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Abstract. Inclinometer is used to measure roll and pitch angles in laser target 
system of TBM. A synthetic method based on wavelet analysis is proposed to 
decrease the measurement error of inclinometer under great vibration, 
improving the accuracy of TBM attitude angles. It is applied to reduce edge 
effect based on signal extension and orthogonal polynomials extension of 
approximate coefficients. Different denoising parameters are chosen to get 
minimum error according to the characteristic of the signal. Experiment shows 
that the proposed method is more effective and versatile than average 
calculation method used in the field and traditional wavelet denoising method, 
and the error is compensated less than 1mrad. 
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1 Introduction 

Inclinometer, which has the advantages of high resolution, small volume, easy to 
integrate and wide working temperature range [1], is widely used in attitude angles 
measurement in laser target system of TBM [2]. TBM suffers great vibration and 
impact during tunneling. In this case, inclinometer’s output has obvious fluctuation, 
and the measurement result can’t be used in subsequent processing [3]. Average 
calculation method has been used in the field to improve measurement accuracy, 
which averages the data in the last second. However the result cannot meet the 
accuracy requirement of construction. 

Among the recent methods to process the output of inclinometer in vibration, 
wavelet analysis has been recognized as an effective and robust method due to its 
capability to deal with non-stationary signals. But edge effect is a significant 
bottleneck in wavelet application [4,5], especially for our case that the value we 
measure is the endpoint. A commonly used way to decrease edge effect is edge 
extension when discrete wavelet transform (DWT) is realized [6]. Mainly used edge 
extension methods, including zero extension, period extension and symmetric 
extension, are not well used for data processing of inclinometer. Here we put forward 
an extension method based on orthogonal polynomials fitting, which preserves 
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continuity at the boundaries up to a predetermined order. It means to extend the 
approximate coefficients with the fitted orthogonal polynomials by the boundaries. 
It’s proved to be much better than other methods. 

It’s known that the closer to edge, the bigger edge effect it occurs [7]. So, besides 
approximate coefficients extension method, another solution to this problem is to 
extend the signal on the right, making the endpoint in the middle [8]. These two 
methods are combined to decrease edge effect of wavelet denoising for inclinometer 
signal, which could result in smaller error for attitude angles. 

In this paper, a synthetical method based on signal extension and approximate 
coefficients extension is proposed to reduce edge effect of wavelet denoising and 
compensate the error of inclinometer. In simulation, three kinds of field-simulated 
signals are extended first and then processed with wavelet denoisng based on different 
approximate coefficients extension methods. Comparing the simulation results, the 
parameters of the synthetic method are determined. In experiment, the field condition 
is simulated and the inclinometer output is processed with the proposed method, the 
traditional wavelet denoising method and the field method. The results show that the 
proposed method is the best and the error is compensated less than 1mrad. 

2 Theory 

2.1 Wavelet Threshold Denoising Method 

Wavelet threshold denoising is one of the most commonly used methods in signal 
processing, which contains three steps [9]: 

1. Wavelet decomposition for digital signal; 
2. Threshold processing for detail coefficients; 
3. Wavelet reconstruction with thresholding coefficients. 

As for step 1 and 3, Mallat algorithm is used for wavelet decomposition and 
reconstruction. Let , ,  and , k=0,1,2..M-1,be the two-dimension 
sequences of functions , ,  and .Then the multiresolution 
decomposition equations are given by                                           2                                         1  

                                         2                                         2  

And the multiresolution reconstruction equation is                  2 2                  3  
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where  is approximate coefficient and  is wavelet coefficient. We 
use sequences  and  to decompose for step 1 and  and  to 
reconstruct for step 3 with biorthogonal wavelet. If it is orthogonal wavelet,  and 

 are the same, and  and  are also the same [10]. As for step 2, in this 
paper we choose Birge-Massart strategy to calculate the thresholds instead of global 
thresholds [11]. 

