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Abstract. We are interested in the interplay of hierarchical and het-
erarchical control to reduce myopic behavior in a setting where central
planning establishes relaxed schedules and distributed control is applied
to make remaining decisions at runtime. We therefore pick up an idea
introduced by Bongaerts et al. [4] to generate invariants, relaxed sched-
ules, as constraints on distributed production control.

We apply this concept to the Flexible Job Shop Scheduling Problem
(FJSSP), represented as disjunct graphs, introduce a measure to quantify
the “tightness” of invariants, constrains the set of local decision heuristics
that can be applied in such setting and present a simulation implementa-
tion, based on standard problem instances and optimization models with
initial results. They validate the proposed measure and highlighting the
need for further investigation of the interplay between problem structure
and achieved performance.

Keywords: Production control · Invariants · Scheduling · Distributed
decision making

1 Introduction

Responding to increasing complexity in dynamics in manufacturing systems,
the distribution of control capacity and authority has been investigated as an
alternative control scheme for production planning and control (PPC) systems
[11]. While “first-generation” distributed PPC systems allowed for no coordi-
nation between decision making entities, subsequent extensions of the concept
gradually increasingly promoted the idea of mixing centralized and distributed
decision making in the control hierarchy [11,27].

This raises the question of finding the optimal “mix” of hierarchical and
distributed control approaches as a function of the controlled system, order char-
acteristics and decision preferences. The idea of using relaxed schedules (invari-
ants) as a vehicle to mix both control paradigms has been proposed in [4], but so
far not been experimentally investigated (c.f. Sec. 2.1) as a vehicle to establish
semi-hierarchical control systems.
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The remainder of this article is structured as follows: Section 2 reviews the
relevant concepts and previous findings. Section 3 describes the approach to
invariant creation and implementation used in this contribution. First results
are presented in Section 4 and the findings as well as ideas for future research
are briefly discussed in Section 5.

2 Definitions and Literature Review

2.1 Balancing Hierarchical and Heterarchical Control

It is commonly believed that the optimal control architecture is a function of
the system to be controlled and the decision preferences applied. As a rule of
thumb, (highly) hierarchical systems allow long term optimality in calm planning
environments and low flexibility production systems while (highly) heterarchical
systems enable short term optimization in turbulent environments and controlled
systems that allow alternative process paths [11,19,27].

Both Philipp et al. [20] and Zambrano Rey et al. [29] hypothesize that the
system performance, when plotted as a function of control heterarchy, follows
a curved shape with a global optimum attained for a mixture of hierarchical
and heterarchical control, where the advantages of better responsiveness and
short term optimization of distributed control systems can be harvested, while
minimizing the amount of myopia induced by distributed decision making. The
identification and reduction of myopia in distributed control settings has lately
received increased attention from the works of Zambrano Rey et al. [29,30].

Reasons for myopic decision making include

– the decomposition of the original planning problem [21, Ch.2]
– selfish actors (known in Game-Theory as Cost of Anarchy [12]),
– decision making based on local information only [c.f.e.g. 17,24,27], and
– time-constraints on decision making [30].

Existing simulation studies on the combination of hierarchical and distributed
production control differ in their approach: Scholz-Reiter et al. [25] constrained
the set of parallel worksystems where scheduling decisions are made locally.
Mönch and Drießel [18] change the information and planning horizon. Mediat-
ing agents are proposed and investigated e.g. in [6,8]. In [29], supervisor agents
are given enhanced decision making time and computing power to perform
simulation-optimization to attain better scheduling decisions. Grundstein et al.
[14] investigate the combination of central scheduling and autonomous produc-
tion control by investigating the interdependend between order release method,
local decision making heuristic, and production performance, without finding
conclusive relationships.

To the best of our knowledge, we are the first to quantitatively investigate
the idea of an invariant-based mixing of hierarchical and heterarchical control, as
proposed in [4]. The proposed model extends the idea of [25] in that scheduling
decisions can be removed at any point in the schedule (not necessarily spatially
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confined to particular worksystems) and is different to the other contributions
mentioned above in that elements of hierarchical and heterarchical coordination
are not working simultaneously but subsequently, constituting a constructional
distributed decision making system [24, Ch.1.1].

