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Abstract. Gene Regulatory Networks (GRNs) play a central role in
understanding natural evolution and development of biological organisms
from cells. In this paper, inspired by limited neighbors’ information in the
real environment, we propose a GRN-based algorithm with asymmetric
information for swarm-robot pattern formation. Through this algorithm,
the neighbors’ information will be only used once, swarm robots can
collect limited neighbors’ information to self-organize autonomously to
different predefine shapes. Furthermore, a discrete dynamic evolvement
model of cellular automaton of pattern formation is provided to demon-
strate the efficiency and convergence of the proposed method. Various
cases have been conducted in the simulation, and the results illustrate
the effectiveness of the method.
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1 Introduction

A very simple rule has been revealed again and again by the nature that
extremely complicated phenomenons can emerge from simple agents with lim-
ited interactions. In order to reveal the mechanism of complexity emerging from
interactions of simple agents, some concepts have been proposed inspired by the
behaviors of ant colony, school of fish, flock, etc, just like Swarm Intelligence,
Synergetics, Artificial Intelligence, Self-Organized Network, Evolutionary Learn-
ing, Complexity [1], [2], [3], [4]. The solution to this problem, in a sense, may be
a candidate to explain the origin of life.

Pattern formation is a challenging part of this area. Various shapes can be
self-organized generated with no central controller under natural conditions. In
order to reveal the mechanism of pattern formation in the nature and to apply to
swarm-robot pattern formation, many methods have been explored, such as: the
L-systems and iterated function systems in fractal theory [5], cellular automaton
modeling of biological pattern formation [6], using morphogen gradient [7], leader
following algorithms [8], [9], potential field algorithms [10], [4], gene regulatory
networks for swarm-robot pattern formation [11], [12], [13], [14], [15]. Challenges
and classifications of pattern formation in existing literature are reviewed in [16].
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On the other hand, the existence of asymmetric information is a common
phenomenon in the nature. Taking an example of visual, almost all animals
have asymmetric eye positions, in other words, animals can not get neighbors’
information all around, visual information is obtained asymmetrically or lim-
itedly. Based on biological evolutionary theory, we can figure out that animals
obtain asymmetric information on purpose and have asymmetric methods to
deal with these asymmetric information. This strategy using asymmetric infor-
mation means agent needs collecting less information and avoids information
redundancy problem. From the point of view of whole population, strategy using
asymmetric information have contributed to the development and evolution of
the population.

Taking an example of robots, when a robot deals with its neighbors’ informa-
tion, if the information have been used by its neighbors, these information will
not be used again by the robot, the robot uses the rest of neighbors’ information
to compute its next time position. In other words, the information between two
neighbors is only used once.

In this paper, we use gene regulatory networks with asymmetric informa-
tion to study the influence of asymmetric information on swam-robot pattern
formation. A discrete dynamic evolvement model of cellular automaton of pat-
tern formation is proposed to demonstrate the converge efficiency and numerical
simulations confirm the effectiveness of the proposed model.

The rest of this paper is organized as follows. Section 2 presents a problem
statement including the definitions of symmetric information and asymmetric
information. Section 3 presents two cellular automaton models of pattern for-
mation in swarm-robot system, consisting of a symmetric information model
and an asymmetric information model. Section 4 introduces a gene regulatory
network algorithm with asymmetric information for pattern formation. Section
5 presents numerical simulations containing pattern formation with symmetric
information and asymmetric information in different initial condition. Conclu-
sions and future work are given in Section 6.

2 Problem Statement

As our starting point, we propose the following definitions for the strategy using
neighbors’ information.

Definition 1. Symmetric information is a kind of information that is public to
all of its participators, each of the participators will use this information to make
decisions.

Definition 2. Asymmetric information is a kind of information that is not public
to all its participators, only part of the participators will use this information to
make decisions.

This paper considers the problem of how swarm robots self-organize to dif-
ferent predefine shapes driven by gene regulatory networks with asymmetric
neighbors’ information. It is assumed that global 2D position is available for the
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robots, and robots can only detect single directional neighbors. In other words,
the robots have vision blindness.

