
Domain Specific Monitoring of Business
Processes Using Concept Probes

Adrian Mos(&)

Xerox Research, 6 chemin de Maupertuis, Meylan, France
adrian.mos@xerox.com

Abstract. This paper proposes a monitoring framework that has business
concepts at its core. Rather than relying on generic mechanisms to provide
monitoring data, it proposes the notion of concept probes that fully match the
business concepts used in the definition of business processes. These concept
probes combine monitoring information from business process execution as well
as service execution into aggregate information that makes sense from a busi-
ness concept point of view. The approach has far-reaching implications: firstly,
it provides superior understanding of the various execution parameters of the
business concepts used in processes (including performance, correctness and
context), with potential to aid Business Process Management (BPM) and Service
Oriented Architecture (SOA) governance. Secondly, it helps with setting
application-wide alarms and constraints potentially corresponding to Service-
Level-Agreements, on a concept-level. For a given concept, such constraints can
be set-up with immediate effect in all the business processes that use it. Thirdly,
this approach gives technical users a deep understanding of the contribution of
each of multiple application layers (BPM, SOA, operating system, various other
technical layers) to the combined performance of a particular business concept.
This can lead to faster reaction time in fixing problems, changes in business
partners (that provide better services) or improvements in the underlying
infrastructure or application parameters.

Keywords: BPM � Monitoring � SOA

1 Introduction and Scope

Business Process Management (BPM) and Service Oriented Architecture (SOA) are
two important paradigms in today’s enterprise solutions. They each bring a level of
agility to business applications. BPM addresses the methodology and tools that enable
the management of business processes (BPs) including their evolutions throughout
their lifecycle. BPM Suites (BPMS) are complex software stacks that execute business
processes and connect them to various enterprise resources such as the personnel
directory, the various legacy applications and potentially the organization’s SOA. An
enterprise SOA typically manages the reusable technical services used to execute tasks
that occur in business processes and it is often hosted in a cloud environment. Their
functionality, granularity and interfaces define their level of reuse across a multitude of
business processes. In general, the closer the SOA services match the business
requirements, the faster it is to implement new business processes. In practice, SOA has

© Springer International Publishing Switzerland 2015
F. Toumani et al. (Eds.): ICSOC 2014, LNCS 8954, pp. 213–224, 2015.
DOI: 10.1007/978-3-319-22885-3_19

often drifted away from its initial promise of matching IT with business and has
evolved in the IT domain, enabling a certain kind of agility at the IT solution level, i.e.
making it faster for IT departments to implement new applications, much like previous
paradigms such as component-based software or object-oriented development.

The typical approach to develop business applications using BPM and SOA with
today’s state of the art tools involves the definition of business processes using a
generic language such as the widely-used Business Process Model and Notation
(BPMN) [1]. This language contains elements such as “activity”, “gateway”, “signal”
or “flow”. Users need to describe their BPs by assigning textual labels such as “pay-
ment” or “customer registration” to the generic BPMN elements. Users who design
BPs are generally users with good business knowledge and understanding of the
various roles in the organization.

In contrast, users who design and create SOA services are typically architects and
developers with much less business know-how. There is a certain connection between
these two classes of users (business and technical) as, naturally, the SOA must even-
tually fulfil some useful functionality for the business applications, yet they have
fundamentally different concerns. This translates into a disconnect between BPM and
SOA which is solved through manual “glue” in the form of SOA connectivity
parameters in the BP descriptions. This connectivity typically translates into configu-
ration forms that are associated to certain BPMN activities.

Once the BPs are designed and fully configured, they can be run by the BPMS.
The BPMS will manage their execution and will also direct SOA calls to the appro-
priate SOA services, as required. It is very important to be able to extract information
related to the execution of the BPs. Such information can be used to understand what
really happens with the various activities, whether they execute correctly or not, how
long it takes to execute them, what data is passed around and whether pre-established
thresholds for various parameters are exceeded or not. Such information is extracted
using monitoring infrastructure that connects to the BPMS and collects data as the BPs
execute. The monitoring infrastructure is typically tightly woven into the BPMS.
Similarly, for SOA data collection, the monitoring infrastructure can leverage the
execution environment, such as a specific Enterprise Service Bus in order to collect
metrics of interest.

