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Abstract. Unsafe websites consist of malicious as well as inappropriate
sites, such as those hosting questionable or offensive content. Website
reputation systems are intended to help ordinary users steer away from
these unsafe sites. However, the process of assigning safety ratings for
websites typically involves humans. Consequently it is time consuming,
costly and not scalable. This has resulted in two major problems: (i) a
significant proportion of the web space remains unrated and (ii) there is
an unacceptable time lag before new websites are rated. In this paper, we
show that by leveraging structural and content-based properties of web-
sites, we can reliably and efficiently predict their safety ratings, thereby
mitigating both problems. We demonstrate the effectiveness of our app-
roach using four datasets of up to 90,000 websites. We use ratings from
Web of Trust (WOT), a popular crowdsourced web reputation system,
as ground truth. We propose a novel ensemble classification technique
that makes opportunistic use of available structural and content prop-
erties of web pages to predict their eventual ratings in two dimensions
used by WOT: trustworthiness and child safety. Ours is the first clas-
sification system to predict such subjective ratings. The same approach
works equally well in identifying malicious websites. Across all datasets,
our classification achieves average F1-score in the 74–90 % range.

1 Introduction

Internet scammers set up various types of “unsafe” websites to lure their vic-
tims. These include malicious sites, intended for phishing, drive-by-downloads of
malware and misusing private user data, as well as sites that are inappropriate
in some sense, e.g., websites hosting offensive, objectionable, hateful or illegal
content.

A variety of mechanisms have been developed for steering unsuspecting users
away from unsafe websites. Popular browsers present interstitial security warn-
ings when users attempt to navigate to a known malicious website [1]. Several
anti-virus vendors maintain website reputation systems (e.g., TrustedSource1).
1 http://www.trustedsource.org/
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Fig. 1. Cumulative availability (%) of WOT ratings, trustworthiness and child safety,
for the one million most popular webpages (as of July 2014).

These systems use a combination of machine learning techniques and manual
expert evaluations to arrive at the rating for a given website. A popular sub-
category of reputation systems use input ratings that are crowdsourced from the
users of the system. PhishTank2 and Web of Trust (WOT)3 are examples of
web reputation systems that rely fully or partly on crowdsourced ratings. An
advantage of crowdsourced ratings is that the ratings can cover a broader class
of unsafe websites, including those that are perceived to be inappropriate but
not outright malicious [9].

All reputation systems, especially those that involve humans in the rating
process, suffer from two major disadvantages: insufficient coverage and time
lag. For example, Fig. 1, shows the cumulative availability of WOT reputation
ratings (trustworthiness and child-safety) for one million most popular webpages
(obtained from alexa.com) and indicates that the majority of the pages are
unrated. The time gap between a new website coming online and the system
assigning a rating can be often in the order of days to months.

A consequence of these drawbacks is that users, who rely on such reputation
systems to protect them from unsafe websites, remain vulnerable when many
unsafe websites are unrated. Although, machine learning techniques have been
extensively used for detecting malicious websites based on the structure and
content of web pages [8,10,27], in this work we address the following research
question: Can we reliably predict the eventual rating of an unrated website?

We introduce LookAhead, a system that uses a combination of structural and
content-based features to predict the eventual rating a website is likely to receive.
In reality, the prediction task is non-trivial, as not all feature types are present
on all webpages (see Sect. 4). To mitigate this feature unavailability problem, we
propose an ensemble classification approach. We train different classifiers for each
feature type and present different combination strategies to estimate the overall
rating. For the structure of the websites, we consider HTML and JavaScript-
based features. However, we show that structural features alone would not be

2 http://www.phishtank.com/
3 https://www.mywot.com/

http://www.phishtank.com/
https://www.mywot.com/
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sufficient for accurate predictions. Therefore, we introduce novel content-based
feature sets, which are extracted from outgoing links with low ratings and the
text present on a webpage. We make the following contributions:

(i) Use of Content-Based Features for effectively predicting future rat-
ings of websites. In particular, we propose a novel use of the empirical cumulative
distribution function (ECDF) as a feature set to extract clues about the content
of a web page based on ratings of outgoing hyperlinks in it (Sect. 4.2). We also
propose how topic modeling techniques can be used to extract features that cap-
ture the theme of a webpage (Sect. 4.2). (ii) LookAhead, an adaptive ensemble
classification technique that effectively combines several individual classifiers by
learning combination weights from the data (Sect. 4.3). (iii) Systematic Com-
parative Evaluation of LookAhead on several datasets with up to 90, 000 web
pages (Sect. 5). We show that the performance can be improved significantly
(statistically) when utilizing content-based features in addition to the structural
features of web pages (Sect. 6). In particular, this holds across both subjective
dimensions (trustworthiness and child safety), as well as maliciousness.

