
© Springer International Publishing Switzerland 2015
H. Liu et al. (Eds.): ICIRA 2015, Part III, LNAI 9246, pp. 310–321, 2015.
DOI: 10.1007/978-3-319-22873-0_27

Parallel Stereo Matching Based on Edge-Aware Filter

Fan Bu() and Chunxiao Fan

Beijing Key Laboratory of Work Safety Intelligent Monitoring,
School of Electronic Engineering, Beijing University of Posts and Telecommunications,

Beijing 100876, People’s Republic of China
stbbff99@gmail.com, fcxg100@163.com

Abstract. This paper presents a novel parallel stereo matching algorithm based
on edge-aware filter with good performance in accuracy and speed. The initial
matching cost is built with census transform and sobel operator. Then the ag-
gregated cost is computed by rolling guidance filter and guided filter. The final
disparity is computed by rolling guidance filter and weighted median filter. The
key idea is to eliminate the influence of small scale structures when computing
weights in aggregation step and post-processing step. The proposed method
ranks 17th on Middlebury benchmark and the results cost 52.5ms on one GPU
and 33.8ms on two GPUs.

Keywords: Stereo matching · Edge-aware filter · Cost aggregation · Disparity

1 Introduction

Stereo matching seeks the correspondence in stereo images. The method can be classi-
fied into two categories: local methods and global methods [1]. Global methods regard
the problem as energy function and minimize the function with belief propagation,
graph cuts and so on. They can produce accurate results but they consume too much
time. Local methods compute disparity within a support region. The traditional repre-
sentative local methods are AdaptWeight [2, 3], GeoSup [4] and so on.

Traditional local methods are not well paralleled. So they can’t achieve real-time
performance on GPU. Nowadays, with the development of edge-aware filter, some
local methods utilize edge-aware filter to do cost aggregation step. In article [5, 8-10],
joint bilateral filter, guided filter and domain-transform filter are used to compute the
weights in cost aggregation step. These methods achieve good performance in both
accuracy and speed.

But, there exists a serious issue in the above methods. When computing weights in
the aggregation step, some small scale structures will influence the weights’ distribu-
tion. Zhang proposed rolling guidance filter [11] in 2014. This filter has an edge-
aware property while removing small scale structures. The filter is simple in imple-
mentation and consumes little time. It gives us some clues to solve the issue.

In this paper, we propose a novel stereo matching algorithm based on edge-aware
filter. We adopt a Census-Sobel measure to compute initial matching cost. Then we
use rolling guidance filter and guided filter to do cost aggregation. Finally we utilize

 Parallel Stereo Matching Based on Edge-Aware Filter 311

rolling guidance filter and weighted median filter to get the disparity. Our method is
well-paralleled and we give an efficient implementation on CUDA. The results on
Middlebury benchmark demonstrate the great performance in accuracy and speed.

The rest of the paper is organized as follows: Section 2 provides a summary of roll-
ing guidance filter. Section 3 gives a full description of our algorithm. Section 4 gives
the key of the implementation on CUDA. Section 5 shows the experimental results.
Section 6 gives the conclusion.

2 Rolling Guidance Filter

Fig. 1 illustrates the work flow of rolling guidance filter [11]. This filter has two
steps. Step 1 uses Gaussian filter to remove small scale structures. Step 2 uses edge-
aware filter to do edge recovery, such as joint bilateral filter, guided filter and so on.

Step 2 is an iterative step. The final nJ is the output image. Here we take guided
filter for example. The equations are listed in Eq. (1-4). Step 1 uses Eq. (1-2) and step
2 uses Eq. (3-4). Guided filter takes one-channel image as input. But in Fig. 1, the
input image I can be a 3-channel image (RGB). The solution is to handle each channel
separately. Then we get three 1-channel images: n

RJ , n
GJ and n

BJ . Finally we com-

bine the three 1-channel images to a 3-channel image. The detailed information about
rolling guidance filter and guided filter can be found in [6, 7, 11].

