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Abstract. The existing procedures for Autism Spectrum Disorder
(ASD) diagnosis are often time consuming and tiresome both for highly-
trained human evaluators and children. In addition, prospective human
evaluators need to undergo a rigorous and lengthy training process that
may not be accessible or affordable to all interested individuals. Hence,
this paper proposes a framework for robot-assisted ASD evaluation based
on Partially Observable Markov Decision Process (POMDP) modelling.
POMDP is broadly used for modelling optimal sequential decision mak-
ing tasks under uncertainty. Spurred by the widely accepted Autism
Diagnostic Observation Schedule (ADOS), we start off with emulat-
ing ADOS. In other words, our POMDP model explicitly takes into
account the ADOS stratification into several modules, ongoing task infor-
mativeness and robotic sensor deficiencies. Relying only on imperfect
sensor observations, the robot provides an assessment of the child’s ASD-
relevant functioning level (which is partially observable) within a partic-
ular task. Finally, we demonstrate that the proposed POMDP framework
provides fine-grained outcome quantification, which could also increase
the appeal of robot-assisted diagnostic protocols in the future.

Keywords: Robotics · POMDP · Autism spectrum disorder ·
Diagnostics

1 Introduction

Autism Spectrum Disorder (ASD) is a developmental disorder characterised by
impairment in social interaction, verbal and nonverbal communication and by
repetitive behaviours and interests. It has become a commonly diagnosed neu-
rodevelopmental disorder, with increasing prevalence rates, affecting between
1.1% and 1.5% of children population [1]. With an estimated yearly prevalence
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increase of 3%, it is expected to become one of the most common disorders in
the near future. To increase the inclusion rate and reduce the cost of lifelong
care for people with ASD, experts focus on early diagnostics and intervention.

Since there are no medical markers of autism that could be used in a diagnos-
tic process, the diagnosis relies on behavioural observations made by experienced
clinicians. There are several mutually non-exclusive approaches to diagnostics:
a) using criteria from the Diagnostic and Statistical Manual of Mental Disorders
(DSM) [2]; b) testing children using the Autism Diagnostic Observation Schedule
(ADOS) [3]; and, c) interviews with the caregivers using the Autism Diagnostic
Interview-Revised (ADI-R) [4].

Studies show that the agreement between clinicians on different DSM criteria
for autism varies from 0.58 to 0.79 [5]. For ADOS, the inter-rater reliability for
some ratings is as low as 0.38 in modules involving preschool children [3]. The
main reason for these discrepancies is that the diagnostic procedure is highly
complex due to simultaneous observation, coding and interpretation of many
behaviours as well as administration of various specific tasks. Additionally, the
process of learning to observe and code the behavior in order to achieve 80%
inter-rater reliability on ADOS might last for several years. Moreover, the process
of diagnosing and assessing the degree of disorder can take several years even
for experienced clinicians, delaying the all-important early intervention. Thus,
there exists a need for a more objective approach that would help clinicians
in gathering multimodal information and coding the social behavior. Modern
robotics technologies seem capable of providing adequate tools to address this
need.

Since children with ASD are often attracted by technological devices, there
are many robotic applications focusing on teaching and intervention [6,7].
However, diagnostic applications are scarce even though there exists a need for
quantitative, objective measurements of social functioning for diagnosis, for eval-
uating intervention methods, and for tracking the progress of individuals over
time [8]. This is mainly due to the complexity of the diagnostic process itself,
but is also dependent upon efficient processing and reasoning algorithms that are
to be implemented on the robot. The work in [9] proposes several quantitative
metrics for social response during the diagnostic process, with data collected
through passive sensors installed in the examination room. In addition, there is
an obvious trend in computer science to improve the diagnostic process for ASD
(although robots are not deployed). Such an effort is reported in [10], where
language and speech are processed in order to quantify some of the behavioural
patterns. Through observation of natural conversation between the examiner
and child, it is shown that the behavior of examiners changes depending on the
perception of the child’s behavior, indicating the need for consistent and repet-
itive stimuli (also called social presses), which can be achieved through the use
of a robotic examiner.