2 Related Work

A typical approach for helping users avoid malicious websites is to use blacklists
of known bad websites. For example, Microsoft’s Internet Explorer and Mozilla
Firefox warn users when they try to visit a page present on a blacklist. Unfortu-
nately, blacklists suffer from a number of shortcomings, e.g., they are required
to be updated periodically, are often slow to reflect new malicious websites, and
have poor coverage of malicious web space. To mitigate problems with blacklists,
Felegyhazi et al. [16] propose a system that, given an initial blacklist of domains,
tries to predict potentially malicious domains based on nameserver features and
registration information. Prakash et al. [26] propose five different heuristics that
allow synthesizing new URLs from existing ones. The authors use this idea to
enlarge the existing blacklist of malicious URLs.

Going beyond blacklists, application of machine learning techniques to suc-
cessfully identify malicious websites has become popular. Ma et al. [21] explore
the use of lexical features, including the length and number of dots in URLs,
host-based features, such as IP address, domain name and other data returned
by WHOIS queries [13] to identify malicious web links. Another popular app-
roach is to analyze the structural properties of webpages, especially looking for
known malicious patterns within the embedded JavaScript, to identify malicious
sites [10,12,15,20,27]. JSAND by Cova et al. [10] combines anomaly detection
with emulation and uses a naive Bayes classifier for malicious web page and script
detection. Cujo by Rieck et al. [27] considers both static and dynamic JavaScript
features and classifies websites using Support Vector Machines (SVM).
ZOZZLE by Curtsinger et al. [12] considers over 1.2 million JavaScript sam-
ples and achieves FPR and TPR in the range of 1.2–5.1 %.

Closest to our work is Prophiler by Canali et al. [8], which identifies mali-
cious websites by considering only static features related to the URL and the
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Fig. 2. (a) WOT user interface showing aggregated user ratings. (b) WOT divides the
reputation rating range into five (color-coded) levels.

structure of a page. For example, they consider 37 URL-based, 20 HTML and 26
JavaScript features and train three different classifiers, one for each feature type.
While systems like Prophiler [8] and JSAND [10] report good results for detect-
ing malicious websites, we consider a much broader and non-trivial problem of
predicting subjective rating dimensions like trustworthiness and child-safety of a
website. In addition, we consider not only the structure and URL of a web page
but also the content presented on that page.

3 Web Reputation System WOT

WOT provides reputation ratings of the domain of a given URL in two dimen-
sions, trustworthiness and child safety as integers in the range [0–100]. WOT
builds the reputation ratings of a web domain mainly based on crowdsourced
input ratings from a large user base and then applying a proprietary aggrega-
tion algorithm. It also uses input from other trusted sources, but the identities
of these sources are not public. WOT has seen well over 100 million downloads.
It is also used by large scale services like Facebook and Mail.ru. It is reasonable
to assume that the user base of WOT and similar rating systems runs into tens
of millions.

The front-end of WOT is a browser extension that scans the page being
rendered in the browser for URLs, looks up their reputation ratings in the WOT
back-end, and shows the results as color-coded glyphs. For example, Fig. 2(a)
shows a red glyph next to a website deemed unsafe by WOT. The rating space
is divided into five levels, with a color code assigned to each level, see Fig. 2(b).
WOT’s confidence in a rating is also indicated by a set of dark figurines (up to
five, Fig. 2(a)).

Our objective is to see if we can use information found on a hitherto unrated
web page to predict what rating it will receive. In this paper we use WOT
as the target reputation system. However, our proposed method is generic and
would work with any web reputation system. We therefore use existing WOT
ratings as the ground truth, and apply a supervised learning-based algorithm
for model building. Instead of building a regression model, we formulate the
web page reputation prediction as a binary classification task [4]. We divide
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reputation ratings into two (coarse) groups by applying a suitable threshold on
the reputation ratings. This helps to minimize the effect of subjective variations
among users in their ratings. Given a reputation rating r ∈ [0, 100] of a URL,
the class information of the URL is computed using the following simple rule:

class(r) =

{
bad if r < Th

good otherwise
(1)

In our experiments (Sect. 6) we present results for Th = 40. Results for Th = 60
can be found in Appendix A.5 of the full version of this paper [2].

