
Chapter 16

Introduction to Liquid Crystalline Polymers

Dumitru Pavel

16.1 Introduction

Liquid crystals (LCs) or orientationally ordered liquids have been considered as the
fourth state of matter (Saeva 1979; Kelker and Hatz 1980). Although the phenom-

enon of liquid crystallinity was discovered in 1888 and the term “liquid crystals”

was first used in 1890 (Kelker and Hatz 1980), liquid crystallinity has attained

prominence only in the last two decades or so.

In 1888, Austrian botanist Friedrich Reinitzer noted that, when melted, the

cholesteryl esters form colourful-opaque liquids, which become clear at higher

temperatures. Reinitzer sent a sample of cholesteryl esters to a German scientist

Otto Lehmann, who was studying the crystallisation properties of various sub-

stances. Lehmann had constructed a polarising microscope that allowed him to

observe the crystallisation of his samples. Lehmann investigated Reinitzer’s sample

with his polarising microscope and noted its similarity to some of his own samples

and first referred to them as ‘soft crystals’. By 1889 Lehmann was describing the

material as ‘flowing crystals’. Later Lehmann used the term ‘crystalline fluids’, but
when he became more convinced that the opaque phase was a uniform phase of

matter sharing properties of both liquids and solids, he began to call them ‘liquid
crystals’ (Coolings 1990).

LCs are anisotropic materials whose flow properties strongly depend on their

structure and molecular orientation. Molecules in crystalline solid state are posi-

tionally and orientationally ordered in three dimensions, but in the isotropic liquid

state these orders are completely destroyed. Whereas LCs exhibit a degree of
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macroscopic orientational order that is found between the boundaries of crystalline

solid state and the isotropic, ordinary liquid, state (Donald and Windle 1992;

Collyer 1996). Consequently, the properties of LCs are intermediate between

those of an isotropic liquid and those of a crystalline solid.

Schematic representation of molecular order in the crystalline, isotropic and

liquid crystalline phases is given in Fig. 16.1.

As shown in Fig. 16.2, when a sample of crystalline solid material is heated, it is

expected sooner or later to melt into an isotropic liquid losing both the long range

orientational and positional order. The temperature at which the melting takes place

is called melting temperature, Tm, or crystalline-isotropic transition temperature,
TC�I. When the isotropic liquid (melt) is subsequently cooled, it is expected to

solidify again.

However, some of the materials do not behave as expected: they do not show a

single transition from solid to liquid, but rather a cascade of transitions involving

new phases. Thus, referring to Fig. 16.3, for a certain substance the crystalline solid

melts into an intermediate phase only partially losing its ordering. In this case the

melting temperature coincides with the crystalline-liquid crystalline transition
temperature, TC�LC. Such materials can exhibit one or more intermediate phases.

These intermediate phases are mostly referred to as liquid crystalline phases, also
known as crystalline liquid phases, mesophases or mesomorphic phases (Hurduc

and Pavel 1999; Guerriero et al. 2011; Wenyi and Shi 2012) . Consequently, the

properties of these phases are intermediate between those of a liquid and those of a

crystal.

At higher temperatures, this mesophase further loses its partial ordering and it is

transformed into an ordinary isotropic liquid, this phenomenon is called liquid

crystalline-isotropic transition (LC-I) (Brostow 1992). The temperature at which

LC-I takes place (TLC�I) is called clearing temperature, Tc, also known as

isotropisation temperature, Ti.

When the isotropic liquid of liquid-crystalline material is cooled, it is expected

to exhibit an isotropic-liquid crystalline transition and then to solidify again. The

temperature at which the isotropic-liquid crystalline transition takes place is called

TI�LC, and the temperature at which the liquid crystalline-crystalline transition

takes place is called TLC�C.

The liquid crystalline phase is thermodynamically stable and represents a con-

dition of incomplete melting. As illustrated in Fig. 16.3, Tm (or TC�LC) and Tc

define the temperature range in which the liquid crystalline phase is thermodynam-

ically stable.

