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Abstract. The paper presents a solution for scheduling of the aircraft produc-
tion during the ramp-up phase. The developed scheduler features a combination 
of multi-agent systems and classical constraint logic programming algorithms. 
The concept of multi-agent systems is used to break down the complexity of the 
scheduling problem into smaller, independent sub-problems that can be solved 
independently and in parallel by individual agents. The selected use case is the 
Airbus A350 assembly line organized as a sequence of several assembly sta-
tions. Each station’s schedule is computed by a single agent, however the coor-
dination among agents takes place to handle situations when particular jobs 
cannot be finished in the original station, for instance due to missing parts, and 
have to be passed in the next station. The presented solution was developed 
within the European FP7 project ARUM. 
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1 Context and Motivation 

This paper presents one of the main outputs of the European project ARUM – Adap-
tive Production Management, which is carried out within the EU’s Seventh Frame-
work Programme. The ARUM project is aimed at increasing the effectiveness of  
production of highly complex and individualized products, such as aircrafts. The most 
challenging is the ramp-up period, which starts when the design of a new product is 
finished and the production of first products is initiated, and ends when the full capac-
ity of the production line is reached. In case of the aircraft assembly, which is in focus 
of ARUM, such a period usually lasts about two to three years, but in reality may take 
even several extra years. An example is the grounding of fifty operating Boeing 787 
airplanes in January 2013 because of the fire hazards from a new type of Lithium-Ion 
batteries, which stalled the production for several months [1]. Airbus A380 was also 
delayed in 2009 because of the design failures identified at ramp-up [2]. 

The reasons for lengthening of the ramp-up period are frequent disturbances that 
halt the assembly operations. The typical examples are missing parts caused by the 
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delayed deliveries from external suppliers, non-conformant parts that are either dam-
aged or do not conform to drawings, or late change requests from customers.  

This is the case of the currently ongoing ramp-up of a new long-range aircraft Air-
bus A350, which represents the main test case of the ARUM project. The main goal is 
to develop new software tools that provide enhanced decision-making support to pro-
duction managers, team leaders, and assembly line workers. The existing ERP (Enter-
prise Resource Planning) systems used for production planning and scheduling do not 
sufficiently cope with disturbances in form of provisioning the real-time updates to 
planned activities in order to mitigate the impacts of such disruptions. The realloca-
tion of workers and assembly operations across the production line is done by station 
managers, relying mainly on their knowledge and experiences. The problem of find-
ing the suitable work allocation is however too complex to be mastered in an optimal 
way, considering hundreds of depending operations in different state of completion, 
the varying availability of workers and materials, the currently existing disruptions 
like non-conformities, etc. The goal of ARUM project was thus to develop the real-
time scheduling software (Scheduler in short) that supports the station managers to 
make relevant decisions regarding the failures mitigation. Additionally, there was a 
requirement to design the mobile application for workers, which keeps them updated 
on the assigned jobs and enables them to electronically report about the work progress 
as well as about any disturbances. Such detailed reporting provides a real-time feed-
back to the station managers as it enables them to see the actual overall status of pro-
duction and helps them to decide, having the Scheduler running behind the scenes, to 
reorganize the work. 

 The job scheduling problem itself can be addressed by various means. There are 
mathematical optimization methods, AI-based methods, simulation-based methods, 
multi-agent based approaches, and others, as reviewed in Sect. 2. The approach taken 
in ARUM, discussed in Sect. 3, is a combination of multi-agent systems and mathe-
matical optimization. The overall ARUM solution, described in Sect. 4, is designed 
according to the enterprise service bus (ESB) software architecture model, in which 
the loosely coupled software components – services – communicate via message ex-
change. One of the services is the presented Scheduler; other services are for instance 
the User interface service mediating the interaction with users, or the Ontology  
service responsible for gathering data from the legacy software systems [4]. The con-
clusions and prospects for future work are given is Sect. 5. 

2 Related Work 

In the job shop scheduling there is a set of jobs that must be executed in given chrono-
logical order. Each job has a given the execution time and requires particular re-
sources such as a machine, a tool, a material, or a worker with specific skills. For 
given set of jobs and available resources the scheduling problem is to calculate a time 
table of all jobs, called schedule, which defines exact times at which the jobs are in-
tended to take place and specifies which resources will be allocated to the jobs. There 
are multiple constraints to be satisfied such as the capacity constraints (one machine 
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can execute only one job at the same time) or precedence constraints (jobs must be 
executed in given order). A solution to the scheduling problem is a schedule that satis-
fies all the constraints. There exist multiple solutions to the same scheduling problem, 
thus the goal is to find “good” solutions with respect to minimizing or maximizing 
given performance indicators, called objectives. The most common objective function 
is the makespan, which means that all the operations should be finished as soon as 
possible. 