The fundamental problem with the state-of-the-art approaches is that they collect
and present data at the level of process definition, which is generic. The fact that BPs
have been designed and deployed using a generic language such as BPMN inherently
means that monitoring data is collected in a generic way, with respect to the business
domain. Therefore, reusing the example above, monitoring data will be collected for
elements such as “activity”, “gateway”, “signal” or “flow” with no correlation to the
business concepts of “payment” or “customer registration” apart from the simple
matching of the textual labels to the monitored generic elements. This causes a number
of problems:

• It is hard to make use of the monitoring data in order to present meaningful metrics
to business users, without significant configuration efforts for each BP.

• It is difficult to correlate the execution of business concepts to the execution of
services in the SOA layer as well as to the parameters of the runtime infrastructure.

214 A. Mos

• It is difficult to set wide-ranging Service-Level-Agreements (SLA) that affect all
BPs equally. For instance it may be necessary to specify that all “payment” oper-
ations, regardless of the BP in which they occur, must execute in less than 20 s. In
today’s BPM solutions this would typically imply manually changing each of the
BPs in which the payment activity occurs in order to establish this SLA, or
refactoring all BPs to use the “payment” activity as a sub-process and then setting
the SLA to the sub-process.

In summary, the above-mentioned problems with today’s monitoring approaches
are due to the fact that most existing solutions are domain-independent and technology-
dependent. In contrast, the approach presented in this paper is domain-dependent and
technology-independent with a focus on BPM/SOA environments.

2 Overview of the Approach

This proposal aims to address the shortcomings of today’s monitoring capabilities for
BPMS/SOA applications. It does so by adding a layer of abstraction on top of existing
capabilities, rather than replacing them. This ensures compatibility with a wide range
of existing systems and platforms. In fact the proposed approach is technology-
independent. The approach entails the creation of Concept Probes (CPs) that are
monitoring entities corresponding directly to business concepts. These CPs provide an
aggregated view of the various execution layers involved in the execution of a par-
ticular business concept present in BPs. Once the CPs are created, they need to be
bound to the monitoring capabilities of the existing infrastructure, effectively acting as
an extra monitoring layer on top of BPMS and SOA monitoring capabilities. In
addition to the CPs, this approach introduces the notion of Business Process Probe
(BPP) which corresponds to each deployed business process and which is essentially a
composition of the CPs that correspond to the concepts used in the BP.

Figure 1 below uses an example to illustrate the conceptual placement of the probes
in the context of a typical BPM/SOA environment. The figure illustrates a simple
business process deployed into the BPMS and connected to the SOA services by links
from activities Aa and Ac, with Aa requiring services S1 and S3, and Ac requiring S6
respectively. These links represent regular web service calls such as SOAP or RESTful
invocations. The rectangle represented above the BPMS represents the monitoring
capabilities that are available for the respective BPMS. Usually these capabilities
include the generation of events when activities execute, the computation of execution
times for activities and generally the reporting of various states in which the BPs
operate. The rectangle below the SOA Runtime represents the monitoring capabilities
of the SOA environment (which is typically an Enterprise Service Bus or other forms of
SOA-based middleware such as an SCA runtime [2]). These capabilities typically
include monitoring the service invocations, computing execution times for various
service operations and general reporting of the states in which the services operate.

To reduce clutter, the image above does not present other monitoring layers that
may be available in an enterprise environment, such as cloud monitoring, operating

Domain Specific Monitoring of Business Processes 215

system monitoring or network monitoring. These are however taken into account and
mentioned in the description of the probe structure below.

