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Abstract. Sensors require frequent over-the-air reprogramming to
patch software errors, replace code, change sensor configuration, etc.
Given their limited computational capability, one of the few workable
techniques to secure code update in legacy sensors would be to execute
Proofs of Secure Erasure (PoSE) which ensure that the sensor’s memory
is purged before sending the updated code. By doing so, the updated
code can be loaded onto the sensor with the assurance that no other
malicious code is being stored. Although current PoSE proposals rely on
relatively simple cryptographic constructs, they still result in consider-
able energy and time overhead in existing legacy sensors.

In this paper, we propose a secure code update protocol which consid-
erably reduces the overhead of existing proposals. Our proposal naturally
combines PoSE with All or Nothing Transforms (AONT); we analyze
the security of our scheme and evaluate its performance by means of
implementation on MicaZ motes. Our prototype implementation only
consumes 371 bytes of RAM in TinyOS2, and improves the time and
energy overhead of existing proposals based on PoSE by almost 75 %.

Keywords: Secure code update · All or nothing transformations ·
Proofs of secure erasure

1 Introduction

Sensors and actuators require frequent over-the-air reprogramming to update
their cryptographic credentials, patch software errors, change configuration, etc.
Clearly, code update needs to be securely realized in order to ensure that the
newly downloaded code is installed in its entirety and can be correctly executed
in the installation environment with the assurance that no other malicious code
is being stored.

The literature features a number of solutions based on device attestation to
secure code execution in embedded devices [13,14,18,26,27]; however, recent
studies show that existing (hardware and software-based) techniques are still far
from being practical to be deployed in legacy sensors [22].

To remedy this, Perito and Tsudik [22] introduced the notion of Proofs of
Secure Erasure (PoSE) in order to secure code update. PoSE enable a device to
prove to a remote verifier that it has purged all of its memory. For example, in a
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PoSE, the prover downloads large amounts of incompressible data which fills all
of its writable memory contents, and then proves (e.g., using MACs, or Proofs of
Data Possession schemes [5,15,29]) to a remote verifier that it has downloaded
the data in its entirety. The main intuition here is that if the prover can attest
that it is storing new data which covers all of its writable memory, then the
prover must have purged its (old) memory contents. By doing so, PoSE can be
used as a prelude to secure code update [22]; once all prior state has been erased,
new code can be downloaded onto the device with the assurance that no other
malware or malicious code is being stored.

Although existing PoSE schemes rely on relatively simple cryptographic con-
structs, such as MACs, these schemes still result in considerable energy and
time overhead in existing low-cost sensors. For example, in MicaZ motes, the
computation of HMACs based on SHA1 for 648 KB of data (which constitutes
the total memory of a MicaZ mote) requires almost 90 s, and consumes 3.5µJ
per byte [22]. This is mainly due to the fact that legacy sensors are still not
optimized to execute cryptographic algorithms.

In this paper, we address this problem and we propose an efficient PoSE
scheme which considerably improves the verification overhead of existing PoSE
proposals in legacy sensors. Our construction makes use of basic operations such
as XORing and cyclic bitwise shifting; we show that our solution incurs mod-
erate computational costs when compared to existing PoSE proposals—while
ensuring secure memory erasure. We then extend our proposal and present a
secure code update protocol, SUANT (Secure code Update based on All or Noth-
ing Transforms), which naturally combines PoSE with an efficient all or nothing
transform; SUANT requires the same number of communication rounds as PoSE,
and results in a considerably smaller computational overhead when compared
to existing secure code update protocols based on PoSE. We evaluate the per-
formance of SUANT by means of implementation on MicaZ sensor nodes [2].
Our evaluation results show that our scheme only consumes 371 bytes of RAM,
and incurs approximately 75 % energy and time savings when compared to the
optimized secure code update protocol of [22].

The remainder of this paper is organized as follows. In Sect. 2, we present
PoSE, and describe the building blocks that we will use throughout the paper. In
Sect. 3, we introduce our proposals aimed at efficiently proving memory erasure
and secure code update. In Sect. 4, we implement and evaluate our secure code
update protocol using MicaZ motes. In Sect. 5, we overview related work in the
area, and we conclude the paper in Sect. 6.