There are two main types of liquid crystals: thermotropic and lyotropic. The LCs

that exhibit various liquid crystalline phases as a function of temperature are called

thermotropic (Fig. 16.3). They are formed by heating to the temperature above

which the crystal lattice is no longer stable. Thermotropic LCs exhibit liquid

crystallinity in a particular temperature range: between TC�LC or Tg (glass transi-

tion temperature in the cases where the crystallinity is absent) and Tc (Donald and

Windle 1992; Wang et al. 1996). Thermotropic LCs are very stable and exhibit very

large mesomorphic ranges, sometimes several hundred degrees.
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Fig. 16.1 Schematic

representation of molecular

order in the (a) crystalline,
(b) liquid crystalline and (c)
isotropic liquid phases
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The thermotropic liquid crystalline materials are further divided into two sub-

groups: thermodynamically stable—enantiotropic and unstable—monotropic
(Blackwell and Biswas 1987; Bhowmik and Lenz 1994). The mesophase of

enantiotropic LCs is observed by either raising the temperature of a solid crystalline

phase or lowering the temperature of a liquid phase, whereas the mesophase of

monotropic LC is only observed by lowering the temperature of a liquid phase.

Sometimes liquid crystalline phases are formed by mesomorphic molecules in a

non-mesomorphic solvent (Kelker and Hatz 1980; Donald and Windle 1992;

Hintze-Bruening et al. 2011; Hatakeyama et al. 2011), so a true solution is not

obtained, but the resulting state exhibits liquid crystalline properties. Further
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Fig. 16.3 Thermotropic liquid crystalline transition
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Fig. 16.2 Ordinary solid–isotropic liquid transition
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increase of the amount of non-mesogenic solvent molecules beyond a critical

concentration leads to a transition to the isotropic liquid phase. Thus, the LCs

that are formed when the concentration of the solvent is changed are called

lyotropic (Fig. 16.4).
Lyotropic LCs play a very important role mostly in biological systems (Coolings

1990; Hintze-Bruening et al. 2011; Liang et al. 2010). However, this kind of LCs

will not be discussed further, since it is beyond the scope of this chapter, the subject

of which is restricted to thermotropic LCs.

16.2 Nature of Liquid Crystalline Polymers

Macromolecules are also capable of forming similar liquid crystalline mesophases

if the mesogenic groups are linked by flexible spacers (i.e., in this study the spacers
are propylene, diethyletheric (oxydiethylene) and oxetane ring). Such macromole-

cules are called liquid crystalline polymers (LCPs). The mesogenic units of LCPs

are usually made up of a rigid core of two or more aromatic rings, therefore, the

LCPs are frequently aromatic polymers. These stiff regions along the chain allow

the polymer to retain a high degree of orientational order in the liquid/melt state.

Similar to ordinary liquid crystals, LCPs exhibit fluidity while possessing order like

structure of a solid crystal (Kelker and Hatz 1980; Collyer 1996). LCPs are also

anisotropic materials whose flow properties depend on their molecular structure and

orientation. Liquid crystalline behavior during melting results in lower viscosity,

because the rigid polymeric mesophases align themselves in the direction of the

flow, so LCPs are easier to process compared with isotropic polymers. Considering

their direct applicability in technology, LCs have been intensively considered, and
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Fig. 16.4 Lyotropic liquid crystalline transition
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several thousands of such compounds have been synthesized in the past few

decades. However, related aspects for LCPs are still in their infancy and are in

the area of continuing research interest. Scientific and technological interest in

LCPs was first sparked by the development and commercialization of DuPont

“KEVLAR” poly(p-phenylene terephthalamide) (PPTA) fibre in the 1970s which

can be manufactured as stiff and strong as steel (Hall and Tiddy 1992; Donald and

Windle 1992). An important goal of polymer science now is to design polymers

with the necessary structure to form a mesophase, yet with sufficient chain flexi-

bility to be processed. In general, for normally flexible polymers to exhibit liquid

crystalline properties, mesogenic molecules such as rod-like, disc-like, pyramid-

like or phasm-like have to be incorporated into or onto their chains. It is noteworthy

that the mesogenic groups are incorporated into or onto the main-chain polymer

almost exclusively by covalent bonds.

