
© Springer International Publishing Switzerland 2015
V. Mařík et al. (Eds.): HoloMAS 2015, LNAI 9266, pp. 133–144, 2015.
DOI: 10.1007/978-3-319-22867-9_12

Adaptive Production Management
Using a Service-Based Platform

Usman Wajid1(), Vadim Chepegin2, Despina T. Meridou3,
Maria-Eleftheria Ch. Papadopoulou3, and José Barbosa4

1 The University of Manchester, Oxford Road, Manchester M15 6PB, UK
usman.wajid@manchester.ac.uk

2 TIE Kinetix, De Corridor 5d, 3621 ZA Breukelen, Netherlands
vadim.chepegin@tiekinetix.com

3 School of Electrical and Computer Engineering, National Technical University of Athens,
Heroon Polytechniou 9, 15773 Athens, Greece

{dmeridou,marelpap}@icbnet.ece.ntua.gr
4 Polytechnic Institute of Bragança, Apartado 1134, 5301-857 Bragança, Portugal

jbarbosa@ipb.pt

Abstract. This paper presents a platform for adaptive production management
developed in the ARUM1 (Adaptive pRodUct Management, http://arum-
project.eu/) project. The design of ARUM platform started with applying a tra-
ditional enterprise Service-Oriented Architecture (SOA) paradigm to solving an
integration problem for the production ramp-up of highly customized products
such as aircrafts, ships, etc. The production of such articles is exceptionally
challenging for planning and control, especially in small lot sizes. Often re-
quests for changes at any stage of the production, immature products and
processes bring serious additional risks for the producers and customers. To
counter such issues requires new strategies, the core elements of most of them
include early detection of unexpected situations followed by rapid mitigation
actions. Furthermore, human beings cannot cope any longer with processing a
massive volume of data that comes with a high velocity from various sources
that is a requirement for any modern production shop floor. The traditional IT
solutions also fall short when trying to satisfy all those requirements and this
motivates the need for ARUM platform to help in effective decision making.

Keywords: System architecture · Adaptive manufacturing · Enterprise service bus

1 Introduction

Automation of conventional processes and wider adoption of service oriented system
design approaches mean services are playing an increasingly important role in modern

1 This project has received funding from the European Union’s Seventh Framework Pro-

gramme for research, technological development and demonstration under grant agreement
no 314056.

134 U. Wajid et al.

manufacturing domain. Currently there are two trends for designing service-based
systems competing in the market that many researchers and practitioners consider
mutually exclusive, namely service-oriented architecture (SOA) and REST style. To
design a service-based system that brings together and integrates different entities
SOA advocates the use of an Enterprise Service Bus (ESB) for integration pattern and
functional decomposition of system level entitiesogies. However, at enterprise level
the implementation of SOA is usually associated with large investments in IT infra-
structures in terms of time and funds. On the contrary, REST integration style is capi-
talizing on the existing Web infrastructure. It supports P2P communications, light-
weight protocols and message formats for interaction between different services, and
does not require large upfront investments. The success and rapid growth of the Inter-
net is often seen as a proof of success for the REST style. REST services are globally
used for delivering new business functions via exploiting existing polyglot infrastruc-
ture (execution environments, persistency) and continuous delivery approach.

This paper describes a service-based platform that enables the manufacturing in-
dustry to benefit from using both of the paradigms together taking an example based
on the experience and lessons learnt from the European funded ARUM (Adaptive
pRodUct Management) project. ARUM aims at solving hard planning problems dur-
ing a production ramp-up of complex and highly customised products such as new
aircrafts with help of Multi-Agent Systems (MAS). The ARUM approach is based on
the combination of innovative lines of commercial SOA-based products such as TIE
Smart Bridge (TSB), a lightweight message and service bus that strongly supports
SOA principles, along with TIE Smart Integrator (TSI) and a semantic mapping and
transformation tool. TSB and TSI together provide facilities for data exchange and
integration from a vast variety of services and legacy systems that cannot be reached
using REST/HTTP on its own. Although, businesses in the manufacturing domain are
typically dealing with common industrial formats and systems, within the ARUM
context in order to satisfy the needs of knowledge-based MAS; TSI was enriched
employing micro-services approach to take care of transforming data from legacy
systems into the Web ontological models [2]. Both of the tools (TSI and TSB) can be
exposed and be used via REST APIs, TSB has a support for workflows, and is de-
signed to operate with SOAP and REST Web services, and altogether this solution
paves the link between two integration paradigms, SOA and REST [4]. Moreover,
TSB and TSI can be provided within the Cloud as Software-as-a-Service (SaaS) to
help in integrating business services dispersed all over the Internet running on their
own distributed Virtual Machines (VM) and Virtual Environments.

