
Mauro Conti · Matthias Schunter
Ioannis Askoxylakis (Eds.)

 123

LN
CS

 9
22

9

8th International Conference, TRUST 2015
Heraklion, Greece, August 24–26, 2015
Proceedings

Trust
and Trustworthy
Computing

Lecture Notes in Computer Science 9229

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Mauro Conti • Matthias Schunter
Ioannis Askoxylakis (Eds.)

Trust
and Trustworthy
Computing
8th International Conference, TRUST 2015
Heraklion, Greece, August 24–26, 2015
Proceedings

123

Editors
Mauro Conti
University of Padua
Padua
Italy

Matthias Schunter
Intel Labs
Darmstadt
Germany

Ioannis Askoxylakis
Hellas (FORTH), Crete
Institute of Computer Science (ICS),

Foundation for Research and Technology
Heraklion
Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-22845-7 ISBN 978-3-319-22846-4 (eBook)
DOI 10.1007/978-3-319-22846-4

Library of Congress Control Number: 2015946077

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the proceedings of the 8th International Conference on Trust and
Trustworthy Computing (TRUST), held in Heraklion, Crete, Greece, during August
24–26, 2015. TRUST 2015 is hosted by the Institute of Computer Science of the
Foundation for Research and Technology-Hellas (FORTH), Greece, and it is sponsored
by Trusted Computing Group, Intel, and Microsoft.

Continuing the tradition of the previous conferences, held in Villach (2008), Oxford
(2009), Berlin (2010), Pittsburgh (2011), Vienna (2012), London (2013), and Herak-
lion (2014), TRUST 2015 provided a unique interdisciplinary forum for researchers,
practitioners, and decision makers to explore new ideas and discuss experiences in
building, designing, using, and understanding trustworthy computing systems.

The conference program of TRUST 2015 shows that research in trust and trust-
worthy computing is active, at a high level of competency, and spans a wide range of
areas and topics. Papers dealt, for example, with topics such as a largescale security
analysis of the Web, trust in cryptocurrency protocols, physically unclonable functions,
security aspects of mobile systems, security considerations of TPM 2.0, and privacy
aspects of trust.

We received 42 submissions in response to the Call for Papers. All submissions
were carefully reviewed by at least three Program Committee members or external
experts according to the criteria of scientific novelty, importance to the field, and
technical quality. After an online discussion of all reviews, 15 papers were selected for
presentation and publication in the conference proceedings. This amounts to an
acceptance rate of 35.7 %, for full papers. We also accepted three short papers, and
encouraged people to report on work in progress by submitting two-page poster
abstracts describing ongoing research. A panel of experts reviewed the submitted
abstracts. Seven of these abstracts were selected to be included in these conference
proceedings. We hope that these abstracts will convey a sense of the vibrancy and
current themes of research in trusted and trustworthy computing. The authors of these
abstracts also presented posters of their work at the conference. Furthermore, the
conference program contained several keynotes by leaders in academia, industry, and
government agencies.

We would like to express our gratitude to those people without whom TRUST 2015
would not have been this successful, and whom we mention now in no particular order:
the publicity chair Manolis Stamatogiannakis, the members of the Steering Committee
(where Ahmad-Reza Sadeghi deserves a special mention for his continued and valuable
advice during the preparation of this conference), the local Organizing Committee, the
keynote speakers, and the people that supported the editing of the proceedings
(Ann-Kathrin Braun and Ahmad Ibrahim). We also want to thank all Program Com-
mittee members and their external reviewers; their hard work made sure that the
scientific program was of high quality and reflected both the depth and diversity of

research in this area. Our special thanks go to all those who submitted papers, and to all
those who presented posters and papers at the conference.

August 2015 Mauro Conti
Matthias Schunter

Ioannis Askoxylakis

VI Preface

Organization

TRUST 2015 was organized by the Institute of Computer Science of the Foundation for
Research and Technology-Hellas (FORTH), Greece.

Steering Committee

Alessandro Acquisti Carnegie Mellon University, USA
Boris Balacheff Hewlett Packard, UK
Paul England Microsoft, USA
Michael Huth Imperial College London, UK
Andrew Martin University of Oxford, UK
Chris Mitchel Royal Holloway, University of London, UK
Sean Smith Dartmouth College, USA
Ahmad-Reza Sadeghi TU Darmstadt/CASED, Germany
Claire Vishik Intel, UK

General Chair

Ioannis Askoxylakis FORTH, Greece

Program Chairs

Mauro Conti University of Padua, Italy
Matthias Schunter Intel Labs, Germany

Publicity Chair

Manolis Stamatogiannakis Vrije Universiteit Amsterdam, The Netherlands

Local Organizing Committee

Nikolaos Petroulakis FORTH, Greece
Panos Chatziadam FORTH, Greece
Theodosia Bitzou FORTH, Greece

Program Committee

Giulio Aliberti Università degli Studi Roma 3, Italy
Magnus Almgren Chalmers University of Technology, Sweden
Elias Athanasopoulos FORTH, Greece
Liqun Chen Hewlett-Packard Laboratories, UK
Manuel Costa Microsoft Research, UK
Francesco Di Cerbo SAP Research Sophia-Antipolis, France

Xuhua Ding Singapore Management University, Singapore
Sascha Fahl Leibniz University Hannover, Germany
Michael Franz University of California, Irvine, USA
Peter Gutmann University of Auckland, New Zealand
Sotiris Ioannidis FORTH, Greece
Limin Jia Carnegie Mellon University, USA
Rüdiger Kapitza TU Braunschweig, Germany
Ghassan Karame NEC Laboratories Europe, Germany
Stefan Katzenbeisser TU Darmstadt, Germany
Michael Locasto University of Calgary, Canada
Federico Maggi Politecnico di Milano, Italy
Mohammad Mannan Concordia University, Canada
Jonathan McCune Google, USA
Aziz Mohaisen Verisign Labs, USA
Sachar Paulus Hochschule Mannheim, Germany
Marcus Peinado Microsoft Research, USA
Milan Petkovic Philips Research Laboratories, The Netherlands
Christina Pöpper Ruhr University Bochum, Germany
Vassilis Prevelakis TU Braunschweig, Germany
Steffen Schulz Intel Labs, Germany
Sean Smith Dartmouth College, USA
Manolis Stamatogiannakis Vrije Universiteit Amsterdam, The Netherlands

VIII Organization

Contents

Hardware-Enhanced Trusted Execution

PUF-Based Software Protection for Low-End Embedded Devices 3
Florian Kohnhäuser, André Schaller, and Stefan Katzenbeisser

