
Design and Implementation of a Robot System
Architecture Based on Agent Technology

and Delegate Mechanism

Jialin Yu, Yonghua Yan(B), and Jianrong Zhang

State Key Laboratory of Mechanical System and Vibration,
School of Mechanical Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China
{yjl sjtu,yhyan,jrzhang}@sjtu.edu.cn

Abstract. The purpose of this paper is to build a robot system archi-
tecture based on agent technology and delegate mechanism. Agent tech-
nology has penetrated in various fields and delegate mechanism has been
widely used to make software architectures scalable. This paper focuses
on three aspects: (i) introduction and principle of agent and delegate;
(ii) design of a robot system architecture based on agent technology and
delegate mechanism; (iii) implementation and verification of the robot
system architecture by corresponding experiments. Based on agent tech-
nology and delegate mechanism, the robot system architecture can be
developed in different developers and period.

Keywords: Agent technology · Delegate mechanism · Robot system
architecture

1 Introduction

Etzioni proposed that agent technology was ninety-nine percent computer sci-
ence and one percent artificial intelligence (AI), so agent technology needs to
rely on a lot of basic computer science, such as communication technology
and programming language [1]. Over the past few decades, robot systems have
been widely used in various fields, while object oriented programming(OOP)
has becoming the mainstream programming language. However, the robot sys-
tems based on OOP are complicated because of invoking functions from different
classes frequently, and the whole architectures is unclear because classes of OOP
cannot match the independent robot modules completely. In addition, the most
criticized issue is that the objects of OOP are not appropriate to human thinking
and unable to keep up with the pace of artificial intelligence because they are
static and have no capable of reactivity and pro-activeness. Considering practical
applications, such as inserting a simple robot module, the whole program must
be analyzed and handled, it costs a lot of time and effort, affects the efficiency
of development greatly and increases difficulty of debugging. Therefore, agent
technology is used in the design of a robot system architecture in this paper.
c© Springer International Publishing Switzerland 2015
H. Liu et al. (Eds.): ICIRA 2015, Part III, LNAI 9246, pp. 116–125, 2015.
DOI: 10.1007/978-3-319-22873-0 11



Design and Implementation of a Robot System Architecture 117

Agent technology originated from artificial intelligence, the concept of agent
had been put out in 1960s and developed in 1990s. Nowadays, agent oriented
programming (AOP) has been known and recognized by the majority of pro-
gramming enthusiasts, it is inheritance and development of object oriented pro-
gramming. While agent technology is penetrating in various fields and becoming
a promising way to develop many complex applications, ranging from electronic
commerce to industrial process control[2]. However, there is not a uniform defi-
nition about agent[3], Wooldridge defined it as “an autonomous decision making
system, which senses and acts in some environment”[4]. In this paper, agent tech-
nology is more inclined to be defined as “an autonomous body which runs on the
dynamic environment is relatively independent of other bodies and responses by
perception of dynamic environment.” Although the theoretical study of agent has
made great progress, practical applications still exist considerable hysteresis[5].
At present, the agent language is still developing, most of the agent applications
are still using Java, C++ and C#, while C++ and platform of Visual Studio
2008 is used to build the robot system architecture in this paper.

With agent technology, there are still some problems. For one thing, the
function and size of traditional architectures are set in stone and there is less
flexibility in the architectures because they are cannot be trimmed. For another,
the traditional architectures are not scalable and are difficult to be configured
because the program is protected and encapsulated. If other developers want to
develop the architecture, it will cost too much, this is “pull one hair and the whole
body is affected”. Therefore, delegate mechanism is used here in the design of
the robot system architecture. With delegate mechanism, other developers only
need to choose configuration or provide new functions to delegate mechanism, the
architecture can be personalized and the new functions can be feasible. Delegate
mechanism which focuses abstract structure type has been used widely by C#
or JAVA language, while delegate mechanism which focuses specific applications
is built by C++ language here.

In this paper, the concept of agent technology and delegate mechanism is
firstly introduced. And then the robot system architecture based on agent tech-
nology and delegate mechanism is designed. Finally, the feasibility of robot sys-
tem architecture is verified by corresponding experiments.

