
© Springer International Publishing Switzerland 2015 
H. Liu et al. (Eds.): ICIRA 2015, Part I, LNAI 9244, pp. 15–23, 2015. 
DOI: 10.1007/978-3-319-22879-2_2 

Frequency Analysis of the In-Plane Rotating Hub-Beam 
System Considering Effects of the Hub 

Jun-wei Chen, Le-tong Ma, Bo Zhang(), and Han Ding 

State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, 
Shanghai Jiao Tong University, Shanghai 200240, China 

cjwbuaa@163.com, m835527262@126.com, {b_zhang,hding}@sjtu.edu.cn 

Abstract. In this paper, the in-plane rotating hub-beam system is mainly inves-
tigated considering effects of the hub. By applying the extended Hamilton’s 
principle and the Galerkin method, the governing equation of motion of the 
hub-beam system is derived. The hub-beam rotary inertia ratio is investigated to 
reveal its effect on the frequency characteristics of the rotating hub-beam system. 
Through the frequency analysis, it is shown that the natural frequencies of dif-
ferent orders vary between those of the clamped and the pinned boundary con-
ditions at the connecting point between the hub and the beam. Finally the figure 
of connecting rigidity is plotted to show the variation. 
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1 Introduction 

The rotating beam is a fundamental element in mechanical engineering. Along with the 
high precision required in applications, such as rotating blades, antennas, robot arms, 
spinning space structures, etc., the dynamic characteristics of the rotating beam are of 
great importance for the mechanical design and evaluation due to dynamic stiffening. 

Therefore many researchers have studied this phenomenon since it was pointed out 
in 1987 [1]. Yoo et al. [2-4] applied the Kane’s method to model a rotating cantilever 
beam by assumed mode method. Utilizing the same discretization method, Hong & Liu 
developed first order approximating coupling (FOAC) model by the principle of virtual 
work [5,6]. In these papers, the dynamic stiffening due to the rotation of the single 
beam itself was mainly concerned and reasonable explanations about the natural fre-
quencies were given and justified. Usually, it is regarded that it is clamped at the 
connecting point between the hub and the beam. This is reasonable when the rotary 
inertia of the hub is large. However, as the experimental and analytical work in [7-10] 
showed, the actual boundary condition is between the pinned and clamped boundary 
conditions at the connecting point, depending on the hub property. 

This is meaningful for some engineering applications where a rotating beam is 
driven by a light hub. In such applications, the flexible connection between the hub 
and the beam has impact on the natural frequencies and dynamic response of the 
beam. So in this paper, considering the effect of dynamic stiffening, the effect of the 
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hub property to the natural frequency of the rotating beam is investigated. First, the 
dynamic model of the rotating hub-beam system was developed by employing the 
extended Hamilton’s principle and the Galerkin method. Then the governing equation 
for frequency analysis was formulated, and the variation of natural frequencies due to 
different values of rotary inertia of the hub was studied. Finally, conclusions are given. 

2 Modeling 

In this section, the rotating hub-beam system considering geometric nonlinearity is 
modelled based on the linear elasticity law and the Euler-Bernoulli model. Fig. 1  
illustrates the configuration of the system. The rigid hub and the flexible beam are 
driven by the externally applied torque ܯሺݐሻ at the hub center ܱ in the global Carte-
sian coordinate system ܱ-ܺ଴ ଴ܻ. The body Cartesian coordinate system ܱ-ݔ௕ݕ௕ , fixed 
to point ܱ, is initially aligned to ܱ-ܺ଴ ଴ܻ. 
 

