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Abstract. This paper presents a method of programming by demonstration, 
aiming at instructing the manipulator to accomplish tasks with obstacles in the 
way or with strict motion paths. Least square support vector machine (LS-
SVM), based on the principle of structure risk minimization, is employed to 
achieve better generalization and reproduced trajectories with higher accuracy. 
Furthermore, the velocity field method is applied to maintain the convergence 
of reproduced trajectories and smooth the motion. Finally, a series of obstacle 
avoidance experiments with a 7-DOF manipulator are conducted to verify the 
feasibility of the proposed method. 
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1 Introduction 

In recent years, with the advance of robotics and their widespread applications, mani-
pulating tasks have become more and more complex. Manual programming, which 
demands the expertise of the programmer and could hardly adjust to the environment, 
is tedious, and more and more difficult to meet the requirements from changeable 
occasions. Thus, there arises the demand of the manipulator trajectory planning me-
thod, which is able to operate conveniently and adapt to the environment. 

Programming by demonstration (PbD) is an effective solution for the last issue  
[1-3]. This method endows the manipulator with the ability to learn demonstrations 
from human operators. In PbD, some most commonly used methods for trajectory 
planning are as follows: methods based on statistics [4-6], methods based on dynami-
cal system (DS)[7-8], methods based on spline[9]. 

Many researchers modeled and reproduced trajectories employing the statistics-based 
methods. For example, Tso [4] modeled and reproduced the motion of the human by 
Hidden Markov Models (HMM); Calinon [5-6] encoded a series of trajectories by 
Gaussian Mixture Models (GMM), and reproduced the trajectories in different envi-
ronments using Gaussian Mixture Regression (GMR). Ijspeert [7] firstly proposed  
encoding the motion by DS in the form of nonlinear differential equations. Learning 
algorithms can be integrated into the framework of DS, such as GMM [10] and  
locally weight regression (LWR) [11]. 
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However, the above methods mainly focused on point-to-point motions, rather than 
the obstacle avoidance during tasks. In this paper, we present a new method of PbD. 
With the DS as its framework, this method uses least square support vector machine 
(LS-SVM) to encode the motion and adds the velocity field method nearby the target 
position. This paper completes the theoretical derivation and analysis of this method, 
and validates the feasibility by experiments. 

2 Overview 

Fig. 1 shows the architecture of the manipulator system, using PbD as its foundation. 
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Fig. 1. The manipulator system 

The manipulator system was composed of two closed loop: the position control 
loop and the force control loop. For protecting the manipulator, the force control loop 
corrected the desired joint position of the manipulator when it received the supernu-
merary force from the environment. The LS-SVM-based PbD was applied in the posi-
tion control loop, which reproduced the trajectory of the task by regression. The 
whole work was done in two phases.  

Phase 1: a global motion model, formulated by recursive positions or DS principle 
respectively, with more details illustrated in Section 2.1, was established based on the 
principle of LS-SVM with the information from kinesthetic demonstrations.  

Phase 2: the trajectory was reproduced from its initial. By recalling the global mo-
tion model iteratively, the trajectory would converge to the end position of the task. 
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2.1 Formulism 

Formulism Based on Position  
This formulism for encoding the motion could be summarized as follows: the position 
of the next cycle was obtained in accordance with the current position by a certain 
conversion. In other words, it encoded the motion with the position-based recursive 
expression: 

 1 ( )i if+ =ξ ξ  (1) 

n
i R∈ξ  indicates the current position, while 1

n
i R+ ∈ξ  indicates the next position 

of the trajectory. Each entry of the vector iξ  represents the coordinate in the joint 

space or the Cartesian space. 

Formalism Based on DS  
Khansari-Zadeh [12] pointed out that the motion could be governed by an autonom-
ous ordinary differential equation. By ignoring inaccuracies in sensor measurements 
and errors resulting from imperfect demonstrations, the equation would be: 

 ( )f=ξ ξ  (2) 

Where n: nf R R→  is a nonlinear continuous and continuously differentiable 

function with a single equilibrium point * *( ) 0f= =ξ ξ  .Different input state va-

riables ξ  correspond to different order of the equations (e.g., ξ  could be the joint 

angles, the position of the end-effector, the position and velocity of the end-effector, 
etc.). According to the request for the precision of the position and other requests of 
the manipulator system, ξ  expresses the position and velocity of the manipulator’s 

end-effector in this paper. 
The impact of these two ways to reproduce trajectories would be discussed through 

experiments in a later section. 

2.2 Kinesthetic Demonstrations and the Learning Algorithm 

In this paper, the kinesthetic demonstrations were the position and velocity of N given 
points on L trajectories. There were many methods to acquire the kinesthetic demon-
strations, such as visual detecting and location tracking. In our research, human opera-
tor demonstrated the skill to the manipulator by dragging it on the model of the zero 
force control. 

