
PUF-Based Software Protection for Low-End
Embedded Devices

Florian Kohnhäuser(B), André Schaller, and Stefan Katzenbeisser

Security Engineering Group, TU Darmstadt, Darmstadt, Germany
{Kohnhauser,Schaller,Katzenbeisser}@seceng.informatik.tu-darmstadt.de

http://www.seceng.de/

Abstract. In recent years, low-end embedded devices have been used
increasingly in various scenarios, ranging from consumer electronics to
industrial equipment. However, this evolution made embedded devices
profitable targets for software piracy and software manipulation. Aggra-
vating this situation, low-end embedded devices typically lack secure
hardware to effectively protect against such attacks. In this work, we
present a novel software protection scheme, which is particularly suited
for already deployed low-end embedded devices without secure hardware.
Our approach combines techniques based on self-checksumming code
with Physically Unclonable Functions (PUFs) to establish a hardware-
assisted software protection. In this way, we can tie the execution of a
software instance to a specific device and protect its program code against
manipulations. We show that our software protection scheme offers a high
level of security against static adversaries and demonstrate that dynamic
adversaries require considerable resources to perform a successful attack.
To explore the feasibility of our solution, we implemented the protection
scheme on an ARM-based low-end commodity microcontroller. A further
performance evaluation shows that the implemented solution exhibits a
fair overhead of ten percent.

1 Introduction

In recent years, the Internet of Things (IoT) [2] became one of the biggest buzz-
words in the technology industry. With the IoT, billions of smart, interconnected
embedded systems are proliferating virtually every aspect of our life. Nowadays,
those devices can already be found in many everyday-life objects, such as con-
sumer electronics, mobile devices, cars, smart-meters, or home appliances. On
top of that, low-end embedded devices are widely used in industrial automa-
tion environments. However, the fact that embedded systems are increasingly
deployed and typically lack effective security mechanisms aroused the interest of
hackers, who started to realize that embedded devices are profitable targets. In
practice, there are many attack scenarios on embedded devices.

One of the most tempting scenarios is the illegitimate reproduction of embed-
ded systems, where an adversary reproduces existing devices by copying their
firmware to counterfeit, cheaper hardware. Selling those cloned devices, adver-
saries cause financial loss for the manufacturer of the original system. In 2005,
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 3–21, 2015.
DOI: 10.1007/978-3-319-22846-4 1



4 F. Kohnhäuser et al.

KPMG estimated the sales lost to counterfeiters for fake electronic goods at 100
billion dollars [17]. Another attack scenario is the removal of license checking
code, also referred to as software cracking. As an example, the attacker’s mobile
device may contain an application which requires a license. Instead of purchasing
a license, the attacker bypasses the license check by manipulating the software.
A further scenario is the play-back of Digital Rights Management (DRM) pro-
tected media on hardware media players, such as TV streaming devices. An
attacker might insert code in the decryption function of the DRM player to
intercept and extract the decrypted media. A famous example is the bypass of
the DVD DRM encryption system CSS [26].

In order to protect against such attacks, the execution of the software must
both be tied to a particular device and be secured against manipulations. To
realize an effective hardware-software binding, hardware support is required.
With hardware support, the security of a protected program rests on a secret,
e.g., a cryptographic key or a piece of code implemented in a physical module.
Prominent examples are the Trusted Platform Module (TPM), USB dongles,
and cryptographic coprocessors. Nevertheless, integrated circuits dedicated to
security are complex in their design, provoke deployment issues, occupy addi-
tional space on the underlying board, and lead to higher production costs. For
this reason, especially legacy or low-end embedded devices lack hardware secu-
rity mechanisms. However, as these devices are widely deployed and increasingly
become the target of attacks [25], there is the need for a security solution that
requires no specifically designed hardware.

1.1 Contributions

In this work, we explore a novel software protection approach, which is particularly
suited for low-end embedded devices. Our approach combines and extends a self-
checksumming code technique [15] with SRAM PUFs in commodity hardware [24]
to protect a program against modifications and tie its execution to a dedicated
device. Due to the usage of an intrinsic PUF as a secure key storage, our approach
does not require any hardware modifications and thus can be easily retrofitted to
already deployed devices. Furthermore, relying on a PUF significantly decreases
the attack surface, as the secret is stored involving the PUF’s physical properties.
This makes physical attacks much more complicated compared to solutions based
on non-volatile memory [1]. In order to explore the applicability of our solution,
we implemented the proposed scheme on a low-cost ARM Cortex microcontroller.
Various security parameters allow for a balancing between security and perfor-
mance. Finally, a security and performance evaluation reveals that we achieve a
substantial level of security with a performance penalty of ten percent.

1.2 Structure

In Sect. 2 we introduce PUFs and summarize existing work on tamper-resistant
software. Section 3 presents our software protection solution. In Sect. 4 we
evaluate the security of our approach. Section 5 depicts our implementation and
evaluates its performance. Eventually, Sect. 6 concludes this work.



PUF-Based Software Protection for Low-End Embedded Devices 5

2 Related Work

Physically Unclonable Functions. Physically Unclonable Functions (PUFs)
are physical objects that exhibit unique physical microstructures induced by
manufacturing process variations. When a PUF is queried with a stimulus (chal-
lenge), it generates an unpredictable but repeatable response, which depends on
the challenge and the PUF’s physical structure. Typically, a PUF is assumed to
exhibit characteristics of robustness, unclonability, unpredictability and tamper-
evidence [22] (see Sect. 5.1). There exist various PUF implementations, ranging
from optical and analogue PUFs to electronic PUFs [22]. The most significant
PUFs for electronic circuits are delay- and memory-based PUFs. The former,
e.g., arbiter PUFs or ring oscillator PUFs, utilize delays in their electronic cir-
cuits to generate the response. Memory-based PUFs exploit metastable states
of digital memory primitives, such as SRAM or flip-flops, whose cells show a
tendency to either initialize with the value zero or one. As not all memory bits
show a stable initialization behavior, those bits introduce noise, which needs to
be taken care of. For this purpose, Fuzzy Extractors are applied that remove the
noise effect, which enables a robust reconstruction of an identifier [11].