3 Cellular Automaton Models of Pattern Formation in
Interacting Cell System

Cellular automaton is a discrete dynamic system. It has no central controller
and is rule-based evolvement model, usually used to simulate the natural phe-
nomenons. It has become paradigms of self-organized complex systems in which
collective behaviors arise from simple interaction rules.

The following two CA models give a strong confirmation that symmetric
neighbors’ information and asymmetric neighbors’ information can both guide
swarm robots to evenly target shapes.

The game of one-dimensional pattern formation is assumed . There are seven
robots which are too close for each other in a line. They need using their neigh-
bors’ information to self-organize to a evenly line. Table. 1 presents initial posi-
tion and final position of these seven robots.

Table 1. One-dimensional pattern formation game

Initial position 1 2 3 4 5 6 7

Final position 1 2 3 4 5 6 7

3.1 Cellular Automaton Model of Pattern Formation with
Symmetric Neighbors’ Information

Neighbors’ position information in both sides is collected by each robot. That is
to say the information between two neighbors is symmetric information and will
be used duplicated twice. Evolution rules are as follows:

(1) The robot can detect neighbors in both sides.
(2) The robot just moves one grid or keeps still during one time step.
(3) If there are two neighbors in both sides, the robot will keep still. If there

is one neighbor in one of the sides, the robot will move to the opposite side for
one grid. If two robots occupy one grid, both two will leave away this grid at
next time step.

Table. 2 presents the whole evolution process of seven robots with symmetric
information from the initial position to the final position. It is easy to see that
robot 2 and 3 occupy the same grid at time step 3, the same thing happens to
robot 4 and 5. This situation should be avoided because of severe collision.

3.2 Cellular Automaton Model of Pattern Formation with
Asymmetric Neighbors’ Information

Neighbors’ position information is detected single-directly for some environment
reasons or hardware limitations. That means the information between two neigh-
bors is asymmetric information and should be only used once. In the following
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Table 2. CA model with Symmetric information

Initial position 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
3 1 23 4 56 7
4 1 2 3 4 5 6 7
5 1 2 3 4 5 6 7
6 1 2 3 4 5 6 7
7 1 2 3 4 5 6 7
8 1 2 3 4 5 6 7

Final position 1 2 3 4 5 6 7

asymmetric model, each robot can only detect right side neighbors. Evolution
rules are as follows:

(1) The robot can only detect right side neighbors.
(2) The robot just moves one grid or keeps still during one time step.
(3) If there is a right neighbor, the robot will move one left grid next time

step. If there is no right neighbor, the robot will keep still next time step.
Table. 3 presents the whole evolution process of seven robots with asymmet-

ric information from the initial position to the final position. we can draw the
conclusion that asymmetric information can also guide swarm robots to a evenly
target shape. This method needs fewer time steps and has no severe collision,
that means asymmetric information has better converge efficiency.

Table 3. CA model with asymmetric information

Initial position 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
3 1 2 3 4 5 6 7
4 1 2 3 4 5 6 7
5 1 2 3 4 5 6 7

Final position 1 2 3 4 5 6 7

4 GRN Model with Asymmetric Information

The dynamics of the GRN for multi-robot construction can be described by the
following equations[14]:

dgi,x
dt

= −a · zi,x + m · pi,x (1)

dgi,y
dt

= −a · zi,y + m · pi,y (2)

dpi,x
dt

= −c · pi,x + k · f(zi,x) + b ·Di,x (3)
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dpi,y
dt

= −c · pi,y + k · f(zi,y) + b ·Di,y (4)

where gi,x and gi,y denote the x-axis position and y-axis position of robot i
respectively. pi,x and pi,y denote the velocity-like property of robot i along the
x-axis and y-axis respectively. zi,x and zi,y are the gradients which carry the
information of target shape. f(zi,x) and f(zi,y) are sigmoid functions.

where Di,x and Di,y are the sum of neighbors’ information, neighbors’ dis-
tance information is collected to avoid collision in this paper. We have two strate-
gies using neighbors’ information as proposed in section 3. We have strategy
using symmetric information :