4 LookAhead: Predicting Safety Ratings

Our predictive approach utilizes existing reputation ratings of a large number
of webpages to learn a mapping function from various webpage features to a set
of target classes, in our case, either good or bad (see Eq. 1). Figure 3 illustrates
an overview of our web safety prediction approach combined with WOT. The
LookAhead part, highlighted in the figure, is composed of a web crawler, a
database, and a predictive model. The web crawler extracts various features
from webpages and stores them, along with reputation ratings in the two WOT
dimensions4, to a database. The predictive model learns a classification model
and uses it for predicting web safety of unrated URLs. We consider two types of
features to represent websites: (i) structural features, which are extracted from
the HTML and embedded JavaScript code, and (ii) content features that capture
ratings of outgoing web links and the thematic structure of page text.

4.1 Structural Features of Web Pages

For structural features, we mainly rely on past research that has identified and
successfully validated a large set of features (extracted from HTML and embed-
ded JavaScript code) to identify malicious webpages. Specifically, we adopt the
handcrafted and domain specific features used by Canali et al. for their Prophiler
system [8]. In the evaluation section (see Sect. 5.2), we consider Prophiler as our
main baseline algorithm.

HTML-Based Features: We adopt the same 20 HTML features5 used by
the Prophiler. Examples of the features include the number of iframe tags, the
number of hidden elements, the number of script elements, the percentage of
unknown tags, and the number of malicious patterns, e.g., presence of the meta
tag [8].

JavaScript-Based Features: We use the same 24 JavaScript-based features
used by the Prophiler, which are extracted by analyzing either the JavaScript
4 WOT ratings are obtained using their web API (https://www.mywot.com/wiki/

API).
5 See [8] for an exhaustive and in-depth description of all the HTML features.

https://www.mywot.com/wiki/API
https://www.mywot.com/wiki/API
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Fig. 3. An architectural overview of LookAhead in association with a crowdsourced
web reputation system WOT.

file or the <script> element embedded within the HTML text. Examples of
JavaScript-based features include the number of times the eval() function is
used, the number of occurrence of the setTimeout() and setInterval() functions,
the number of DOM modification functions, and the length of the script in
characters [8].

4.2 Content Features of Web Pages

Contrary to the state-of-the-art approaches, in this paper we propose the use of
a novel set of features based on (1) empirical cumulative distribution function
(ECDF) of the reputation ratings of embedded outgoing links and (2) topic mod-
eling. The main intuition behind using these features is that by learning (unsu-
pervised) webpage content properties, we avoid the need for handcrafted features
based on domain knowledge. In our evaluation, we show that the proposed novel
features improve the recognition performance significantly (see Sect. 6).

Embedded Link-Based Features: To extract simple yet effective clues about
the content of a web page, we hypothesize that the content of a page is related
to the content of the pages it links to. In other words, we conjecture that the
adage “You are the company you keep” is applicable here. This saying is based
on the fact that often knowledge about an unknown person’s friends provides
some idea about the person’s interests or personality. Similar ideas have been
successfully applied in recommender systems [6] and in detecting susceptibility
of mobile devices for malware infections [31].

Building on this idea, we propose a feature extraction scheme utilizing the
available reputation ratings of embedded links. However, web pages may contain
an arbitrary number of embedded links, ranging from none to several hundreds
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or more. Moreover, the range of the reputation ratings can be arbitrary. Thus we
need a feature representation scheme that can compactly represent an arbitrary
number of outgoing links, while remaining robust in the face of arbitrary ranges
of ratings.

ECDF-based feature extraction has been previously explored in the field of
ubiquitous computing and mobile sensing to represent human motion charac-
teristics from continuous accelerometer data streams [3,18,25]. However, the
method has attracted very little attention outside the sensing domain. The sim-
plicity and fast computation time of the ECDF features make it a viable option
for using it in static web page analysis. Contrary to mobile sensing, in this paper
we primarily focus on discrete reputation ratings.

More formally, let R = {r1, r2, . . . , rn} denote the set of available reputa-
tion ratings of all the embedded web links on a page, where ri ∈ I[0,100], ∀i ∈
{1, . . . , n}. The ECDF Pc(r) of R can be computed as:

Pc(r) = p(X ≤ r), (2)

where, p(X = r) is the probability of observing an embedded web link with a
reputation rating of r, and X is a random variable that takes values from R
(uniformly at random). For example, Fig. 4(a) shows an exemplary histogram of
reputation ratings of web links found within a web page and Fig. 4(b) shows the
corresponding ECDF computed using Eq. 2. Note that Pc(r) is defined on the
entire range of the reputation ratings for embedded web links and is a monoton-
ically increasing function.