Software Integrity Protection. Software integrity protection techniques
deter attackers from modifying a particular software. They prevent adversaries
from performing unauthorized actions, such as skipping a license check or playing
a DRM-protected media file without the correct key.

Self-checksumming code is a common approach to protect a program against
tampering [3,7,15]. The idea behind this concept is to equip a program with
the functionality to verify its own integrity at runtime by calculating checksums
for parts of its code. After a checksum is computed, it is compared to a pre-
computed reference checksum, indicating if the checked code has been tampered
with. In this case a tamper-response (e.g., program termination) is initiated.

Oblivious hashing techniques pursue another approach. Instead of verifying
parts of the program’s machine-code, oblivious hashing mechanisms compute a
hash value over the program’s execution trace. In order to verify the program
integrity, this hash value is then compared to a reference value. Typically, the
hash value is computed over assignments and execution branches. Thus, instruc-
tions that monitor changes to variables and control flow are interweaved with
the original code [8,16].

Result checking is a simple mechanism where, instead of verifying the pro-
gram’s code integrity, the result of certain computational operations is veri-
fied [5]. Checking the outcome of a computation can be considerably faster than
performing the computation itself. For instance, a general sorting computation
has order of O(n · log(n)) time complexity, whereas validating a sorted sequence
takes O(n) time.

PUF-Based Software Protection. Gora, Maiti and Schaumont [12] proposed
a system that implements a PUF instance on an FPGA to protect software and



6 F. Kohnhäuser et al.

bind it to one hardware instance. At device start, they derive an 128-bit AES
key from the PUF, utilize this key to decrypt the actual software code that was
stored encrypted beforehand, and finally execute the decrypted software.

In a similar work of Schaller et al. [24], the authors presented an anti-counter-
feiting solution which exploits inherent PUF characteristics from on-chip static
random-access memory (SRAM) found in commodity devices. The authors pro-
pose to extract a unique device-dependent key from the SRAM PUF found in
commodity devices. Using this key, the second-stage bootloader as well as the
kernel of the device is decrypted during device start-up.

Nithyanand and Solis [23] show that traditional PUFs cannot solve the soft-
ware protection problem in offline settings because they are vulnerable to observe
once, run everywhere (OORE) attacks. To solve this problem, the authors pro-
pose the use of intrinsic personal PUFs (IP-PUFs). IP-PUFs are PUFs that are
intrinsically and continuously involved in the computation of the program to be
protected. In their proposed system, an IP-PUF computes the ordering of nodes
in the control flow graph and enforces a random permutation of those nodes.

In summary, there are existing approaches that allow software to be integrity
protected and tied to one device using PUFs. However, the security level exist-
ing solutions provide is comparatively low, since an adversary can dump the
decrypted software at runtime. Once the adversary is in possession of the
decrypted software, he can modify it or run it on other devices. By contrast,
this work pursues a different approach, where self-checksumming code is com-
bined with PUF responses to additionally provide security against attacks at
runtime. Furthermore, the developed solution does not require any hardware
modifications, which allows the deployment on commodity or legacy devices.

3 PUF-Based Software Protection Solution

Our software protection solution consists of four basic mechanisms: two check
and two response functions. Check functions measure the authenticity of the
device and the integrity of the program. Response functions read these mea-
surements, decide whether they indicate a healthy or a manipulated state, and
initiate a program misbehavior if a manipulation has been detected. In order
to protect a software with our protection scheme, both functions are repeatedly
integrated into the software’s program code.

In more detail, the first check function measures the integrity of the software
by hashing its native program code (see Sect. 3.1). The second check function
computes a unique bitstream on the basis of a device-dependent SRAM PUF
response to measure the authenticity of the device (see Sect. 3.2). If those two
measurements indicate a manipulated state, the first response function redi-
rects branches to random locations in the program text segment and the second
response function corrupts the program’s execution stack (see Sect. 3.3). Hence, if
the program or the execution environment has been manipulated, both response
functions cause a malfunction of the program.



PUF-Based Software Protection for Low-End Embedded Devices 7

3.1 Code Integrity Check

Principles. The integrity of the executable is measured by multiple self-check-
summing code segments at runtime. Each segment consists of a hash function
which computes a hash value over a predefined section in the program’s text
segment. The hash value represents the integrity status of the checked section.
It is later used by response functions to decide whether the program has been
tampered with. Depending on the spatial separation of the hash function and
the response function, a hash value is either stored in a register or on the stack.

For stealth and security reasons, each hash function is inlined in the code,
preferably with some spatial separation to other hash functions, and gets exe-
cuted as the control flow passes the code location where the hash function is
inserted. It is desirable that each inserted hash function is executed at least once
at runtime, but not so frequently that the protected program suffers from a huge
runtime overhead. In practice, profiling tools can be utilized to identify suitable
code locations. We propose to let multiple hash functions measure a contigu-
ous and relatively small part of the program. Thus, each integrity measurement
consumes only little time. In addition, the effort for an attacker to remove the
software protection increases.

In order to increase the effort even more, each code segment is measured
multiple times by different hash functions. The so-called overlap factor indicates
how often a code section is checked by different hash functions. Its value must
be well-chosen to achieve a balance between security and performance according
to the application scenario. To avoid that hash functions suspiciously measure
large parts of the program, we recommend to split the program code in sections
of equal size. These code regions are then uniformly assigned to hash functions
till the overlap factor for each code region is saturated.

