly worse outcome compared to those with concordant 
HER2 positivity; once again demonstrating the impact of intratumor heterogeneity 
on clinical outcomes and its importance in clinical practice.

While tumor evolutionary mechanisms are not fully understood and accurate 
predictions not possible, both primary tumors and metastases would need to be re-
peatedly assessed during the course of the disease, with more frequent and repeated 
biopsy than currently applies [41]. To make tumor monitoring less invasive, some 
authors forward the hypothesis of using CTC or circulating tumor DNA (ctDNA), 
with some interesting examples of this approach already been tested in metastatic 
colon cancer [76, 77], breast [77], and ovarian cancer [78]. Setting aside the already 
mentioned potential problem of how representative of the whole tumor and all of its 
complexity CTC are, the possibility of using ctDNA to monitor tumors is very ex-
citing, transforming a blood sample into a truly “liquid biopsy” [78]. However, the 
widespread routine clinical use of this approach in solid malignancies is still several 
years ahead. For the time being, due to its minimal invasiveness, safety, cost-effec-
tiveness and possibility to be coupled with modern ancillary technics, fine-needle 
aspiration (FNA) is probably the best method to routinely address the need of tumor 
re-biopsy for monitoring purposes (Fig. 2) [79, 80].

“…each patient’s cancer may require individual specific therapy, and even this may be 
thwarted by emergence of a genetically variant subline resistant to the treatment.”

Peter Nowell 1976

The Impact of Intratumor Heterogeneity on Treatment Design and 
Resistance

Heterogeneous tumors are composed of multiple subpopulations, some which can 
be resistant to treatment. The prevailing view is that in treatment naïve cancers, 
chemo-sensitive cells, by having lower energy needs than chemo-resistant cells, 
have a fitness advantage and dominate the tumor mass. However, during the course 
of treatment as chemo-sensitive cells are eliminated, chemo-resistant cells become 
the most fitted population in this environment due to a new equilibrium in selective 
pressures.
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Acknowledging this problem and in an attempt to optimize chemotherapy and 
limit development of resistance, a number of approaches have been developed from 
which we highlight metronomic therapy and adaptive therapy in breast cancer. Met-
ronomic therapy refers to the scheduling of repetitive, low doses of chemotherapy 
drugs administered at close regular intervals with no extended interruption [81]. 
The first study on metronomic therapy in breast cancer was published in 2002 [82] 
and other trials have already combined this approach with the use of targeted thera-
pies [83]. The prevailing view is that metronomic therapy is an option for breast 
cancer patients with a low toxicity profile and efficacy in most patients [81]. How-
ever, the impact of metronomic therapy on intratumor heterogeneity has not yet 
been thoroughly studied. An alternative approach is the adaptive therapy [84]. What 

Fig. 2  Intratumor heterogeneity in cancer diagnosis and treatment. Intratumor heterogene-
ity of cellular phenotypes can complicate definitive cancer diagnostics and therapeutic decision-
making. Due to spatial heterogeneity within tumors, a single biopsy might not provide an adequate 
reflection of the phenotypic composition of the tumor as a whole. Additionally, due to continuous 
tumor evolution during treatment, treatment design for recurrent tumors made based on scoring 
the dominant phenotype at the time of diagnosis might be misleading. Repeated assessment of 
tumor characteristics by serial sampling of tumors using biopsies, FNA (fine needle aspiration), 
or ctDNA is necessary to guide more rational treatment decisions. Robust biomarkers that accu-
rately reflect intratumor heterogeneity may also provide better predictive estimates of therapeutic 
responses and probable pathways of tumor evolution. pCR pathological complete response.
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sets apart this strategy from the more traditional high density dose strategy (based 
on the Norton-Simon model [85, 86]) or from metronomic therapy strategy is the 
recognition that optimal therapeutic strategy may evolve and change in response to 
intratumor dynamics. According to this model, optimal treatment strategy would 
modulate therapy to maintain a stable population of chemosensitive cells that can, 
in turn, suppress the growth of resistant populations under normal tumor conditions 
and therefore increase survival [84]. However, most of the data regarding this strat-
egy has not yet been translated into clinical trial design. Additionally for adaptive 
therapy use, both physicians and patients have to reconcile “cure” as an implicit or 
explicit objective, and rather focus on controlling the tumor, which can make it dif-
ficult to accept the widespread use of this strategy.

Different from conventional chemotherapy, two other strategies have been gain-
ing relevance in the context of highly heterogeneous tumors. First is the identifica-
tion of targets that play key roles in the generation of intratumor heterogeneity [87]. 
One of this targets that is quickly finding its way into the clinics are chaperones 
such as Heat Shock Proteins (HSPs), namely HSP90 [88]. In normal cells HSPs 
buffer mutated proteins, this way acting as a molecular checkpoint of proteins. In 
cancer cells, HSP’s promote survival through tolerance to increased altered proteins 
and may promote environmental adaptation via regulation of phenotypic diversity 
[89]. Therefore, targeting HSPs has the potential to decrease tumor evolution and 
progression to treatment resistant disease with promising results already available 
in several preclinical models of breast cancer and even in a phase II study [90]. 
“Epigenetic homogenization” of the tumor to a common therapy-sensitive state via 
targeting epigenetic regulators is another potential approach that may decrease in-
tratumor heterogeneity and improve therapeutic responses.

Immunotherapy is yet another strategy potentially useful in highly heteroge-
neous tumors. The principle of this strategy is that as highly heterogeneous tumors 
may produce large numbers of mutated proteins, these may turn to be tumor anti-
gens inducing a simultaneous sustained anti-tumor response to large number of an-
tigenic targets [91]. However, if the immunologic reaction cannot cope adaptively 
with tumor evolution—and the possible emergence of clones not presenting the 
target antigen—immunotherapy could be useless. Therefore, clear understanding of 
how immune-host-tumor interactions work is fundamental to the design of effective 
immunotherapy and how this can be useful in highly heterogeneous and evolving 
tumors.

Several strategies aiming to coping with intratumor heterogeneity by prevent-
ing it or reducing, by both “homogenizing” a tumor when a druggable target is 
available or reversing acquired drug resistance, are currently under development 
at both preclinical and clinical levels [92]. Apart from the development of new 
drugs, we expect in the near future that the better understanding of the impact 
of intratumor heterogeneity will possibly unlock the effective use of already ap-
proved drugs in new dosing schemes or combinations for a more effective indi-
vidualized therapy.
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Conclusion and Future Directions

In this chapter we have reviewed the sources of intratumor phenotypic heterogene-
ity, and the most commonly used technologies to study this phenomenon. Addition-
ally we have commented on the clinical impact of intratumor heterogeneity in both 
diagnosis and therapy.

Tumor cell phenotypes are the result of a complex crosstalk between inputs from 
genome, environment, and stochastic processes. Diversity of cellular phenotypes 
within a tumor that arises from genetic and epigenetic abnormalities and the ad-
ditional rounds of natural selection, poses the biggest contemporary obstacle to the 
understanding and clinical management of cancer. The better comprehension of in-
tratumor heterogeneity can only be achieved by the recognition that tumors contain 
phenotypically distinct populations of both tumor and stromal cells that interact in 
a dynamic and reciprocal manner.

Intratumor phenotypic heterogeneity is already recognized and accounted for 
in many preclinical studies of breast cancer. Despite being recognized in clinical 
setting, translation of this knowledge and tools from the preclinical to the clinical 
setting is still slow and many important interrogations persist. In breast cancer, it 
seems clear that the degree of intratumor genetic heterogeneity has been associated 
with aggressiveness and poor prognosis [58–60]. However, how this information 
can be used for clinical decisions is still unanswered. Furthermore, given the con-
tribution of nongenetic sources to intratumor phenotypic heterogeneity, we strongly 
favor the view that the link between non-genetic phenotypic diversity and clinical 
outcomes should be better explored.

Regarding the tools to study intratumor heterogeneity, single cell sequencing 
technologies are evolving at an extraordinary pace. However, as we already men-
tioned, only by coupling sequencing information with topological information is it 
possible to decipher the intricate network of interactions between the tumor cells, 
stromal cells and non-cellular components of microenvironments. This can never be 
achieved from the analysis of each of these individual components alone.

Concerning the clinical and therapeutic challenges, we believe there is poten-
tial for intratumor heterogeneity reduction strategies towards drug sensitive states. 
A considerable number of epigenetic states modifier drugs, as histone deacetylase 
inhibitors and other compounds, are already in late states of clinical development 
and have the potential to change the therapeutic landscape. Moreover, strategies 
aimed at reducing phenotypic heterogeneity through modulating the tumor micro-
environment, such as anti-angiogenic therapies, are starting to be better understood 
and patients’ subgroups that potentially benefit from them better identified. Ad-
ditionally, while other new classes of drugs make their way into clinical use, better 
understanding of the evolutionary dynamics of tumors could lead to the develop-
ment of novel therapeutic approaches through innovative administration and dosing 
schemes of the already used drugs. Unfortunately, so far, much of these insights 
are mostly based on pure mathematical modeling, and animal models to interrogate 
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evolutionary dynamics in tumor progression and test new therapeutic approaches 
are mostly non-existent.

We are confident that the deeper understanding of the evolutionary dynamics of 
tumors will allow the correct prediction of tumor evolutionary pathway and thus 
allow the design of novel and more effective therapeutic interventions that will 
improve patient prognosis.
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Pharmacogenetic Predictors of Response

Daniel L. Hertz and James M. Rae

Abstract Pharmacogenetics attempts to predict treatment response using a 
patient’s “germline” genome as the biomarker of interest. This chapter on phar-
macogenetic predictors of breast cancer response is divided into four sections. The 
first introduces readers to genetic variation and describes how variation in the germ-
line genome can affect biology or pharmacology. The second section introduces 
the translational pathway for pharmacogenetic research and discusses the specific 
challenges to identifying pharmacogenetic predictors of breast cancer response. 
The third section is divided into three subsections, each of which discusses a dis-
tinct category of pharmacogenetic response predictors; pharmacokinetics, cancer 
cell sensitivity, and effector cell activation. Within each subsection a specific phar-
macogenetic association is described in detail; CYP2D6-tamoxifen, BRCA-PARP 
inhibitors, and FCGRA-trastuzumab, respectively, followed by a general discussion 
of other less well-established examples or areas for further research. The chapter 
concludes with a summary of the current status of pharmacogenetic predictors of 
breast cancer response and a few predictions for the future of this field.

Keywords Pharmacogenetics · Germline polymorphism · Pharmacokinetic 
predictors · CYP2D6 · Cancer-cell sensitivity · BRCA · Effector-cell activation · 
FCGR
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Variation in the Somatic and Germline Genome

The simplest and most common genetic variation is the substitution of a single DNA 
base. Other types of variation including insertions/deletions of a base, a segment of 
bases, or even large genomic regions, or translocations in which distant segments of 
the genome are fused, are far less common. Genetic variation can have functional 
consequence if it affects protein activity, by influencing protein expression and/or 
function (Fig. 1). Our ability to interpret consequences of genetic variation is ex-
tremely limited outside of the coding regions and the areas immediately adjacent to 
these regions, which represent an exceedingly small portion of the overall genome; 
however, substantial progress is being made toward understanding the influence of 
the remainder of the genetic code.

Variation in the genetic regions that encode proteins, the exons, is the most 
straightforward to understand. A variant in an exon can change the amino acid that 
is coded for, either to a stop codon, producing an incomplete protein that typically 

Fig. 1  Genetic variation can affect protein activity by influencing either protein expression or 
protein function. Single nucleotide polymorphisms (SNPs) in the promoter (SNP A) or intronic 
regions (SNP B) can affect the amount of DNA transcription that occurs. This has a downstream 
effect on the expression of the protein, but not the protein structure. In this image SNP A has 
increased expression of the normal protein (AA1-AA2-AA3) and SNP B has decreased expres-
sion. Alternatively, SNPs on exonic splice sites (SNP C) or within exons (SNP D) affect protein 
function by affecting the amino acid structure, but do not influence expression. SNP C caused a 
loss of the mRNA splice site between exons 1 and 2, yielding a protein with an extra segment of 
amino acids. SNP D changed the sequence in exon 3 non-synonymously, causing the third protein 
segment to also change structure. These structural changes can affect protein function, which in 
turn affects overall protein activity
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has no functionality [1], or to a different amino acid, referred to as a non-synon-
ymous variant. By changing protein structure non-synonymous variants are often 
assumed to diminish protein function but this is not always the case, many times 
non-synonymous variants retain normal activity or sometimes they increase activ-
ity. Alternatively, a synonymous variant codes for the same amino acid. These are 
typically assumed to be non-consequential, but this may also not always be the case 
[2]. Exonic variants can influence protein activity in other ways such as introducing 
or eliminating an mRNA splice site or shifting the amino-acid reading frame.

The regions surrounding exons also have known function, making interpreta-
tion of variation straightforward in some cases. In contrast to the exonic variants 
that typically modify protein structure and function, variants outside of the exons 
are more likely to affect protein expression. The best understood functionally con-
sequential non-exonic variants are found in gene promoters and directly influence 
transcription and downstream protein expression [3]. Genetic variants outside of the 
promoter can also affect the expression of nearby, or even distant, genes, however 
the mechanisms by which this occurs are not completely understood. These variants 
are being catalogued within projects such as Single Nucleotide Polymorphisms and 
Copy Number Annotation (SCAN) [4] and the Genome Tissue Expression (GTEx) 
[5] while large-scale projects to assign functional mechanisms to variation in the 
non-coding genome, such as the the Encyclopedia of DNA Elements (ENCODE) 
[6], continue.

In cancer there are two genomes of interest, that of the patient (germline) and 
the tumor (somatic) [7]. Variation in these genomes can influence the patient’s risk 
of developing cancer, the prognosis of a cancer they develop, or their likelihood of 
responding or experiencing toxicity during treatment. The somatic genome exists 
within the cancer cells and has changed from the germline genome in a way that 
circumvents the typical mechanisms that control cellular replication. During the 
last decade The Cancer Genome Atlas (TCGA) catalogued the somatic genomes of 
many tumor types [8], including breast cancer [9]. This immensely important work 
identified the genetic events that most often cause oncogenic transformation and 
defined a tractable number of targetable pathways for development of extremely 
effective cancer therapies [10]. Relative to other tumor types breast cancer has per-
haps benefitted less from the genomic revolution because most of the oncogenic 
drivers had been identified prior to this work. The prognostic and predictive impor-
tance of estrogen or HER2 receptor expression has withstood the development of 
more sophisticated genetically-informed tools [11, 12]. Meanwhile, effective agents 
have yet to be developed that target the oncogenic pathways most commonly ac-
tivated in breast cancer including PI(3)K and p53. While the somatic genome is 
immensely important in identifying biomarkers of cancer prognosis and treatment 
prediction, it is not the focus of this chapter.

An individual’s germline genome is inherited from their parents and the ge-
nomes of any two unrelated people differ in millions of discrete ways [13, 14]. The 
vast majority of variants are single nucleotide polymorphisms (SNPs), common 
substitutions of individual DNA bases that have a population frequency  1 %. The 
vast majority of these SNPs likely have no, or at most negligible, functional conse-
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quence. However, a small minority of SNPs exerts a profound effect on the activity 
of a single, or in some cases many, proteins. Because the germline genome exists 
within the cells in all organs of the body, the consequences of germline genetic vari-
ation are more diffuse. The germline genome is extremely important in predicting a 
patient’s risk of cancer occurrence; however, the field of disease genetics is distinct 
from pharmacogenetics and is also not covered in this chapter. Pharmacogenetics 
studies the effect of the germline genome on treatment outcomes, both response and 
toxicity, and this chapter will focus specifically on pharmacogenetic predictors of 
breast cancer response. Before discussing specific pharmacogenetic examples, it is 
important to understand the pathway of pharmacogenetic research, from discovery 
through clinical translation, and the particular challenges of identifying pharmaco-
genetic biomarkers of breast cancer response.

Identifying Pharmacogenetic Predictors of Breast Cancer 
Response

The immense potential for pharmacogenetics to improve the care of cancer patients 
was recognized relatively recently [15]. It is critically important that patients re-
ceive effective therapy to prevent cancer-related mortality, and nearly equally as 
important to avoid superfluous therapy due to the morbidity, and sometimes mor-
tality, associated with treatment. Validated pharmacogenetic predictors of efficacy 
or toxicity can inform selection of the most effective agent, estimation of a dosing 
regimen that optimizes therapy, or avoidance of agents that are most likely to cause 
toxicity [16]. Unfortunately, the pathway from discovery to clinical implementation 
for biomarkers, including pharmacogenetics, is a long, complicated, challenging 
process (Fig. 2).

The first step in pharmacogenetic research is the initial discovery of an asso-
ciation. The vast majority of pharmacogenetic discovery studies are conducted ret-
rospectively in “convenience cohorts,” databases of patients with heterogeneous 
disease, treatment, and outcome data collection. These cohorts are widely available 
and these analyses are relatively quick and cheap. The problem is that in pharmaco-
genetics, as in other biomarker fields, most of the published discoveries cannot be 
replicated [17]. Retrospective correlative analyses are vulnerable to biases, includ-
ing publication bias, and statistical confounding. Also, there is a general disregard 
for proper statistical methodology both by investigators and journal reviewers [18], 
which has inundated the pharmacogenetics literature with false positive discover-
ies [19]. Literature curation to differentiate true associations from false positives, 
such as Pharmacogenetics Knowledge Base (PharmGKB) [20], is extremely helpful 
but true validation requires replication in an independent dataset with an a priori 
defined analysis plan.

Independent validation of the association between the genotype and a clinical 
outcome, known as clinical validity [21], may be adequate for making genotype-
guided treatment decisions if the genetic information previously exists [22, 23]. The 
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Clinical Pharmacogenetics Implementation Consortium (CPIC) publishes consen-
sus guidelines for making genetically informed treatment decisions in this situation 
[24]. Genetic information exists for some patients due to direct-to-consumer geno-
typing or from previous pharmacogenetic analyses. Cancer patients are particularly 
likely to have existing genetic information from somatic genetic analyses that are 
becoming more common [25], creating an efficient setting for pharmacogenetic 
implementation [26]. In situations where genetic information does not exist, and 
pre-emptive genotyping is necessary, clinical validity is necessary but not adequate 
for clinical translation of pharmacogenetics.