2.2 Edge Extension in Mallat Algorithm 

Equations (1) to (3) are applied to infinite sequence in theory. However the actual 
sequence is finite and undesirable edge effect will occur if these equations are applied 
without extension [12]. A commonly used method to decrease edge effect is to extend 
the sequence  at the boundaries, such as symmetric extension and orthogonal 
polynomials extension. For decomposition, we can extend  for M-1 on the left 
and right each, and then doing convolution and two-extraction to get  and 

. For reconstruction we can do zero-insertion, convolution and summation 
first, and then choose the former L values to accomplish reconstruction. The whole 
flow of this algorithm is shown in Fig.1. 
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Fig. 1. Edge extension in Mallat algorithm 

Hence the most important matter is how we extend the coefficients. In this paper, 
we only talk about symmetric extension and orthogonal polynomials extension. 
Symmetric extension means that the extended coefficients are symmetric with the 
values at the endpoints. The coefficients  are extended to  2 , … , 0 , 0 , … , 1 , 1 , … 1 . 

Orthogonal polynomials extension will be stated below. 

2.3 Orthogonal Polynomials Extension of Approximate Coefficients 

Orthogonal polynomials extension of approximate coefficients is to extend the 
approximate coefficients with fitted orthogonal polynomials according to the boundaries. 
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It means to calculate the fitted orthogonal polynomials in order with  points near 
the endpoints and extend the coefficients for M-1 on the left and right each. Two 
important extension parameters are fitting order and fitting length. If the fitting length is 
too big, boundary state can’t be reflected. And if the fitting length is too small, 
randomness has an outstanding impact on orthogonal polynomials [13]. As for fitting 
order, if it is too big, the normal equations are morbid, and undesirable fitting effect will 
occur. So the fitting order is controlled less than two. Here we take second-order 
orthogonal polynomials extension as an example. The extension method is below: 

1. Take the left  points 0 , 1 , … … , 2 , 1  to fit the  
orthogonal polynomials ; 

2. The orthogonal polynomials on the left are: 1， ∑ ， ∑ ∑ ∑ . 

The orthogonal polynomials coefficients on the left are: 

∑ ∑ ，

∑ ∑ ，

∑ ∑ . 

Then the fitted orthogonal polynomials on the left  are calculated. The fitted 
orthogonal polynomials on the right are similar. 
3. Extend the coefficients on the left and right for M-1 each, according to . If 

the coefficients length is less than , take the whole sequence for fitting. 

2.4 Signal Extension 

Another method to decrease edge effect is to extend the signal on the right, making the 
endpoint in the middle. For symmetric signal extension, it means to extend the signal 
x(n), n=0,1,…,N-1, to x(0), x(1),…, x(N-1), x(N-1),…, x(1), x(0). As for orthogonal 
polynomials signal extension, it’s similar to that of approximate coefficients. 

3 Simulation 

The angles of TBM change slowly in the range of ±10° during tunneling. Three kinds of 
ideal tracks such as constant signal, ramp signal and sinusoidal signal are assumed due to 
unknown actual track of TBM. The non-stationary random noise is added into the track 
signal to describe the great and random fluctuation of inclinometer’s output, which 
means the variance of the noise changes as time goes by while the mean keeps zero. 

In simulation, we choose constant signal 5º, ramp signals with different slopes less 
than 0.2º/s and sinusoidal signals of amplitude 5º with different frequencies less than 
0.01Hz. The processed window length is set 256. The wavelet we use is db4 as is the 
most widely used in signal processing. The denoising effect is evaluated by root 
mean-square errors (RMSE) and max errors (MAX) of the endpoints. 
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3.1 Parameters Optimization of Orthogonal Polynomials Extension of 
Approximate Coefficients 

We choose fitting length every 20 points ranging from 40 to 120 and fitting order 
less than 2. The denoising results of orthogonal polynomials extension of approximate 
coefficients with different fitting length are below: 

1. First-order algorithm. The results of constant signal, ramp signal and low 
frequency signal are similar: when fitting length is over 60, denoising result has 
little change, as is seen in Fig.2. So fitting length is set 60. For high frequency 
signal whose frequency is over 0.004Hz, fitting length should decrease to 40. 

2. Second-order algorithm. When fitting length is over 60, denoising result has little 
change for all the signals, as is seen in Fig.3. So fitting length is set 60. 

3. By contrast, we find that first-order algorithm is better than second-order algorithm 
for constant signal, ramp signal and low frequency signal. If the frequency is over 
0.03Hz, second-order algorithm is better, as is seen in Fig 4. 