Often the distribution of reputation ratings for embedded links is multimodal,
e.g., as in our example shown in Fig. 4(a). In order to learn from such distrib-
utions, a recognition system should extract descriptors that relate to the shape
and spatial position of the modes [18]. The shape of the distribution is captured
as Pc increases from 0 to 1 (see Fig. 4(b)). To extract a feature vector f ∈ R

k

from the distribution, we first divide the range of Pc, i.e., [0, 1], into k equally
sized bins with centers respectively at [b1, b2, . . . , bk]. The ith feature component
fi ∈ R is then computed as:

fi = P−1
c (bi) (3)

Thus the feature vector f accurately captures the shape and positions from
the underlying probability function p(r), while the ECDF Pc can be computed
efficiently using Kaplan-Meier estimator [11]. For completeness, Fig. 4(c) shows
the extracted ECDF-based feature vector for k = 75. The only parameter for the
ECDF-based feature extraction method is the number of bins k, which controls
the granularity with which the shape of the underlying distribution is captured.
In our experiments we also append the mean of ratings in R as a feature value
to the extracted ECDF feature vector.

Adversarial Implications: If ECDF features were based on all outgoing links,
a malicious website may attempt to evade detection by embedding a large num-
ber of links to pages with high ratings. To deter such an attack, while con-
structing the set R (see above), we only allow ratings r ≤ Cr, where Cr is the
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Fig. 4. Exemplary illustration of (a) the distribution of reputation ratings, (b) their
Empirical Cumulative Distribution Function, and (c) ECDF-based features.

critical rating threshold. The choice of Cr can be application dependent and
ideally should be adapted based on the overall costs of making false negative
predictions.

Topic Model-Based Features: To gain further insight into the type of content
on a web page, we analyze the text in the page and extract a set of features that
captures the summary of the text as a distribution over a set of predefined topics.
A topic is defined as a probability distribution over a fixed set of words. In order
to learn the topics in an unsupervised manner, we employ the well established
Latent Dirichlet Allocation (LDA) model [5]. The main objective of LDA, or
in general in any topic modeling algorithm, is to extract short descriptions of
documents, while preserving statistical relationships that are useful, e.g., for
document summarization and classification. In this work, we only focus on text
in English. As a significant portion of the webpages in our evaluation dataset
(see Sect. 5.1) is non-english we use Google translation APIs, as part of the
web crawler, to convert text into english. To avoid translation errors, we use an
english dictionary to validate words before they are included in the vocabulary
set V used by the LDA model.

The main objective of the LDA model is to learn model parameters, such as
K topics β1:K , the topic proportions θd in the document d, and topic assignments
zn,d of observed word wn in document d from the corpus of webpages. A brief
overview of the topic model and the definitions of the parameters are given in
Appendix A.1 of the full version [2]. Once the LDA parameters are learned,
given the set of words w present on a webpage and the topics β1:K , the topic
model-based feature set for the webpage is computed as: p(θd|w, β1:K), i.e., the
estimated topic proportions.

Adversarial Implications: Similarly to the ECDF-based features, the topic
model-based features can be exploited by an adversary. As the topic propor-
tion term, i.e., p(θd|w, β1:K) captures the relative weight of various topics being
described within the text w, an attacker can simply add random words that can
boost the probability of certain topics. In Sect. 7 we propose a possible solution
to prevent this attack.



LookAhead: Augmenting Crowdsourced Website Reputation Systems 151

4.3 Ensemble Classification

One challenge in the feature extraction procedures, described above, is that
often one or more feature types are missing from a web page. For example, in
reality, not all web pages use JavaScript, contain embedded outgoing links, or use
textual descriptions, although the HTML features are always available. Thus, a
new classification technique is required that is able to overcome the problem of
feature unavailability. Existing approaches such as [8,21,29,30], do not address
this problem and therefore have limited generalizability.