Demonstration that genetically informed treatment decisions improve treat-
ment outcomes, known as clinical utility, is typically considered a requirement for 
pharmacogenetic implementation. Very few pharmacogenetic associations have ad-
equately demonstrated clinical utility in prospective, randomized, genotype-guided 
clinical studies, which require large patient cohorts and are extremely expensive 
but lack a financial stakeholder willing to provide funding [27]. The other option, 

Fig. 2  The pathway from initial discovery to clinical use for pharmacogenetic associations. Initial 
discovery and replication of pharmacogenetic associations occurs in convenience cohorts with 
liberally applied statistical procedures. Validation could then take place mechanistically using 
in vitro and animal models in addition to clinical validation in independent patient cohorts with 
strict statistical procedures. After validation, high priority pharmacogenetic biomarkers should be 
moved into prospective validation of clinical utility, followed by development of CPIC guidelines 
and clinical use. This figure is adapted from an Institute of Medicine report describing the general 
translational pathway for omics biomarkers [28]
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which has been established as the evidentiary threshold for biomarkers in general, 
is the prospective-retrospective study [28]. In this design, a previously conducted 
prospective clinical trial is used to validate the clinical utility of a biomarker. Pro-
spective clinical trials are superior to convenience cohorts because they have de-
fined criteria for patient inclusion, uniform treatment, and systematic collection of 
outcomes. These analyses are still subject to biases and confounding, but they have 
proven to be extremely useful datasets for attempting validation of pharmacoge-
netic associations that had previously been replicated multiple times, as can be seen 
in several of the examples in the next section.

Several factors have contributed to the lack of clinically useful pharmacoge-
netic biomarkers of breast cancer response. First, as described earlier, the somatic 
genome is the cause of cancer growth and the primary source for response bio-
markers for either targeted or chemotherapeutic agents [29]. Second, breast cancer 
pharmacogenetic research is complicated by the use of combination therapy, which 
can mask pharmacogenetic associations [30] and make it challenging to distinguish 
which agent is responsible for treatment efficacy. Third, breast cancer recurrence in 
the adjuvant setting is relatively uncommon, severely limiting statistical power. Fi-
nally, it is unclear whether pharmacogenetic biomarkers of response that have been 
validated in other tumor types or treatment regimens are generalizable to breast can-
cer patients. In part due to these challenges pharmacogenetic biomarkers currently 
have limited utility for predicting breast cancer response, but the next section will 
explain why that is unlikely to be the case indefinitely.

Pharmacogenetic Predictors of Breast Cancer Response

This section is divided into three subsections, each describing a category of phar-
macogenetic predictors of cancer response (Table 1). The first subsection focuses 
on predictors of drug exposure, or pharmacokinetics, which could be referred to as 
“classical pharmacogenetics.” Variants in these genes indirectly influence treatment 
efficacy, and toxicity in many cases, through a direct effect on pharmacokinetics. 
These associations are probably particularly important for non-targeted drugs, pri-
marily cytotoxic agents, which has been the backbone of systemic treatment until 
the recent past. The second subsection focuses on pharmacogenetic predictors that 
dictate the sensitivity of cancer cells to treatment, which exist in both the tumor 
and patient genome and occupy a gray area between pharmacogenetics and somatic 
genetics. These are mostly, but not exclusively, relevant to targeted therapies that 
are replacing chemotherapy in many tumor types. The last subsection focuses on 
a relatively new area, pharmacogenetic predictors of the activation of immune ef-
fector cells. Therapies that activate the immune system to fight cancer have finally 
reached clinical application, and the host genome is likely to be a critical predictor 
of the immune response to these therapies. In an interesting way these categories 
mimic the past, present, and future of both pharmacogenetics and cancer treatment. 
Because of this the information available regarding the drugs, and the pharmacoge-
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netic associations with their effectiveness, tends to decrease from the first subsec-
tion to the last. These subsections are also differentiated by the preclinical model 
systems used to mechanistically validate associations and the translational approach 
to treating patients who carry validated variants, topics that are commented on 
where appropriate.

Pharmacogenetics of Drug Pharmacokinetics

The vast majority of pharmacogenetic research, across disease states, has focused 
on non-synonymous SNPs in genes encoding enzymes and transporters that have 
a putative influence on drug pharmacokinetics, and a downstream effect on treat-
ment outcome. These have been the object of intense discovery efforts because 
drug metabolism and transport are relatively well understood and a small number 
of enzymes and transporters are responsible for the majority of the metabolism, 
distribution, and elimination of most drugs. Much of the common genetic variation 
within these genes has been identified and the findings for one substrate are often 
generalizable to other substrates, thus, the effort of pharmacogenetics researchers 
across many drugs and disease states feeds into a repository of shared knowledge. 
Genetic variants that affect the expression or function of enzymes or transporters 
can be mechanistically validated in established ex vivo model systems. Cellular 
models are useful for validating the direct effect on protein expression or activity 
and rodent models can be used to investigate the downstream influence on pharma-
cokinetics and treatment outcome.

The result of all of this effort is double-edged, many variants that influence phar-
macokinetics have been discovered and validated, but many false positives have 
also been published for these genes. A distinct advantage for pharmacogenetic pre-
dictors of pharmacokinetics, that has been inadequately leveraged, is that the rel-
evant in vivo phenotype, drug concentration, can be directly measured with relative 
ease. Demonstration that patients who carry a particular genetic variant have differ-
ent exposure to the active agent should be used as an initial step of validation prior 
to attempted translation of these associations.

There is an interesting debate as to whether an association with pharmacokinetics 
should be considered “clinical validity”. The association between pharmacokinet-
ics and efficacy is generally accepted for chemotherapy, hence maximum-tolerated 
dosing, but is often quite weak for other drug classes. The other situation for which 
pharmacogenetic determinants of pharmacokinetics seems to be particularly criti-
cal is for pro-drugs, drugs that are inactive in their administered form and require 
bioactivation [31]. The association between cytochrome P450 2D6 ( CYP2D6)  and 
tamoxifen that is described in this subsection fits into this category, yet, there is 
intense debate as to the clinical validity of this association. Those who are more 
conservative about changing practice require validation that the genotype is associ-
ated with an actual clinical outcome, which has also been a tremendous challenge.

Patients who carry genetic variants that are validated to influence pharmacoki-
netics should be dose-adjusted to achieve optimal drug exposure. This requires an 
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understanding of the drug, the role of the enzyme/transporter, and the consequence 
of the genetic variation (Fig. 3). One interesting consideration for these associa-
tions is that pharmacokinetics often determines both efficacy and toxicity. There 
is understandable reluctance from clinicians to pre-emptively decrease dosing in 
patients with genetic variants that increase toxicity risk, as decreasing dosing would 
be expected to decrease treatment effectiveness in addition to toxicity.

CYP2D6 and Tamoxifen

The possible association between CYP2D6 genotype and tamoxifen effectiveness 
in adjuvant breast cancer is one of the most researched and debated pharmacoge-
netic associations [32]. Tamoxifen is a highly effective selective-estrogen receptor 
modulator (SERM) that is used to treat and prevent estrogen receptor (ER)-positive 

Fig. 3  The downstream consequence on drug exposure of pharmacogenetic variants depends on 
the interaction between the protein and the drug and the effect of the variant on protein activity. If 
the protein of interest is an enzyme that forms the active agent (i.e. prodrug activation) or a trans-
porter that brings the drug to the site of action (i.e. intestinal absorption) then the resulting expo-
sure will be directly related to the change in protein activity. However, if the enzyme eliminates the 
active agent (i.e. metabolic inactivation) or removes the drug from the site of action (i.e. hepatic 
elimination) then the resulting exposure will be inversely related to the change in protein activity
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breast cancers. The mechanism of tamoxifen activity is its antagonism of ER in 
cancer cells that are reliant on estrogenic signaling for growth and replication [33]. 
However, tamoxifen itself is a weak anti-estrogenic prodrug that requires metabolic 
activation. The metabolism of tamoxifen includes dozens of metabolites formed 
through various discrete and overlapping metabolic pathways [34]. Tamoxifen and 
its most abundant metabolite, n-desmethyl-tamoxifen, are each substrates for CY-
P2D6-catalyzed bioactivation to 4-hydroxy-tamoxifen and endoxifen, respectively 
[35]. These metabolites are far more potent ER antagonists, and are hypothesized to 
be responsible for the anti-estrogenic efficacy of tamoxifen.

The CYP2D6 gene is one of the most important pharmacogenetic predictors 
of drug pharmacokinetics. It is a highly polymorphic enzyme with more than a 
hundred curated variants, plus common gene duplications and deletions [36]. This 
genetic variability causes dramatic variation in CYP2D6 activity across patients. 
Complex systems have been created for characterizing the metabolic activity of 
patients based on their CYP2D6 genotype [37] and pharmacogenetic CYP2D6 as-
sociations for other drugs such as codeine have been translated into clinical practice 
[38]. The CPIC guidelines classify more than 20 variants as non-functional, another 
12 as reduced-function, and about 10 others as normal-function, enabling classifi-
cation of each patient as a poor (PM), intermediate (IM), extensive (EM), or ultra-
rapid (UM) metabolizer, in ascending order of enzyme activity.

The reliance of tamoxifen bioactivation on CYP2D6 suggests that there could be 
a role for genotype-directed tamoxifen treatment in breast cancer patients. Several 
clinical analyses have validated that CYP2D6 activity, as estimated by genotype, 
is a strong predictor of endoxifen concentration [39, 40]. What remains unclear 
is whether this pharmacokinetic difference is relevant to treatment effectiveness. 
Two studies have reported that patients at the bottom end of the distribution of 
endoxifen concentration have inferior outcomes in the adjuvant treatment setting 
[41, 42]. In contrast, the first prospective study testing for possible correlations 
between endoxifen concentrations and breast cancer recurrence found that higher 
endoxifen concentrations correlate with higher risk of recurrence [43]. Therefore, 
consensus has not been reached as to whether endoxifen concentration is associ-
ated with breast cancer outcomes and, if so, what the target concentration should 
be. More studies that collect endoxifen concentrations and treatment outcomes are 
necessary to adequately answer these questions.

Despite several dozen studies, consensus has not been reached as to whether 
there is an association between CYP2D6 genotype and tamoxifen effectiveness. 
Most of the analyses reported to date are typical discovery efforts, retrospective 
analyses in small patient cohorts, that have reported discordant results, includ-
ing positive associations in the opposite direction [32, 44]. It was anticipated that 
prospective-retrospective analyses in large clinical trial cohorts including Arimidex 
and Tamoxifen Alone or in Combination (ATAC) and BIG 1-98 would provide a 
definitive answer. Neither of these analyses supported the hypothesis that patients 
with low-activity CYP2D6 phenotypes had inferior efficacy from tamoxifen treat-
ment [45, 46], however, the validity of these results and those of other studies con-
tinues to be debated [47–50].
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Due to the ongoing debate regarding the clinical validity of CYP2D6 genotype 
as a predictor of tamoxifen response, little has been done for prospective transla-
tion into clinical practice. One prospective clinical study dose-escalated only the 
CYP2D6 PM and IM patients to 40 mg/day and measured all patient’s endoxifen 
concentration at enrollment and after 4 months. After dose escalation the IM pa-
tients achieved endoxifen concentrations similar to that of EMs who remained on 
20 mg/day, however, the PM patients on 40 mg/day were still significantly below 
this relative target [51]. In theory, increasing the dose of tamoxifen in CYP2D6 PM 
patients could improve drug efficacy regardless of whether they achieved endoxi-
fen levels similar to those in EM patients if, as reported in prior studies, there is a 
threshold endoxifen concentration below which tamoxifen efficacy is compromised 
[41, 42]. The other consideration, as previously mentioned, is that increasing the 
dose of tamoxifen could simultaneously increase treatment-related toxicities. In the 
genotype-guided prospective study there was a modest, but statistically significant 
increase in treatment-related toxicity in IM patients dose-escalated to 40 mg/day 
[52]. An ongoing prospective CYP2D6-guided dose escalation study in Europe that 
is collecting outcomes should eventually answer some of the remaining questions 
regarding the clinical validity and utility of the pharmacogenetic association be-
tween CYP2D6 and tamoxifen. Unless these data demonstrate clinical benefit, the 
existing data on enhanced toxicity, combined with debatable clinical validity, argue 
against wide-scale implementation of CYP2D6-guided tamoxifen dose escalation 
for PM patients. This is the current position of the most influential clinical practice 
guidelines committees [53, 54], the Food and Drug Administration (FDA) which 
has chosen not to include CYP2D6 genetic information in the tamoxifen package 
insert, and an implicit decision by CPIC who has not released any guidelines for 
dose-adjusting tamoxifen based on CYP2D6 genotype.

Other Pharmacokinetic Pharmacogenetic Examples

There are a few notable pharmacokinetic pharmacogenetic associations for breast 
cancer drugs. Methotrexate was commonly used in adjuvant breast cancer in combi-
nation with cyclophosphamide and 5-Fluorouracil (CMF) until randomized studies 
demonstrated superior efficacy or tolerability of anthracycline-based regimens [55]. 
Methotrexate is still used in some patients and there are strong data supporting an as-
sociation between methotrexate pharmacokinetics and variants in SLCO1B1, which 
encodes the OAPT1B1 transporter responsible for hepatic methotrexate uptake [56, 
57]. The non-synonymous SLCO1B1*5 variant (rs4149056, V174A) creates a de-
creased function transporter, increasing systemic concentrations of substrates in-
cluding simvastatin [58, 59] and, interestingly in breast cancer, estrone conjugates 
[60]. This variant is strongly predictive of methotrexate pharmacokinetics [61–64], 
specifically in pediatric tumor types in which methotrexate is administered at doses 
100-fold larger than those given in breast cancer. Several studies of high dose meth-
otrexate have reported associations with toxicity, the dose of leucovorin necessary 
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to prevent toxicity [64–66], or event-free survival [67], but again these studies are 
in high-dose therapy and may not be relevant to breast cancer.

5-fluorouracil (5-FU) is another component of CMF now used much less fre-
quently in breast cancer. 5-FU has an established and clinically useful pharmacoki-
netic association with dihydropyrimidine dehydrogenase, encoded by DPYD [68]. 
Low-activity DPYD polymorphisms increase 5-FU systemic concentration dramati-
cally [69–71]. Most of the clinical pharmacogenetic studies focus on the severe, 
often life-threatening toxicity in patients with DPYD variants treated at full dose, 
but it is possible that sufficiently decreased doses could be safe [72, 73]. Doses that 
normalize the 5-FU concentration with that of DPYD wild-type patients may be ex-
ceptionally effective in these patients, whose tumors should be exquisitely sensitive 
to 5-FU treatment [74, 75]. The association with 5-FU may be of limited relevance 
in breast cancer but these data should apply similarly to capecitabine, an inactive 
prodrug of 5-FU. There are surprisingly little data evaluating polymorphisms in 
carboxylesterases ( CES1 and CES2) [76, 77], which are necessary for the bioactiva-
tion of capecitabine to 5-FU, and the systemic 5-FU concentration in capecitabine 
treated patients, though there is one report of an association with treatment efficacy 
[78].

Cyclophosphamide, another prodrug requiring enzymatic bioactivation, has also 
been somewhat overlooked in pharmacogenetic predictors of pharmacokinetics. 
Few studies have analyzed the effect of these SNPs on cyclophosphamide bioac-
tivation or efficacy, though one study has reported increased concentration of the 
inactive parent in carriers of the low-activity CYP2C19*17 allele [79]. Non-synon-
ymous CYP2C8 variants with diminished paclitaxel metabolic activity have been 
reported [80], and at least once associated with pharmacokinetics [81]. However, 
larger analyses have failed to replicate this association or discover other enzyme 
or transporter SNPs with strong predictive effects [82], suggesting that paclitaxel 
pharmacokinetic variability is not strongly affected by a single polymorphism. Fi-
nally, there has been some work discovering pharmacogenetic predictors of aroma-
tase inhibitor pharmacokinetics including a CYP2A6-letrozole association [83], but 
the link between anti-estrogen drug concentration and effective estrogen depletion 
or efficacy has been difficult to establish [84], as described earlier for tamoxifen.

Pharmacogenetics of Cancer Cell Sensitivity

As discussed previously, response to cancer treatment is primarily based on the 
somatic (tumor) genetics. This next group of pharmacogenetic predictors could be 
considered somatic genetics; they are found in both genomes and their importance 
is derived from their existence in the somatic genome. They dictate the sensitivity of 
the cancer cell to the particular mechanism of action of cancer drugs. Breast cancer 
drugs have a variety of mechanisms of action; including DNA damaging agents (pl-
atins, cyclophosphamide), microtubule targeting agents (taxanes, vincas), anti-es-
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trogens (tamoxifen, aromatase inhibitors), and HER2 targeting agents (trastuzumab, 
pertuzumab, lapatinib). Variants that affect the drug target or the balance of pro- and 
anti-apoptotic signaling could dictate sensitivity to these drugs. These variants can 
be mechanistically validated in vitro via genetic modification of cancer cells and 
comparison of drug sensitivity followed by comparison of treatment response in 
rodent cancer models.

There are two distinct research pathways for pharmacogenetic biomarkers in this 
category. The first is the typical retrospective effort to identify variants relevant to 
the mechanisms of existing, untargeted chemotherapy agents. It is critical to recog-
nize how limited our mechanistic understanding is of many of the chemotherapeutic 
drugs that are used to treat cancer. For example, paclitaxel has been used for de-
cades with a putative mechanism of action of microtubule assembly causing mitotic 
arrest [85], but within the past year a new mechanism of action was reported to 
predominate at physiological paclitaxel concentrations [86]. Similarly, the mecha-
nism of action for trastuzumab, one of the first and most effective targeted agents 
for breast cancer treatment, continues to be debated, as will be discussed in the next 
section. Our limited understanding of drug mechanism precludes effective selection 
of candidate genes for pharmacogenetic association testing. The second research ef-
fort is quite different from the retrospective discovery and validation strategy. The 
understanding of cellular biology and oncogenesis has evolved tremendously dur-
ing the past few decades, enabling rational design of drug mechanisms. Drugs with 
specific mechanisms are being developed to take advantage of the vulnerabilities of 
cancer cells, some of which exist in the germline genome, such as BRCA described 
in this section. These germline pharmacogenetic biomarkers of targeted agents are 
thought of as drug targets, and these drugs are often approved with companion diag-
nostics for somatic genetic evaluation to inform selection of the appropriate agent. 
Clinicians have become comfortable with the concept that a tumor diagnostic, such 
as receptor expression, can be used to select an effective agent, as opposed to the 
somewhat unfamiliar concept of using patient genetics to inform selection of a drug 
dose. This next section describes a clinically relevant example of germline genetic 
variation in the tumor genome that dictates cancer cell sensitivity, BRCA and PARP 
inhibitors, and surveys other ongoing but less validated pharmacogenetic associa-
tions with breast cancer sensitivity for untargeted drugs.

BRCA and PARP Inhibitors

The breast cancer susceptibility genes ( BRCA1 and BRCA2) are responsible for 
homologous recombination, one of two complimentary cellular DNA repair path-
ways. These genes are very well known for their critical importance in determining 
susceptibility to several tumor types, most notably breast and ovarian cancer [87]. 
Germline BRCA variation increases cancer risk because loss of homologous recom-
bination increases the error rates during DNA replication. Eventually one of these 
errors occurs in an oncogene or tumor suppressor gene, causing oncogenic conver-
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sion of the cell. The importance of germline BRCA mutations extends beyond can-
cer risk as they are also informative of cancer prognosis [88] and, most relevant to 
this chapter, prediction of treatment effectiveness.

