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Abstract. Lines are one of the basic features that are used to char-
acterise the content of an image and to detect objects. Unlike edges
or segmented blobs, lines are not only an accumulation of certain fea-
ture pixels but can also be described in an easy and exact mathematical
way. Besides a lot of different detection methods, the Hough transform
has gained much attention in recent years. With increasing processing
power and continuous development, computer vision algorithms get more
powerful with respect to speed, robustness and accuracy. But there still
arise problems when searching for the best parameters for an algorithm
or when characterising and evaluating the results of feature detection
tasks. It is often difficult to estimate the accuracy of an algorithm and
the influences of the parameter selection. Highly interdependent param-
eters and preprocessing steps continually lead to only hardly compre-
hensible results. Therefore, instead of pure trial and error and subjective
ratings, a systematic assessment with a hard, numerical evaluation crite-
rion is suggested. The paper at hand deals with the latter ones by using
a human-generated ground truth to approach the problem. Thereby, the
accuracy of the surveyed Kernel-based Hough transform algorithm was
improved by a factor of three. These results are used for the tracking
of cylindrical markers and to reconstruct their spatial arrangement for a
biomedical research application.

Keywords: Feature detection · Human-generated ground truth ·
Hough transform · Image processing · Line detection · Systematic
parameterisation

1 Introduction

There is still a challenge in automatically detecting shapes for object recog-
nition. It remains a computationally expensive and non-trivial task, even for
simple geometric patterns like lines, circles or ellipses. Where humans use addi-
tional heuristics, experiences from the past and a deeper image understanding,
computers are restricted to more basic algorithms. Noise, missing or extraneous
and imperfect data from the initial camera image, preprocessing steps or edge
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Fig. 1. Application of the marker tracking system and one of the corresponding marker
images

detection further complicates the problem. Nevertheless, a large number of sim-
ple as well as sophisticated algorithms have been developed. One of the most
famous line detection methods during the last decades is the Hough transform
(HT). This algorithm transforms a curve searching problem into a much simpler
peak searching problem. The effort for further development mainly focuses on
computation time, robustness or accuracy. But these advancements often lack
the numerical evaluation of results and the investigation of parameter influences.
Some in-house or database images and the corresponding, extracted features are
shown and sometimes only optically assessed.

To solve computer vision tasks, a whole chain of algorithms and processing
steps is commonly used. Individual elements cannot be evaluated separately and
without considering their interdependence. However, it is often difficult to exam-
ine this processing chain with all its parameters and influences in its entirety. The
same is true for a hard, numerical key figure or classification coefficient to rate
the end results of the image processing task. To solve this problem, a known
ground-truth is required as a basis of comparison for the subsequent results.
There are various possibilities, like simulation, measurement of the real scene
or human-generated comparison data. All of them have their own strengths and
weaknesses and it is highly dependent on the case of application which one to
choose.

In the present paper, line and corner detection algorithms are used to recon-
struct the spatial arrangement of cylindrical markers. These markers are tracked
by a trinocular camera system which is pointed towards the examination object,
in our case the bones of an experimental setup for biomechanical testing of knee
joints moved manually or automatically, e.g. by a six axis robot, see Fig. 1. Those
experiments try to imitate the human gait cycle by moving along a certain path
or trajectory with the insertion of a specific force and torque [1]. By these means,
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long term stress tests can be simulated. In addition to the robot’s internal posi-
tion sensors, a computer vision system monitors the movements of the test object
and thereby provides a correction factor for the robot’s control loop.

Concerning line detection, a very recent survey analyses more than 200 papers
dealing with the Hough transform over the last decades [2]. There is a myriad of
derivatives and further developments with the Standard Hough Transform (SHT)
as a starting point, like the Fast Hough Transform (FHT) [3], the Randomized
Hough Transform (RHT) [4], the Probabilistic Hough Transform (PHT) [5] or
the Kernel-based Hough Transform (KHT) [6], just to name a few. The latter
will gain particular attention in this paper as it is the investigation subject
in Sect. 3. Apart from the Hough transform to detect straight lines, there are
some additional algorithms analysing eigenvalues or linking pixel clusters [7–9].
A test framework to assess the accuracy of the line detection process by the
Hough transform is proposed in [10]. A local Hough transform to detect line
candidates and further determination of their parameters by a global estimation
are combined in [11].

The Hough transform generally only detects infinite lines. Nevertheless, there
are several algorithms which overcome this restriction and provide information
about the length and position or the start and end point of a line, respectively.
This can either be the analysis of the neigbourhood of peaks in the parame-
ter space or the application of additional independent processing steps in the
image space. Each feature pixel is mapped into the parameter space as a sinu-
soid curve. A line as a succession of collinear pixels leads to a split up sinusoidal
construct, also called butterfly. Depending on the location and length of the line,
this butterfly takes a distinctly shaped appearance, see Fig. 2). Using these char-
acteristics and suitable algorithms to interpret it, a finite line can be described
completely [12–14].