According to Bayesian theory [19], given HTML (fH), JavaScript (fJ ),
ECDF (fE), and Topic (fT ) feature vectors, a URL should be assigned to the
class cj ∈ {bad, good}, if the posterior probability for class cj is maximum, i.e.

assign URL → cj if

p(cj |fH ,fJ ,fE ,fT ) = max
i

p(ci|fH ,fJ ,fE ,fT ) (4)

The computation of p(cj |fH ,fJ ,fE ,fT ) depends on the joint probability func-
tions (likelihood) p(fH ,fJ ,fE ,fT |cj) and the prior probability p(cj), i.e.:

p(cj |fH ,fJ ,fE ,fT ) ∝ p(fH ,fJ ,fE ,fT |cj) p(cj) (5)

The likelihoods are difficult to infer when one or more features are unavailable.
The likelihood computation can be simplified by combining decision support
of individual classifiers on different feature types [19]. Accordingly, we train
four classifiers CH , CJ , CE , and CT using valid fH , fJ , fE , and fT features
respectively, where each classifier returns a posterior probability distribution
over the bad and good classes. However during prediction, if a feature type is
unavailable, we do not include the corresponding classifier while computing the
overall posterior probabilities.

A number of strategies can be adopted to combine the posterior probabil-
ities of the classifiers to generate the overall belief. In this paper we propose
a linear combination rule that determines the combination weights of individ-
ual classifiers using the Fukunaga class separability score [17]. Our adaptive
weight selection method is based on the intuition that a classifier should be
given more importance if it is easy to separate among the bad and good classes
in the corresponding feature space. See Appendix A.2 of the full version [2] for
the definition of class separability we use and other popular combination rules.
For each classifier, we compute the separability score after correlation based fea-
ture subset selection. The separability scores, after normalization, are then used
as the respective weight wk for the classifier Ck. The final belief of the class cj
is estimated as:

p∗(cj |fH ,fJ ,fE ,fT ) =
∑

k∈{H,J,E,T}
wk p(cj |fk) (6)

The final predicted class cj is inferred by applying the decision rule given in Eq. 4
using the computed belief above. Figure 5 shows the data adaptive ensemble
classification technique used by LookAhead.
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Fig. 5. Overview of the ensemble classification approach used by LookAhead.

5 Experimental Settings

5.1 Datasets

To perform an extensive and systematic study, we generated a pool of over
140, 000 URLs and obtained their reputation ratings in both dimensions using
the WOT API. Out of these, 80, 000 URLs have positive reputation ratings, and
60, 000 have negative ratings. For each URL we crawl the web page to extract
HTML, JavaScript, ECDF and topic model features where available. Figure 6
illustrates the histograms of reputation ratings for all webpages in our dataset.
The dataset, where at least HTML features and WOT ratings are available, is
referred to as the opportunistic dataset. Out of 140, 000 URLs, 89, 220 web pages
have trustworthiness ratings, and 84, 714 have ratings for child safety. However,
the number drops to 31, 995, in case of trustworthiness, and to 38, 118 for child
safety, when validity of all feature types are considered (for T h = 40). We refer
to this second dataset as the all-valid dataset. The significant drop in the size of
the all-valid dataset further highlights that feature unavailability is intrinsic to
web data analysis.

Fig. 6. Histograms of all webpages in our dataset in two reputation dimensions: trust-
worthiness (left) and child safety (right).
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Existing research primarily focused on detecting if a webpage is malicious.
However, the malware dataset used in [8] is no longer available, which makes
exact replication of Prophiler results difficult. “Trustworthiness” in WOT does
not directly correspond to malware. In addition to the reputation ratings, WOT
provides category information, such as ‘malware’, ‘scam’, ‘suspicious’ and ‘good
site’, of websites based on votes from users and third parties. From the all-valid
dataset we generate a malware dataset consisting of 2, 784 webpages that were
categorized by WOT as ‘malware or virus’. To generate a dataset containing
both malware and benign webpages, we include an equal number of webpages
that got very high trustworthiness ratings and have all feature types. We refer
to this dataset as the malware dataset.

Lastly, we construct another dataset by considering only the URLs that fall
either in the top most or the bottom most trustworthiness rating categories,
see Fig. 2(b) for definitions of various rating categories used by WOT. As with
malware dataset, we only consider webpages for which all feature types are avail-
able. Our two-category dataset consists of 10, 118 sites with very poor ratings
and 13, 539 with excellent ratings.

