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Abstract. In this paper, we present a holistic approach to enable mobile
robots using video projection in a situation aware and dynamic way.
Therefore, we show how to autonomously detect wall segments that are
suitable to be used as projection target in a dynamic environment. We
derive several quality measures to score the wall segments found in the
local environment and show how these scores can be used by a particle
swarm optimization to find the best local projection position for the
mobile robot.
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1 Introduction

User interaction plays a very important role for mobile service robots. It should
be possible to easily use them and to get a real benefit from the offered service.
However, current generations of these robots do have some shortcomings in pre-
senting information in an appropriate and easily understandable manner. The
idea of using video presenters on a mobile robot states back to the first Star Wars
films and can help to improve the intelligibility of the information provided by
the robot [1]. This is especially true for our tour robots Konrad and Suse that
are used to guide and to tour people around in our multi-story faculty building
[2]. In order to increase the acceptance of the tour guide scenario, the robots
should not only talk to the user and give information on the on-board display,
but also make use of walls next to the exhibit to display information. Since the
exhibits can change over time, it will be beneficial if the robot can optimize its
position and the wall used for projection depending on the local surroundings
and the location of the current audience.

In addition to the problem of finding an appropriate position and wall seg-
ment used for projection, we also need the address the problem of projector
calibration. As the robot is not usually oriented perpendicular to the wall, the
projection will get distorted. This problem increases if the user itself is not ori-
ented perpendicular to the projection wall. Therefore, we show how to implement
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two different projection modes that do rectify the image without the need of cal-
ibration images. In the first mode, the image is rectified according to the wall
used for projection. In the second mode, the image is rectified according to the
user position and therefore seams to be floating on the wall.

Fig. 1. Robot platform with mounted LED video projector and deflection mirror.

Fig. 1 shows the experimental platform used for our research. It is equipped
with interaction devices, mainly a touch-display, as well as a couple of additional
sensors enabling autonomous navigation and perception of people and obstacles
in the robots environment. In addition to this regular setup, the test platform has
been equipped with a LED video projector (ViewSonic PLED-W500). The pro-
jector is mounted together with a deflection mirror in a vertical position below
the robot head to guarantee minimum space requirements. It does deliver 500
lumens of brightness at a maximum power consumption of 120 W, which is of
course questionable for the desired field of application. However, current gener-
ations of small LED based projectors have already doubled or tripled brightness
and can easily replace our projector used for demonstration purpose.

To deal with the different problems arising from the dynamic projector posi-
tion optimization the paper is structured as follows: After a brief overview of the
related work and the presentation of the prerequisites of our work we are giving
a detailed overview of our proposed method and the involved score functions
in Sec. 4. After the distortion correction has been explained in Sec. 5, we are
showing some experiments and finish with a conclusion in Sec. 7.

2 Related Work

Several methods can be found, that are dealing with aspects of the problem we
have described above. The largest group has been emerged during the last few
years and tries to integrate a video projector onto a guide robot. One example is
given in [3]. The authors are using a pan and tiltable video projector to display
addition information of exhibits onto the wall. Furthermore, the projector is
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used to project buttons on the ground, that can be activated by means of the
users feet. In [4] a guide robot is used to augment a guiding tour by projecting
directly onto different exhibits in order to highlight the parts explained but
also to simulate ancient computer models by projecting directly onto a switched
off monitor. The authors of [5] are using the humanoid robot NAO to project
information on walls in a home environment. However, the robot position as
well as the projection surface are predefined in this approach. Two examples of
methods combining video projection with gesture detection are given in [6,7].

Since the surfaces used for projection are predefined in all the methods stated
above, none of these tries to find an optimal projection surface in the local envi-
ronment dynamically. Most of the methods do even rely of fixed and predefined
robot positions that are aligned perpendicular to the wall.

Current methods for camera based projection calibration do rely on prede-
fined patterns that are displayed during initialization phase [8,9]. Since the robot
changes its pose relative to the projection surface once it is moving, a closed loop
algorithm, as used by other methods for projection, correction cannot be applied.

3 Prerequisites

In order to build and to explain the projector position optimization, we rely on
different components that are not in the scope of this paper.

First, we are using MIRA [10] as software framework in order to combine all
the different modules in an easy and efficient way. The integrated transformation
framework of MIRA enables us to step back and forth between the different
coordinate frames (robot frame, map frame, person frame) easily.