The present work is the first step towards devising an adaptive protocol aimed
at expediting the diagnostics procedure while retaining (and possibly increasing)
the reliability of the standard ADOS protocol. This implies the robot [11] being
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able to act and react under uncertainty and infer information about the child
from observing the behaviour, similarly to human evaluators. Due to their gen-
erality and similarity to the human decision-making process under uncertainty,
we adopt Partially Observable Markov Decision Processes (POMDPs) to model
the interaction between the robot and children. POMDPs are already used in
a variety of applications for human-robot interaction and acting under uncer-
tainty. In [12], the authors explore the model of interaction between a disabled
person and a robotic wheelchair, while the authors of [13] model humans as
observation providers to a robotic system navigating in unknown environments.
Similarly to our concept of a robot eliciting the interaction in order to obtain
information about the child, [14] utilizes POMDPs to improve robot plans for
information gathering in unknown environments. Moving away from navigation
applications, POMDPs are also used to model human-robot dialogue [15] and
human-in-the-loop systems [16].

Herein, we primarily focus on the POMDP model of diagnostic tasks and use
the belief state of the model as an automatic evaluator of the child’s behaviour. In
other words, we do not yet fully exploit the POMDP decision-making feature,
which is the subject of our future work. Therefore, the contributions of this
paper are twofold: a) the ASD diagnostic task modelling via Partially Observable
Markov Decision Process (POMDP); and, b) the automatic coding of the child’s
behaviour at the end of each task through the POMDP belief state.

The paper is organized as follows. Section 2 presents two tasks of the
robot-assisted ASD diagnostic protocol along with general information about
POMDPs. In Section 3, we model the two protocol tasks employing POMDP,
which automatically codes the child’s behaviour through the POMDP belief
state. A comparison with the human evaluator is in Section 4. Concluding
remarks and future directions are given in Section 5.

2 Preliminaries

In the envisioned robot-assisted diagnostic protocol, the robot is actively par-
ticipating in the diagnostic process, both through eliciting the interaction and
observing the child’s behaviour. The principal question is whether the robot can
help clinicians reach a diagnosis reliably in shorter time. Our robot-assisted ASD
diagnostic protocol consists of four tasks developed upon the ADOS protocol and
is aimed for children aged 2-6. In this paper we focus on two tasks: response to
a name call and joint attention from our previous work [17]. During the clinical
sessions it was observed that the proposed tasks, when performed by the robot,
take significant amount of time to complete. Therefore we shorten the tasks in
this work.

The response to a name call task of the protocol focuses on a child’s ability to
respond after being called by name, with the response classified as positive if eye
contact is detected. The progress of the task is shown in Fig. 1. At the beginning
of the task, the child is distracted by playing with some object. Meanwhile, the
robot calls (action call) the child by name and repeats this action at most four
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times if the child does not respond. Once the child responds, the task terminates
(action end). If the child does not respond to being called by name, the robot
reinforces the call by referencing the child’s favourite toy (action rcall), food or
activity. After the reinforced call, the task is completed, as presented in Fig. 1
in the form of a decision tree.

The joint attention task of the protocol focuses on a child’s ability to transfer
attention from one object of interest to another. The positive response is again
verified via eye contact. In this task, one robot calls the child and turns its
head towards the other robot (action turn) trying to make the child transfer its
attention to the other robot. This turning procedure is repeated at most four
times if the child does not respond, followed by a reinforced call with pointing
towards (action point) the other robot. If the child does not respond to the
pointing gesture, the other robot, which was passive up to this point, tries to
attract the child’s attention by waving its arms, flashing LEDs or producing
various sounds (action attract). After this action, the task ends (action end)
(see Fig. 1).

Fig. 1. Decision trees for response to name and joint attention

One can notice a salient pattern in these tasks. Namely, the sequence of
performing an action, observing the child’s response and selecting the next action
based on the results of the previous one while building the opinion on the state
of the child. Notice that the child state, as far as ASD is concerned, cannot
be observed directly. This cyclic pattern fits the framework of POMDPs, which
we use to model the tasks of the robot-assisted ASD diagnostic protocol.

