Attributes Enhanced Role-Based
Access Control Model

Qasim Mahmood Rajpoot! ™) Christian Damsgaard Jensen!,
and Ram Krishnan?

! Department of Applied Mathematics and Computer Science,
Technical University of Denmark, 2800 Kongens Lyngby, Denmark
{qara,cdje}@dtu.dk
2 Department of Electrical and Computer Engineering,
University of Texas at San Antonio, San Antonio, USA
ram.krishnan@utsa.edu

Abstract. Attribute-based access control (ABAC) and role-based
access control (RBAC) are currently the two most popular access con-
trol models. Yet, they both have known limitations and offer features
complimentary to each other. Due to this fact, integration of RBAC and
ABAC has recently emerged as an important area of research. In this
paper, we propose an access control model that combines the two mod-
els in a novel way in order to unify their benefits. Our approach provides
a fine-grained access control mechanism that not only takes contextual
information into account while making the access control decisions but
is also suitable for applications where access to resources is controlled by
exploiting contents of the resources in the policy.

Keywords: Context-aware access control - RBAC - Attributes - Content-
Based access control - Role-permission explosion - Role-explosion

1 Introduction

RBAC [9] is the current standard access control model and has been a focus
of research since last two decades. The RBAC paradigm encapsulates privileges
into roles, and users are assigned to roles to acquire privileges, which makes it
simple and facilitates reviewing permissions assigned to a user. It also makes
the task of policy administration less cumbersome, as every change in a role is
immediately reflected on the permissions available to users assigned to that role.
A study [19] indicates that adoption of RBAC in commercial organizations is
continuously increasing.

Due to the advent of pervasive systems, authorization control has become
complex as access decisions may depend on the context in which access requests
are made. The contextual information represents a measurable contextual prim-
itive and may entail such information being associated with a user, object and
environment [6]. For example, an access control policy may depend on the user’s
© Springer International Publishing Switzerland 2015

S. Fischer-Hiibner et al. (Eds.): TrustBus 2015, LNCS 9264, pp. 3-17, 2015.
DOI: 10.1007/978-3-319-22906-5_1

4 Q.M. Rajpoot et al.

current location, the object being currently in a specific state, and the time of
day when the access is requested. It has been recognized that RBAC is not
adequate for situations where contextual attributes are required parameters in
granting access to a user [16]. Another limitation of RBAC is that the permis-
sions are specified in terms of object identifiers, referring to individual objects.
This is not adequate in situations where a large number of objects in hundreds
of thousands exist and leads to role-permission explosion problem. Moreover, in
many applications, access to data is more naturally described in terms of its
semantic contents [2], for example, in a rating system of movies, violent movies
are restricted to audiences above a certain age, based on the movie contents.

A relatively new access control paradigm, ABAC [13,23] has been identified
to overcome these limitations of RBAC [7]. ABAC is considered more flexible as
compared to RBAC, since it can easily accommodate contextual attributes as
access control parameters [16]. However, ABAC is typically much more complex
than RBAC in terms of policy review, hence analyzing the policy and reviewing
or changing user permissions are quite cumbersome tasks.

On one hand, both RBAC and ABAC have their particular advantages and
disadvantages. On the other hand, both have features complimentary to each
other, and thus integrating RBAC and ABAC has become an important research
topic [7,12,14]. Also, NIST has announced an initiative [16] to integrate RBAC
and its various extensions with ABAC in order to combine the advantages offered
by both RBAC and ABAC. In this context, we proposed earlier the concept of an
integrated RBAC and ABAC access control model [20]. In this paper, we extend
it further by presenting the formal model for our Attribute Enhanced Role-Based
Access Control model. We also present algorithms for two different ways in which
access requests may be evaluated. Moreover, we analyze the properties of our
model with the help of a scenario.

The model that we propose in this paper retains the flexibility offered by
ABAC, yet it maintains RBAC’s advantages of easier administration, policy
analysis and review of permissions. In addition, our solution has the following
key features: a) it allows to make context-aware access control decisions by asso-
ciating conditions with permissions that are used to verify whether the required
contextual information holds when a decision is made, b) it offers a content-based
authorization system while keeping the approach role-oriented, in order to retain
the advantages offered by RBAC. We achieve this by allowing to specify permis-
sions using attributes of the objects rather than using only their identifiers.

The rest of the paper is organized as follows: Sect. 2 summarizes related work
and compares our approach to prior work. In Sect. 3, we present the components
of the proposed access control model while Sect. 4 presents a formal model and
different possibilities in which a request may be evaluated. Section 5 discusses
potential benefits offered by the proposed approach. We conclude the paper and
identify future directions in Sect. 6.