 ()
()

()
2

1
2

1
exp

2q N pp s

p q
J p I q

K σ∈

 −
= − 

 
 

 (1)

()

2

2
exp

2p
q N p s

p q
K

σ∈

 −
= − 

 
 

 (2)

 () () ()1n n
pq

q

J p W J I q+ = (3)

 () () ()
()

2 2
: ,

1
1

k

n n
p k q kn

pq
k p q w k

J J
W J

w

μ μ
σ ε∈

 − −
 = +
 + 

 (4)

Fig. 1. Work flow of rolling guidance filter

Input Image
I

J1

Input

Guidance
J2

Step2:
Edge recovery

Guidance

Input

J3
……

Step1:Small
structure
removal

Step2:
Edge recovery

312 F. Bu and C. Fan

Fig. 2 gives an example
age while figure (b) shows
scale structures like small d
tures like number 8 and num

Fig. 2. (a) Input i

3 Stereo Matching

Fig. 3 illustrates the work f
is organized by four parts
selection and post-processin
images and utilize the filter

F

3.1 Matching Cost Com

Rhemann et al. introduced a
of differences of color and

in Eq. (5). (),C p d is

x-direction gradient of pixe

 () (), 1 mC p d α= − ⋅

Fig. 4 shows the dispari
can see that the ad-gradx m
this problem, we adopt a
Eq. (7-10). Here, (census

Input Stereo
images

Matching cost
computation

Rolling guidance
filter

of rolling guidance filter. Figure (a) shows the original
s the result image after rolling guidance filter. The sm
dots are well removed. And the edges of large scale str
mber 2 are well preserved.

 (a) (b)

image. (b) Output image after rolling guidance filter.

g

flow of our method. Like most local methods, our meth
s: matching cost computation, cost aggregation, dispa
ng [1]. Here we do rolling guidance filter on original ste
ed images to do cost aggregation and post-processing.

Fig. 3. Work flow of stereo matching

mputation

a simple but effective measure in [8]. The cost is combi
gradient, and we name it ad-gradx. It is formally expres

the matching cost. ()x pI∇ in Eq. (5) represents

el p in image I and the gradient is computed as Eq. (6).

1 2min , min ,L R L R
p q x p x qI I I Iτ α τ   − + ⋅ ∇ − ∇   

() ()()1,0 1,0 / 2x p p pI I I+ −∇ = −

ity from Teddy image. From figure (d) and figure (e),
measure performs bad in large textureless regions. To so
a new cost measure named Census-Sobel described

()p is the census transform of pixel p. ()sobelx p is

Cost
aggregation

Disparity
selection

Post-
processing

Final disparit

im-
mall
ruc-

hod
arity
ereo

ined
ssed

the

(5)

(6)

we
olve
d in

the

ty

x-direction gradient of pix

y-direction gradient. Pixel
disparity of pixel p is d. H

parameters. Figure (c) prov

 (),C p d C=

 (), 1censusC p d =

 (),sobelxC p d

 (),sobelyC p d

 (c)

Fig. 4. (a) A part of Teddy im
(d) Our disparity with ad-gradx

3.2 Cost Aggregation

Rhemann et al. utilized gui

()2 ,C p d is the aggregate

pixel p and q in image I. I

initial matching cost in Eq.

 C

Parallel Stereo Matching Based on Edge-Aware Filter

xel p computed by sobel operator and ()sobely p is

q is the corresponding pixel in the right image when
Ham means hamming distance. censusγ , sobelxγ and sobelyγ
es the effectiveness of our Census-Sobel measure.

() () (), , ,census sobelx sobelyC p d C p d C p d+ +

() (),
1.0 exp

census

Ham census p census q

γ
   − −  
 

() ()
1.0 exp

sobelx

sobelx p sobelx q

γ
 −

= − −  
 

() ()
1.0 exp

sobely

sobely p sobely q

γ
 −

= − −  
 

 (

(a) (b)

 (d) (e)

mage. (b) Groundtruth. (c) Our disparity with census-sobel c
x cost. (e) Disparity in article [8], using ad-gradx cost.

ided filter to do cost aggregation [8] in Eq. (11-12). H
d cost of pixel p at disparity d. ()pqW I is the weigh

is the left image in the stereo images and (),C p d is

(7). Details of Eq. (12) are included in article [6-9].

() () ()2 , ,pq
q

C p d W I C p d= (

313

the

the
are

(7)

(8)

(9)

(10)

cost.

Here
ht of

the

(11)

314 F. Bu and C. Fan

 () 2
:

1
pq

k

W I
w

=

When pixel p and q loc

Eq. (12) is larger than the c
the same side means that p
disparity plane while locatin
q have less opportunity. So

However, small scale
Fig. 5-(a), all the pixels in
parity plane so the weights
pixel B is surrounded by so
structures in figure (g). Her
Figure (i) shows the effects
Figure (h) shows the zoom
structures are removed whi
while, rolling guidance filt
shown in figure (c) and (d)
same.