Hash Function Design. The design of our hash function is based on the work
by Horne et al. [15]. With d = [d1, ..., dn] being data in a code section which is
protected by a hash function h, c being an odd multiplier constant, and hi(d)
being the hash value in iteration i, our hash function can formally be defined as:

hi(d) =

{
0, i = 1
hi−1(d) + c · di. 1 < i ≤ n

(1)

We deviated from Horne’s approach by not multiplying hi−1(d) with c in
each iteration. This allows us to construct arbitrary complex mutually checking
code regions (see Sect. 3.4). One reason we build on the code integrity check
by Horne et al. is the hash function’s size and speed. A large and slow hash
function would fairly expand program size as well as runtime overhead, since
the hash function is inlined frequently into the original program. However, the
most important reason is stealth. An attacker who can locate all hash functions is
able to break the code integrity check, for instance, by overwriting hash functions
with code that always writes the respective expected hash value in memory. The
proposed hash function neither contains any suspicious operations nor provides



8 F. Kohnhäuser et al.

any characteristic pattern. In addition, its implementation in native program
code can easily be diversified. Thus, each hash function can be customized,
leaving the attacker no weak point for pattern matching attacks (see Sect. 4.1).

In order to customize hash functions, the odd constant c can be randomized,
the addition can be replaced by a subtraction or an XOR operation, or a further
constant can be added or subtracted after the multiplication with c. In addition,
the hash function’s implementation in native program code can be diversified,
among others, by permuting the instruction order, permuting the assignment
of variables to CPU registers, or diversifying particular instructions. A further
possibility is to split the hash function code into multiple segments which are
inserted with spatial separation in the original program code. With these tech-
niques, it is straightforward to generate multiple million different hash function
implementations.

Another attack vector is the code read operation performed by the hash
function. It allows an attacker to find the location of hash functions by search-
ing the code for addresses within the text segment, or observing if and where
certain registers obtain values within the text segment at runtime. To mitigate
this threat, we propose to implement Horne’s memory access obfuscation app-
roach [15] which uses an additional offset when addressing data in the program
text segment (e.g., with the instruction LDR Rd, [Rn, Rm] on ARM-based plat-
forms). In this way, text section addresses neither appear in the code nor in a
register at runtime.

3.2 Device Authenticity Check

Principles. Recent work by Schaller et al. [24] have shown that SRAM modules
present in several microcontrollers can be used as a PUF instance. In the device
authenticity check mechanism, we use the microcontroller’s SRAM PUF start-
up values to compute a device-dependent bitstream. Since the SRAM PUF is
unique and highly integrated in the microcontroller, the bitstream is unique
for each embedded device. For these reasons, our response functions utilize the
bitstream to authenticate the device at runtime.

The code for the bitstream generation is inserted into the device’s bootloader.
Hence, the bitstream is generated each time the device is starting up. In particu-
lar, a pseudorandom number generator (PRNG) is applied to allow for a variable
bitstream length. In this way, a tradeoff between performance and security can
be achieved. A larger bitstream takes more time to compute at device start-up
but provides more unique values that can later be verified by response functions.
Alternatively, it would be possible to gradually create the bitstream during pro-
gram execution. However, as this further increases the execution overhead, we
decided to precompute the entire bitstream in advance.

PRNG Bitstream Generation. Generating the PRNG bitstream comprises
an enrollment and a reconstruction phase. The enrollment phase is performed
at a trusted site, e.g., by the software integrator, and involves taking a reference



PUF-Based Software Protection for Low-End Embedded Devices 9

PUF measurement and equipping the device’s bootloader with code and helper
data to reconstruct a unique and reliable bitstream. During reconstruction, which
is performed after deployment at the side of the user, the equipped bootloader is
executed. Thus, the actual bitstream is generated using the PUF start-up values
and additional error correction methods. To correct the raw PUF start-up values
from noise, they are processed by error correction mechanisms. For this purpose,
we integrate a Fuzzy Extractor (FE) based on the design by Bösch et al. [6] in the
bootloader. The techniques used in the following to restore a predefined secret
from SRAM cells are based on the work by Schaller et al. [24].

The enrollment phase is performed during the deployment of our software
protection scheme once for each device. Initially, a unique random secret S is
chosen. Using the FE with a reference PUF measurement and the secret S as
input, so-called Helper Data is generated and stored on the device. The Helper
Data is required in the reconstruction phase to retrieve S from a single noisy PUF
measurement. Afterwards, the length for the PRNG bitstream is set, balancing
security, speed, and storage consumption for the particular device and use case.
At last, it is set at which location the bitstream is stored in memory during the
reconstruction phase.

The reconstruction phase is executed each time the device is started. Initially,
the bootscript measures and stores the noisy SRAM PUF values R′. Next, the FE
reconstructs a secret S′ using the current PUF measurement R′ and the stored
Helper Data as input. If the PUF measurement R′ corresponds to the respective
Helper Data, the reconstructed secret S′ will match the original secret S. S′ is
then used to initialize the PRNG which finally generates a PRNG bitstream of
the set length in memory.

3.3 Response Functions

Principles. Before a response function is inserted into the code, it is randomly
selected whether the response function verifies a hash value, a value of the PRNG
bitstream, or both values at once. If a response function verifies a hash value, it
uses the hash value of the nearest preceding hash function. This ensures that hash
values are verified shortly after they are measured, thwarting code manipulations
promptly after they have been detected. If a response function verifies a value of
the PRNG bitstream, it uses a random preferably nonrecurring bitstream value.
The basic idea is to use a unique address in each PRNG bitstream access. Thus, a
single address cannot be used as an attack vector for pattern matching attacks or
as a watchpoint in dynamic analyses. However, if there are less PRNG bitstream
values than deployed response functions available, some addresses must be used
multiple times.