Figure 1 presents three concept probes CPa, CPb and CPc that correspond to the
business concepts a, b and c, used in the illustrated BP through the activities Aa, Ab
and Ac. In addition to the CPs, the image also shows a business process probe, the
BPPx. This corresponds to the example BP and it uses the three CPs to aggregate
BP-level information. The outgoing lines from the CPs represent their connections to
the BPMS and SOA monitoring systems. For example, since CPa is a probe specifi-
cally generated for concept a, it will interrogate the BPMS monitoring system with
regard to the activity Aa and the SOA monitoring system with regard to services S1
and S3. These connections are generated based on the knowledge that concept a is used
in activity Aa and it requires services S1 and S3. This knowledge comes from concept
mappings described in the section below. The lines are labeled with abstract functions
that simply illustrate what kind of data they collect from the monitoring systems.

The CPs therefore leverage existing monitoring capabilities using specific bindings
related to the concepts they need to match. They aggregate the required data from the
various BPMS and SOA monitoring systems into meaningful information that matches
the business concepts used throughout a business application. Similarly, the BPPs
aggregate the monitoring data from CPs corresponding to the monitored BP with
additional BP-specific monitoring information that is generated by the BPMS moni-
toring system (such as timestamps and duration for the process execution, user roles

Fig. 1. Approach overview

216 A. Mos

and other process-specific data). Note that the information provided by a BPP is
significantly richer than that provided by BPMS monitoring systems for a given BP
because it includes the breakdown of monitoring information for each of the concepts
used in the BP as well as the aggregated BP-level data. Naturally, modern BPMS
monitoring systems can make the correlation between a BP and it composing activities
but this approach consolidates monitoring information in a conceptual layer that adds
the semantics of the contained concepts.

3 Concept Mappings

In their simplest form, concept mappings are connections between business concepts
and the SOA services that are used by them. The concepts are then used in all of the
BPs in various combinations, resulting in a variety of BPs.

The starting point is the following sets that are known:

1. Set of services S = {s1, s2, … sq}
2. Set of processes P = {p1, p2, … pm}
3. For each process pk, a set of activities Ak = {ak1, ak2, …. aky where y depends on

the complexity of pk}.
4. The set of all activities in all the processes A = A1 [A2 [… [A |P|

The goal of concept mapping operations is to determine the following sets

1. Set of concepts C = {c1, c2, … cn}
2. CM = {(cj, Sj): 8 cj 2 C; Sj � S} which contains for each concept its list of

services, e.g. (c4, (s1, s3, s8))
3. AMk = {(aki, cj): 8 aki 2 Ak; cj 2 C} which contains for process pk its activities and

the concepts they map to
4. AM = AM1 [AM2 [… [AM|P| which contains for each activity in all processes

the concept it maps to

This paper does not make a claim about a particular method of obtaining concept
mappings. However, this section briefly discusses this aspect in order to demonstrate
feasibility of the entire approach. The existence of the sets described above is a
requirement for the proposed method to function. There are two important aspects to be
discussed about concept mappings, namely concept identification and concept use,
which can be seen as two required stages in the application of the method.

3.1 Concept Identification and Use

Obtaining the sets C and CM, described above, requires that the business concepts that
are used over and over again in the business processes be clearly identified together
with their required usage of the SOA. There are three main potential approaches for
concept identification:

• Automatic Top-Down: this approach corresponds to the desirable approach for
modern organizations that will create new business processes in the future.

Domain Specific Monitoring of Business Processes 217

It assumes that the concepts are defined by business experts and eventually bound
to SOA services in a deployment stage where their service requirements are
mapped to available SOA assets. An in-depth discussion of this approach is pre-
sented in [3].

• Automatic Bottom-Up: this approach assumes existing legacy BPs are already
deployed and functional in an organization, so it is best suited for existing BPs
deployed in BPMS/SOA environments. It leverages extraction capabilities from
execution logs to cluster and identify commonly used concepts and their
correlations to SOA services. Many such approaches are possible, for instance
[4, 5].

• Manual Top-Down: this approach is a downgraded version of the first approach
(Automatic Top-Down) and it can be applied in organizations that do not use a
deployment stage for BPs that connects them automatically with the SOA. It has the
same characteristics as the first approach but it requires the manual annotation of
concepts with SOA services, rather than using the service binding information that
the first approach has.

The three approaches can be used in combination in some cases, for instance the
Automatic Bottom-Up may need help from Manual Top-Down to increase quality of
the results. In all cases the result is a list of concepts with their related SOA services.