 (c)

 (g)

Fig. 5. (a) A part of Image T
(c) Zoom of pixel A in figure
figure c. (f) Weights of pixel A
in figure b. (i) Weights of pixe

In conclusion, we take E
the output image of image

calculated by Eq. (12). Nam

() () ()()
()

1

,

1
k

T

p k k q k
p q w

I U Iμ ε μ−

∈

+ − Σ + − (

cate on the same side of the edge, ()pqW I computed

case locating on the opposite side of the edge. Locating
pixel p and q have more opportunity to locate on the sa
ng on the opposited side of the edge means that pixel p
the aggregation way in Eq. (11-12) is effective.
structures may influence the weights’ distribution.
the red square centered at pixel B locate on the same d

s in the red square should be almost the same. But in f
ome different color pixels and these pixels are small sc
re small scale structures mean they only occupy few pix
s of these structures, the weights’ distribution is disorder
m of pixel B after rolling guidance filter. The small sc
ile the weights are computed correctly in figure (j). Me
ter doesn’t destroy the edges of large scale structures
). In figure (e) and (f), the weights of pixel A is almost

(a) (b)

 (d) (e) (f)

 (h) (i) (j)

Teddy. (b) Output image of figure a after rolling guidance fi
e a. (d) Zoom of pixel A in figure b. (e) Weights of pixel A
A in figure d. (g) Zoom of pixel B in figure a. (h) Zoom of pixe
el B in figure g. (j) Weights of pixel B in figure h.

Eq. (12-13) for cost aggregation step. Image J in Eq. (13
 I after rolling guidance filter and the weight ()pqW J

mely, we use image J instead of image I in Eq. (11).

(12)

d by

g on
ame
and

 In
dis-

fact,
cale

xels.
red.
cale
ean-
, as
the

ilter.
A in
el B

3) is

) is

 Parallel Stereo Matching Based on Edge-Aware Filter 315

 () () ()2 , ,pq
q

C p d W J C p d= (13)

3.3 Disparity Selection and Post-Processing

We apply the Winner-Takes-all method (WTA) to choose the disparity for pixel p [1].
In Eq. (14), pd is the disparity for pixel p, S is the set of the possible disparities.

()2 ,C p d is the aggregated cost.

 ()2argmin ,p d S
d C p d

∈
= (14)

Once we get the initial disparity, we apply two strategies to do post-processing:
left-right check and weighted median filter.

Left-Right Check
We compute two disparity images for this step. Disparity image 0 chooses left image
as the reference view and disparity image 1 chooses right image as the reference view.
Then we test the pixel’s disparity by Eq. (15). Pixels which don’t fulfill Eq. (15) will

be marked as error pixels, the others will be marked as correct pixels. Here (),Ld x y
represents the disparity for the pixel which coordinate is (),x y in the left image.

The error pixels’ disparities in disparity image 0 will be corrected by the disparity of
the closest correct pixel [9] while the correct pixels’ disparities keep unchanged. De-
tailed information is stated in article [8-9].

 () ()(), , ,L R Ld x y d x d x y y= − (15)

Weighted Median Filter
The disparity after left-right check will have some streak-like artifacts. Ma et al. pro-
posed a simple but effective solution for the above problem in article [12]. They use
weighted median filter to do post-processing in Eq. (16). Here I is the left image. The
weight ()xyW I is computed by Eq. (12). Details about Eq. (16) refer to article [12].

 () () ()()
()

, xy
y N x

h x i w I V y iδ
∈

= − (16)

But there exists the same problem described in section 3.2. Small scale structures
will influence the weights’ values. Here we use Eq. (17) instead of Eq. (16). In Eq.
(17), we use image J instead of image I. Image J is the output image of I after rolling
guidance filter. Here image J is the same as the image J in section 3.2.

 () () ()()
()

, xy
y N x

h x i w J V y iδ
∈

= − (17)

316 F. Bu and C. Fan

4 Implementation on CUDA

Guided filter can be transformed into several box filters and box filter can be com-
puted by integral image [14]. Thus, the efficient implementation of integral image is
the key to reduce running time. Here, we take NVIDIA Tesla K20c GPU for example
and state the implementation of integral image on CUDA.

4.1 Prefix Sum(Scan)

The definition of integral image is listed in Eq. (18). Here (),sI x y is the integral

image of image I. Eq. (19-20) are another definitions of integral image. So we can
implement integral image in two steps. The first step computes the prefix sum in row-
major order. The second step computes the prefix sum in column-major order.