2.2 The Flexible Job Shop Scheduling Problem

The Flexible Job Shop Scheduling Problem (FJSSP) extends the classical Job
Shop Scheduling problem by relaxing the a priori assignment of operations to
worksystems [5]. The FJSSP is particularly interesting for the sequential appli-
cation of hierarchical and heterarchical control, since it combines the allocation
(assigning operations to machines) and sequencing (determining a sequence of
operations on each machine) sub-problems, that are often dealt with separately
in hierarchical production planning systems [10]. It is prone to gain attention
with the rise of flexible manufacturing systems (FMS).

Out of the large number of test-instances published for the FJSSP. We use
here a total of 393 test-instances from [1,2,5,9,13,16]. As elaborated in [2],
the test-instances are not only different in size (number of jobs, operations and
machines) and level of machine flexibility, but arose from different considera-
tions and with different analysis intentions in mind. For a first analysis, the
test-instances by Hurink et al. [16] and Dauzère-Pérès and Paulli [9] were both
generated from JSP instances by gradually increasing operation flexibility [2]
(c.f. table footnotes). We hence distinguish 11 problem groups for our analysis.

Table 1. Test-Instances used in this publication. Notes summarized from [2].

Source # Instances Notes

Brandimarte [5] 10 medium degree of machine-flexibility
Hurink et al. [16] 66 · 4 4 series with increasing processing flexibilitya, process-

ing times independent of machine
Dauzère-Pérès
and Paulli [9]

6 · 3 6 different setups, each with 3 levels of machine flexibil-
ity.b Slightly different processing times across machines

Chambers and
Barnes [1]

21 obtained from JSP problems by replicating machines
acc. to different heuristics

Behnke and
Geiger [2]

60 “Similar” machines are grouped into workcenters

Fattahi et al. [13] 20 Randomly generated, medium-sized problems

a edata: Few operations with ≥ 1 possible machine, rdata: Most operations
assignable to > 1 machine, and vdata: All operations with > 1 possible machines.

b Probability of a machine being assignable to a given operation set to 0.1, 0.3, 0.5
respectively.
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3 Model

3.1 Background: Flexible Job-Shop Scheduling on Graphs

Disjunct (or mixed) graphs were introduced as a representation of scheduling
problems by [23] and are widely used to represent scheduling problems [3].

Let G(V,A,E) be a mixed graph, consisting of the set of nodes (V ), and sets
of undirected (E) and directed (A) edges. We denote by G̃ = (V,A) the directed
subgraph of G, composed of the same node set, but only the directed edges.
A directed edge A → B indicates a precedence relationship A ≺ B in that
operation B cannot be started until A has finished (Finish-Start Constraint).
The set of directed edges in a scheduling graph can naturally be subdivided into
a set of technical and environmental constraints AT (that are constraints on the
planning process) and scheduling decisions AS [4].

While the classical disjunct graph formulation assumes a solved assignment
problem (operations are assigned to one worksystem each), it can be extended
to represent a more complex situations [c.f. 10], by assigning a processing time
matrix P to every operation, indicating if and in which time, an operation can
be processed at a given worksystem. If in the initial graph, an undirected edge
exists between any two operations that can be processed on the same worksystem
[10]. A FJSSP then is solved feasibly if and only if (1) every operation has been
assigned to one worksystem, (2) there exists a directed path ∈ G̃ between any
two operations assigned to the same worksystem and (3) G̃ is acyclic [5,10].

The term invariant in natural and computer sciences describes a statement
or property whose value is unaltered during an applied transformation. For the
domain of FJS-scheduling, a schedule-invariant is understood as a subset of all
assignment and sequencing decisions (directed edges ∈ AS , c.f. [4]) that have
to be observed (remain unchanged) during production control transformation of
the scheduling graph.