Cells with germline BRCA mutations are unable to perform homologous recom-
bination, leaving them susceptible to DNA damage. This knowledge was used to 
develop a class of targeted agents that interfere with the complimentary pathway 
for DNA repair, base-excision repair. Base-excision repair is performed by a protein 
complex that includes the enzyme Poly(ADP-ribose) polymerase (PARP). A PARP 
inhibitor has little activity when administered to a cell that can perform homologous 
recombination and a cell that loses homologous recombination due to BRCA muta-
tion can survive as long as base-excision repair is still functional. However, when 
a PARP inhibitor is administered to a cell that lacks homologous recombination the 
combination has synthetic lethality [89]. In preclinical studies PARP inhibition is 
highly effective in BRCA mutant cell lines [90] and early clinical trials of the first 
generation PARP inhibitor olaparib in breast cancer patients demonstrated impres-
sive efficacy [91]. Unfortunately, the first PARP inhibitor to complete a Phase III 
trial in breast cancer, iniparib, failed to improve progression free or overall survival 
[92]. It has been suggested that these disappointing results are due to inadequate 
PARP inhibition for this specific compound [93], and clinical development of PARP 
inhibitors in BRCA deficient patients continues. The recent approval of olaparib in 
BRCA mutant ovarian cancer proves the potential efficacy of agents designed to 
target cancer cell vulnerabilities caused by germline genetic variation.

Other Cancer Sensitivity Pharmacogenetic Examples

A logical strategy for treatment of tumors that cannot perform DNA repair is to use 
a DNA damaging agent such as a platinum. In retrospective studies BRCA muta-
tions are biomarkers of effectiveness of platinum containing regimens [94, 95]. The 
combination of platinums and PARP inhibitors is currently being tested in BRCA 
deficient breast and ovarian tumors [96]. There is strong evidence that variants in 
other genes performing DNA repair including ERCC1/2 and XRCC predict sen-
sitivity to DNA damaging agents and efficacy of platinums in other tumor types 
[97–99]. There are relatively little data for SNPs in these genes and response in 
breast cancer specifically, though the sensitizers to treatment should theoretically 
be generalizable across tumor types.

There are other examples of germline genetic variants that may predict cancer 
cell sensitivity but as of yet none have moved into prospective validation. As with 
all pharmacogenetic biomarkers, for nearly every drug a successful biomarker study 
has been reported. There have been reports of germline variants that regulate ex-
pression of B-tubulin that are associated with paclitaxel treatment efficacy [100], 
however, this has not been replicated. Similarly, thymidylate synthase ( TYMS), the 
target of 5-FU and capecitabine, and methylenetretrahydrofolate reductase ( MTH-
FR) have been extensively studied as biomarkers of sensitivity to several agents 
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across tumor types, with intriguing results [101, 102]. Finally, there are several re-
ports that variants in NQO1/2, which are involved in scavenging and detoxification 
of free radicals, may be associated with doxorubicin efficacy [103, 104].

Pharmacogenetics of Effector Cell Activation

The last category of pharmacogenetic associations is relatively underexplored but is 
poised to be critically important. The drugs currently used in cancer primarily work 
through direct activity within the cancer cell. The previous two subsections de-
scribed genetic variation that influences the amount of the active drug that reaches 
the cancer cell and the sensitivity of the cancer cell to the drug. Recently there has 
been tremendous progress in activating the patient’s immune system to help fight 
the cancer, and the field of immune therapy is likely to be the next evolution in 
cancer treatment. This third group of pharmacogenetic associations is the genetic 
variants that dictate the activation of the immune cells that attack the tumor.

Specific aspects of genetic variation of immune system activation have been 
explored in detail. One that is highly relevant to pharmacogenetics is germline 
variation in the HLA system. Some rare, severe treatment related hypersensitivity 
reactions that were previously unexplainable can now be predicted based on HLA 
genotype [105–107], including lapatinib-induced liver toxicity [108, 109]. Another 
example, that is more relevant to efficacy of immune-mediated treatment, is the ef-
fectiveness of hepatitis C treatment in patients carrying SNPs in IL28B [110, 111]. 
These results demonstrate, unsurprisingly, that the patient genome can be extremely 
important in dictating the host’s response to immune activation.

The era of cancer immunotherapy has just begun, so there is somewhat limited 
understanding of the mechanisms of these drugs and the interaction between the 
immune system and the tumor. However, there is tremendous existing knowledge 
about the inter-cell signaling and immune system activation, which should be ap-
plicable to selection of candidate genes for pharmacogenetic biomarker discovery. 
These fields also have established in vitro and animal models of immune activation 
that should be adaptable for mechanistic validation of genetic variation. Another ad-
vantage to this field is that immune activity has established in vivo surrogate mark-
ers, cytokines and interleukins. While this is not the direct phenotype of interest, 
like drug concentration is to pharmacokinetic associations, this is a superior marker 
to what is available for biomarkers of cell sensitivity.

Pharmacogenetic predictors of breast cancer response to immunotherapy will 
be discovered retrospectively and during drug development, as pharmacogenetics 
is now being integrated into most clinical trials. This should streamline the process 
for clinical validation and perhaps enable prospective demonstration of clinical util-
ity during pivotal clinical studies. These pharmacogenetic biomarkers will likely 
be used to select an immune-active agent for patients predicted to mount a robust 
immune response, similar to the selection of targeted drugs in tumors sensitive to 
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specific drug mechanisms. While it is very early days for this field, there is some 
existing data for trastuzumab, which may work at least in part through immune 
activation, and the FCGR genes.

FCGR and Trastuzumab

The HER2 receptor is overexpressed in approximately 20 % of breast tumors and is 
a marker of aggressiveness and poor prognosis. Trastuzumab is a humanized IgG1 
monoclonal antibody designed to target HER2 that is very effective in these tumors 
[112]. It is standard practice that all breast cancers are evaluated for HER2 expres-
sion to determine whether the patient should receive HER2 directed therapy [113]. 
Additional HER2 targeted agents including pertuzumab, lapatinib, and trastuzum-
ab-emtansine have been approved for use in HER2 overexpressing tumors [114]. 
Although there are several effective treatment options, many HER2-positive tumors 
have inadequate response to trastuzumab and these other targeted agents.

There is some debate regarding the mechanism of action for trastuzumab. It was 
originally believed that the effectiveness of the monoclonal antibody was due to 
inhibition of HER2 dimerization and prevention of cellular replication signaling. 
However, this may not be the only, or even the predominant, mechanism of action. 
Trastuzumab and other monoclonal antibodies including cetuximab (anti EGFR) 
and rituximab (anti CD-20) may work through antibody-dependent cell cytotoxicity 
(ADCC) [115]. ADCC occurs when the monoclonal antibody attaches on one end to 
the cancer cell antigen, HER2 in the case of trastuzumab, and on the other end with 
an effector cell of the immune system. Several effector cells of the immune system 
bind to the Fc fragment of antibodies including natural killer cells, dendritic cells, 
and macrophages. This interaction activates the effector cell which then signals 
other immune cells to locate cancer cells expressing the antigen and destroy them.

Binding of the effector cell to trastuzumab occurs via the fragment-c gamma re-
ceptor (FcγR) [116]. The hypothesis that ADCC contributes to the activity of mono-
clonal antibodies is supported by in vitro mechanistic work demonstrating less ef-
ficacious treatment in FcγR-null mice [117]. FcγR has several subtypes including 
two that are known to have non-synonymous polymorphisms, FCGR2A (H131R) 
and FCGR3A (V158F). In vitro, cells with the variant receptor bind antibodies less 
strongly and cause less immune activation [118–120]. Several small, retrospective 
biomarker studies reported that rituximab efficacy was dependent on FCGR geno-
type [121–123], however, subsequent larger analyses were not able to confirm the 
predictive role for these specific variants [124–126]. Similarly, there were several 
reports that the FCGR polymorphisms predict efficacy of trastuzumab [127, 128], 
one of which was accompanied by ex vivo evidence of greater cytotoxicity in the 
mononuclear cells from patients with the wild-type genotype [129]. However, once 
again, when validation was attempted in a prospective-retrospective analysis of a 
large clinical trial cohort with systematic enrollment, treatment, and outcome data 
the association could not be confirmed [130].
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Other Effector Cell Pharmacogenetic Examples

Clinically relevant pharmacogenetic biomarkers of immune-therapy treatment ef-
ficacy are likely to be found in the germline genome. Immunotherapies including 
PD-1/PD-L1 inhibitors, such as nivolumab which was recently approved in mela-
noma [131], are currently being tested in many tumor types including breast can-
cer (see NCT02129556, NCT02309177, NCT01848834, NCT01375842) [132]. No 
pharmacogenetic biomarkers of PD1/PD-L1 efficacy have been validated. There 
are preliminary reports of germline polymorphisms in CTLA4 that predict response 
to CTLA-4 inhibitors including ipilimuab, used in melanoma [133, 134], and in 
early clinical studies in breast cancer (see NCT00083278).

Conclusions and Areas for Further Research

The challenges for discovery, validation, and translation of biomarkers have limited 
the clinical usefulness for pharmacogenetics in predicting breast cancer response. 
The germline genome influences the pharmacokinetics of many drugs; however, it 
is unclear whether there are any SNPs that are informative for selection of doses of 
the drugs commonly used in breast cancer. More studies should collect drug con-
centrations, particularly concentrations of active metabolites of prodrugs, to find 
those SNPs most likely to be clinically useful. Biomarkers of efficacy for untargeted 
and targeted cancer treatment are more likely to exist in the somatic genome, and 
some of these may originate in the germline genome and be useful for drug selec-
tion. A more detailed understanding of the mechanisms by which drugs work would 
be instrumental in improving the ability to select candidate genes, and identify can-
didate SNPs, for pharmacogenetic analyses. Finally, as the field of cancer immu-
notherapy progresses, investigators should recognize that the predictors of immune 
activation are extremely likely to reside in the patient’s genome. Systematic collec-
tion of germline genetics and in vivo markers of immune activation, such as cyto-
kines and interleukins, during clinical development will ensure efficient discovery 
of pharmacogenetic biomarkers and validation in adequately powered prospective-
retrospective analyses. Meanwhile, continued development of cellular and animal 
models for interrogation of the effect of genetic variation on pharmacokinetics, can-
cer cell sensitivity, and effector cell activation would enable mechanistic validation 
of pharmacogenetic discoveries for clinical translation. As chemotherapy has given 
way to targeted therapy this era in cancer treatment will be remembered as the age 
of the somatic genome; and as immunotherapy replaces targeted therapy the next 
era in cancer treatment may well be the age of the germline genome.
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Metabolomics in Breast Cancer: Current Status 
and Perspectives

Christopher D. Hart, Leonardo Tenori, Claudio Luchinat and Angelo Di Leo

Abstract Metabolomics refers to the study of the whole set of metabolites in a bio-
logical sample that constitute a reflection of cellular functions. Cancer cells display 
significantly altered cellular processes, and thus metabolites, compared to normal 
cells. This can be detected in a number of ways, and is already exploited to a limited 
extent in the diagnosis of cancer. The host response to the tumor is perhaps equally 
important, as it either rejects or permits tumor growth, and this may also potentially 
result in a measurable metabolite signature. Analysis then of entire pools of metabo-
lites may yield critical information about both tumor presence and host response, 
and represent a possible novel collective biomarker for cancer behaviour that could 
allow prediction of relapse, response to therapy, or progression. Isolating meaning-
ful differences in the sea of metabolites and within the context of significant meta-
bolic heterogeneity both within and between patients remains a great challenge. 
This chapter will review current metabolomic research in breast cancer, with a focus 
on efforts to translate the technology into clinical practice.
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Introduction: What is Metabolomics?

At its most basic level, metabolomics refers to the study of some or all of the me-
tabolites in a biological sample, be it tissue, cells, serum, or other bodily fluid [1]. 
Whilst not a new science, advances in detection methods, statistical analysis and 
computing power have led to renewed interest in this area and its potential in the 
field of cancer. It forms a distinct branch of the ‘omics’ sciences, along with genom-
ics, proteomics or transcriptomics. Genomic analysis identifies the genes present, 
including mutations of functional genes. Yet only a subset will actually be expressed 
[2], meaning that the remainder may be of limited or no clinical significance. Fur-
thermore, it will not identify the normal genes that are being overexpressed by other 
processes. The transcriptome, as defined by the measurable RNA present, repre-
sents then the output of the genome, while the proteins produced (the proteome) 
are the most relevant product, being a step closer again to clinical effect. However, 
the interplay between these proteins, their relative enzymatic activity and the direct 
clinical effects can still vary. For example, the presence of altered PI3K signalling 
molecules from a PIK3CA gene mutation does not necessarily result in increased 
downstream signalling of the AKT mTOR pathway, and can depend on PTEN con-
centration [3, 4]. The metabolome, by contrast, represents the step ‘after the fact.’ 
It is the collection of molecules that exists as a result of cellular processes, which 
are themselves a result of the enzymatic processes catalysed by products of the ge-
nome. It is thus direct evidence of what actually exists or existed, ie the phenotype, 
as opposed to what could exist, and offers a complementary and multidimensional 
picture of both the tumor and the host.

All cellular processes produce metabolites, whether as a specific function (he-
patocytes) or as products of normal cellular activities such as maintenance of ho-
meostasis, replication, and activation of signalling pathways. These in turn are also 
influenced by many factors including diet, toxins, diseases and drugs [5]. These 
metabolites therefore can represent any number of molecular classes, from small 
molecules or amino acids, to lipids or carbohydrates, or any of their breakdown 
products [6]. Collectively they are referred to as the metabolome, which is repre-
sentative of all the processes occurring in a cell, an organ or the entire body at a 
particular time, and which necessarily varies over time according to the multitude 
of influences on the body, both normal and pathological.

Metabolites can be detected in any biological sample, ranging from blood (serum 
or plasma) to tissue, urine, sweat, tears, saliva, or even exhaled breath condensate 
[7, 8]. This represents a significant clinical advantage, as acquiring samples such 
as serum is straightforward yet may provide significant tumor-specific information, 
potentially representing a liquid biopsy and sparing the patient a more invasive pro-
cedure. The caveat to this is the sensitivity of the samples to incorrect handling—the 
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metabolic profile may change after sampling depending on a number of factors 
including temperature and changes in pH [9]—as well as the modulating effect of a 
number of variables discussed later.

Cancer Metabolism

In cancer, a number of metabolic processes are altered, either within the cancer cell, 
the tumor milieu, or in other parts of the body as a result of the cancer. Where this 
results in a measurable change in metabolites, such changes represent a potential 
biomarker of cancer presence or activity. Significantly altered metabolic pathways 
within cancer cells are well recognised. For example, many cancer cells employ 
aerobic glycolysis in place of the usual mitochondrial oxidative phosphorylation 
to generate adenosine triphosphate (ATP), a phenomenon known as the “Warburg 
effect” which is believed to confer a survival advantage in hypoxic conditions [10, 
11]. This feature of malignant cells is already exploited in cancer imaging: fluoro-
deoxyglucose (FDG)-positron emission tomography (PET) relies on the enhanced 
uptake of radio-labelled glucose by cancer cells to define tumors on imaging stud-
ies. Other common metabolic shifts in cancer result in changes in choline and fatty 
acid metabolism [12]. Choline is typically absent or at very low concentrations in 
normal tissue, and found in higher concentrations in tumor. Magnetic resonance 
imaging (MRI) can be adapted to include spectroscopic interrogation of parts of 
the image down to a single voxel to detect choline levels; areas of high choline 
concentration are very likely to represent presence of malignancy. This is currently 
employed in brain imaging of gliomas, and screening for early breast cancer in 
high-risk populations.

Whilst metabolomic studies are used to detect individual metabolites that might 
serve as predictive biomarkers, this is not the only application. Furthermore, al-
though several metabolites have been identified that correlate with the progression 
and development of breast cancer, this has not resulted in any significant clini-
cal gains. Current metabolomics research aims to take this considerably further by 
looking at groups of metabolites or indeed the metabolome as a whole. These col-
lections of data will contain patterns that then represent the metabolic signature of 
the sample, which can be compared to the patterns of other samples without the 
need to identify any of the individual molecules. This has the advantage of incor-
porating known and unknown metabolites of all the upstream events: gene expres-
sion and activated cellular pathways from the tumor; reactive and immunological 
responses from the host; as well as integrated signalling pathway cross talk and 
environmental influences, by far a more comprehensive picture, albeit embedded in 
a vast sea of other metabolite data.
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Fig. 1   NMR MAS spectrum of ovarian cancer tissue. Each of the numbered spikes represents 
a seperate metabolite, with the relative heights (signal strength) related to concentration. Fourty 
have been identified here, but a sample may contain hundreds. (Adapted from Ben Sellem et al., 
“Metabolomic Characterization of Ovarian Epithelial Carcinomas by HRMAS-NMR Spectros-
copy,” Journal of Oncology, vol. 2011, Article ID 174019, 9 pages, 2011. doi:10.1155/2011/174019. 
Permission for reproduction available under the Creative Commons Attribution License 3.0 (http://
creativecommons.org/licenses/by/3.0/)

 

Metabolomic Techniques

Two standard techniques for metabolomic analysis are nuclear magnetic resonance 
(NMR) spectroscopy and mass spectrometry (MS). MS has higher sensitivity than 
NMR, and requires lower amounts of samples.

NMR is faster, less expensive and more reproducible [13]. Another advantage 
of NMR is that the sample requires only a minimal handling prior to the analysis. 
Because NMR does not damage analytes, it is particularly useful for studying me-
tabolite levels in intact tissues, such as tumor biopsy samples, which can then be 
used in further experiments. In recent years, the development of high resolution 1H 
magic angle spinning (MAS) made the acquisition of data on small slices of tissue 
without any treatment feasible: with the rapid spinning of the sample at the magic 
angle of 54.7°, the line broadening effects and the associated loss of information are 
reduced [14–16], resulting in high resolution spectra (Fig. 1).
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Both techniques have their role in metabolomic research, depending on the aim 
of the investigation. In particular NMR can be used for rapid, untargeted screen-
ing; then, once metabolic pathways of interest are discovered, MS can be used in a 
targeted way to detect specific metabolites that could not be revealed in the NMR 
spectra due to the low concentration.

Analysis

Metabolomic data are high-dimensional in nature. As many as several hundred me-
tabolite (relative) concentrations may be measured by means of NMR or MS plat-
forms, usually on a limited number of samples. Biological information is retrieved 
from these data by means of univariate and multivariate statistical methods [17, 
18]. Multivariate methods use the relationships among the variables, in contrast to 
univariate methods that focus solely on the mean and variance of a single variable. 
Commonly used univariate methods are t-test and analysis of variance [19]. Mul-
tivariate methods constitute a broad category that can be further divided into two 
types of data analysis: supervised and unsupervised.