Production scheduling is a complex NP-hard problem, where the number of solu-
tions grows exponentially with the problem size. There are no computationally effi-
cient methods that find optimal solution, however the importance for manufacturing 
domain is indisputable. The job shop scheduling has been thus attracting researchers 
from different domains over the decades. As a result multitude of methods and algo-
rithms has been designed.    

A substantial part of research was devoted to mathematical optimization algo-
rithms, which model the scheduling problem as mixed integer programming, solved 
often by the branch and bound (BB) method. BB method explores all feasible sche-
dules by constructing a tree representation of the solution space, from which large 
branches of unpromising solution candidates are cut off on the basis of estimated 
lower and upper bounds. BB methods guarantee finding the optimal solution but due 
to the NP-hard nature of the scheduling problem it is applicable only on small-scale 
problems [3]. Instead of finding optimal solutions many approximation methods to 
find good near-optimal solutions were developed. It is for instance shift bottleneck 
procedure [4], tabu search [5], simulated annealing [6], beam search [7], genetic algo-
rithms [8] or machine order space search [9]. 

In industrial practice there are more simplistic methods, such as dispatching rules, of-
ten used instead of elaborate mathematical algorithms. A dispatching rule tries to deter-
mine the sequence of jobs execution on a basis of some simple criteria. This can be for 
instance earliest due date rule that prioritizes jobs based on their due dates, or shortest 
process time rule that sets higher priorities for operations with shorter process times [10]. 

Various artificial intelligence techniques to scheduling problems have been devel-
oped. Examples include rule-based scheduling [11], constraint-directed search [12] 
and case-based reasoning [13]. A lot of attention was paid to applying expert systems 
technology by emulating the decision-making process of human schedulers [14]. 
A substantial contribution is the constraint-directed search method that uses the beam 
search powered reasoning engine guided by the constraints represented with schema 
representation language [15].  

The multi-agent system (MAS) has been recognized as a promising conceptual 
framework for developing production planning and scheduling systems. Using MAS 
the complex system is modeled as a community of autonomous and intelligent agents 
that cooperate on common goals via the message-based communication. Several 
MAS-based methods and software prototypes for planning and scheduling have been 
developed, such as the methodology for real-time job-shop scheduling problems [16], 
the FABMAS multi-agent-system for production control of semiconductor manufac-
turing [17], the Production 2000+ system for scheduling and control of engine cylind-
er heads production [18], the ExPlanTech multi-agent planning and scheduling system 
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deployed in Skoda Auto engine assembling workshop [19], a multi-agent system for 
real-time scheduling and optimization of workshop resources deployed at Axion-
Holding Izhevsk factory [20], or the agent-based discrete production scheduling and 
control system deployed at packing line [21]. There are also several works that com-
bine multi-agent approaches with the classical methods, such as with the dispatching 
rules [22], with the beam search method [23], or with the genetic algorithms [24].  
A detailed review of agent-based systems for planning and scheduling can be found in 
[23] and [25]. 

3 Agent-Based Scheduler for Aircraft Manufacturing 

3.1 Use-Case Description 

The use-case of the ARUM project is the Airbus A350 XWB assembly line (Fig. 1). 
As it is usual in similar small lot productions, the line is organized as a sequence of 
several stations, in which the semi-finished products (in this case A350 XWB fuse-
lages) are equipped with various components. When the assembly in a given station is 
completed, the product moves to the next station. This process must be synchronized 
across all the stations as there can be only a single product in a station at a time. 

 

Fig. 1. Airbus A350 XWB first front fuselage in final assembly line in Toulouse, France 
(source: http://www.airbus.com/galleries/photo-gallery/) 

 



 Agent-Based Production Scheduling for Aircraft Manufacturing Ramp-up 149 

The production time in the station is called a cycle time. At the beginning of ramp-up 
the actual cycle time is usually much longer than planned because of the frequent dis-
ruptions caused by late deliveries and non-conformities. As the ramp-up progresses the 
volatility of assembly processes settles down and consequently the cycle time shortens. 
The cycle time represents in fact one of the key KPIs (Key Performance Indicators) to 
be optimized as it has a direct correlation with the assembly line throughput.  

