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Abstract. Currently, for Mars science target selection, the task of deter-
mining whether or not it is possible for a robot arm to touch a target
is accomplished by human operators and scientists on Earth. The devel-
opment of useful on-board autonomous touchability techniques would
greatly reduce human intervention. It would be advantageous if the rover
could evaluate autonomously whether the robot arm would be able to
place an instrument against an identified science target. In this paper
we propose a new approach to the problem of autonomous science target
touchability evaluation. We assess the touchability of a potential science
target in terms of its size (the number of pixels of the science target in
the image), SV (the science value of the science target), distance (the
reachable distance of a robot arm), and orientation (the angular regions
of the arm’s shoulder azimuth). In particular, the plane in front of the
arm is divided into a number of partitions, which are ranked with the
different touchability levels by the use of a fuzzy rule-based system. Sim-
ulations on the rank of science object touchability are carried out, via
software and hardware implementation. Based on the real data gathered
from the cameras and the Schunk arm experimental results successfully
verify the validity of the proposed approach.
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1 Introduction

Owing to the high cost and risk of manned space exploration missions, space
agencies primarily concentrate on unmanned planetary exploration. The most
advanced exploration robots that have been deployed for planetary exploration
are the Mars Exploration Rover (MER, “Spirit” and “Opportunity”) and the
Mars Science Laboratory (MSL, “Curiosity”). They both have an identical
manipulation scenario, consisting of four main stages for science target explo-
ration: (a) The rover on Mars transmits the images captured from the navi-
gation camera to the operators/scientists on Earth, with an interesting target
being manually selected by the ground scientists in a stereo range map. (b) A
target tracker enables the rover to autonomously drive to its goal position while
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avoiding obstacles, and to reach the goal position with the precision of a few
centimetres. (¢) The scientists artificially designate the sampling point on the
scientific goal from the downlinked images. (d) A variety of instruments on-board
are utilised in order to sample and analyse the science target.

In order to determine whether a science goal can be acquired, both MER
and MSL adopt a rigid approach using the robot arm workspace. For instance,
in terms of the Curiosity rover the workspace volume is an upright cylinder
80cm diameter, 100cm high, positioned 105cm in front of the rover when it is on
a smooth flat terrain [1]. Therefore, the current mechanical strategy employed
by MER and MSL is that the science target is deemed to be able to be acquired
just when it is within the robot arm workspace. This strategy does not con-
sider the cases where an interesting target is surrounded by other rocks that can
not be traversed in the ‘rock garden’, which is not able to get into the robot
arm workspace but is just on the edge of the workspace. This problem can be
addressed if the robot arm workspace is variable based on the distinct character-
istic of a given target. We propose an autonomous flexible approach to adjusting
automatically the robot arm workspace in relation to the science value score
(SV) regarding the scientific goal. This strategy is based on the use of fuzzy
logic techniques, capable of increasing appropriately the magnitude of the robot
arm workspace when the science value score is high.

Our work is inspired by the observation that the application of fuzzy logic
in planetary exploration has recently gained significant recognition. Tradition-
ally, the difficulty level a rover may encounter when attempting to traverse a
region of terrain in a no priori knowledge environment, is classified through the
use of traversability index [2]. Howard et al. [3] extended this approach by com-
bining it with a fuzzy map representation that reflects the traversal difficulty
of the terrain. It concentrates on planning over an optimally safe path of min-
imum traversal cost. Mahmound [4] utilised a fuzzy adaptation technique that
examines the population of paths throughout the execution of the underlying
algorithm while adjusting operator probabilities to attain better solutions for
path planning. Fuzzy logic has also seen applied to planetary landing and the
tier-scalable robotic planetary reconnaissance. For example, in addressing the
issue of landing site selection [5], the score of each potential candidate land-
ing site is obtained from sensor measurements that are fed into a fuzzy system
which decides on spatial and temporal dependence. Furfaro et al. [6] built a
fuzzy system where the appropriate past/present water/energy indicators can
be acquired when the tier-scalable mission framework is deployed, and used to
estimate the habitability on Mars. Also, in dealing with the first-stage of the
aforementioned operational scenario, Barnes et al. [7] and Pugh et al. [8], pro-
posed that a fuzzy rule based expert system (KSTIS 1.0) could be used. Such
a system adopts knowledge elicitation from a planetary geologist to obtain the
primary clues regarding the geological background (Structure, Texture and Com-
position) of Martian rocks, and generates a useful science value score (SV) with
respect to each rock in an image.