The overall goal of our two response functions is to provoke a malfunction
of the protected program if the measured code integrity or device authenticity
values are invalid. We would like to point out that a malfunction of the program
may lead to a damage of the machine that is controlled by the program. However,
the alternative to perform a deterministic action (e.g., a controlled program
shutdown) would provide an easy attack vector for the adversary. In this scenario,



10 F. Kohnhäuser et al.

the adversary could simply observe where the program shutdown is initiated, to
locate the response functions in the code.

Indirect Branch Response. The indirect branch response is applicable on
any branch in the program. When applied, an original branch is converted to
an indirect branch whose target address is dependent on the verified values, i.e.,
either on a hash value, on a value of the PRNG bitstream, or on both values.
The exact target address of the indirect branch is determined by a computation
which meets the following requirements.

The output of the computation must equal the target address of the replaced
original branch if the verified values correspond to their expected values. If at
least one of the verified values is corrupted, the outcome of the computation
must be a random address that lies within the program text segment. The latter
requirement ensures that the computed target address is always a valid instruc-
tion that can be executed. If the computation of the target address would not
generate a valid address in the text segment, program manipulations would
immediately cause memory access violations. This would be very suspicious and
allows the attacker to easily locate the response function with backtraces.

In practice, the behavior of the indirect branch tamper response is highly
dependent on the program size and the structure of the program code (e.g.,
the number of functions in the program). We observed, on average, about two
function calls until a memory access violation occurred after the indirect branch
response was executed.

As an additional requirement, the computation of the target address must
be simple. In order to improve stealth, its implementation should be short and
should not contain unusual instructions. To improve stealth even more, each
deployment of the indirect branch response function should be customized, for
instance, with the techniques presented in Sect. 3.1.

Stack Manipulation Response. In contrast to the indirect branch response,
the stack manipulation response can be deployed at arbitrary locations in
the program code. When deployed, we propose to use one stack manipulation
response per hash function to ensure that each code measurement is eventually
verified by a response function.

The idea behind the stack manipulation response is to corrupt the execution
stack if the verified values are invalid. Hence, in case of an unauthorized modifi-
cation, local variables, function arguments, register copies, return addresses, and
other data that lies on the stack, are altered. As a result, the program continues
execution with incorrect values.

A simple way to accomplish a modification of all values on the stack is to
shift the stack pointer. Shifting the stack pointer has two benefits. First, it
mixes up stack frames, which complicates a backtracing the program. Second,
it modifies the return address and thus provokes a program crash when the
currently executed function returns. If an eventual program crash as a tamper-
response is not desirable, we propose to alter values on the stack directly.



PUF-Based Software Protection for Low-End Embedded Devices 11

3.4 Mutually Checking Code Regions

Since the presented protection mechanisms secure the entire program code and at
the same time are also part of the program code, they secure each other against
modifications as well. Although this enhances the security of a protected soft-
ware, it comes at the cost of emerging circular dependencies in the deployment
process. These mutual dependencies occur because at some point code protection
measures, consisting of a hash function and a response function which verifies
the hash function’s value, circularly check each other.

In the work by Horne et al. [15], code regions are assigned to hash functions
in a left-to-right pass which generates no mutual dependencies. However, with
this approach, the overlap factor is comparatively low at the beginning and the
end of the program code. In fact, their overlap factor goes down to a factor of
one in the first and last few bytes of the program code. By contrast, we propose
a uniform assignment of hash functions to code regions and a subsequent solving
of the upcoming circular dependencies. Thus, we can ensure a consistent overlap
factor throughout the entire program code.

When solving cyclic checks, the first step is to transform mutually checking
code regions into an equation system. For this purpose, we initially deploy all
protection mechanisms into the software and build a temporary protected binary.
The protected binary contains the final code, except for the response functions’
reference values and additional placeholder values. We propose to insert one
freely selectable 32-bit placeholder value per code integrity measure to facilitate
solving the equation system. Next, we utilize the fact that hash values can be
written as the sum of multiple data values. With d = [d1, ..., dr, ..., dp, ..., dn]
being a list of n 32-bit words in a code section, where dr is a reference value,
dp is a placeholder value, and c being the hash function’s multiplier constant,
a hash function h which measures this code section on a 32-bit microprocessor
can be written as:

h(d) ≡ c · dr + c · dp︸ ︷︷ ︸
l

+
n∑

i�=r
i�=p

c · di
︸ ︷︷ ︸

r

(mod 232) . (2)

In this way, hash values are divided in a variable part l, containing the ref-
erence value dr and the additional placeholder value dp which are to be solved,
and a fixed part r, containing the rest of the code segment. Since the code data
di and the multiplier constant c are fixed after deployment, r can easily be com-
puted. Next, reference values must be expressed in relation to hash values and
PRNG bitstream values. The exact dependence between PRNG, hash, and ref-
erence value is given by the response function in which the reference value is
used. Finally, these relations are combined to one linear Diophantine equation
system which is then solved according to the approach of Lazebnik [20].



12 F. Kohnhäuser et al.

4 Security Evaluation

Information security mechanisms like cryptographic primitives or secure proto-
cols are commonly designed to be secure in the black-box model. However, we
assume a much more challenging scenario where the attacker is in possession
of the endpoint devices and thus has access to the implementation and power
over the execution environment. This security model is referred to as white-
box model [14]. Taking the white-box model as a basis, we specify two attacker
models, the static attacker and the dynamic attacker. We generally expect both
attackers to be familiar with our software protection model, albeit we assume
that they do not know the particular deployed protection code, the location of
the protection code, and aspects of our protection scheme which are randomized
at deployment. The following sections specify the attacker models and evaluate
the security of our software protection scheme against the respective model.