2.1 Partially Observable Markov Decision Processes

A POMDP is defined as a tuple (S,A,O, T,Ω,R), where S is a set of hidden
states of the process, A is a set of actions that can be performed, O is a set
of observations generated by the process, T denotes the conditional transition
probability between states depending on action p(s′|s, a), Ω defines the condi-
tional observation probability p(o′|s′, a), while R is a reward function. Since the
state of the process is hidden, we maintain the belief state b as a probability
distribution over S. Thus, b(s) is the probability of a system being in the state



86 F. Petric et al.

s ∈ S. Based on the current value of belief b, the system chooses the ‘best’ action
with respect to the expected reward. This mapping from belief state to the set
of actions is called policy and is denoted π.

After an action a is taken, the process transitions from a state s to a state s′

and generates an observation o′ (the process is also allowed to stay in the same
state, that is, s′ = s). At this time, the belief state is updated using the Bayes’
rule as follows:

b′(s) = p(s′|a, b, o′) =
p(o′|s′, a)

∑
s∈S [p(s′|s, a) · b(s)]
p(o′|a, b)

. (1)

Solving a POMDP yields an optimal policy π such that the expected cumu-
lative reward is maximized. Finding an exact solution to a POMDP is usually
deemed intractable. Hence, there exist approximate solvers such as pomdp-solve
[18] or SymbolicPerseus [19].

3 Modelling Diagnostic Protocol Tasks via POMDPs

In the proposed robot-assisted diagnosis, the robot evaluator builds its opinion
about the state of the child and presents it to expert evaluators, along with the
log of all data. Therefore, the POMDP model incorporates all states of a child
that are of interest in the assessment process, which belong to a set Sc, while the
robot builds its belief b over the states sc ∈ Sc. This belief b reflects the similarity
between the child’s observed behaviour and the child’s expected behaviour when
in a state sc. We focus on three states related to children having low functioning
ASD, high functioning ASD and children not suffering from ASD, which we
denote Sc = {sLA, sHA, sNA}, respectively.

The main social cue, on which we focus herein, is eye contact. Therefore, we
keep track of the following two observations: oc ∈ Oc := {oEC , oNEC}, meaning
eye contact detected and no eye contact detected, respectively. Child states Sc

and tracked observations Oc comprise the core of the task POMDP model and
are found in both tasks we focus on. Let us now model the specifics of each task.

3.1 Response to a Name Call

Response to a name call consists of four calls by name followed by one call that
uses a special phrase referring to something very dear or interesting to the child.
According to Fig. 1, the task ends when the child establishes eye contact after
a call. Consequently, the set of actions for this task is A = {call, rcall, end},
corresponding to a regular call, a call reinforced with special reference and task
termination, respectively.

The most important parts of POMDP models are state transition and obser-
vation probabilities. These probabilities are often extracted from a large amount
of data via learning algorithms (Hidden Markov Models being a prominent exam-
ple). However, since there are no large amounts of data related to the ASD diag-
nostics available, we approach modelling more pragmatically. Since the robot
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actions cannot change the aforementioned states, we define the following state
transition probabilities for any given action:

p(s′
LA | sLA, a ∈ A) = 1,

p(s′
HA | sHA, a ∈ A) = 1,

p(s′
NA | sNA, a ∈ A) = 1,

(2)

while all other conditional probabilities of transitions between the states in Sc

are set to 0.
To the best of our knowledge, there are no studies from which observation

probabilities could be inferred. As far as the ADOS Module 2 is concerned,
the following model parameters for action call have been gathered from expert
clinicians from the Faculty of Education and Rehabilitation Sciences, University
of Zagreb:

p(oc = oEC) =

⎧
⎨

⎩

0.8, children without ASD,
0.5, children with high functioning ASD,
0.2, children with low functioning ASD.

(3)

The reinforced call results in a higher probability of a child to establish eye
contact, which we model with a slight increase in the observation probability
with respect to (3), that is,

p(oc = oEC , a = rcall) =

⎧
⎨

⎩

0.9, children without ASD,
0.6, children with high functioning ASD,
0.3, children with low functioning ASD.

(4)

The observation probability distribution is set to uniform for the action end.
POMDP optimal policies can be sought over an infinite number of actions or

over a finite horizon. However, in the case of our diagnostic tasks, the number of
actions taken is limited. The goal is to obtain as much information as possible
without exhausting the child or making it bored and uninterested. To track the
progress of the task and the amount of information gathered, we introduce a new
set of states, sI ∈ SI := {sLI , sHI}, denoting low information state and high
information state, respectively. Thus, the states of the POMDP are S = Sc×SI .