After concepts are identified, it is necessary to obtain the AM set by mapping the
BPs (existing or future) to the concepts. This involves matching BP activities to
concepts. Such matching is closely related to the method for identifying concepts.
When using Automatic Top-Down, the BPs are in fact composed of activities directly
matching concepts, so there is no ambiguity, each activity corresponds to a clearly
identified concept. When using Automatic Bottom-Up identification, the concepts are
extracted from BP activities so matching activities to concepts requires simply storing
the correlations between the activities and the extracted concepts. When the Manual
Top-Down approach is used, BPs need to be annotated with the concepts manually, this
requires the manual creation of the connection between activities and concepts (i.e. Aa
activity to concept a in the example above).

When all the required mappings are available, the probes need to be created,
instantiated and deployed. The specific technical means for generating and running
monitoring probes are out of the scope of this proposal. The generation can be done
using a variety of existing methods such as code generation or template instantiation for
instance. Once they are generated they need to be executed as they need to be running
entities managed by a monitoring framework. There exist a variety of monitoring
frameworks that can be used for managing these probes and this proposal does not aim
to propose a new monitoring system. Rather it proposes a new layer of monitoring
probes that can be executed in any extensible monitoring system. A very common
technology that can be employed for merging the proposed approach with existing
monitoring frameworks is Java Management Extensions,1 supported by a large variety
of infrastructures, both commercial and open-source.

1 http://en.wikipedia.org/wiki/Java_Management_Extensions.

218 A. Mos

http://en.wikipedia.org/wiki/Java_Management_Extensions

4 Probe Structure and Functionality

The concept probes are capable of collecting an arbitrary number of metrics, such as
execution time or execution status. The approach described here does not focus on a
particular metric, as the same approach can be used to measure several metrics. For
illustration purposes, execution time is used when an example is required. In the
description of the structure of the probe, metrics are identified by Greek symbols such
as Metric α or Metric β…

The connections of the probe to the various existing monitoring infrastructures are
explained in the paragraphs below. All CPs contain the same three main components,
illustrated in Fig. 2. The first, Raw Data Collection is charged with collecting data for
any given metric from any of the collection points, represented in the image to the right
edge of the CP composite structure. For a given concept cj, its corresponding data
collection points are:

• One BPMS monitoring point that collects data from the BPMS with regard to
activities that map to this concept, i.e. CAj = {axy: (axy, cj) 2 AM}. This effectively
means that there is one probe per concept regardless of the number of activities that
correspond to this concept. The reason for this is that the approach emphasizes the
value of monitoring each individual concept regarding of where it is used in the
business processes. So each time an activity is executed, the concept probe corre-
sponding to the concept associated to the activity is notified.

• Several SOA collection points that each map to the SOA Runtime monitoring
capabilities for each of the SOA services that this concept maps to, i.e. Sj. These
points extract execution information for the services that are related to the concept.

• Several other collection points that can collect information potentially to be cor-
related with the above-mentioned collection points. This includes Network

Fig. 2. Concept probe structure

Domain Specific Monitoring of Business Processes 219

Monitoring, App Server Monitoring and Operating System Monitoring. These extra
collection points can give useful information regarding the context of the metric
values. For instance, a service execution can be perceived as slow if network
latency is very high. Similarly, if the OS processes are not scheduled properly by
the OS or if the Application Server is not scalable, these can impact the execution of
the BPMS and the SOA layers. Therefore, these extra collection points can
potentially be very useful, although they are not essential. They are given here as an
example of extra aggregation capabilities of the probes.

The second component, Concept Analysis, is tasked with aggregating raw data
obtained from the collection component into composite metrics. These composite met-
rics are data structures that present the aggregate monitoring information combining the
individual metric data for the BPMS, SOA and other collection points, for the concept.