4.1 Static Attacker Model

Specification. A static attacker has the ability to perform static analysis on a
device in his possession, i.e., he can read and modify all the data stored on the
device. For instance, the attacker can read and modify the content of the external
memory, like the flash memory or the RAM, or the internal memory, including
the software with its hard-coded secrets and cryptographic keys. Additionally,
we presume that the static attacker can run the program and observe its input-
output behavior.

The static attacker model is a reasonable assumption for an experienced
attacker who lacks the ability to debug the protected program. This may be
the case due to the employment of anti-debugging techniques implemented in
software (e.g., the exhaustion of breakpoint registers, or the use of API functions
to check if a debugger is present) or in hardware (e.g., the physical removal of
debugging ports).

Evaluation. Using a disassembler, a static attacker can analyze native program
code and reverse engineer the protected program. In the worst case, the attacker
would comprehend the complete code and thereby know how he can circumvent
our protection mechanisms. In practice, though, this task is highly laborious, as
even a small program consists of a few thousand lines of machine code.

One possibility to accelerate the analysis process is to look for outstand-
ing instructions or specific patterns in the code. In a pattern matching attack,
the attacker reveals the location of the protection code by extracting a pat-
tern from found protection mechanisms and then searching the entire program
code for that pattern. Therefore, we specifically avoided the use of suspicious
operations by performing short and common computations only. The implemen-
tation of our hash function requires approximately 30 bytes (48 bytes with code
access obfuscation) and the response function between 12 and 18 bytes. Addition-
ally, we demonstrated in Sect. 3 that both mechanisms can easily be diversified
repeatedly.



PUF-Based Software Protection for Low-End Embedded Devices 13

In another technique called collusion or differential attack, an adversary
compares multiple versions of a protected program to spot the location of the
inserted protection mechanisms in their differences. In order to protect against
this attack, we can distribute our protection scheme to many devices with the
same deployment preferences. In this way, a collusion attack would only reveal
the location of the Helper Data which does not leak any information. A further
approach would be to diversify the entire program in the deployment process [18].

A very common technique applied during a static analysis is the examination
of the program’s execution flow. With the deployment of the indirect branch
response function, branches are replaced with indirect branches whose target
addresses are dependent on hash values and values of the PRNG bitstream. As
both values are not known to a static analysis tool, our approach can significantly
reduce the amount of useful information that an attacker can extract from a
control flow analysis.

The unpredictability of the PRNG bitstream in offline attacks has an addi-
tional advantage. Since both response functions occasionally utilize a value of the
PRNG bitstream for their operation, their exact behavior cannot be predicted
with static analysis techniques. Furthermore, both response functions can be
used to perform essential operations in the program, i.e., branches or stack allo-
cations. As a result, it is hardly possible for a static attacker to remove the
hardware-software binding.

4.2 Dynamic Attacker Model

Specification. A dynamic attacker inherits all abilities from the static attacker.
Furthermore, the dynamic attacker has the ability to read and modify all the
data on a device at runtime. With these abilities, the attacker can interrupt
a program at any time, single-step through the program code, and inspect or
modify memory values at runtime. Moreover, the attacker has the capability
to modify a program’s execution environment. He might force the program to
use bogus dynamic libraries, altered operating system functionalities, or run the
program in a virtual machine.

We are aware that an attacker with the stated abilities and enough resources
in time and money is capable of breaking any software security mechanism.
Therefore, our goal is to increase the effort for a successful attack to a level
where an attack becomes uneconomical.

Evaluation. One of the most powerful debugging features when analyzing a
protected program are watchpoints. Watchpoints are used to halt the execu-
tion whenever the program accesses predefined memory locations. A dynamic
attacker can use this technique to locate a large fraction of all response func-
tions by recurrently setting watchpoints on values of the PRNG bitstream while
executing the program with various input. In addition, by setting watchpoints
on addresses within the program text segment, the attacker can locate hash
functions. A subsequent tracing of the hash functions’ hash values can reveal



14 F. Kohnhäuser et al.

the location of all remaining response functions. Having located all response
functions, the attacker can remove the verification of hash and PRNG bitstream
values and thus disable our software protection. Although the described app-
roach is eventually successful, it requires a significant amount of effort from an
attacker. Furthermore, the effort can be arbitrarily augmented by increasing the
number of hash functions, setting a higher overlap factor, or obfuscating access
on hash values and values of the PRNG bitstream.

Another common dynamic analysis technique is tracing. Tracing a program
involves logging information during the program’s execution, such as the execu-
tion path, memory values, or register values. A dynamic attacker may trace back
program crashes or abnormal program behavior to localize response functions.
During the design of our response functions, we ensured that there is a large
spatial and temporal separation between the execution of the response function
and its impact on the program, i.e., a program crash or a program misbehavior.
Thus, the attacker has to examine a large portion of the trace back to finally
localize a single response function.

Profiling is an additional dynamic analysis technique which involves mea-
suring particular runtime performance values. In general, our protection mech-
anisms do not consume exceptionally much CPU time or memory. But yet,
profiling a protected program may reveal the location of deployed hash functions
when the execution of a hash function takes exceptionally long time compared to
the execution time of the original program. Anyhow, profiling requires about the
same effort as the above described approach with watchpoints, as the protected
program must be examined multiple times with different input. On top of that,
the profiling approach is less reliable than the watchpoint approach, because
code that is often run through need not be part of a hash function.