We model the informativeness of an action a ∈ A, denoted Ia, as the proba-
bility of a transition from state sLI to state sHI :

Ia = p(sHI | sLI , a ∈ A). (5)

The robot cannot lose information when performing an action; hence:

p(sHI | sHI , a ∈ A) = 1, p(sLI | sHI , a ∈ A) = 0. (6)

Since transitions between information states in SI do not depend on the child
states in Sc and observations in Oc, we deduce the following belief update formula
for information states by extracting the constant parts from (1):

b′(sI) = k
∑

SI

[p(s′
I |sI , a ∈ A) · b(sI)] . (7)
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The belief over states SI must be normalized, i.e.,
∑

b(SI) = 1, which means
that k can be omitted from expression (7), yielding:

b′(sI) =
∑

SI

[p(s′
I |sI , a ∈ A) · b(sI)] . (8)

The robot is tracking the amount of information gathered by updating the belief
b(sHI). Plugging (5) and (6) into (8), the following holds:

b′(sHI) = b(sHI) + Ia · [1 − b(sHI)] . (9)

We now constrain the number of actions in the task by choosing Ia such
that, within the desired horizon of n steps, the belief b(sHI) reaches 0.9. The
task is then terminated by performing the action a = end, which is ensured
by highly rewarding it when the amount of information collected is high, and
by penalizing it when the amount of information is low. It is also important to
note that information update (9) results in subsequent actions being less and
less informative. Besides avoiding child fatigue, this property is the reason why
diagnostic tasks involve a finite (and relatively small) number of repetitions.

Since the response to a name call task requires 5 actions prior to completion
(not counting the ending action), we model informativeness of actions as Ia =
0.4, for which b(sHI), updated according to (9), attains a value greater than 0.9
after 5 actions. Note that all actions are considered equally informative.

The main obstacle when using this approach pertains to how the solver han-
dles the ending action. Essentially, the value iteration of POMDP solvers does
not account for the possibility that no more actions will be performed after
the action end is performed. Therefore, we extend the above model by adopting
the approach similar to the tiger problem [20], with the end action resetting the
belief state b to the uniform distribution over the state set Sc. This is achieved
by defining both the transition and observation probability distribution as the
uniform distribution over Sc for the action end. With p(s′|s, end) = const and
p(o′|s′, end) = const for all s′ ∈ Sc, the following holds:

b′(s) =
p(o′|s′, end)

∑
s∈Sc

p(s′|s, end)b(s)
p(o′|end, b)

=

=
p(o′|s′, end)p(s′|s, end)

∑
s∈Sc

b(s)
p(o′|end, b)

.

(10)

Since
∑

s∈Sc
b(s) = 1 and taking into account that p(o′|end, b) is the normalizing

factor used to ensure
∑

s∈Sc
b′(s) = 1, we infer from (10) that b′(s) is constant

for all s ∈ Sc. Equivalently, the belief state b′ is reset to the uniform distribution.
In addition to the reset of belief over states Sc, resetting the belief over

information states SI also has to be performed. In this case, the next iteration of
the task starts from b(sHI) = 0, which is achieved by setting p(sHI |sI , end) = 0.
In other words, the process cannot be in the state sHI after the action end,
regardless of the observation.
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Since the belief state is reset after the action end, an optimal policy between
two ending actions remains the same and is interpreted as a robot performing
the same task over and over again. Therefore, the limited amount of actions is
successfully modelled, while letting the solver iterate over multiple instances of
a task to generate the optimal policy.

The reward values for states and are manually tuned to obtain the policy in
Fig. 1, following the rules:

– if b(sHI) is low, reward call;
– if b(sLI) + b(sHI) is high, reward rcall; and
– if b(sHI) or b(sNI) is high, reward end.

It is important to note that multiple reward models can generate the desired
policy.