The data structures give an aggregate value if appropriate (such as total execution
time), as well as a breakdown of this value or contextual information pertaining to this
value for the individual collection points. This can include the individual execution
time of services and of the process activity in the BPMS, as well as values for network
latency, resource utilization in the application server or process scheduling in the
operating system. Similarly, cloud-related data can be obtained such as the virtual
machine utilization for the server executing the SOA services or BPMS elements.
Individual methods for obtaining these values are out of the scope of the presented
approach, as the approach is concerned with the architectural entities that the moni-
toring framework has, not their detailed implementation which is often straight-
forward. This concept is also queried by outside entities for metric values (represented
as the Monitoring Service port of the CP).

The third component, Concept Alerts and Reporting relates to the ability of the
probe to give specific reports about the execution of the concept and most importantly
to register alerting rules and react accordingly. This component allows the registration
of SLA requests through the Configure Alerts port and uses the Concept Analysis
component to constantly compare the aggregated metric values with the required
thresholds. If SLA thresholds are exceeded it can notify registered Monitoring Lis-
teners. These listeners are external entities (out of scope of the presented approach),
which can be connected to the monitoring probe and notified of important alerts and
events.

There is one Business Process Probe (BPP) per business process deployed.
Similarly to the concept probe, the business process probe contains a set of three
components with distinct responsibilities, as illustrated in Fig. 3.

The Raw Data Collection component collects the monitoring data from the CPs
that correspond to the activities of the business process monitored by the BPP.

For the BPPk corresponding to a process pk, the data collection points are:

• One BPMS collection point that collects monitoring data for the execution of pk in
the BPMS. This can include contextual information (e.g. user name) for the required
metric as well as metric values for the business process (e.g. execution time of pk as
seen from the BPMS).

• Several connections to each of the CPs required by the BPPk. These are the CPs that
correspond to the set of process concepts PCk = {ci 2 C: 8 (akx, ci) 2 AMk}.

220 A. Mos

These are used in the aggregation of monitoring data corresponding to each concept
used by the Pk. If a concept appears several times in the process (due to several
process activities mapping to the same concept), this concept will count several
times in the aggregation. This is part of the logic of the BP Analysis component.

The BP Analysis component is very similar in functionality to the Concept
Analysis component of the CP, except that it aggregates data from the BPMS and the
various CPs, rather than from the BPMS, SOA and the extra monitoring collection
points. To this end it aggregates the BPMS-collected data corresponding to the exe-
cution of the process together with the already aggregated data of each of the CPs it
connects to. The CPs correspond to monitoring data for the individual activities that
compose the process so a simple way to visualize their composition is putting them side
by side, under the complete process data. An example is the total execution time of a
process composed by the sum of the individual execution times of its activities. It may
be useful to understand why a process executes in a given amount of time, and the
composed metric would be able to show its individual components, highlighting the
concepts that take the most amount of time. This can be decomposed further by
showing why the individual concepts take so long to execute, by drilling down into
individual services that are used for the concepts as well as the other monitoring data
collected. The last component, BP Alerts and Reporting has identical functionality to
the CP-level component, Concept Alert and Reporting, but refers to the entire BP.

5 Related Work

There are many commercial tools and academic approaches to monitoring business
processes and services in a BPM/SOA setting. Some of them tackle only BPM while
other only SOA, with a number of them tackling both, however without providing the
same level of monitoring as the proposal presented here. This is because the vast

Fig. 3. Business process probe

Domain Specific Monitoring of Business Processes 221

majority of the approaches stay generic with respect to the business domain, even
though they may do some monitoring aggregation.

Industrial approaches such as IBM Tivoli [6] or Tibco Hawk [7] as well as many
others do provide a wide array of monitoring capabilities. However they are tightly
bound to the generic capabilities of the BPMS they are targeting, namely Websphere
and Tibco BPM respectively for these two examples. They provide detailed monitoring
data from a variety of sources but they do not offer domain concept probes or moni-
toring data at the level of abstraction that business designers need. However such
approaches are typically suited for integration in the approach presented in this pro-
posal, through the BPMS and SOA collection points. The domain probes would use
JMX to extract and aggregate runtime monitoring data from such monitoring infra-
structure. Therefore such approaches are fully complementary to this proposal.