2 Background and Preliminaries

We start by outlining our system and attacker model. We then discuss the
shortcomings of device attestation for sensors, introduce PoSE, and the building
blocks that we will use throughout this paper.
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2.1 Model

Our system consists of a verifier V and a resource-constrained prover P. Here, V
is interested in updating the code of P; for that purpose, V transmits over the
air the required code to be updated. To ensure that P can correctly execute the
new code update, V requires a proof that P has correctly downloaded the code
update, and does not host any malware in its memory. By memory, we refer to
the entirety of the writable storage available to P. We assume that V has a larger
memory than P, and knows the exact memory size of P. This is a reasonable
assumption since we consider the typical case where P is a sensor mote, whose
total memory capacity is accurately reported in its datasheets.

We assume a computationally bounded adversary A which controls P. Here,
A is a program or a malware executing on P, and has complete read/write access
over the memory of P. We assume, nevertheless, that A does not have write
access to a small part of the read-only memory (ROM) of the device. Read-only
memory can be instantiated in most embedded devices by locking parts of the
device’s memory. Writing to this memory portion without physically accessing
the device is not possible.

Similar to existing software attestation protocols [22,26,27], we assume that
A cannot modify the hardware configuration of P, and can only communicate
with the verifier (and no other external entity). Assuming wireless communi-
cation with the sensors, this can be practically enforced if the verifier actively
jams the prover throughout their interaction phase. Jamming can be effectively
realized by the verifier—without affecting the ability of the prover to interact
with the verifier—by emitting signals with larger strength than the maximum
threshold set at prover’s side [20,22].

Notice that since A is restricted to P’s running environment without any
external help, then A is bounded by the computational and storage capabilities
of the prover (i.e., by P’s memory). Similar to existing protocols, we assume that
the device authenticates the verifier prior to the start of the secure code update
protocol. To this end, we assume, e.g., that the public key of the verifier and the
authentication algorithm are stored in the ROM of the device. Throughout the
rest of the paper, we do not focus on the overhead incurred by authenticating
the verifier since this step is not particular to our protocols and applies to all
similar protocols.

2.2 Remote Attestation

As mentioned earlier, device attestation constitutes one possible way to ensure
that an embedded device is executing correct software. Device attestation can
be categorized in two main branches: hardware-based attestation, and software-
based attestation.

Hardware-based attestation leverages hardware support, such as TPM chips,
ARM Trustzone [3], Intel SGX [4], to securely bootstrap a trusted measurement
environment. Hardware-based attestation offers strong security guarantees but
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is unfortunately not yet supported on low-cost embedded devices [12]. On the
other hand, software-based attestation [26,27] aims to verify the correctness
of software executing on a device without the reliance on additional hardware
support. Recently, several attacks have been reported against existing software-
based attestation schemes [8,28,30].

In [13], Jakobsson and Johansson propose the reliance on a memory print-
ing algorithm to practically enable software-based attestation. The proposed
algorithm acquires a random seed from a secure source of (pseudo-)randomness
located in the close proximity of the device (e.g., a SIM or a smart card), exe-
cutes an expansion function using the seed as input to fill the RAM of the device,
then mixes and shuffles the output of the expansion function. By doing so, if a
malware is executing in the RAM of the device, then this will slow down the
aforementioned process that requires all the RAM for fast computation—which
would facilitate the detection of misbehavior. This solution is, however, unsuit-
able for legacy sensors which do not have any SIM/smart card slot and solely
rely on the slow radio channel for communication. This renders the detection of
delays originating from the execution in RAM a rather challenging task.

2.3 Proofs of Secure Erasure (PoSE)

In [22], Perito and Tsudik proposed proofs of secure erasure (PoSE) for resource-
constrained sensor nodes. Their PoSE comprise two steps:

Step 1: Erase memory. The prover erasures all of its memory by downloading
high entropy data (e.g., an encrypted stream of data) sent by the verifier.
Here, the code must be large enough to fill all the writable memory of the
prover.

Step 2: Proof of erasure. The prover attests to the verifier that it has stored
all the downloaded code. This can be done e.g., by sending a MAC of the
downloaded code to the verifier.