3.2 Joint Attention

We adopt a similar approach to the model of the joint attention task. Sets of
states S = Sc × SI and observations Oc remain the same as for the response to
a name call task. Additionally, we keep the property that actions do not change
the state sc, thus defining transition probabilities the same as in (2). Since the
joint attention task consists of four calls accompanied by turning the head,
one call accompanied by pointing and one attempt of attracting the attention
of the child, the set of actions for this task is A = {turn, point, attract, end}.
The following observation probabilities for given actions have been provided by
experienced clinicians:

p(oEC , turn) =

⎧
⎨

⎩

0.7, children without ASD,
0.4, children with high functioning ASD,
0.2, children with low functioning ASD,

(11)

p(oEC , point) =

⎧
⎨

⎩

0.8, children without ASD,
0.5, children with high functioning ASD,
0.3, children with low functioning ASD,

(12)

p(oEC , attract) =

⎧
⎨

⎩

0.9, children without ASD,
0.6, children with high functioning ASD,
0.4, children with low functioning ASD,

(13)

with the observation probability distribution for the action end set to uniform.
Since this task requires 6 actions to be completed, we model the informativeness
of actions as Ia = 0.35, while we tune the rewards to achieve the policy described
in Fig. 1.

Optimal action graphs for both tasks are presented in Fig. 2, showcasing
that it is possible to emulate the existing human reasoning by using the pro-
posed POMDP models and carefully designing rewards. In Fig. 2 we present the
sequence of actions that are to be performed for the response to a name call task.
The belief b(ASD) is the combined belief over states of low and high functioning
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ASD. The robot starts with the uniform belief b over Sc; thus, b(ASD) = 0.667.
The action to be taken at this point is call, after which the belief b(ASD)
branches depending on the observation. Based on the updated belief, the robot
chooses the optimal action in the second iteration. In the showcased scenario, if
the child responded the robot’s action is end (left branch), while it continues to
call the child in case of no positive response (right branch). A similar reasoning
is applied to the rest of the task and the joint attention task.

Fig. 2. Optimal actions with respect to the belief state

3.3 Modelling Sensor Accuracy

Due to the complexity of the behaviours tracked by the robot, perfect accuracy
of the perception algorithms cannot be attained. The performance of perception
algorithms is accounted for by modelling the sensors’ accuracy in the form of
uncertainty, which allows for easy integration into the POMDP model. To that
end, we define the accuracy of the sensor as a conditional probability ps:

ps = p(ôc|oc), (14)

where ôc is the observation perceived by the sensor, while oc is the observation
generated by the process (i.e., the child). The conditional observation probabili-
ties of POMDP model are transformed by taking into account the probability of
detection of the real observation and probability of detection of false positives:

p′(oc|sc, a) = ps · p(oc|sc, a) + [1 − ps] ·
∑

o�=oc

p(o|sc, a) =

= ps · p(oc|sc, a) + [1 − ps] · [1 − p(oc|sc, a)] .
(15)
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4 Performance of the POMDP Modelled Diagnostic
Protocol

The tasks in the ADOS protocol are coded with numbers (0, 1, 2, 3) indepen-
dently, then the results of individual tasks are summarized and a threshold is
applied to decide whether the child has ASD or not. The coding itself takes
place both simultaneously with the diagnostic session, but also takes a large
amount of time after the session, sometimes even including the review of the
video recording of the session.

We propose to encode the tasks of robot-assisted diagnostic protocol with
the belief state b obtained from the POMDP model of each task, maintaining
a scoring scheme similar to that of ADOS, but with finer granulation, possibly
enabling the simultaneous assessment of the degree of disorder. The codes for the
response to a name call task are summarized in Table 1. Each code corresponds
to the belief b(sc) when the end action is executed. As already shown in Fig. 1,
there are 6 possible outcomes for this task.

Table 1. Codes for response to a name call with different sensor accuracies ps

State ps Code = b(sc)

sc = sLA
100% 0.13 0.28 0.45 0.60 0.76 0.92
70% 0.25 0.33 0.41 0.48 0.57 0.70

sc = sHA
100% 0.33 0.44 0.44 0.36 0.23 0.08
70% 0.33 0.35 0.35 0.33 0.31 0.24

sc = sNA
100% 0.54 0.28 0.11 0.04 0.01 0
70% 0.42 0.32 0.24 0.19 0.12 0.06

Comparing the codes for different states, we infer that b(sNA) is the highest
when the child responds immediately, as expected. If the child responds within
the first several iterations of social presses, the similarity to the behaviour of
children with high functioning ASD is the highest. With the task extending into
more than 3 robot actions, b(sLA) becomes the dominant component of belief
state b, indicating that the behaviour is very similar to that of a child with low
functioning ASD. We also explore the values of b when we introduce a non-
perfect vision sensor. The values of belief states are similar to those obtained
by the perfect sensor, while the differences between the belief over states for an
individual outcome are smaller, which is expected since with a lower accuracy the
observation provides less information about the process state. Similar conclusions
are drawn regarding the joint attention task (see Table 2).