Unsupervised analysis looks at the measured data on their own, to try to identify 
patterns. As such, the analysis is unbiased to the results, and is more open to dis-
covery of novel metabolites or patterns of metabolite presence or concentration. It 
can be used to look for inherent patterns or intrinsic clustering that occurs within 
the samples, without knowing any outcome data, and may be more appropriate in 
exploratory experiments. On the other hand, it often involves extremely large quan-
tities of data, requiring complicated mining methods to extract meaningful peaks or 
patterns. Once patterns have been established, they can be tested in a sample with 
known characteristic or outcomes, to see if the patterns offer genuine discriminat-
ing power, eg for diagnosis, prognosis, or prediction of response to treatment. Some 
examples are principal component analysis (PCA) [20], and the recently published 
KODAMA [21].

Supervised analysis involves obtaining data referenced to a known established 
control. This might be any number of previously identified metabolites. Statistical 
methods like multiple regression [22] or partial least squares discriminant analy-
sis (PLS-DA) [23] and machine-learning techniques like artificial neural networks 
[24], random forest [25] and support vector machines [26] are used as supervised 
techniques in metabolomics [17, 27, 28].

One concern is that using established prognosis calculators to supervise and thus 
define the profile may risk developing yet another calculator of similar power, and 
thus no enhanced utility. Current prognostication based on tumor grade, size, bio-
marker status and nodal status, such as Adjuvant! Online, or even gene expression 
profiling, still misclassifies a significant proportion of patients, and it is for this 
very reason that improved techniques are being sought. Thus, unsupervised analysis 
must be the initial technique, rather than supervising with established risk factors. 
Then, to validate the result, the gold standard is to design large cohort prospective 
studies.

Metabolomics in Breast Cancer: Current Status and Perspectives
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Fig. 2 The metabolome consists of metabolites from all cellular process, which is influenced 
by intrinsic and extrinsic factors. Metabolites produced by cancer cells are superimposed on this 
landscape

 

The science of measuring and interpreting correlations in metobolomics to infer 
significance and true inter-relatedness is in itself an evolving science [29]. As more 
metabolomic data are obtained and understanding of pathways is improved, these 
can be shared on public networks to try to offer a comprehensive picture of human 
metabolism [30, 31]. The Human Metabolome Database, for example, is one of 
several databases, and lists approximately 7900 metabolites [32].

Challenges

The metabolic profile of an individual is not static, but rather in constant flux ac-
cording to the constant variation in cellular process in response to a number of 
factors, including normal homeostasis, exercise, diurnal rhythm, diet, hormones, 
and drugs [13]. This introduces many variables that can be difficult to control for. 
For example, certain metabolites can vary depending on how recently a person ate, 
or what time they took their regular medications. This creates increased noise in 
data acquisition, rendering these difficult to interpret. Furthermore, if these data 
are controlled carefully in experimental stage, the reproducibility in the real world 
may be difficult, where patients may be less likely to cooperate with dietary or other 
lifestyle factors [33, 34].

The metabolome of an individual [35, 36] will also vary significantly from that 
of another, regardless of the presence or not of malignant disease [5]. This is be-
cause it can reflect any number of small differences inherent, including race, sex, 
age, comorbidities, gut microflora, as well as factors mentioned above [37].

Thus we see that there can be both intra-patient and inter-patient variability 
(Fig. 2). Any putative biomarker, be it a single metabolite or a metabolic signature, 
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must be reliably discernible through this background variation if it is to become a 
useful and robust tool.

No standard reference exists yet for metabolomics, due to the great inherent vari-
ability from one patient population to the next, and the complex variety of chemo-
metric techniques that can be employed in analysis. As such, each new experiment in 
metabolomics that looks to differentiate two groups first requires a training set to es-
tablish the specific patterns and levels that are associated with the outcome of inter-
est, such as disease relapse following adjuvant chemotherapy. Once this is achieved, 
it must then be tested against the remaining data, or against multiple subsets of the 
data, to validate these patterns as having genuine correlation with the outcome of in-
terest. Examples of this in breast cancer research will be detailed in the next section.

Metabolomics in Breast Cancer

In breast cancer, as in other tumor streams, metobolomic research remains in the 
experimental stage, with as yet little translation into clinical application. A number 
of potential applications have been and continue to be explored (Table 1).

Metabolites as Biomarkers

Metabolomic analyses have detected a number of potential biomarkers which could 
proceed to further validation. An example is the ratio of glutamine to glutamate 
in tumor tissue, where it has been shown to correlate with estrogen receptor (ER) 
status, tumor grade and overall survival [38]. This illustrates how a broader analysis 
allowed appreciation of the importance of examining more than one metabolite at 
once. Glutamine or glutamate levels individually bear only rough and unreliable 
correlation with cancer presence, yet this study demonstrates that their levels rela-
tive to one another become more informative. Whether this will lead to enhanced 
predictive or prognostic ability is yet to be assessed, but the hypothesis-generating 
ability is in itself valuable.

Prediction of Stage

Studies of NMR spectra of fine needle aspirates of suspected early breast cancer 
showed that malignant tissue, nodal involvement and tumor vascular invasion could 

Novel metabolite discovery
Determination of prognostic factors
Prediction of treatment effect or toxicity
Early diagnosis

Table 1  Applications of 
metabolomics in breast 
cancer

Metabolomics in Breast Cancer: Current Status and Perspectives
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be predicted with high accuracy [39], and could be used to predict grade, ER and 
progesterone receptor (PgR) status, or axillary spread [40, 41]. Larger numbers 
are needed to validate these results, and unless the profiles can be shown to of-
fer superior prognostication to current methods, then clinical utility is debatable. 
 Nevertheless, it is evidence that the metabolic signature tells of the aggressiveness 
of the phenotype.

Prediction of Treatment Effect

Prediction of response to neoadjuvant chemotherapy using metabolomic data has 
been achieved using combined MS and NMR data [42]. Levels of four metabolites, 
threonine, glutamine, isoleucine and linolenic acid, were identified that correlated 
strongly with pathologic complete response (pCR) following neoadjuvant chemo-
therapy. What remains unclear, however, are the metabolic pathways implicated in 
the changing metabolite levels, and their roles in cancer development and treatment 
response. Furthermore, the predictive benefit needs to be compared to that already 
offered by clinicopathological features to ensure it increases prediction power and 
confers a clinical advantage.

Early Detection of Recurrence

Compared to standard approaches, recurrence can be predicted earlier with metabo-
lomics, shown in a study by Asiago et al. [43]. The investigators combined both 
NMR and MS techniques to analyze stored patient sera from resected early breast 
cancer patients. Multiple samples over time were available for each patient. A num-
ber of metabolites were found to be strongly associated with relapse, and a model 
was developed that predicted for relapse with sensitivity of 86 % and a specificity of 
84 %. Compared to detection by standard clinical means, the profile was able to de-
tect recurrence 13 months earlier on average in 55 % of patients. Whilst to date there 
is no proven clinical utility for early detection of metastatic disease, early diagnosis 
of local recurrence is associated with a survival advantage [44], and these results 
are exciting. This could form a basis for further studies into the benefits of early 
initiation of treatment for relapsed disease. It could also allow early recognition of 
failure of adjuvant endocrine therapy, preventing continuation of futile treatment or 
indicating new intervention to counteract resistance.

Predicting Recurrence Risk in Early Breast Cancer

Several studies have been performed to test whether metabolomic profiles have any 
prognostic power in early breast cancer, in terms of predicting relapse. It is worth 
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going into the details of some of these trials to illustrate the techniques required for 
metabolomic analysis, the limitations of the studies, and the potential benefits.

In the field of early breast cancer, the improvement in prognostication remains 
a priority. This is because current practice favors over-treatment of women with 
systemic therapy due to an inability to identify and isolate those for whom adjuvant 
treatment is more likely to be beneficial. We know from early studies that even in 
high-risk node-positive disease, a subset of these women will be cured with local 
therapy alone. Seminal studies performed by the Milan group [45] comparing the 
CMF combination (cyclophosphamide, methotrexate, 5-fluorouracil) to no adju-
vant therapy in women with node-positive early breast cancer, with over 25 years 
clinical follow up, demonstrated that 22 % of these clinico-pathologically high-risk 
women who had no adjuvant therapy remained disease free. Women with node-
negative, ER-negative disease receiving no adjuvant treatment had higher survival 
of 40 %, with 20 years follow up [45]. Even allowing for the improved risk stratifi-
cation offered by modern gene expression profiling, there is room for improvement: 
in the National Surgical Adjuvant Breast and Bowel Project (NSABP) B20 study 
comparing chemotherapy plus tamoxifen to tamoxifen alone in women with node-
negative, ER-positive, resected early breast cancer, those with tumors classified 
as high-risk by the OncotypeDX 21 gene recurrence score had long term survival 
well over 60 % with tamoxifen alone [46, 47]. Today, many of those women would 
almost invariably be offered systemic therapy, and likely chemotherapy, with all the 
inherent risks and cost.

The search for biomarkers to improve stratification of patients with early breast 
cancer to detect those who will benefit from chemotherapy, and those for whom 
the toxicity outweighs the benefits, is vital. Current risk stratification relies on data 
taken from the biopsy and resected tumor: ER, PR, HER2, Ki-67, tumor grade, and 
extent of nodal involvement. Genome expression profiling has refined this, particu-
larly in the node-negative cohort (Oncotype DX, 70 gene recurrence score), yet still 
a large proportion of women who were cured by surgery alone are not identified and 
are subsequently treated unnecessarily.

Common to these approaches is risk assessment based on features of the primary 
cancer alone, once it has been removed. Whilst offering clear prognostic benefit as 
surrogate markers, these may not reflect the biology of residual disease. In the post 
operative setting in breast cancer, the decision to offer adjuvant therapy is based on 
the likelihood of relapse, which in turn is linked to the presence of micrometastatic 
disease, the residual tumor cells which may be genetically or phenotypically differ-
ent from the primary cancer, and thus the cells that need to be addressed. Circulating 
tumor cells (CTC) or disseminated tumor cells may offer a more targeted approach, 
and are known to confer a worse prognosis [48]. However, detection and collection 
in non-metastatic setting is difficult, such cells may still not be representative of 
all remaining cancer cells, and this approach may still fail to appreciate the host 
response.

Metabolomics offers a unique perspective, as it takes into consideration signals 
from the host, the tumor microenvironment, and the tumor cells themselves, as well 
as any interactions between them. This residual pool of cancer cells, and the host 
response to them, may result in a detectable change in the metabolic profile that 
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might differentiate those who are likely to be cured by surgery alone from those 
who are more likely to relapse. It is for this reason that metabolomics may provide 
complementary and possibly more comprehensive information that could be added 
to current stratification models and aid in prognostication.

Establishing the Metastatic Metabolomic Signature

An initial test of the hypothesis that such signatures may be detectable and discrimi-
nating was performed by our group using one-dimensional proton NMR spectra of 
serum samples [49]. Fortyfour patients with early breast cancer had serum taken for 
metabolomic analysis both pre and postoperatively. As a control, 51 patients with 
advanced breast cancer also had serum taken. The aim was to see if serum metabolic 
profiles of early breast cancer patients differed from those with advanced disease; 
whether this changed after surgery; and whether the profiles could be used to gener-
ate a risk score that had prognostic power comparable to an existing prognosis cal-
culator (Adjuvant! Online). A further 45 patients with early disease provided a post 
operative blood sample that would be used as a validation series, ie to determine if 
risk scores generated in a new post operative group have a similar correlation with 
prognosis compared to the initial group, demonstrating reproducibility and validity.

Once spectra were obtained from the serum samples, a series of analytical steps 
was required to allow meaningful comparisons, including data reduction using or-
thogonal projection to latent structure (OPLS), a technique used to convert each 
spectrum to a single point on a two dimensional graph to allow simple comparison 
of the different fingerprints. This demonstrated significant separation of the pre-
operative and metastatic groups into distinct clusters, illustrating that the finger-
prints did indeed differ from one population to the other to varying extents. Double 
cross validation was then used to assess prediction ability of the model, showing a 
discrimination sensitivity of 75 %, specificity of 69 %, and predictive accuracy of 
72 %, with some patients with metastatic disease being consistently misclassified as 
early, and some early patients as metastatic.

A ‘metabolomic risk score’ was then established for each early breast cancer 
patient based on how much their profile resembled the metastatic profile, measured 
as an inverse function of the distance to the barycentre of the metastatic cluster. 
In other words, the more the fingerprint resembled that of patients with metastatic 
disease, the higher the risk score. This is based on the premise that the presence of 
the primary and/or micrometastatic disease is more likely to yield a metastatic pro-
file, and that its presence makes relapse more likely. High metabolomic risk score 
in preoperative patients was found to be highly correlated with misclassification as 
metastatic.

The metabolomic risk based on the preoperative serum was then compared to 
the 10 year breast cancer mortality estimate from Adjuvant! Online, for each pa-
tient, with the arbitrary threshold of 10 %, 10-year mortality risk for low-and high-
risk. Here, concordance was low. However, once the primary tumor was removed, 
there was considerable change in metabolomic risk, with 86 % of patients initially 
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 assessed as having high metabolomic risk switching to low metabolomic risk, sug-
gesting that the signal was coming entirely from the primary cancer in this group. 
Interestingly, 8 of 10 patients assessed as both high preoperative metabolomic risk 
and high Adjuvant! Online risk moved to low metabolomic risk postoperatively. 
Only 6 out of 21 patients with high Adjuvant! Online risk had high postoperative 
metabolomic risk.

When the same technique was repeated with the validation set (post operative 
serum samples), a similar pattern was observed, with high concordance of low me-
tabolomic risk with low Adjuvant! Online risk, but only 32 % of high Adjuvant! 
Online risk patients showing high metabolomic risk. Thus we see that this metabo-
lomic risk score generally classifies more patients as low risk.

Key points from this trial are that a detectable metabolomic signature is present 
in patients’ serum that can indicate the presence of breast cancer, and distinguish 
early from metastatic disease in a high proportion of patients. The shift in signature 
from a high-risk (metastatic) to low-risk following removal of the primary tumor in 
86 % of patients supports this. Where a metastatic signature exists post-operatively, 
this is more likely to be associated with a high-risk status according to traditional 
measures, yet fewer post-operative patients overall are classified as high-risk. This 
has the potential therefore to offer greater discriminatory power in selecting those 
who are less likely to require adjuvant therapy.

What is missing from this trial however is follow-up data, which would offer far 
greater evidence of predictive power than comparison with another risk calcula-
tor. Simply using established prognosis calculators to validate the profile may risk 
developing another calculator of similar power, and thus will not enhance utility. 
Furthermore, the trial requires further validation in different patient cohorts.

Predicting Clinical Outcome

To these ends, Tenori et al. [50] performed a similar study in which they exam-
ined serum 1H-NMR metabolic profiles in both early and metastatic breast cancer 
patients, again with the aim to demonstrate that the spectra could differentiate be-
tween the two groups, and also to establish a risk score that might predict relapse. 
Importantly though, in this case there were clinical follow-up data for the patients 
with early breast cancer, which had to be available for a minimum of 5 years or 
until relapse. Serum samples were selected from a biobank at the Memorial Sloan 
Kettering Cancer Center (MSKCC) in New York in which left-over patient samples 
are stored for scientific use, with patient consent. Eighty samples from patients 
with early breast cancer were selected, with the criteria that they must have post-
operative serum available, taken up to 90 days post surgery, but prior to commenc-
ing adjuvant therapy.

Ninety-five samples from patients with metastatic disease were obtained, and 
their NMR spectra obtained to create the metastatic fingerprint. The early stage 
group was split into two groups of 40 samples; the first half was used to generate 
a reference spectral patterns for early disease and to develop a risk score (training 
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set), and the other half was used to test the risk score for concordance and accu-
racy (validation set). The underlying hypothesis was that sera of patients with early 
breast cancer with micrometastatic disease would have metabolic fingerprints more 
closely resembling those of the metastatic cohort, and that these patients would be 
more likely to experience disease relapse. Ten out of 40 patients in the training set, 
and 11 out of 40 in the validation set, had documented evidence of relapsed disease.

Random Forest (RF) classification was used to classify samples as either meta-
static or early, based on the spectra. This is an analytical technique that can take 
large numbers of variables into consideration, is less prone to error or over-fitting, 
and does not require cross validation. This was performed on three different spectra 
for each sample using different NMR techniques: NOESY1D, CPMG, diffusion-
edited. Similar to the previous study, there was high accuracy in predicting early or 
metastatic status, with correct prediction in 84–87 % of cases across the three NMR 
techniques.

A RF risk score was generated, based on the risk of a patient with early breast 
cancer specimen being classified as metastatic, and this score was taken as an in-
dicator for clinical relapse. The RF risk scores generated from each of the spectra 
were then compared to the known outcomes of the patients using eceiver operating 
characteristic (ROC) analysis. CPMG spectra resulted in the greatest area under the 
curve (AUC) on the ROC curve (0.863), and were selected for use in the validation 
set. From here, a cut-off for the RF risk score was determined, aiming for maximum 
accuracy with appropriate sensitivity and specificity. The RF risk score of ≥ 53 was 
used, yielding sensitivity, specificity and accuracy of 90, 67 and 73 %, respectively 
for predicting likelihood of relapse.

This CPMG risk score model was then applied to the validation set in an unsu-
pervised analysis (ie blind to the clinical outcome). Here the correlation between 
predicted relapse and actual relapse was high, with AUC 0.824, demonstrating 
that in this cohort the risk calculator was robust. Sensitivity was 82 %, specificity 
72 %, and predictive accuracy 75 %. Nevertheless, 25 % of patients were misclassi-
fied, and, if used to dictate adjuvant chemotherapy decisions, 18 % of patients who 
would have relapsed would not receive adjuvant treatment.

The model was tested further by comparing it to already-validated prognostic 
methods that employ clinicopathological features of the primary disease. Tumor 
size, nodal status and RF score all had significant association with recurrence, but 
on multivariate analysis none remained significantly associated (tumor grade was 
not included, as all early cancers were grade 3). When compared to Adjuvant! On-
line in multivariate analysis, only RF score showed statistically significant associa-
tion with relapse, indicating that the RF score offered prognostic power over and 
above that offered by Adjuvant! Online in this cohort.

There were some potential confounders in the trial, some of which were ac-
counted for. First, when searching the MSKCC database for patients early disease, 
only cases with ER-negative disease were selected for the relapse-free cohort, as 
5 years follow up was deemed insufficient for ER-positive early breast cancer. No 
selection for ER status was made on the relapsed cohort or the metastatic cohort. 
Subsequent analyses showed that ER-positivity could not be predicted from the me-
tabolomic spectra, and the authors concluded that differences in ER status between 
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the early and the advanced breast cancer cohorts could not explain the observed 
results. This was further validated by confining the study to ER-negative patients 
only and repeating the analysis, subsequently achieving similar sensitivity, speci-
ficity and accuracy. Second, the time interval between surgery and blood sampling 
varied from 5 to 80 days, but again further analysis demonstrated that metabolomic 
spectra could not be used to differentiate early sampling (time interval < 30 days) 
from late (30–80 days).