The rest of this paper is organised as follows. A brief overview of the pro-
posed touchability system framework is presented in Section 2, with a focus
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on the construction of the linguistic fuzzy sets and the fuzzy rules associated
with the underlying attributes that are utilised by the system. Results of com-
puter simulation are reported in Section 3, as part of the verification of the
proposed approach. Further experimental results though hardware implementa-
tion are described in Section 4, comparing the proposed approach against the
performance attainable by a domain expert. The paper is concluded in Section 5.

2 Proposed Touchability System

The structure of the proposed fuzzy logic-based touchability system is shown in
Figure 1. It consists of six main components: a vision system, the Knowledge
based Science Target Identification System (KSTIS 1.0), a fuzzification module,
a fuzzy inference engine, a rule base and a defuzzification module. In this system
the input data ig4, 7., is are: the distance between the robot arm base and the cen-
troid of a possible science target, the orientation of the arm’s shoulder azimuth,
and the size of the target in the image, respectively. The output o; from the
proposed fuzzy system is the touchability probability for each identified scien-
tific target. KSTIS 1.0 assists in ground-based interpretation of scientific targets
[7,8], from the description of the Structure, Texture and Composition of a scien-
tific target whose values are provided by scientists/experts on Earth, giving the
score of Science Value igy .

The proposed approach is easy to comprehend and is simple to implement.
It basically adopts the general structure of a conventional fuzzy logic con-
troller, with the functionalities of its key components described below. Note
that although simplistic in implementation, the underlying techniques adopted
are well formed with solid mathematical foundations that have been developed
in the field of fuzzy logic control. This forms a sharp contrast with typical exist-
ing mechanisms to assess the touchability that are largely based on use of ad
hoc methods.

Fuzzification. This module maps the crisp input values onto their correspond-
ing linguistic fuzzy terms. This involves the four physical properties indicated
previously: Size, Distance, Orientation and SV of a possible target.

Size (is): The bounding area of a given object within an image is charactered
as the size of the object. One way to identify the surroundings of an object such
as that used by MER is to form a detailed DEM (Digital Elevation Model) by
accomplishing stereo matching over the full images. However, in order to obtain
just the essential information on size efficiently, only 5 points per object are
herein applied for stereo matching as shown in Figure 2. The minimum rectangle
(A4, B, C and D) for each edge inscribes the leftmost, rightmost, uppermost and
bottommost points (P3, P4, P1 and P2) of the object, respectively, while F,
F, G and H are the middle points of the line segments ‘AB’, ‘BC’, ‘CD’ and
‘AD’, respectively. The point CO is the cross point of the line segments ‘EG’ and
‘HF’ and is the centroid of the object. P1, P2, P3 and P4 represent the stereo
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Fig. 1. Fuzzy logic touchability evaluation system.

Fig. 2. Stereo matching points selection.

matching points, whose three dimensional frame values are then derived by the
external and internal parameters of the cameras. The membership functions of
these fuzzy sets are empirically defined as given in Figure 3.

Distance (iq): This is a significant variable in this study, whose span is provided
by the length of the robot arm. Figure 4 illustrates the distance between the
original point O in the mobile robot arm base and the centroid (C) of an object.
The membership functions of the relevant fuzzy sets are given in Figure 5.
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Fig. 5. Membership functions for Distance (iq).