2 Related Work

Kuhn et al. [16] announced a NIST initiative to incorporate attributes into roles
in order to merge features of RBAC and ABAC. In response to this initiative,

Attributes Enhanced Role-Based Access Control Model 5

Jin et al. [14] present first formal access control model called RABAC. They extend
RBAC with user and object attributes and add a component called permission fil-
tering policy (PFP). The PFP requires specification of filtering functions in the
form of Boolean expression consisting of user and object attributes. Their solution
is useful to address the role-explosion problem and as a result facilitates user role
assignment. However, the approach does not incorporate environment attributes
and is not suitable for systems involving frequently changing attributes, e.g., loca-
tion and time. Also, our approach is significantly different in the sense that we
make a fundamental modification in RBAC by using attributes of the objects in the
permissions, addressing the issue of role-permission explosion, faced while using
RABAC. Huang et al. [12] present a framework to integrate RBAC with attributes.
The approach consists of two levels: underground and aboveground. The under-
ground level makes use of attribute-based policies to automate the processes of
user-role and role-permission assignment. The aboveground level is the RBAC
model, with addition of environment attributes, constructed using attribute-based
policies. Their work is different than ours in that it focuses on automated construc-
tion of RBAC. Xu and Stoller [22] focus on migration of RBAC-based systems to
ABAC in order to avoid limitations of RBAC. They present a solution to mine
attribute-based policies from an already configured RBAC model.

Several efforts have been reported which extend RBAC to include the context
of access. Some of the key works in this area include environment roles [4], spatio-
temporal RBAC [21] and context-aware RBAC [17]. However these approaches
typically require creation of a large number of closely related roles, causing the
role-explosion problem. Ge et al. [11], and Giuri et al. [10] focus on resolving
the issue of role explosion by providing the mechanism of parametrized privi-
leges and parametrized roles. However, the permissions in these solutions refer
to objects using their identifiers. Few approaches propose a variant of RBAC
categorizing the objects into groups or types in an attempt to resolve the role-
permission explosion issue [5,15,18]. Grouping the objects allows to associate a
single attribute with each object. The permissions are then specified using the
group attribute — referred to as views in [15] and object classes in [5] — where
each permission refers to a set of objects in that group. Moreover, as the num-
ber of object attributes grow, the number of groups increase exponentially. This
makes task of policy administration cumbersome since for every new object to
be added in the system it has to be associated with all those groups to which it
belongs. Another area of research relevant to ours is content-based access con-
trol, where access to a resource is dependent on the information contained within
the resource. Prior literature mainly uses attribute-based approaches to handle
this requirement [1,2]. However, these approaches suffer from the ABAC limita-
tions, discussed earlier. Using a combination of roles and attributes may help in
simplifying the management and policy modification, as discussed in Sect. 5.

3 Overview of the Proposed Model

This section presents an overview of the proposed Attributes Enhanced Role-
Based Access Control model (AERBAC). Figurel depicts our access control

6 Q.M. Rajpoot et al.

OATT

Permit/Deny

Fig. 1. Attributes enhanced role-based access control (AERBAC) model

model and its components. The entities users, roles, objects and operations have
the same semantics as in RBAC. Users and objects in our model are associated
with attributes too. We also incorporate the environment attribute to fully cap-
ture the situation in which access needs to be authorized. The dotted-box in
Fig. 1 represents the modules of the architectural design to enforce this model.
Below, we first describe the attributes and then discuss semantics of different
components involved in AERBAC, including permissions, conditions, sessions
and request evaluation.

Attributes: Attributes capture the properties of specific entities (e.g. user).
We define an attribute function for each attribute that returns the value of that
attribute. Each attribute is represented by a range of finite sets of atomic values.
For example, the range of branch attribute is a set of names of branches semanti-
cally relevant for the application domain. User attributes capture the properties
of the user who initiates an access request. Examples of user attributes are title,
specialization, location, security clearance etc. Object attributes are used to define
the properties of the resources protected by the access control policy. Examples of
object attributes include type, status, location, time of object creation etc. Envi-
ronment attributes capture external factors of the situation in which the access
takes place. Temperature, occurrence of an incident, system mode or other infor-
mation which not only pertains to a specific object or user, but may hold for mul-
tiple entities, are typically modeled as environment attributes.

An attribute may be either static or dynamic. The values of static attributes
rarely change e.g. designation, department, type etc. On the other hand,
dynamic attribute values may change frequently and unpredictably, so they may
well change during the lifetime of a session. Examples of such attributes include
officer in command, location, occurrence of an incident etc. They are also referred
to as contextual attributes in the literature [6].