Thus, the proposed ARUM solution speeds up and facilitates delivery of the new
value for the businesses by quickly setting up a foundation for communications in
heterogeneous distributed environments that require intensive data exchange among
context bubbles but run on various platforms and speak different vernaculars. Within
the ARUM context, such an environment is realised by designing a SOA-inspired
platform that is primarily designed to support ramp-up systems for manufacturing,
where there are conflicts between the need for control and rigour and the reality of
rapid changes. To address such challenges and industrial requirements the architecture
of ARUM platform integrates the key features of service-oriented-architecture, holo-

 Adaptive Production Management Using a Service-Based Platform 135

nic multi-agent systems and legacy systems and links them via an enterprise service
bus (ESB) [1], providing communication, monitoring, interoperability and aggrega-
tion of information across existing legacy systems at all production levels to support
real-time automatic negotiation, planning, scheduling and optimization within and
across factories. The envisaged technologies of distributed multi agent system within
a holonic architecture is expected to help in integrating legacy systems, information
aggregation from high level systems (MES, ERP, etc.) to factory floor automation
(e.g. metal cut and assembly systems). Based on such requirements reflected in the
system architecture, the main functionalities of ARUM platform include scheduling,
planning, production management and manufacturing process supported by informa-
tion delivered from a variety of sources e.g. legacy systems, sensors, and users.

The use of multi-agent system and service-oriented architectures in manufacturing
is not new, and other approaches have already been promoted, mainly focusing the
lower-level control and interaction [10, 0]. Despite this, the ARUM project differenti-
ates from those, by promoting the integration of different layers of the ISA-95,
namely the planning and scheduling, aggregated by the use of a common communica-
tion infrastructure and a well-define data access process flow.

The rest of the paper is organized as follows: Section 2 presents the ARUM archi-
tecture, briefly describing its components and tools, while Section 3 describes the
technical background that supports that architecture. Section 4 describes, by means of
two practical examples, the usage of the ARUM architecture, particularly the data
retrieval and the strategic planning actions. At last, Section 5 rounds up the paper with
the conclusions.

2 ARUM Platform Architecture

Based on the user and domain specific requirements as well as the underlying SOA
principles, the architecture of the ARUM platform is closely coupled with the goal of
enabling prediction in the pre-planning phase and real-time control in the production
phase in highly dynamic ramp-up production domains. Figure 1 depicts the system
architecture and its key components and services that make up the ARUM platform,
as well as the interrelations between them, making it easier to understand the functio-
nality offered and realise the potential benefits of the ARUM platform.

As shown in Figure 1, the SOA inspired Enterprise Service Bus constitutes the
core of ARUM intelligent ESB (i-ESB) platform and provides a common communica-
tion infrastructure for the interoperability of different tools and services, such as the
Strategic Planner, Ontology Service, FND&SD service and others described below.

The Ontology Service and the MIDAS/Azimov tool are considered as the knowl-
edge base of the system. The Ontology Service is the major data provider to the
ARUM tools as it holds the schema of the ARUM Ontologies (Core, Scene, Events
and Policy Model) and manages production-related data expressed based on the ap-
propriate schema in a triple store, a special data structure for semantic data.