As shown in [22], the basic PoSE protocol described above can be transformed
into a secure code update protocol by invoking an additional communication
round between the prover P and the verifier V. The resulting code update pro-
tocol is depicted in Fig. 1. Here, the verifier first chooses a random encryption key
K ′ and encrypts the code1 to be updated P1, . . . , Pn using a semantically secure
encryption function Enc. Upon reception of the ciphertext blocks C0, . . . , Cn,
the prover uses the last m blocks as a MAC key K, constructs a MAC over the
remaining ciphertext blocks MAC (K,C0, . . . , Cn−m), and sends the MAC to V
who verifies it. If the verification passes, V sends to P key K ′ in order for P to
decrypt C0, . . . , Cn into the plaintext code.

The aforementioned PoSE protocol, and the corresponding secure code
update protocol incur considerable communication and computational costs on
the prover, namely:
1 In case the code size to be updated is smaller than the total writable memory of the

device, the verifier pads the code with zeros until it reaches the device’s memory size.
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Fig. 1. Summary of the optimized secure code update protocol of [22].

1. The prover needs to download data which is as large as its own memory (e.g.,
648 KB in MicaZ nodes).

2. The prover needs to compute a MAC over the entire data to verify that the
prover has indeed stored the downloaded bytes2.

3. The secure code update protocol results in an additional communication
round for the verifier to send the encryption key K ′ in case the PoSE protocol
successfully completes.

One possible alternative to reduce the downloaded data size would be to
make use of a secure expansion function which fills the entire prover’s memory
with high entropy data (similar to [13]). By doing so, it might be possible to
detect if a malware still resides in the memory of the device by timing the
verification step (i.e., I/O access vs. heavy computations). In an experiment that
we conducted, we measured the time and energy required by a MicaZ sensor to
erase its total memory by (i) downloading code from an external verifier over the
radio channel as in [22] or by (ii) adapting the memory printing algorithm of [13]
to fill the prover’s memory. Our findings show that the former approach consumes
8.64 µJ/B at 8.86 KB/s,3 while the latter solution consumes 35.74µJ/B with
a throughput of 0.77 KB/s. Therefore, filling the prover’s memory with data
downloaded from an external verifier emerges as the most workable mechanism
to purge the memory of legacy sensors.

On the other hand, to reduce the computational costs of the PoSE protocol in
Fig. 1, one alterative would be to selectively verify a fraction of the downloaded
data (e.g., similar to POR/PDP [5,15,29]). This approach considerably speeds
up the verification stage in PoSE, but still requires that the verifier verifies the
2 As shown in [22], computing an HMAC-SHA1 over 648KB of data in a MicaZ mote

requires almost 90 s.
3 The maximum claimed transmission throughput of TI-CC2420 radio chip used in

MicaZ motes is 250 kbps, which translates to 31250 bytes/sec. However, our experi-
ments show that the effective throughput is around 8860 bytes/sec using TinyOS 2.0.
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integrity of a considerable fraction of the data in order to acquire reasonable
guarantees that the prover did not erase a small part of its memory. Notably,
assuming a block size of m bits, and that the prover did not erase c out of the
total t blocks of data, then the verifier needs to selectively verify d blocks to
achieve a detection probability of 1− (1− c

t )
d. As an example, in a MicaZ mote,

the total memory is 648 KB; assuming m = 128 bit, then to detect that the prover
did not keep 1,000 bits of its old code, the verifier would have to selectively check
almost 30 % of the data blocks to achieve a detection probability close to 90 %.

2.4 All or Nothing Transforms (AONT)

An All or Nothing Transform (AONT) is a transform that outputs sequences
of blocks such that given all but one of the output blocks, it is infeasible to
compute any of the original input blocks [16]. An AONT is given by a pair of
p.p.t. algorithms (E,D) where [10,16]:

E The encoding algorithm is a probabilistic algorithm which takes as input a
message x ∈ {0, 1}∗, and outputs ciphertext y.

D The decoding algorithm is a deterministic algorithm which takes as input
ciphertext y, and outputs either a message x ∈ {0, 1}∗ or ⊥ to indicate that
the input ciphertext is invalid.