Di,x =
Ni∑

j=1

Dj
i,x Di,y =

Ni∑

j=1

Dj
i,y (5)

and strategy using asymmetric information:

Di,x =
i−1∑

j=1

Dj
i,x Di,y =

i−1∑

j=1

Dj
i,y 1<j<Ni (6)

where Ni denotes the number of neighbors of robot i, and Dj
i,x and Dj

i,y are the
distance function between robot i and robot j, which is defined as

Dj
i,x =

(gi,x − gj,x)√
(gi,x − gj,x)2 + (gi,y − gj,y)2

(7)

Dj
i,y =

(gi,y − gj,y)√
(gi,x − gj,x)2 + (gi,y − gj,y)2

(8)

Under the strategy using asymmetric information, robots are numbered
clockwise and the robot on boundary (−1, 0) is numbered 1 as show in Fig. 1.
Robots can only detect low-number direction neighbors, so neighbors’ informa-
tion is only used once. For example, robot 6 can only select its neighbors from
robot 1, 2, 3, 4 and 5.

Since the unit circle is a closed curve, the 1-st (i = 1) robot is treated in a
special way to satisfy the boundary condition. Specifically 1-st robot uses all its
neighbors’ information.

Mathematically, two distance function matrixes with symmetric informa-
tion and asymmetric information present the differences between two strategies
clearly. Symmetric matrix:

⎛

⎜⎜⎜⎜⎜⎝

0 D12 D13 · · · D1n

D21 0 D23 · · · D2n

D31 D32 0 · · · D3n

...
...

... 0
...

Dn1 Dn2 Dn3 · · · 0

⎞

⎟⎟⎟⎟⎟⎠
Dij = −Dji Dii = 0 (9)
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Fig. 1. The robots are numbered clockwise.

Asymmetric matrix or lower triangular matrix:
⎛

⎜⎜⎜⎜⎜⎝

0 D12 D13 · · · D1n

D21 0 0 · · · 0
D31 D32 0 · · · 0

...
...

... 0
...

Dn1 Dn2 Dn3 · · · 0

⎞

⎟⎟⎟⎟⎟⎠
Dij = −Dji Dii = 0 (10)

The system’s convergence to the target shape is proved according to the
lyapunov theory [12]. The five parameters in the main system dynamics are
optimized in [17].

5 Numerical Simulation

To evaluate the reliability and efficiency of the proposed methods, we perform a
set of simulations using MATLAB.

In order to evaluate the evenness of the target shapes, we define the variance:

s2 =

n∑
i=1

(di − d0)2

n
(11)

where di denotes distance between robot i and robot i + 1 and d0 denotes the
expected distance value. The parameter s2 should be as small as possible. In the
following two cases, we assume that s2 = 0.001 means that the uniform target
shape is accomplished.

In order to ultimate uniform distribution of the robots, we define robots’
neighbor range to be d = Ledge

N , where Ledge refers to the length of the target
shape and N refers to the number of robots [18].
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Fig. 2. The trajectories of 40 robots using GRN method to construct to a unit circle
under different initial conditions. Initial position is denoted as a dot where final position
is denoted as a small circle. (a) robots use symmetric information from two horizontal
lines; (b) robots use asymmetric information from two horizontal lines; (c) s2-time com-
parison curves from two horizontal lines; (d) robots use symmetric information from
two upright lines; (e) robots use asymmetric information from two upright lines; (f)
s2-time comparison curves from two upright lines; (g) robots use symmetric informa-
tion from two vertical lines; (h) robots use asymmetric information from two vertical
lines; (i) s2-time comparison curves from two vertical lines; (j) robots use symmetric
information from a random square region; (k) robots use asymmetric information from
a random square region; (l) s2-time comparison curves from a random square region;
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5.1 Case Study 1: Converge to a Unit Circle from Initial Symmetric
Position

In this case, we deploy 40 robots to a unit circle from four different symmetric
initial positions. Both strategies using neighbors’ information are performed.