Limitations

The first study controlled for a number of variables by confining the patient popu-
lation to a single institution, and by taking blood samples specifically for metabo-
lomic analysis after an overnight fast and with a diary of the previous day’s food 
intake and medication. This reduces a number of potential confounders, but in doing 
so also reduces the generalisability. Furthermore it lacked outcome data for its early 
patients, instead comparing its risk score stratification to standard clinicopathologi-
cal prediction. But it served as a proof of concept.

The second study again also used serum from a single institution, but here the 
serum had been stored for a variable length of time, and did not control for fasting 
state or time of blood collection. Whilst potentially confounding, this may render 
positive results more robust, as the likely effect of such variation is dilution or 
disguise of genuine metabolomic profile differences. More importantly, perhaps, a 
large proportion of the early breast cancer patients went on to receive chemothera-
py, undoubtedly influencing the outcome data. Thus its predictive ability here may 
be limited to identifying those who are likely to relapse in spite of chemotherapy.

Other groups have demonstrated the presence of a metabolic signature from 
breast cancer. A similar study aiming to create a model to differentiate early and 
metastatic breast cancer using 1H-NMR spectra was performed by Jobard et al. [51], 
using a training cohort of 46 early and 39 metastatic breast cancer patients, and an 
independent validation cohort of 61 early and 51 metastatic breast cancer patients. 
Their model was also reported to have even higher discriminating power. Crucially 
however, serum samples for the early patients were taken preoperatively, ie with the 
primary cancer in situ. Thus it represents more a discriminator of tumor bulk, rather 
than tumor presence. Furthermore it did not examine the model against any clinical 
outcome, and its utility in prognostication or prediction remains unknown. Com-
mon to all these trials is the problem of small numbers of participants.

Specific Metabolites

In each of the studies described, certain individual metabolites were identified that 
showed significant correlation with the presence of metastatic disease (Table 2). 

Metabolomics in Breast Cancer: Current Status and Perspectives
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In the Tenori study, reduced serum histidine and increased glucose and lipids were 
significantly correlated with metastatic disease [50]. In the Jobard study however, 
nine different metabolites were identified, which included low histidine [51]. Glu-
cose and lipids had a trend to significance. Much greater reproducibility will be 
needed before any particular metabolite can be used clinically. Moreover, this tends 
to move away from the unique benefit of metabolomics, ie the consideration of the 
combined picture of tumor and host response. Many single metabolites, including 
amino acids, have been shown to correlate with the presence of cancer, yet none 
have proven discriminatory enough to be clinically meaningful [52, 53].

Further Trials

These exploratory trials give support to the potential of metabolomics in the detec-
tion of micrometastatic disease and the prediction of relapse, but require further 
validation in larger cohorts. A proposed trial by our group aims to repeat the experi-
ment performed by Tenori et al. using a larger data set. Serum samples from some 
600 early (post-operative) and metastatic breast cancer patients with documented 
follow up data from a number of centres will be analysed, a risk score generator cre-
ated, and prediction of outcome compared to actual clinical outcome. While aiming 
to achieve similar results to the first study and demonstrate reproducibility, it will 
also shed light on transferability to other populations.

Metastatic Breast Cancer

Studies of metabolomics within metastatic breast cancer have been less productive. 
This is likely in part due to the greatly increased mutational load and hetereogene-
ity in advanced disease, that leads to far more complex, variable and inconsistent 
metabolic profiles. Another study by Tenori et al. [54] aimed to predict responses to 

Table 2  The identified discriminating metabolites detected in four metabolomic studies. Note 
the low rate of concordance between studies. MBC, metastatic breast cancer; NS, not statistically 
significant
Study Higher in MBC Lower in MBC
Oakman Phenylalanine, glucose, proline, lysine, 

N-acetyl cysteine
Lipids

Jobard Phenylalanine, glutamate, N-acetyl cysteine, 
mannose, pyruvate, glycerol, acetoacetate, 
lipids (NS)

Histidine, alanine (NS), 
betaine (NS)

Tenori Glucose, lactate, tyrosine, lipids Histidine
Asiago Tyrosine (NS), lactate (NS) Histidine formate proline choline, 

N-acetyl glycine, ketone body
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treatment based on changes in metobolomic profile before and after treatment, but 
were unable to demonstrate any discriminatory power. In a small subset of HER2-
positive patients, metobolomic analysis was able to predict response to lapatinib 
plus paclitaxel, but the results in this cohort were discouraging.

A proposed investigation will aim to study the serum metabolic profiles of a 
large cohort of metastatic breast cancer patients over time as part of a much broader 
prospective longitudinal cohort study, and follow their progress over time. It is hy-
pothesised that metobolomic analyses may demonstrate prognostic or predictive 
power for response to therapy and disease time course, identify novel biomarkers 
and help to refine data derived from ‘upstream’ analysis such as gene expression 
profiling.

Conclusions

Metobolomic studies in breast cancer have shown that a metabolic signature of 
cancer exists and can be detected in patient serum. It has the potential to allow early 
identification of relapsed disease, predict likelihood of relapse, and act as a bio-
marker of disease activity and response to treatment. It is limited by its complexity, 
requiring high-cost specialised equipment and analysis, which may hinder its prog-
ress into larger patient population studies, while retrospective analysis of completed 
clinical trials is frequently unfeasible.

It would be ideal, for example, to go back to early placebo controlled trials in the 
adjuvant treatment of early breast cancer to assess differences between the metabo-
lomic spectra of those who were cured with surgery alone and those who relapse. 
Unfortunately of course this is not possible for a number of reasons, not least of 
which is a lack of stored serum. Given this barrier, one may conclude that it will be 
impossible to develop evidence strong enough to convince clinicians and patients 
to ignore a traditional ‘high-risk’ assessment, and forego adjuvant therapy, based on 
a novel risk score without the backing of a placebo controlled trial, and that such a 
trial would be ethically impossible. The dream of sparing ‘cured’ patients adjuvant 
therapy, at least by metobolomic methods, may indeed be unattainable.

A more achievable goal may be to focus on the lower risk groups who would tra-
ditionally forgo adjuvant chemotherapy, and attempt to predict relapse. A prospec-
tive study could then assess the benefit of adding adjuvant chemotherapy to those 
deemed more likely to relapse. For example, future studies might combine genomic 
risk with metabolomic risk in patients with ER-positive early breast cancer, and 
observe for differences in outcome between those assessed as low genomic and 
low metabolomic risk, and those with low genomic but high metabolomic risk, all 
treated with adjuvant hormone therapy alone. In this way it may be seen if metabo-
lomics offers complementary risk stratification power.

For now, in this field at least, metabolomics remains exploratory, until a robust 
algorithm for analysing metabolic spectra can be achieved that both accurately pre-
dicts the presence of cancer and the clinical outcome, and is resistant to the influ-
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ence of the multitude of normal variables that impact the metabolome. Only then 
can it be prospectively validated as a meaningful tool to aid in risk stratification and 
decision making about adjuvant therapy.
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Circulating Tumor Cells

Costanza Paoletti and Daniel F. Hayes

Abstract Circulating Tumor Cells (CTC) are shed from primary or secondary 
tumors. Prior studies have demonstrated that enumeration of CTC is a robust inde-
pendent prognostic factor of progression free and overall survival in patients with 
early and metastatic breast cancer. CTC, as well as other circulating tumor markers, 
have the appealing advantages over tissue biopsy of (1) ease of collection, (2) serial 
evaluation, and (3) interrogation of the entire tumor burden instead of just a limited 
part of the tumor. Advances have been recently made in phenotyping and genotyp-
ing of CTC, which should provide insights into the predictive role of CTC for sensi-
tivity or resistance to therapies. In addition, CTC phenotypic marker changes during 
the course of treatment may serve as pharmacodynamic monitoring tools. There-
fore, CTC may be considered “liquid biopsies,” providing prognostic and predictive 
clinical information as well as additional understanding of tumor heterogeneity.

Keywords Circulating Tumor Cells (CTC) · Breast cancer · Enumeration · 
Characterization · Cluster · Prognosis · Prediction

Introduction

The metastatic process accounts for the majority of cancer-related deaths. A major 
component of the metastatic process involves tumor cell dissemination from pri-
mary and metastatic sites through the circulation [1]. However, compared to the 
billions of erythrocytes and millions of leucocytes in a milliliter of blood, circulat-
ing tumor cells (CTC) are very rare events, and isolation, enumeration, and charac-
terization of CTC is technically challenging. The first identification of tumor cells 
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in blood was reported in 1869 by Ashworth [2], who reported “The fact of cells 
identical with those of the cancer itself being seen in the blood may tend to throw 
some light upon the mode of origin of multiple tumors existing in the same person 
[…]. One thing is certain, that if they came from an existing cancer structure, they 
must have passed through the greater part of the circulatory system to have arrived 
at the internal saphena vein of the sound leg.”

In the past few decades, several technologies have been developed to isolate 
and characterize CTC from whole blood (WB). These techniques take advantage 
of different properties between epithelial CTC and normal constituents of blood. 
Several studies have demonstrated that enumeration of CTC with one or another 
of these techniques is a specific, independent predictor of progression-free survival 
(PFS) and overall survival (OS) in patients with early and metastatic breast cancer 
[3–6]. However, besides simple enumeration, characterization and phenotyping of 
CTC might also be of value. In this regard, biopsy of a metastatic site is a standard 
approach to establish diagnosis and re-evaluate tumor biomarker status to predict 
response to targeted therapy. However, biopsy is invasive, costly, uncomfortable for 
patients, and sometimes not feasible, depending on the metastatic site. Therefore, 
CTC might serve as a “liquid” biopsy, providing a minimally invasive and real time 
biomarker assessment in the metastatic setting. Further, CTC evaluation might of-
fer a better method to analyze tumor heterogeneity of the underlying cancer than 
a single biopsy, since CTC interrogate the entire burden of disease. Finally, serial 
CTC investigation may provide a pharmacodynamic tool to monitor biomarker ex-
pression over time to help guide personalized therapeutic management for patients 
with metastatic breast cancer.

Methods to Isolate and Detect CTC

Many different technologies have been studied to isolate CTC from WB, based on 
distinguishing the CTC from normal hematopoietic constituents, principally eryth-
rocytes and leukocytes. Investigators have chosen diverse separation strategies that 
exploit differences between these cellular entities, such as physical properties (size, 
weight, or density), flow and elasticity characteristics, and differential expression of 
biological factors, including putative tumor associated antigens (TAAs) or simply 
markers of epithelial vs. mesenchymal/hematopoietic derivation (Table 1). Regard-
less, two critical issues must be addressed: (1) enrichment or purification of the rare 
occurring CTC from WB; and (2) confirming that the enriched or purified “event” 
is, indeed, a malignant cell.
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Isolation/Enrichment/Purification/Capture of CTC from Whole 
Blood

Separation of CTC from Hematopoietic Cells Based on Physical Properties

In general, cancer cells are larger, heavier, and denser, and may have different elec-
tro-magnetic charge than erythrocytes or leukocytes. Therefore, several investiga-
tors have separated cancer cells by passing WB, or the nucleated component of WB, 
through either a density gradient or a filter of some sort. For example, standard den-
sity gradient centrifugation through the synthetic polymer of sucrose (Ficoll) has 
been a common method of separation, although it is not very efficient and there is 
considerable admixing of the malignant and normal cells. Likewise, other methods, 
such as the OncoQuick® (Greiner Bio One, Munich, Germany), still take advantage 
of cell separation by density gradient using a porous barrier, but more efficient than 
standard Ficoll depletion of mononuclear blood, thereby increasing the tumor cell 
density [7]. Taking advantage of differential cell surface electric charge between 
malignant and normal cells, dielectrophoretic field-flow fractionation (depFFF) 
separates the two, first by density and then by dielectric differential proprieties [8]. 
Yet another approach to enrichment has been based on the observation that CTC 
have a cellular diameter that is larger than hematopoietic cells (12–25 µ compared 
to 8–10 µ for leukocytes and 8 µ for erythrocytes). Separation has been achieved 
by passing WB or buffy coat through membrane micropore filters [9], special filters 
such as ISET (Isolation by Size of Epithelial/Throphoblastic Tumor cells) with cali-
brated pores of 8 μm [10].

Separation of CTC from Hematopoietic Cells Based on Biological Expression 
Differences

Obviously, the genotypes and associated phenotype of malignant and normal cells 
differ. Thus, several investigators have exploited these differences by attempting to 
enrich or identify CTC based on expression of TAAs. However, malignant and nor-
mal cells are really more alike than different, and because of tumor heterogeneity 
between and within a single patient, few if any TAAs have been identified that are 
sufficiently sensitive and specific to be of much value for CTC capture or enumera-
tion. Nonetheless, efforts to isolate and distinguish CTC from hematopoietic cells 
have been made using immunologic approaches and/or methods to identify and 
quantitate RNA expression and DNA abnormalities. In contrast, several investiga-
tors have taken advantage of the differences between epithelial and hematopoietic 
cells in general to isolate CTC originating from the common epithelial cancers, 
including breast.

Regardless, the most common immunologic approach to capture CTC has been 
to coat some sort of solid state with antibodies against cell surface antigens, be they 
TAAs or epithelial-related proteins. In this regard, immunocapture of CTC using 
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antibodies against the epithelial cell adhesion molecule (EpCAM), coated on some 
sort of solid phase surface, has been frequently employed to enrich CTC from WB. 
EpCAM is expressed on 80 % of solid cancers such as breast, colorectal, and pros-
tate. The most widely commercially available assay based on EpCAM capture, the 
CellSearch® system (Janssen Diagnostics, LLC, Raritan, NJ), utilizes ferromagnetic 
particles coated with an antibody to EpCAM (anti-EpCAM) with subsequent im-
munomagnetic separation [11].

Another immunomagnetic cell separator, the MagSweeper®, gently enriches tar-
get cells using a magnetic rod which attracts cells prelabeled with EpCAM-coated 
magnetic particles [12]. In addition, the CTC-chip is an anti-EpCAM coated micro-
fluidic device which is composed of carefully constructed microposts that permit 
smaller cells to pass through freely but divert larger cells into a capture “trap” [13]. 
Likewise, the Ephesia assay in collaboration with the Nikon Imaging Company 
Fluigent, combines the advantages of microfluidic cell sorting and flow-activated 
interaction between cells and a broad range of antibody-bearing beads for immuno-
magnetic sorting which could include EpCAM [14]. Yet another approach, the her-
ringbone-chip or “HB-Chip,” involves flowing blood through a microfluidic mixing 
device for CTC isolation [15, 16], while other researchers have reported another 
microfluidic device in which EpCAM antibody has been coated to a functionalized 
graphene oxide nanosheet on a patterned gold surface [17].

Confirmation that Captured Events are Malignant Cells

Regardless of the capture method, none is truly a CTC-purification strategy. There-
fore, one must be able to determine whether the captured “events” are truly cells, 
and whether they are more likely cancer or normal hematopoietic cells. This step has 
most commonly been accomplished by staining the captured “event” with DAPI, 
which binds to double-stranded DNA proving that the event has a nucleus, and with 
differently labeled antibodies to cytokeratin (CK) (epithelial) and selected leukocyte 
antigens, usually CD45. Light or fluorescent microscopy or flow cytometry has then 
been used to characterize the stained events. Obviously, this strategy identifies circu-
lating epithelial cells, which may or may not be malignant. However, chromosomal 
analyses with random fluorescent in situ hybridization (FISH) probes [18] have 
demonstrated that most if not all epithelial cells captured by CellSearch® in patients 
with known breast cancer are aneusomic. Coupled with intensive visual inspection 
in the CellSearch®, EPIC, and other systems suggesting that such cells are indeed 
malignant, one can be comfortable in the assumption that they are indeed CTC.

Each available system differs in the manner in which events are captured and 
characterized. However, in the CellSearch® system, each of these steps, including 
fluorescent scanning of identified events, is automated [11]. The only operator-de-
pendent analysis required is review of the subsequent computer-generated galleries 
of each event to determine if it is DAPI positive, CK positive, and CD45 negative.
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Some systems bypass the enrichment step, using a strategy of simply identifying 
evidence that CTC are present. For example, the system developed by EPIC Sci-
ences™ involves smearing the nucleated component of WB onto specially-coated 
slides to which the cells adhere [19]. The slides are subsequently stained with a 
cocktail of DAPI and fluorescently-labeled antibodies against CK and CD45 and 
scanned with a whole slide fluorescent scanner for computerized image analysis of 
cellular morphology and CK and CD45 expression.

Another method to presumably detect CTC is by searching for the presence 
of transcripts of either epithelial markers or TAA. For example, using real-time 
polymerase chain reaction (RT-PCR), investigators have reported the presence of 
mRNA for CK, or for HER2 [20–22]. Since extracellular mRNA is unstable (as 
opposed to circulating cell free plasma tumor DNA (ptDNA) or miRNA), one can 
presume that the presence of these transcripts must represent intact CTC. Of course, 
although such an approach is likely to be quite sensitive, it is limited by the fact that 
one cannot determine definitively that indeed the transcript does represent the CTC, 
and further phenotyping or genotyping of the “cell’ is impossible. In this regard, the 
Adna test (AdnaGEn) combines whole cell capture using immunomagnetic tech-
niques (against EpCAM and MUC1) followed by CTC lysis and RT-PCR for what-
ever gene product is of interest [23, 24].

All of the enrichment and characterization strategies above are performed ex 
vivo from a relatively limited volume of blood (usually 1–30 ml). Novel methods 
for the in vivo isolation of CTC from peripheral blood have been developed in or-
der to interrogate a larger volume of blood [25]. For example, the CellCollector™ 
(GILUPI Nanomedicine, Berlin), is a stainless steel wire (0.5 mm diameter) that 
is anti-EpCAM-coated, functionalized gold. The device is inserted intravenously, 
much like an intravenous catheter, and captures CTC as they circulate. Although 
this approach is intriguing, substantially more clinical research is required to deter-
mine if the CellCollector™ truly provides an advantage over the more traditional 
ex vivo devices.

Superiority of One CTC Assay Over Another

Most if not all of the reports of the devices reviewed above claim superiority in one 
way or another over other available devices. The majority of the capturing CTC 
devices may be more sensitive than the only Food and Drug Administration (FDA)-
cleared CellSearch® assay by either capturing more CTC per volume of blood, or 
identifying more patients who have elevated CTC. While increased sensitivity is 
clearly a laudable goal, one must be cautious about such claims, or about using 
sensitivity as the only criterion for superiority.

To address the issue of when a biomarker assay should be used to direct patient 
care, the Evaluation of Genomic Applications in Practice and Prevention (EGAPP) 
initiative established three principles of evidence-based medicine [26]. Although 
EGAPP deliberations were directed specifically towards germline genetic testing, 
their principles apply to considerations whether any tumor biomarker tests should 
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be used to guide clinical decision-making. The three principles espoused by EGAPP 
include analytical validity (is the test accurate, reproducible, and reliable); clinical 
validity (does the test divide one population into two or more separate groups that 
have significantly different clinical outcomes); and clinical utility (has the test been 
shown with high levels of evidence to improve patient outcomes compared to those 
if the test were not used) [26]. More recently, these definitions have been supported 
and reinforced by the National Academy of Medicine of the United States regarding 
the generation of tumor biomarker omics-based tests, and definitions of levels of 
evidence have been proposed for tumor biomarker tests [27, 28].