To construct an AONT, Rivest [25] suggested the package transform which
leverages a block cipher and maps m block strings to m+1 block strings. The first
m output blocks are computed by encrypting the input blocks using a random
key K. The last output block is computed by XORing K with the encryption of
each of the previous output blocks, using a key K0 that is publicly known.

Desai [10] proposed a faster version where the block cipher round which uses
K0 is skipped and the last output block is computed as the XOR of all the
ciphertext blocks: That is, given block cipher F/F−1 and on input x[1] . . . x[m],
Desai’s transform outputs y[1] . . . y[n], with n = m + 1, where:

y[i] = x[i] ⊕ FK(i), 1 ≤ i ≤ n − 1,

y[n] = K
n−1⊕

i=1

y[i].

Notice that Desai’s AONT leverages a block cipher to ensure that the output
blocks have high entropy. In this paper, we leverage Desai’s AONT to construct
an efficient secure code update scheme for legacy sensors. By doing so, our con-
struct requires that the prover fetches all the output code blocks in order to
decode any part of the (plaintext) code; if the prover possesses all but one out-
put block, then it is computationally infeasible for the prover to acquire any
meaningful bit of information about any plaintext block. As we show later, this
also removes the need for an additional communication round to transmit the
code encryption key.
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Fig. 2. Sketch of our lightweight PoSE scheme. Here, we assume that the code
C1, . . . , Cn, of size mn, fills the total writable memory of P (with the exception of
the minimum amount of volatile memory required to execute the PoSE scheme).

3 Lightweight Proofs of Secure Erasure and Code Update

In this section, we present and analyze our proposal for secure code update.
We will do so incrementally, starting with an initial scheme which enables the
construction of efficient proofs of secure memory erasure, and later extending it
to construct our code update protocol, SUANT.

3.1 Lightweight Proofs of Secure Erasure

Our solution shares the same intuition with existing PoSE proposals [22]; namely,
the prover fills its memory with high-entropy data acquired from the verifier and
proves to the latter that it has stored all the downloaded data. As mentioned in
Sect. 2.3, this alternative is more efficient than filling the memory of the prover
using a local source of pseudo-randomness. The main difference between our
proposal and the PoSE of [22] lies in the fact that, here, the data is specifically
constructed in such a way that if the prover has stored that data in its entirety,
then P can issue a compact proof of memory erasure—without the need to rely
on MACs.

In our solution, this is achieved as follows: the verifier picks a random secret,
divides the data into equal sized-blocks, and XORs the secret with (a function
of) the data blocks which the prover is requested to download. The output of
the XOR is appended and sent to the prover as the last data block. If the prover
can correctly extract the secret inserted by the verifier, then this offers a strong
proof that the prover has downloaded all the data sent by the verifier.

Notice that the straightforward XORing of the data blocks with the secret
does not offer a proof of memory erasure, since a malicious prover can simply
XOR all the downloaded blocks without the need to store them. Later on, after
receiving the last block (which is the XOR of the secret with the remaining data
blocks), the prover can correctly revert the secret without having to store all the
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downloaded data. Therefore, we require that the bits pertaining to different data
block are pseudorandomly (cyclic) shifted before being XORed; here, we reveal
the (pseudorandom) seed used in the shifting procedure at the very end of the
data transmission. By doing so, our solution ensures that the advantage of an
adversary in correctly computing the secret by performing intermediate results,
or dropping a fraction of the data bits/blocks is negligible.

The detailed protocol of our PoSE scheme unfolds in Fig. 2. We stress that
the code required to execute our PoSE scheme resides in a read-only part of the
prover’s memory (cf. Sect. 4); this does not give any advantage for the adversary
to modify this code.

The verifier V first chooses n random data blocks C1, . . . , Cn of length m
bits each, such that mn fills the total available writable memory of the device.
This corresponds to the total writable memory of the device excluding (i) the
memory occupied by the code required to download and process the data, and
(ii) the minimum amount of volatile memory necessary to execute the code of
PoSE. V then chooses a random secret K1 and a seed s of size m bits each, and
executes the following ShiftXOR procedure:

1: procedure K̄1 ← ShiftXOR(s,K1, C1, . . . , Cn)
2: S ← G(s)
3: l = log2 m
4: K̄1 ← K1

5: for i = 0 . . . n − 1 do
6: c ← Sil→l(i+1)