2 Principle of Agent Technology and Delegate Mechanism

2.1 Principle of Agent Technology

Principle of agent technology is mainly reflected in agent characteristics, agent
structure and agent communication modes. There are a lot of agent characteris-
tics, which associated with robot system are autonomy, social ability, reactivity
and pro-activeness[6].

1) Autonomy
Agents can start spontaneously and control their own behavior and internal

state without the direct intervention of humans or others;
2) Reactivity



118 J. Yu et al.

Agents can be aware of their environment and respond with changes of envi-
ronment;

3) Pro-activeness
Agents can actively meet the target behavior.
4) Social ability
Agents can communicate with other agents by certain language and cooper-

ation with other agents to finish the task;
Agent structure shows the operation way inside agent. There are a variety

of forms, which is used in the robot system should contain a message queue, a
message processor and a lot of agent methods at least[7]. The message queue
is used for storing message, which is usually programmed by an array or a list.
The essence of the message processor is a thread, which is used to deal with
the messages from message queues and invoke agent methods. After agents start
spontaneously, the agent processor is detecting messages and environment circu-
larly and constantly. The essence of agent methods are the member function of
OOP classes, which are important to finish specific tasks. When the agent proces-
sor receives the messages or is aware of changes of environment, it responds and
invokes certain agent methods to finish movement[8]. Agent structure diagram
is shown in Fig. 1.

Fig. 1. Agent structure diagram Fig. 2. Diagram of agent communica-
tion by message passing model

Agent communication mode decides the way of messages flow between dif-
ferent agents. There are five basic communication modes between agents: no
communication model, message passing model, scheme passing mode, the black-
board mode and the agent language model[9]. Message passing model is used in
this paper because it is easy and effective to satisfy the needs of robot system
architecture design.

Message passing model means that messages are the media between agents,
and messages should be formulated and ruled in advance. Only the messages
that conform to these rules and formats are useful. When a particular state (for
example, the agent get messages from other agents, or the agent is aware of some
changes in the environment) happens, agent can make corresponding actions.



Design and Implementation of a Robot System Architecture 119

The process of agent communication is shown in Fig. 2. Firstly, Agent1
receives the messages from the task, then the messages are stored in message
queue, message processor is detecting the messages in message queue cyclically
and constantly, when detecting the useful message, message processor invokes
corresponding agent method, then the agent method makes operation and sends
messages to Agent2, while Agent2’s message processor is detecting the messages
of message queue, after Agent’2 detects the messages, it invokes corresponding
agent method, then the task is finished. After the task has been finished, the
agent method of Agent2 sends messages to Agent1, and then Agent1 cannot
detect the useful messages any more. Agent1 and Agent2 work together to finish
a task, this is the communication process between different agents by message
passing model[10].

2.2 Principle of Delegate Mechanism

There is less flexibility in traditional architectures and they are difficult to be
developed as they cannot be trimmed, while delegate mechanism in java or C#
language focuses on abstract data type. Therefore, delegate mechanism which
focuses on specific application about robot system is built in C++ language.

There are a data queue, a serial of registration and initialization functions
and a serial of library files in delegate mechanism of this paper. The data queue
is in charge of storing the first address of registered functions. Registration func-
tions are charge of providing a way to configure functions to other developers,
while initialization functions are in charge of invoking registered functions by
invoking the pointers in date queue. The C++ function points are used to fin-
ish the process of registration and the process of initialization which are known
collectively as process of configuration. The library files are in charge of storing
functions that could be registered. In the process of configuration, developers
only register the functions needed, and they can register the new functions that
are not in library. With delegate mechanism, the architecture is scalable and can
be developed.

3 Design of System Architecture

3.1 Design of Agent-Based System

As the agent concept cannot appear in a vacuum, a robot system architecture
based on agent technology is designed[11]. There are several functions in tra-
ditional robot system architecture, such as configuring parameters, running in
different coordinates and running in different model. With the needs of tradi-
tional robot system, five agents are designed: Agent Interface, Agent Manage-
ment, Agent Motion-mode, Agent Interpolation and Agent Controller. In this
design, every agent module of the new system has the ability of finishing a simple
task[12], while a serial of agent modules can finish a complex task, introduction
of every agent function is as follows:



120 J. Yu et al.

1) Agent Interface is the media between the user and machine, which is in
charge of providing display and operation for the user.