Why Attackers Win: On the Learnability of XOR Arbiter PUFs 22
Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert

A Unified Security Analysis of Two-Phase Key Exchange Protocols
in TPM 2.0 . 40

Shijun Zhao and Qianying Zhang

On Making Emerging Trusted Execution Environments Accessible
to Developers . 58

Thomas Nyman, Brian McGillion, and N. Asokan

Trust and Users

Computing Trust Levels Based on User’s Personality and Observed System
Trustworthiness. 71

Michalis Kanakakis, Shenja van der Graaf, Costas Kalogiros,
and Wim Vanobberghen

Enhancing the Trustworthiness of Service On-Demand Systems via Smart
Vote Filtering . 88

Christos V. Samaras, Ageliki Tsioliaridou, Christos Liaskos,
Dimitris Spiliotopoulos, and Sotiris Ioannidis

Design and Field Evaluation of PassSec: Raising and Sustaining Web
Surfer Risk Awareness. 104

Melanie Volkamer, Karen Renaud, Gamze Canova,
Benjamin Reinheimer, and Kristoffer Braun

Trusted Systems and Services

Trustworthy Memory Isolation of Linux on Embedded Devices 125
Hamed Nemati, Mads Dam, Roberto Guanciale, Viktor Do,
and Arash Vahidi

LookAhead: Augmenting Crowdsourced Website Reputation Systems
with Predictive Modeling . 143

Sourav Bhattacharya, Otto Huhta, and N. Asokan

http://dx.doi.org/10.1007/978-3-319-22846-4_1
http://dx.doi.org/10.1007/978-3-319-22846-4_2
http://dx.doi.org/10.1007/978-3-319-22846-4_3
http://dx.doi.org/10.1007/978-3-319-22846-4_3
http://dx.doi.org/10.1007/978-3-319-22846-4_4
http://dx.doi.org/10.1007/978-3-319-22846-4_4
http://dx.doi.org/10.1007/978-3-319-22846-4_5
http://dx.doi.org/10.1007/978-3-319-22846-4_5
http://dx.doi.org/10.1007/978-3-319-22846-4_6
http://dx.doi.org/10.1007/978-3-319-22846-4_6
http://dx.doi.org/10.1007/978-3-319-22846-4_7
http://dx.doi.org/10.1007/978-3-319-22846-4_7
http://dx.doi.org/10.1007/978-3-319-22846-4_8
http://dx.doi.org/10.1007/978-3-319-22846-4_9
http://dx.doi.org/10.1007/978-3-319-22846-4_9

Ripple: Overview and Outlook . 163
Frederik Armknecht, Ghassan O. Karame, Avikarsha Mandal,
Franck Youssef, and Erik Zenner

Time to Rethink: Trust Brokerage Using Trusted Execution Environments . . . 181
Patrick Koeberl, Vinay Phegade, Anand Rajan, Thomas Schneider,
Steffen Schulz, and Maria Zhdanova

Trust and Privacy

REWIRE – Revocation Without Resolution: A Privacy-Friendly
Revocation Mechanism for Vehicular Ad-Hoc Networks 193

David Förster, Hans Löhr, Jan Zibuschka, and Frank Kargl

DAA-TZ: An Efficient DAA Scheme for Mobile Devices Using ARM
TrustZone . 209

Bo Yang, Kang Yang, Yu Qin, Zhenfeng Zhang, and Dengguo Feng

DAA-A: Direct Anonymous Attestation with Attributes 228
Liqun Chen and Rainer Urian

Building Blocks for Trust

Proposed Processor Extensions for Significant Speedup of Hypervisor
Memory Introspection . 249

Andrei Luţaş, Sándor Lukács, Adrian Coleşa, and Dan Luţaş

MWA Skew SRAM Based SIMPL Systems for Public-Key Physical
Cryptography . 268

Qingqing Chen, Ulrich Rührmair, Spoorthy Narayana, Uzair Sharif,
and Ulf Schlichtmann

Secure Erasure and Code Update in Legacy Sensors 283
Ghassan O. Karame and Wenting Li

Efficient Provisioning of a Trustworthy Environment for Security-Sensitive
Applications . 300

Adrian Coleşa, Sándor Lukács, Vlad Topan, Radu Ciocaş,
and Adrian Pop

Poster Session

Towards a Trust Model for Social Networks of Wireless Smart Objects:
Work-in-Progress . 313

Jonathan Ouoba, Cyril Cassagnes, and Tegawendé F. Bissyandé

X Contents

http://dx.doi.org/10.1007/978-3-319-22846-4_10
http://dx.doi.org/10.1007/978-3-319-22846-4_11
http://dx.doi.org/10.1007/978-3-319-22846-4_12
http://dx.doi.org/10.1007/978-3-319-22846-4_12
http://dx.doi.org/10.1007/978-3-319-22846-4_13
http://dx.doi.org/10.1007/978-3-319-22846-4_13
http://dx.doi.org/10.1007/978-3-319-22846-4_14
http://dx.doi.org/10.1007/978-3-319-22846-4_15
http://dx.doi.org/10.1007/978-3-319-22846-4_15
http://dx.doi.org/10.1007/978-3-319-22846-4_16
http://dx.doi.org/10.1007/978-3-319-22846-4_16
http://dx.doi.org/10.1007/978-3-319-22846-4_17
http://dx.doi.org/10.1007/978-3-319-22846-4_18
http://dx.doi.org/10.1007/978-3-319-22846-4_18
http://dx.doi.org/10.1007/978-3-319-22846-4
http://dx.doi.org/10.1007/978-3-319-22846-4

BYOD for Android — Just add Java . 315
Jessica Buttigieg, Mark Vella, and Christian Colombo

Script Fuzzing with an Attacker’s Mind-Set . 317
John Galea and Mark Vella

Trust and Trustworthiness Maintenance: From Architecture to Evaluation . . . 319
Mohamed Bishr, Christian Heinz, Torsten Bandyszak, Micha Moffie,
Abigail Goldsteen, Willis Chen, Thorsten Weyer, Sotiris Ioannidis,
and Costas Kalogiros

Increasing the Trustworthiness of Embedded Applications 321
Elias Athanasopoulos, Martin Boehner, Cristiano Giuffrida,
Dmitry Pidan, Vassilis Prevelakis, Ioannis Sourdis, Christos Strydis,
and John Thomson

Exploring Graph Centralities for Detecting Anomalous Behavior in Large
Networks . 323

Nidhi Rastogi and James Hendler

Extending the Operational Envelope of Applications 325
Vassilis Prevelakis and Mohammad Hamad

