
© Springer International Publishing Switzerland 2015 
H. Liu et al. (Eds.): ICIRA 2015, Part III, LNAI 9246, pp. 310–321, 2015. 
DOI: 10.1007/978-3-319-22873-0_27 

Parallel Stereo Matching Based on Edge-Aware Filter 

Fan Bu() and Chunxiao Fan 

Beijing Key Laboratory of Work Safety Intelligent Monitoring,  
School of Electronic Engineering, Beijing University of Posts and Telecommunications,  

Beijing 100876, People’s Republic of China 
stbbff99@gmail.com, fcxg100@163.com 

Abstract. This paper presents a novel parallel stereo matching algorithm based 
on edge-aware filter with good performance in accuracy and speed. The initial 
matching cost is built with census transform and sobel operator. Then the ag-
gregated cost is computed by rolling guidance filter and guided filter. The final 
disparity is computed by rolling guidance filter and weighted median filter. The 
key idea is to eliminate the influence of small scale structures when computing 
weights in aggregation step and post-processing step. The proposed method 
ranks 17th on Middlebury benchmark and the results cost 52.5ms on one GPU 
and 33.8ms on two GPUs. 
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1 Introduction 

Stereo matching seeks the correspondence in stereo images. The method can be classi-
fied into two categories: local methods and global methods [1]. Global methods regard 
the problem as energy function and minimize the function with belief propagation, 
graph cuts and so on. They can produce accurate results but they consume too much 
time. Local methods compute disparity within a support region. The traditional repre-
sentative local methods are AdaptWeight [2, 3], GeoSup [4] and so on. 

Traditional local methods are not well paralleled. So they can’t achieve real-time 
performance on GPU. Nowadays, with the development of edge-aware filter, some 
local methods utilize edge-aware filter to do cost aggregation step. In article [5, 8-10], 
joint bilateral filter, guided filter and domain-transform filter are used to compute the 
weights in cost aggregation step. These methods achieve good performance in both 
accuracy and speed. 

But, there exists a serious issue in the above methods. When computing weights in 
the aggregation step, some small scale structures will influence the weights’ distribu-
tion. Zhang proposed rolling guidance filter [11] in 2014. This filter has an edge-
aware property while removing small scale structures. The filter is simple in imple-
mentation and consumes little time. It gives us some clues to solve the issue. 

In this paper, we propose a novel stereo matching algorithm based on edge-aware 
filter. We adopt a Census-Sobel measure to compute initial matching cost. Then we 
use rolling guidance filter and guided filter to do cost aggregation. Finally we utilize 
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rolling guidance filter and weighted median filter to get the disparity. Our method is 
well-paralleled and we give an efficient implementation on CUDA. The results on 
Middlebury benchmark demonstrate the great performance in accuracy and speed. 

The rest of the paper is organized as follows: Section 2 provides a summary of roll-
ing guidance filter. Section 3 gives a full description of our algorithm. Section 4 gives 
the key of the implementation on CUDA. Section 5 shows the experimental results. 
Section 6 gives the conclusion. 

2 Rolling Guidance Filter 

Fig. 1 illustrates the work flow of rolling guidance filter [11]. This filter has two 
steps. Step 1 uses Gaussian filter to remove small scale structures. Step 2 uses edge-
aware filter to do edge recovery, such as joint bilateral filter, guided filter and so on. 