5.2 Baseline Algorithms

In our experiments, we report comparison results against Prophier [8]. Prophiler
relies on HTML, JavaScript, and URL/HOST features to detect if a webpage is
malicious. However, it uses APIs to a proprietary WHOIS [14] system and uses a
private database for blacklisted URLs to extract URL/HOST features. Neither of
these are available openly, which makes the corresponding URL/HOST feature
vectors invalid for our datasets. API inaccessibility and unavailability of suitable
blacklisted database covering WOT URLs used in our dataset makes the major-
ity of the URL/HOST feature vectors in our experiments invalid. Consequently,
we do not use URL/HOST features in our ensemble classification system. Note
that it is very easy to incorporate additional feature types in our classification
system, e.g., training a classifier C using the new feature type and then consider-
ing the posterior probabilities in Eq. 6. Contrary to our approach, i.e., assigning
data driven weighting of classifiers to compute the final belief (see Sect. 4.3),
Prophiler uses the ‘OR’ combination rule (see Appendix A.3 of [2]). We system-
atically compare the performance of LookAhead with the ensemble classification
methodology considering different subsets of feature types.

5.3 Evaluation Metric

We use 10-fold stratified random cross validations when presenting classification
performance for all the approaches. As the primary performance metric, we use
Avg. F1-score, False Negative Rate (FNR), and False Positive Rate (FPR). The
definitions of all the evaluation metrics can be found in Appendix A.4 of [2].
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6 Evaluation

We begin our evaluation by first considering classification performance on the
all-valid dataset using Random Forest as the basic classifier6. Note that, all URLs
considered within this dataset have valid HTML (H), JavaScript (J), ECDF (E)
and Topic-based (T) features. This dataset allows us to systematically study
the influence of various feature combinations on the overall classification per-
formance of LookAhead. Table 1 summarizes the performance of LookAhead in
both reputation dimensions with the parametric settings T h = 40 (see Eq. 1),
and Cr = 40 (see Sect. 4.2). The table also includes the performance of Prophiler.

For trustworthiness, LookAhead achieves the highest Avg. F1-score of 81.3%,
when all feature types are considered (highlighted in gray), at the same time
achieving the lowest FNR (19%) and FPR (18.3%). Similarly for child safety,
LookAhead with all feature types achieves the best performance (86.4%), lowest
FNR (11.6%) and lowest FPR (16.2%). In both reputation dimensions, the per-
formance using all features, is significantly better (statistically) than all other fea-
ture combinations, i.e., p � 0.01 in McNemar χ2 test with Yates’ correction [22].

Prophiler shows a statistically weaker classification performance in both rep-
utation dimensions compared to LookAhead (employing all feature types). How-
ever, it achieves a better FNR in prediction than LookAhead. This is due to the
use of a conservative ‘OR’ classifier combination rule (see full version [2]) that
is more likely to report a URL as bad. This higher likelihood of predicting web
pages as bad improves the overall recall of the bad class, which consequently
pulls down the FNR for Prophiler, however, at the expense of a higher FPR.
Prophiler focuses solely on reducing FNR. In contrast, in use cases where overall
usability in prediction is important, both FNR and FPR should be reduced. For
example, in predicting safety ratings, a low FPR is also needed to avoid showing
frequent warnings to users for actually good websites.

In reality, not all feature types are available for all URLs. To evaluate the
performance of LookAhead under real life situations we next present results on
the opportunistic dataset. In these experiments, we only present the performance
of LookAhead while considering all available feature types. Moreover, we study
the performance of various classifier combination rules and present the results
in Table 2 for both reputation dimensions. In contrast to the all-valid dataset,
T h = 40, generates a high degree of class imbalance in our opportunistic dataset
(see Fig. 6). During the training phase the prevalence of one class affects the
process of learning, and the learned classifier is often biased towards the over-
represented class [23]. To mitigate class imbalances during training, we also
report experimental results when a simple class balancing approach, i.e., reducing
data from the prevalent class, is applied during classifier training. The data
driven, adaptive classification combination rule of LookAhead generates the best
classification performance, with a notable exception in the case of unbalanced
dataset for trustworthiness, where the ‘Product’ rule achieves the highest Avg.
F1-Score.

6 We also experimented using linear-SVM, SVM, KNN and C4.5 classifiers, and chose
Random Forest for its superior performance.
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Table 1. Performance of LookAhead (under various feature combinations H = HTML,
J = JavaScript, E = ECDF, and T = Topic) and Prophiler on the all-valid dataset
(T h = 40, Cr = 40, and **: Statistically significant with 99 % confidence).

Table 2. Performance of LookAhead on the opportunistic dataset under various clas-
sifier combination rules (T h = 40 and Cr = 40, **: Significant with 99 % confidence,
*: 95 % confidence).
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Table 3. Performance of LookAhead and Prophiler on the malware and two-category
datasets (**: Significant with 99 % confidence).

