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Abstract. The most important part of the excavation for slurry shield machine 
is keeping the earth pressure and slurry circulation system pressure in balance. 
In this paper, an excavating face pressure balance principle for direct type slurry 
shield machine is analyzed and the pressure balance dynamic model is intro-
duced. Then, a controller is designed based on predictive function control me-
thod. Finally, the controller initialization method is proposed to deal with the 
problem of controller switching from manual to automatic mode. Simulation re-
sults show the improved performance of proposed method. 
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1 Introduction 

The slurry shield is an important branch of the modern shield method, which is widely 
applied around the world. Slurry shield method is the most commonly used method, 
especially underwater tunnel in soft soil in the river and sea [1-3]. The control of 
pressure for excavating face is an important part in the process of tunneling across the 
river. Once the control is improper, it will cause the working face collapse, the river 
flow backward and a series of safety problems. 

According to the slurry circulation pressure control methods, the slurry shield can 
be divided into two basic types, indirect control type (German style with bubble 
chamber) and direct control type as Fig. 1 (Japanese style without bubble chamber) 
[1]. Unlike German style shield, direct control shield does not have bubble chamber 
part, the pressure of chamber is controlled by the flow of feed or discharge slurry 
pump. Slurry in chamber of direct control shield will be easier to be discharged than 
German style shield in the absence of bubble chamber. So the slurry in chamber will 
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be less able to precipitate. However, the pressure in slurry will be under the big and 

fast disturbance by input/output feed pump flow and the driving speed. As the shield 
does not have bubble chamber part to buffer the impact of disturbance, the pressure 
balance control is more difficult compared to the German style shield. Yunpu Song 
has designed a dynamic model and controller for German style shield. But the design 
of pressure balance controller of direct control shield is rarely mentioned [4]. 

 

Fig. 1. Direct control type slurry shield: Slurry circulation system 

This paper analyzes the composition and principle of circulation system, then es-
tablishes the pressure balance dynamic model for circulation system. A controller is 
designed based on predictive function control method which is easier to be imple-
mented in program logic controller (PLC). 

2 The Dynamic Model of Slurry Circulation System in 
Continuous Excavation Process 

In order to simplify the problem, this paper only take the pressure balance problem in 
continuous excavation mode into account, ignoring the shutdown mode and by-pass 
mode.  In continuous excavation mode, the pressure of chamber is controlled by the 
flowrate of slurry feed pump P1, and the slurry is discharged by the flowrate of slurry 
discharge pump P2. The schematic diagram of slurry circulation system is Fig. 2. 
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chematic diagram of slurry circulation system 
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2.2 Model of Pump and Pipe 

Slurry pipeline contains two main part: feed pump pipeline and discharge pump pipe-
lines. According to the principle of hydrodynamics, the fluid mechanical energy of 
slurry is affected by pipe friction and the gravity of slurry in pipe. As the mechanical 
energy of the fluid in pipe is driving by slurry pump, then the model of slurry pipe is 

 e f

p
h Z h

gρ
Δ= Δ + +  (5) 

which eh  is the pressure head of pipe, ZΔ  is the height difference between pipe inlet 

and outlet, pΔ  is the static pressure difference between pipe inlet and outlet. ρ  is the 
density of slurry, g  is acceleration of gravity. fh is the pressure head caused by fric-

tion loss. 
fh  is include two part, first part is the friction loss 1fh which caused by the friction 

between liquid flow and pipe  
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where u  is fluid flowrate, l  is the length of pipe, d  is the diameter of pipe, λ  is 

friction coefficient, 1
64 64

Re
duρλ

μ
= =  as the slurry flow in pipe is laminar flow. The 

other part is the pressure loss 2fh  caused by turn valves and sudden changes in fluid 

which can be calculated by local resistance coefficient method. 
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where ξ  is constant for a certain type of pipes or valves. 
 Since slurry is transported by the centrifugal pump, the centrifugal pump charac-

teristic curve equation can be used to describe the relationship between pump work 
point and fluid velocity in pipe. 
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where motorK  is the power conversion coefficient from motor to bearing, n  is rota-

tional speed of motor, H  is the lift head of pump, Q  is flowrate of pump, ρ  is liq-
uid density,η  is the efficiency of pump. 

2.3 Model of Propulsion System 

Since the pressure of excavation face and thrust pressure must keep in balance,  
according to Newton’s law of motion, the speed of shield is 

 thrustmv F PA cv f= − + +  (9) 

where c  is damping coefficient, f  is sliding friction. 
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The control equation is given by: 
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3.3 Feedforward Compensation 

Measured disturbance compensation is a procedure of great practical benefit, which 
should be incorporated as often as possible into the regulator design process. The con-
cept is simple: to counteract the effects of a disturbance before it appears. The distur-
bance at instant n+h creates a control increment pertΔ  that depends on the free and 

forced outputs of the process. The past measured disturbance produces an output 
( )

pertms n  in response to the known disturbance transfer function. Under these condi-

tions, the free output ( )
pertLS n h+  which depends only on the past measured disturbance 

is known. On the other hand, the forced output ( )
pertFS n i+  is unknown and therefore a 

prediction of the disturbance must be made as ( ) ( )Pert Pert ,0 1n i n i h+ = < < − . This re-

sults in a step characteristic response of the process multiplied by the local value of the 
measured disturbance 

 ( ) ( ) ( ) ( )0 0Pert , where is a gain function of
pertFS n h G h n G h h+ =  (15) 

The term ( )pert n hΔ +  is added to the control equation as feedforward, given. 
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3.4 Controller Initialization When Switch from Manual to Automatic 

It is a relatively simple exercise to transfer from an automatic to manual mode of 
regulation. But, switching from a manual to automatic mode is always a little agoniz-
ing for operators, particularly when the system contains an integrator. We need to 
provide a smooth transition between the MV’s at the point of switching. The PFC 
controller has been installed for a long period of time and the operator wishes to trans-
fer from manual to automatic mode for some reason. Any installed PFC, working 
offline, is permanently computing its MV, which is not applied. This particular PFC 
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