As liquid crystals, liquid crystalline polymers can also be thermotropic and

lyotropic. Yet in terms of position of the mesogenic groups, liquid crystalline

polymers can be classified as main-chain, side-chain, combined main-chain/side-

chain and cross-linked.

The first type of LCPs, main-chain, is formed when the mesogenic groups are

incorporated in the backbone of the polymer (Damman andMercx 1993; Hurduc and

Pavel 1999). The liquid crystalline phases are formed by the polymer chains folding

in a way analogous to what occur when polymers crystallize. Linear main-chain

thermotropic LCPs tend to form nematic phases in particular and helical main-chain

thermotropic LCPs tend to form discotic phases (Davies andWard 1988; Donald and

Windle 1992). A main-chain LCP is schematically represented in Fig. 16.5.

The second type of LCPs, side-chain or comb-like, is formed when the

mesogenic groups are attached covalently as side-chains onto the polymer main-

chain (Finkelmann 1991; Mulligan et al. 1996; Cook et al. 2012). The mesogenic

groups can be directly attached to the backbone of the polymer, or connected

through a flexible spacer. This is schematically represented in Fig. 16.6.

In the last few years, scientific research has concentrated on the synthesis and

characterisation of new polymers with special properties. Among these, side chain

liquid crystalline polymers (SCLCPs) are distinguished by their properties as

Flexible
spacer

Mesogenic
core

Fig. 16.5 Schematic representation of main-chain LCP
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materials in a range of advanced electro-optical technologies, but also because they

present a demanding challenge to our understanding of self-assembly in molecular

systems. The main reason is that SCLCPs could combine the unique properties of

low-molar mass liquid crystals and polymers together, which made it easier to form

film during material processing. Although a large amount of experimental data has

been available on the properties of side chain liquid crystalline polymers, the

fundamental understanding of their behavior at a molecular and atomic level is

still limited.

An important goal in the synthesis of SCLCPs is to design molecules with the

necessary order to form a mesophase yet with sufficient chain flexibility so that the

crystal melting temperature (Tm) is reached within the range of normal processing

temperatures (Yu et al. 2013). One of the distinguishing structural properties of

these polymers is the ease to form film during material processing. Therefore,

SCLCPs offer potential solutions for problems that low-mass-molecular liquid

crystals are unable to solve, and possible applications arise where the combination

of these properties are basic requirements. These applications range from electrical-

electronic components, chemical processing, transportation (including automotive

and aerospace) and telecommunications, and more recently to optical and electro-

optical display devices, optical computing and medical science as diagnostic aids.

Small molecule modified macromolecules (SMMM) have been used extensively

to obtain functional polymers with special properties (Pankaj Kumar et al. 2011; Su

et al. 2011; Wang et al. 2013). This method is preferred due to the absence of side

reactions that can induce the appearance of branched polymers.

As with small-molecule liquid crystals, the appearance of a mesophase is asso-

ciated with long-range organisation of the molecular orientations. For small mole-

cules this order may arise from the packing requirements of the rodlike molecules,

from anisotropic attractive forces or some combination of both. Models to predict

orientational order in liquid-crystalline polymers are well known, the earliest being
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Fig. 16.6 Schematic representation of side-chain LCP
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the lattice theory of Flory and co-workers. The lattice theory depends on aspect ratio

of polymer chains (the ratio of length to diameter) as the only molecular parameter.

In the particular treatment of Flory and Ronca, for example, it is predicted that the

critical aspect ratio for a polymer to exhibit liquid crystallinity is 6.42.