Prophiler has previously been shown to perform well in detecting malicious
websites. To show how LookAhead (with all features) perform in such scenar-
ios, we repeated the experiments on the malware and two-category datasets and
present the results in Table 3. LookAhead achieves average F1-scores of 89% for
the malware dataset and 89.8% for the two-category dataset, which are signifi-
cantly better (p � 0.01) than Prophiler’s performance of 80.7% for the malware
dataset and 79.3% for the two-category dataset. LookAhead also generates bet-
ter FNR and FPR than Prophiler on both datasets.

7 Discussion

7.1 Feature Importance in Reputation Prediction

Our results show that the structural and content related properties of a website
can be effectively used to predict not only its maliciousness, but also the more
challenging properties of trustworthiness and child safety. In order to understand
the overall classification results, we study the importance of individual features
as computed by a Random Forest classifier7. In Fig. 7 we plot the average impor-
tance for all (120) features used in this work when training a Random Forest
classifier (using 100 trees) on the all-valid dataset. The higher the value, the
more important is the feature. Figure 7 further highlights that different features
are assigned different relative importances, while separating good websites from
bad ones in each reputation dimension.

Interestingly, the importance scores of the HTML and JavaScript-based fea-
tures look very similar for both trustworthiness and child safety predictions. The
most important features, shown by the dotted region A in the figure, are related
to script tags in HTML, direct assignments in JavaScript, and the total character
count in both. Although, a few structural (i.e., HTML and JavaScript) features
are found to be important, a majority of them have little or no significance.
Contrary to the structural features, ECDF features show significant differences
in importance scores for the two reputation dimensions. For trustworthiness, low
ratings of the embedded links (region B) play an important role in prediction. In
child safety, the mean value of the embedded ratings (region C) plays a signifi-
cant role also. For trustworthiness, the three most important topics (region E)
7 Feature importance is defined as the total decrease in node impurity averaged over

all the trees [7].
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Fig. 7. Importance of individual features, while predicting trustworthiness and child
safety, computed by the Random Forest classifier on the all-valid dataset.

are related to money-making, news, and weather. Among the rest of the topic
features, none are significantly better or worse than the others. For child safety
prediction there are three other topics (region D) that play a significant role and
as expected, these topics correspond to adult content.

Although, we use the same feature set for predicting both reputation dimen-
sions, the feature selection inherent to the Random Forest classifier learns very
different mapping functions for each prediction task. Figure 7 provides evidence
that our proposed ECDF and Topic-based features contribute consistently in
predicting subjective ratings.

7.2 Tuning of Prediction Performance

Predictive performance of LookAhead can be primarily influenced by a number
of factors: (i) the type of features considered (e.g., HTML and ECDF), (ii) the
type of classifier used (e.g., Random Forest and SVM), (iii) strategies used to
overcome class imbalances in the training data, and (iv) the combination rule
used for computing the final posterior probability (e.g., Adaptive and Sum rule).
Often, once the prediction pipeline is deployed, the factors (i)–(iii) are kept con-
stant, as they are time consuming to re-build. However, the classifier combination
strategy can be adapted in real time to control the overall performance of the
LookAhead system. Based on the requirements, the system administrator can
focus more on lowering the overall FNR by using the ‘OR’ combination rule, e.g.,
while predicting child safety a very low FNR is expected for parental filtering
systems. As evident from Table 2, often emphasizing FNR inflates FPR. Our
LookAhead system demonstrates a good balance of both FNR and FPR.
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Table 4. Detection rates for various classifiers settings.

7.3 Detection Rate

When considering the implications of our results, in addition to the FNR and
FPR, the proportion of good and bad websites in the wild should also be taken
into account. In reality, this so-called base rate Br, is biased towards good web-
sites. Thus we look at the detection rate for bad websites, i.e., what percentage
of web pages that our classifier predicts as bad are truly bad. From WOT statis-
tics [28], we see that roughly 20 % of websites that have a rating are dangerous
regarding either trustworthiness or child safety. We use this number as our esti-
mate for Br, and compute the detection rate as:

Dr =
(1 − FNR) · Br

(1 − FNR) · Br + FPR · (1 − Br)
, (7)

Table 4 presents detection rates of LookAhead and Prophiler on all-valid and
opportunistic datasets for both reputation dimensions. We can see that due to
the biased base rate, the detection rates are in the range of 30−40% for Prophiler
and 40 − 57% for LookAhead, indicating better classification performances of
LookAhead. For example, in case of a warning system for users, when all features
are present, 52.5% of possible warnings for untrustworthy web pages would be
correct for LookAhead. The corresponding detection rate of 37.4% for Prophiler
is significantly lower. The results highlight that, while in general the problem of
predicting reputation ratings is challenging, considering content-based features
significantly improves the detection rate.