Author Index . 327

Contents XI

http://dx.doi.org/10.1007/978-3-319-22846-4
http://dx.doi.org/10.1007/978-3-319-22846-4
http://dx.doi.org/10.1007/978-3-319-22846-4
http://dx.doi.org/10.1007/978-3-319-22846-4
http://dx.doi.org/10.1007/978-3-319-22846-4
http://dx.doi.org/10.1007/978-3-319-22846-4
http://dx.doi.org/10.1007/978-3-319-22846-4

Hardware-Enhanced Trusted Execution

PUF-Based Software Protection for Low-End
Embedded Devices

Florian Kohnhäuser(B), André Schaller, and Stefan Katzenbeisser

Security Engineering Group, TU Darmstadt, Darmstadt, Germany
{Kohnhauser,Schaller,Katzenbeisser}@seceng.informatik.tu-darmstadt.de

http://www.seceng.de/

Abstract. In recent years, low-end embedded devices have been used
increasingly in various scenarios, ranging from consumer electronics to
industrial equipment. However, this evolution made embedded devices
profitable targets for software piracy and software manipulation. Aggra-
vating this situation, low-end embedded devices typically lack secure
hardware to effectively protect against such attacks. In this work, we
present a novel software protection scheme, which is particularly suited
for already deployed low-end embedded devices without secure hardware.
Our approach combines techniques based on self-checksumming code
with Physically Unclonable Functions (PUFs) to establish a hardware-
assisted software protection. In this way, we can tie the execution of a
software instance to a specific device and protect its program code against
manipulations. We show that our software protection scheme offers a high
level of security against static adversaries and demonstrate that dynamic
adversaries require considerable resources to perform a successful attack.
To explore the feasibility of our solution, we implemented the protection
scheme on an ARM-based low-end commodity microcontroller. A further
performance evaluation shows that the implemented solution exhibits a
fair overhead of ten percent.

1 Introduction

In recent years, the Internet of Things (IoT) [2] became one of the biggest buzz-
words in the technology industry. With the IoT, billions of smart, interconnected
embedded systems are proliferating virtually every aspect of our life. Nowadays,
those devices can already be found in many everyday-life objects, such as con-
sumer electronics, mobile devices, cars, smart-meters, or home appliances. On
top of that, low-end embedded devices are widely used in industrial automa-
tion environments. However, the fact that embedded systems are increasingly
deployed and typically lack effective security mechanisms aroused the interest of
hackers, who started to realize that embedded devices are profitable targets. In
practice, there are many attack scenarios on embedded devices.

One of the most tempting scenarios is the illegitimate reproduction of embed-
ded systems, where an adversary reproduces existing devices by copying their
firmware to counterfeit, cheaper hardware. Selling those cloned devices, adver-
saries cause financial loss for the manufacturer of the original system. In 2005,
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 3–21, 2015.
DOI: 10.1007/978-3-319-22846-4 1

4 F. Kohnhäuser et al.

KPMG estimated the sales lost to counterfeiters for fake electronic goods at 100
billion dollars [17]. Another attack scenario is the removal of license checking
code, also referred to as software cracking. As an example, the attacker’s mobile
device may contain an application which requires a license. Instead of purchasing
a license, the attacker bypasses the license check by manipulating the software.
A further scenario is the play-back of Digital Rights Management (DRM) pro-
tected media on hardware media players, such as TV streaming devices. An
attacker might insert code in the decryption function of the DRM player to
intercept and extract the decrypted media. A famous example is the bypass of
the DVD DRM encryption system CSS [26].

In order to protect against such attacks, the execution of the software must
both be tied to a particular device and be secured against manipulations. To
realize an effective hardware-software binding, hardware support is required.
With hardware support, the security of a protected program rests on a secret,
e.g., a cryptographic key or a piece of code implemented in a physical module.
Prominent examples are the Trusted Platform Module (TPM), USB dongles,
and cryptographic coprocessors. Nevertheless, integrated circuits dedicated to
security are complex in their design, provoke deployment issues, occupy addi-
tional space on the underlying board, and lead to higher production costs. For
this reason, especially legacy or low-end embedded devices lack hardware secu-
rity mechanisms. However, as these devices are widely deployed and increasingly
become the target of attacks [25], there is the need for a security solution that
requires no specifically designed hardware.

1.1 Contributions

In this work, we explore a novel software protection approach, which is particularly
suited for low-end embedded devices. Our approach combines and extends a self-
checksumming code technique [15] with SRAM PUFs in commodity hardware [24]
to protect a program against modifications and tie its execution to a dedicated
device. Due to the usage of an intrinsic PUF as a secure key storage, our approach
does not require any hardware modifications and thus can be easily retrofitted to
already deployed devices. Furthermore, relying on a PUF significantly decreases
the attack surface, as the secret is stored involving the PUF’s physical properties.
This makes physical attacks much more complicated compared to solutions based
on non-volatile memory [1]. In order to explore the applicability of our solution,
we implemented the proposed scheme on a low-cost ARM Cortex microcontroller.
Various security parameters allow for a balancing between security and perfor-
mance. Finally, a security and performance evaluation reveals that we achieve a
substantial level of security with a performance penalty of ten percent.

1.2 Structure

In Sect. 2 we introduce PUFs and summarize existing work on tamper-resistant
software. Section 3 presents our software protection solution. In Sect. 4 we
evaluate the security of our approach. Section 5 depicts our implementation and
evaluates its performance. Eventually, Sect. 6 concludes this work.

PUF-Based Software Protection for Low-End Embedded Devices 5

2 Related Work

Physically Unclonable Functions. Physically Unclonable Functions (PUFs)
are physical objects that exhibit unique physical microstructures induced by
manufacturing process variations. When a PUF is queried with a stimulus (chal-
lenge), it generates an unpredictable but repeatable response, which depends on
the challenge and the PUF’s physical structure. Typically, a PUF is assumed to
exhibit characteristics of robustness, unclonability, unpredictability and tamper-
evidence [22] (see Sect. 5.1). There exist various PUF implementations, ranging
from optical and analogue PUFs to electronic PUFs [22]. The most significant
PUFs for electronic circuits are delay- and memory-based PUFs. The former,
e.g., arbiter PUFs or ring oscillator PUFs, utilize delays in their electronic cir-
cuits to generate the response. Memory-based PUFs exploit metastable states
of digital memory primitives, such as SRAM or flip-flops, whose cells show a
tendency to either initialize with the value zero or one. As not all memory bits
show a stable initialization behavior, those bits introduce noise, which needs to
be taken care of. For this purpose, Fuzzy Extractors are applied that remove the
noise effect, which enables a robust reconstruction of an identifier [11].

