Cavernous Sinus Cavernous Hemangiomas

33

Gabriel Zada, M. Beatriz S. Lopes, Srinivasan Mukundan Jr., and Edward Laws Jr.

33.1 Epidemiology and Clinical Presentation

- Cavernous sinus cavernous hemangiomas (CSCHs) are distinct from cavernous malformations (angiomas) [1].
- CSCHs are benign vascular tumors, not true vascular malformations; they frequently present with headaches and cranial nerve paresis [1, 2].
- Cavernous angiomas, on the other hand, are true vascular malformations that may be located anywhere in the brain. (See Chap. 61.)
- CSCHs comprise 2–3 % of cavernous sinus tumors.
- The mean age of patients with CSCHs is 43 years; there is female predilection [3].
- CSCHs occasionally may extend medially into the sella turcica and mimic pituitary adenomas [4–9].
- CSCHs represent 0.07 % of lesions treated in major transsphenoidal series [10].
- In rare cases, cavernous hemangiomas may arise in the sphenoid sinus, potentially resulting in visual deficits and headaches [11].

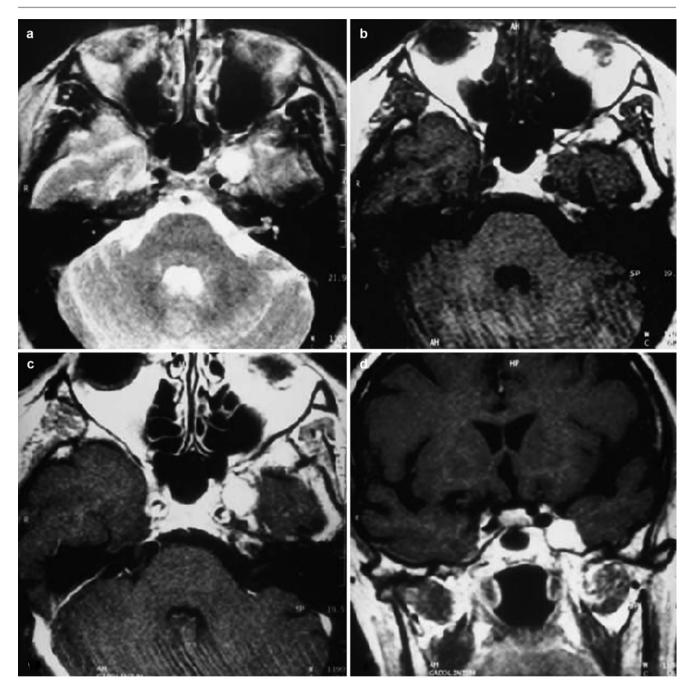
33.2 Imaging Features

- On MRI, CSCHs often show hypointensity or isointensity on T1-weighted imaging and hyperintensity on T2-weighted imaging (Fig. 33.1). Avid contrast enhancement is common in CSCHs [12, 13].
- On dynamic-enhancement MRI, CSCHs typically demonstrate heterogeneous contrast enhancement with initial enhancement [3].
- In angiographic studies, one third of CSCHs are occult; a blush in the cavernous sinus can be seen for the other two thirds [1].

G. Zada, MD, MS (

Department of Neurale

Department of Neurological Surgery, Keck School of Medicine, University of Southern California, 1200 N State Street, #3300, Los Angeles, CA 90033, USA


e-mail: gzada@usc.edu

M.B.S. Lopes, MD, PhD Department of Pathology (Neuropathology), University of Virginia School of Medicine, 1215 Lee Street, Room 3060–HEP, Charlottesville, VA 22908, USA

e-mail: msl2e@virginia.edu

S. Mukundan Jr., PhD, MD Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA e-mail: smukundan@partners.org

E. Laws Jr., MD
Department of Neurosurgery, Brigham and Women's Hospital,
15 Francis Street, Boston, MA 02115, USA
e-mail: elaws@partners.org

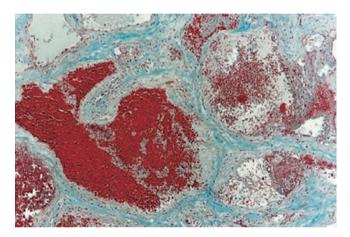


Fig. 33.1 Cavernous sinus cavernous hemangioma. (a) Axial T2-weighted MRI showing a rounded, hyperintense lesion in the left parasellar region and cavernous sinus. (b) Axial T1-weighted MRI shows the same lesion that is isointense to gray matter. (c, d) Axial and

coronal contrast-enhanced T1-weighted MRI shows avid contrast enhancement of the left cavernous sinus hemangioma (adapted from Tannouri et al with permission, Neuroradiology. 2001;43:317–320)

33.3 Histopathology

- CSCHs are frequently lined by a pseudocapsule. Vascular channels are commonly seen, with intratumoral hemorrhage and calcification being rare findings in CSCHs (Fig. 33.2).
- CSCHs can be classified as one of two subtypes [14]:
 - Type A CSCHs are characterized by adjacent thinwalled, sinusoidal vessels with little intervening connective tissue. These CSCHs are associated with a high degree of intraoperative bleeding.
 - Type B CSCHs are characterized by more interconnective tissue and fewer sinusoidal vessels. These CSCHs are easier to resect surgically because they are associated with less bleeding.