The third type of LCPs, combined main-chain/side-chain, also known as double

or combined (Brostow 1992) is formed when the mesogenic groups are both

incorporated into and attached onto the polymer main chain. The side-chain

mesogenic groups can be attached to the main-chain mesogenic groups, or

connected to the flexible spacer of the main chain of the polymer. This is schemat-

ically represented in Fig. 16.7. The presence of mesogenic groups in both side and

Mesogenic
core

Mesogenic
core

a

b

Fig. 16.7 Schematic representation of combined main-chain/side-chain LCP: (a) Side-chain

mesogenic groups are attached to the main-chain mesogenic groups (b) Side-chain mesogenic

groups are connected to the flexible spacer of the main chain
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main chain positions can have a significant effect on the properties and organisation

of the mesophase (Petr et al. 2013).

Super-strong (SS) polymers are specially-designed combined LCPs in which the

side chains of one molecule are designed to pack between the side chains of

neighboring molecules, thus leading to molecular self-reinforcement and enhanced

molecular ordering compared with main-chain LCPs (Dowell 1990).

The fourth type of LCPs, cross-linked, also known as network or thermoset

(Fig. 16.8), is a result of a cross-linking reaction of LCPs that are functionalized

with reactive groups (cross-linkable LCPs) allowing a network formation via the

cross-linking reaction (Hoyt et al. 1990; Zentel et al. 1990).

If the crosslinking reaction is performed in the liquid crystalline phase, an

anisotropic network structure becomes chemically locked in, which results in

obtaining ordered three-dimensional systems with exceptionally high mechanical

resistance (Donald and Windle 1992; Pavel et al. 1999a, b). Moderate cross-linking

of LCPs (10–20 %) has no effect on the nature of the mesophases compared with an

analogous homopolymer, but tends to lower all phase transition temperatures by a

few degrees (Simmonds 1992).

Liquid crystalline networks combine both high dimensional stability and

mechanical orientability typical of polymer networks with the unique anisotropic

behaviour of liquid crystals. Depending on the cross-link density, i.e., the average
length between two contiguous cross-links along the molecular backbone,

the materials may exhibit reversible transitions from the liquid crystalline to the

isotropic state.

Great attention has been devoted to the liquid crystal networks during the last

few years due to their use as optical switches, waveguides, non-linear optical

materials and advanced composites, as well as because of a great potential to

Fig. 16.8 Schematic representation of cross-linked LCP
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generate a new class of polymers with outstanding properties for new applications.

Therefore, their ‘building blocks’—cross-linkable LCPs—are also of a great

interest.

Recently, more novel LCs are obtained from carbon nano-tubes materials

(Nano News), these LCs are expected to have better thermo-mechanical properties:

16.3 Liquid Crystalline Phases

The common feature of LCs is a rigid backbone that is responsible for the formation

of the liquid crystalline phase. The essential molecular requirement for the forma-

tion of a liquid crystalline phase is a highly geometrically anisotropic shape, i.e., the
molecules are anisometric (Pavel et al. 1997, 1999a, b). This means that one of the

molecular dimensions is usually much larger (rod-like molecules) or much smaller

(disc-like molecules) than the other two. Although theoretically any molecule that

has a non-spherical symmetry should be able to exhibit a mesophase, only 3–4 % of

these organic molecules are found to have mesogenic behavior.

Liquid crystalline molecules always have a rigid segment (a group of atoms),

called a mesogenic group (often an aromatic core) which is rod-like or disc-like

and a flexible spacer. The mesogenic group increases the anisotropic interactions

between the constituent molecules, and therefore increases the clearing tempera-

ture. Unlike the mesogens, the flexible spacers increase the number of conforma-

tions that the molecules can adopt and hence the entropy of melting.

Consequently, the TC�LC will be reduced. An additional requirement for a stable

liquid crystalline phase is that its Tc is above the TC�LC and below decomposition

temperature, Td.