 

Fig. 1. Configuration of the rotating hub-beam system 

2.1 Description of Deformation 

As showed in Fig. 1, the displacement vector of a generic point P can be represented in O-ݔ௕ݕ௕  as, ࣋ ൌ ሺݔ ൅ ݎ ൅ ࢏ଵሻݑ ൅  (1)                       ଶ࢐ݑ

where ࢏, ࢐ are unit vectors of ܱ-ݔ௕ݕ௕ , and ݑଵ, ଶݑ  are the respective deformation 
along each unit vector. Introduce A to denote the transforming matrix from ܱ-ݔ௕ݕ௕  to ܱ-ܺ଴ ଴ܻ as, ࡭ ൌ ቂܿߠݏ݋ െߠ݊݅ݏߠ݊݅ݏ ߠݏ݋ܿ ቃ                             (2) 

The displacement vector in ܱ-ܺ଴ ଴ܻ can be represented as follows.  ࢘=(3)                               ࣋࡭ 
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Differentiating ࢘ yields, ሶ࢘ ൌ ෨࣋ࡵ࡭ሶߠ ൅ ࡭ ሶ࣋                                 (4) 

where ࡵ෨ ൌ ቂ0 െ11 0 ቃ,     ሶ࣋ ൌ ൤ݑሶ ଵݑሶ ଶ൨ 

Considering geometric nonlinearity, the axial displacements of Eulerian description 
is utilized instead of ݑଵ, which is represented as in [3] ݏ ൌ ଵݑ ൅ ଵଶ ׬ ൤ቀడ௨మడ௫ ቁଶ൨ ௫଴ݔ݀                        (5) 

Then by the Galerkin method, one obtains. ݏሺݔ, ሻݐ ൌ ࣘଵ் ሺݔሻࢗଵሺݐሻ                           (6) ݑଶሺݔ, ሻݐ ൌ ࣘଶ்ሺݔሻࢗଶሺݐሻ                          (7) 

where ࣘ௜ ൌ ሾ߶௜ଵ ߶௜ଶ ڮ  ሿ்  and ࢗ௜ ൌ ሾݍ௜ଵ ݍ௜ଶ ڮ  ሿ் . Generally, any compact set of 
functions satisfying geometric boundary conditions can be applied as the spatial func-
tions ࣘ௜  [11]. In this study, the orthonormal modes of a clamped-free beam [12] are 
utilized. 

2.2 Potential Energy 

The strain energy of the beam due to the axial inertia force and the transverse blending 
is expressed as in [3], 

ܷ ൌ ଵଶ ׬ ܣܧ ቀడ௦డ௫ቁଶ௟଴ ݔ݀ ൅ ଵଶ ׬ ܫܧ ቀడమ௨మడ௫మ ቁଶ ௟଴ݔ݀                  (8) 

where ܧ is the Young’s modulus, ܣ is the cross-section area of the beam, ݈ the length 
of the beam, ܫ the second area moment of inertia of the cross section. 

2.3 Kinetic Energy 

The kinetic energy of the system consists of those of the hub and the beam, i.e., ܶ ൌ ଵଶ ሶߠ௛ܬ ଶ ൅ ଵଶ ׬ ܣߩ ሶ࢘௟଴ · ሶ࢘  (9)                           ݔ݀

where ܬ௛ is the hub rotary inertia, and ߩ mass density of the beam. 
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2.4 Governing Equations 

Assuming ݔ ൅ ݎ ب ଵݑ  and neglecting higher-order nonlinear terms, the governing 
equations of motion are formulated by the extended Hamilton’s principle as, ∑ ቂ׬ ݔሺܣߩ ൅ ௟଴ݔሻ߶ଶ௜݀ݎ ቃ ሷଶ௜ఓమ௜ୀଵݍ ൅ ቂܬ௛ ൅ ׬ ݔሺܣߩ ൅ ௟଴ݔሻଶ݀ݎ ቃ ሷߠ ൌ  ሻ     (10)ݐሺܯ