Analytical validity is key to application of any diagnostic device, either in fu-
ture clinical research or, more importantly, patient care. Only a few of these de-
vices has been carefully shown to have analytical validity, with precise accuracy, 
reproducibility, and reliability [11]. Thus, claims of superiority must be tempered 
with careful scrutiny of data to support analytical validity, and these data are often 
lacking. Further, clinical validity is also a key element of comparing different as-
says. For example, there is no question that the presence of CTC as enumerated by 
CellSearch® is strongly associated with poor prognosis, as discussed below. Assays 
that appear to be more sensitive, even if this claim is supported with high analytical 
validation, may not result in improved, or even equivalent, clinical validity, since 
it is very possible, if not likely, that many of the additional CTC that are identified 
may not have malignant potential. Thus, head to head studies of sensitivity are not 
nearly as informative as head to head comparison of prediction of outcomes in the 
same dataset, and such studies are frankly completely lacking at present.

Clinical Validity and Utility of CTC Assays

Clinical utility requires that the intended “use context” for the marker be defined. 
In other words, what is the setting in which it will be used, and why will it be 
used? Intended use contexts for tumor biomarker tests, including CTC, include risk 
assessment, screening, differential diagnosis, prognosis and prediction of benefit 
from therapy, and monitoring disease course. Each of these must be placed into the 
context of the spectrum of breast cancer, from screening or prevention of unaffected 
subjects to palliative therapy for those with established metastases [29] (Fig. 1). 
Importantly, prediction of response to therapy can apply to a generic class of agents, 
such as endocrine therapy or chemotherapy or anti-HER2 therapy, or to specific 
agents within a class, such as tamoxifen or an aromatase inhibitor or fulvestrant. We 
agree with guideline recommendations by panels convened by the American Soci-
ety of Clinical Oncology (ASCO) [30] and National Comprehensive Cancer Net-
work (NCCN) [31, 32] that CTC currently have no clinical utility, or even validity, 
for risk categorization, differential diagnosis, or screening for new primary tumor. 
Nonetheless, there is emerging evidence of a potential role of CTC to determine 
prognosis in early and metastatic disease, as well as for monitoring patients with 
metastases. Indeed, more than 400 clinical trials using CTC are currently registered, 
and the majority of them are in the metastatic setting.
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Prognosis in Early Breast Cancer

In stage 1 or 2 breast cancer, the incidence of CTC is lower than in the metastatic 
setting. Therefore, detection of CTC in the early setting has been even more chal-
lenging. Nonetheless, several studies have, indeed, reported detection of CTC us-
ing one of the many available methods described above. The most broadly used 
assays in the early breast cancer setting have been RT-PCR for CK or whole cell 
enumeration using CellSearch®. Using RT-PCR-based assay, Greek investigators 
have reported that approximately 40 % of patients have evidence of CTC, and this 
has been associated with worse prognosis [20, 22]. Likewise, in two separate stud-
ies, CTC as enumerated by CellSearch® are elevated in 5–24 % of patients with 
stage 1 or 2 disease (depending on cutoffs and blood volume), and are associated 
with slightly worse prognosis when compared to patients who do not have elevated 
levels [33, 34]. Further, in a meta-analysis by Zhang L. et al. [6] of several studies 
in the early setting, the presence of CTC was significantly associated with shorter 
disease free survival (DFS) and OS in patients with early breast cancer (DFS: haz-
ard ratio [HR], 2.86; 95 % confidence interval [CI], 2.19–3.75; OS: HR, 2.78; 95 % 
CI, 2.22–3.48). Other studies conducted in the neoadjuvant setting have also shown 
that the presence of CTC, regardless of the assay, were associated with poorer out-
comes [35–37].

Taken together, these studies establish the clinical validity, but not clinical utility, 
of CTC enumeration in this setting. None of these studies directed care according 
to CTC levels, and indeed, although statistically significant, the magnitude of the 
difference in outcomes between groups with or without CTC is not large. Thus, one 

Fig. 1  Clinical spectrum of breast cancer
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cannot determine if having low levels of CTC identify patients with a very favor-
able prognosis who could be spared adjuvant systemic therapy by virtue of having 
low levels of CTC. Conversely, it is also uncertain whether patients with higher 
levels of CTC should be given more treatment than patients with lower levels of 
CTC. These studies have established a principle that needs further support from 
new interventional, properly controlled trials to determine if CTC have clinical util-
ity as a prognostic factor in early stage breast cancer.

Metastatic Breast Cancer

Over the last decade, the prognostic effect of CTC at baseline and during follow-up 
in metastatic disease has been well established for several types of cancers, includ-
ing colorectal, prostate, non-small-cell and small cell lung (SCLC), and breast [3, 
38–40]. Apropos to this review, at least when performed by the CellSearch® System, 
enumeration of CTC is a specific, independent predictor of PFS and OS in patients 
with metastatic breast cancer [3]. These results have been confirmed in a recent 
pooled analysis including data from 17 centers [5] and a meta-analysis of published 
reports [6].

However, all of these studies were conducted without the specific intent of gen-
erating high levels of evidence to demonstrate clinical utility for a specific context 
use. In this regard, Smerage et al. [4] have reported a trial conducted by SWOG 
(SWOG protocol S0500) to test the clinical utility of changing therapy based on 
“CTC response” in patients with metastatic breast cancer who were starting first 
line chemotherapy. All patients had CTC levels at baseline and were treated with 
the chemotherapy deemed best for them by their oncologist. Consistent with prior 
studies [3, 5], approximately one-half of the patients did not have elevated CTC (≥ 5 
cells/7.5 ml WB being considered elevated) at baseline. These patients, designated 
group A, were followed with no further CTC evaluation. Those patients who did 
have elevated CTC at baseline (≥ 5 cells/7.5 ml WB) were re-evaluated after one 
cycle of chemotherapy. Approximately 60 % of these patients experienced a drop in 
CTC to  < 5 cells/7.5 ml WB, presumably reflecting a response to the chemotherapy 
that they had begun, and this group (Group B) remained on that regimen until classic 
evidence of progression and survival. The other 40 % ( n = 123) of patients (Group 
C) were randomly assigned to either stay on the chemotherapy regimen that they 
had started (Group C1), or to switch to an alternative chemotherapeutic regimen 
of their oncologist’s choice (Group C2). OS was the primary endpoint of the trial.

Overall the results demonstrated that changing chemotherapy regimens early in 
a patient’s disease course based on failure to reduce CTC to  < 5 cells/7.5 ml WB 
did not change OS (Fig. 2). However, the prognostic role of CTC in this population 
was remarkable (Fig. 3). In the group of patients who did not have elevated CTC at 
baseline (Group A), median OS was 35 months, compared to 23 months for Group 
B and only 13 months for Group C. The prognostic role of CTC at baseline and at 
first follow-up was similar regardless of intrinsic subtype. The odds of reducing 
CTC if elevated at baseline did not vary by biological subtype except for HER2 
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Fig. 3  Prognostic outcomes including overall survival (OS) of patients with metastatic breast 
cancer according to CTC levels at baseline at first-follow-up who participated in S0500 clinical 
trial. Group A: Baseline CTC  < 5 cells/7.5 ml whole blood (WB); Group B: CTC ≥ 5 cells/7.5 ml 
WB at baseline and decreased to  < 5 cells at first follow-up after starting first line chemotherapy; 
Group C: ≥ 5 cells/7.5 ml WB at baseline and at first follow-up after starting first line chemo-
therapy. Panel A: All Patients; Panel B: Hormone receptor-positive and HER2-negative disease; 
Panel C: triple negative disease; Panel D: HER2-positive disease (From [4]. Copyright® 2014 by 
American Society of Clinical Oncology. All rights reserved)

 

C. Paoletti and D. F. Hayes

Fig. 2  Results of patients with metastatic breast cancer (MBC) for whom first line chemotherapy 
failed to reduce CTC at first follow-up in the S0500 clinical trial. a Overall survival (OS) and b 
Progression Free Survival (PFS). (From [4] Copyright® 2014 by American Society of Clinical 
Oncology. All rights reserved)
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positivity. Taken together these results suggest that patients that did not clear CTC 
by first follow-up after starting first line chemotherapy appear to be have chemo-
resistant disease, regardless of the regimen chosen. Clearly, a different treatment 
strategy is required for these patients.

In another attempt to develop clinical utility of CTC for a context use, Giordano 
A. et al. [41] have generated a prognostic nomogram consisting of baseline CTC 
levels and a combination of clinical factors (age, disease subtype, visceral metasta-
ses, and performance status) to estimate probability of OS at 1, 2, and 5 years and 
progression-free-survival at 6 months, 1, and 2 years for patients with metastatic 
breast cancer starting first-line chemotherapy. After development of the nomogram 
in a test set, they validated it in a subsequent dataset. While this nomogram refines 
the estimates of prognosis using CTC, it is not clear that differential treatment strat-
egies based on these estimates (such as giving chemotherapy instead of endocrine 
therapy for patients with estrogen receptor (ER)-positive tumors, or using combina-
tion or higher dose chemotherapy instead of standard dose single-agent treatment) 
will improve patient outcomes. Therefore, it has yet to be accepted for clinical use, 
but it is an example of how one might incorporate CTC levels with other important 
prognostic factors to perhaps tailor specific treatment regimens for patients with 
metastatic breast cancer.

Other clinical trials to address clinical utility of CTC in metastatic breast can-
cer are ongoing. For example, two interventional trials currently underway are the 
French “CirCe01” and the “STIC.” The former trial has a design similar to SWOG 
S0500, but it aims to address early discontinuation of chemotherapies in more heav-
ily treated patients (3rd line of chemotherapy) [42]. On the other hand, the STIC 
CTC trial evaluates CTC-guided hormone therapy vs. chemotherapy decision as 
first line treatment for metastatic, hormone-receptor positive, breast cancers (Clini-
calTrials.gov Identifier: NCT01710605) [42].

In conclusion, the weight of the evidence strongly demonstrates that the pres-
ence of CTC has prognostic significance in patients with metastatic breast cancer. 
However, it is not clear that patients with elevated CTC prior to starting a new 
therapy (first or later line) should be treated differently than they would if CTC 
were not known, and thus no CTC assay has clinical utility in this setting. Further, 
although it appears that patients who do not experience a “CTC response” at an 
early follow-up time-point are probably not receiving active therapy, the available 
data (such as from S0500) do not support changing therapy early. Nonetheless, the 
data do consistently suggest that a rising CTC level during treatment follow-up is 
very likely associated with progressive disease, as measured by classic clinical and 
radiographic evaluation. Thus, one might conclude that if a patient with metastatic 
breast cancer receiving treatment does not have evidence of progression by clinical 
indications or rising circulating soluble tumor markers (such as CA15-3/CA27.29 
or CEA) or CTC, there is probably no indication for radiographic imaging until one 
of these suggests the need to do so.
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Analyses of CTC Beyond Enumeration

Although enumeration of CTC using the presently applied algorithms is prognostic, 
none of these assays perfectly identifies patients who are likely to be cured ver-
sus those who have a very short, and poor, expected OS (Fig. 3). Therefore, it has 
been of interest to further characterize, phenotype, and genotype CTC. Moreover, 
CTC analysis might provide more accurate predictive information for a subsequent 
therapy under consideration, and finally CTC characterization might improve fun-
damental understanding of the metastatic process.

Improving CTC Prognostic Information

As noted, clinical data combined with CTC enumeration have been shown to be 
more accurate in predicting patient outcome than CTC alone [41]. However, clini-
cal features are not terribly reproducible, and therefore, efforts have been made to 
further refine CTC prognostication. These efforts have been directed either towards 
capturing CTC that may not express epithelial markers, by reviewing CTC that are 
commonly captured in currently available CTC assays, or both.

CTC Epithelial to Mesenchymal Transformation As noted, almost all CTC capture 
strategies only enrich and identify cells that express epithelial markers (EpCAM, 
CK). A growing body of evidence suggests that malignant epithelial cells undergo 
an epithelial-mesenchymal transition (EMT), in which expression of EpCAM 
and CK is down-regulated [43, 44]. Such cells, which may actually be the tumor/
metastases-initiating cells of concern, would obviously not be detected in many of 
the assays described above. Therefore several investigators have developed new 
enrichment strategies that are independent of epithelial marker expression, or even 
if capture is based on EpCAM, subsequent characterization for mesenchymal phe-
notype [16, 45–47]. For example, Yu et al. [16] have reported that dual-colorimetric 
RNA-in situ hybridization (ISH) identified cells captured by the EpCAM-coated 
CTC-chip that expressed mesenchymal transcripts. Importantly, presence of these 
mesenchymal-like CTC was associated with disease progression in this small series 
of breast cancer patients. While it is unclear that detection of these cells will provide 
more clinically useful information than enumeration of CTC by systems such as 
CellSearch®, clearly the presence of these cells in the circulation provides insight 
into the metastatic process.

CTC Clusters Several investigators have now reported the presence of not only sin-
gle CTC, but also the presence of CTC clusters in patients with lung, renal, prostate, 
and breast cancer [16, 40, 48–51]. Tumor cell clusters, designated as circulating 
tumor microemboli (CTM), are defined as a group of CTC containing three or more 
distinct nuclei with contiguous cytoplasm membranes (Fig. 4). CTM may occur due 
to many mechanisms, including maintenance of cell-to-cell signals, production of 
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autocrine pro-migration factors, and protection from immunological response [48]. 
All of these might suggest a survival advantage of CTM over single CTC. Recently, 
Hou JM et al. [40, 48] have reported that CTM did not express either proliferative 
or apoptotic markers, suggesting relative resistance to cytotoxic drugs and protec-
tion from anoikis. Indeed, CTM were associated with worse survival in SCLC in 
this study [40]. Likewise, Yu et al. [16] have shown that CTC clusters were strongly 
positive for mesenchymal and weakly positive for epithelial markers. They hypoth-
esize that this could be either the result of the transformation of a pre-existing cluster 
from the EMT or the result of the proliferation of single CTC that underwent EMT 
within the cluster. Likewise, Aceto et al. [51] have shown that the presence of CTC 
clusters isolated by a novel microfluidic device in blood from patients with meta-
static breast cancer and prostate cancer was associated with shorter PFS. Therefore, 
quantification of CTM might add additional prognostic information to simple CTC-
enumeration, although the evidence to suggest evaluation of CTM should be used 
to direct care is still lacking.

Phenotyping and Genotyping CTC for Prediction of Response to 
Targeted Therapy

The era of “precision medicine” promises the use of targeted therapies that are spe-
cific to the patient’s cancer. To accomplish this, the clinician requires precise and 
accurate predictive markers, such as ER to direct endocrine therapy and HER2 for 
anti-HER2 therapies [52, 53]. Primary tumor tissue is routinely stained to determine 
these markers, but discordance between primary and metastatic tumors has stimu-
lated re-biopsy of metastatic sites [54]. However, this strategy is invasive, and the 
metastasis is not always easily accessible or cannot be safely approached. Further, a 
single biopsy site may not reflect the entire heterogeneity of the whole body tumor 
burden, and finally, serial multiple biopsies at each progression are impractical. 
Therefore, if CTC reflect the underlying tumor, they could be used as a convenient, 
safer, and perhaps more informative “liquid biopsy” [55, 56].

Fig. 4  Example of a CTC-cluster isolated by CellSearch® technology
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Several investigators have reported the ability to phenotype CTC for a variety 
of biomarkers that might be important in breast cancer management, including ER 
[57–62], HER2 [36, 63–66], Ki-67 [61], BCL-2 [61, 67], apoptosis (M-30) [67–69], 
IGFR1 [70], EGFR [71], PI3K protein [72], and gammaH2AX [73]. For example, 
Paoletti et al. [61] have recently reported development and analytical validity of a 
CTC-endocrine therapy index (CTC-ETI). The CTC-ETI incorporates a weighted 
semi-quantitative assessment of relative expression on CTC of ER and BCL2 (both 
of which predict sensitivity to endocrine therapy) and HER2 and Ki-67 (which pre-
dict resistance to endocrine therapy). In a pilot clinical study, this assay has high 
analytical validation when generated using the CellSearch® system, even among 
different, trained operators. As expected, the CTC-ETI varied widely among 50 
patients with ER-positive metastatic breast cancer (Fig. 5). Therefore, CTC-ETI 
may identify patients with ER-positive metastatic breast cancer whose cancers are 
refractory to endocrine therapy and who would be better served by treatment with 
chemotherapy, as if their cancers were ER negative. A prospective trial to address 
this issue is now underway in North America (the COMETI trial, ClinicalTrials.gov 
Identifier: NCT01701050).

Recently, the ability to detect multiple important somatic mutations or other 
genomic alterations in ptDNA has been reported and these alterations might 
provide insight into therapeutic resistance or serve as targets for therapy [74–
77]. It is unclear if ptDNA and cell-bound CTC-DNA analyses provide identi-
cal, similar, or different results. Since ptDNA must come from lysed cells, it 
may not reflect the genotype of viable tumor, whereas CTC are, at least, intact. 
However, as noted most CTC capture strategies are enrichment, and not puri-
fication, steps, and thus genetic analyses are limited by the presence of con-
taminating leukocytes. Technologies, such as DEPArray™ (Silicon Biosystems, 
Italy), have been developed to purify single CTC from blood for analysis on 
pre-enriched samples [78, 79]. Alternatively, Yu et al. [80] have cultured ex vivo 
CTC isolated from 6/36 patients with metastatic ER-positive breast cancer using 
the CTC-i-Chip. CTC were screened for mutations in a panel of 1000 annotated 
cancer genes with a hybrid-capture based next generation sequencing (NGS) 
platform. They found pre-existing mutations and newly acquired mutations in 
the PIK3CA gene, as well as in ESR1, TP53, KRAS, and fibroblast growth factor 
receptor-2 ( FGFR2). Although the clinical utility of this technology is far from 
proven, these advances will permit comparison of genomic analyses of ptDNA 
vs. CTC-DNA, which may or may not be the same.

CTC representation of Tumor Heterogeneity Tumor heterogeneity has been recog-
nized for more than 150 years, and more recently has been identified as the main 
driver for treatment resistance [81]. Therefore, a better understanding of an individ-
ual’s tumor heterogeneity, especially over time in response to treatment, might help 
improve personalized therapy. As noted, biopsies only permit evaluation of a single 
site, and serial biopsies are impractical. Thus, CTC phenotyping and genotyping might 
be a more accurate, and practical, approach to monitor tumor heterogeneity [82].

For example, in our CTC-ETI pilot study, we observed enormous intra-patient 
CTC-biomarker heterogeneity (Fig. 5) [61]. Patient #4 in Fig. 5 serves as an illus-
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tration of this heterogeneity. She had 790 CTC/7.5 ml WB at the time of the blood 
draw. Nearly one-half (46 %) of these CTC were ER-negative, while her primary 
tumor was originally ≥ 95 % ER-positive. We hypothesize that CTC-biomarker 
changes might provide insight into whether a patient’s treatment should be changed 
by virtue of emergence of biomarker target disappearance, or other targeted thera-
pies should be added, by virtue of appearance of new biomarker targets.