The tendency of the molecules to order and align themselves in a common

direction with their long axes more or less parallel is referred in general as the

orientational property of LCPs. The orientational property is fundamental for

LCPs: for example, mechanical properties of LCPs are strongly dependent upon
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the degree of orientational order (molecular orientation) (Hamley et al. 1996). This

degree of order is responsible for the unique behaviour of liquid crystalline mate-

rials. The direction about which the degree of orientational order is defined is

usually characterised by a unit vector n (Allen et al. 1996), which satisfies the

physically reasonable condition n��n. The vector n is called the director, or
optical axis (Noel 1992; Sarman 1996). The average molecular orientation

described by the director should not be confused with the individual molecular

orientation. The director n is determined by relatively weak forces, such as mag-

netic and electric fields or the action of flow.

The director n determines only the direction of the preferred orientation of the

molecules and indicates nothing about the degree of orientational order in the liquid

crystalline phase. The degree of the orientational order is quantified and

characterised by a scalar quantity S, varying from zero to unity. S is called

an order parameter, also known as Hermans orientation function (Pavel

et al. 1999a, b), and it is calculated using the following equation (Schmidt-Rohr

and Hong 1996):

S ¼ 1=2 3 < cos2θ > �1
� �

The angular brackets around the cosine term in this equation denote a thermal

average over all of the unit molecules and θ is the orientational angle between the

structural unit vector (mesogen) of the polymer chain and the director n.

The value of S equal to 0 (< cos2θ>¼ 1/3) indicates total absence of orienta-

tional order—isotropy. There are some exceptions for which S may be negative

(Yoon et al. 1990; Rusing et al. 1993). The value of S equal to 1 corresponds to the

case of the perfect order with all molecules strictly parallel to one another (Bosch

et al. 1983). This ideal order would be possible near to absolute zero point of

temperature only if the material would not freeze.

1. The order parameter of a material varies inversely with temperature as a result of

kinetic molecular motion (Bosch et al. 1983). The actual value of S represents a

compromise between the ordering effect of the mesogenic interaction and the

disordering contribution of temperature (Marrucci 1996). In a typical LCP, S

decreases as the temperature is raised, so S varies from around 0.43 at clearing

temperature, Tc, to about 0.8–0.9 at much lower temperatures (Keller et al. 1990;

Khoo 1995). For combined main-chain/side-chain macromolecules, two order

parameters are to be calculated to describe the state of the polymer, one for the

main-chain and one for the side-chains.

The order parameter is also known as the anisotropy factor. Anisotropy means

that the properties of a material depend on the direction in which they are measured.

Thus, liquid crystalline materials are optically anisotropic: for example, the prop-

agation of a ray of light through the medium depends on its orientation.

LCs and LCPs can exhibit nematic, smectic, columnar, cholesteric and/or blue

mesophase(s) due to their degree of molecular order. With rod-like molecules,
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nematic, smectic, blue and cholesteric mesophases are observed, whereas with disc-

like (or discotic) molecules, the phases that are clearly identified fall into two

categories: the columnar and the nematic. A smectic mesophase with discotic

molecules has also been reported, but the precise arrangement of the molecules in

each layer has not been fully investigated (Marrucci 1996).

The nematic phase is the least organized and the most common type of liquid

crystalline phases. This phase is characterized when molecules are ordered in one

dimension and the average directions of the long axes of the molecules (described

by director n) are parallel (Noel 1992; Islam et al. 2014). The nematic phase

possesses long range orientational order but only short-range positional order

(Davies and Ward 1988; Mulligan et al. 1996). Therefore, the nematic phase is

very liquid-like. Optically, nematic liquid crystals constitute a uniaxial material.

Unlike the classical nematic phase of rod-like molecules, the nematic phase of

discotic molecules is optically negative. Schematic representation of the structure

of nematic phase is shown in Fig. 16.9.

The smectic liquid crystalline phase is characterised when molecules possess

a degree of long range orientational order as well as long range positional

order: the molecules are parallel and arranged in layers which stack on top of

each other (Fig. 16.10) (Davies and Ward 1988). If nematic and smectic phases

occur within one compound, the smectic phases will occur at lower temperatures.