3.2 General Setup

Our simulation model is based on a graph as described in Sec. 3.1 that represents
the test-instances introduced in Sec. 2.2.

The model is executed as follows: After representing the scheduling problem
as a graph (Fig. 1a), we start by applying a centrally computed solution (Section
3.3) to the problem graph (Fig. 1b), which we then relax (Sec. 3.5) to an invari-
ant by removing scheduling decisions (Fig. 1c). The invariant is handed over to
a controller, defined by the agent class assigned to operations and worksystems
respectively (c.f. Sec. 3.6) that then makes the resulting decisions at runtime,
based on local information (Fig. 1d). The controller assigns agents to the oper-
ations (nodes in the graph) and worksystems and initiates the simulation. Once
an operation starts processing, an actual processing time is calculated following a
truncated1 Normal distribution with the planned processing time μ as expected
1 We do not allow negative processing times. However, even with the highest standard

deviations investigated here, such event has a probability of ≈ 0.1%.
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value and a standard deviation of CV ·μ. While other performance measures are
possible, we focus on minimizing the makespan (maximum Lateness Lmax(σ)) in
this contribution. Since the schedule is left-justified, i.e. operations start as early
as possible without changing operation sequence, not as late as possible, the
results will not minimize e.g. Work in Process (WIP). We measure ratio of the
CP-solution and the makespan attained including process time variability and
distributed control as the relative Performance of the semi-hierarchical control
structure (c.f. Sec. 4).

Fig. 1. Stylized visualization of the approach taken here. Scheduling problem with
two machines, two jobs and a total of five operations. Rectangles represent operations
and their planned processing times. Circles represent assignable worksystems. Filled
operations are already underway and actual processing times (∼ N (µ,CV · µ)) are
known. Solid arcs represent precedence constraints introduced during scheduling. Dou-
ble arrows indicate technical precedence constraints. Dashed edges represent still open
sequencing decisions between operations.

3.3 Implementation of Hierarchical Planning

To emulate a hierarchically derived production schedule, we use the Constraint
Programming FJSSP model, shipped with the popular optimization suite IBM
CPLEX Studio 12.6. The model has (with minor adjustments) been used to find
optimal solutions to some previously unsolved problem-instances2 [2,22]. So we
may assume both broad availability and competitive performance of the model
and solver.

2 The same we use here, c.f. Sec. 2.2.
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Each problem instance was computed for a maximum of 20 minutes on a
UNIX-machine with an Intel Xeon quad-core processor, 2.8 GHz and 3 GB
of RAM and the best (shortest makespan) solution attained in this time was
considered the hierarchical production schedule for this instance.

3.4 Removing Redundant Scheduling Decisions

Removing redundant edges from the scheduling graph has been considered
important before for the application of various scheduling heuristics [5], but
is gains even higher importance in the context of invariant-based scheduling: To
effectively measure and compare the degree to which the original schedule was
relaxed, it is necessary to remove redundant information from the mixed graph,
so that any further relaxation does in fact open feasible decision alternatives. To
this end, we replace a an arc a ∈ AS with an undirected edge3, if and only if
there exist a directed path between start- and end-node of a in G̃ \ {a}[10].

3.5 Invariant Creation and Assessment

For this initial investigation we define two schedule-relaxation-heuristics, each
of which is applied to α ∈ [0, 1] of all operations (we call α the schedule removal
degree).4 We investigate two simple relaxation heuristics:

Removing the sequencing information. By keeping machine assignments
proposed by the initial scheduling but removing the sequencing decisions
(removing the added directed edges from the graph) for α of all operations.
For α = 1, we have created the related JSP problem, thus a natural hierar-
chical decomposition found in the FJSSP [5, Ch.3] and also currently present
in many hierarchical PPC systems.

Resetting Operations. We entirely reset (delete scheduled constraints and
worksystem-assignment) for α of all operations. For α = 1, we attain the
original FJSSP problem.