7: K̄1 ← K̄1 ⊕ {C(i+1)}�c

8: end for
9: end procedure

Here, Sx→y refers to the bit sequence of S indexed from position x to y, X�y

refers to the bitwise cyclic shift of X by y positions, and G : {0, 1}m → {0, 1}nl
is an expansion function. For example, G can be instantiated by iteratively
applying a hash function using as input the seed and a counter until the required
number of bits are reached. The verifier then sends C1, . . . , Cn||K̄1||s to the
prover. Notice that the ShiftXOR procedure is symmetric. That is, K1 can be
obtained by computing ShiftXOR(s, K̄1, C1, . . . , Cn).

Claim 1. Assuming a secure cryptographic source of randomness on V, the pro-
tocol of Fig. 2 enables the verifier to detect that an adversary has not erased any
m bits in its memory with overwhelming probability.

Proof Sketch. Suppose that a malicious code of size b > 0 persists in the mem-
ory of P after the completion of our PoSE. Then, this means that the adversary
was able to compute K1 without storing all the downloaded data in its mem-
ory. Recall that we assume that C1, . . . , Cn fill the total writable memory of the
prover with the exception of the minimum amount of volatile memory required to
run the PoSE code. Moreover, K1 is generated from a cryptographically secure
source of randomness and therefore cannot be easily guessed. Moreover, since s is
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Fig. 3. Sketch of SUANT. Our construct combines PoSE with Desai’s AONT in order
to reduce the communication rounds required to prove secure code update.

communicated to P at the very end of the transmission, then this precludes any
straightforward pre-computation of K1. Since the data is also generated from a
secure source of randomness on V, then its entropy also rules out any possibility
of compression. Recall also that the adversary cannot modify the code required
to execute our PoSE scheme, since this code resides in a read-only part of P’s
memory.

Without knowledge of s, notice that each bit of each data block can affect the
outcome of any bit of K1 (due to the ShiftXOR routine). That is, any intermediate
processing on the received bits (e.g., dropping some bits, XORing bits) can affect
any of the m bits of the computed response. In other words, if the adversary
stores b > 0 m-bits blocks of malicious code after the completion of the protocol
(e.g., by dropping bm bits of the received data), then the adversary has to guess
the correct shifting applied to at least b blocks of received data. This guessing
probability is bounded by max(m−b, 2−m).

Assuming m = 128 bits, the probability that a malicious code of size 1000 bits
persists in the memory of P is bounded by 2−56. We contrast this to existing
PoSE schemes based on selective checking, where the probability that the verifier
detects that the adversary did not erase 1,000 bits of its old memory contents
after checking the integrity of 30 % of the downloaded blocks is approximately
90 %, when the prover’s memory size is 648 KB.

3.2 SUANT: Secure Code Update Based on AONT

We now show how to extend our aforementioned PoSE scheme in order to con-
struct an efficient secure code update protocol.

Notice that extending a PoSE into a secure code update protocol can be
easily realized by (i) first padding the code to be updated to reach the total
memory size of the prover, (ii) encrypting the padded code, and (iii) execut-
ing PoSE is over encrypted code. However, as shown in [22], this results in an
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additional communication round between the prover and the verifier in order to
enable the latter to communicate the encryption key once PoSE is completed. We
point out that the decryption key should only be shared with P after the PoSE
has correctly completed since, otherwise, there is a risk that malware acquires
access to the newly updated code which might contain sensitive information
(e.g., credentials).

In what follows, we offer a natural extension to our PoSE scheme which
satisfies this requirement without incurring an additional communication round.
Our extension, dubbed SUANT, combines PoSE with an AONT in order to
ensure that only if the prover has downloaded and stored all the encrypted code
update, then it can acquire the necessary decryption key to revert the encrypted
code and update its code.

The detailed protocol of SUANT is depicted in Fig. 3. Here, the code to be
updated is first encrypted using key K1, which will be subsequently used as the
secret XORed with the data blocks in the ShiftXOR procedure. From that point
on, SUANT unfolds similarly to our PoSE protocol in Fig. 2. Recall here that the
code required to execute our scheme resides in a read-only part of the prover’s
memory (cf. Sect. 4).