Second, we also need to take the user position, view direction and walk direc-
tion into account. To reliably track persons in the local environment we are using
the probabilistic multi-hypotheses people detection and tracking system devel-
oped in our lab over the last eight years [11]. It is based on a 7D Kalman filter
that tracks the position, velocity, and upper body orientation of the respective
persons assuming an uncertain random acceleration. The tracker processes the
detections of different, asynchronous observation modules – namely a 2D laser-
based leg detector, a face detector, a motion detector, and an upper-body shape
detector. The leg detector in its initial version is based on the boosted classifier
approach of [12]. The face detection system utilizes the well-known face detector
of Viola & Jones [13]. Finally, we apply an upper body shape detector based
on Histograms of Oriented Gradients (HOG) [14]. A detailed description of the
person detector and tracker and the tracking results of comparing evaluation
studies on different data sets with increasing difficulty is given in [11].

Third, we are relying on mapping and localization algorithms proven to work
robust during several years [15]. These algorithms include the generation of a
local map (8x8 meters in our application) and covers the local surroundings seen
by the robot so far.
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4 Finding Optimal Projection Surface and Position

Finding an optimal projection position in our eyes falls into two tasks. First, the
detection of walls in the local surrounding that are candidates for a projection
target. Second, we need to take the user and the robot position into account to
score the wall candidates in order to obtain the best projection surface. Three
aspects are of importance during scoring. The wall needs to be visible to the
user and should show an appropriate distance and view angle. Furthermore, it
should be possible to project onto the wall. Therefore, it should show a suitable
brightness and color and should not have any dominant structure (no signs or
posters should cover the wall). Moreover, the wall should be in range of the
projector, which again sets requirements on the distance and angle of the wall.
The person visibility and wall structure related demands do not depend on the
current robot position, therefore, we do relate to these requirements as robot
position independent score functions in the remainder of this paper. In turn the
other requirements are robot position dependent.

Walls in the local surrounding can be very long, the suitability is likely to
fluctuate heavily at different positions. Therefore, we break the walls apart by
dividing them into different wall segments, that are scored independently. It
would be possible to use a real 3d segmentation for this step. However, it would
increase the computational complexity a lot and cause only a slight benefit in
our scenario since we are not able to pan or tilt the projector. Therefore, we
are using wall segment with fixed width (30 cm in our application as a trade of
between computational complexity and spacial resolution) and a fixed hight of
1.2 meter (1 meter above the ground) during the segmentation phase.

Having a closer look at the requirements and at the application scenario
reveals that the overall problem is twofold. The first task is to find the best
suited wall segment(s) for the current position of the robot. The second task is
more general and comprises finding of the best robot position, so that the best
wall segment(s) in the local surrounding can be used for projection (Fig. 2).
The second task involves the first one, since we need to evaluate the maximum
score for different robot locations and orientations in the local surrounding. Since
evaluating all possible robot poses in the local surrounding is way to expensive,
we apply a particle swarm optimization (PSO) [16] to find the optimal projection
position. Therefore, every particle returns the score of the best segment(s) that
can be used for projection from this single position.

The two tasks can be applied directly to our application scenario where we
can use the PSO approach to find the best location for augmenting the exhibit
presentation.

In the remainder of this section we explain the wall extraction and the dif-
ferent score functions in more detail.

4.1 Wall Segment Extraction

For wall extraction we do not rely on a pre-build map, since the public envi-
ronment is likely to change so that walls can be covered by trolleys, posters or
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Fig. 2. Overview of process to find the best wall segment (red) and robot position
(blue). The robot position independent scores need to be computed only once and can
be stored with the segment. The robot position dependent scores need to be recomputed
every time the robot pose changes. The image at the bottom right shows the result of
a PSO with 200 particles with the best particle colored in red.

other obstacles. Therefore, we are using the local map that does contain the local
surroundings as seen by the robot so far.

The wall segmentation is performed using a Random Sample Consensus
(RANSAC) [17] based algorithm for line fitting on all the points marked as
obstacle in the local map. The algorithm searches and returns the line hypoth-
esis with the most points supporting the hypothesis. Removing the supporting
points (that also determine the start and endpoint of the line) and repeating
the process as long as lines with a specified support can be found, results in the
extraction of the best n lines for the local surrounding which correspond to the
walls. These lines are split into smaller line segments with a fixed length (30 cm
in our application).