136 U. Wajid et al.

Fig. 1. ARUM system architecture

The Legacy Systems, the ARUM tools and services, as well as the Production
Events Topic are the three data sources from which data are acquired by the Ontology
Service. In the first case, data in various formats coming from the Legacy Systems on
demand by the aforementioned tools are converted into RDF by the Data Transforma-
tion Service before sending them to the Ontology Service. In the second case, seman-
tic data resulting from scheduling and planning processes operated by the related
tools, such as the current state of the factory used by the Operational Scheduler for
what-if games, are sent to the Ontology Service for the purpose of storage and/or
reasoning. Finally, in the third case, each iESB service publishes any production-
related event in the Production Events Topic by exploiting the schema of the ARUM
Events Ontology. The MIDAS/Azimov [8] tool receives the production-related
events via the MIDAS Topic supported by a publish/subscribe messaging model and
analyses them by taking also into account their respective solutions. In this respect, all
information is processed and in order to facilitate the troubleshooting procedure the
estimated troubleshoot time is provided for given production events, typically non-
conformities in the production/manufacturing processes.

Day-to-day data of current manufacturing practices contained in existing systems
known as Legacy Systems are integrated in the platform via gateways of the Data
Transformation Service, which transforms data from heterogeneous sources (e.g.
legacy systems) into the RDF format according to the ARUM ontology. The mapping

 Adaptive Production Management Using a Service-Based Platform 137

between the schema of legacy systems data and the ARUM ontology, based on which
the Data Transformation Service performs the transformation of the data, is created by
the TIE Semantic Integrator (TSI).

An innovative feature of the ARUM architecture is the support for multiple iESB
services that serve generic purposes providing support for the whole infrastructure.
To be more specific, the Security Service is mainly responsible for authenticating
users as well as making access control decisions based on policies specified by the
Policy Model Ontology when. This service plays a crucial role to the ARUM infra-
structure by acting as a mediator in the communication for data exchange between the
iESB services, thus ensures trust. The Publish Service used by other services to dis-
tribute messages in a publish-subscribe manner posts any received message to a cor-
responding topic to which other services are subscribed. The Event Generator Ser-
vice used by the Scenario Designer tool for obtaining generated hypothetical produc-
tion-related events on request is useful in what-if game simulations and in this way it
supports planning in the manufacturing domain. The Production Events Topic, as
mentioned above, receives production-related event messages by an ARUM console,
legacy systems, or any other service such as FND&SD.

The main tasks of the ARUM platform regarding scheduling and planning are car-
ried out by Multi-Agent Systems [6] as a set of intelligent services (MAS realm).
These services mainly carryout the scheduling and planning activities, which effec-
tively are the main features of the ARUM platform. More specifically, the Opera-
tional scheduler as a tool computes one or more valid schedules as a set-up of start
and end times of (manufacturing) jobs and allocation of resources based on input data
about jobs to be done, their precedencies and required resources. The Strategic Plan-
ner [3] assists the professionals taking managerial decisions, particularly at the tactic-
al level by enabling them to identify and analyse which and where resources must be
allocated in order to cope with production demand as well as at the strategic level by
helping them decide if, e.g., building an extra production line is required.

The presentation tier of the ARUM platform, based on open source technologies
and products (such as Apache Rave and Wookie) that can support widget based envi-
ronments or LifeRay for portlet-based dashboards, helps in creating an iterative user-
centred experience. Moreover, the Factory Network and Scenario Designer
(FND&SD) Service acts as the gateway between the ESB and the user interface. Its
GUI provides users with functionalities such recording and processing production
events. Finally, the ESB Sniffer GUI [7] provides a list of messages going through
the ESB together with their details, showing a visualization of the message flow, be-
ing particularly useful for debugging problems in inter-service communications.

3 Architecture Support for Technical Solution

The support from the above described SOA-inspired architecture enables ARUM
platform to bring together a new generation of innovative Multi-Agent Systems (MAS)
that can build plans and schedules in real time based on the information collected
from different resources including legacy systems (e.g., MES, ERP, etc.), data gener-

138 U. Wajid et al.

ated by workers, sensors, MAS themselves, etc. and enterprise integration platforms
that follow different paradigms in order to guarantee fast delivery of business value,
maximal coverage of systems accepted by the platform, and a security - the high-
level overview of ARUM platform is shown in Figure 2.