In addition to exhibiting similar trends, the codes for both tasks are compa-
rable with respect to the task outcome, which is in line with the current scoring
scheme where each task has the same weight in the final result. Using codes from
Tables 1 and 2, taking into account that we estimate our eye contact detection
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Table 2. Codes for joint attention with different sensor accuracies ps

State ps Code = b(sc)

sc = lowASD
100% 0.15 0.26 0.38 0.49 0.63 0.74 0.87
70% 0.26 0.32 0.38 0.44 0.5 0.56 0.66

sc = highASD
100% 0.30 0.39 0.43 0.42 0.33 0.25 0.13
70% 0.33 0.34 0.35 0.35 0.34 0.32 0.28

sc = noASD
100% 0.54 0.35 0.19 0.09 0.04 0.01 0
70% 0.41 0.34 0.27 0.21 0.16 0.11 0.06

algorithm to be 70% accurate, we encode the results of our previous sessions
with children [17] using b(sLA) as code. The sessions were performed with three
children with ASD (labelled ASD01-ASD03) and one typically developing child
(labelled TYP01). The codes obtained by the proposed POMDP models are
compared with the codes obtained via the traditional ADOS scoring scheme and
presented in Table 3. Note that the codes obtained via POMDP, which belong
to the interval [0, 1], are scaled to ADOS interval, which is [0, 3].

Table 3. Comparison of codes for behaviours observed in sessions with children

Task Child Response
Code

(iteration) POMDP scaled POMDP ADOS

Response to a name call

ASD01 4 0.48 1.44 1
ASD02 3 0.41 1.23 1
ASD03 No 0.70 2.10 3
TYP01 No 0.70 2.10 3

Joint attention

ASD01 No 0.66 1.98 3
ASD02 No 0.66 1.98 3
ASD03 6 0.56 1.68 2
TYP01 ∅ ∅ ∅ ∅

Comparing the scaled POMDP codes with ADOS codes (the last two columns
in Table 3), we conclude that the POMDP scoring scheme possesses finer reso-
lution. Namely, ADOS assigns the code 1 both to ASD01 and ASD02 while our
POMDP code distinguishes these two children. We expect this finer resolution
property to prove beneficial for the adaptive protocol we aim to develop.

5 Conclusion

Motivated by the limitations of existing autism diagnostic protocols, we propose
a framework for robot-assisted ASD evaluation based on POMDP modelling.
The proposed POMDP design allows the user to explicitly model the targeted
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participant population, ongoing task informativeness and robotic sensor deficien-
cies. Our framework utilizes the POMDP belief state to quantify the functioning
ASD level. We also show that, by thoughtfully designing the reward function of
the POMDP, one can emulate the reasoning of ADOS protocol, while providing
higher resolution of the outcome by using the belief states generated via our
POMDP models.

These favourable numerical results are reassuring and prompt an extensive
clinical trial involving several dozens of participants. Next to providing a hands-
on verification of the work presented herein, this clinical trial will also allow
us to fine tune the POMDP parameters. Afterwards, our goal is to increase
the resolution of the assessment by tracking more sets of observations, such as
vocalizations and gestures which are already tracked within ADOS. Ultimately,
we plan to further exploit the decision-making feature of POMDPs and design
an adaptive diagnostic protocol that could conceivably accelerate the diagnostic
procedure and make it more reliable.

Acknowledgments. This work has been fully supported by Croatian Science Foun-
dation under the project Autism Diagnostic Observation with Robot Evaluator (no.
93743-2014).