The key challenge for the station managers is to make right decisions regarding the 
strategy for allocating jobs and resources to achieve a balanced production across the 
line with minimized impact of the actual disruptions. Because of the dependencies of 
jobs even a single non-conformity that caused halting a given job causes halting other 
dependent jobs and as a result lengthens the station’s cycle time. It effects also subse-
quent stations in the line since they have to wait until the problem is fixed in the pre-
ceding station. It is obvious that the workers originally assigned to the impacted job 
have to be released and assigned to another jobs. This applies also to workers allo-
cated to all dependent jobs, not only in the original station but also in all other stations 
down the line. Achieving the work balance across the whole production line therefore 
requires coordination of multiple station managers and thus exceeds the area of re-
sponsibility of each single one. 

Besides a strategy for halting a production in a station until the problem is fixed 
there is another possible strategy of leaving the impacted jobs unfinished and moving 
them together with the product to subsequent station(s). It is for instance known that a 
missing part will be delivered within few days so the completion of affected jobs can 
be postponed to the next stations when the part arrives. This implies another challenge 
for station managers to coordinate their activities as the extra work caused by moving 
jobs can be covered either by next station’s “own” workers or by borrowing the 
workers from the original station. In both cases a rescheduling of work across the 
stations has to be done again to achieve the optimal state. 

3.2 Proposed Agent-Based Scheduler 

The proposed scheduler features a combination of mathematical optimization methods 
and multi-agent systems. As seen in Fig. 2 the scheduling problem for a production 
line composed of stations is represented as  matrix, where lines represent  
the stations , , … ,  and columns represent the cycle times , , … , .  

In each cell of the matrix the scheduling task is defined as n-tuple: , , , , , , , , , , , 1, … , ; 1, … ,  

where: 

•  , , , … , ,,  is a set of ,  jobs to be performed on a product; each job 

has a given duration , ; 
• ,  is a set of job dependencies represented as doubles , , ,  , ;  

for which holds ; 
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• , is a set of skills required to perform particular jobs;  , , , … , ,, , where ,  is a set of skills required by job , ,  

• , , , … , ,,  is a set of available resources, where ,  is a set of the 

skills provided by the x-th resource; 
• ,  is the objective function to assess the quality of solutions. 

The goal of scheduling is for each job , ,  to compute its start time ,  and end time , , such as the constraints on durations of 

the jobs expressed as , , ,  are met and 
there are resources with required skills available during the job’s execution times. 
Some of the resources might be modeled as cumulative constraints, meaning that 
there is  units of the resource available at the same time, while the given job con-
sumes ,  units of the resource. 

In detail, Fig. 2 depicts a case of a beginning of the current cycle , with the 
product  that has just entered the first station of the line, while other products , … ,  were moved one station ahead. At the same time the product  (not 
shown in Fig. 2) left the last station . In the next cycle  the same scenario re-
peats –  enters the line,  leaves it and all other products move ahead (shown 
as diagonal movement in the matrix). 

If only the mathematical optimization algorithms would be used to solve the sche-
duling problem then the model would have to be built from the complete matrix  , , 1, … , ; 1, … ,  because of the interrelations between particular 
matrix cells, especially due to unfinished jobs allowed to move across stations. Con-
sidering the NP-hard character of the problem this might imply serious issues regard-
ing the unrealistic computation times.  

 

Fig. 2. The graphical representation of the scheduling problem, considering N stations and a 
scheduling horizon given by N cycle times 
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To reduce the complexity the mathematical optimization methods were combined 
with the multi-agent systems concept. In this approach each scheduling task ,  is 
solved independently by an agent and, if needed, the coordination between the agents 
takes place to deal with the traveling jobs. The Station agent responsible for computa-
tion of task ,  uses the constraint logic programming engine – the open-source 
Choco solver (http://choco-solver.org/). The model for the solver includes variables, 
representing the start times and end times of jobs and their durations. The constraints 
are expressed as mathematical functions of the variables, such as job_starttime + 
job_duration = job_endtime or job1_endtime ≤ job2_starttime. The 
solver explores the state space and searches for such values of variables so that all the 
constraints are met. Different heuristics are applied to limit the searched state space, 
such as placing the jobs with higher amount of dependencies first, etc. (detailed dis-
cussion is out of scope of this paper). 