Fig. 2 shows that both strategies using symmetric and asymmetric informa-
tion can guide the swarm robots to predefine target shapes. From the point of
view of the converge time and efficiency, the four s2-time comparison curves with
different initial symmetric conditions show that there is no significant difference
between two strategies under the same initial symmetric condition, but different
initial conditions will lead to different converge time and efficiency no matter
which strategy the robots uses.

5.2 Case Study 2: Converge to a Unit Circle from Initial
Asymmetric Position

In this case, we deploy 40 robots to a unit circle from four different asymmetric
initial positions. Both strategies using neighbors’ information are performed.

Fig. 3 shows that if the robots are deployed to asymmetric shapes initially,
the converge time is extended. Besides, we can figure it out that under the same
initial asymmetric condition, the converge time of asymmetric strategy is largely
shorter than that of symmetric strategy, that means the symmetric strategy
needs less information but has better converge efficiency. Since the robots are
always asymmetrically deployed in the real environment, the conclusion have a
valuable meaning in application.

5.3 Results Analysis

Why the converge time of asymmetric strategy is largely shorter than that of
symmetric strategy? In fact, robot collecting symmetric information moves very
little or even don’t move at each time step because of neutralization of distance
information from its symmetric neighbors, while robot collecting asymmetric
information doesn’t face this problem, so it moves longer at each time step.
Fig. 4(a) shows that under two horizontal lines initial symmetric position, total
distance at each time step is not largely different, so the converge time is approx-
imate. Fig. 4(b) shows that under one horizontal line asymmetric initial position,
before 200 time step, total distance with asymmetric strategy is larger than that
of symmetric strategy, so the converge time of asymmetric strategy is largely
shorter than that of symmetric strategy.

5.4 Problem and Shortcoming

There are still many problems and shortcomings. As we can see from Fig. 2
and Fig. 3, the trajectories of second column of figures are more cluttered than
that of first column. Fig. 3(e) and Fig. 3(k) show that there is a black regiment
near the boundary position. In fact, when most robots have converged to the
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Fig. 3. The trajectories of 40 robots using GRN method to construct to a unit cir-
cle under different initial conditions. Initial position is denoted as a dot where final
position is denoted as a small circle. (a) robots use symmetric information from one
horizontal line; (b) robots use asymmetric information from one horizontal line; (c)
s2-time comparison curves from one horizontal line; (d) robots use symmetric infor-
mation from one upright line; (e) robots use asymmetric information from one upright
line; (f) s2-time comparison curves from one upright line; (g) robots use symmetric
information from x-axis line; (h) robots use asymmetric information from x-axis line;
(i) s2-time comparison curves from x-axis line; (j) robots use symmetric information
from a random rectangle region; (k) robots use asymmetric information from a random
rectangle region; (l) s2-time comparison curves from a random rectangle region;
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Fig. 4. Total distance at each time step

circle, there are still several unstable robots nearby the boundary position. These
robots with their neighbors remain volatile for a long time that cause a black
regiment and make trajectories more cluttered.

6 Conclusion and Future Work

In this paper, we have presented an asymmetric information-based gene regula-
tory network distributed control approach to multi-robot construction. Cellular
automaton models of pattern formation and numerical simulation results show
the effectiveness and advantages of the proposed method. The major conclusions
are as follows:

(1) Both strategies using symmetric and asymmetric information can guide
the robots to a predefine target shape, but the strategy using asymmetric infor-
mation needs less neighbors’ information.

(2) If the initial position is symmetric, there is no significant differences
between two strategies, but if the initial position is asymmetric, the converge
time of strategy using asymmetric information is largely shorter than that of
symmetric information.

Numerical simulation results also show some problems, the trajectories under
the strategy using asymmetric information are more cluttered and have longer
total distance than that of symmetric information.

In the future, we will continue our research on asymmetric information and
GRN-inspired multi-robot controllers. We will further investigate the proposed
problems, especially boundary condition problem and use real robots to verify
the effectiveness of the proposed method. We will also investigate the universality
of asymmetric information in the natural world and compare the advantages and
disadvantages of both strategies in detail.
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