Permissions and Conditions: In contrast to the traditional approaches in
RBAC, the permissions in AERBAC refer to objects indirectly, using their
attributes. A permission refers to a set of objects sharing common attributes,

Attributes Enhanced Role-Based Access Control Model 7

e.g. type or branch, using a single permission, in contrast to separate permissions
for each unique object. This is particularly relevant in those domains where sev-
eral objects share common attribute values. This helps in significantly reducing
the number of permissions associated with a role, while increasing the expres-
siveness and granularity of access control in a role-centric fashion.

In our proposed model, a permission consists of an object expression and an
authorized operation on the object set denoted by the expression. Object expres-
sions are formed using the attributes of objects. Each permission is associated
with one or more conditions, which must be evaluated to be true in order for
the user to exercise that permission. A condition associated with a permission
may contain attributes of all entities including users, objects and environment.
In some applications, it is required to compare user and object attributes —
for example, in a bank, a manager of a branch is allowed to access only those
accounts belonging to his own branch. The proposed model allows to perform
such comparisons using conditions.

An example of a permission is: p= ((oType(o) = secret N oStatus(o) =
active), read) which states that a role having this permission can perform
read operation on the objects denoted by the given object expression. Here
oType and oStatus are object attribute functions that return the values of
respective attributes for a given object. Suppose that the permission p is con-
strained by a condition ¢= (uMember(u) = premium A time_of-day() < uDuty-
Ezxpire(u)) where uMember and uDutyExpire are user attribute functions that
return the attribute values of a given user, whereas time_of-day() is an environ-
ment attribute function. This condition implies that, in order to be granted the
permission p, the user must be a premium user and time of access must be before
the end of user’s duty timing.

The Context Manager is responsible for propagating the updated values of
dynamic attributes of the users, objects and environment. Depending on the
application, some of these attribute values may also be provided by the user while
placing an access request, however the application must ensure the authenticity
of such information before using it in access decisions.

Session: A session contains a list of permissions associated with the roles acti-
vated by the user. As described earlier, the permissions are different from stan-
dard RBAC permissions in terms of referring to the objects using their attributes
and being tied with the conditions that are evaluated every time a permission
is to be exercised. Hence, the CheckAccess function needs to be re-defined.

Access request: An important consideration, in environments motivating the
proposed approach, is that the user’s request may also be based on the attributes
of the objects. For instance, in a medical imaging application, a user might want
to view all images containing specified characteristics e.g., objects with type =
tumor and domain = hospital-nw. For a user request to be granted, there must
exist an object expression in the user’s session that denotes the requested objects,
and the condition tied to that object expression must be evaluated to be true.
There are different possibilities in which such a request may be evaluated and
we discuss them later in the paper (cf. Sect.4.1).

8

Q.M. Rajpoot et al.

Table 1. Sets and Functions used in AERBAC

USERS, ROLES, OBS, and OPS (users, roles, objects and operations respectively)
URA C USERS x ROLES, a many-to-many mapping of user-to-role assignment;
SESSIONS, the set of sessions;

user_sessions(u: USERS) — 2SESSIONS 'the mapping of user « onto a set of sessions;
session_roles(s: SESSIONS) — 2ROLES “the mapping of session s onto a set of roles.
Formally: session_roles(s;) C { r € ROLES | (session_user(s;), r) € URA};

avail session_perms(s: SESSIONS) — 2PRMS "the permissions available to a user
in a session.

UATT, OATT and EATT represent finite sets of user, object and environment
attribute functions respectively.

For each att in UATT U OATT U EATT, Range(att) represents the attribute’s
range, a finite set of atomic values.

attType: UATT U OATT U EATT — {setType, atomicType}, specifies attributes
as set or atomic valued.

OBJ_EXP = Set of all object expressions formed using the language given in Table
2.

COND = Set of all conditions formed using the language given in Table 2.
PRMS = 2 (OPS x OBJEXP) "tha get of permissions.

RPA C ROLES x PRMS x COND

Each attribute function in UATT, OATT and EATT returns either atomic or set
values.