Step 2 is an iterative step. The final nJ  is the output image. Here we take guided 
filter for example. The equations are listed in Eq. (1-4). Step 1 uses Eq. (1-2) and step 
2 uses Eq. (3-4). Guided filter takes one-channel image as input. But in Fig. 1, the 
input image I can be a 3-channel image (RGB). The solution is to handle each channel 
separately. Then we get three 1-channel images: n

RJ , n
GJ and n

BJ . Finally we com-

bine the three 1-channel images to a 3-channel image. The detailed information about 
rolling guidance filter and guided filter can be found in [6, 7, 11]. 
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Fig. 1. Work flow of rolling guidance filter 
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xel p computed by sobel operator and ( )sobely p  is 

q is the corresponding pixel in the right image when 
Ham means hamming distance. censusγ , sobelxγ and sobelyγ
es the effectiveness of our Census-Sobel measure. 
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3.3 Disparity Selection and Post-Processing 

We apply the Winner-Takes-all method (WTA) to choose the disparity for pixel p [1]. 
In Eq. (14), pd  is the disparity for pixel p, S is the set of the possible disparities. 

( )2 ,C p d  is the aggregated cost. 

 ( )2argmin ,p d S
d C p d

∈
=  (14) 

Once we get the initial disparity, we apply two strategies to do post-processing: 
left-right check and weighted median filter. 

Left-Right Check 
We compute two disparity images for this step. Disparity image 0 chooses left image 
as the reference view and disparity image 1 chooses right image as the reference view. 
Then we test the pixel’s disparity by Eq. (15). Pixels which don’t fulfill Eq. (15) will 

be marked as error pixels, the others will be marked as correct pixels. Here ( ),Ld x y  
represents the disparity for the pixel which coordinate is ( ),x y  in the left image. 

The error pixels’ disparities in disparity image 0 will be corrected by the disparity of 
the closest correct pixel [9] while the correct pixels’ disparities keep unchanged. De-
tailed information is stated in article [8-9]. 

 ( ) ( )( ), , ,L R Ld x y d x d x y y= −  (15) 

Weighted Median Filter 
The disparity after left-right check will have some streak-like artifacts. Ma et al. pro-
posed a simple but effective solution for the above problem in article [12]. They use 
weighted median filter to do post-processing in Eq. (16). Here I is the left image. The 
weight ( )xyW I is computed by Eq. (12). Details about Eq. (16) refer to article [12]. 
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But there exists the same problem described in section 3.2. Small scale structures 
will influence the weights’ values. Here we use Eq. (17) instead of Eq. (16). In Eq. 
(17), we use image J instead of image I. Image J is the output image of I after rolling 
guidance filter. Here image J is the same as the image J in section 3.2. 
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4 Implementation on CUDA 

Guided filter can be transformed into several box filters and box filter can be com-
puted by integral image [14]. Thus, the efficient implementation of integral image is 
the key to reduce running time. Here, we take NVIDIA Tesla K20c GPU for example 
and state the implementation of integral image on CUDA. 

4.1 Prefix Sum(Scan) 

The definition of integral image is listed in Eq. (18). Here ( ),sI x y  is the integral 

image of image I. Eq. (19-20) are another definitions of integral image. So we can 
implement integral image in two steps. The first step computes the prefix sum in row-
major order. The second step computes the prefix sum in column-major order.  
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Traditional prefix sum methods utilized shared memory to do threads’ communica-
tion [15]. NVIDIA Kepler architecture GPUs give us a more efficient communication 
way using warp shuffle functions like __shfl(), __shfl_up() and so on. These func-
tions can exchange a variable between threads within a warp without using shared 
memory. The example of 32 elements’ scan is listed below [19]. 

__global__ void scan(void) {  
 int laneId = threadIdx.x & 0x1f;  
 int value = 31 - laneId;  
 for (int i=1; i<32; i*=2) {  
  int n = __shfl_up(value, i, 32);  
  if (laneId >= i) value += n;  
 } 
} 

Eq. (19) computes each row’s scan in the image. We can use one warp to do one 
row’s scan [16] as Fig. 6 shows. When warp 0 finishes the computation of the first 32 
pixels’ scan (Pixel 0-31), we use a temporary value to store the 31th pixel’s prefix 
sum. When warp 0 finishes the second 32 pixels’ scan (Pixel 32-63), we add the tem-
porary value to the second 32 pixels’ scan. Then we update the temporary value with 
the 63th pixel’s prefix sum. Repeat the above procedures until all the elements’ prefix 
sum is finished. Eq. (20) is implemented by the same way. 
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Fig. 6. Scan in row-major order 