An extra challenge of ARUM platform lay in the fact that MASs need a massive
flow of information into them up-front and continuously during their execution to
make their work effective. This is a well-known so-called “knowledge bottleneck”
problem but in case of ARUM velocity and volume of data are also playing an impor-
tant role since a schedule for workers that does not factor in the latest figures over the
articles in the local warehouse or the outcomes of the recent quality checks would
have no value. And to make it even more challenging providers of business tools in
ARUM requested platform providers to support ontologies and triple stores for the
convenience of their communications among each other and with other data sources.
This solution also helps them to focus on their functionality and delegate all the heavy
lifting work to the platform.

Fig. 2. High-level overview of ARUM platform

The architecture also support ARUM platform to take advantage of the realm of In-
ternet of Things and Knowledge-based systems such as Multi-agent systems (MAS)
and thus consists of many independent services and data sources that reside on vari-
ous platforms spanning from legacy monoliths to notebooks, and tablet PCs. Coopera-

 Adaptive Production Management Using a Service-Based Platform 139

tion via interaction of all those systems (hardware and software) is the intrinsic cha-
racteristic of the ARUM platform. Integration with legacy and off-the-shelf monolith
systems is important because tones of valuable data are already there and those sys-
tems are tightly integrated into the enterprise business processes and they will not be
replaced any soon. Legacy nature of those systems (such as CAD, CRM, HR, etc.)
also means that those systems most of the time does not have common interaction
mechanisms, Web Service interface and cannot communicate via HTTP protocol. As
mentioned above, the the ARUM Intelligent ESB (iESB) platform employs a combi-
nation of two message-service busses, namely TIE Smart Bridge (TSB) and JBoss
ESB. This combination was suits the requirements since it allows interoperability and
interplay between different programming paradigms (e.g. .Net and Java) that cover
most of the traditional enterprise integration spectrum.

This also allows integration of different proprietary and open source products. In
addition to the combination of two service buses, any other ESB can be connected to
the platform that follows ARUM approach of a shared stack of message queues and
common service registry. Because queues are hosted in the cloud environment it is
possible to dynamically manage them, for instance, in order to react to the spiky
loads. A service registry supports a dynamic discovery, which adds agility to the
whole infrastructure by allowing on-the-fly discovery and service binding. Of course,
all other ARUM added-value services that constitute the complete iESB are also dep-
loyed in the cloud and can benefit from using the same dynamic discovery and elas-
ticity along with a polyglot persistency and service execution environments. This
become especially valuable when ARUM had faced a need of integrating new wave
of service and data providers that reside on the hand-held devices of the shop floor
personnel such as tablets or notebooks used by workers and managers next to the
working stations.

An example scenario for such integration is the interplay of TIE Smart Bridge
(TSB), a lightweight message and service bus that strongly supports SOA principles,
with TIE Smart Integrator (TSI), a semantic mapping and transformation tool. TSB
has a history of successful business brokerage for different sizes of commercial pro-
jects and a rich set of off-the-shelf functionality for integration with a wide spectrum
of legacy systems as well as with services and data providers that are hosted in the
cloud. TSB relies on TSI for doing explicit declarative maps that describe how ele-
ments of a source schema correspond to elements of a destination schema. Transfor-
mation engines use those maps in the data exchange and integration scenarios. Both
of these tools can be exposed and used via REST APIs, and altogether this solution
paves the road between two integration paradigms, SOA and REST.

A typical scenario starts when a factory-floor worker sends a message via a spe-
cialized mobile application to the platform about finishing his or her job. This mes-
sage is accepted by the data warehouse using a REST API, and the appropriate data is
added or updated. Other devices or software services that are connected through
RESTful APIs or use native drivers, such as ODBC or JDBC (see Figure 1), can get
access to this new state right away. But that is not all, since ontologies have to be
supported to enable meaningful information exchange between different components
and systems. Consequently, a service responsible for managing knowledge within the

140 U. Wajid et al.

platform, namely the Ontology Service, is subscribed to a publish-subscribe endpoint
in TSB that can manage different queries in SPARQL format – a W3C standard for
querying Web ontologies. In this respect, the Ontology service can manage internal
logic and requests from its main clients, namely planners, schedulers, and other
knowledge-based tools.