Range(ua) if att Type(ua) = atomicType
ATT. : E
Vua € U ua : USERS — { gRange(ua) if attType(ua) = setType
Range(oa) if attType(oa) = atomicType

ATT. oa : OB
Yoa € O oa : OBS — {QRange(oa) if attType(oa) = setType

Range(ea) if attType(ea) = atomicType

EATT.
Vea € ca— { gRange(ea) if attType(ea) = setType

4 Formal AERBAC Model

In this section, we propose the formal model that incorporates the attributes of
the user, object and environment into RBAC in a role-oriented fashion. We define
the sets and functions used in AERBAC in Table 1. The upper part of the table
shows the sets and functions defined in NIST RBAC which are also applicable
to AERBAC. We provide further sets and functions needed for AERBAC in the
lower part of the table. UATT, OATT and EATT represent sets of attribute
functions for users, objects and environment, respectively. The notion we used
for attribute representation is adapted from [13]. We use first order logic to
make formal descriptions, and follow the convention that all unbound variables
are universally quantified given as Range(att). Each attribute function returns

Attributes Enhanced Role-Based Access Control Model 9

Table 2. Language to form object expressions and conditions

© == e ApleVo|(p)| set setcompare set | atomic € set | atomic atomiccompare atomic
setcompare = C | C | ¢
atomiccompare 1= <| = | < | #

To define an object expression, set and atomic are as follows:

— set::= setoa(0:0BS) | ConsSet

— atomic::= atomicoa(0:OBS) | ConsAtomic

— setoa € {oa | oa € OATT A attType(oa) = setType}

— atomicoa € {oa | oa € OATT A attType(oa) = atomicType}

For condition specification, set and atomic are as follows:

— set::= setua (session_user(se)) | setoa(o:OBS) | setea() | ConsSet

— atomic::= atomicua (session_user(se)) | atomicoa(o:OBS) | atomicea() | Con-
sAtomic

— setua € {ua | ua € UATT A attType(ua) = setType }

— atomicua € {ua | ua € UATT A attType(ua)= atomicType }

— setoa € {oa | oa € OATT A attType(oa) = setType}

— atomicoa € {oa | oa € OATT A attType(oa) = atomicType}

— setea € {ea | ea € EATT A attType(ea) = setType}

— atomicea € {ea | ea € EATT A attType(ea) = atomicType}

either a set or an atomic value, determined based on the type of the attribute
(i.e. attType). Attribute functions in UATT and OATT take as an argument a
user and an object, respectively. Each attribute functions in EATT may or may
not require an argument, depending on the attribute and the target system. For
instance, in a banking system with multiple branches, an environment attribute
function would require the branch name to return the value of an environment
attribute, e.g., current-system-load, in that branch.

The role-permission assignment (RPA) relation captures permissions that are
assigned to a role when a given set of conditions are fulfilled. Clearly, the permis-
sion set may change for a role if the conditions vary between requests. Permis-
sions in AERBAC are specified using object expressions. The language to define
an object expression and a condition is given in the first part of Table 2. The second
part of the table specifies how instances of set and atomic may be formed to define
an object expression and a condition. ConsSet and ConsAtomic are constant sets
and atomic values. The object expressions may be specified using only attributes
of the objects. While for specifying a condition, attributes of user, object and envi-
ronment may be used. The function sesseion_user(se) is defined in NIST RBAC [9]
that returns the user to whom a given session se belongs to.

10 Q.M. Rajpoot et al.

4.1 Access Decisions

The main role of the access control mechanism is to verify whether a user w,
requesting access to object o, using an operation op, is authorized to do so.
As mentioned above, a user request can either explicitly specify an object, by
listing its identifier, or can implicitly denote a set of objects using the attributes
of the objects. If the user request is not for a specific object but rather a set
of objects, the system must consider the given criteria to return the requested
objects. Once a user submits an access request, the request is to be evaluated
against the policy. The function checkAccess in RBAC needs to be modified
such that it takes the user request as input, processes the request as per the
format of a given request, and returns the result. In the following, we elaborate
on evaluation of both identifier-based and attribute-based requests.

(a) Identifier-based request: In identifier-based request, the user specifies the
identifier of the object to be accessed. The evaluation of such type of request is
straight-forward. In this case, the input of the function checkAccess consists of a
session se, an operation m, and an object obj. Recall that a permission consists
of an object expression and an operation and is constrained by a condition. The
checkAccess function returns true if and only if (i) there exists a permission p, in
the avail_session_perms of session se, that contains an object expression which
evaluates to true for obj, (ii) m matches op, and iii) the corresponding condition
¢ evaluates to true.

(b) Attribute-based request: Using the second form of request, user may
specify the attributes of the object in his/her request, rather than a unique
identifier of the object. Specifying the object attributes in the request implies
that the user wishes to access all those objects which have the specified attribute
values. Below we discuss two possibilities to formulate and process such requests.