       

                                     (a) f=0.001 Hz                                         (b) f=0.01 Hz 

Fig. 2. Denoising RMSE of first-order algorithm with different fitting length 

       

                                      (a) f=0.001 Hz                                           (b) f=0.01 Hz 

Fig. 3. Denoising RMSE of second-order algorithm with different fitting length 

       

                                   (a) Ramp signal                                         (b) Sinusoidal signal 

Fig. 4. Denoising RMSE of orthogonal algorithm with optimized fitting length 
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3.2 Parameters Optimization of Orthogonal Polynomials Signal Extension 

Fitting order and fitting length are needed with orthogonal polynomials signal 
extension. We choose fitting length every 20 points ranging from 40 to 180 and fitting 
order 1 and 2. Continuity and smoothness on the edge are two factors for signal 
extension. We choose to count the continuity error and slope error for first-order 
extension, and continuity error, slope error and relative second derivative error for 
second-order extension. As the results of constant signal, ramp signal and low 
frequency signal are similar, we just show the results of low frequency signal. The 
simulation results are shown in Fig. 5 and Fig.6: 

 

    (a) Continuity error                 (b) Slope error                  (c) Relative second derivative error 

Fig. 5. Signal extension error for f=0.001Hz  

 

        (a) Continuity error                      (b) Slope error            (c) Relative second derivative error 

Fig. 6. Signal extension error for f=0.01Hz 

According to the simulation result, Fig. 5 and Fig. 6, the conclusion is shown as 
follows: 

1. First-order extension. Extension error decreases as fitting length increases for 
constant signal, ramp signal and low frequency signal. Considering the actual 
signal is not so regular, a suitable choice is 120. As for high frequency signal, 
fitting length should be reduced. 

2. Second-order extension. Extension error decreases as fitting length increases. 
Considering the actual signal is not so regular, fitting length is set 120. 

3.3 Synthetic Method for Denoising 

In this paper, signal extension is combined with approximate coefficients extension for 
denoising. The extension methods are symmetric extension, first-order extension and 
second-order extension for both signal extension and approximate coefficients extension.  
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Firstly we determine the optimal approximate coefficients extension methods for each 
signal extension approach. Then comparing these combined methods, we get the 
preliminary optional methods regardless of decomposition levels. Finally we simulate 
with these optional methods in differemt levels and get the proposed method through 
comparison. 

The denoisng results of optional methods for ramp signals are shown in Fig. 7. In 
this Fig, legend ‘symmetric first-order’ means symmetric signal extension with first-
order approximate coefficients extension, and legend ‘first-order’ means first-order 
approximate coefficients extension without signal extension. As denoising max error 
has complex randomness, we look on more as RMSE. According to Fig 7, we come to 
conclusion for ramp signals: 

1. If s<0.00224º/s, symmetric signal extension with first-order approximate 
coefficients extension for level 9 is suitable; 

2. If 0.00224º/s<s<0.00419º/s, symmetric signal extension with first-order 
approximate coefficients extension for level 8 is suitable; 

3. If 0.00419º/s /s<s<0.2º/s, first-order approximate coefficients extension without 
signal extension for level 7 is suitable. 

 

       
                                  (a) RMSE                                                    (b) MAX 

Fig. 7. Denoisng results of optional methods for ramp signals 

The denoisng results of optional methods for sinusoidal signals are shown in Fig 8. 
The legends are similar to those of ramp signals.  

 

 
                                     (a) RMSE                                                 (b) MAX 

Fig. 8. Denoisng results of optional methods for sinusoidal signals 

According to Fig 8, we come to conclusion for sinusoidal signals, which is shown 
in table 1. 
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Table 1. Denoising method for sinusoidal signals 

frequency/Hz method 
0<f<0.0001 symmetric first-order lv 9 

0.0001<f<0.00019 symmetric first-order lv 8 
0.00019<f<0.00155 first-order lv 7 
0.00155<f<0.00248 first-order lv 6 
0.00248<f<0.00354 first-order first-order lv 6 
0.00354<f<0.00656 second-order lv 6 

0.00625<f<0.01 second-order lv 5 

The variables we have chosen are slope and frequency in simulation. However we 
can only measure the changing speed in the field. In fact they are equal. For example, 
s=0.2º/s and f=0.01Hz are equal to the average changing speed 0.2º/s. In the field, if 
the inclinometer output changes linearly, we regard it as ramp signal. Otherwise we 
regard it as sinusoidal signal. After calculating the changing speed, we can choose 
which method to use for denoising. 