4.2 Novel Implementation of Integral Image 

The two-dimension array is stored by row-major order in CUDA. So when computing 
scan in column-major order, the accesses of memory can’t be coalesced. Thus much 
time is wasted in the accesses of memory. Bilgic et al. utilized matrix transpose to 
handle this problem in [17]. The method of integral image in [17] is listed below: 

1. Compute the row-major scan 
2. Matrix transpose 
3. Compute the row-major scan 
4. Matrix transpose 

However, the matrix transpose procedure is not necessary. We propose a novel me-
thod for integral image. In Fig. 7, we will compute A’s integral image. A is a 2-
dimension array. The height of A is H and the width of A is W. B is the transpose of 
A. First we combine A’s memory and B’s memory with CUDA’s texture memory. 
Texture memory has cache optimized for 2D spatial locality, so threads of the same 
warp that read texture addresses that are close together will achieve the best perfor-
mance [19]. Firstly, we compute the column-major scan of A as section 4.1 shows but 
we write the results into B. Thus, we use one warp to compute A’s one column’s pre-
fix sum and write results into one row of B. The row’s number in B and the column’s 
number in A should be the same. Secondly, we do the same procedure to array B. we 
use one warp to compute B’s one column’s prefix sum and write the result into one 
row of array C. Here C is another array which has the same size of A. Finally, C is the 
integral image of A. Our method only takes two column prefix sum, avoiding matrix 
transpose steps. So our method has better performance than the method in [17]. 
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Table 2 lists the average error ratio of several stereo matching methods on the 
Middlebury datasets. Our method has better performance over the other methods in 
the table. Up to May 18, 2015, our method ranks 17th of all the 162 methods. The key 
of our method is eliminating small structures’ effect when computing weights. 

Table 2. Evaluation for several local methods on Middlebury stereo images. 

Algorithms Avg. Error (%) Rank 
Ours 4.80 17 
Guided agg+WM[12] 5.50 n/a 
CostFilter[8] 5.55 50 
GeoSup[4] 5.80 60 
AdaptWeight[2] 6.67 98 

 
For further proving our method’s innovation, Table 3 shows contrast between our 

method and three other experiments. Experiment 1 only takes ad-gradx cost in Eq. (5) 
instead of Census-Sobel cost in Eq. (7) while other steps keep the same. Experiment 2 
only takes Eq. (11-12) for cost aggregation instead of Eq. (12-13) and experiment 3 
only takes Eq. (16) for weighted median filter instead of Eq. (17). From table 2, our 
method has better performance over the other three experiments. 

Table 3. The contrast between our method and three experiments. 

Algorithm Avg. Error (%) 
Ours 4.80 
Ex. 1 5.77 
Ex. 2 5.00 
Ex. 3 4.84 

 
Our method is easily implemented on CUDA. Table 4 gives the running time of 

our method on one GPU and on two GPUs. The running time includes all the steps in 
our method. The average time is 52.5ms on one GPU and 33.8ms on two GPUs.  

Table 4. Running time of our method. 

Image Max Dis Resolution Time on 1 GPU (ms) Time on 2 GPUs (ms) 
Tsukuba 15 384*288 18.75 11.63 
Venus 19 434*383 30.80 19.43 
Teddy 59 450*375 80.24 52 
Cones 59 450*375 80.24 52 
 
Table 5 lists several other methods’ average running time on Middlebury image 

sets. The data is selected from article [8, 12]. Our method is a little faster than the 
others on 1 GPU. The main reason is our fast implementation of integral image on 
GPU. The methods which rank higher than our method usually utilize Graph cuts, 
belief propagation and so on to get more accurate results, which will cost much time. 
So balancing the disparity’s accuracy and running time, our method is a great choice. 
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