In addition to measures suggested e.g. in [7], we propose to measure the
degree of freedom preserved by an invariant as the share of schedulable (i.e. not
technologically constrained) edges in the graph for which the invariant does not
prescribe an orientation (i.e. there does not exist a directed path between the
two ends of the undirected edge) and the operations could still be assigned to
the same worksystem (i.e. a precedence decision might become necessary).

Note that in a disjunct graph representation as described in Sec. 3.1 with
removed redundant edges (Sec. 3.4), also the relaxation of machine assignments
will lead to such conflicting edges.

3 Note that we do not delete technological constraints from G̃.
4 This is a first attempt to create invariants of different “tightness” but not the only

way to attain them. Relaxation heuristics do not need to be node-based.
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3.6 Distributed Production Controller

As stated before, the FJSSP is particular in that any valid production schedule
has to solve both the assignment and sequencing subproblems. In the research
on dispatching rule based FJS-scheduling, a “shortest queue length” heuristic
seems to be commonly applied to solve the assignment problem [c.f. 26].

A QLE-control can be implemented in a mixed-graph by giving the operation
agent the authority to choose a worksystem (by querying all possible worksys-
tems for the current queue length, i.e. the expected finishing time of the last
operation) and assigning itself to worksystem i where i := arg min

i∈W
{qi+pi} where

W is the set of possible worksystems, qi is the queue length of worksystem i and
pi is the processing time of the operation on worksystem i. The worksystem
agents of the chosen worksystem forms an precedence constraint from the last
entry in their queue to the newly assigned operation (i.e. implements a FIFO
strategy).

Building upon which, we define two controllers which implement two different
sequencing heuristics:

A FIFO-Controller processes the operations at the worksystems in the
sequence of assignment (i.e. in the sequence in which their respective last
predecessor was finished).

A LRPT-Controller sequences operations by decreasing remaining workcon-
tent (LRPT: Longest Remaining Processing Time). Where ≥ 1 worksys-
tem is possible, the average processing time over all possible worksystems
is assumed in this contribution, expressing no prior belief concerning the
upcoming assignment decision.

3.7 Distributed Control Heuristics that Guarantee Valid Schedules

The FIFO- and LRPT- Production controller (Sec. 3.6) implement a decision
logic on the side of the operations and worksystems respectively that is based
on local information.

However, to avoid forming a directed cycle (and hence an invalid schedule)
global information about the existence of paths is required.5 It is hence easy
to imagine a situation in which an agent decides to form a precedence con-
straint, closing a directed cycle on the graph (c.f. Fig. 2), a problem particular
to invariant-based scheduling problems.6

Following [15], we can investigate the dynamic on the graph, the observable
result of the interplay of worksystem and operation agents, as the combination of
(1) a neighborhood assessment strategy, applied by an entity to make a decision
within its decision space (forming edges, committing to worksystems, . . . ) and
5 With such information, a node would not be allowed to form a precedence constraint
A ≺ B if there exist a path B, . . . , A in the graph.

6 The problem could only be averted by updating the entire graph after every schedul-
ing decision (i.e. converting edges into arcs, if there exists a directed path). This
however would require central coordination and high computational effort.
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Fig. 2. Stylized invariant-based scheduling problem with two scheduling decisions
imposed by the invariant (solid, directed arcs) and a remaining scheduling decision
(dashed edge). Given their limited information horizon, Operations O0 and O2 are not
aware of the path existing between them. A decision by either of the two, to form a
precedence relationship O2 ≺ O0 would now form a directed cycle and hence an invalid
schedule.

(2) a temporal organization strategy, which defines in which order entities take
decisions. Using this notation, we can outline a set of constraints that guarantee
valid schedules, given a valid invariant.7

Theorem 1. A dynamic Ω is guaranteed to create a valid, non-preemptive
schedule on a mixed graph representing any valid invariant, if the temporal orga-
nization strategy only allows an operation O to form scheduling decisions

1. once all immediate predecessors (in-neighbors in G̃) have been completed and
2. if the end of the directed edge points at an operation on which processing has

not started yet.