In detail, we can see that when signal changes slowly, symmetric signal extension 
is a good choice for denoising. And when signal changes fast, signal extension has no 
big effect. Meanwhile, first-order approximate coefficients extension is a good choice 
to decrease edge effect. But when it changes fast for sinusoidal signals, second-order 
approximate coefficients extension is alternative. 

4 Experiment 

Experiment is made to verify the effectiveness and reliability of the proposed method, 
comparing with the field method and traditional wavelet denoising method. The 
hardware system is shown in Fig. 9, simulating TBM in the field. A vibrating table is 
used to generate vibration, simulating the working condition of TBM. And a rotary 
table is designed to simulate the motion of TBM, which is joint with a servo motor. 
The servo motor is controlled by Siemens servo system and set on a holder. 
Inclinometer is set on the rotary table to measure the angles and connected to 
computer through RS232. 

In experiment, we set four cases: the measured angle is big, small, changing slowly 
or fast, simulating the TBM roll angle. The vibrating frequency in the field mainly 
ranges from 4.4Hz to 48Hz [14]. The device’s resonance frequencies are around 10Hz 
and 20Hz. Considering TBM won’t resonate and the characteristic of the vibrating 
table, we choose the vibrating frequency from 28Hz to 33Hz in experiment. The 
vibrating amplitude is set 80 relatively (max=100). The inclinometer type is SST-260, 
whose accuracy is 0.01º in static environment. We find that the tracking error of the 
motor is less than 0.02º in vibration, which means that the predetermined track could 
be the reference angles. Thus the errors are calculated by the estimated values and 
reference values. 
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Fig. 9. Experiment Device 

As for signal processing, the root mean-squared errors and max errors are adopted 
to evaluate these methods: the proposed method, period average method and 
traditional wavelet denoisng method. Traditional wavelet denoisng method means 
symmetric approximate coefficients extension without signal extension. Meanwhile 
the percentage of the absolute errors less than 1mrad is counted. It is the accuracy 
needed in the field. The denoising results of these methods are shown in Fig 10. The 
errors are counted in tables 2, 3 and 4.  

 

                              (a) Small angle                                                   (b) Big angle 

 

                  (c) Angle changing slowly                                        (d) Angle changing fast 

Fig. 10. Denoising results for sampled signals with three methods 
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Table 2. Proposed method 

signal small big slow fast 

RMSE/ º 0.012302 0.010845 0.009218 0.018026 

MAX/ º 0.025516 0.021983 0.024688 0.033026 

PCT 100% 100% 100% 100% 

Table 3. Period average method 

signal small big slow fast 

RMSE/ º 0.018553 0.019779 0.017086 0.029324 

MAX/ º 0.063387 0.053580 0.052542 0.070083 

PCT 99.27% 100% 100% 97.01% 

Table 4. Traditional wavelet denoising method 

signal small big slow fast 

RMSE/ º 0.029397 0.034393 0.048877 0.045539 

MAX/ º 0.076198 0.078493 0.125174 0.116782 

PCT 95.24% 94.85% 73.29% 75.08% 

Through Fig.10 and tables 2, 3 and 4, we find that the proposed method is much 
better than period average method and traditional wavelet denoising method 
especially when angle changes fast. It proves that the proposed method decreases 
edge effect of wavelet denoising largely. Also it can be seen from tables 2, 3 and 4 
that the proposed method can control the error less than 1mrad in 100%, which can’t 
be promised by the other two methods. We also find that the accuracy (RMSE and 
MAX) of the proposed method is the best among them. 

5 Conclusions 

Here we put forward a synthetic method based on wavelet threshold denoising to 
compensate the error of inclinometer in vibration. Simulation shows that combining 
symmetric signal extension with first-order approximate coefficients extension is a 
good choice to decrease edge effect for denoising when signal changes slowly and 
direct first-order or second-order approximate coefficients extension without signal 
extension is better when signal changes fast. Experiment shows that the proposed 
method is much better than the one used in the field and the traditional wavelet 
denoising method. With this method, the error of TBM angles can be compensated 
satisfying the accuracy demand. 
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