Emulation is a further dynamic analysis technique. An emulator is software
which simulates the behavior of a particular hardware platform. With emulation,
an adversary can bypass the hardware-software binding by emulating particular
PUF start-up values. In addition, an adversary can redirect data access to the
unmodified version and code access to the modified version of a protected pro-
gram, to bypass our code integrity protection. Nevertheless, emulation attacks
are unpractical, because the software has to run in an emulator and cannot run
directly on the hardware of an embedded system. In addition, the performance
is slower, an emulator is hard to implement, and the protected programs PRNG
bitstream must be extracted.

With temporary modifications or on-the-fly writes in memory, the attacker
modifies a code region before its execution and recovers it to its original form
afterwards. If an adversary inserts his modification just before it is executed
and restores the original code immediately after the modified code has been exe-
cuted, we cannot defend against this attack. However, this requires the attacker
to permanently attach a debugger to the program, to write a debugger script
which performs the attack without manual intervention, and to accept a loss in
performance because of multiple code manipulations at runtime.



PUF-Based Software Protection for Low-End Embedded Devices 15

5 Proof of Concept

In order to explore the applicability of our software protection scheme, we
implemented and evaluated it on the Stellaris EK-LM4F120XL microcontroller.
The Stellaris board is a low-end embedded system featuring an 80 MHz ARM
Cortex-M4F microprocessor. During deployment, the protection mechanisms are
inserted into the source code of the program to be protected. Subsequently, the
LLVM compiler framework [19] with Clang front-end [10] is used to compile the
equipped source code to the final protected binary. For this purpose, we wrote
a Python script which controls LLVM, Clang, and additional external tools and
libraries to automatically build the protected program. In the following sections
we give details on the intrinsic PUF instance of the Stellaris board, the imple-
mentation of the protection scheme, and the performance of our implementation.

5.1 PUF Characteristics

Before using a SRAM PUF instance in security critical applications, it is crucial
to characterize the SRAM start-up values for constructing an efficient Fuzzy
Extractor (FE) and extracting a secret with full entropy. In order to obtain suf-
ficient measurements, we used a hardware setup comprising 15 Stellaris boards.
The Stellaris boards were connected to a custom microcontroller, which in turn
was connected to our terminal PC. This setup allowed us to repeatedly query
each of the boards automatically. In particular, the microcontroller was pro-
grammed to toggle an individual device, executing the modified bootloader (see
below for details) and sending the SRAM start-up values over UART back to the
microcontroller. Subsequently, the measurements were forwarded to the terminal
PC, where they were saved and post-processed. Using this setup we generated
1000 measurements per device.

In the following we present numbers for metrics, which are generally used to
evaluate the quality of a PUF instance. The Hamming Weight (HW) of mea-
surements from the same device indicates a potential bias towards zero or one.
This metric provides a first impression on the entropy present in the start-up
values. The Within-Class Hamming distance (WCHD) indicates the robustness
of measurements from a single device. In particular, it shows how many bits were
flipped during repeated start-ups and therefore represents the noise level. The
Between-Class Hamming distance (BCHD) reveals the independence of start-up

Table 1. Metrics from 15 Stellaris boards with 1000 measurements per device.

Metric Value [%]

Fractional HW (min; max) 43.29; 53.69

Fractional WCHD (max) 5.25

Fractional (avg) 49.33

min-entropy (min) 5.86



16 F. Kohnhäuser et al.

values from different devices and thus shows whether the PUF can be used to
uniquely identify a given device. Lastly, the min-entropy was calculated to quan-
tify the randomness of the start-up values. To do so, we adapted the well-known
approach to calculate min-entropy [21], assuming independence between all bits
from the start-up pattern [4,9] and each individual bit to be a binary source. In
Table 1 numbers for these metrics are shown, attesting that the Stellaris board
has almost ideal PUF characteristics.

5.2 Implemented Protection Mechanisms

Hash Function. In Sect. 3 we stated that it is vital for the security of our
protection scheme to deploy syntactically different hash functions. In order to
have precise control over the hash function’s native program code, we inline hash
functions as ARM assembler code in the program source code. To avoid the usage
of unusual instructions in our ARM assembler version of the hash function, we
implemented the hash function in C and compiled it to get an assembly language
prototype. A so generated ARM assembly prototype is show in the following code
snippet. It hashes a code region from address 0x26c to 0x2ac with the multiplier
constant c = 3:

1: movs r1, #0 // hash = 0
2: movw r2, 0x26c // start = 0x26c
3: movw r3, 0x2ac // end = 0x2ac
4: loop:
5: ldr r4, [r2], 4 // tmp = data[i], start++
6: add r4, r4, r4, LSL#1 // tmp = 3*tmp
7: add r1, r4 // hash = hash + 3*tmp
8: cmp r2, r3 // if (start < end)
9: blt loop // then goto loop

PRNG Bitstream Generation. During deployment, we substitute the pre-
existing Stellaris bootloader with a modified version that contains our PRNG
bitstream generation code. Besides the standard initialization code, the modified
bootloader contains code for the extraction of the PUF start-up values, a FE
based on the design by Bösch et al. [6], Helper Data to reconstruct a predefined
secret, and a PRNG based on the Keccak (SHA-3) implementation of Herrewege
et al. [13]. At first, the bootloader extracts 240 bytes of PUF start-up values. For
this purpose, we added ASM code to the power-on reset vector, which configures
a GPIO to be used as a UART port. In a next step the code iterates over the
memory region of the SRAM, putting each byte out over UART. Afterwards,
the original code is resumed, relocating the firmware to SRAM and executing
it. Next, the FE reconstructs a predefined 128 bit secret using the PUF start-up
values and the Helper Data. Here, we reuse Keccak in the privacy amplification
phase of the FE. The reconstructed secret is used to initialize the PRNG. We use
Keccak as a PRNG, primarily because of its compact size and speed on ARM
devices. For the length of the bitstream, we suggest to use 217 bits, which provides



PUF-Based Software Protection for Low-End Embedded Devices 17

4096 unique values and consumes 16 KiB of memory at runtime. Nevertheless,
the bitstream length can be set to an arbitrary value, for instance, to consume
less storage.