∑ ሷଶ௜ݍ ׬ ௟଴ఓమ௜ୀଵݔଶ௜߶ଶ௝݀߶ܣߩ ൅ ሷߠ ׬ ݔሺܣߩ ൅ ௟଴ݔሻ߶ଶ௝݀ݎ ൅ ሶߠ2 ∑ ׬ 0݈ݔ2݆݀߶1݅߶ܣߩ ሶݍ 1݅ൌ1ߤ1݅ െ
ሶߠ ଶ ∑ ଶ௜ݍ ቂ׬ ௟଴ݔଶ௜߶ଶ௝݀߶ܣߩ ൅ ଵଶ ׬ ଶݔሺܣߩ െ ݈ଶሻ డథమ೔డ௫ డథమೕడ௫ ௟଴ݔ݀ ൅ ݎ ׬ ݔሺܣߩ െ௟଴ఓమ௜ୀଵ

݈ሻ డథమ೔డ௫ డథమೕడ௫ ቃݔ݀ ൅ ∑ ଶ௜ݍ ׬ ܫܧ డమథమ೔డ௫మ డమథమೕడ௫మ ௟଴ఓమ௜ୀଵݔ݀ ൌ 0        ሺ݆ ൌ 1,2, …  ଶሻ    (11)ߤ

where ߤଵ and ߤଶ are the number of generalized coordinates for ݏ and ݑଶ, respec-
tively. Obviously, Eqs. (10) and (11) are coupled due to the Coriolis effect. Since the 
stretching natural frequencies are much greater than the bending ones [13], it is sensible 
to ignore the coupling terms within the range concerned in the following. 

For simplicity, introduce the following dimensionless variables. ߜ ൌ ௥௟ ߚ   , ൌ ௃೓ఘ஺௟య,   ߦ ൌ ௫௟ ,   ߬ ൌ ඥ ଴ܶߛ   ,ݐሺ߬ሻ ൌ ሶሺ߬ሻߛ   ,ሻݐሺߠ ൌ ఏሶ ሺ௧ሻඥ బ் , 

ሺ߬ሻ݌ ൌ ௤మሺ௧ሻ௟ ,   ߰ଶሺߦሻ ൌ ߶ଶሺݔሻ,   ߟሺ߬ሻ ൌ ௟ாூ ሻ,   ଴ܶݐሺܯ ൌ ாூఘ஺௟ర. 

Then Eqs. (10) and (11) are simplified as 

ቂߪ ࡯்࡯ ۻ ቃ ൤ߛሷ࢖ሷ ൨ ൅ ቀቂ0 00 ۹௦ቃ െ ሶߛ ଶ ቂ0 00 Δ۹ቃቁ ቂ࢖ߛቃ ൌ ቂߟሺ߬ሻ0 ቃ          (12) 

where ߪ ൌ ߚ ൅ 13 ሺ1 ൅ ߜ3 ൅  ଶሻߜ3

࡯ ൌ න ሺߦ ൅ ଵߦሻ࣒ଶ݀ߜ
଴  

ۻ ൌ න ࣒ଶ࣒ଶ்ଵ
଴  ߦ݀

۹௦ ൌ න ߲ଶ࣒ଶ߲ߦଶ ߲ଶ࣒ଶ்߲ߦଶଵ
଴  ߦ݀

∆۹ ൌ ۻ ൅ δ۹ௗଵ ൅ 12 ۹ௗଶ 
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۹ௗଵ ൌ න ሺߦ െ 1ሻ ߲࣒ଶ߲ߦ ߲࣒ଶ்߲ߦ ଵߦ݀
଴  

۹ௗଶ ൌ න ሺߦଶ െ 1ሻ ߲࣒ଶ߲ߦ ߲࣒ଶ்߲ߦ ଵߦ݀
଴  

3 Frequency Analysis 

In Eq. (12), rigid rotating motion and in-plane bending vibration are highly coupled, 
and hub radius ratio δ can affect the stiffness matrix obviously. Since this parameter 
has been studied a lot [14,11,15], rotary inertia of the hub is mainly focused on. 