Software Integrity Protection. Software integrity protection techniques
deter attackers from modifying a particular software. They prevent adversaries
from performing unauthorized actions, such as skipping a license check or playing
a DRM-protected media file without the correct key.

Self-checksumming code is a common approach to protect a program against
tampering [3,7,15]. The idea behind this concept is to equip a program with
the functionality to verify its own integrity at runtime by calculating checksums
for parts of its code. After a checksum is computed, it is compared to a pre-
computed reference checksum, indicating if the checked code has been tampered
with. In this case a tamper-response (e.g., program termination) is initiated.

Oblivious hashing techniques pursue another approach. Instead of verifying
parts of the program’s machine-code, oblivious hashing mechanisms compute a
hash value over the program’s execution trace. In order to verify the program
integrity, this hash value is then compared to a reference value. Typically, the
hash value is computed over assignments and execution branches. Thus, instruc-
tions that monitor changes to variables and control flow are interweaved with
the original code [8,16].

Result checking is a simple mechanism where, instead of verifying the pro-
gram’s code integrity, the result of certain computational operations is veri-
fied [5]. Checking the outcome of a computation can be considerably faster than
performing the computation itself. For instance, a general sorting computation
has order of O(n · log(n)) time complexity, whereas validating a sorted sequence
takes O(n) time.

PUF-Based Software Protection. Gora, Maiti and Schaumont [12] proposed
a system that implements a PUF instance on an FPGA to protect software and

6 F. Kohnhäuser et al.

bind it to one hardware instance. At device start, they derive an 128-bit AES
key from the PUF, utilize this key to decrypt the actual software code that was
stored encrypted beforehand, and finally execute the decrypted software.

In a similar work of Schaller et al. [24], the authors presented an anti-counter-
feiting solution which exploits inherent PUF characteristics from on-chip static
random-access memory (SRAM) found in commodity devices. The authors pro-
pose to extract a unique device-dependent key from the SRAM PUF found in
commodity devices. Using this key, the second-stage bootloader as well as the
kernel of the device is decrypted during device start-up.

Nithyanand and Solis [23] show that traditional PUFs cannot solve the soft-
ware protection problem in offline settings because they are vulnerable to observe
once, run everywhere (OORE) attacks. To solve this problem, the authors pro-
pose the use of intrinsic personal PUFs (IP-PUFs). IP-PUFs are PUFs that are
intrinsically and continuously involved in the computation of the program to be
protected. In their proposed system, an IP-PUF computes the ordering of nodes
in the control flow graph and enforces a random permutation of those nodes.

In summary, there are existing approaches that allow software to be integrity
protected and tied to one device using PUFs. However, the security level exist-
ing solutions provide is comparatively low, since an adversary can dump the
decrypted software at runtime. Once the adversary is in possession of the
decrypted software, he can modify it or run it on other devices. By contrast,
this work pursues a different approach, where self-checksumming code is com-
bined with PUF responses to additionally provide security against attacks at
runtime. Furthermore, the developed solution does not require any hardware
modifications, which allows the deployment on commodity or legacy devices.

3 PUF-Based Software Protection Solution

Our software protection solution consists of four basic mechanisms: two check
and two response functions. Check functions measure the authenticity of the
device and the integrity of the program. Response functions read these mea-
surements, decide whether they indicate a healthy or a manipulated state, and
initiate a program misbehavior if a manipulation has been detected. In order
to protect a software with our protection scheme, both functions are repeatedly
integrated into the software’s program code.

In more detail, the first check function measures the integrity of the software
by hashing its native program code (see Sect. 3.1). The second check function
computes a unique bitstream on the basis of a device-dependent SRAM PUF
response to measure the authenticity of the device (see Sect. 3.2). If those two
measurements indicate a manipulated state, the first response function redi-
rects branches to random locations in the program text segment and the second
response function corrupts the program’s execution stack (see Sect. 3.3). Hence, if
the program or the execution environment has been manipulated, both response
functions cause a malfunction of the program.

PUF-Based Software Protection for Low-End Embedded Devices 7

3.1 Code Integrity Check

Principles. The integrity of the executable is measured by multiple self-check-
summing code segments at runtime. Each segment consists of a hash function
which computes a hash value over a predefined section in the program’s text
segment. The hash value represents the integrity status of the checked section.
It is later used by response functions to decide whether the program has been
tampered with. Depending on the spatial separation of the hash function and
the response function, a hash value is either stored in a register or on the stack.

For stealth and security reasons, each hash function is inlined in the code,
preferably with some spatial separation to other hash functions, and gets exe-
cuted as the control flow passes the code location where the hash function is
inserted. It is desirable that each inserted hash function is executed at least once
at runtime, but not so frequently that the protected program suffers from a huge
runtime overhead. In practice, profiling tools can be utilized to identify suitable
code locations. We propose to let multiple hash functions measure a contigu-
ous and relatively small part of the program. Thus, each integrity measurement
consumes only little time. In addition, the effort for an attacker to remove the
software protection increases.

In order to increase the effort even more, each code segment is measured
multiple times by different hash functions. The so-called overlap factor indicates
how often a code section is checked by different hash functions. Its value must
be well-chosen to achieve a balance between security and performance according
to the application scenario. To avoid that hash functions suspiciously measure
large parts of the program, we recommend to split the program code in sections
of equal size. These code regions are then uniformly assigned to hash functions
till the overlap factor for each code region is saturated.

Hash Function Design. The design of our hash function is based on the work
by Horne et al. [15]. With d = [d1, ..., dn] being data in a code section which is
protected by a hash function h, c being an odd multiplier constant, and hi(d)
being the hash value in iteration i, our hash function can formally be defined as:

hi(d) =

{
0, i = 1
hi−1(d) + c · di. 1 < i ≤ n

(1)

We deviated from Horne’s approach by not multiplying hi−1(d) with c in
each iteration. This allows us to construct arbitrary complex mutually checking
code regions (see Sect. 3.4). One reason we build on the code integrity check
by Horne et al. is the hash function’s size and speed. A large and slow hash
function would fairly expand program size as well as runtime overhead, since
the hash function is inlined frequently into the original program. However, the
most important reason is stealth. An attacker who can locate all hash functions is
able to break the code integrity check, for instance, by overwriting hash functions
with code that always writes the respective expected hash value in memory. The
proposed hash function neither contains any suspicious operations nor provides

8 F. Kohnhäuser et al.

any characteristic pattern. In addition, its implementation in native program
code can easily be diversified. Thus, each hash function can be customized,
leaving the attacker no weak point for pattern matching attacks (see Sect. 4.1).