References

1. Baio, J.: Prevalence of autism spectrum disorder among children aged 8 years -
autism and developmental disabilities monitoring network, 11 sites, United States,
2010. MMWR 63(2) (2014)

2. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychi-
atric Association (2002)

3. Lord, C., Rutter, M., Dilavore, P.C., Risi, S.: Autism Diagnostic Observation
Schedule. Western Psychological Services (2002)

4. Rutter, M., LeCouteur, A., Lord, C.: The Autism Diagnostic interview, Revised
(ADI-R). Western Psychological Services (2003)

5. Klin, A., Lang, J., Chicchetti, V., Volkmar, F.R.: Interrater reliability of clinical
diagnosis and DSM-IV criteria for autistic disorder: results of the DSM-IV autism
field trial. Journal of Autism and Developmental Disorders 30(2), 163–167 (2000)

6. Iacono, I., Lehmann, H., Marti, P., Robins, B., Dautenhahn, K.: Robots as social
mediators for children with autism - a preliminary analysis comparing two different
robotic platforms. In: 2011 IEEE International Conference on Development and
Learning (ICDL), vol. 2, pp. 1–6 (2011)

7. Liu, C., Conn, K., Sarkar, N., Stone, W.: Online affect detection and robot behavior
adaptation for intervention of children with autism. IEEE Transactions on Robotics
24(4), 883–896 (2008)

8. Scassellati, B., Henny, A., Mataric, M.: Robots for use in autism research. Annual
Review of Biomedical Engineering 14(1), 275–294 (2012)

9. Scassellati, B.: Quantitative metrics of social response for autism diagnosis. In:
IEEE International Workshop on Robot and Human Interactive Communication,
ROMAN 2005, pp 585–590 (2005)



94 F. Petric et al.

10. Narayanan, S., Georgiou, P.G.: Behavioral Signal Processing: Deriving human
behavioral informatics from speech and language. Proceedings of the IEEE 101(5),
1203–1233 (2013)

11. Aldebaran Robotics. Nao Software Documentation, v2.1 edn. (2015). https://
community.aldebaran-robotics.com/doc

12. Taha, T., Miro, J.V., Dissanayake, G.: A pomdp framework for modelling human
interaction with assistive robots. In: 2011 IEEE International Conference on
Robotics and Automation (ICRA), pp. 544–549, May 2011

13. Rosenthal, S., Veloso, M.: Modeling humans as observation providers using
pomdps. In: RO-MAN 2011, pp. 53–58. IEEE, July 2011

14. Wang, M., Canu, S., Dearden, R.: Improving robot plans for information gathering
tasks through execution monitoring. In: 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5285–5291 (2013)

15. Caccavale, R., Leone, E., Lucignano, L., Rossi, S., Staffa, M., Finzi, A.: Attentional
regulations in a situated human-robot dialogue. In: The 23rd IEEE International
Symposium on Robot and Human Interactive Communication, RO-MAN 2014,
pp. 844–849, August 2014

16. Lam, C.-P., Sastry, S.S.: A pomdp framework for human-in-the-loop system.
In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC),
pp. 6031–6036, December 2014

17. Petric, F., Hrvatinic, K., Babic, A., Malovan, L., Miklic, D., Kovacic, Z., Cepanec,
M., Stosic, J., Simlesa, S.: Four tasks of a robot-assisted autism spectrum disor-
der diagnostic protocol: first clinical tests. In: 2014 IEEE Global Humanitarian
Technology Conference (GHTC), pp. 510–517, October 2014

18. Cassandra, A.R.: pomdp-solve, v5.3 edn. (2013). http://pomdp.org/
19. Poupart, P.: Exploiting Structure to Efficiently Solve Large Scale Partially Observ-

able Markov Decision Processes. PhD thesis, University of Toronto (2005)
20. Cassandra, A.R., Kaelbling, L.P., Littman, M.L.: Acting optimally in partially

observable stochastic domains. In: Proceedings of the 12th National Conference on
Artificial Intelligence, pp. 1023–1028 (1994)

https://community.aldebaran-robotics.com/doc
https://community.aldebaran-robotics.com/doc
http://pomdp.org/

	Towards A Robot-Assisted Autism Diagnostic Protocol: Modelling and Assessment with POMDP
	1 Introduction
	2 Preliminaries
	2.1 Partially Observable Markov Decision Processes

	3 Modelling Diagnostic Protocol Tasks via POMDPs
	3.1 Response to a Name Call
	3.2 Joint Attention
	3.3 Modelling Sensor Accuracy

	4 Performance of the POMDP Modelled Diagnostic Protocol
	5 Conclusion
	References