2) Agent Management is in charge of internal data management and external
serial management. Internal data consist of reduction ratio, encoder resolution
and joint size. External serial management is in charge of reading the value of
absolute encoder.

3) Agent Motion-mode is in charge of provide several different mode of motion
for the user, which includes jog mode, job mode etc. Job motion mode means
moving according to job instructions that written in advance. After analysing
these instruction, Agent Motion-mode decomposes them into a serial of object
points.

Agent Base

Agent 
Interpolation

Agent 
Management

Agent 
Motion-Mode

Agent 
Controller

Agent 
Interface

User ControllerEncoder

A A t A
agem

AtA

Inte oller

1

2

3

4

5Serial read 
and write

Fig. 3. Structure and information flow of multi-agent

4) Agent Interpolation is in charge of receiving the object points from Agent
Motion-mode and interpolating into a lot of refined points with professional
interpolation method.

5) Agent Controller is in charge of managing functions from the controller
providers (Controller from GOOGOLTECH company in this paper is used), such
as “GT Open()” and “GT SetEncPos()”.

In this paper, a basic agent module named BaseAgent is designed in advance.
BaseAgent has the simplest agent structure: a simple message queue, a message
processor that starts spontaneously and cycles continuously and many agent
methods that are virtual functions in nature and have nothing meaning. The five
agents are derived by the basic module. Fig. 3 is the structure and information
flow of multi-agent.

3.2 Improvement with Delegate Mechanism

There are many advantages in delegate mechanism of this paper, the most repre-
sentative one is that it is feasible to support open and scalable architecture. With
the delegate mechanism, both a simplified architecture and a powerful architec-
ture can be built, in other words, an open architecture can be built, which is



Design and Implementation of a Robot System Architecture 121

a bit like the embedded system. In addition, the robot system architecture is
scalable, other developers can replace or add functions according to their needs.

Message Queue
RegistFace(ST_Mode)

RegistFace(ST_Servo)

RegistFace(ST_Coord)

RegistFace(ST_Mode)

RegistFace(ST_Servo)

RegistFace(ST_Coord)

ST_Mode()

ST_Servo()

ST_Point()

ST_Coord()

ST_Cycle()

ST_Speed()

ST_Mode()

ST_Servo()

ST_Point()

ST_Coord()

ST_Cycle()

ST_Speed()

Registration

Initialization

face_lib newface_lib

DeleFace

Finish
configuration

deleface[i].func();

Fig. 4. Process of configuration

In the design, a serial of library files about robot system is built, such as
“face lib”, “key lib” and “Ipolation lib”. There are a lot of functions in every
library file, other developers can configure them and get their own architecture.
While the developers can write new functions in new library files, such as “new-
face lib” in Fig. 4.

A data queue which is programmed by arrays and structures is designed
to store the first address of functions. The developers can register functions in
library files with the registration functions of the delegate mechanism, and then
the first address of functions is written in data queue. There are many registra-
tion functions, such as “RegistFace()”, “RegistKey()” and “RegistPara()”.

After process of registration, these registration functions is configured, which
is called process of initialization. There are many initialization functions like
“InitFace()”, “InitKey()” and “InitPara()”.

With process of registration and initialization, the functions registered in data
queue are configured one by one. Fig. 4 is the process of interface registration
and initialization with the delegate mechanism.

4 Implementation of System Architecture

The process of system program running is shown in Fig. 5. The program begins
from the entrance function “OnInitDialog()”, and then is the process of registra-
tion and initialization, after configuration finished, the five agents start to run,
and the message processors are the state of detection, at that time, the user can
control the machine to finish movement.