Fig. 33.2 Masson trichrome stain showing a cavernous hemangioma with compact, sclerotic vessels and little interstitium (adapted from Tannouri et al with permission, Neuroradiology. 2001;43:317–320)

33.4 Clinical and Surgical Management

- When necessary, surgical resection of a symptomatic cavernous sinus cavernous hemangioma may be performed via an endonasal endoscopic approach or craniotomy [4].
- The extradural temporopolar approach to the cavernous sinus is often utilized when open craniotomy is recommended [15].
- Injection of fibrin glue has been successfully used to control intraoperative bleeding during resection of CSCHs [16].
- Although recurrence rates are low following surgical resection via craniotomy, the incidence of cranial nerve paresis is rather high [2].
- As a less invasive alternative, stereotactic radiosurgery has been successfully and safely used to treat CSCHs.
 Tumor volume is decreased in up to 80 % of cases. The typical treatment dose is 13–14 Gy [12, 17, 18].

References

- Gonzalez LF, Lekovic GP, Eschbacher J, Coons S, Porter RW, Spetzler RF. Are cavernous sinus hemangiomas and cavernous malformations different entities? Neurosurg Focus. 2006;21(1), e6.
- Goel A, Muzumdar D, Sharma P. Extradural approach for cavernous hemangioma of the cavernous sinus: experience with 13 cases. Neurol Med Chir (Tokyo). 2003;43:112–8; discussion 119.
- Jinhu Y, Jianping D, Xin L, Yuanli Z. Dynamic enhancement features of cavernous sinus cavernous hemangiomas on conventional contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2008; 29:577–81.
- Fraser JF, Mass AY, Brown S, Anand VK, Schwartz TH. Transnasal endoscopic resection of a cavernous sinus hemangioma: technical note and review of the literature. Skull Base. 2008;18:309–15.
- Hori S, Hayashi N, Nomoto K, Sato H, Hayashi T, Nagai S, et al. Cavernous sinus cavernous hemangioma largely extending into the sella turcica and mimicking pituitary adenoma: case report. Neurol Med Chir (Tokyo). 2010;50:330–2.
- Chuang CC, Jung SM, Yang JT, Chang CN, Pai PC. Intrasellar cavernous hemangioma. J Clin Neurosci. 2006;13:672–5.
- Cobbs CS, Wilson CB. Intrasellar cavernous hemangioma. Case report. J Neurosurg. 2001;94:520–2.
- Lombardi D, Giovanelli M, de Tribolet N. Sellar and parasellar extra-axial cavernous hemangiomas. Acta Neurochir (Wien). 1994;130:47–54.
- Buonaguidi R, Canapicci R, Mimassi N, Ferdeghini M. Intrasellar cavernous hemangioma. Neurosurgery. 1984;14:732–4.

- Saeger W, Ludecke DK, Buchfelder M, Fahlbusch R, Quabbe HJ, Petersenn S. Pathohistological classification of pituitary tumors: 10 years of experience with the German Pituitary Tumor Registry. Eur J Endocrinol. 2007;156:203–16.
- Dufour H, Fesselet J, Métellus P, Figarella-Branger D, Grisoli F. Cavernous hemangioma of the sphenoid sinus: case report and review of the literature. Surg Neurol. 2001;55:169–73; discussion 173.
- Kida Y, Kobayashi T, Mori Y. Radiosurgery of cavernous hemangiomas in the cavernous sinus. Surg Neurol. 2001;56:117–22; discussion 122–3.
- Sohn CH, Kim SP, Kim IM, Lee JH, Lee HK. Characteristic MR imaging findings of cavernous hemangiomas in the cavernous sinus. AJNR Am J Neuroradiol. 2003;24:1148–51.
- Shi J, Hang C, Pan Y, Liu C, Zhang Z. Cavernous hemangiomas in the cavernous sinus. Neurosurgery. 1999;45:1308–13; discussion 1313–4.
- Zada G, Day JD, Giannotta SL. The extradural temporopolar approach: a review of indications and operative technique. Neurosurg Focus. 2008;25(6), E3.
- Kim IM, Yim MB, Lee CY, Son EI, Kim DW, Kim SP, Sohn CH. Merits of intralesional fibrin glue injection in surgery for cavernous sinus cavernous hemangiomas. Technical note. J Neurosurg. 2002;97:718–21.
- 17. Chou CW, Wu HM, Huang CI, Chung WY, Guo WY, Shih YH, et al. Gamma knife surgery for cavernous hemangiomas in the cavernous sinus. Neurosurgery. 2010;67:611–6; discussion 616.
- Li P, Ren H, Zhang S, Wang W. Clinical results of Gamma Knife surgery for cavernous sinus hemangiomas. J Neurosurg. 2012; 117:89–95.