The solver generates multiple valid solutions, which are evaluated using the objec-
tive function ,  to find the “good” ones. Two different objective functions are con-
sidered: 

1) , , , , , , which is translated to finding 

such a configuration in which the last job is finished as early as possible. It is 
in fact equal to minimizing the make span. The main motivation is to create an 
“empty space” at the end of the cycle time, as shown in Fig. 3. There are two 
reasons for this: (i) to have a reserve for possibly delayed jobs in the same sta-
tion, and (ii) to be able to accommodate traveling jobs from previous station. 

2) , ∑ , , ,, , which purpose is to find 

such a configuration in which all the jobs are finished as early as possible. The 
idea is to divide the time interval , , ,  to pieces 
of the length 1 and give the penalty to each of that piece equal to the absolute 
position of the piece in time from the beginning of the cycle time. If, for ex-
ample, , 10 and the job has duration equal to 3 time units, 
there are three pieces of length 1 placed at positions 10, 11, and 12, penalized 
by same values 10, 11, and 12, respectively. It gives the total penalty equal to 
33. It is in fact a sum of integer numbers in a given interval, the function ·  
from the formulae above is thus: 
 ·  , , , 1 · ,2  

The decomposition of work among the Station agents is done by the Scheduler agent. 
Its task is to obtain the complete data set for the scheduling matrix, decompose it into 
sub-problems ,  and orchestrate the computation done by Station agents. First, the 
Station agents in the first column of the matrix compute their results and return them 
back to the Scheduler agent, marking the jobs that cannot be suitably placed, for in-
stance due to the missing resource needed for the execution. The Scheduler agent ana-
lyzes the results and makes a decision about the failed jobs. If the strategy is to halt the 
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production until the problem is fixed then the cycle time is extended according to the 
expected date and time of the fix ([Si, Cj+1] in Fig. 3). In case of traveling work, the 
affected jobs are left marked and are then handled in the next step. 

In this step the Station agents for the next column in the matrix are requested to 
compute their schedules, giving them their “own” jobs plus the additional traveling 
jobs from the previous station (see the highlighted job moving from [Si, Cj] to [Si+1, 
Cj+1] in Fig. 3). Handling the extra jobs follows another two strategies: (i) using the 
target station’s own resources ([Si+1, Cj+1]), or (ii) borrowing the resources from the 
original station. In the latter case however, it does not mean to borrow from [Si, Cj], 
but in fact from [Si, Cj+1] to be in the right cycle time. This situations is handled in 
such a way that the two involved agents agree on choosing one of them as a master, 
which then combines data, including the jobs and resources, from both ,  and ,  cells and lets its solver to compute the result. The result is then split by the 
master agent back to two groups according to the original belonging of the jobs to 
stations. However, the result contains the information about some resources (mainly 
the humans) that will be requested to move from one station to the other one to work 
on the traveling jobs. 

 

Fig. 3. Possible scheduling results – shrinking or extending the cycle time; moving jobs  
between stations with borrowing resources 

This procedure is repeated until the computation for the last cycle time is finished.  
Finally, the overall solution for the whole matrix is assembled by the Scheduler agent, 
which then computes the global KPIs (key performance indicators). The KPIs are 
presented to the station manager as a quality of found solution. It is the number of 
traveling jobs, the human utilization and the station flexibility representing the ratio of 
the reserve at the end of cycle time to the cycle time length (see Fig. 3). 

As the production progresses and the disruptive events are occurring the station 
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delivery of parts that would be harmed if the jobs would be shifted in time too much. 
For this reason the Station agents use the last found solution as a starting point for the 
solver to begin searching the state space. 

It is shown in Fig. 3 that besides extending the cycle time it is also possible to de-
cide shrinking it, if the time reserve is achieved in all the stations in the same cycle 
time. This is one of the main contributions of the presented soultion as it results in 
speeding up the production and achieve higher throughput of the line. 

4 Integration of the Scheduler into the Overall ARUM Solution 

The ARUM system is designed according to the Enterprise Service Bus (ESB) soft-
ware architecture model, which is one of the implementations of the Service Oriented 
Architecture (SOA) paradigm. The software modules are designed as self-contained 
loosely-coupled services that communicate via messages over the messaging bus. 