Although in theory any service can subscribe to this pub/sub point, the only one
practical subscriber at the moment is the Ontology Service. The Ontology Service
focuses on providing a clean API and language understood by knowledge-based sys-
tems; it intensively manipulates knowledge in a triple store, searches for implicit rela-
tionships using different inference mechanisms, and it is ready to reply to complicated
analytical queries.

Furthermore, in order to satisfy the needs of knowledge-based systems, TSI was
enriched to deal with the transformation of data into the Web ontology format OWL.
Thus when a SPARQL request arrives:

1. It is rewritten into one or more SQL queries.
2. Data is retrieved from the target systems.
3. It is transformed using existing maps into the destination format.

All three steps are implemented via micro-services, and they can be executed in
parallel when possible. Implementation of a scale-out strategy here also helps in in-
creasing the throughput of the system and decreases its latency. A similar situation
exists between the platform’s data warehouse and legacy systems. TSB is used to
subscribe or to poll legacy resources through its gateways. When data is emitted by
any of the data providers, TSB starts an appropriate workflow that contains necessary
transformations, and data is finally pushed into the data warehouse.

The above scenario describes a normal operational routine of our solution, when
data comes in small chunks from different directions. There is another mode used for
the initial setup. In this mode, TSB collects data from the connected legacy systems,
transforms it using TSI and stores it in the data warehouse, and then performs a mas-
sive batch transformation into ontological format followed by the upload of that data
into the Ontology Service. This is necessary so that a new system does not suffer from
a “cold start” — a term used in knowledge-based systems to describe a situation in
which they cannot make any meaningful suggestions due to a lack of available infor-
mation.

Together TSB and TSI can be provided within the cloud as software-as-a-service
(SaaS), and they can help in integrating business services dispersed all over the Inter-
net running on their own distributed virtual machines (VMs) and virtual environments
(VEs; e.g., Docker) with a diversity of operating systems. Thus, the proposed solution
speeds up and facilitates delivery of the new business value by quickly setting up a
foundation for communications in heterogeneous distributed environments that re-
quire intensive data exchange among context bubbles but run on various platforms
and speak different vernaculars

 Adaptive Production Management Using a Service-Based Platform 141

4 Usage Scenarios

We have carried out the validation of the proposed architecture and the resulting plat-
form in the context of ensuring that architecture supports the perceived functionalities
and the platform can handle the system level operations with the help of the following
data retrieval scenarios.

Example of the interaction of the Factory Network & Scenario Designer with the
Ontology ServiceIn this scenario (as shown in Figure 3), a user of the ARUM plat-
form, such as a Station Manager, wants to design a new scene, i.e., a new snapshot of
the current state of the station and associate it with a particular product, which is
processed at the aforementioned station. This operation can be performed through the
User Interface (UI) of the Factory Network & Scenario Designer (FNDSD).

Fig. 3. Sequence diagram for the legacy systems data retrieval scenario

Before the creation of the scene is possible, certain pieces of data, which will be
later used as part of the scene during the scheduling process, need to be acquired.
Once such a request is sent by the FNDSD UI to the FNDSD service, the latter sends
the appropriate request to the Ontology Service. Since, initially, the legacy data are

142 U. Wajid et al.

kept in the legacy systems, the FNDSD service requests the Ontology Service to fetch
all data that are needed for the scheduling of the operations concerning the processing
of the aforementioned product to the station, where it is allocated.

In this respect, the Ontology Service decomposes the query into sub-queries that
are then sent to the Data transformation service. The reason for decomposing the ini-
tial query is that various pieces of data are spread over different legacy systems. Basi-
cally, the requested data contains the set of operations to be performed, their prece-
dencies, durations, required human resources with particular skills, required parts,
availability of resources, etc. This communication does not go over the ESB, but ra-
ther via a Web service based API of the Data Transformation service. In particular, the
requests are reflected by means of SPARQL queries.