(b.1) Resource query: In this approach, user request contains an expression
similar to the object expressions. An example user request could be: Req = < se,
(otype = secret A odept = admin A ostatus = inactive), write> which states that
the owner of the session se wishes to exercise the write operation on the objects
denoted by the given object expression. The checkAccess function receives as
input the access request Req and returns the authorized objects to the user,
if request is granted, otherwise the request is denied. The given expression is
converted to a query and the resulting objects are retrieved from the resource
database. Next step is to find the applicable object expressions by matching the
user’s requested operation with the ones mentioned in the permission set existing
in user’s session. Once the object expressions are shortlisted, they are evaluated
one-by-one for each object returned by the query. If an object expression and its
corresponding condition evaluate to true for an object, the object is added into
the list of authorized objects to be granted to the user. Finally, user is granted
access to all those objects for which an object expression and its corresponding
condition return true. Figure2 presents algorithm for this approach. Since the
object expressions are to be evaluated for each returned object, this approach
may prove to be expensive in cases where several objects are returned by the
query formed based on user’s request.

Attributes Enhanced Role-Based Access Control Model 11

Algorithm 1

Input: An access request: Req = <se, re, m >consisting of session identifier se, request
expression re, and operation m.

Output: 1) Accept and return authorized objects, 2) Reject otherwise

Begin:

relevant_expressions = &;
object_set = &;
authorized_objects = @;
object_set = search_objects*(re);
if object_set # @ then
for all perm<object_exp, op>€ avail_session_perms do
if m = op then
relevant_expressions <— relevant_expressions U object_exp;
end if
end for

11: for all object € object_set do
12: for all object_exp € relevant_expressions do
13: if evaluatef(object_exp, object) then
14: if eval_condi(condition, object, session_user(se)) then
15: authorized_objects <— authorized_objects U object;
16: break;
17: end if
18: end if
19: end for
20: end for
21: end if
22: if authorized_object # @ then
23: return authorized_objects;
24: end if
25: return Reject;
End
* search_objects(re) returns a set of objects existing in the resource database that are
denoted by the constraints specified in expression re, in the request.
1 evaluate(object_exp, object) returns TRUE if object_exp evaluates to true for the
given object, else returns FALSE.
i eval_cond(condition, object, session_user(se)) returns TRUE if given condition eval-
uates to true for the given object attributes and the attributes of the user and the
environment.

H
o ©

Fig. 2. Algorithm for access request evaluation using resource query

(b.2) Attribute values: An alternative strategy is to evaluate the user’s request
against the object expressions before retrieving the actual objects from the
resource database. In this approach, rather than providing an expression, user
specifies his/her access request by specifying the object attribute values of the
desired objects. The checkAccess function receives as input the user request Req

12 Q.M. Rajpoot et al.

and returns the objects denoted by object attribute values given in Reg, if request
is granted, otherwise the request is denied. To process user request, all

Algorithm 2

Input: An access request: Req = < se, obj_att_values, m> consisting of session iden-
tifier se, object attribute values obj_att_values, and operation m.

Output: 1) Accept and return authorized objects, 2) Reject otherwise

Begin:

1: relevant_expressions = &;

2: authorized_objects = &;

3: for all perm < object_exp, op > € avail_session_perms do

4 if m = op A check_relevancy*(obj_exp, obj_att_values) then

5: if evaluatet (object_exp, obj-att_values) then

6: if eval_condi(condition, obj_att_values, session_user(se) then
7 authorized_objects = get_objectstt(obj_att_values);

8

: end if
9: end if
10: end if
11: end for

12: if authorized_object # @ then

13: return (Accept, authorized_objects)

14: end if

15: return (Reject)

End

* check_relevancy(object_exp, obj_att_values) returns TRUE if the given object_exp
uses only those object attribute functions referred in obj_att_values

1 evaluate(object_exp, obj-att_values) returns TRUE if the given object_exp evaluates
to true when the object attribute functions are replaced with obj_att_values

i eval_cond(condition, obj_att_values, session_user(se)) returns TRUE if the given
condition evaluates to true for the given object attributes and the attributes of the
user and environment

11 get_objects(obj_att_values) returns a set of objects existing in the resource database
that satisfy obj_att_values