Fig. 6 reflects the information flow of Jog-mode movement. Firstly, the user
choose jog mode from the interface and the message “P Motionmode” is turned
to 1(1 means the message is valid), when message processor of Agent Interface
detects the changes, it invokes “Change Mode()” which changes the state to
Jog-mode.



122 J. Yu et al.

OnInitDialog() pregistRface->RegistFace();
pregistRkey->RegistKey();

pregistRpara->RegistPara();

pinitIface->InitFace();
pinitIkey->InitKey();

pinitIpara->InitPara();

pagentface->start(); 
pagentmanage->start(); 
pagentmotion->start();
pagentinterp->start(); 
pagentcontr->start();

Entrance 
function Start agentsInitialize 

configuration
Add 

configuration Move robot

Fig. 5. The process of system program running

Message 
Queue

Message 
Processor

P_Motionmode=1

The user

Queue

Messageessage
ocess

tionm

Message 
Queue

Message 
Processor

Message 
Queue

Message 
Processor

Queue

MeMessage essage

Change 
Jog Mode

Mes

Mode
ange Press X+

button down
Presss X+ss Press X+

button up

ssagessa

bbutton down

ge

button d

JogMove()Mov
The 

robotJogStop() ro
T

Agent Interface Agent Motion-mode Agent Controller

a

b f

d
h

j

ge c

Queue

rocessor

Queue

Message essage
M
P
M
P

o

Jo

P

Jo

J

f

j
ChangeMove()P_JogSet=1

P_JogMove=1

P_JogMove=0

=1

M
P
M

1

P

ha

P

Ch

c

P_M

P

_M

P

P_

P

MPP

e
i

k

Fig. 6. The information flow diagram of jog movement

When the user pressed the “Y+” button, the message “P JogSet” is turned
to 1, in the same way, the message processor detects the changes and invokes
corresponding function to set jog parameter and turns message “P JogMove”
to 1, at last, “JogMove()” is invoked and the robot starts to run in jog mode.
When the user press the button up, the message “P JogMove” is turned to 0,
subsequently, “JogStop()” is invoked and the robot is stop.

5 Experimental Studies

5.1 Experimental Setup

The system architecture is used in a six-axis industrial robot based on Windows
CE 5.0 , which is shown in Fig. 7. The control cabinet of the robot is shown in in
Fig. 8. In order to verify the feasibility of the system architecture, corresponding
experiments are carried out.

The experiments collect the working time of every agent when Y-axis is turn
from the position in Fig. 9 to the position in Fig. 10 in jog mode. Working time
is the time of detecting messages and invoking corresponding functions, which is
different from running time. In other words, agents are always in running time
after activated, only the agents detect effective messages are in working time.



Design and Implementation of a Robot System Architecture 123

Fig. 7. Programs of registration Fig. 8. Programs of initialization

Fig. 9. Programs of registration Fig. 10. Programs of initialization

5.2 Feasibility Analysis of System Architecture

As shown in Fig. 11, only three agents (Agent Interface, Agent Motion-mode and
Agent Controller) receive valid messages and are in working time. The “Power
On” button is put down at point a, the span “ab” is the time that Agent Inter-
face detects the message “P Power” and makes it changed. Subsequently, Agent
Controller detects the changed message “P Power” and makes the power open in
span “cd”. The time between b and c is 15 milliseconds, which is the time Agent
Controller detects the message “P Power”. The jog mode is chose at point e,
and Agent Motion-mode detects the messages at point f, and the point g and h
is similar in the operation of putting “Y+”button down. These spans reflect the
time of detecting corresponding messages, they are usually 5 to 16 milliseconds.
When “Y+” button is put up at point m, the movement is stop slowly in span
“np”. As shown in Fig. 11, the working time of Agent Controller is far more
than the others because the most time-consuming operation is finished in Agent
Controller.