Orientation (i,): This is the angle formed by the straight line defined relative
to the heading of the rover, and the straight line that connects the projec-
tion of the centroid of the object with the reference arm, as shown in Figure
6. As highlighted in the figure, C’ is the projection of C on the plane that is
constituted by the X and Y axes. # is an angle between the straight line OC’
and Y axis, and is the orientation. In Figure 7, the orientation in front of the
rover is divided into six regions that are represented by six linguistic fuzzy sets
{very—bad(V B), bad(B),very —soso(V S), soso(S), good(G), very — good(VG)}.
The “very-good”, “good”, “soso”, “very-soso”, “bad” and “very-bad” are sec-
tors at +£15° (Red), between £15° and £30° (Turquoise), between +30° and
+45° (Yellow), between +45° and +60° (Green), between +60° and +75°
(Orange), and between £75° and +90° (Pink) relative to the heading of the
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Fig. 8. Membership functions for Orientation (i,).

rover, respectively. The membership functions of these sets are shown in Figure 8
in which “07,%2”7,%4” “6”,“8”,“10” and “12” are corresponding to —90°, —60°,
—30°, 0°, 30°, 60° and 90°, respectively.

Science Value (SV) (isy): This is a score between 0 and 9999, computed by
KSTIS 1.0. Tt is represented by one of the three linguistic fuzzy sets {LOW,
MEDIUM, HIGH}, with the corresponding membership functions defined as
given in Figure 9.

Note that as illustrated above, all fuzzy sets used in this system are imple-
mented with triangular membership functions. This is mainly due to the relative
simpler computation this type of fuzzy set entails as compared to the use of typ-
ical alternatives such as trapezoidal or Gaussian functions. The employment of
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Fig. 9. Membership functions for SV (isv).

triangular membership functions is also partially because of the relative ease in
communicating the underlying mathematical concepts between the knowledge
engineers and domain experts.

Inference Mechanism. This is responsible for decision-making in the fuzzy
system through fuzzy reasoning. It achieves two tasks: (1) to determine the extent
to which each rule in the rule base is associated with the current situation as
characterised by the inputs; and (2) to derive a conclusion by firing the best
matching rule. Seventy-four rules are included in the rule base, including the 72
general rules shown in Figure 10 and the following two specific ones (that human
experts believe to be of significance for the present investigation):

— IF Size is SMALL THEN TIndex is VERYLOW
— IF SV is LOW THEN TIndex is VERYLOW

Defuzzification. The output of the fuzzy inference mechanism is mapped onto
a crisp value, called Touchability Index by this module. There are a number of
methods that can be used to implement this inverse operation of fuzzification.
The “COG defuzzification” is herein used to combine the outputs represented by
the implied fuzzy sets from all rules that at least partially match the inputs to
form a single overall output. The Touchability Index is represented by seven fuzzy
sets {VERYLOW, LOW, MEDIUMLOW, MEDIUM, MEDIUMHIGH, HIGH,
VERYHIGH}, whose membership functions are shown in Figure 11.

3 Software Simulation

This section presents experimental results of computer-based simulation, com-
paring the resulting Touchability Index of mock objects in terms of their ranks
with that given by a human expert. The system is implemented using MATLAB
Fuzzy ToolBox simulator and involves 9 artificially created rock objects, of three
different types: small (10 x 15), medium (20 x 15) and big (30 x 20). Here, the
length of the Curiosity rover arm has been employed for simulation experiments,
which is 2.3 meters from the front of the rover body. The three science value
scores used are 35, 65 and 105. In Table 1, Lengthx Width is the size of an object.
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Fig. 11. Membership functions for Touchability Index (o¢).

Figure 12 shows the resulting rock ranking. The centre of the frame is the arm
base, the SV is represented by colour, with the relevant colour coding defined
in Table 2, and the size of the rock is depicted by the diameter of the colour
circle. It summarises that the touchability sequence of these rocks can be intu-
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Table 1. Experimental data for simulation.

Rock No. Length Width SV Orientation Distance

hline 1 10 15 105 12 132
2 10 15 65 -65 166
3 10 15 35 50 111
4 20 15 105 -17 161
5 20 15 65 -33 126
6 20 15 35 72 151
7 30 20 105 5 148
8 30 20 65 32 167
9 30 20 35 -46 112

itively ranked as shown in Table 3, where the rank is sorted with respect to
the magnitude order of the Touchability Index, TIndex. These results compare
perfectly with those given by the human expert, demonstrating the validity of
the proposed approach.
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Fig. 12. Simulated experiment environment.

Table 2. Correspondence between SV and colour.