The higher order of smectic phases causes them to be more viscous than

nematic phases.

Many smectic phases have been observed, and they have been named in chro-

nological order of discovery, i.e. smectic A, A1, A4, B, C, D, E, F, G, H, I, J, K

phases (the least ordered smectic phase is smectic A). The smectic phases arise

from differences within the layers of molecules. All of the smectic phases are

n

Fig. 16.9 Schematic representation of nematic liquid crystalline phase
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characterised by the possession of a layered structure where the molecule ends are

aligned next to each other. The ideal classification has yet to be achieved. The

smectic phases also tend to be highly polymorphic and in some instances smectic

liquid crystalline materials will transform between a number of sub-classes, i.e. A,
A1, A4, B, C during heating or cooling (Davies and Ward 1988; Lan et al. 2013). In

compounds where smectic polymorphism occurs, higher ordered phases always

occur at lower temperature than lower ordered ones.

Columnar phases are formed on heating/cooling of compounds composed of

disc-shaped molecules that can pack together to form flexible cylinders or columns

of different type (resembling stacks of coins). The arrangement of disc-shaped

molecules within an individual column can be either ordered or random. The

columns themselves can be grouped into hexagonal or orthogonal lattices (Davies

and Ward 1988; Stoeva et al. 2013). A schematic representation of the ordered

hexagonal structure of columnar phase is given in Fig. 16.11.

In some cases, compounds that form columnar phases do not have a disc-like

shape by themselves, but may aggregate into disc-like formations. Therefore, the

often used term ‘discotic phase’ is not quite correct for the columnar phase, since it

refers to building blocks that are not necessary prerequisite for obtaining this

two-dimensional order. The columns are two-dimensionally ordered with

nematic-like, hexagonal, rectangular or oblique packing. This distinct class of

mesophase has only been recognised for a few years. In practice, columnar phases

are relatively rare since a special disc-like geometry of the mesogen is required. The

research effort on this phase is still somewhat limited, but increasing steadily.

n

Fig. 16.10 Schematic representation of smectic liquid crystalline phase
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The cholesteric liquid crystalline phase is often referred to as “twisted nematic”

or “chiral nematic” phase. The cholesteric phase is characterised by layers of

nematic oriented molecules where each layer is twisted with respect to the ones

above and below it (Blackwell and Biswas 1987; Davies and Ward 1988). A

schematic representation of the structure of the cholesteric phase is illustrated in

Fig. 16.12. The director n in the cholesteric phase is not constant in space but,

rather, twists periodically about an axis normal to n, forming a helix. The distance

over which the director turns exactly 360� is called the pitch of the helix. The helical
arrangement also introduces new optical properties, particularly in the propagation

and reflection of light from cholesteric liquid crystalline materials. The cholesteric

phase possesses only orientational order, but neither long range order nor positional

order of the molecules.

The blue phases appear between the cholesteric (helicoidal) liquid crystalline

phase and the isotropic liquid phase, as the temperature is lowered (Hess

et al. 1991). They are called ‘blue’ phases for historical reasons, so the adjective

blue does not prevent them from looking bright yellow or red in some instances.

The blue phases occur in cholesteric systems of sufficiently low pitch, less than

about 5000Å (Brostow and Walasek 1998). The temperature region in which the

blue phases are thermodynamically stable is relatively narrow, usually about 1 K.

This fact has limited the progress of study of blue phases in contrast to other

mesophases (Blackwell and Biswas 1987).

Three distinct blue phases have been identified: BP I (a body-centred cubic

lattice), BP II (a simple cubic lattice) and BP III (probably amorphous) occurring

Fig. 16.11 Schematic

representation of columnar

liquid crystalline phase
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in that order with increasing temperature (Brostow and Walasek 1998).