Fig. 3. Algorithm for access request evaluation using attribute values

those object expressions existing in user’s session are identified which use the
attributes mentioned in the user’s request and the operation specified in that
permission matches with requested operation. Object expressions that include
an attribute not specified by the user request are not relevant. Next, for each
shortlisted object expression, the attribute functions in the object expression
are given the user provided attribute values. For instance, if a user specifies the
following object attribute in his/her request: (otype = classified; odept = pg;
ostatus = active) and suppose we find an object expression as follows: (otype(o)
= classified N odept(o) C {pg, ug, admin}). Upon picking the values of the
object attribute functions otype and odept from user given attribute values we
get: (classified = classified N pg C {pg, ug, admin}) which would evaluate to

Attributes Enhanced Role-Based Access Control Model 13

true. As soon as an object expression and its corresponding condition return
true, the user’s request is granted and rest of the object expressions are ignored.
When an expression returns true we form a query based on the object attribute
values specified in the user request and the user is granted access to all those
objects returned by the query. Algorithm for this approach is given in Fig. 3.

Note that we never evaluate an object expression which uses an object
attribute not given in the user’s request. This is because we replace the object
attribute functions with the user given attribute values, hence any object expres-
sion involving those object attributes not given by the user cannot be evaluated.
The query to get the authorized objects is formed using the object attributes
mentioned in the user’s request. Once an object expression returns true, this
query may restrict the list of returned objects based on any additional attributes
mentioned in the user’s request. In the example above, the returned result is
restricted based on additional object attributes ostatus which are mentioned in
the user’s request but does not exist in the expression which enables the request.

This approach is superior to resource query in terms of making an access
decision by evaluating only the object expressions, without having to retrieve
objects from the resource database. This is important, since many requests can
be denied at this point without the overhead of object retrieval and condition
evaluation. An obvious assumption made in this form of user request is that the
multiple object attributes mentioned in the user request are always combined
using logical conjunction operator.

5 Discussion

To illustrate the features of the proposed access control model, we present an
example below, inspired from the online entertainment store example presented
in [23]. Suppose an online entertainment store streams movies to subscribed users.
Suppose, there are two different types of users; Adult and Juvenile. Adult users can
view all movies while Juvenile can view only G-rated movies. Using the standard
RBAC approach, clearly we need two roles to represent Juvenile and Adult users.
In each role the permissions have to be specified using identifiers of the objects
individual movies. Considering that there may exist thousands of movies in the
database, referring each with its identifier would lead to role-permission explosion
problem. To address this issue, AERBAC integrates roles and attributes in a novel
way and uses the attributes of the objects in the permissions rather than identi-
fiers of individual objects. Table 3 provides an example where permissions make
use of object attributes. In this example, the role Adult is inherited by Juvenile
role and hence inherits permissions assigned to Juvenile role.

In order to model multiple characteristics associated with user, object
or environment, the number of roles in RBAC increase exponentially. Sup-
pose we want to ensure that only premium users may view newly released
movies and regular users may view newly released movies only during pro-
motional periods. To represent these conditions in standard RBAC, we would
need to create at least six roles: Adult_premium, Adult_promo, Adult_regular,
Juvenile_premium, Juvenile_promo and Juvenile_regular, where Adult_promo

14 Q.M. Rajpoot et al.

Table 3. Permissions in AERBAC

Role Permissions
Adult | (view, (rating(m) = R))

Juvenile | (view, (rating(m) = G))

Table 4. Example configuration using AERBAC

Role Permissions Conditions

Adult | (view, (rating(m) = R A release(m) = | (userType(u) = premium V

new)) today € PromoDates)
(view, (rating(m) = R A release(m) = | None
old))

Juvenile | (view, (rating(m) = G A release(m) = | (userType(u) = premium V
new)) today € PromoDates)

(view, (rating(m) = G A release(m) = | None
old))

and Juvenile_promo roles would be available to users only during promotional
periods. Configuring this using AERBAC, we need only two roles: Adult and
Juvenile as we use attributes of objects in the permissions and other attributes
in the condition corresponding to each permission. Table 4 provides the configu-
ration of this scenario using the proposed approach.

Our motivation to integrate RBAC with attributes is to obtain advantages
associated with both RBAC and ABAC, while addressing the limitations of
RBAC and ABAC. Using a pure ABAC approach, in configuring situation such
as above requires writing policy rules. When a user request needs to be evaluated,
the relevant rules are identified using the attributes associated with requesting
user, requested object and current environment. These shortlisted rules are then
evaluated one-by-one unless we find a rule which allows the request. In contrast,
our approach requires evaluation of only those object expressions which are
associated with the roles activated by a user in his/her session. Note that this
may significantly reduce the number of rules to be evaluated. Moreover, the user
or environment attributes used in the conditions are evaluated only if an object
expression evaluates to true for a given request. This is particularly useful in
cases where user or environment attributes are dynamic and their current values
are reported at the time of request evaluation. In our approach, such values
would only need to be obtained if an object expression in the user’s session
returns true. This indicates that many user requests may be denied, just by
evaluating object expressions, without obtaining the current values for user and
environment attributes.