In a similar manner, a multicenter Phase II trial conducted by Pestrin et al. [83] 
was designed to evaluate the activity of anti-HER2 therapy in metastatic breast can-
cer patients with HER2-negative primary tumors and HER2-positive CTC. Seven 
percent of these patients had positive CTC-HER2 and were treated in a Phase II 
study with lapatinib, but unfortunately no responses were observed. Two larger, 
ongoing trials (DETECTIII, ClinicalTrials.gov Identifier: NCT01619111; and 
CirCEX1 ClinicalTrials.gov Identifier: NCT01975142) are similarly designed to 
test the efficacy of HER2-targeted therapy in patients with initial HER2-negative 
metastatic breast cancer but who are found to have HER2-positive CTC [42].

Moreover, CTC biomarker changes, in addition to CTC levels, might be used 
as an early predictive marker for treatment response. For example, a targeted agent 
might either downregulate its target or induce other downstream gene expression 
changes. Although use of CTC for this indication has not been reported, one might 
be able to use circulating CTC-biomarker changes as a pharmacodynamic tool to 
determine if the agent is, indeed, hitting the appropriate target.

Finally, a critical issue is whether circulating markers (CTC, ptDNA) truly rep-
resent the underling malignant tissue. It is possible that either ptDNA or CTC arise 
from cells that are either already dead, or are non-viable and have merely detached 
from the body of the tumor into the circulation. Clearly, some form of CTC must be 
responsible for subsequent metastases, but it is unknown if the CTC that are cap-
tured and characterized by currently available technologies are truly the cells with 
malignant potential. At the least, CTC identified by RT-PCR or by CellSearch® do 
represent malignant behavior, by virtue of their proven prognostic effects. However, 
we do not know if they, themselves, are the “tumor/metastases initiator” cells or 
merely symbolic of those that are but are not being captured, such as cells under-
going EMT as discussed above. Several investigators have reported considerable 
discordance between CTC and tissue biomarker results such as ER staining [57–62, 
84]. However, these are difficult studies to do since often one is comparing the 
CTC-phenotype with a primary tissue biopsy, or even with a metastatic biopsy, that 
was performed months or even years before. Moreover, as noted, the single site bi-
opsy may, in itself, not represent the entire body tumor burden. Therefore, while of 
interest, it is unlikely that these types of studies will really provide much clinically 
useful information. Rather, the real proof that a CTC-biomarker has clinical utility 
will only be generated by correlating the CTC-phenotype/genotype with clinical 
outcomes in the appropriate use context.
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Conclusion

Several studies have now demonstrated analytical and clinical validity, as defined 
by EGAPP, for prognosis of CTC enumeration in early and metastatic breast can-
cer. However, the clinical utility of monitoring CTC continues to be controversial. 
Appealing results in phenotyping and genotyping single-cell CTC have been gen-
erated. Nonetheless, the clinical role of these findings is still under investigation. 
Additional definitive trials are needed to achieve clinical utility in order to be used 
to help guide treatment.

As noted, genotyping of ptDNA for somatic mutations has recently generated ex-
citement in the field [74–77]. This topic is covered in a separate chapter of this book. 
However, we believe that CTC as well as ptDNA are complementary approaches. 
In addition to the possibility that the DNA alterations may not be the same from the 
two specimen types, CTC characterization permits exploration of expression of the 
genes, which is likely to be plastic in response to environmental stresses, as opposed 
to the fixed genetic changes associated with cancer. Ongoing and future studies will 
need to consider these issues as we move into the era of “liquid biopsies.”

Acknowledgments We gratefully acknowledge Celina Kleer, M.D. who provided the pathology 
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Abstract Circulating cell-free DNA (ccfDNA)—first identified in 1947—is 
“naked” DNA that is free-floating in the blood, and derived from both normal and 
diseased cells. In the 1970s, scientists observed that patients with cancer had ele-
vated levels of ccfDNA as compared to their healthy, cancer-free counterparts. The 
maternal fetal medicine community first developed techniques to identify the small 
fraction of fetal-derived ccfDNA for diagnostic purposes. Similarly, due to the pres-
ence of tumor-specific (somatic) variations in all cancers, the fraction of circulat-
ing cell-free plasma tumor DNA (ptDNA) in the larger pool of ccfDNA derived 
from normal cells can serve as extremely specific blood-based biomarkers for a 
patient’s cancer. In theory this “liquid biopsy” can provide a real-time assessment 
of molecular tumor genotype (qualitative) and existing tumor burden (quantitative). 
Historically, the major limitation for ptDNA as a biomarker has been related to 
a low detection rate; however, current and developing techniques have improved 
sensitivity dramatically. In this chapter, we discuss these methods, including digi-
tal polymerase chain reaction and various approaches to tagged next-generation 
sequencing.

Keywords Circulating cell-free DNA · Plasma tumor DNA · Cancer biomarker · 
Breast cancer biomarker · Digital PCR · Tagged next-generation sequencing

Background: Circulating Cell-Free DNA

In 1947, Mandel and Métais first identified circulating cell-free DNA (ccfDNA) 
in human blood [1]. This “naked” DNA is free-floating in the blood and is derived 
from both normal and diseased cells. Interest in the utility of ccfDNA for medical 
purposes returned almost five decades later when scientists began to explore uses 
for ccfDNA in maternal-fetal medicine and oncology. More recently, techniques to 
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identify and quantitate ccfDNA have been applied to other disease processes such 
as sepsis, myocardial infarction, stroke and diabetes [2–5].

Currently, it is thought that ccfDNA enters the circulation by a few mechanisms. 
Macrophages and other scavenger cells, which phagocytose necrotic and apoptotic 
cells, can release DNA and cellular debris into the surrounding environment [6]. It 
has also been suggested that direct secretion of ccfDNA into the plasma is possible 
[7]. ccfDNA is found in various human secretions, such as whole blood, serum, 
plasma and urine. These ccfDNA fragments are generally quite small, averaging 
~ 180 base pairs (bp) in length in one study, but can be as large as ~ 10,000 bp [8, 9]. 
The half-life of ccfDNA is relatively short, varying from ~ 15 min to a few hours. It 
is quickly cleared by the kidney and the liver [8, 10, 11]. Patients with inflammatory 
conditions such as metastatic cancer, trauma, myocardial infarction and sepsis have 
on average a higher concentration of overall ccfDNA than normal controls [12–17]. 
Given these properties, ccfDNA has the potential to play an important role in the 
diagnosis, prognosis and monitoring of various disease states, including cancer.

 The maternal fetal medicine community was the first to pursue ccfDNA as a 
diagnostic tool. In the 1970s, researchers first identified fetal cells in the maternal 
circulation, and subsequent work in 1997 demonstrated that a small percentage of 
ccfDNA originating from the fetus could also be found in the maternal blood [18–
20]. The size of fetal-derived ccfDNA was determined by Li et al. to be <300bp, 
whereas ccfDNA fragments derived from maternal cells are >300bp [21]. The fetal 
fraction of ccfDNA likely accounts for approximately 3–6 % of the total ccfDNA 
population although studies differ slightly, and as gestation continues the percent-
age may rise [22, 23].

Given this small percentage of fetal ccfDNA, different technologies with vary-
ing sensitivities have been examined to detect and quantify this minority population 
of DNA. Currently, next generation sequencing (NGS) of maternal plasma DNA is 
used in the clinic to detect increased representations of chromosomes 21, 18 and 13 
in order to identify a fetus harboring these chromosomal abnormalities [24, 25]. In 
addition, advances in detection of ccfDNA from maternal plasma have allowed for 
Rhesus D genotyping and the detection of paternally inherited genetic disorders [26, 
27]. Thus the feasibility of detecting relatively rare fetal DNA molecules in mater-
nal peripheral blood was established with these earlier studies and set the stage for 
applications of these technologies for cancer diagnostics.

Applications in Cancer Diagnostics

Leon et al. first showed with radioimmunoassays that, on average, cancer patients 
had an increased amount of ccfDNA as compared to healthy patients without can-
cer [28]. However, the range of ccfDNA concentrations in cancer patients varied 
substantially between 0 and > 1000 ng/ml of blood with normal subjects typically 
exhibiting ccfDNA concentrations between 0 and 100 ng/ml [10, 29–31]. Given the 
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significant overlap of ccfDNA concentrations in normal and cancer patients, the 
total quantity of ccfDNA would not prove to be a reliable diagnostic tool.

Therefore similar to its use in fetal DNA detection from maternal blood, the 
promise of ccfDNA in cancer diagnostics and monitoring comes from the ability to 
detect the small population of cell-free plasma tumor DNA (ptDNA) from the larger 
population of normal ccfDNA through the identification of tumor-specific (somatic) 
variations. It should be noted that the plasma fraction of blood contains cell-free, 
ptDNA and that this is distinct from current efforts studying circulating tumor cells 
(CTCs) as cancer biomarkers. Studies have demonstrated that for a patient with a 
tumor containing approximately 3 × 1010 cells, tumor DNA comprises 3.3 % of the 
ccfDNA found in the blood stream daily [14]. In addition, multiple groups have 
demonstrated that the size of ptDNA is smaller than that of ccfDNA derived from 
normal cells, and typically ranges from 70–200 bp [9, 14, 32]. Given the decades of 
research demonstrating that cancer DNA harbors somatic changes that include epi-
genetic alterations and mutations, as well as rearrangements resulting from translo-
cations, deletions, and amplifications, ptDNA therefore also harbors these genetic 
and epigenetic changes. Specifically the ptDNA contains the same mutations and 
genomic rearrangements in tumor suppressor genes or oncogenes, which are driv-
ing the development and progression of the cancer. In addition, so called “passen-
ger” mutations or genetic alterations that are likely the result of genetic instability 
but not of functional consequence, are still somatic changes, and therefore both 
driver and passenger mutations/alterations could serve as potential cancer markers 
through the use of ptDNA [33].

Thus, the ability to use a patient’s blood sample to perform a “liquid biopsy” 
allows for the identification of residual micrometastatic cancer, and for a non-in-
vasive test to query for specific mutations without any surgical intervention. In 
theory the liquid biopsy would be a real-time assessment of molecular tumor geno-
type (qualitative) and existing tumor burden (quantitative). The short half-life of 
ptDNA lends itself as a reliable marker of tumor burden and possibly response to 
therapies. Therefore, the potential applications for clinical oncology that stem from 
ptDNA detection are vast. This technology has the capacity to completely change 
the paradigm of how clinicians make decisions regarding adjuvant systemic thera-
pies as well as therapies for metastatic disease. In the adjuvant setting one could 
theoretically test each patient post-surgery to determine if there is residual micro-
metastatic disease in order to make an informed assessment of the need for adjuvant 
systemic treatment and to prevent the administration of toxic systemic therapies if 
unnecessary. Additionally the validation of this technique could direct the changing 
of chemo/hormonal/biologic therapies during adjuvant or metastatic therapies, if a 
decrease in personalized DNA markers does not occur, suggesting that the current 
regimen is ineffective. Furthermore, real-time knowledge of the molecular profile 
of a tumor without the need for a biopsy would also help to drive rational therapies 
and clinical trial enrollment and to create new surrogate endpoints allowing for a 
more rapid pace of drug approval. Until recently, the technology to realize these ap-
plications had not existed. However, with the introduction, and improvement upon, 
NGS technologies and digital and emulsion polymerase chain reaction (PCR), there 
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is now the capacity to identify DNA-based genetic biomarkers that are unique to a 
patient’s cancer and to perform subsequent analysis of the patient’s plasma to quan-
tify the amount of residual tumor burden via the measurement of ptDNA.

Investigators have previously shown that mutations in proto-oncogenes and tu-
mor suppressor genes found in tumor tissues can be detected in the corresponding 
plasma using the above-mentioned technologies. Mutations in TP53 for example 
were found in 42.9 % of the plasma DNA samples from patients with TP53 muta-
tions in their tumor [34]. Similarly, the common V600E BRAF mutation has been 
shown to be present in ptDNA from patients and has been used to monitor patient 
responses for those receiving BRAF-directed therapy [35]. Multiple studies have 
examined mutant KRAS in a primary tumor and identified corresponding KRAS 
mutations in the plasma. However these studies demonstrated varying sensitivities 
for ptDNA detection ranging from 27 to 100 % [36–38].

In 2005, investigators used a digital PCR (dPCR)-based technique termed 
BEAMing (Beads, Emulsion, Amplification and Magnetics) to identify patients 
with point mutations in mutant APC molecules in both early stage and metastatic 
colorectal cancer patients [14]. The authors reported a 100 % concordance between 
APC mutations in the plasma of six patients with metastatic colorectal cancer and 
the known APC mutations within their solid tumors. They also analyzed 16 patients 
with early stage colorectal cancer with known APC mutations and found that 63 % 
had detectable mutant APC DNA in their plasma. On average they described that 
11.1 % of the total APC gene fragments in the plasma of metastatic patients were 
mutant compared to 0.04–0.9 % in early stage patients, explaining the likely reason 
for decreased sensitivity of detection in the early stage patients. Subsequent work 
by this group examined the plasma of 18 patients undergoing therapy for colorectal 
cancer and correlated the amount of ptDNA with tumor burden using BEAMing 
for four genes ( APC, PIK3CA, TP53 and KRAS) [8]. The investigators identified 
ptDNA in the plasma of all 18 patients, with ptDNA levels varying over a wide 
range. These patients were followed after surgery with subsequent blood draws and 
assessment of their ptDNA during chemotherapy and surveillance seemed to cor-
relate with clinical status.

Taniguchi and colleagues recently demonstrated the ability to detect second site 
T790M epidermal growth factor receptor ( EGFR) mutations in non-small cell lung 
cancer patients treated with EGFR kinase inhibitors [39]. Interestingly they also 
detected the same mutation in a significant fraction of patients that were not treated 
with these inhibitors suggesting the existence of a minority population of cancer 
cells that are clonally selected following kinase inhibitor therapies. In addition, two 
separate studies reported the use of BEAMing to detect the emergence of KRAS 
mutations that conferred resistance to antibody mediated EGFR-targeted therapies 
[40, 41]. Taken together, these studies suggest that assessment of ptDNA status in 
treated cancer patients may have a powerful potential to monitor for the emergence 
of resistant clones with a particular mutation or genotype.

For hematologic malignancies there are established techniques available to de-
tect minimal residual disease in the blood of patients exploiting tumor specific rear-
rangements in cancer DNA. For example, in Chronic Myeloid Leukemia (CML) 
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detection of the BCR-ABL fusion transcript by quantitative real-time PCR (qPCR) 
using PCR primers specific for the fusion transcript has allowed for real-time moni-
toring of the disease and the ability to follow response to treatment using peripheral 
blood or bone marrow [42]. The capacity to perform this sort of assay in solid tumor 
malignancies has not yet come into clinical practice since it is rare to identify a 
recurrent somatic rearrangement in solid tumor malignancies. In addition, because 
leukemias are by definition a blood based disease, cells in the peripheral blood and/
or bone marrow further facilitate the use of qPCR of fusion transcripts as a reliable 
measure of disease burden. In contrast, the ability to identify CTCs for most solid 
malignancies is still hindered by low sensitivity though newer methods for improv-
ing capture and therefore sensitivity of isolating CTCs have shown promise [43].

With the understanding that tumor cells “shed” DNA as ccfDNA, and the advent 
of NGS technologies, several groups have now demonstrated the ability to identify 
tumor-specific genetic rearrangements that are patient-specific. The technology of 
“mate paired end” sequencing can identify many of the genomic alterations found 
in cancers including mutations, translocations, amplifications, deletions, etc. [44, 
45]. In 2008, Campbell et al. identified the presence of multiple patient-specific so-
matic rearrangements in cancer using massively parallel sequencing [44]. To date, 
hundreds of cancers have been subjected to this form of NGS, with rearrangements 
found in virtually all samples and the majority of samples containing more than 10 
rearrangements. Using a technology termed PARE for Personalized Analysis of Re-
arranged, investigators from two groups identified somatic rearrangements in pri-
mary tumor tissue, designed unique patient-specific PCR markers and were able to 
detect and quantify these markers in the plasma of five cancer patients [46, 47]. The 
sensitivity for detecting rearranged DNA was calculated to be one cancer genome 
equivalent among 390,000 normal genome equivalents. To minimize false nega-
tive results both groups recommended the use of multiple somatic rearrangement 
markers to increase the reliability of detection. Theoretically these markers should 
be 100 % specific, since each marker is validated to detect only tumor-specific rear-
rangements.

More recently, further work has verified that genomic rearrangements can be 
directly identified from the plasma of metastatic cancer patients using NGS and 
specific bioinformatics criteria [48]. In this work, Leary et al. expand upon the use 
of NGS by analyzing the copy number of chromosomes found in the plasma of 
metastatic cancer patients compared to healthy controls. Similar to efforts in fetal 
medicine using NGS of maternal plasma to query copy number changes of various 
chromosomes, this study demonstrated a 0.61–1.97-fold copy number increase in 
the plasma of cancer patients compared to healthy controls. Thus, it is possible to 
identify patients with metastatic cancer compared to normal controls by assessing 
copy number alterations present in ccfDNA. The study suggests that this approach 
is feasible if the percentage of ptDNA compared to ccfDNA is at least 0.75 %, and at 
this level of ptDNA the assay had a sensitivity of > 90 % and a specificity of > 99 %. 
However it should be noted that the sensitivity and specificity of this technique is 
dependent upon the amount of sequencing data collected, which reflects how many 
molecules of DNA are assayed for each individual.
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As alluded to above, the differing levels of sensitivity between these ptDNA 
detection studies may reflect the number of genome equivalents sampled by the in-
vestigators as well as the techniques used. With the knowledge that there is a greater 
amount of ccfDNA (both tumor and normal derived) in patients with metastatic can-
cer compared to those with early stage disease, increasing the number of genome 
equivalents sampled in patients with early stage cancer is likely to improve the 
sensitivity of these assays [28]. In addition, tumor heterogeneity can result in a low 
clonal frequency of a given mutation within a solid tumor mass. In this situation, 
wild-type sequences shed from other tumor cells and normal cells may significantly 
decrease the amount of ptDNA for the given mutation, and will not be reflective 
of the overall tumor burden [36, 49, 50]. Similar issues with dilution of ptDNA by 
total ccfDNA have been hypothesized to cause difficulties in the detection of loss of 
heterozygosity (LOH) in ptDNA in a number of studies [4, 10, 52, 53]. As discussed 
above, the use of multiple somatic alterations as markers can mitigate some of these 
concerns. Investigators have also discussed the possibility of using stool, urine and 
increased volumes of plasma to improve the sensitivity of detecting rare mutations 
within ccfDNA [54].