The question of the molecular arrangement within the blue phases remained

unsolved, so, it is impossible to provide a schematic representation of the phase

at present. In practice, only nematic, cholesteric, smectic A and smectic C phases

are commonly observed for LCPs, other higher-order smectic mesophases being

comparatively rarer.

16.4 Theories of Liquid Crystalline Polymers

The anisotropic interactions between linear LCP macromolecules will be consid-

ered in this section. Two theoretical models, taking into account such applications,

namely those of Flory and de Gennes, have found widespread use.

n

n

n

n

Z

Y

X

Fig. 16.12 Schematic representation of cholesteric liquid crystalline phase
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Flory’s lattice model and his theory of liquid crystallinity in LCP systems were

formulated in 1956. The theory was later amplified by Flory, his co-workers and

students (Finkelmann 1991). Flory considered a system of unconnected linear

semiflexible LCP chains, such that each macromolecule consists of flexible and

LC sequences. The flexible sequences can coil and have high internal conforma-

tional entropy. The LC sequences are represented by rigid rods with low internal

entropy, but they can interact anisotropically. As discussed in some, Flory devel-

oped an ingenious combinatorial procedure allowing the placement of LC

sequences at any angle to the lines of the lattice. The procedure is based on the

fact that macromolecules cannot penetrate each other.

A non-lattice approach was proposed by de Gennes and then developed by

Walasek (Brostow 1992). De Gennes assumed a representation of the LCP system

by a three-chain cell, with mutually perpendicular end-to-end distances. A chain

consisted of freely-jointed segments with internal orienting interactions between

them; thus, the chain was not fully flexible. The semiflexibility was determined by

the intensity of the segment-segment interaction forces. One of the chains was

parallel to the system symmetry axis while the other two were perpendicular to that

axis. The distribution function of chain segment orientations was obtained by

requiring that the Helmholtz function, with respect to the distribution function,

became a conditional minimum. Conditions resulted from an independent definition

of chain end-to-end distances; these distances were defined by border conditions

imposed upon the system. Chains in the three-chain cell were connected via one end

at a point. Necessarily, the model did not contain any information on the topological

structure (such as loops, defects, etc.) present in a network of a large number of

chains connected by copious junctions.

Brostow and Walasek considered a system of linear LCPs (Brostow 1992). Each

macromolecule constituted an alternating copolymer of flexible and LC sequences.

The macromolecules could be either unconnected, or else connected into a LCP

network. The system was characterized with respect to local orientation. Compe-

tition between energetic effects of anisotropic orienting interactions between LC

sequences and entropic effects determined mainly by flexible parts was considered.

The Maier and Saupe mean-field approach (Klein et al. 1996) was assumed for the

representation of LC interactions.

Since flexible chains can coil and create a large number of conformational

microstates, their entropy is large. By contrast, in the theories under discussion, a

LC sequence is represented by a hard rod and its internal entropy is equal to zero. Of

course, the LC part as a whole has an entropy pertaining to the realization of

orientational microstates, but its value is much smaller than the entropy of the

flexible part.

Brostow and Walasek consider the LCP system in which the only orientation

came from the presence of LC sequences in the chains. Orienting interactions

between LC sequences were assumed. Interactions within flexible parts of the

system and/or between flexible and LC parts were assumed to be much weaker

than interactions between mesogenic LC particles. The segment + system interac-

tions were imposed only by the topological structure of the LCP linear chain and by
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the structure of the network of chains, the latter if the system of chains was

connected by junctions. These authors considered the order parameter, S, since it

is related to the uniaxial orienting interaction potential between LC units—as

demonstrated long ago by Maier and Saupe and recently by Donald and Windle

(Simmonds 1992). The more complicated potentials including pitch, chirality, etc.,

can presumably be introduced later. Brostow and Walasek found that the LC part

was dominated by energetic effects related to orienting interactions. The competi-

tion between energetic and entropic effects led them to a general formula for the

system Helmholtz function for arbitrary types of orienting interactions between LC

sequences. It was found that all transitions were of the first order. They represented

thermodynamical and structural parameters of the system at phase transition points

by phase diagrams.