5.1 Merits of the Proposed Model

As discussed above, the object expressions and conditions that are to be eval-
uated against a user request are determined by the roles a user activates in
a session. Imagine a user assigned to a senior executive role in an organization

Attributes Enhanced Role-Based Access Control Model 15

which has several privileges. For a user in this role, we might allow to access
specific resources without giving any consideration to the time of request and
location of user, for instance. This implies that there may be some attributes
which are not relevant for a given role and hence the number of conditions and
object expressions to be evaluated for that role may be reduced.

Compared to ABAC, our approach provides a systematic mechanism to eval-
uate a subset of policy rules which are determined based on the user’s roles,
yet retaining the advantages offered by RBAC including quick assignment and
revocation of roles to users, reviewing of permissions assigned to a user or role,
and reduced complexity of administration in large organizations. Moreover, we
believe several limitations of the RBAC and ABAC approaches may be overcome
using the approach we proposed. Below, we enlist some of these limitations and
discuss how our approach overcomes these problems.

1- Fine-grained Access Control: RBAC provides a coarse-grained access
control model where as many applications require a much finer-degree of
granularity [8]. In order to satisfy the requirements posed by such applications,
a large number of roles have to be created when pure RBAC is used. Using
the proposed approach, we may provide a finer-grained access control mecha-
nism without creating a large number of roles. As discussed in the example,
we achieve this by associating conditions at permission level to check further
attributes associated with a user and environment rather than granting a per-
mission merely based on being a member of a role.

2- Context-aware Access: RBAC cannot easily handle dynamically changing
attributes [7]. It typically does not support making contextual decisions unless
many similar roles are created causing role-explosion problem. We provide a
mechanism to incorporate these dynamically changing attributes in a role-centric
manner yet without requiring to create a large number of roles. An important
feature of our approach is checking the values of such attributes at the time of
granting access rather than checking them at the time of session creation as done
typically in RBAC.

3- Fasy Auditing: When ABAC is used in a considerably large organization
having a large number of policy rules, it may not be practically feasible to audit
what permissions have been granted to a user. In ABAC, any combination of
attributes may essentially grant an access and hence it requires to analyze all
policy rules with an exhaustive enumeration of attributes used in each policy rule
[7]. Our approach makes it simpler to audit what permissions may be granted to
a user because of being role-centric while adding the flexibility and fine-grained
access features offered by ABAC. When auditing for a particular position or
employee, we need to consider only the policy rules given in the roles assigned
to that position or employee.

4- Policy Modification Visualization: One of the issues in the ABAC app-
roach is that the consequences of a newly added or removed policy rule are
not easy to visualize [3]. It is not clear what set of users will be effected by a
change in the policy. A change in policy essentially may affect those users who

16 Q.M. Rajpoot et al.

we wish to remain authorized to access a particular resource but they are no
more authorized since a policy rule is removed. In our approach, it is relatively
easy to visualize what is the impact of adding or removing a policy since policy
specification is at the level of role. Therefore, a change in policy can effect only
those users who are assigned to a role being modified.

6 Conclusion

In this paper, we proposed an access control model that integrates RBAC and
ABAC bringing together the features offered by both models. In our model,
the attributes may be associated with users, objects and environment allowing
the request context to be considered in making access control decisions. Unlike
traditional RBAC approaches, permissions in our model consist of operations
and object expressions enabling content-based access control. We presented dif-
ferent request evaluation mechanisms that may be used by various applications
depending on their requirements. We demonstrated the merits of the proposed
model in the discussion section using a scenario. In the future, we plan to work
on formally analyzing the properties offered by the proposed model as compared
to existing access control model including ABAC and RBAC, and to develop
an XACML profile of the proposed model. Further directions for future work
include use of cache mechanisms to further expedite the access control decision
process, to extend the model with continuous enforcement to deactivate a role or
revoke a permission when context conditions fail to hold, and to include negative
authorizations in the model.

Acknowledgments. The work of first two authors is supported by a grant from the
Danish National Advanced Technology Foundation. The work of the third author is
supported by a US National Science Foundation grant CNS-1423481.