4.2 Robot Position Independent Cost Functions

The first cost functions to be discussed are independent of the robot’s position
and need to be computed only once for every run of the PSO. Please note that we
try to use Gaussian score function whenever possible to help the PSO particles
to find a gradient if they are far away from the optimum.

User Dependent Segment Visibility. To check if a segment is visible to
the user. The line of sight between the user (defined by its position pu and
its orientation normal np) and the segment i (defined by its position pli and
orientation normal nli) is free of obstacles. Therefore, we trace the local map
between the points pu and pli and set the obstacle score sO to zero if we found
an obstacle and to 1 otherwise. Furthermore, we need to take the visual field of
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the user into account. Therefore, we compute the angle between the line of sight
and the person orientation normal as αSegment = acos((pu−pli)·np). Assuming
that the visual field of a human is almost 180◦ with a central field of 90◦ we are
using a spitted Gaussian function sV F (li) = gsp(αSegment,−π/4, π/4, 0.35, 0.35)
that returns 1 for the central field and drops of the almost zero at 90◦ on each
side.

gsp(x, lo, up, s1, s2) =

⎧
⎪⎪⎨

⎪⎪⎩

exp(− (x−lo)2

2s21
), x < lo

exp(− (x−up)2

2s22
), x > up

1, lo ≤ x ≤ up

(1)

The last of the tree sub scores, is the distance score. We suggest preferring
segments with a distance between 1.5 and 4 meter using the split Gaussian
sD(li) = gsp(||pu − pli ||2, 1.5, 4.0, 1.0, 1.7). Therefore, the resulting score of the
user dependent segment visibility sU becomes: sU (li) = sO(li) · sV F (li) · sD(li).

Projection Suitability. It is important that the wall segments used for pro-
jection purpose are of a bright and uniform color and are clear of obstacles.

Using a calibrated camera we can extract the image regions associated with
the single segments and analyze them in terms of color and structure. We project
the 3D-world position of the segment edges into the image space and extract
the gray-scale image region (Fig. 3). Afterwards, the average image value is
derived. This value should not be too close to white, as ceiling light might out-
shine the projected image, nor should it be to dark or have any extreme color
cast. Therefore, we are using a Gaussian function aiming at an average gray
value of 2/3 of the maximum possible gray value to compute brightness subscore
sB(li) = Gauss(Avg(li), μ = 170, σ2 = 50). The structure of the segment is
analyzed by computing the magnitude of the Sobel-filtered image region in x
and y direction. Since the segments can become unsuitable for projection even
if the magnitude is far away from the maximum value, we use a low threshold
for the score function that allows a maximum average gradient magnitude of
40: sG(li) = max(0, 1.0 − AvgMag(li)/40). Thus, the resulting wall projection
suitability score gets sW (li) = sB(li) · sG(li).

The drawback of this approach is that not all the segments are visible to the
camera and that they can be shadowed by persons and thus get wrong score
values. To avoid this problem, the module stores a local segment history (same
8x8 meter environment as the local map). If segments are shadowed by persons
(details on how to detect shadowing are given in the Sec. 4.3), the suitability score
is not updated. The same applies if a segment is currently used for projection,
since the projector changes the score of the segment. If the score cannot be
obtained, we take the score from a similar segment in the history buffer.

4.3 Robot Position Dependent Cost Functions

The second group of cost functions depends on the robot pose and therefore
needs to be computed for every single robot pose hypothesis.
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Fig. 3. Results of the different score functions for an exemplary situation. The line
segments are color coded according to the result of the score functions with blue being
th lowest score. Please note that the line segments do vary slightly since the images were
recorded consecutively and the RANSAC algorithm varies due to its random nature.

Robot Projection Suitability. This cost function is mostly related to the
limitations of the video projector and combines three different sub scores. First,
similar to the person visibility function, the line of sight between pr and pli needs
to be free of obstacles (sO). Second, the projector offers only a limited aperture
angle, therefore segments that cannot be covered by the projector need to get a
very low score. We compute the angle between segment normal and robot with
αRobot = acos((pr−psi)·nr) and combine it with the split Gaussian to match the
projector opening angle of 60◦: sPA(li) = gsp(αSegment,−π/6, π/6, 0.05, 0.05).
The last subscore regards the distance between projector and wall. Since the
projector has only limited brightness and the focus is fixed, the projector needs
to stay within a certain distance range to offer acceptable projections. Therefore,
we select the optimum distance to be within 1.4 and 2 meter and let the score
drop on both ends: sD(li) = gsp(||pr −pli ||, 1.4, 2, 0.5, 1.5). Again, the combined
score sP becomes sP (li) = sO(li) · sPA(li) · sD(li).