To acquire the formulated relationship by kinesthetic demonstrations, LS-SVM 
was introduced in this paper. This algorithm is based on the principle of structure risk 
minimization [13]. Compared with previous algorithms used in PbD (GMM, HMM 
and so on), LS-SVM has better generalization. And LS-SVM could be trained faster 
than the traditional SVM [14]. 
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For the set of N given demonstrations on L trajectories 1{ , }N
i i i=ξ ξ , n

i R∈ξ  

represents the input variable, and n
i R∈ξ  indicates the desired output of iξ . The 

regression function of ξ  is ( ) ( )Tf bϕ= +ξ w ξ , and its LS-SVM-based regression 

problem can be transformed into an optimization problem with constraints: 
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Where b defines the bias of the regression function, ie  is the training error of 

demonstration { , }i iξ ξ , and ( )ϕ •  indicates the mapping from demonstrations to 

kernel feature space. 0C >  is the penalty function, which plays an important role on 
balancing the generalization of algorithm and the tolerance error. The influence of C  
to the reproduced trajectories would be discussed in a later section. The output equa-
tion of LS-SVM is: 
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is the unit matrix, and K is the kernel matrix. Our method used Gaussian kernel (6) 
to map the feature space to the infinite dimension. 

 

2

, 2
K = ( , ) exp( )

i j

i j i jk
σ
−

= −
ξ ξ

ξ ξ  (6) 

σ  is the coverage of Gaussian kernel. And the effect of σ to the reproduced tra-
jectories would be discussed in a later section. 

Without the loss of generality, we take the constructing of DS model as an example to 
demonstrate the establishment of global motion models. Within the DS model, the kines-

thetic demonstrations are 1{ , }N
i i i=ξ ξ . Wherein, the input variable [ , , , , , ]i x y z x y z=ξ     is 

detected by the sensors of the manipulator, and , ,x R y R z R∈ ∈ ∈  are the coordinates 

of the manipulator’s end-effector in the Cartesian space, and , ,x R y R z R∈ ∈ ∈    are the 

velocity components. The output variable [ , , , , , ]i x y z x y z=ξ       is calculated by

1( )i i i sf−= −ξ ξ ξ , and sf  indicates the sampling frequency of the sensors. In order to 

obtain the mapping from ξ  to ξ , kinesthetic demonstrations were used for training 
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the DS using LS-SVM. As the system had multiple-input and multiple-output 
(MIMO), the six output variables needed to be trained respectively. Then, the motion 
was represented as six output equations, such as: 

 ,
1

( ) ( , )
N

x x i i x
i

x f k bξ α ξ ξ
=

= = +    (7) 

In the light of the output equations, the position of the next time would be calcu-
lated using the current position and velocity of the manipulator, through the equation 
of motion along three directions, such as: 

 2
1

1

2i i i ix x x t x t+ = + Δ + Δ   (8) 

Where tΔ  indicates the step time, which is the control period of the manipulator. 
However, if the running time of the manipulator bot needed to be changed, tΔ could 
be increase or decrease appropriately. Each position on this trajectory was calculated 
according to the last position by this method. 

2.3 Velocity Field Method 

When demonstrating the manipulator to approach the target position precisely, the 
human operator needed to drag the manipulator repetitively to aim at the target point, 
which would result in the tremble of the reproduced trajectory at the target point. 

To avoid the tremble, this paper presents a method based on the velocity field. The 
method was applied nearby the target position, to ensure the reproduced trajectory 
could converge smoothly and quickly. Fig. 2 shows the velocity field: 

 

 

Fig. 2. The velocity field 

Pgoal represents the target position, and S is a circle with the center Pgoal. The di-
rection of the arrow indicates the normal direction of circle S, which represents the 
velocity direction of the current position. Arrow density is in inverse proportion to the 
velocity. Thus, the formula about the velocity in the velocity field could be obtained: 

 ( )goal= −V k P P  (9) 
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3R∈V  denotes the velocity on the position 3R∈P . k  is used to ensure the 
manipulator’s velocity continuous when it enters the velocity field, which was ob-
tained as follows: 

 in

in goal

=
−
V

k
p p

 (10) 

3,in in R∈V P  are the velocity and position when the manipulator enter the velocity 

field. 
After obtaining the velocity V , the next position could be calculated combined 

with the current position and tΔ (same with tΔ  in eq. (8)). From eq. (9), it can be 
found that with ( )goalP - P  decreasing, V  is reduced continuously to zero at the 

target position. Fig. 3 – Fig. 4 shows the effect of applying the method base on the 
velocity field. 