Notice that by first encrypting the code and then XORing all the cipher-
text blocks with the encryption key, this exactly yields the AONT transform of
Desai (cf. Sect. 2.4). One major difference between SUANT and Desai’s AONT
lies in the fact that the last output block is replaced with K̄1, as outputted by
ShiftXOR, which corresponds to the XOR of the pseudorandomly shifted cipher-
text blocks with K1. As mentioned earlier, this prevents the adversary from
computing intermediate XOR on the fly, without the need to store the down-
loaded blocks.

Claim 2. Assuming a secure cryptographic source of randomness on V, the pro-
tocol of Fig. 3 enables the verifier to detect that an adversary has not securely
updated his code with overwhelming probability.

Proof Sketch. It is easy to see that, given our assumptions, (i) the prover has a
fixed and known memory size, and (ii) the adversary cannot modify the hardware
of the provers, the security of SUANT follows directly from Claim1 (cf. Sect. 3.1)
and from the security of Desai’s transform [10].

Namely, since the downloaded code has high entropy (recall that the code
is encrypted), and fills the total memory of the prover, then this prevents any
straightforward attack where the adversary e.g., compresses the code. Similarly,
the adversary cannot hide malware in parts of the writable memory, since our
code update fills the entire memory of the device, including the volatile mem-
ory (with the exception of the minimum amount of RAM required to execute
SUANT). Moreover, the use of Desai’s AONT also ensures that the prover can-
not acquire any meaningful bit of plaintext code unless it has processed all the
output ciphertext blocks [10].

Since s is communicated at the very end of the transmission, then the prover
has to store all the blocks, in order to subsequently revert K̄1, compute K1, and
decode the encrypted blocks to acquire the code update. As shown in Claim 1,
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the probability that a malicious code of size bm bits resides in the memory of
P after the successful completion of SUANT is given by max(m−b, 2−m), which
corresponds to the probability that the adversary guesses the correct shifting of
all the b blocks or the key K1.

Reducing I/O Costs in SUANT: The ShiftXOR routine employed by SUANT
incurs high I/O costs since it requires access to each and every data block. Notice
that this overhead can be reduced if ShiftXOR only operates on a randomly
chosen fraction f of the blocks. Such an alternative approach ensures that the
secret is XORed (line 7 of ShiftXOR) with a randomly selected fraction f of
the data blocks and thus requires the prover to only fetch those blocks from
memory—thus tremendously reducing I/O costs. Here, the advantage of the
adversary in computing the correct key K1 without storing any given b ciphertext
blocks of size m is bounded by max(m−b, (1 − f)b). For example, when f = 0.5,
if the adversary does not delete 1,000 bits of its old code (e.g., and selectively
deletes 8 ciphertext blocks with size m = 128 bits each), then the probability that
she can correctly compute K1 is bounded by 0.004. We evaluate the comparative
performance of this approach in Sect. 4.

4 Implementation and Evaluation

In this section, we implement and evaluate SUANT in MicaZ motes. For com-
parison purposes, we also evaluate the secure code update protocol of [22].

4.1 Implementation Setup

In order to evaluate the performance of our proposal in a realistic setting,
we implemented SUANT on the ATMEGA128 micro-controller mounted on a
MicaZ sensor. MicaZ [2] has a total memory of 648 KB, divided into 512 KB of
external flash memory, 128 KB of internal flash, 4 KB of SRAM, and 4 KB of
EEPROM. To access the on-chip memory, we made use of the InternalFlashC
and ProgFlashC 4 modules from TinyOS bootloader (TOSBoot). The maximum
transmission throughput of MicaZ is bounded by 250 kbps; however, our exper-
iments suggest that only 30 % of this throughput can be effectively attained in
a realistic scenario.

In addition to SUANT, we implemented f -SUANT, the optimized version of
SUANT in which a fraction f of the data blocks are randomly processed by the
ShiftXOR routine. In our implementation, we set f = 0.5; as mentioned earlier,
this ensures the detection of a malicious prover which did not erase 1,000 bits
(or more) of its old memory content with a probability of 0.996. For comparison
purposes, we also implemented the optimized secure code update protocol of [22]
(SCU) and a variant protocol adapted from [22] which replaces the verification of
the entire downloaded code by a probabilistic verification (using MACs) of a frac-
tion p = 0.3 of the downloaded data blocks5; we refer to this protocol by p-SCU.
4 For that purpose, we extended the ProgFlash interface using AVR Libc.
5 In this case, the probability to detect that a prover did not delete 1,000 bits of its old

code is 0.9.
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Fig. 4. Performance evaluation using MicaZ sensors. Each data point is averaged over
10 independent measurements; we do not include the corresponding 95 % confidence
intervals due to their small size.