Proof. Condition (1) guarantees through transitive closure that all (not just
the immediate) predecessors of an operation O (i.e. operations from which a
directed path to O exists) have been completed, before O can form a scheduling
constraint. Condition (2) then guarantees that no such new constraint can close
a directed cycle in G̃. ��

Note that in particular, all distributed control systems that are based on
dispatching rules and hence also the two controllers investigated here (c.f. Sec.
3.6), satisfy above conditions.

4 Initial Results

4.1 Validation of Invariant Assessment Measure

Fig. 3 shows the measure of invariant tightness discussed in Sec. 3.5. The pro-
posed measure for invariant flexibility shows to serve two important purposes:
(1) It does in fact measure the existence of decision alternatives (it grows with
α) and (2) it distinguished the problem sets, highlighting the different degree
sequencing and assignment decisions are present in the problem.
7 Note that the conditions outlined here are sufficient, but not necessary and other

conditions might be found.
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Fig. 3. Share of open conflicts (c.f. Sec. 3.5) for both investigated relaxation heuristics.
Over all instance groups

4.2 Impact on Performance

We measure the relative performance of the combination of an invariant and a
controller as the ratio of the makespan calculated in Sec. 3.3 and the makespan
attained with this configuration. Over all instance-sets, relaxation heuristics and
removal degrees, the LRPT-Controller outperforms the FIFO-controller.8

Non-surprisingly, test-instances with high machine flexibility fare signif-
icantly better when given decision alternatives at runtime (eventually out-
performing pure hierarchical planning). Notably, a mix of hierarchical and
distributed control (as considered optimal in [20,29], c.f. Sec. 2.1) consis-
tently fares worse then pure approaches with worst relative performance figures
attained for alpha between 0.25 and 0.5.

We believe that this result comes courtesy of the random schedule relax-
ation policies applied here. With only some, probably incoherent, operations
free to make autonomous decisions, any deviation from the previously deter-
mined schedule causes more harm than good because the disturbance created
by the local decision making of one operation does lead to the emergence of new
sub-schedules but fails to integrate with the framework still imposed around it.
A successful schedule, given stochastic processing times, does not seem to be
accessible through simple, undirected neighborhood search from the best known
solution to the deterministic problem.

The key to successful heterarchical production control then, it appears, lies
not in giving autonomy to single operations (as investigated here), but rather to
substructures in the scheduling graph. In particular, we should be able to repli-
cate the results from [25], by only deleting sequencing and assignment decisions
between parallel servers. A natural extension of the concept of parallel worksys-
tems would be one of clusters of worksystems or operations, like suggested in
[28]. A purely random based “neighborhood search” approach, starting from

8 Which comes courtesy of our focus on total makespan.
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Fig. 4. Relative Performance for all (left) and instance sets with increasing flexibility
[9,16] (right). Node-Reset relaxation heuristic, LRPT-Controller, CV = 0.3.

the deterministic solution, is apparently not a good approach to finding a good
solution for the stochastic production control problem.

5 Discussion and Future Research

We have proposed an implementation of invariant-based scheduling for flexible
job shops and proposed a measure to quantify invariants. We have shown that
distributed decision heuristics have to be constrained in order to generate valid
schedules. Besides demonstrating the validity of our approach, our simulation
experiments shows that, in order to achieve competitive performance, the process
of schedule relaxation and distributed control has to consider the particularities
of the scheduling problem and the subsequent distributed control approach.

Future research should hence seek to identify problem parameters in com-
bination with relaxation and control heuristics that perform particularly well.
The strict representation of the problem as a network thereby allows to use
network science methods and concepts (like motifs) to be applied in defining
such relaxation approaches. Ideally, this would allow future scheduling systems
to intentionally relax the set of constraints such that production control can
work best, establishing an anticipation relationship, found in many distributed
decision making systems [24, Ch.1.3], but not in today’s PPC systems.
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