For frequency analysis, set ߟሺ߬ሻ to zero. Let ω denote the dimensionless natural 
frequency, then it obtains, ቂ߱ଶ ቀۻ െ ଵఙ ࡯ ڄ ቁ்࡯ െ ሺ۹௦ െ ሶߛ ଶΔ۹ሻቃ ࢖ ൌ 0               (13) 

The curved surfaces of the first two order dimensionless natural frequencies are 
demonstrated in Fig. 2. It is showed that ߱ tends to increase as ߛሶ  gets larger due to the 
effect of dynamic stiffening, which has been verified by many researchers. Meanwhile, 
hub-beam ratio of rotary inertia ߚ has great effect on the varying trends of ߱. In Fig. 2, 
the black solid lines represent the natural frequencies under the clamped boundary 
condition at the hub end, and the black solid lines with dots represent those of the 
pinned boundary condition (though they are plotted at ߚ ൌ 5). At different values of 
the angular velocity, the natural frequency of each order of the hub-beam system varies 
between those of the pinned-free and the clamped-free boundary conditions. That is, ߱ 
approaches the natural frequency of the rotating beam under the pinned-free boundary 
condition when ߚ  is close to zero, and that of the rotating beam under the 
clamped-free boundary condition when ߚ is close to infinity. The above phenomenon 
was tested through a physical experiment using a high speed camera in Ref. [7]. 

To further reveal and verify the above phenomenon, Fig. 3 is plotted to show the 
curved lines of ߱ vs. ߛሶ . The black curved lines stand for the 1st order natural fre-
quencies of different values of ߚ , which clearly demonstrate the aforementioned 
changing rule in terms of ߱ about ߚ. The same changing rule in terms of ߱ about ߚ 
exists for other orders, so the corresponding curved lines are omitted. Besides, the blue 
curved line is plotted for comparison to represent the 2nd order natural frequency when ߚ approximates to infinity. And the black asterisks and upper triangles represent the 1st 
and 2nd order dimensionless natural frequencies given in Ref. [3], respectively. Since 
the clamped-free boundary condition was applied in Ref. [3], its results agree with the 
curved lines of ߚ ՜ ∞. 
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(a)  

(b)  

Fig. 2. Curved surfaces of ߱ in terms of ߚ and ߛሶ: (a) 1st order; (b) 2nd order 

Fig. 4 shows the varying tendency of ߱ vs. ߚ of different orders, where some 
specified points are compared with those in Ref. [8]. The corresponding results agree 
well. Besides, it can be observed that ߱ declines very fast when ߚ is close to zero, and 
very slow after ߚ passes 1. In other words, the greater ߚ is, the less the decreasing rate 
is. So ߱ is more sensitive to ߚ when ߚ approaches zero. 
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Fig. 3. ߱ vs. ߛሶ  of different values of ߚ 

.܏۴ܑ  4.  ߱ vs. ߚ of different orders 

Based on the definition of the clamped and the pinned boundary conditions, it can be 
regarded that the connecting rigidity between the hub and the beam is infinity in the 
case of the clamped-free boundary condition, and zero in the case of the pinned-free 
boundary condition. As a result, the range of ߚ can be divided into three regions, as 
shown in Fig. 5. Region I is the region with very low connecting rigidity, region II is the 
highly rigid-flexible coupling region with intermediate connecting rigidity, and region  
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III is the region with high connecting rigidity. Such division is clear to understand the 
rigid-flexible coupling between the hub and the beam, and is meaningful for  
engineering practice. 
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Fig. 5. Division of the range of β 

4 Conclusions 

In this paper, the effect of the hub on the in-plane rotating hub-beam system is inves-
tigated. By applying the extended Hamilton’s principle and the Galerkin method, the 
governing equation of motion of the hub-beam system is derived. Frequency analysis 
shows that the natural frequencies of different orders vary between those of the 
clamped and the pinned boundary conditions at the connecting point between the hub 
and the beam. Zero value of the hub inertia leads to the pinned boundary condition, and 
the infinity value of the hub inertia leads to the clamped boundary condition. Due to 
this flexibility, the phenomenon is meaningful for engineering design. 
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