In order to customize hash functions, the odd constant c can be randomized,
the addition can be replaced by a subtraction or an XOR operation, or a further
constant can be added or subtracted after the multiplication with c. In addition,
the hash function’s implementation in native program code can be diversified,
among others, by permuting the instruction order, permuting the assignment
of variables to CPU registers, or diversifying particular instructions. A further
possibility is to split the hash function code into multiple segments which are
inserted with spatial separation in the original program code. With these tech-
niques, it is straightforward to generate multiple million different hash function
implementations.

Another attack vector is the code read operation performed by the hash
function. It allows an attacker to find the location of hash functions by search-
ing the code for addresses within the text segment, or observing if and where
certain registers obtain values within the text segment at runtime. To mitigate
this threat, we propose to implement Horne’s memory access obfuscation app-
roach [15] which uses an additional offset when addressing data in the program
text segment (e.g., with the instruction LDR Rd, [Rn, Rm] on ARM-based plat-
forms). In this way, text section addresses neither appear in the code nor in a
register at runtime.

3.2 Device Authenticity Check

Principles. Recent work by Schaller et al. [24] have shown that SRAM modules
present in several microcontrollers can be used as a PUF instance. In the device
authenticity check mechanism, we use the microcontroller’s SRAM PUF start-
up values to compute a device-dependent bitstream. Since the SRAM PUF is
unique and highly integrated in the microcontroller, the bitstream is unique
for each embedded device. For these reasons, our response functions utilize the
bitstream to authenticate the device at runtime.

The code for the bitstream generation is inserted into the device’s bootloader.
Hence, the bitstream is generated each time the device is starting up. In particu-
lar, a pseudorandom number generator (PRNG) is applied to allow for a variable
bitstream length. In this way, a tradeoff between performance and security can
be achieved. A larger bitstream takes more time to compute at device start-up
but provides more unique values that can later be verified by response functions.
Alternatively, it would be possible to gradually create the bitstream during pro-
gram execution. However, as this further increases the execution overhead, we
decided to precompute the entire bitstream in advance.

PRNG Bitstream Generation. Generating the PRNG bitstream comprises
an enrollment and a reconstruction phase. The enrollment phase is performed
at a trusted site, e.g., by the software integrator, and involves taking a reference

PUF-Based Software Protection for Low-End Embedded Devices 9

PUF measurement and equipping the device’s bootloader with code and helper
data to reconstruct a unique and reliable bitstream. During reconstruction, which
is performed after deployment at the side of the user, the equipped bootloader is
executed. Thus, the actual bitstream is generated using the PUF start-up values
and additional error correction methods. To correct the raw PUF start-up values
from noise, they are processed by error correction mechanisms. For this purpose,
we integrate a Fuzzy Extractor (FE) based on the design by Bösch et al. [6] in the
bootloader. The techniques used in the following to restore a predefined secret
from SRAM cells are based on the work by Schaller et al. [24].

The enrollment phase is performed during the deployment of our software
protection scheme once for each device. Initially, a unique random secret S is
chosen. Using the FE with a reference PUF measurement and the secret S as
input, so-called Helper Data is generated and stored on the device. The Helper
Data is required in the reconstruction phase to retrieve S from a single noisy PUF
measurement. Afterwards, the length for the PRNG bitstream is set, balancing
security, speed, and storage consumption for the particular device and use case.
At last, it is set at which location the bitstream is stored in memory during the
reconstruction phase.

The reconstruction phase is executed each time the device is started. Initially,
the bootscript measures and stores the noisy SRAM PUF values R′. Next, the FE
reconstructs a secret S′ using the current PUF measurement R′ and the stored
Helper Data as input. If the PUF measurement R′ corresponds to the respective
Helper Data, the reconstructed secret S′ will match the original secret S. S′ is
then used to initialize the PRNG which finally generates a PRNG bitstream of
the set length in memory.

3.3 Response Functions

Principles. Before a response function is inserted into the code, it is randomly
selected whether the response function verifies a hash value, a value of the PRNG
bitstream, or both values at once. If a response function verifies a hash value, it
uses the hash value of the nearest preceding hash function. This ensures that hash
values are verified shortly after they are measured, thwarting code manipulations
promptly after they have been detected. If a response function verifies a value of
the PRNG bitstream, it uses a random preferably nonrecurring bitstream value.
The basic idea is to use a unique address in each PRNG bitstream access. Thus, a
single address cannot be used as an attack vector for pattern matching attacks or
as a watchpoint in dynamic analyses. However, if there are less PRNG bitstream
values than deployed response functions available, some addresses must be used
multiple times.

The overall goal of our two response functions is to provoke a malfunction
of the protected program if the measured code integrity or device authenticity
values are invalid. We would like to point out that a malfunction of the program
may lead to a damage of the machine that is controlled by the program. However,
the alternative to perform a deterministic action (e.g., a controlled program
shutdown) would provide an easy attack vector for the adversary. In this scenario,

10 F. Kohnhäuser et al.

the adversary could simply observe where the program shutdown is initiated, to
locate the response functions in the code.

Indirect Branch Response. The indirect branch response is applicable on
any branch in the program. When applied, an original branch is converted to
an indirect branch whose target address is dependent on the verified values, i.e.,
either on a hash value, on a value of the PRNG bitstream, or on both values.
The exact target address of the indirect branch is determined by a computation
which meets the following requirements.

The output of the computation must equal the target address of the replaced
original branch if the verified values correspond to their expected values. If at
least one of the verified values is corrupted, the outcome of the computation
must be a random address that lies within the program text segment. The latter
requirement ensures that the computed target address is always a valid instruc-
tion that can be executed. If the computation of the target address would not
generate a valid address in the text segment, program manipulations would
immediately cause memory access violations. This would be very suspicious and
allows the attacker to easily locate the response function with backtraces.

In practice, the behavior of the indirect branch tamper response is highly
dependent on the program size and the structure of the program code (e.g.,
the number of functions in the program). We observed, on average, about two
function calls until a memory access violation occurred after the indirect branch
response was executed.

As an additional requirement, the computation of the target address must
be simple. In order to improve stealth, its implementation should be short and
should not contain unusual instructions. To improve stealth even more, each
deployment of the indirect branch response function should be customized, for
instance, with the techniques presented in Sect. 3.1.

Stack Manipulation Response. In contrast to the indirect branch response,
the stack manipulation response can be deployed at arbitrary locations in
the program code. When deployed, we propose to use one stack manipulation
response per hash function to ensure that each code measurement is eventually
verified by a response function.