Fig. 12 is made by collecting the message state of agents and it reflects
message state diagram of agents in jog mode. After Agent Controller detects
“P Power” turn to 1(1 means power on message is valid) at point b, the cor-
responding function makes the power open and “P Power” is turn to 0 quickly



124 J. Yu et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

False

Ture

Time(ms)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

False

Ture

Time(ms)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

Ture

False

Time(ms)

Agent Interface

Agent Motion mode

Agent Controller

a
0.2877 0.288

b

c b

0.46430.28955

e

f

g

h

j k

m

n
p

q

ts

Fig. 11. Sequence diagrams of agents working time in jog mode

in order the operation is done once, similarly, when Agent Controller detects
“P Power” turn to 2(2 means power off message is valid) at point d, the corre-
sponding function makes the power close and “P Power” is turn to 0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

1

2

Time (ms)

V
al

ue

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

1

Time (ms)

V
al

ue

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

1

Time (ms)

V
al

ue

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

1

Time (ms)

V
al

ue

P�Power

P�Motionmode

P�JogSet

P�JogMove

a b

c d

0.288 0.2895
1.3789 1.3801

Fig. 12. Message state diagram of agents in jog mode

Although the experiments are simple, they can reflect working time and state
of every agent in the process of the system architecture running.

6 Conclusions

Agent technology is a promising development which can provide a solution to
many important software problems. In this paper, the robot system architecture
combines agent technology with the robot systems creatively, while it is a simpli-
fied version of agent technology and cannot finish many things that theoretical



Design and Implementation of a Robot System Architecture 125

agent technology promises to do. Although the robot system architecture is a
small step towards intelligent agent technology, the big step is not far with efforts
of other developers. With delegate mechanism, more personalized configuration
can be easily completed because the robot system architecture is scalable and
can be developed. In the future, the robot system architecture can be widely
used in the field of robot systems.

Acknowledgments. This research was supported in part by National Key Basic
Research Program of China under Grant 2013CB035804, National Natural Science
Foundation of China under Grant 51120155001 and U1201244 and was sponsored by
Shanghai Economic and Information Technology Commission (No.CXY-2013-21).

References

1. Etzioni, O.: Moving up the information food chain: deploying softbots on the world
wide web. In: Proceedings of the National Conference on Artificial Intelligence,
pp. 1322–1326 (1996)

2. Jennings, N.R., Wooldridge, M.: Applying agent technology. Applied Artificial
Intelligence an International Journal 9(4), 357–369 (1995)

3. Bellifemine, F.L., Poggi, A., Rimassa, G.: Developing multi-agent systems with
jade. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol.
1986, pp. 89–103. Springer, Heidelberg (2001)

4. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The
Knowledge Engineering Review 10(02), 115–152 (1995)

5. Wooldridge, M.: An introduction to multiagent systems. Wiley & Sons 4(2),
125–128 (2011)

6. Wooldridge, M.: Agent-based software engineering. IEE Proceedings-Software
144(1), 26–37 (1997)

7. Lee, J., Barley, M., Systems, M.A., Web, S.: Intelligent agents and multi-agent
systems. Studies in Fuzziness & Soft Computing 2(12), 67–96 (2009)

8. Rao, A.S., Georgeff, M.P., et al.: BDI agents: From theory to practice. ICMAS 95,
312–319 (1995)

9. Luck, M., d’Inverno, M., et al.: A formal framework for agency and autonomy.
ICMAS 95, 254–260 (1995)

10. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proceedings of IEEE 95(1), 215–233 (2007)

11. Corchado, J.M., Bajo, J., Paz, Y.D., Tapia, D.I.: Intelligent environment for
monitoring alzheimer patients, agent technology for health care. Decision Support
Systems 44(2), 382–396 (2008)

12. Maes, P., et al.: Agents that reduce work and information overload. Communica-
tions of the ACM 37(7), 30–40 (1994)


	Design and Implementation of a Robot System Architecture Based on Agent Technology and Delegate Mechanism
	1 Introduction
	2 Principle of Agent Technology and Delegate Mechanism
	2.1 Principle of Agent Technology
	2.2 Principle of Delegate Mechanism

	3 Design of System Architecture
	3.1 Design of Agent-Based System
	3.2 Improvement with Delegate Mechanism

	4 Implementation of System Architecture
	5 Experimental Studies
	5.1 Experimental Setup
	5.2 Feasibility Analysis of System Architecture

	6 Conclusions
	References