Many computer vision applications for feature detection lack the existence of
absolute, numerically exact comparison data or the real solution or dataset (i.e.
true values) respectively. Especially edge detection or segmentation algorithms
are often only assessed by a mere subjective verdict. Whereas a human-generated
ground truth provides the possibility to get hard, mathematical classification
numbers when evaluating the performance of an algorithm with its specific
parameter set. Perhaps the most famous example for the use of human-generated
ground truth is the Segmentation Database of Berkley’s Computer Vision Group
[15], which is frequently applied to evaluate and compare different segmentation
algorithms [16,17]. An extension towards 3D segmentation tasks is realised in
[18] and [19], while [20] compares 3D interest point detection algorithms with
human selections. Edge and boundary detections were assessed in comparison
with human-generated data in [21] whereas [22] and [23] try to introduce a more
formal, mathematical comparison model.

The paper at hand is using human-generated comparison data to evalu-
ate the influence of preprocessing steps and parameter choice on line detection
through the Kernel-based Hough Transform (KHT) introduced by Fernandes [6].
In contrast to other works, the whole process is considered. The underlying
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Fig. 2. The corresponding Hough space for different line lengths and positions

image processing sequence is described in Subsect. 2.1, a methodology for a
paramaeter influence study using human-generated ground truth is proposed in
Subsect. 2.2, mathematical quality factors are introduced in Subsect. 2.3 and
exemplary results are given in Sect. 3.

2 Methodology

Because of the highly interdependent parameters of a image processing task, it
is almost impossible to find a good or even the best parameter set by just guess-
ing or trying out different combinations non-systematically. Apart from this, as
described in Sect. 1, it is problematic to obtain numerical comparison data to
assess the results of an algorithm. Both problems are addressed in the subse-
quent chapters. To solve the first, a systematic parameter study is conducted,
to tackle the second, a mathematically describable ground-truth is developed.

2.1 Image Processing Sequence

A flowchart of the image processing chain used for this work and parts of its cor-
responding results are shown in Fig. 3. Images are acquired from monochrome
industrial area cameras through Camera Link connection and PCI-E framegrab-
bers. In these initial images, the markers only occupy a small fraction of the
total image area. Therefore, a region of interest (ROI) creation by using binary
thresholding and a blob analysis is necessary to limit the subsequent computa-
tional effort. Furthermore, the ROIs are undistorted by the use of calibration
data from a previous camera calibration process according to [24]. Afterwards,
the contrast is adjusted, noise is reduced by Gaussian filtering and edges are
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Sobel Edge
Detection

Fig. 3. Flowchart of the proposed image processing algorithm and the corresponding
results

detected by the use of Sobel or Canny algorithms. The whole image processing
chain is realised in Matlab. For time-efficiency several OpenCV Library functions
are utilised.

To detect lines, the Standard Hough transform individually transforms each
binary edge feature pixel into the parameter space. In contrast to that, the
KHT links connecting feature pixels, subdivides them into collinear clusters and
votes for these with a Gaussian voting scheme (see Fig. 4 for details). This leads
to several advantages in comparison to the SHT. The computational effort is,
depending on the image, reduced by a factor up to ten [6] and the parameter
space is much clearer, with solitude real peaks and less noisy sub-peaks. As a
result, the robustness and accuracy are increased and false positive line detection
candidates are reduced. For most HT implementations, lines are used in their
Hesse normal form, i.e., the line for a fixed ρ and Θ is

ρ = u cos Θ + v sin Θ ∀u, v ∈ R. (1)

Instead of evaluating the neighbourhood of peaks as described in Sect. 1, the
results of a Harris corner detector are utilised to determine the end points of
a line. This is less critical with respect to nearby lines or peaks and uses the
corner characteristics of the rectangular areas on the marker design, see Fig. 3.
The Harris feature points provide further possibilities to validate and optimise
(i.e., error minimise) the reconstruction results. All the corner points at the
top and at the lower end lie on an elliptical curve each. This property creates
additional evaluation and cross checking data. The same is true for one upper
and one lower (i.e., the start and end point) Harris feature for one line. Those two
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Fig. 4. Flowchart of the KHT algorithm with a exemplary linking and subdivision
process

points span an additional line with certain θ and ρ values that can be compared
to the corresponding θ and ρ values of the KHT line.