Both original Flory and de Gennes theories involve uniaxial nematic-like inter-

actions between LC sequences. As a result, they predicted in LCPs, the transition

from S¼ 0 to S> 0 only, as it takes place in molecular liquid crystals (MLCs) with

uniaxial interactions.

Differences in S between LCPs and MLCs were qualitative only. However,

experiments (Marrucci 1996; Saeva 1979) suggested possibilities of other types

of transitions such as from S¼ 0 to S< 0 or from S< 0 to S> 0. Brostow and

Walasek also showed that biaxiality of LC interactions in LCP systems was not a

necessary condition for such transitions. This is contrary to the situation observed in

MLCs in which the biaxiality is the necessary condition (Davies and Ward 1988).

16.5 Applications of Liquid Crystalline Polymers

LCPs present a unique balance of orientational, mechanical, magnetic, optical and

electrical properties, high toughness, low die swell, easy flowability, outstanding

chemical and thermal resistance, high modulus, and excellent dimensional stability.

Therefore, LCP materials offer potential solutions for problems that conventional

materials are unable to solve, and possible applications arise where the combination

of these properties are basic requirements. These applications range from electrical-

electronic components, chemical processing, transportation (including automotive

and aerospace) and telecommunications, to high tensile strength polymeric fibers

and components, thermography, holography and more recently to optical and

electro-optical display devices, optical computing and medical science as diagnos-

tic aids (Allen et al. 1996; Hoyt et al. 1990; Lee et al. 2012; Yagi et al. 2014; Cho

et al. 2014; Morimoto et al. 2014; Huang et al. 2013; Jeong et al. 2013; Carter

et al. 2014). Each of these areas requires different sets of properties that are

summarized in Table 16.1.

In terms of performance requirements, cost factors and processing needs, LCPs

can compete against other high-performance thermoplastics, ceramics and metals.

Moreover, as new properties and types of LCPs are investigated and researched,

these materials are sure to gain increasing importance in industrial and scientific

applications and to become one of the most promising areas of material science.
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Table 16.1 Correlation between the important properties of LCPs and potential areas of

applications

Potential area of

application Important properties of LCPs Examples of application

Electrical/elec-

tronics/

optoelectro-nics/

sensors

• Good thermal conductivity Connectors, switches, relays bob-

bins, laser beam deflectors, potenti-

ometers, electronic packaging,

optical amplifiers, sensors,

biosensors

• High dielectric strength

• Low dielectric constant

• Resistance to solvents and cor-

rosive chemicals

• Good electric insulation

• Low thermal coefficient of

expansion

• High dimensional stability

• Low ionic content

Information

technology

• Excellent electrical Data storage devices, liquid crystal

displays, electro-optical devices,

non-linear optics, flat-panel dis-

plays, optically-addressed spatial

light modulators

• Optical and non-linear

properties

• Possibility to orient the mole-

cules locally by action of electric

or magnetic fields and more

recently by action of light

Fiber optics • Inherent flame retardance Couplers, connectors, strength

members• Good moisture resistance

• Excellent mechanical properties

Medical • Non-toxicity Cancer diagnosis, localizing the

placenta prior Caesarean, thin films

with high strength, optical filters and

membranes, pharmacological tests,

temperature indicators, diagnostic

aids

• Compatibility with sterilization

techniques

• Low permeability and toughness

Aircraft

automotive

• Low coefficient of thermal

expansion allowing mating with

or replacement of metal parts

Electronic and electric related com-

ponents, fuel system components,

automobile parts

• Excellent mechanical, chemical

and electrical properties

• Excellent heat resistance

• Toughness

• Low viscosity during processing

• Easy filling of molds having

complicated geometries

• Low thermal shrinkage

• Resistance to automotive fluids,

solvents and other chemicals

(continued)
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