Fig. 4 shows services that are involved in the scheduling task. It is naturally the 
Scheduler Service implemented as a multi-agent system. It includes a MAS-ESB ga-
teway, which was designed to enable the agents, implemented in JADE agent plat-
form (http://jade.tilab.com/) to interact with the JBoss ESB (http://jbossesb.jboss.org) 
services [26].  
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Fig. 4. Integration of the Scheduler (Scheduler Service) with the Ontology Service providing it 
with data and the user interfaces from which the scheduler is controlled 
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The REST API Service provides means for integration of lightweight clients with 
the heavyweight Enterprise Service Bus (ESB) messaging system via the HTTP-based 
RESTful API [27]. These clients are primarily the user interfaces for both the station 
managers and workers. The Station manager UI provides the station manager with the 
real-time process monitoring and control. It gives a detailed overview of the progress 
of work in the stations, such as a number of finished/unfinished jobs, estimated lead 
time, current throughput, utilization of resources, occurred events, etc. Through this 
user interface the station manager creates a new schedule at the beginning of the cycle 
time as well as at the beginning of each work shift. He/she can also decide to update 
the schedule any time when coming to a conclusion that the events such as missing 
parts and non-conformities disrupt the currently running production to such extent it 
is necessary to re-organize the production and re-allocate the workers. The Station 
manager UI interacts over the REST-API Service with the Scheduler Service request-
ing it to compute a new or update an existing schedule. When finished, the results are 
displayed to the station manager, who decides to apply them to a running production.  

The new allocation of work is propagated down to workers that are equipped with 
a smart phone/tablet running the Worker UI. Through this mobile application the 
worker checks the list of jobs he is supposed to execute during the work shift, reports 
on the progress of work (starting and completing the job) and also report on any dis-
turbances such as missing/broken parts or other non-conformities. 

The Ontology Service is responsible for gathering data from the legacy software sys-
tems and converting them into a common data format. It was decided to use ontologies to 
model the data structures in ARUM in a semantic, machine interpretable form. The On-
tology Service queries the Data Transformation engine, which gathers data over the 
Gateways from various legacy systems, such as relational databases, SAP, Microsoft 
Excell spread sheets, etc. Then data is converted into RDF (Resource Description 
Framework) [28] according to an ontology developed for modeling of discrete produc-
tion processes. The Ontology Service aggregates data from multiple sources and stores 
them into an RDF triplestore. In this way the input data for the Scheduler Service are 
prepared. When the scheduling is finished, the output of the scheduling (the assignment 
of resources to jobs, and job’s planned start and end times) are also stored in a semantic 
form by the Scheduler Service. Subsequently, the results are displayed in the Station 
manager UI, which involves conversion of data in RDF format handled by the Ontology 
Service into the JSON format appropriate for lightweight clients. 

5 Conclusions and Future Work 

The presented paper reports on the scheduling system developed to increase the effi-
ciency of the ramp-up production of Airbus aircrafts. The solution features a combi-
nation of constraint logic programming and the multi-agent systems, which helps to 
break down the complexity of the scheduling problem. The experiments show that if 
only the constraint programming would be used, with the model containing data for 
the whole matrix (Fig. 2), the solution is not found by the solver even within a couple 
of hours. Using the agents finding a good enough solution takes couple of minutes; of 
course due to the NP-hard character of the problem, it is not the globally optimal one. 
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We are currently preparing experiments that should give the estimates of improvement 
of the production performance when the presented solution is deployed in the real  
factory. The experiments will employ an emulator of the disruptive events that uses a 
statistical data of the real occurrence of failures gathered during the ongoing A350 ramp-
up. The goal is to compare the real performance with a state when the continuous resche-
duling would be applied. The expectations are quite high, going up to 30%.  

The presented solution obviously gives better results than the manual ad-hoc re-
scheduling done by the station managers, for it considers the interrelations between the 
particular stations instead of relying on the local view of individual station managers 
only. In addition to the presented use case, the Scheduler is supposed to be used also in a 
combination with the strategic planner to validate different possible configurations of the 
production line. The attention is paid to so-called “parking station”, where the product, 
which production is halted due to a disruptive event, can be put aside and wait until the 
problem is fixed. In this way the flow in the main line would be not affected. The chal-
lenge here is to determine a proper moment when to put the product from the parking 
station back to the line, in which all the stations are occupied by other products. It re-
quires to speed up the production in part of the line and simultaneously slow down the 
progress in the preceding part of line to vacate a given station in between, to which the 
product from the parking place will be returned. This again requires a coordination 
among the Station agents in terms of negotiating about reallocating people from the be-
tween the parts of the line to achieve a requested misbalance. 
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