 () ()
0 0

, y ,
yx

s
i j

I x I i j
= =

= (18)

 () ()
0

, ,
x

X
i

I x j I i j
=

= (19)

 () ()
0

, ,
y

s X
j

I x y I x j
=

= (20)

Traditional prefix sum methods utilized shared memory to do threads’ communica-
tion [15]. NVIDIA Kepler architecture GPUs give us a more efficient communication
way using warp shuffle functions like __shfl(), __shfl_up() and so on. These func-
tions can exchange a variable between threads within a warp without using shared
memory. The example of 32 elements’ scan is listed below [19].

__global__ void scan(void) {
 int laneId = threadIdx.x & 0x1f;
 int value = 31 - laneId;
 for (int i=1; i<32; i*=2) {
 int n = __shfl_up(value, i, 32);
 if (laneId >= i) value += n;
 }
}

Eq. (19) computes each row’s scan in the image. We can use one warp to do one
row’s scan [16] as Fig. 6 shows. When warp 0 finishes the computation of the first 32
pixels’ scan (Pixel 0-31), we use a temporary value to store the 31th pixel’s prefix
sum. When warp 0 finishes the second 32 pixels’ scan (Pixel 32-63), we add the tem-
porary value to the second 32 pixels’ scan. Then we update the temporary value with
the 63th pixel’s prefix sum. Repeat the above procedures until all the elements’ prefix
sum is finished. Eq. (20) is implemented by the same way.

 Parallel Stereo Matching Based on Edge-Aware Filter 317

Fig. 6. Scan in row-major order

4.2 Novel Implementation of Integral Image

The two-dimension array is stored by row-major order in CUDA. So when computing
scan in column-major order, the accesses of memory can’t be coalesced. Thus much
time is wasted in the accesses of memory. Bilgic et al. utilized matrix transpose to
handle this problem in [17]. The method of integral image in [17] is listed below:

1. Compute the row-major scan
2. Matrix transpose
3. Compute the row-major scan
4. Matrix transpose

However, the matrix transpose procedure is not necessary. We propose a novel me-
thod for integral image. In Fig. 7, we will compute A’s integral image. A is a 2-
dimension array. The height of A is H and the width of A is W. B is the transpose of
A. First we combine A’s memory and B’s memory with CUDA’s texture memory.
Texture memory has cache optimized for 2D spatial locality, so threads of the same
warp that read texture addresses that are close together will achieve the best perfor-
mance [19]. Firstly, we compute the column-major scan of A as section 4.1 shows but
we write the results into B. Thus, we use one warp to compute A’s one column’s pre-
fix sum and write results into one row of B. The row’s number in B and the column’s
number in A should be the same. Secondly, we do the same procedure to array B. we
use one warp to compute B’s one column’s prefix sum and write the result into one
row of array C. Here C is another array which has the same size of A. Finally, C is the
integral image of A. Our method only takes two column prefix sum, avoiding matrix
transpose steps. So our method has better performance than the method in [17].

Fig. 7. Implementation of integral image

P ix e l (0 - 3 1) P ix e l (3 2 - 6 3) P i x e l (6 4 - 9 5)

P ix e l (0 - 3 1) P ix e l (3 2 - 6 3) P i x e l (6 4 - 9 5)

P ix e l (0 - 3 1) P ix e l (3 2 - 6 3) P i x e l (6 4 - 9 5)

P ix e l (0 - 3 1) P ix e l (3 2 - 6 3) P i x e l (6 4 - 9 5)

W a r p 0

W a r p 1

W a r p 2

W a r p 3

… .. .

… .. .

… .. .

… .. .

Pixel(0-31)

Pixel(32-63)

2D-array A (W * H)

Warp0

…...

Pixel(0-31)

Pixel(32-63)

Warp0

…...

Warp0 Pixel(0-31) Pixel(32-63) …...

Warp1 Pixel(0-31) Pixel(32-63) …...