Table 1. Required code and volatile memory sizes.

Total Memory (bytes) RAM (bytes) ROM (bytes)

SUANT 15,516 371 6822

f-SUANT 15,718 384 6960

SCU 19,256 610 8562

p-SCU 19,436 614 9722

Our implementation was integrated with TinyOS2. We relied on the TinySec
and TinyECC libraries [17,19] to implement the cryptographic algorithms. We
instantiated MACs using HMAC-SHA1, and made use of the Lehmer pseudo-
random number generator [21]. In all the implemented schemes, we assume a
fixed block size m = 128 bits.

Since all the implemented protocols require the initial transmission of a code
of size mn bits and its decryption, we did not measure the overhead incurred by
these processes. As shown in Sect. 2.3, our findings show that the code transmis-
sion to a MicaZ mote consumes 8.64µJ/B at 8.86 KB/s.

In our experiments, we measured the time and energy that are consumed
by the above mentioned four protocols, namely SUANT, f -SUANT, SCU, and
p-SCU, in accessing and computing the memory blocks until the decryption key
is obtained. To measure the energy consumption of the implemented protocols,
we relied on the Avrora simulator [32] which provides an accurate cycle-based
simulation of the ATMEGA128 micro-controller. All data points in our (latency)
plots are averaged over 10 independent measurements; where appropriate, we
also show the corresponding 95 % confidence intervals.

Ideally, the code update protocol should be stored in the ROM of the device
to prevent tampering with the process. At present, many embedded devices sup-
port the use of mask ROM (e.g., the MSP430 micro-controller). In our case, we
included the codes responsible for executing SUANT, f -SUANT, SCU, and p-SCU
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(respectively) in the internal flash of the MicaZ mote. Recall that ATmega128
allows part of its internal flash to be locked from writing—thus emulating a read-
only memory. For instance, setting Boot Lock Bit 0 to ‘10’ in ATmega128 and
the BOOTSZ fuse to ‘00’ on the bootloader section grants us an 8 KB equiva-
lent of read-only memory in the internal flash [1]. Notice that, once locked, this
memory can only be unlocked by means of physical access through the JTAG
debugger.

4.2 Evaluation Results

Latency and Energy Overhead: In Fig. 4, we compare the latency and energy
overhead incurred by SUANT and f -SUANT, when compared to SCU and p-SCU,
with respect to the varied writable memory size of the device. Our results show
that SUANT improves by more than 75 % the energy and time consumption of
SCU, and results in more than 30 % energy and latency savings when compared
to p-SCU. For example, to securely update code installed on MicaZ sensors whose
total memory size is 648 KB, SUANT only requires 23.3 s and 0.94 joules, while
SCU requires 96.6 s and 3.87 joules. f -SUANT further improves the performance
of SUANT by reducing I/O costs by almost 50 %; our findings indicate that
f -SUANT improves the latency and energy of p-SCU by almost 60 %. Recall
that both SUANT and f -SUANT achieve higher detection probabilities when
compared to p-SCU (which relies on selectively verifying 30 % of the downloaded
code blocks).

Memory Usage: Table 1 summarizes the memory usage of SUANT and f -
SUANT. Our results show that the total code size of SUANT (and f -SUANT)
is almost 4 KB smaller than that of SCU and p-SCU. Moreover, SUANT almost
halves the RAM consumption of SCU and only requires up to 371 bytes of RAM.
These memory savings mainly originate from the fact that SUANT does not make
use of cryptographic hashes and only relies on basic operations such as bitwise
shifting and bitwise XORing—which consume less memory in legacy sensors.
As shown in [22], HMAC-SHA1 alone occupies around 4500 bytes of ROM, and
120 bytes of RAM when loaded into memory. Since SUANT (and f -SUANT)
leaves a smaller footprint in the RAM, this makes it harder for the attacker to
compress the data and hide the malicious code—when compared to SCU.