Person Shadowing. Segments that, according to the robot position, are shad-
owed by or next to a person should not be used for projection for two rea-
sons. First, it makes a proper projection impossible if the person is blocking
the projected image. Second, a person can be dazzled. Therefore, we penalize
segments, when the angle between the line of sights of the segment and all per-
son hypothesis pi is too low: alphamin = min∀pi

(acos((pr − pi) · (pr − li)))
sS(li) = 1.0 − Gauss(αmin, μ = 0, σ2 = 0.1).

4.4 Selecting the Best Wall Segment for Projection

To find the best wall segment for a given robot position pr and orientation nr the
robot position dependent (sP , sS) and independent score functions (sU , sW ) have
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to be computed. Afterwards, the scores of the different functions are multiplied
for every segment independently. We use multiplication for this step since the
different constraints cannot compensate each other. Segments that are below
a certain threshold will be rejected and removed from the set of segments. In
a final step, adjacent wall segments get merged, whereby the score of the new
segment is the sum of its sub-segments. This guarantees that large segments are
preferred. Finally, the segment with the highest score is returned as the best
segment for projection for the current robot and user positions.

5 Projection Correction

As already stated above, the projected image gets distorted if the projector
is not aligned perpendicular to the projection wall. Fortunately, the distortion
correction is relatively easy for unbowed, straight walls if the angle between the
projector and the wall is known.

Since the position and orientation of the wall segment used for projection
is known from the position optimization, we can compute coordinates of the
rectified image in the image space by means of vector geometry (Fig. 4).

Once we have obtained the image coordinates of the distorted and the recti-
fied image, we can compute a point correspondence matrix (homography matrix)
to distort the input image for the projector so that it is displayed correctly on
the wall segment.

5.1 Wall Rectified Projection

Knowing the video projector pose p and its aperture angle, we can compute
the intersection points of the four image corners (lu, ru, ll, rl) with the plane H
defined by the target wall segment S. Afterwards we transform these 3D coordi-
nates (lu3D, ru3D, ll3D, rl3D) on the plane to obtain 2D coordinates (luH , ruH ,
llH , rlH) of the beamer edge points. After the x coordinates of these points
have been adapted to stay within the region defined by the desired wall seg-
ment li, we compute the maximum rectangle with the aspect ratio defined by
the projector (lumax′ , rumax′ , llmax′ , rlmax′). These points are transformed back
to 3D coordinates and projected back into the beamer frame to get the points
lumax, rumax, llmax and rlmax. Together with the points lu, ru, ll and rl they are
defining point correspondences, which are used to compute the planar homogra-
phy matrix that defines the image distortion. The resulting projection rectifies
the image according to a perpendicular observer position.

5.2 User Adaptive Projection

An alternative rectification takes the position of the observer into account and
rectifies the image in order to make it appear perpendicular to the axis of view.
Therefore, we define a plane Vo that is 10 cm in front of the observer in direction
of the segment center c. This plane is oriented perpendicular to the observer view
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Fig. 4. Illustration of the image rectification process. The projector edge coordinates
are projected into the wall or observer coordinate system. Afterwards, they are rectified
and projected back into the projector frame.

direction and has the normal vector c−o. In contrast to the observer independent
approach, the 3D coordinates lu3D, ru3D, ll3D, rl3D are projected onto this plane
Vo using the vectors from the corner coordinates to the observer. Therefore, the
maximum rectangle is computed on the observer plane Vo before the coordinates
are projected back onto the wall plane and from there to the projector space in
order to yield the homography matrix.

6 Experiments

Experiments have been conducted with the actual robot platform in our faculty
building and using a robot simulator.