Then, the Data Transformation Service issues several requests to appropriate
Gateways, each of which is designed to retrieve data from particular legacy MES or
ERP system. The retrieved data are returned back to the Data Transformation Service
in its native format. The Data Transformation Service then converts the acquired data
into the semantic format (RDF) using semantic mappings generated by TIE Semantic
Integrator and the ARUM Core and Scene ontologies as target schemas. The resulting
pieces of RDF data are returned back to the Ontology Service.

When the Ontology service receives the RDF data, it aggregates it in a dedicated
triple store and then returns it to the FNDSD service. Local storage is intended for
easy and faster data access in case such data is requested again.

Having received the scheduling data, the FND&SD service returns it to the
FNDSD UI, which is now able to issue a request to create a new scene. This request is
sent back to the FNDSD service, which in turn asks the Ontology Service to save it in
the triple store. The result of the action performed by the Ontology Service is the gen-
eration of a new unique URI for the scene, which is sent to the FNDSD service. The
latter builds a scene and sends it back to the FNDSD UI. The scene will be then used
as a holder of input data for the Scheduler.

4.1 Strategic Planning Operation

The higher hierarchical levels of any manufacturing company must take strategic de-
cisions that culminates, among others, in the construction of a new production site or
in a shop-floor re-organization, e.g., by means of the use of additional degrees of free-
dom (DoF), such as the introduction of extra working hours or of a new production
line.

In such way, the Strategic Planner (SP) in the ARUM platform combines the agil-
ity and flexibility provided by the software agent technology with the optimization
levels provided by classical mathematical models [5] – as shown in Figure 4. The SP
tool is a bundle composed of a User Interface (UI) and a Multi-Agent System (MAS)
that encapsulates the mathematical solver, as depicted in Figure 4. Both components
interact within the ARUM platform using a standardized message mechanism that
combines the standard service communication process with the interaction protocols
facilitates offered by the agent world, namely the FIPA (Foundation for Intelligent
Physical Agents) interaction protocols.

 Adaptive Production Management Using a Service-Based Platform 143

Fig. 4. User interface and multi-agent system planning interaction

The planning process, each time the user wants to use the tool, in reaction to an ex-
ternal event or to perform exploratory studies, starts by the request of the available
data, i.e. the system current status. After this, the user designs the conditions to be
tested, e.g., a product demand increase or costs variation, and requests the computa-
tion of a solution. At this stage, the agents within the MAS cooperate in order to pro-
vide the requested plan with the details of associated tasks, activities and resources -
leading to the solution (or a set of best solutions) [9].

5 Concluding Remarks

ARUM is aimed at the development of a flexible and adaptive ICT solution for pro-
duction management and control of highly complex, small lot productions such as in
aircraft and shipbuilding industries. Small lot manufacturers have to deal with specific
challenges such as the high investments in the product design and ramp-up due to the
complexity of the final product and very small production batches.

This paper provides an overview of the ARUM platform that uses SOA-inspired
design principles to narrow the gaps that current practices cannot do in small-lot pro-
duction and ramp-up of highly customized and complex products. The key objectives
of ARUM platform include ensuring purposeful and unobstructed flow of information
between decision makers, intelligent planning, scheduling, optimization, control tools
and legacy systems.

To support the stakeholders in small lot manufacturing and complexity of product
design and ramp-up stages, the architecture of ARUM platform presented in this pa-
per promotes the view of services as Intelligent Services that are defined as indepen-
dent pieces of software and are expected to provide a particular result either produced
by the intelligent services themselves or by requesting support from other intelligent
services. Seamless communication between intelligent services is supported by adopt-
ing the SOA-inspired Enterprise Service Bus solution. The use of a combination of
ESBs in ARUM platform also facilitates other operational features such of knowledge
acquisition and sharing by exploiting different ontologies, integration of legacy sys-

144 U. Wajid et al.

tems, monitoring of dynamic interactions by reviewing the flow of high volume of
message exchanges, service lifecycle management and platform distribution.