2D-array B (H * W)

318 F. Bu and C. Fan

4.3 Stereo Matching on

Before doing left-right chec
disparity maps. Map 0 is ba
right image. The two maps
maps on two GPUs to save
compute map 1 on device 1
copy time between two GP
of Tesla GPU can use peer-

1. Call function cudaDevic
2. Call function cudaMemc

5 Experimental R

We test our method with th
E5-2620-v2 2.1GHz CPU a
listed in Table 1. 1r is the

image filter. Iters are the t

Ta

sσ

1.06

censusγ
7.5

Fig. 8 shows the results

and figure (b) shows the err

Fig. 8. (a) Final dispa

n Two GPUs

ck as the description of Eq. (15), we should have two ini
ased on left image in stereo images and Map 1 is based
s’ computation is independent, so we can compute the t
e about 1/2 time. Thus, we compute map 0 on device 0
1. The key of the implementation is minimizing memor
PUs. When the program is run as a 64-bit process, devi
-to-peer access feature to accelerate the copy process [19

eEnablePeerAccess() to enable peer-to-peer access.
cpyPeer() and so on to do the memory copy.

Results

he Middlebury benchmark [18]. We use a server with In
and NVIDIA Tesla K20c graphics card. The parameters
e radius of Gaussian filter and 2r is the radius of gui

imes of iteration in rolling guidance filter.

able 1. The parameters in our method.

1r ε 2r Iters

1 0.000215 7 4
 sobelxγ sobelyγ censusr

2.5 10.3 1

of our method. Figure (a) shows the final disparity m
ror maps under pixel error threshold 1.

(a)

(b)

arity maps. (b) Error maps under pixel error threshold 1.

itial
d on
two
and
ry’s
ices
9]:

ntel
are
ded

maps

 Parallel Stereo Matching Based on Edge-Aware Filter 319

Table 2 lists the average error ratio of several stereo matching methods on the
Middlebury datasets. Our method has better performance over the other methods in
the table. Up to May 18, 2015, our method ranks 17th of all the 162 methods. The key
of our method is eliminating small structures’ effect when computing weights.

Table 2. Evaluation for several local methods on Middlebury stereo images.

Algorithms Avg. Error (%) Rank
Ours 4.80 17
Guided agg+WM[12] 5.50 n/a
CostFilter[8] 5.55 50
GeoSup[4] 5.80 60
AdaptWeight[2] 6.67 98

For further proving our method’s innovation, Table 3 shows contrast between our

method and three other experiments. Experiment 1 only takes ad-gradx cost in Eq. (5)
instead of Census-Sobel cost in Eq. (7) while other steps keep the same. Experiment 2
only takes Eq. (11-12) for cost aggregation instead of Eq. (12-13) and experiment 3
only takes Eq. (16) for weighted median filter instead of Eq. (17). From table 2, our
method has better performance over the other three experiments.

Table 3. The contrast between our method and three experiments.

Algorithm Avg. Error (%)
Ours 4.80
Ex. 1 5.77
Ex. 2 5.00
Ex. 3 4.84

Our method is easily implemented on CUDA. Table 4 gives the running time of

our method on one GPU and on two GPUs. The running time includes all the steps in
our method. The average time is 52.5ms on one GPU and 33.8ms on two GPUs.

Table 4. Running time of our method.

Image Max Dis Resolution Time on 1 GPU (ms) Time on 2 GPUs (ms)
Tsukuba 15 384*288 18.75 11.63
Venus 19 434*383 30.80 19.43
Teddy 59 450*375 80.24 52
Cones 59 450*375 80.24 52

Table 5 lists several other methods’ average running time on Middlebury image

sets. The data is selected from article [8, 12]. Our method is a little faster than the
others on 1 GPU. The main reason is our fast implementation of integral image on
GPU. The methods which rank higher than our method usually utilize Graph cuts,
belief propagation and so on to get more accurate results, which will cost much time.
So balancing the disparity’s accuracy and running time, our method is a great choice.

320 F. Bu and C. Fan

Table 5. E

Algorithm
Ours(1 GPU)
Ours(2 GPUs)
CostFilter(1 GPU)
Guided agg+WM(1

Table 6 gives the runni

resolution is 1M (1024 * 1
implementation described in

Ta

Algorithm
Ours
Our prefix
Method in

Fig. 9 gives the photos

scenes. We can notice that o

Fig. 9.

6 Conclusion

This paper has presented a
filter and fast implementati
using Census-Sobel cost m
do cost aggregation and uti
do post-processing. The eff
weights, thus the disparity
ages show the great perform
technology develops, we wi

Acknowledgement. The work
China (Grants No. NSFC-61
Higher Education of China (G
and Telecommunications (No.

Evaluation of running time of several methods.