7.4 Applications

Fast-Tracking Publication of Ratings: Crowdsourced reputation rating ser-
vices like WOT do not announce a rating for a web site until they have enough
input ratings to reach a sufficient level of confidence. If a partially accumulated
rating (that has not reached a sufficient level of confidence) matches the rating
predicted by our classifier, the reputation service may choose to fast-track the
publication of the rating.
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Table 5. Time analysis for extracting various feature types.

Feature type Average extraction time

HTML + JavaScript 3.1 s / link

ECDF 1.9 s / link

Topic + translation 3.4 s / link

Topic + without translation 1.3 s / link

Intermediate User Feedback: If a user attempts to navigate to an unrated
page that is predicted by our classifier to have a potentially bad rating, the
browser extension can warn the user accordingly. Earlier research [24] raised
concerns about the usefulness of crowdsourcing for security and privacy appli-
cations. Nevertheless, given the popularity of systems like WOT, we argue that
a tool like LookAhead is essential for the security of users who have chosen to
rely on such systems. Also, note that although our analysis was done with WOT
as the target rating system, the methodology is applicable to any website safety
rating system, whether crowdsourced or expert-rated.

7.5 Performance Considerations

We summarize the performance of our various feature extraction techniques and
report the average measured running time needed for computing them. For the
purpose of computing the average extraction time we randomly selected 1, 000
URLs from our dataset and measured the time required to extract different
classes of features on a standard Linux desktop computer (8 Gb RAM, 2.4
GHz processor). In case of Topic model features we also recorded the time for
performing translation of non-english web pages. Table 5 summarizes the time
analysis of our feature extraction methods. The time of 3.1 s that LookAhead
needs for extracting structural features is comparable to that of 3.06 s reported
by Prophiler. When including the content based features, in total, LookAhead
needs 6.3 s to extract all features from an English-language web page (and 8.4 s
if translation is needed). Moreover, caching and pre-fetching of features can be
employed to further reduce the feature extraction time.

7.6 Limitations

Perhaps the most significant limitation of any system using machine learning to
detect bad websites is the potential for adversaries to manipulate the system:
either by modifying their website to avoid detection or by manipulating the
classifier itself. While the use of the ECDF-function protects against manipula-
tion of outgoing links, as we pointed out in Sect. 4.2, the simplistic approach of
using topic modeling is vulnerable to an attacker who attempts to influence the
inferred topic model for a page he controls. Instead of directly using the proba-
bility distribution of topics as we do in Sect. 4.2, we could convert to a boolean



160 S. Bhattacharya et al.

vector (indicating if the topic is present on the page). Such an approach will
reduce false negatives (since an attacker can no longer gain by adding text to his
page to make it appear to belong to an innocuous topic as the dominant topic),
but will also raise false positives. We are currently investigating this avenue.

Another limitation is that, although the performance of LookAhead is com-
parable to previous solutions, real time use will require further speedup. One
option here is to use server-side assisted feature extraction. Finally, an open
question is how the use of predicted ratings will influence the actual rating. For
example, if the predicted rating is used for intermediate user feedback as sug-
gested above, it might sway future input ratings from the crowd towards the
predicted rating.

7.7 Current Work

We are conducting a longitudinal study on a large number of websites that do
not yet have a WOT rating. We plan to see (a) how well our predictions match
those websites that do eventually get a rating and (b) how do our predictions as
well as the actual ratings evolve over time.
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acteristics of accelerometry data using their empirical cumulative distribution. In:
Proceeding of International Symposium on Wearable Computers (ISWC) (2013)

19. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans.
Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

20. Likarish, P., Jung, E., Jo, I.: Obfuscated malicious javascript detection using clas-
sification techniques. In: 4th International Conference on Malicious and Unwanted
Software (MALWARE), pp. 47–54 (2009)

21. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious URLs. In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2009, pp. 1245–1254. ACM, New York, NY, USA (2009)

22. McNemar, Q.: Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika 12, 153–157 (1947)

23. Menardi, G., Torelli, N.: Training and assessing classification rules with imbalanced
data. Data Min. Knowl. Disc. 28(1), 92–122 (2014)

24. Moore, T., Clayton, R.C.: Evaluating the wisdom of crowds in assessing phishing
websites. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 16–30. Springer,
Heidelberg (2008)
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