Indirect Branch Response Function. During deployment, existing branches
in the original source code are overwritten with the code of the indirect branch
response function. The target address of the indirect branch is computed by
the sum of the verified values and a specific offset, modulo a unique value, plus
a unique value. The following code snippet in C syntax illustrates an indirect
branch to a function, which takes no argument and returns void (e.g., void
foo(void)):

void (*foo)(void);

foo = ((*hash_value + *puf_prng_value + *offset) % *modulo) + *shift;

foo();

If the hash value and the PRNG value match their expected values, off-
set, modulo, and shift adjust the indirect branch to match the original target
address. In order to provide no constant value as an attack vector for pattern
matching attacks, modulo and shift are randomized between certain bounds in
each deployment of the indirect branch response function.

Stack Manipulation Response Function. We insert each stack manipula-
tion response function randomly between the location of the corresponding hash
function and the subsequently executed hash function. Our implemented stack
manipulation response function sums all values to be verified and checks whether
the result is equal to the expected value. If it is not, the stack pointer is either
incremented or decremented by a random value between 4 and 24 bytes.

5.3 Performance Evaluation

Due to the lack of open source applications for the Stellaris platform, we
developed our own evaluation program. The evaluation program encrypts and
decrypts a 16 bytes string using AES 128 bit, sends the plaintext and the cipher-
text to the UART port, and measures the amount of CPU cycles consumed from
the start to the end of the main function.

For the deployment of our software protection scheme, we used the following
security settings. We inserted one code integrity check mechanism in each func-
tion of the evaluation program. As 9 of the 11 deployed functions are executed
at runtime, we generate a coverage of 82 %. This is a realistic scenario, as a real
application will certainly contain functions that are not always executed at run-
time (e.g., whose execution depends on specific user input). In addition, we used
a PRNG bitstream length of 217 bits, which corresponds to a size of 16 KiB. For
the deployment of the response functions, we inserted the stack manipulation
response in each circular dependent code region and the indirect branch response
in the remaining code.



18 F. Kohnhäuser et al.

Runtime Performance. In our runtime evaluation, we deployed the evaluation
program with the above mentioned security settings and a variable overlap factor.
Figure 1 illustrates the relative average runtime overhead for various overlap fac-
tor preferences. The runtime of the original unprotected program is represented
with an overlap factor of zero and an overhead factor of one. As the overlap
defines how many times a code region is checked by different hash functions,
an increasing overlap factor increments the amount of code lines that each hash
function has to check. With an overlap factor of nine, each hash function almost
checks the complete text segment, which generates an overhead of approximately
half of the original runtime. It is evident that such an overhead is not acceptable
in most applications. On the other hand, even when each code region is checked
by three different hash functions, the runtime overhead is below 5 %. As this
slow-down will only be noticed by sensitive users, we can easily recommend an
overlap factor of three for a conservative usage.

Fig. 1. Runtime performance comparison
with different overlap factor settings.

Fig. 2. Start-up runtime performance
with varying bitstream size.

Another performance overhead originates from the generation of the PRNG
bitstream at device start-up. Figure 2 depicts the amount of CPU cycles that is
required to compute a bitstream of a specific length. For comparison, the original
program consumes roughly 1.8 million CPU cycles.

The figure illustrates that there is almost a proportional relationship between
the size of the PRNG bitstream and the amount of CPU cycles. Thus, compared
with the calculation of the pseudorandom values, the extraction of the PUF
start-up values and the execution of the Fuzzy Extractor barely uses any CPU
time. The figure also shows that the generation of the PRNG bitstream consumes
much more CPU resources than the execution of the actual program. However,
it must be considered that the PRNG bitstream is only generated at device
start-up. Assuming the embedded devices is clocked at 50 MHz, a bitstream size
of 16 KiB delays the start of the device by 1.5 s which is likely to be acceptable
for most applications.

Storage Consumption. The program size overhead of a protected program is
dependent on the number of inserted hash functions, the choice of the response



PUF-Based Software Protection for Low-End Embedded Devices 19

function, and the number of inserted response functions. For evaluation, we
deployed our protection mechanisms using the previously mentioned security
settings. In this way, we obtained a protected program which was on average
63 % larger than the equivalent unprotected program. Another storage overhead
arises at runtime due to the operating of both check mechanisms. However,
the hash functions’ memory consumption is negligible, as each value resides
just a short time in memory and only occupies 4 bytes of storage. In contrast,
the values of the PRNG bitstream are kept in memory permanently and they
consume 16 KiB of memory for our proposed bitstream length. Nevertheless, by
setting another bitstream length, the runtime memory overhead can be adjusted
as required.

6 Conclusion

In this work, we explored a novel hardware-assisted software protection app-
roach, which combines existing software-based techniques with PUFs. Using a
microcontroller’s SRAM as a PUF instance, we overcome the drawbacks of tradi-
tional hardware tamper-proofing solutions. Our software protection scheme ties
the execution of a software instance to a specific device, protects its program
code against manipulations, and can easily be retrofitted to already deployed
devices. To demonstrate our approach, we implemented it on a low-cost ARM-
based microcontroller. By adjusting certain security parameters, we are able
to balance security with performance. We showed that our software protection
scheme offers a high level of security against a static adversary and demonstrated
that a dynamic adversary requires a considerable amount of resources to perform
a successful attack. A further performance evaluation showed that an extensive
level of security is achievable with an acceptable performance degradation of ten
percent.