The ratio of long to short DNA fragments (DNA integrity) is also being studied 
as a possible biomarker of tumor presence and burden. It is technically feasible to 
detect non-coding repetitive DNA sequences such as ALU sequences in ccfDNA, 
and the length and ratio of these markers can determine the DNA integrity within 
ccfDNA. This has led to studies examining whether changes in DNA-based markers 
are prognostic and/or diagnostic for multiple different cancers [35, 53]. Testing for 
DNA integrity could be broadly applicable for many cancer subtypes and therefore 
could also improve sensitivities of current assays. In addition, studies examining 
epigenetic alterations in the plasma of patients with cancer, specifically detection 
of promoter hypermethylation by methylation-specific PCR have been performed 
in various cancer subtypes and hold significant promise as another biomarker of 
cancer burden [55, 56].

Breast-Cancer Specific Applications

Because of the prevalence of breast cancer and questions about which patients with 
early stage disease will benefit from further systemic treatment, and which treat-
ments would benefit patients with metastatic disease, ptDNA as a biomarker of dis-
ease burden and its use for mutation profiling in breast cancer are of strong interest.

In the early stage breast cancer setting, issues of sensitivity become even more 
important as patients with a lower burden of disease will tend to have lower levels 
of ccfDNA. One group recently looked at a prospective cohort of 29 patients with 
early stage breast cancer [57]. Most of these patients had stage I disease that was 
predominantly estrogen receptor (ER)-positive and HER2-negative. Blood samples 
were drawn at the time of enrollment, after diagnosis but before surgery. Focusing 
on the PIK3CA gene, the tumor tissue first underwent Sanger sequencing, and then 
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droplet digital PCR (ddPCR) with probes directed at the known hotspot mutations 
H1047R and E545K. Sanger sequencing identified seven PIK3CA H1047R muta-
tions and 3 E545K mutations. ddPCR identified these mutations plus an additional 
two H1047R and one E545K mutations, plus one tumor with both of the mutations. 
The investigators then performed ddPCR, using probes for both mutations on the 
matched, preoperative plasma samples. They were able to identify the same muta-
tions in all but one sample, for a sensitivity of 93.3 %. Additionally, they had no 
false positive results, for a specificity of 100 %. In the post-operative setting, five 
patients had detectable ptDNA mutations [57]. One of those patients—who had had 
extremely aggressive, metaplastic disease at diagnosis as well as the highest muta-
tional allelic fraction in her preoperative plasma sample—developed metastatic dis-
ease 26 months following her initial diagnosis. Interestingly, she had had a CT scan 
in the pre-operative setting that showed no evidence of metastatic disease. These 
results are exciting and are an important step toward demonstrating that ptDNA 
may be a valuable biomarker in the early-stage setting, in addition to a marker of 
metastatic disease. However, the study is small, and larger, longer-term studies are 
needed to validate these findings.

In the metastatic setting, investigators have looked at frequent or “hotspot” PIK-
3CA mutations (a gene commonly mutated in breast and other cancers) in meta-
static breast cancer patients and their corresponding plasma using BEAMing. In a 
retrospective study, 49 archival matched tumor and plasma samples were examined 
for exon 9 and exon 20 hotspot PIK3CA mutations using BEAMing of both tumor 
tissues and plasma. They found 100 % concordance between the presence and type 
of PIK3CA mutations in the tumor and plasma from these patient samples. However 
a subsequent prospective study by the same group identified an approximately 70 % 
concordance of PIK3CA mutational status between tumor tissues and peripheral 
blood. These seemingly disparate results may be related to tumor heterogeneity and 
clonal evolution, since the prospective study used archived primary cancer tissues 
and compared them to blood drawn at the time of study entry—up to nine years lat-
er—as the source for tumor mutational and ptDNA analyses, respectively. Change 
in PIK3CA status, was only seen in patients whose tumors were harvested 3 or more 
years prior to blood draw for ptDNA analysis [58]. These results raise concerns 
regarding the use of archival specimens when assessing mutation status and genetic 
profiling in cancer patients with metastatic disease, as the mutational and genomic 
spectrum may differ significantly between primary and metastatic sites of disease 
as has been recently reported [59].

Another group recently evaluated matched tumor and plasma samples from 17 
breast cancer patients with metastatic disease [60]. The patients primarily had ER-
positive, HER2-negative breast cancer that had been previously treated. Via a com-
mercially available NGS panel, the Ion AmpliSeqTM Cancer Hotspot Panel v2, the 
authors first sequenced tumors—both primary and metastatic—to identify muta-
tions. Sixty of the 69 tumors had evaluable results. They performed NGS with the 
same panel on 31 plasma samples, and had evaluable results from each assay. The 
investigators identified mutations in tumors from 12 of 17 patients, and in plasma 
samples from 12 of 17 patients. They confirmed these mutations using another NGS 
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platform. Interestingly, in two patients, a mutation that was found in the plasma was 
not also found in the synchronous tumor, arguing that plasma might yield further 
information than one metastatic biopsy can provide. Though larger, prospectively 
enrolled studies of ptDNA in metastatic breast cancer are needed, this report pro-
vides further clinical evidence that ptDNA is likely to be a valuable biomarker in 
this setting.

Technologies to Detect ptDNA

ccfDNA can be isolated from blood, plasma, stool and urine of patients. In mater-
nal-fetal medicine most studies have employed the use of column-based extraction 
methods and/or other automated techniques [61–63]. Once isolated, total ccfDNA 
can be measured by fluorescence-based methods utilizing PicoGreen staining or 
UV spectrometry, or by quantitative real-time PCR with detection by intercalating 
dyes such as SYBR green or with dual labeled fluorescent/quencher probes (for ex-
ample, TaqMan technology). For the purpose of detecting variant molecules within 
ccfDNA such as fetal DNA or cancer ptDNA, a number of methods have been 
developed. They can broadly be grouped into two approaches: methods based on 
dPCR and on those based on NGS. Both approaches have strengths and limitations, 
and each may find their place in clinical medicine in the future.

Digital PCR

In 1992, Sykes et al. first described the concept behind digital PCR (dPCR), which 
assesses individual DNA molecules after serial dilution and/or separation such that 
the end read-out yields individual reactions with a binary result of either the pres-
ence or absence of variant DNA [64]. A few years later, in 1999, Bert Vogelstein 
and Kenneth Kinzler at Johns Hopkins University coined the term, and demonstrat-
ed dPCR’s ability to detect rare mutations in colon cancer patients [65]. Because 
ptDNA represents only a small fraction of total ccfDNA, dPCR is particularly well 
suited to its detection.

BEAMing—or Beads, Emulsion, Amplification, and Magnetics—is a first-gen-
eration dPCR technology developed to identify and quantitate rare genetic mol-
ecules found in a larger population of normal –or wild-type—DNA molecules [8, 
66–68]. In BEAMing, single molecule PCRs are performed on magnetic beads in 
water-in-oil emulsions. Genetic variants are then subsequently quantified by flow 
cytometry. Subsequent dPCR platforms build on the strengths of BEAMing, but 
rely primarily on water-oil emulsion technology and the use of fluorescence-labeled 
TaqMan probes. Early in development are microfluidics-based platform that rely on 
the same underlying principles of dPCR, but we will not discuss these here.
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Droplet Digital PCR

Droplet Digital PCR (ddPCR) is a variation of emulsion-based dPCR based tech-
nology. In ddPCR, the target sample is separated into tens of thousands of partitions 
of single molecules that individually undergo PCR. ddPCR technologies use spe-
cialized capillary equipment to generate emulsions that are in the nanoliter to picoli-
ter size range, allowing for quite sensitive quantification of nucleic acid variants. In 
terms of strengths of this approach in evaluating ptDNA, ddPCR is extremely sensi-
tive—able to detect one mutant event in 100,000 wild-type events. ddPCR is also 
relatively inexpensive and does not require complicated bioinformatics to evaluate 
the data, as compared to NGS. On the other hand, currently, ddPCR is only able to 
evaluate a limited number of base pair alterations within a single assay. Therefore, 
ddPCR currently can only be used for hotspot mutation detection, and cannot be 
applied to mutation discovery.

Step 1. Sample Preparation and Droplet Generation.
In this first step, PCR reactions are prepared using TaqMan hydrolysis probes in 

addition to the standard primers. After the samples are prepared, droplets are gener-
ated using the proprietary droplet generator and appropriate emulsion oil. This step 
divides each sample into tens of thousands of individual partitions with the goal of 
only one molecule of DNA per partition. This will allow for analysis via Poisson 
statistics.

Step 2. PCR Amplification of Sample.
Next, the sample undergoes traditional PCR thermal cycling.
Step 3. Droplet Reading and Analysis.
In the third step, the sample is placed in the droplet reader. If a droplet has a posi-

tive event—the molecule of interest is present and the hydrolysis probe binds and is 
then released—a fluorescent signal will be given off and detected by the reader. If it 
does not, no signal will be recorded and this will be considered a “negative” event.

Tagged Next-Generation Sequencing

Next-generation sequencing (NGS), the sequential identification of bases of small 
fragments of DNA massively and in parallel, has already made enormous contribu-
tions to disease research. It has also made its way in to the oncology clinic, with 
many cancer centers offering NGS analysis of patients’ tumors, though this practice 
has not yet been prospectively validated in most clinical situations. However, some 
aspects of NGS that are acceptable in sequencing tumors prove problematic when 
moving into the realm of ptDNA. Because of the low frequency of ptDNA as com-
pared to ccfDNA derived from normal cells, sensitivity of NGS is an issue that must 
be addressed in evaluating ptDNA. Though significantly more sensitive than the 
first generation sequencing technology of Sanger-sequencing, which has a detection 
sensitivity on the order of 20 %, because of PCR errors in library preparation and 
sequencing errors, NGS has a detection sensitivity of ~ 1 %. Though this is more 
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than adequate for tumor tissue mutation detection, this sensitivity is not enough for 
ptDNA, where allelic frequencies might easily be less than 1 %. The approaches 
discussed below aim to address this issue and make NGS an option for detection 
of ptDNA. The first technique, Tagged Amplicon Deep Sequencing addresses the 
issue of sensitivity by adding a targeted amplification step. It does not address the 
issues of PCR- and sequencing-introduced errors. The following two techniques, 
the Safe-Sequencing System and Duplex Sequencing, address both problems of 
low allelic frequency and PCR- and sequencing-related errors with methods that we 
describe below.

TAm-Seq: Tagged Amplicon Deep Sequencing

In 2012, in response to the problem of sensitivity of traditional NGS approaches 
when applied to ptDNA, Forshew et al. described a method for deep sequencing of 
ptDNA that they termed “TAm-Seq,” or tagged-amplicon deep sequencing that am-
plifies and sequences regions from even very low allelic frequency ptDNA (Fig. 1) 
[69]. They found that this method enriched the sample for the sequence of interest, 
and so increasing the sensitivity as compared to standard NGS.

Step 1. Pre-Amplification of Regions of Interest.
In the first step, ccfDNA is isolated from the plasma and purified using stan-

dard protocols. Then, using pooled, target-specific primer pairs, multiple regions 
of the fragmented, ccfDNA genome are amplified in parallel. For instance, in their 
original paper, Forshew et al. pre-amplified coding regions of TP53 and PTEN, and 
selected regions in EGFR, BRAF, KRAS, and PIK3CA.

Step 2. Target-Specific Amplification.
After step 1 is complete, in order to exclude non-specific products, that sample 

is then selectively amplified in multiple, single-plex PCRs. This step also serves to 
isolate each amplicon so that it can be tagged with a sample-specific barcode in the 
following step.

Step 3. Addition of Sequencing Adaptors and Barcodes.
Next, sequencing adaptors and sample-specific barcodes are attached to the am-

plicons using another round of PCR.
Step 4. Sequencing.
After step 3, the samples are pooled and purified. That pooled sample is then 

quantified and undergoes Illumina cluster generation, followed by single-end se-
quencing of 100 bases, and then a 10-base barcode (indexing) read.

Step 5. Analysis of Sequencing Data.
Once sequenced, data are aligned to the reference human genome. Using bioin-

formatics and other computational algorithms, putative genetic aberrations can be 
identified.
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SAFESeqS

In 2011, Kinde et al. described an approach to NGS that aimed to overcome the 
limitations brought on by the inherent NGS error rate of ~ 1 % [70]. In SAFESeqS, 
the authors assign a unique identifier—termed “UID”—to each template molecule, 
which then undergoes amplification, creating a “UID family.” The sample is then 
sequenced redundantly and data is analyzed to identify true genetic variants (Fig. 2).

Step 1. Addition of Unique Identifiers.
In the first step, ccfDNA is isolated from the plasma according to standard pro-

tocols. Using a set of gene-specific primers selected to target the gene(s) of interest, 
this DNA is amplified via PCR. During this round, a UID is added to the amplified 
DNA as a random sequence of 14 DNA bases. Because each region of interest has 
two separate, complementary sequences—a coding and non-coding strand—each 

Fig. 1  Workflow overview. 
Multiple regions were ampli-
fied in parallel. An initial 
pre-amplification step was 
performed for 15 cycles using 
a pool of the target-specific 
primer pairs to pre- serve 
representation of all alleles 
in the template material. 
The schematic diagram 
shows DNA molecules that 
carry mutations ( red stars) 
being amplified along-
side wild-type molecules. 
Regions of interest in the 
pre-amplified material were 
then selectively amplified in 
individual (single-plex) PCR, 
thus excluding nonspecific 
products. Finally, sequencing 
adaptors and sample-specific 
barcodes were attached to 
the harvested amplicons in a 
further PCR [69]
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Fig. 2  Safe-SeqS with exogenous UIDs. DNA (sheared or unsheared) is amplified with a set 
of gene-specific primers. One of the primers has a random DNA sequence (e.g., a set of 14 Ns) 
that forms the unique identifier (UID) (variously colored bars), located 5′ to its gene-specific 
sequence, and both have sequences that permit universal amplification in the next step ( yellow 
and orange bars). Two UID assignment cycles produce two fragments—each with a different 
UID—from each double-stranded template molecule, as shown. Subsequent PCR with universal 
primers, which also contain “grafting” sequences ( black and red bars), produces UID families that 
are directly sequenced [70]

region will produce two complementary strands with two, distinct UIDs. During 
this first step, amplification also adds universal sequencing sites to each gene-spe-
cific sequence.

Step 2. Amplification Of UID Families And Addition of “Grafting” Se-
quences.

In the second step, the sample from Step 1 undergoes another round of PCR with 
universal primers, this time adding what the authors term “grafting” sequences. 
These enable binding of the sequences to be analyzed to the flow cell of the next-
generation sequencer. This step amplifies the products from Step 1, producing UID 
families.
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Step 3. Sequencing and Bioinformatic Analysis: Identification of “Super-
mutants.”

In the third step, products from Step 2 then undergo sequencing using the avail-
able NGS platform. Sequencing data then undergoes analysis for identification of 
“supermutants.” A supermutant is a UID family in which ≥ 95 % of family members 
have the same mutation. This approach, in combination with the most stringent 
base-calling algorithms, yields an error frequency of ~ 1.4 × 10−5, much improved 
over standard NGS approaches.

Duplex Sequencing

In 2012, in response to the same problem of NGS error rates, a group at the Univer-
sity of Washington led by Lawrence Loeb described their tagged-NGS approach, 
termed “Duplex Sequencing” [71]. In this method, Schmitt et al. take advantage of 
the double-stranded nature of DNA, independently tagging and sequencing each 
strand. True mutations should show up in each amplified copy of each strand; single 
copies of mutations are reflective of errors introduced by PCR or sequencing. This 
approach theoretically reduces the error rate to 5 × 10−8. Though very promising, 
this approach has so far not been tested using ptDNA. The original paper used 
sheared DNA from a model system bacteriophage, and subsequent publications 
have examined its use in mitochondrial DNA [72] (Fig. 3).

Step 1. Adapter synthesis.
In step 1, duplex tags are synthesized from two complementary, overlapping 

oligonucleotides, which contain a random sequence of 12 bases, akin to the UID in 
SAFESeqS, as well as adapter sequences to enable the sample to bind to the NGS 
platform (figure TKTK). Duplex tags then undergo A-tailing, and prepared DNA 
undergoes T-tailing.

Step 2. Ligation.
In step 2, enabled by the A- and T-tailing of the tags and DNA of interest in step 

1, tags are ligated to the DNA sample.
Step 3. PCR amplification with Addition of Flow-Cell Sequence Adapters.
In step 3, the duplex-tag-DNA-of-interest complexes undergo amplification via 

PCR. During this step, sequences that will bind the complex to the NGS platform’s 
flow cell adaptor are also added. After this step, each original piece of DNA will be 
represented in two identifiably related, but distinct amplicons.

Step 4. Sequencing and Data Analysis.
Next, in step 4, the samples undergo sequencing on whatever NGS platform is 

chosen. The sequencing data is then analyzed. First, sequence reads that share a 
unique pair of tags are grouped into families. Again, each pair represents amplifica-
tion of one double-stranded DNA fragment. True mutations will show up in both 
strands of the DNA and in all members of a particular family. Mutations showing 
up in only one of the pairs originated early in the process, during the first round of 
amplification. Mutations showing up in one or a few of the family members origi-
nated later—in sequencing or in later amplification.
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Future Directions and Conclusions

Future directions for the field of plasma tumor DNA as a cancer diagnostic include 
continued improvements in technology, potential new assays to measure circulat-
ing nucleic acids from body fluids and tissues, and verification of analytic validity, 
clinical validity and clinical utility. Although great progress has been made in ex-
ploiting ccfDNA for cancer and other disease states, there is much room for further 
discovery and progress. A current critical barrier is the difficulties in detecting a 
relatively small percentage of mutant or variant molecules within the vast majority 

Fig. 3  Duplex Sequencing workflow. Sheared, T-tailed double-stranded DNA is ligated to 
A-tailed adapters. Because every adapter contains a Duplex Tag on each end, every DNA fragment 
becomes labeled with two distinct tag sequences (arbitrarily designated α and ß in the single frag-
ment shown). PCR amplification with primers containing Illumina flow-cell–compatible tails is 
carried out to generate families of PCR duplicates. Two types of PCR products are produced from 
each DNA fragment. Those derived from one strand will have the α tag sequence adjacent to flow 
cell sequence 1 and the ß tag sequence adjacent to flow cell sequence 2. PCR products originating 
from the complementary strand are labeled reciprocally [71]
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of normal/wild-type ccfDNA. Although in this chapter we described some of the 
current methods for quantification and detection of these small populations of ccfD-
NA, there is currently no industry standard or widespread clinical acceptance for the 
use of ccfDNA, nor a uniformly agreed upon platform. Future studies are needed 
to establish the best techniques to quantify, detect, and monitor ccfDNA, and ap-
propriate criteria for ccfDNA surveillance will need to be validated with prospec-
tive clinical trials. Through the standardization and improved technologies to detect 
ccfDNA, the future holds great promise in developing and implementing clinical 
assays that will enable ccfDNA to help clinicians and their patients make better and 
more informed therapeutic decisions.
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