We have tested the extraction of suitable wall segments and the projection
rectification for different exhibits and situations in our lab. Results for two sit-
uations are given in Fig. 6. For every location the local surrounding (8x8 m) of
the robot and the user position was taken into account. The algorithm was able
to generate a rectified projection on wall segments that are of good visibility to
the user. However, the position optimization tends to generate positions with
acute projection angle as these positions are good in terms of user visibility and
maximum projection distance. If maximum projector brightness is an issue, we
recommend integrating an additional module for rating the robot to wall angle.

An analysis of the runtime of the different algorithm steps on the robot
platform running an Intel Core i7-3612QM was conducted. As a result, segment
detection (18.6 ms) and computation of the robot position independent modules
(6.1 ms) is required only once for every new person detection. It has to be
noted, that the quality of the optimization highly depends on a proper line
extraction of the RANSAC algorithm. Although, it fluctuates a bit, it has proven
to work well enough for wall segments with a minimum length of 60 cm. The
robot position dependent modules need to be computed for every new particle
hypotheses. During our tests, we configured the PSO to use 500 particles and
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Fig. 5. left : Set up of the projection experiment. right : interpreted directions of the
test persons (red) for displayed arrow (blue) and for unrectified projection.

to stop optimization if the score improvement is lower than 5 percent for 5
generations. This leads to an average of 7 iterations in order to obtain a stable
optimum position and requires 35.1 ms of run time on average.

The update rate of the goal position optimization is limited to 10 Hz, which
is the update rate of the laser range finder and thus the frequency of the person
detection. Furthermore, the person detection accuracy does fluctuate over time
requiring smoothing of the person pose as small changes in the person pose
do have a high impact on the person specific projection. Therefore, the person
dependent projection is always a bit behind if the person is moving fast. However,
people are unlikely to move very fast during the presentation of an exhibit.

In order to test the benefit of the projection rectification, we have set up the
experiment given in Fig. 5. The robot was located 50 cm in front of a wall, facing
the wall at an acute angle causing strong image distortions. We have asked 11
test persons to stand 1 meter next to the robot and to view the images projected
by the robot with three different methods: (a) no correction, (b) wall rectified
correction, (c) user adaptive projection. First of all, we showed them a video
with the different projection methods and ask which one was most comfortable
to view. Since only one person prefers the uncorrected projection, image rec-
tification can improve the presentation quality. However, the type of preferred
correction is person dependent ( 4 votes for (b) and 6 votes for (c)) and should
be inquired at the beginning of a tour. In the second stage we examined, how
the different projections affect the interpretation of direction arrows that might
point to the next exhibit. Therefore, we consecutively presented an arrow rotated
randomly between 0◦ and 360◦ (with 30◦ increment) on the projection area and
asked the test persons to interpret the shown arrow in the floor coordinate sys-
tem (Fig. 5). Although, the average deviation of subjective angle perception
decreases from 62.7◦ for (a) to 46.81◦ (b) and 49.09◦ (b) it hast to be noted,
that the person specific preference is more important than the chosen rectifica-
tion method. Therefore, the diagrams for (b) and (c) are almost identical to the
one given in Fig. 5. It seems that the viewing angle of the test person to the
arrow position on the wall has more influence than the actual type of projection
and therefore should be considered while generating instruction arrows.
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Fig. 6. Example image for the wall segment extraction and projection rectification.
left: unmodified and distorted projection. middle: projection after segment extraction
and rectification. right: direction information displayed on the wall.

7 Conclusion and Future Work

This paper describes a new method that takes the user position into account in
order to dynamically extract wall segments that are suitable for video projection.
Furthermore, we show how to embed the scoring of the wall segment extraction
into an PSO framework in order to obtain the best projection position for the
robot in the local surrounding.

Continuing our work, we are currently working on the integration of the
robot position scoring into the local motion planning algorithm of the robot. We
are using a dynamic window approach (DWA) [18] for motion planning, that
samples the possible velocity commands of the robot within a certain prediction
time window and scores them by different navigation objectives (e.g. Distance
to obstacles, follow a path, follow a person with a given distance,..) [19,20]. We
already extended this approach to also score the motion trajectories in terms
of projection suitability. First experiments already show promising results as
the average projection score during driving can be increased significantly. This
allows the robot to improve the experience during a guided tour by projection
information (e.g. directions) onto walls during driving.

Furthermore, the work presented so far is designed to work with one user
only. Therefore, in future we want to find out if and how the method can be
extended to work with multiple users at a time.
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