The idea behind the stack manipulation response is to corrupt the execution
stack if the verified values are invalid. Hence, in case of an unauthorized modifi-
cation, local variables, function arguments, register copies, return addresses, and
other data that lies on the stack, are altered. As a result, the program continues
execution with incorrect values.

A simple way to accomplish a modification of all values on the stack is to
shift the stack pointer. Shifting the stack pointer has two benefits. First, it
mixes up stack frames, which complicates a backtracing the program. Second,
it modifies the return address and thus provokes a program crash when the
currently executed function returns. If an eventual program crash as a tamper-
response is not desirable, we propose to alter values on the stack directly.

PUF-Based Software Protection for Low-End Embedded Devices 11

3.4 Mutually Checking Code Regions

Since the presented protection mechanisms secure the entire program code and at
the same time are also part of the program code, they secure each other against
modifications as well. Although this enhances the security of a protected soft-
ware, it comes at the cost of emerging circular dependencies in the deployment
process. These mutual dependencies occur because at some point code protection
measures, consisting of a hash function and a response function which verifies
the hash function’s value, circularly check each other.

In the work by Horne et al. [15], code regions are assigned to hash functions
in a left-to-right pass which generates no mutual dependencies. However, with
this approach, the overlap factor is comparatively low at the beginning and the
end of the program code. In fact, their overlap factor goes down to a factor of
one in the first and last few bytes of the program code. By contrast, we propose
a uniform assignment of hash functions to code regions and a subsequent solving
of the upcoming circular dependencies. Thus, we can ensure a consistent overlap
factor throughout the entire program code.

When solving cyclic checks, the first step is to transform mutually checking
code regions into an equation system. For this purpose, we initially deploy all
protection mechanisms into the software and build a temporary protected binary.
The protected binary contains the final code, except for the response functions’
reference values and additional placeholder values. We propose to insert one
freely selectable 32-bit placeholder value per code integrity measure to facilitate
solving the equation system. Next, we utilize the fact that hash values can be
written as the sum of multiple data values. With d = [d1, ..., dr, ..., dp, ..., dn]
being a list of n 32-bit words in a code section, where dr is a reference value,
dp is a placeholder value, and c being the hash function’s multiplier constant,
a hash function h which measures this code section on a 32-bit microprocessor
can be written as:

h(d) ≡ c · dr + c · dp︸ ︷︷ ︸
l

+
n∑

i�=r
i�=p

c · di
︸ ︷︷ ︸

r

(mod 232) . (2)

In this way, hash values are divided in a variable part l, containing the ref-
erence value dr and the additional placeholder value dp which are to be solved,
and a fixed part r, containing the rest of the code segment. Since the code data
di and the multiplier constant c are fixed after deployment, r can easily be com-
puted. Next, reference values must be expressed in relation to hash values and
PRNG bitstream values. The exact dependence between PRNG, hash, and ref-
erence value is given by the response function in which the reference value is
used. Finally, these relations are combined to one linear Diophantine equation
system which is then solved according to the approach of Lazebnik [20].

12 F. Kohnhäuser et al.

4 Security Evaluation

Information security mechanisms like cryptographic primitives or secure proto-
cols are commonly designed to be secure in the black-box model. However, we
assume a much more challenging scenario where the attacker is in possession
of the endpoint devices and thus has access to the implementation and power
over the execution environment. This security model is referred to as white-
box model [14]. Taking the white-box model as a basis, we specify two attacker
models, the static attacker and the dynamic attacker. We generally expect both
attackers to be familiar with our software protection model, albeit we assume
that they do not know the particular deployed protection code, the location of
the protection code, and aspects of our protection scheme which are randomized
at deployment. The following sections specify the attacker models and evaluate
the security of our software protection scheme against the respective model.

4.1 Static Attacker Model

Specification. A static attacker has the ability to perform static analysis on a
device in his possession, i.e., he can read and modify all the data stored on the
device. For instance, the attacker can read and modify the content of the external
memory, like the flash memory or the RAM, or the internal memory, including
the software with its hard-coded secrets and cryptographic keys. Additionally,
we presume that the static attacker can run the program and observe its input-
output behavior.

The static attacker model is a reasonable assumption for an experienced
attacker who lacks the ability to debug the protected program. This may be
the case due to the employment of anti-debugging techniques implemented in
software (e.g., the exhaustion of breakpoint registers, or the use of API functions
to check if a debugger is present) or in hardware (e.g., the physical removal of
debugging ports).

Evaluation. Using a disassembler, a static attacker can analyze native program
code and reverse engineer the protected program. In the worst case, the attacker
would comprehend the complete code and thereby know how he can circumvent
our protection mechanisms. In practice, though, this task is highly laborious, as
even a small program consists of a few thousand lines of machine code.

One possibility to accelerate the analysis process is to look for outstand-
ing instructions or specific patterns in the code. In a pattern matching attack,
the attacker reveals the location of the protection code by extracting a pat-
tern from found protection mechanisms and then searching the entire program
code for that pattern. Therefore, we specifically avoided the use of suspicious
operations by performing short and common computations only. The implemen-
tation of our hash function requires approximately 30 bytes (48 bytes with code
access obfuscation) and the response function between 12 and 18 bytes. Addition-
ally, we demonstrated in Sect. 3 that both mechanisms can easily be diversified
repeatedly.

PUF-Based Software Protection for Low-End Embedded Devices 13

In another technique called collusion or differential attack, an adversary
compares multiple versions of a protected program to spot the location of the
inserted protection mechanisms in their differences. In order to protect against
this attack, we can distribute our protection scheme to many devices with the
same deployment preferences. In this way, a collusion attack would only reveal
the location of the Helper Data which does not leak any information. A further
approach would be to diversify the entire program in the deployment process [18].

A very common technique applied during a static analysis is the examination
of the program’s execution flow. With the deployment of the indirect branch
response function, branches are replaced with indirect branches whose target
addresses are dependent on hash values and values of the PRNG bitstream. As
both values are not known to a static analysis tool, our approach can significantly
reduce the amount of useful information that an attacker can extract from a
control flow analysis.

The unpredictability of the PRNG bitstream in offline attacks has an addi-
tional advantage. Since both response functions occasionally utilize a value of the
PRNG bitstream for their operation, their exact behavior cannot be predicted
with static analysis techniques. Furthermore, both response functions can be
used to perform essential operations in the program, i.e., branches or stack allo-
cations. As a result, it is hardly possible for a static attacker to remove the
hardware-software binding.