 

 

Fig. 3. The reproduced trajectory in Z-axis 
without the velocity filed method 

Fig. 4. The reproduced trajectory in Z-axis 
with the velocity filed method 

 
Fig. 3 shows the result without the velocity field method, and it converges to -

12mm finally. However, the result in Fig. 4 converges to 0 (the target position). 

3 Experiments and Discussions 

3.1 Experiments Setup 

A series of experiments were conducted on the experimental platform, shown in  
Fig. 5, to verify above algorithms. The platform is mainly consisted of the 7-DOF 
manipulator, the central controller, the central control computer, the teleoperation 
computer, two typical obstacles and other subsystems such as the power system and 
the displayer. 

The manipulator was taught to bypass the two obstacles starting from the left edge 
of the black rectangle area in Fig. 5, and terminate at the target position at the right. In 
this task, the diameter of the manipulator’s end-effect was 120mm, and the center 
distance between the two obstacles was 350mm. One of the two obstacles was a cy-
linder with a diameter of 40mm, and the other one was a cuboid with the maximum 
upper surface of 80mm*40mm. Thus, in order to accomplish the task, the position of 
the manipulator had to be controlled precisely during the task (the orientation was 
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locked). The purpose of this experiment was to verify whether the method above 
could reproduce the trajectories satisfying the strict requirement of the position. 

Human operator guided the manipulator to demonstrate the task. To facilitate the 
calculation, the coordinate system { }, ,x y z′ ′ ′  (Fig. 5) was established over the target 

position. And there was a fixed positional relationship between the target position  
and the global coordinate system { }, ,x y z . The target position was acquired by the 

camera. 

{ }, ,x y z′ ′ ′

{ }, ,x y z

 

Fig. 5. The experiment platform 

3.2 Result and Discussion 

Aiming at reproduced trajectories, this paper presented three evaluation indexes: the 
convergence rate, the velocity characteristic, and the success rate.  

The convergence rate con  represented the rate of the reproduced trajectories 
which could converge to the target position. And it could be calculated as follows: 

 cncon
N

=  (11) 

cn  expresses the number of the convergent trajectories. N  indicates the total 

number of reproduced trajectories. 
The velocity characteristic indicated the smoothness of velocity. And it limited the 

velocity was slower than 50mm/s and the acceleration was smaller than 20mm/s2.  
The success rate suc  was the rate of completing the task. And it could be calcu-

lated as follows: 

 snsuc
N

=  (12) 

N  is the number of the reproduced trajectories which could complete the task.  
As mentioned above, the three facts including the formulism methods of encoding 

the motions, the variables C  in eq. (3) and σ  in eq. (6) would affect the repro-
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duced trajectories. In this section, taking advantage of the same demonstrations which 
is obtained by the experiments and changing the three facts referred above, we would 
compare and analyze the difference of results. 

The Effect of the Formalism Methods 
Different formalism methods meant different methods of encoding the motion, and 
would influence the information extracted from the demonstrations during training. 
Obviously, the formulism based on DS used the value of the sampling frequency of 
the sensors sf  and the single-step running time tΔ  while training and regressing. 

Regression results of the two formalism methods were shown in Fig. 6-Fig. 11: 
 

 

Fig. 6. The reproduced trajectories (based on 
positions) 

Fig. 7. The reproduced trajectories (based on 
DS) 

 

Fig. 8. The velocities of reproduced trajecto-
ries in Y-axis (based on positions) 

Fig. 9. The velocities of reproduced trajecto-
ries in Y-axis (based on DS) 

 

Fig. 10. The acceleration of reproduced tra-
jectories in Y-axis (based on positions) 

Fig. 11. The acceleration of reproduced  
trajectories in Y-axis (based on positions) 
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Because the left edge of the black rectangle area was at -600 in Y-axis of 

{ }, ,x y z′ ′ ′ , the initial positions of the blue trajectories varied from (-1000, -600) to  

(0, -600), which took an interval of 20mm. During the execution of this task, the posi-
tion changed very little (less than 10mm) in the X-axis. Therefore, the figures only 
showed the position in the Y-axis and Z-axis. 

Comparing Fig. 6 with Fig. 7, it was found that the regression of the reproduced 
trajectories using the formalism based on positions (almost coincided with one of the 
demonstration trajectories) was better than those employing the formalism based on 
DS, if its initial position neared the demonstrations. But the reproduced trajectories 
using this formalism method had some drawbacks as follows: firstly, its generaliza-
tion was bad ( 22%con = ), and there would be local convergence, if the initial posi-
tions varied from (-1000, 600) to (-200, 60) as shown in Fig. 6. The success rate of 
that was only 20%. And then, from Fig. 8 and Fig. 10, it could be discovered that the 
velocity characteristic was bad. The maximum acceleration impact to 500mm/s2, and 
the maximum velocity was faster than 250mm/s. Last but not least, this method de-
pended on the teaching time excessively, and task execution time could not be ad-
justed in accordance with actual requirements.  