Among academic approaches, there are approaches that recur to aggregation mainly
to compose events from a low-level monitoring source (using Complex Event Pro-
cessing queries) in order to extract more meaningful data out of the raw events. For
instance they may aggregate events such as “process starts” with “process ends” in order
to extract the aggregated metric “process execution time”. Such approaches [8–12] use a
variety of techniques to derive better understanding of raw events but they fundamen-
tally still stay at a generic level with regard to the business domain. As with the
commercial approaches outlined above, the presented proposal is complementary and
could interact with such approaches using them as data collection points. There are also
approaches that try to correlate execution events to the originating processes using some
forms of traceability between model elements and execution events. For instance in [13]
the authors argue for the existence of domain-specific patterns for interpreting events,
without giving a complete solution. Their suggestion is in line with the proposal here in
that they promote the idea of presenting information corresponding to domain elements,
but they focus mostly of interpreting CEP events, while our proposal targets structured
probes that connect directly with monitoring APIs. In addition, this proposal presents in
detail the structure of the probes while the authors of [13] simply state that it would be
useful to have domain understanding of events.

In summary all of these approaches ultimately recur to generic event analysis and
do not provide a “native” monitoring probe layer that directly corresponds to the
business concepts.

Lastly there are approaches (such as [14]) that try to trace the execution events back
to modeling entities using unique correlation IDs. Similarly to the above-mentioned
approaches, this remains generic with respect to the business domains and does not
benefit from concept-level aggregation presented in our approach. Therefore it does not
allow the creation of concept-based SLAs, nor does it offer concept-based metrics that
span across the business processes. Like the other approaches above, it can correlate
data back to business processes without further aggregation into business concepts.

The approach presented in this proposal provides the same level of functionality
that a generic approach offers, but at the domain-element level using probes that
correspond on a 1-to-1 basis with business concepts. These probes hook into the
existing monitoring systems regardless of the technology they use to extract and rep-
resent events. These elements ensure that the approach offers the advantages explained
in the previous sections and constitute important differentiating factors.

222 A. Mos

6 Summary and Conclusion

Existing monitoring solutions are typically technology-specific and generic with
respect to the business domains. In contrast, the approach presented here is generic with
respect to technology and domain-specific with respect to the business. This brings
several interesting advantages. Having concept monitoring probes gives unprecedented
insight into the execution of applications. Business users can understand how the
processes execute in terms that are ideally suited to them. In addition, they can specify
constraints and alerts for particular concepts that have immediate effect across the entire
spectrum of the deployed business processes. Setting a Service-Level-Agreement for a
concept would instantly translate into the constraint being applied to all the activities of
all the processes using it. Similarly, specifying alerts or simply observing the concept
behavior would apply to any execution of the activities related to it. In addition, each
execution monitoring of such activities would be complemented by monitoring of the
SOA services that are associated to the concept. Beside performance metrics, this
approach brings important benefits in understanding whether a concept executes
successfully.

For technical users or system administrators, this would give a breakdown of
responsibilities for performance problems showing the individual contribution of each
of the layers involved and each of the entities (e.g. services) that compose the concept
execution. Similarly, when monitoring process execution, this approach promotes the
use of process-level probes composed of concept probes. Each BPP would correspond
to a particular process and it would provide the same benefits as described above, but at
process-level. Therefore business users could understand how a process performs in
terms of the business concepts that it comprises, while technical users could understand
the impact of the various layers and entities involved in fulfilling the end-to-end
process. This can help pinpoint SOA services that cause bottlenecks for individual
processes, or explain why certain processes do not execute correctly, by showing the
concepts whose execution fails.

A full prototype of the presented framework is in advanced stages of implemen-
tation, using Stardust BPMS [15] and Fuse ESB [16] as the target BPM and SOA
layers, respectively. The implemented probes correspond to the concepts of a sample
domain chosen for validation. They correlate data for BP activity execution with data
for service execution and give a breakdown of each layer’s contribution to various
performance metrics. The data is then sent for display to Eclipse graphical editors
where it is presented in the appropriate context alongside process design elements [17].
Such usage helps validate the added value of the approach and its two main compo-
nents: domain-level concept mapping of monitoring data; and technology indepen-
dence where existing BPM/SOA environments can be augmented to benefit from the
collection and graphical display of relevant monitoring information.