4.2 Dynamic Attacker Model

Specification. A dynamic attacker inherits all abilities from the static attacker.
Furthermore, the dynamic attacker has the ability to read and modify all the
data on a device at runtime. With these abilities, the attacker can interrupt
a program at any time, single-step through the program code, and inspect or
modify memory values at runtime. Moreover, the attacker has the capability
to modify a program’s execution environment. He might force the program to
use bogus dynamic libraries, altered operating system functionalities, or run the
program in a virtual machine.

We are aware that an attacker with the stated abilities and enough resources
in time and money is capable of breaking any software security mechanism.
Therefore, our goal is to increase the effort for a successful attack to a level
where an attack becomes uneconomical.

Evaluation. One of the most powerful debugging features when analyzing a
protected program are watchpoints. Watchpoints are used to halt the execu-
tion whenever the program accesses predefined memory locations. A dynamic
attacker can use this technique to locate a large fraction of all response func-
tions by recurrently setting watchpoints on values of the PRNG bitstream while
executing the program with various input. In addition, by setting watchpoints
on addresses within the program text segment, the attacker can locate hash
functions. A subsequent tracing of the hash functions’ hash values can reveal

14 F. Kohnhäuser et al.

the location of all remaining response functions. Having located all response
functions, the attacker can remove the verification of hash and PRNG bitstream
values and thus disable our software protection. Although the described app-
roach is eventually successful, it requires a significant amount of effort from an
attacker. Furthermore, the effort can be arbitrarily augmented by increasing the
number of hash functions, setting a higher overlap factor, or obfuscating access
on hash values and values of the PRNG bitstream.

Another common dynamic analysis technique is tracing. Tracing a program
involves logging information during the program’s execution, such as the execu-
tion path, memory values, or register values. A dynamic attacker may trace back
program crashes or abnormal program behavior to localize response functions.
During the design of our response functions, we ensured that there is a large
spatial and temporal separation between the execution of the response function
and its impact on the program, i.e., a program crash or a program misbehavior.
Thus, the attacker has to examine a large portion of the trace back to finally
localize a single response function.

Profiling is an additional dynamic analysis technique which involves mea-
suring particular runtime performance values. In general, our protection mech-
anisms do not consume exceptionally much CPU time or memory. But yet,
profiling a protected program may reveal the location of deployed hash functions
when the execution of a hash function takes exceptionally long time compared to
the execution time of the original program. Anyhow, profiling requires about the
same effort as the above described approach with watchpoints, as the protected
program must be examined multiple times with different input. On top of that,
the profiling approach is less reliable than the watchpoint approach, because
code that is often run through need not be part of a hash function.

Emulation is a further dynamic analysis technique. An emulator is software
which simulates the behavior of a particular hardware platform. With emulation,
an adversary can bypass the hardware-software binding by emulating particular
PUF start-up values. In addition, an adversary can redirect data access to the
unmodified version and code access to the modified version of a protected pro-
gram, to bypass our code integrity protection. Nevertheless, emulation attacks
are unpractical, because the software has to run in an emulator and cannot run
directly on the hardware of an embedded system. In addition, the performance
is slower, an emulator is hard to implement, and the protected programs PRNG
bitstream must be extracted.

With temporary modifications or on-the-fly writes in memory, the attacker
modifies a code region before its execution and recovers it to its original form
afterwards. If an adversary inserts his modification just before it is executed
and restores the original code immediately after the modified code has been exe-
cuted, we cannot defend against this attack. However, this requires the attacker
to permanently attach a debugger to the program, to write a debugger script
which performs the attack without manual intervention, and to accept a loss in
performance because of multiple code manipulations at runtime.

PUF-Based Software Protection for Low-End Embedded Devices 15

5 Proof of Concept

In order to explore the applicability of our software protection scheme, we
implemented and evaluated it on the Stellaris EK-LM4F120XL microcontroller.
The Stellaris board is a low-end embedded system featuring an 80 MHz ARM
Cortex-M4F microprocessor. During deployment, the protection mechanisms are
inserted into the source code of the program to be protected. Subsequently, the
LLVM compiler framework [19] with Clang front-end [10] is used to compile the
equipped source code to the final protected binary. For this purpose, we wrote
a Python script which controls LLVM, Clang, and additional external tools and
libraries to automatically build the protected program. In the following sections
we give details on the intrinsic PUF instance of the Stellaris board, the imple-
mentation of the protection scheme, and the performance of our implementation.

5.1 PUF Characteristics

Before using a SRAM PUF instance in security critical applications, it is crucial
to characterize the SRAM start-up values for constructing an efficient Fuzzy
Extractor (FE) and extracting a secret with full entropy. In order to obtain suf-
ficient measurements, we used a hardware setup comprising 15 Stellaris boards.
The Stellaris boards were connected to a custom microcontroller, which in turn
was connected to our terminal PC. This setup allowed us to repeatedly query
each of the boards automatically. In particular, the microcontroller was pro-
grammed to toggle an individual device, executing the modified bootloader (see
below for details) and sending the SRAM start-up values over UART back to the
microcontroller. Subsequently, the measurements were forwarded to the terminal
PC, where they were saved and post-processed. Using this setup we generated
1000 measurements per device.

In the following we present numbers for metrics, which are generally used to
evaluate the quality of a PUF instance. The Hamming Weight (HW) of mea-
surements from the same device indicates a potential bias towards zero or one.
This metric provides a first impression on the entropy present in the start-up
values. The Within-Class Hamming distance (WCHD) indicates the robustness
of measurements from a single device. In particular, it shows how many bits were
flipped during repeated start-ups and therefore represents the noise level. The
Between-Class Hamming distance (BCHD) reveals the independence of start-up

Table 1. Metrics from 15 Stellaris boards with 1000 measurements per device.

Metric Value [%]

Fractional HW (min; max) 43.29; 53.69

Fractional WCHD (max) 5.25

Fractional (avg) 49.33

min-entropy (min) 5.86

16 F. Kohnhäuser et al.

values from different devices and thus shows whether the PUF can be used to
uniquely identify a given device. Lastly, the min-entropy was calculated to quan-
tify the randomness of the start-up values. To do so, we adapted the well-known
approach to calculate min-entropy [21], assuming independence between all bits
from the start-up pattern [4,9] and each individual bit to be a binary source. In
Table 1 numbers for these metrics are shown, attesting that the Stellaris board
has almost ideal PUF characteristics.