This paper does not cover the details or research behind the scheduling, optimisa-
tion and planning of production services. Functionality details and software specifica-
tion of these services and other ARUM aspects can be found by exploring different
pieces of work in the references section.

In our future work, we are performing empirical and user-based assessment of the
platform and associated services in order to determine their effectiveness in delivering
the perceived benefits.

References

1. Marín, C.A., Mönch, L., Liu, L., Mehandjiev, N., Lioudakis, G.V., Kazanskaia, D., Che-
pegin, V.: Application of intelligent service bus in a ramp-up production context.
In: CAiSE 2013, Valencia, Spain, June 17-21, 2013

2. Inden, U., Mehandjiev, N., Mönch, L., Vrba, P.: Towards an ontology for small series pro-
duction. In: Mařík, V., Lastra, J.L.M., Skobelev, P. (eds.) HoloMAS 2013. LNCS,
vol. 8062, pp. 128–139. Springer, Heidelberg (2013)

3. Leitão, P., Barbosa, J., Vrba, P., Skobelev, P., Tsarev, A., Kazanskaia, D.: Multi-agent sys-
tem approach for the strategic planning in ramp-up production of small lots. In: SMC
2013, Manchester, UK, October 13-16, 2013

4. Marin, C., Moench, L., Leitao, P., Vrba, P., Kazanskaia, D., Chepegin, V., Liu, L., Me-
handjiev, N.: A conceptual architecture based on intelligent services for manufacturing
support systems. In: SMC 2013, Manchester, UK, October 13-16, 2013

5. Biele, A., Mönch, L.: Using a math-heuristic to optimize mixed model assembly lines in
low-volume manufacturing. Informs Annual Meeting, Minneapolis, Minnesota, USA, Oc-
tober 2013

6. Leitão, P., Barbosa, J.: Adaptive scheduling based on self-organized holonic swarm of
schedulers In: ISIE 2014, Instanbul, Turkey, June 1-4, 2014

7. Vrba, P., Myslik, M., Klima, M.: JBoss ESB sniffer: message flow visualization for enter-
prise service bus. In: ISIE 2014, Instanbul, Turkey, June 1-4, 2014

8. Stellingwerff, L., Pazienza, G.E.: An agent-based architecture to model and manipulate
context knowledge. In: Demazeau, Y., Zambonelli, F., Corchado, J.M., Bajo, J. (eds.)
PAAMS 2014. LNCS, vol. 8473, pp. 256–267. Springer, Heidelberg (2014)

9. Ferreira, A., Pereira, A., Rodrigues, N., Barbosa J., Leitão, P.: Integration of an agent-
based strategic planner in an enterprise service bus ecosystem. In: 13th IEEE International
Conference on Industrial Informatics (INDIN 2015), Cambridge, UK, July 22-24, 2015

10. Rocha, A., di Orio, G., Barata, J., Antzoulatos, N., Castro, E., Scrimieri, D., Ratchev, S.,
Ribeiro, L.: An agent based framework to support plug and produce. In: 2014 12th IEEE
International Conference on Industrial Informatics (INDIN), vol. 504, no. 510, pp. 27–30,
July 2014

11. Karnouskos, S., Colombo, A.W., Bangemann, T., Manninen, K., Camp, R., Tilly, M., Si-
kora, M., Jammes, F., Delsing, J., Eliasson, J., Nappey, P., Hu, J., Graf, M.: The
IMC-AESOP Architecture for Cloud-Based Industrial Cyber-Physical Systems.
In: Colombo, A.W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka, P., Harrison, R.,
Jammes, F., Lastra, J.L. (eds.) Industrial Cloud-Based Cyber-Physical Systems, pp. 49–88.
Springer International Publishing, Cham (2014)

	Adaptive Production Management Using a Service-Based Platform
	1 Introduction
	2 ARUM Platform Architecture
	3 Architecture Support for Technical Solution
	4 Usage Scenarios
	4.1 Strategic Planning Operation

	5 Concluding Remarks
	References