Notice that since we integrated our implementation with TinyOS, the under-
lying code size for all protocols was larger than the maximum lockable memory
in the bootloader section of the MicaZ mote. To remedy this, we can separate
our codes into two parts: one part containing the memory accessing and compu-
tation routines (such as ShiftXOR) which we include in the bootloader section of
the flash. The second part containing the necessary networking routines (such
as the code required to send and receive bits) can be stored in the remaining
part of the internal flash (i.e., in the application section). Recall that program
code within the bootloader section has the capability to read/write to the entire
internal flash memory through SPM (Store to Program Memory) instruction [1].
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In Table 1, we show the minimum code size which should be included in
read-only memory (labelled by “ROM”) for all protocols; our results show that
SUANT consumes a total of 6822 bytes of ROM—-almost 2 KB less ROM than
SCU. Recall that the bootloader section is limited to 8 KB in size; this suggests
that SUANT and f -SUANT can be directly integrated into the MicaZ motes
using this approach. The critical parts of SCU (and p-SCU) on the other hand
cannot fit entirely in the bootloader section in MicaZ.

5 Related Work

In this section, we overview related work in the area.

Securing Code-Update in Embedded Devices: Deng et al. [9] propose the
use of Merkle hash trees and hash chains in order to authenticate code distri-
bution in wireless sensor networks. In [11], Dutta et al. leverage authenticated
streams in order to secure code update in the TinyOS network programming sys-
tem. In [33], Ugus et al. propose to authenticate code updates using an efficient
stateful verifier T-time signature scheme based on Merkle’s one-time signature.
However, these proposals do not aim at proving to a remote party that the code
has been securely distributed and installed within the embedded device.

In [26], Seshadri et al. propose indisputable code execution in order to dynam-
ically establish a trusted code base on remote untrusted wireless sensor nodes.
In [13,14], the authors propose the reliance on a novel memory printing algo-
rithm to practically enable software-based attestation. However, the proposed
scheme relies on a trusted proxy that executes secure cryptographic algorithms,
such as SIM card, that needs to be located in the close proximity of the device;
clearly, this assumption cannot be met in existing sensor nodes.

A number of contributions address the problem of secure data deletion
[6,23,24]; however, as far as we are aware, only few works consider the prob-
lem of securely deleting data in resource-constrained devices [22] and proving to
a third party that data was securely deleted from these devices. In [22], Perito
and Tsudik propose the notion of Proofs of Secure Erasure (PoSE) as an enabler
of secure code update in embedded devices. In this paper, we borrow the notion
of PoSE, and we propose lightweight PoSE and secure code update protocols
that considerably improve the performance and energy consumption of existing
proposals.

All or Nothing Transforms: All-or-nothing transforms (AONTs) were first
introduced in [25] and later studied in [7,10,16]. The majority of AONTs leverage
a secret key that is embedded in the output blocks. Once all output blocks are
available, the key can be recovered and single blocks can be inverted. As such,
AONT is not an encryption scheme and does not require the decoder to have
any key material.

In [31], Stinson proposed a fast linear all or nothing transform based on
matrix multiplication. Karame et al. showed in [16] that by first encrypting the
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data then post-processing it using an efficient Stinson-like transform over the
field F

2, one can construct an encryption mode which ensures that any single
block of data cannot be decrypted unless the adversary has acquired almost all
the ciphertext blocks and the encryption key.

6 Conclusion

In this paper, we tackled the problem of securing code update in legacy sensors.
Here, code update needs to be securely realized in order to ensure that the newly
downloaded code is installed in its entirety and can be correctly executed in the
installation environment with the assurance that no other malicious code is being
stored.

To this end, we proposed an efficient secure code update scheme, SUANT,
which naturally combines PoSE with an efficient all or nothing transform inspired
by Desai’s transform [10]. We analyzed the security of SUANT, and we evaluated
its performance by means of implementation on MicaZ sensor nodes [2]. Our
evaluation results show that our scheme consumes a small footprint in RAM,
and considerably improves the time and energy overhead of existing secure code
update protocols.
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