2.2 Human-Generated Ground Truth

There are various possibilities to achieve a hard, numerical ground-truth as a
comparison base. First of all, a computational simulation and mapping of the
real scene can be utilised. However, it is hard to take all aspects into considera-
tion with influencing factors like discretization of pixel space, optical distortion
or marker lighting and the ambient light situation. Second, a measurement of
the exact position and rotation of both, all markers and all cameras, can be
conducted. But this approach is very time-consuming and only feasible with
special measurement equipment like a coordinate measurement machine or a
measurement arm. Additionally, the procedure is always error-prone. Finally, a
human-generated ground truth can be used. For this goal, different test sub-
jects manually mark all the lines in all the images. Certainly, there is no exact
true location for a line. It is a partly subjective task to tag the start and end
point or the profile of a line when there is no hard black to white contrast but a
grayscale gradient. Thus, averaging for each line marked by all persons leads to
favourable results. This takes into consideration that every human being has a
different perceptual view and minimizes those differences. Furthermore, outliers
(e.g., wrongly marked lines by accident) are eliminated.

2.3 Mathematical Description

Several options for an evaluation criterion when comparing the distance or corre-
spondence of two lines are possible. As the line data are available in their normal
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form, see (1), the most basic approach would be the distance in Hough space or
the geometrical distance of two point pairs ρ and Θ for both lines, respectively.
However, a difference of one pixel ρ would lead to the same distance rating result
as one degree Θ, which does not represent the true circumstances. Therefore, the
distance of the perpendicular foot (dp) of two lines and the angular difference of
its normal vectors (da) (see Fig. 5) are used. Depending on the position of the lines
in the image or on the sensor, the latter leads to slightly different results. This is
caused by the fact that when the perpendicular foot is displaced by one pixel, the
influence on da is higher, the further away it lies from the principal point. Both
will be used subsequently, the first for its descriptiveness with easy to grasp pixel
units in image space, the second for its exact nature in the real three-dimensional
scene. Alternatively to da the cosine distance of the two vectors vl1 and vl2 can be
used, which leads to a reduced computational effort.
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Fig. 5. Sensor plane with two lines and their corresponding perpendicular foot distance
(dp) and perpendicular foot angle (da)

As an evaluation benchmark, the results of the KHT with its related param-
eter and preprocessing sets are compared to the human-generated ground truth.
Therefore, all lines are allocated to each other and their distances are calculated.
To assess the parameter set, the mean accuracy value of all lines in all 60 images
is computed. Parameter sets which lead to incomplete detection results (i.e., in
at least one image, at least one line has not been detected) are rejected. The 20
most significant lines (i.e., those with the highest bin or peak in the parameter
space) are allocated and compared to the, depending on the view of the marker,
eight to ten human-generated master lines.

The indices l1 and l2 represent the human-generated master line and its
corresponding auto-detected KHT line which should be compared. nimg is the
total number of all evaluated images, nline the number of lines in each image.
The perpendicular foot distance can be computed by
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dp =
√

(ul1 − ul2)2 + (vl1 − vl2)2 (2)

on the image plane with
u = ρ cos Θ (3)

and
v = ρ sin Θ (4)

and its mean value with

d̄p =
1

nlinenimg

nimg∑

i=1

nline∑

j=1

dp(i, j). (5)

In addition, the mean angular difference of the normal vectors with v as the
vector pointing from the principal point towards the perpendicular foot of a line
(see Fig. 5) can be calculated by

da = arccos
vl1 · vl2

‖vl1‖ ‖vl2‖
(6)

in the three dimensional space using

d̄a =
1

nlinenimg

nimg∑

i=1

nline∑

j=1

da(i, j) (7)

together with

v =

⎛

⎝
u0 − ρ cos Θ
v0 − ρ sin Θ

f

⎞

⎠ (8)

where u0 and v0 are the coordinates of the principal point and f the focal length
of the camera. Those parameters are individually evaluated for each camera
using intrinsic camera calibration with a standard chequered pattern.

3 Parameter Study Results

The marking procedure for the realisation of the human-generated ground truth
was implemented as a MATLAB script. The users always had the possibility to
zoom in and out during the whole marking process to assess details of the line
just as the whole line profile at once. The intensity images and not the already
binarised edge images are used to generate the ground-truth, thus taking into
account the influence of the edge detection algorithm and threshold, too. The
data basis for all evaluations are 20 spatial poses of a cylindrical marker seen
from three cameras which leads to a total of 60 images. Fifteen people have
participated in the marking procedure. The task at hand was explained by a
short demonstration and illustrated help files. Fig. 6 shows a flowchart for the
parameter study process.
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Fig. 6. Flowchart of the KHT parameter study

All of the five KHT parameters (see Table 1 for details) are varied in 10
steps and arranged in all possible combinations, leading to a total of 1 · 105

permutations. Additionally, the preprocessing is distinguished in six different
alternatives: Sobel and Canny edge detection with three thresholds each. For
the Sobel algorithm a Gaussian filter with the same parameters as the one for
the Canny algorithm was applied. Although both algorithms actually use the
same filter mask, there is a difference in thresholding and edge thinning. There-
fore, both lead to different results. The standard MATLAB implementation of
both algorithms with the thresholds 0.07, 0.10 and 0.13 is used.