Corresponding Colour || . [ | Il ||

SV Score <20 20-39 40-59 60-79 80-99 100-119 >120
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Table 3. Simulation-based experimental result.

RockNO. Human Rank TIndex(%) TRank

1 5 35.2 5
2 7 23.8 7
3 8 22.3 8
4 2 88.4 2
5 4 54.1 4
6 9 18.4 9
7 1 96.6 1
8 3 67.5 3
9 6 34.9 6

4 Hardware Implementation

This section reports results on the use of real rocks and data to further verify the
validity of the proposed approach for fuzzy logic-based touchability evaluation
through hardware implementation. All images taken are segmented manually,
with the measurement method described in [9] used to determine the size of
each rock. The evaluation given by the domain expert is used as the ground
truth in this study. The experimental hardware platform that is implemented to
perform this set of experiments includes a robot arm, two wide-angle cameras
(WACs), a camera mast and an optical bench, as shown in Figure 13.

A total of 9 rocks of a different size and shape are used in this experimen-
tation. Within the 9 rocks there are 3 small, 3 medium and 3 big ones, each
type of rock involving three different scientific values: Low, Medium and High.
The science value of each rock is given by the domain expert. The length of
the Schunk arm is 1 meter, and the overlap vision range of the two cameras is
approximately between -30° and 30°. Seven experiments are carried out based
on the location of these 9 rocks (Near, Medium and Far). The evaluation from
the domain expert for all experiments is that the Touchability Index should be
at least 80%.

As all experiments have a conceptually similar set up, to save space, only that
for the first experiment is shown here, as given in Figure 14. This experiment
involves four target situations: (1) Rock 1 is a big one, and has a high science
value; its distance to the robot arm is medium. (2) There is a low scientific
value for the small Rock 2 with a medium distance. (3) A high science value and
a medium distance are assumed for small Rock 3. (4) Small rock 4 possesses a
medium scientific value and is of a near distance to be robot arm. The evaluation
of the touchability given by the domain expert for these four rocks is that only
Rock 1 is touchable. Figure 14 shows the result produced by the Schunk arm.
The Touchability Index and the relevant measurement computed are presented
in Table 4.

As specified by the domain expert, a positive result is achieved if the com-
puted Touchability Index over a certain rock is greater than 80%. In this first
experiment only the Touchability Index over Rock 1 (92.5%) is greater than
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Fig. 14. Top left image: captured by the left camera. Top right image: captured by the
right camera. Bottom image: result of touchability computation.

80%. This means that the robot arm can reach out for this rock but not the
rest. This result matches well with the evaluation of the domain expert. Similar
results are obtained for experiments 4 and 6.

In experiment two the Touchability Index over all rocks is less than 80%, so
the robot arm cannot reach any rocks. The evaluation of the touchability given
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Table 4. Results from the first experiment.

Rock Size Orientation Distance Science Touchability

No. (cm?) (em)  Value Index
1 737.86 18° 76.4 120 92.5%
2 26.33 -6° 75.3 40 9.76%
3 24.4 -25° 52.7 100 9.75%
4 109.46 20° 37.6 90 21.6%

by the domain expert is the same. Similar results are obtained for experiments
three, five and seven also, although different rocks and different numbers of rocks
are involved in those experiments.

Summarising the above experimental results, it is clear that the evaluation
outcomes of using the present approach match fully with those attainable by the
domain expert in a range of target settings. This implies that the fuzzy logic-
based touchability system designed herein is capable of achieving the experience
and knowledge level of the domain expert.

5 Conclusions

In this paper, a fuzzy logic-based system for autonomous touchability evalu-
ation of space science targets has been presented. The membership functions
and fuzzy rules have been devised and the defuzzification mechanism identified.
The approach has been implemented in both software and hardware.Simulation-
based experimentation has shown the validity of the proposed system, which
has been further confirmed by the results of seven independent experiments on
real settings, over different rock locations, sizes and science values. The system
has proven to be able to achieve the performance of a domain expert. Whilst
successful, further research remains. This includes an investigation of whether
the approach is sensitive to the use of different fuzzification and defuzzification
methods, and a study of how fuzzy rules may be learned from historical missions.
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