Domain Specific Monitoring of Business Processes 223

References

1. Object Management Group, Business Process Model and Notation. http://www.bpmn.org/
2. OASIS Service Component Architecture. http://www.oasis-opencsa.org/sca/
3. Mos, A., Jacquin, T.: A platform‐independent mechanism for deployment of business

processes using abstract services. In: 6th International Workshop on Evolutionary Business
Processes, EDOC, Vancouver, Canada (2013)

4. Pérez-Castillo, R., García-Rodriguez de Guzmán, I., Piattini, M., Weber, B., Places, A.S.:
An empirical comparison of static and dynamic business process mining. In: ACM
Symposium on Applied Computing, ACM, New York (2011)

5. Wang, J., Tan, S., Wen, L., Wong, R.K., Guo, Q.: An empirical evaluation of process
mining algorithms based on structural and behavioral similarities. In: 27th Annual ACM
Symposium on Applied Computing (2012)

6. IBM Tivoli. http://www-01.ibm.com/software/tivoli/
7. Tibco Hawk. https://docs.tibco.com/products/tibco-hawk-4-9
8. Pedrinaci, C., Lambert, D., Wetzstein, B., van Lessen, T., Cekov, L., Dimitrov, M.:

SENTINEL: a semantic business process monitoring tool. In: First International Workshop
on Ontology-Supported Business Intelligence (OBI 2008). ACM, New York, NY, USA
(2008)

9. Pedrinaci, C., Domingue, J., Alves de Medeiros, A.K.: A core ontology for business process
analysis. In: 5th European Semantic Web Conference on the Semantic Web (2008)

10. Mos, A., Pedrinaci, C., Rey, G.A., Gomez, J.M., Liu, D., Vaudaux-Ruth, G., Quaireau, S.:
Multi-level monitoring and analysis of web-scale service based applications. In: Dan, A.,
Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 269–282.
Springer, Heidelberg (2010)

11. Hummer, W., Inzinger, C., Leitner, P., Satzger, B., Dustdar, S.: Deriving a unified fault
taxonomy for event-based systems. In: 6th ACM International Conference on Distributed
Event-Based Systems (2012)

12. Mulo, E., Zdun, U., Dustdar, S.: An event view model and DSL for engineering an
event-based SOA monitoring infrastructure. In: 4th ACM International Conference on
Distributed Event-Based Systems (2010)

13. Ammon, R.V., Silberbauer, C., Wolff, C.: Domain specific reference models for event
patterns for faster developing of business activity monitoring applications. In: VIPSI (2007)

14. Mulo, E., Zdun, U., Dustdar, S.: Monitoring web service event trails for business
compliance. In: Service-Oriented Computing and Applications (SOCA) (2009)

15. Stardust BPMS. http://www.eclipse.org/stardust/
16. Jboss Fuse ESB. http://www.jboss.org/products/fuse
17. EclipseCON Talk: Modeling and Monitoring Business Processes with Mangrove, BPMN2

Editor and Stardust. https://www.eclipsecon.org/na2014/session/modeling-and-monitoring-
business-processes-mangrove-bpmn2-editor-and-stardust

224 A. Mos

http://www.bpmn.org/
http://www.oasis-opencsa.org/sca/
http://www-01.ibm.com/software/tivoli/
https://docs.tibco.com/products/tibco-hawk-4-9
http://www.eclipse.org/stardust/
http://www.jboss.org/products/fuse
https://www.eclipsecon.org/na2014/session/modeling-and-monitoring-business-processes-mangrove-bpmn2-editor-and-stardust
https://www.eclipsecon.org/na2014/session/modeling-and-monitoring-business-processes-mangrove-bpmn2-editor-and-stardust

	Domain Specific Monitoring of Business Processes Using Concept Probes
	Abstract
	1 Introduction and Scope
	2 Overview of the Approach
	3 Concept Mappings
	3.1 Concept Identification and Use

	4 Probe Structure and Functionality
	5 Related Work
	6 Summary and Conclusion
	References