The best five results of the parameter study for each edge detection algorithm
and threshold combination can be seen in Table 3. Preferable results are achieved
with Sobel edge detection and a relatively low threshold. In general, the Sobel
results are about 50 percent more accurate than the Canny ones. In comparison
to the original default parameter values (cf. Table 1) with a resulting dp of 3.326
Pixels, the best parameter set 21137 is more than three times more accurate
(dp = 1.062 Pixels) and almost in a sub-pixel range. Using the angle da as a
distance criterion instead of the perpendicular foot distance dp, the order of
the best parameter sets stays the same. Table 2 shows a comparison for both
variations. Their ratio varies only slightly depending on the relative position of
a line in the image. Towards the border of the image sensor, one pixel difference
leads to a larger angular difference then towards the image center (i.e., close to
the principal point). A comparison between the detected default lines and the
improved lines is shown in Fig. 8.

Figure 7 shows the effects on the detection accuracy when a single parameter
is varied around its initial value. Parameter set 21137 is a narrow choice (see
Fig. 7a), where small variations of the parameters lead to a rapid decrease of
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(a) Sobel Thresh. 0.07, d̄p = 1.063 Px (b) Sobel Thresh. 0.07, d̄p = 1.068 Px

(c) Sobel Thresh. 0.10, d̄p = 1,174 Px (d) Sobel Thresh. 0.13, d̄p = 1,099 Px

Fig. 7. Sensitivity of the detection accuracy to variations of single parameters

Fig. 8. Comparison between lines with the default parameter set (red, dashed) and
lines with the improved parameter set (green, solid)
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Table 1. Overview of the KHT parameters, its default values and the range for the
parameter study

Parameter Symbol Def. value Exam. range Description

Cluster Min Size cσ 10 [2, ..., 25] Minimal size of a cluster to be
still considered as such

Cluster Min Dev cδ 2 [0.3,...,5] Minimal distance for a feature
pixel to be assigned to a cluster

Delta δ 0.5 [0.03,...,1.5] Discretisation of the parameter
space

Kernel Min Height κ 0.002 [0.001,...,0.4] Minimum height of a kernel to
still pass culling

Sigma σ 2 [0.3,...,5] Standard deviation for the
Gaussian kernel

Table 2. Comparison between dp and da as a distance criterion with Sobel edge
detection (Threshold = 0.07)

d̄p (Px) SD(dp) (Px) d̄a (◦) SD(da) (◦)

1.062 0.274 2.016 · 10−2 0.521 · 10−2

1.067 0.293 2.026 · 10−2 0.556 · 10−2

1.076 0.301 2.043 · 10−2 0.571 · 10−2

1.078 0.309 2.046 · 10−2 0.586 · 10−2

1.081 0.309 2.052 · 10−2 0.587 · 10−2

the accuracy (steep response curve), whereas parameter set 21124 (see Fig. 7b)
lies in a much broader area with favourable parameters (flat response curve,
except σ), where parameter changes lead to only marginally worse results. The
same can be seen in Table 3d, where, in contrast to row one, the rows two to five
represent similar parameter choices. The lowering of σ = 2.5 in parameter set
21137 (Fig. 7a) of 60 percent almost equals the σ = 1.2 of parameter set 21124
(Fig. 7b). Variations and especially a lowering of σ generally lead to the steepest
rise in inaccuracy. Smaller δ values, i.e. a finer rasterisation of the parameter
space, mainly lead to worse results. Bins of a certain size are necessary to avoid
oversampling with too many sub peaks. Small σ values cause that peaks of
different cluster do not melt into combined peaks anymore, which leads to worse
results because of unintended sub-peaks of separate clusters only representing a
part of the actual, entire marker line.
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4 Conclusion

An image processing chain to detect features for the calculation of the spatial
arrangement of cylindrical markers has been presented. To improve its results,
a parameter study with the use of a human-generated ground truth was con-
ducted and statistically evaluated. This increased the accuracy of line detection
results by a factor of three. Using this data, the movements of objects during
the biomedical testing of knee prosthesis with a six axes robot can be assessed
and used as a correction factor for the robot’s control loop.

The proposed method can be adapted to other computer vision problems
where complex parameter sets lead to manifold influencing factors which are
only hard to survey. Instead of a merely subjective verdict, numerical comparison
data can be achieved.

As future work, the results will be further assessed and cross checked with
simulation and a measurement ground-truth. Furthermore, the implication of
feature detection accuracy on the precision of the reconstruction algorithm will
be evaluated.
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