References

1. Adam, N.R., Atluri, V., Bertino, E., Ferrari, E.: A content-based authorization
model for digital libraries. IEEE Trans. Knowl. Data Eng. 14(2), 296-315 (2002)

2. Bertino, E., Moustafa A.H., Walid A.G., Elmagarmid, A.K.: An access control
model for video database systems. In: International Conference on Information
and Knowledge Management, pp. 336-343. ACM (2000)

3. Best Practices in Enterprise Authorization: The RBAC/ABAC Hybrid Appro-
ach (EmpowerID). http://blog.empowerid.com/Portals/174819 /docs/EmpowerID-
WhitePaper-RBAC-ABAC-Hybrid-Model.pdf

4. Covington, M.J., Long, W., Srinivasan, S., Dev, A.K., Ahamad, M., Abowd, G.D.:
Securing context-aware applications using environment roles. In: Symposium on
Access Control Models and Technologies, pp. 10-20. ACM (2001)

5. Chae, J.H., Shiri, N.: Formalization of RBAC policy with object class hierarchy.
In: Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 162-176.
Springer, Heidelberg (2007)

http://blog.empowerid.com/Portals/174819/docs/EmpowerID-WhitePaper-RBAC-ABAC-Hybrid-Model.pdf
http://blog.empowerid.com/Portals/174819/docs/EmpowerID-WhitePaper-RBAC-ABAC-Hybrid-Model.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Attributes Enhanced Role-Based Access Control Model 17

Covington, M.J., Sastry, M.R.: A contextual attribute-based access control model.
In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol.
4278, pp. 1996-2006. Springer, Heidelberg (2006)

Coyne, E., Weil, T.R.: ABAC and RBAC: scalable, flexible, and auditable access
management. IT Prof. 15(3), 14-16 (2013)

Fischer, J., Marino, D., Majumdar, R., Millstein, T.: Fine-grained access control
with object-sensitive roles. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol.
5653, pp. 173-194. Springer, Heidelberg (2009)

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. (TIS-
SEC) 4(3), 224-274 (2001)

Giuri, L., Iglio, P.: Role templates for content-based access control. In: Workshop
on Role-Based Access Control, pp. 153-159. ACM (1997)

Ge, M., Osborn, S.L.: A design for parameterized roles. In: Farkas, C., Samarati,
P. (eds.) Data, Application Security and Privacy Conference. IFIP, vol. 144, pp.
251-264. Springer, Heidelberg (2004)

Huang, J., Nicol, D.M., Bobba, R., Huh, J.H.: A framework integrating attribute-
based policies into RBAC. In: Symposium on Access Control Models and Tech-
nologies, pp. 187-196. ACM (2012)

Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control
model covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N.; Cuppens, F.,
Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41-55. Springer,
Heidelberg (2012)

Jin, X., Sandhu, R., Krishnan, R.: RABAC: role-centric attribute-based access
control. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531,
pp. 84-96. Springer, Heidelberg (2012)

Kalam, A.A.E., Baida, R.E., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte,
Y., Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In: 4th
International Workshop on Policies for Distributed Systems and Networks. IEEE
(2003)

Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based access con-
trol. IEEE Comput. 43, 79-81 (2010)

Kulkarni, D., Tripathi, A.: Context-aware role-based access control in pervasive
computing systems. In: Symposium on Access Control Models and Technologies,
pp. 113-122. ACM (2008)

Moyer, M.J., Abamad, M.: Generalized role-based access control. In: International
Conference on Distributed Computing Systems, pp. 391-398. IEEE (2001)
O’Connor, A.C., Loomis, R.J.: Economic Analysis of Role-Based Access Control.
NIST Report (2010)

Rajpoot, Q.M., Jensen, C.D., Krishnan, R.: Integrating attributes into role-based
access control. In: Samarati, P. (ed.) DBSec 2015. LNCS, vol. 9149, pp. 242-249.
Springer, Heidelberg (2015)

Ray, 1., Toahchoodee, M.: A spatio-temporal role-based access control model. In:
Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol.
4602, pp. 211-226. Springer, Heidelberg (2007)

Xu, Z., Stoller, S.D.: Mining attribute-based access control policies from RBAC
policies. In: 10th International Conference and Expo on Emerging Technologies for
a Smarter World (CEWIT), pp. 1-6. IEEE (2013)

Yuan, E., Tong, J.: Attributed Based Access Control (ABAC) for Web Services.
In: International Conference on Web Services. IEEE (2005)

	Attributes Enhanced Role-Based Access Control Model
	1 Introduction
	2 Related Work
	3 Overview of the Proposed Model
	4 Formal AERBAC Model
	4.1 Access Decisions

	5 Discussion
	5.1 Merits of the Proposed Model

	6 Conclusion
	References