References

1. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory leakage-
resilient encryption based on physically unclonable functions. In: Sadeghi, A.-R.,
Naccache, D. (eds.) Towards Hardware-Intrinsic Security. Information Security and
Cryptography, pp. 135–164. Springer, Heidelberg (2010)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Aucsmith, D.: Tamper resistant software: an implementation. In: Anderson, R.
(ed.) Information Hiding, vol. 1174, pp. 317–333. Springer, Heidelberg (1996)

4. van den Berg, R., Skoric, B., van der Leest, V.: Bias-based modeling and entropy
analysis of PUFs. In: ACM Proceedings of the 3rd International Workshop on
Trustworthy Embedded Devices TrustED (2013)

5. Blum, M., Kannan, S.: Designing programs that check their work. J. ACM JACM
42(1), 269–291 (1995)

6. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper
data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)



20 F. Kohnhäuser et al.

7. Chang, H., Atallah, M.J.: Protecting software code by guards. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 160–175. Springer, Heidelberg (2002)

8. Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., Jakubowski, M.H.:
Oblivious hashing a stealthy software integrity verification primitive. In: Petit-
colas, F.A.P. (ed.) Information Hiding. LNCS, vol. 2578, pp. 400–414. Springer,
Heidelberg (2003)

9. Claes, M., van der Leest, V., Braeken, A.: Comparison of SRAM and FF PUF in
65nm technology. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161, pp. 47–64.
Springer, Heidelberg (2012)

10. Clang: A C language family frontend for LLVM. http://www.clang.llvm.org/
11. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys

from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

12. Gora, M.A., Maiti, A., Schaumont, P.: A flexible design flow for software IP binding
in commodity FPGA. In: IEEE Symposium on Industrial Embedded Systems IEEE
SIES (2009)

13. van Herrewege, A., Verbauwhede, I.: Software only, extremely compact, keccak-
based secure PRNG on ARM Cortex-M. In: ACM Proceedings of the 51st Annual
Design Automation Conference (2014)

14. Herzberg, A., Shulman, H., Saxena, A., Crispo, B.: Towards a theory of white-box
security. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT, vol. 297, pp.
342–352. Springer, Heidelberg (2009)

15. Horne, B., Matheson, L., Sheehan, C., Tarjan, R.E.: Dynamic self-checking tech-
niques for improved tamper resistance. In: Sander, T. (ed.) DRM 2001. LNCS, vol.
2320, pp. 141–159. Springer, Heidelberg (2002)

16. Jacob, M., Jakubowski, M.H., Venkatesan, R.: Towards integral binary execution:
implementing oblivious hashing using overlapped instruction encodings. In: ACM
Workshop on Multimedia & Security MM&Sec (2007)

17. KPMG: Managing the Risks of Counterfeiting in the Information Technol-
ogy Industry. http://www.agmaglobal.org/press events/press docs/Counterfeit
WhitePaper Final.pdf. Accessed 23 June 2015

18. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: IEEE Symposium on Security and Privacy S&P (2014)

19. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: IEEE Symposium on Code Generation and Optimization
(2014)

20. Lazebnik, F.: On systems of linear diophantine equations. In: Mathematics Maga-
zine (1996)

21. van der Leest, V., van der Sluis, E., Schrijen, G.-J., Tuyls, P., Handschuh, H.:
Efficient implementation of true random number generator based on SRAM PUFs.
In: Naccache, D. (ed.) Cryphtography and Security: From Theory to Applications.
LNCS, vol. 6805, pp. 300–318. Springer, Heidelberg (2012)

22. Maes, R., Verbauwhede, I.: Physically unclonable functions: a study on the state
of the art and future research directions. In: Sadeghi, A.-R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security, pp. 3–37. Springer, Heidelberg (2010)

23. Nithyanand, R., Solis, J.: A theoretical analysis: physical unclonable functions and
the software protection problem. In: IEEE Symposium on Security and Privacy
S&P (2012)

http://www.clang.llvm.org/
http://www.agmaglobal.org/press_events/press_docs/Counterfeit_WhitePaper_Final.pdf
http://www.agmaglobal.org/press_events/press_docs/Counterfeit_WhitePaper_Final.pdf


PUF-Based Software Protection for Low-End Embedded Devices 21

24. Schaller, A., Arul, T., van der Leest, V., Katzenbeisser, S.: Lightweight anti-
counterfeiting solution for low-end commodity hardware using inherent PUFs. In:
Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564, pp. 83–100. Springer,
Heidelberg (2014)

25. Schneier on Security: Security Risks of Embedded Systems. https://www.schneier.
com/blog/archives/2014/01/security risks 9.html. Accessed 23 June 2015

26. Wikipedia: DeCSS. http://www.en.wikipedia.org/wiki/DeCSS. Accessed 23 June
2015

https://www.schneier.com/blog/archives/2014/01/security_risks_9.html
https://www.schneier.com/blog/archives/2014/01/security_risks_9.html
http://www.en.wikipedia.org/wiki/DeCSS

	PUF-Based Software Protection for Low-End Embedded Devices
	1 Introduction
	1.1 Contributions
	1.2 Structure

	2 Related Work
	3 PUF-Based Software Protection Solution
	3.1 Code Integrity Check
	3.2 Device Authenticity Check
	3.3 Response Functions
	3.4 Mutually Checking Code Regions

	4 Security Evaluation
	4.1 Static Attacker Model
	4.2 Dynamic Attacker Model

	5 Proof of Concept
	5.1 PUF Characteristics
	5.2 Implemented Protection Mechanisms
	5.3 Performance Evaluation

	6 Conclusion
	References