In contrast, there were a lot of advantages of using the formulism based on DS. At 
first, its regression met the requirements of the obstacle avoidance. And it had a better 
generalization with success rate of 94%, as shown in Fig. 7. Then, in Fig. 9 and Fig. 
11, the reproduced trajectories were smooth, and relied little on the teaching time. 

The Influence of σ  in Gaussian Kernel  
The variable σ  in eq. (6) can be considered to be the coverage of Gaussian kernel. In 
eq. (6), if the value of σ  is large, the weight of high-dimensional feature will be-
come very weak, and approximate to a low-dimensional subspace; on the contrary, 
arbitrary data would be linearly separable, and lead to the severe overfitting. Using 
the same demonstrations and formalism method, the trajectories were reproduced with 
the different values of σ (the value of the penalty function C  was 16). 

In Fig. 12-Fig. 14, the left and right showed the result with the same , and the 
differences between them were the restrictions such as the boundary, the obstacles 
(adding the compensation of the end-effector’s diameter) and so on. If the value of 

 was 300, as shown in Fig. 13, there were 47 reproduced trajectories of 50 
( ) which had the good regression and convergence satisfying the task re-
quirements by changing the initial position. When the value of  was reduced to 
210 (Fig. 12), two more reproduced trajectories could not converge to the target posi-
tion ( ). And the reproduced trajectories were short of the regression if the 
initial position was from (-240, -600) to (-1000, -600), although they were more simi-
lar with the demonstrations if the initial position was nearby the demonstrations. 
Moreover, the success rate in Fig. 12 was only 26%. As the value of  increased to 
1166, all reproduced trajectories were convergent ( ) as shown in Fig. 14. 
But they had the bad regression and had the huge difference with demonstrations. 
Thus, 8% of them could meet the requirements ( ). 

As a result, the smaller the value of , and the worse success rate and convergence 
of the reproduced trajectories. And the larger the value of , the better the convergence  

σ

σ
94%suc =

σ

90%con =

σ
100%con =

8%suc =
σ

σ
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Fig. 12. The reproduced trajectories ( ) 

 

 

Fig. 13. The reproduced trajectories ( ) 

 

Fig. 14. The reproduced trajectories ( ) 

and the worse success rate. So we should select the appropriate  based on the actual 
system, the regression and convergence, to gain the best success rate. 

The Effect of the Penalty Function C.  
The main role of the penalty function C  in eq. (3) is to balance the generalization of 
algorithm and the tolerance error. Fig. 15-Fig. 17 show the results with different value 
of C , using the same demonstrations and σ  ( 300σ = ). 

Comparing Fig. 15 and Fig. 16, the reproduced trajectories were dissimilar with the 
demonstrations if the value of  was smaller. At the same time, they were not good at 
the regression, and only 8 trajectories could ensure the task ( ) in Fig. 15. And 
comparing Fig. 16 and Fig. 17, increasing value of  would lead to the regression dete-
riorate, though the results were more similar with the demonstrations as the initial position 
was near the demonstrations, and the success rate in Fig. 17 was 52%. However, it also  
 

300σ =

210σ =

1166σ =

σ

C
16%suc =

C
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Fig. 15. The reproduced trajectories ( ) 

  

Fig. 16. The reproduced trajectories (  ) 

  

Fig. 17. The reproduced trajectories ( ) 

could be concluded that the value of  had a little effect on the convergence of the tra-
jectories (  in Fig. 15,  in Fig. 16 and Fig. 17). 

4 Summary 

In this paper, a new method of PbD was presented to meet the precise requirements of 
obstacle avoidance in tasks. Utilizing LS-SVM, this method has better generalization, 
and can obtain trajectories from wide-ranging initial positions with a few demonstration 
trajectories (only two in this paper). Furthermore, for obstacle avoidance and boundary 
constraints, the variables of σ  and C  can be adjusted according to the requirements 
of tasks. In addition, this method applies the velocity field method nearby the target 
position to maintain the convergence of the reproduce trajectories and smooth the veloc-
ity. In future work, we will make use of force sensors and visual sensors to monitor the 
real-time changes in the working environment of the manipulator, and exploit the online 
avoidance algorithm to improve the reproduced trajectories by PbD. 

0.2C =

16C =

50C =

C
92%con = 94%con =
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