Avg. Time on GPU (ms) Avg. Error (%)
52.5 4.80
33.8 4.80
65 5.55

GPU) 54 5.50

ing time of the integral image. Here the testing imag
1024) and the type of each pixel is float4. We can see
n section 4 has the best performance.

able 6. Running time of integral image

Avg. Time (ms)
0.72

scan + matrix transpose 2.1
[17] 4.0

s captured by Logitech C270 consumer cameras in r
our approach can produce accurate disparity image.

 (a) (b)

(a) Left input image. (b) Disparity image.

a parallel stereo matching algorithm based on edge-aw
ion on CUDA. Our method is based on three key poi

measure, utilizing rolling guidance filter and guided filte
ilizing rolling guidance filter and weighted median filte
fect of small scale structures is eliminated when comput
quality is improved. The results on Middlebury stereo

mance in accuracy and speed. As heterogeneous comput
ill explore more efficient implementation on GPU.

k was supported by the National Natural Science Foundation
402046, NSFC-61170176), Fund for the Doctoral Program

Grants No.20120005110002), Fund for Beijing University of P
2013XZ10, 2013XD-04).

ge’s
our

real

ware
ints:
er to
er to
ting
im-
ting

n of
m of
Posts

 Parallel Stereo Matching Based on Edge-Aware Filter 321

References

1. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision 47(1–3), 7–42
(2002)

2. Yoon, K.J., Kweon, I.S.: Locally adaptive support-weight approach for visual correspon-
dence search. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR 2005, vol. 2, pp. 924−931. IEEE (2005)

3. Yoon, K.J., Kweon, I.S.: Adaptive support-weight approach for correspondence search.
IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4), 650–656 (2006)

4. Hosni, A., Bleyer, M., Gelautz, M., et al.: Local stereo matching using geodesic support
weights. In: 16th IEEE International Conference on Image Processing (ICIP),
pp. 2093−2096. IEEE (2009)

5. Mattoccia, S., Giardino, S., Gambini, A.: Accurate and efficient cost aggregation strategy
for stereo correspondence based on approximated joint bilateral filtering. In: Zha, H., Ta-
niguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part II. LNCS, vol. 5995, pp. 371–380.
Springer, Heidelberg (2010)

6. He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios,
N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)

7. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Transactions on Pattern Analysis
and Machine Intelligence 35(6), 1397–1409 (2013)

8. Rhemann, C., Hosni, A., Bleyer, M., et al.: Fast cost-volume filtering for visual correspon-
dence and beyond. In: 2011 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 3017−3024. IEEE (2011)

9. Hosni, A., Rhemann, C., Bleyer, M., et al.: Fast cost-volume filtering for visual correspon-
dence and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(2),
504–511 (2013)

10. Pham, C.C., Jeon, J.W.: Domain transformation-based efficient cost aggregation for local
stereo matching. IEEE Transactions on Circuits and Systems for Video Technology 23(7),
1119–1130 (2013)

11. Zhang, Q., Shen, X., Xu, L., Jia, J.: Rolling guidance filter. In: Fleet, D., Pajdla, T.,
Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part III. LNCS, vol. 8691, pp. 815–830.
Springer, Heidelberg (2014)

12. Ma, Z., He, K., Wei, Y., et al.: Constant time weighted median filtering for stereo match-
ing and beyond. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp.
49−56. IEEE (2013)

13. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspon-
dence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Hei-
delberg (1994)

14. Crow, F.C.: Summed-area tables for texture mapping. ACM SIGGRAPH Computer
Graphics 18(3), 207–212 (1984)

15. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. GPU Gems
3(39), 851–876 (2007)

16. Li, J.: High performance edge-preserving filter on GPU. NVIDIA GTC (2015)
17. Bilgic, B., Horn, B.K.P., Masaki, I.: Efficient integral image computation on the GPU. In:

2010 IEEE Intelligent Vehicles Symposium (IV), pp. 528−533. IEEE (2010)
18. http://vision.middlebury.edu/stereo
19. NVIDIA C Programming Guide Version 7.0

	Parallel Stereo Matching Based on Edge-Aware Filter
	1 Introduction
	2 Rolling Guidance Filter
	3 Stereo Matching

	3.1 Matching Cost Com mputation
	3.2 Cost Aggregation
	3.3 Disparity Selection and Post-Processing

	4 Implementation on CUDA
	4.1 Prefix Sum(Scan)
	4.2 Novel Implementation of Integral Image
	4.3 Stereo Matching on n Two GPUs

	5 Experimental R Results
	6 Conclusion
	References