5.2 Implemented Protection Mechanisms

Hash Function. In Sect. 3 we stated that it is vital for the security of our
protection scheme to deploy syntactically different hash functions. In order to
have precise control over the hash function’s native program code, we inline hash
functions as ARM assembler code in the program source code. To avoid the usage
of unusual instructions in our ARM assembler version of the hash function, we
implemented the hash function in C and compiled it to get an assembly language
prototype. A so generated ARM assembly prototype is show in the following code
snippet. It hashes a code region from address 0x26c to 0x2ac with the multiplier
constant c = 3:

1: movs r1, #0 // hash = 0
2: movw r2, 0x26c // start = 0x26c
3: movw r3, 0x2ac // end = 0x2ac
4: loop:
5: ldr r4, [r2], 4 // tmp = data[i], start++
6: add r4, r4, r4, LSL#1 // tmp = 3*tmp
7: add r1, r4 // hash = hash + 3*tmp
8: cmp r2, r3 // if (start < end)
9: blt loop // then goto loop

PRNG Bitstream Generation. During deployment, we substitute the pre-
existing Stellaris bootloader with a modified version that contains our PRNG
bitstream generation code. Besides the standard initialization code, the modified
bootloader contains code for the extraction of the PUF start-up values, a FE
based on the design by Bösch et al. [6], Helper Data to reconstruct a predefined
secret, and a PRNG based on the Keccak (SHA-3) implementation of Herrewege
et al. [13]. At first, the bootloader extracts 240 bytes of PUF start-up values. For
this purpose, we added ASM code to the power-on reset vector, which configures
a GPIO to be used as a UART port. In a next step the code iterates over the
memory region of the SRAM, putting each byte out over UART. Afterwards,
the original code is resumed, relocating the firmware to SRAM and executing
it. Next, the FE reconstructs a predefined 128 bit secret using the PUF start-up
values and the Helper Data. Here, we reuse Keccak in the privacy amplification
phase of the FE. The reconstructed secret is used to initialize the PRNG. We use
Keccak as a PRNG, primarily because of its compact size and speed on ARM
devices. For the length of the bitstream, we suggest to use 217 bits, which provides

PUF-Based Software Protection for Low-End Embedded Devices 17

4096 unique values and consumes 16 KiB of memory at runtime. Nevertheless,
the bitstream length can be set to an arbitrary value, for instance, to consume
less storage.

Indirect Branch Response Function. During deployment, existing branches
in the original source code are overwritten with the code of the indirect branch
response function. The target address of the indirect branch is computed by
the sum of the verified values and a specific offset, modulo a unique value, plus
a unique value. The following code snippet in C syntax illustrates an indirect
branch to a function, which takes no argument and returns void (e.g., void
foo(void)):

void (*foo)(void);

foo = ((*hash_value + *puf_prng_value + *offset) % *modulo) + *shift;

foo();

If the hash value and the PRNG value match their expected values, off-
set, modulo, and shift adjust the indirect branch to match the original target
address. In order to provide no constant value as an attack vector for pattern
matching attacks, modulo and shift are randomized between certain bounds in
each deployment of the indirect branch response function.

Stack Manipulation Response Function. We insert each stack manipula-
tion response function randomly between the location of the corresponding hash
function and the subsequently executed hash function. Our implemented stack
manipulation response function sums all values to be verified and checks whether
the result is equal to the expected value. If it is not, the stack pointer is either
incremented or decremented by a random value between 4 and 24 bytes.

5.3 Performance Evaluation

Due to the lack of open source applications for the Stellaris platform, we
developed our own evaluation program. The evaluation program encrypts and
decrypts a 16 bytes string using AES 128 bit, sends the plaintext and the cipher-
text to the UART port, and measures the amount of CPU cycles consumed from
the start to the end of the main function.

For the deployment of our software protection scheme, we used the following
security settings. We inserted one code integrity check mechanism in each func-
tion of the evaluation program. As 9 of the 11 deployed functions are executed
at runtime, we generate a coverage of 82 %. This is a realistic scenario, as a real
application will certainly contain functions that are not always executed at run-
time (e.g., whose execution depends on specific user input). In addition, we used
a PRNG bitstream length of 217 bits, which corresponds to a size of 16 KiB. For
the deployment of the response functions, we inserted the stack manipulation
response in each circular dependent code region and the indirect branch response
in the remaining code.

18 F. Kohnhäuser et al.

Runtime Performance. In our runtime evaluation, we deployed the evaluation
program with the above mentioned security settings and a variable overlap factor.
Figure 1 illustrates the relative average runtime overhead for various overlap fac-
tor preferences. The runtime of the original unprotected program is represented
with an overlap factor of zero and an overhead factor of one. As the overlap
defines how many times a code region is checked by different hash functions,
an increasing overlap factor increments the amount of code lines that each hash
function has to check. With an overlap factor of nine, each hash function almost
checks the complete text segment, which generates an overhead of approximately
half of the original runtime. It is evident that such an overhead is not acceptable
in most applications. On the other hand, even when each code region is checked
by three different hash functions, the runtime overhead is below 5 %. As this
slow-down will only be noticed by sensitive users, we can easily recommend an
overlap factor of three for a conservative usage.

Fig. 1. Runtime performance comparison
with different overlap factor settings.

Fig. 2. Start-up runtime performance
with varying bitstream size.

Another performance overhead originates from the generation of the PRNG
bitstream at device start-up. Figure 2 depicts the amount of CPU cycles that is
required to compute a bitstream of a specific length. For comparison, the original
program consumes roughly 1.8 million CPU cycles.

The figure illustrates that there is almost a proportional relationship between
the size of the PRNG bitstream and the amount of CPU cycles. Thus, compared
with the calculation of the pseudorandom values, the extraction of the PUF
start-up values and the execution of the Fuzzy Extractor barely uses any CPU
time. The figure also shows that the generation of the PRNG bitstream consumes
much more CPU resources than the execution of the actual program. However,
it must be considered that the PRNG bitstream is only generated at device
start-up. Assuming the embedded devices is clocked at 50 MHz, a bitstream size
of 16 KiB delays the start of the device by 1.5 s which is likely to be acceptable
for most applications.

Storage Consumption. The program size overhead of a protected program is
dependent on the number of inserted hash functions, the choice of the response

PUF-Based Software Protection for Low-End Embedded Devices 19

function, and the number of inserted response functions. For evaluation, we
deployed our protection mechanisms using the previously mentioned security
settings. In this way, we obtained a protected program which was on average
63 % larger than the equivalent unprotected program. Another storage overhead
arises at runtime due to the operating of both check mechanisms. However,
the hash functions’ memory consumption is negligible, as each value resides
just a short time in memory and only occupies 4 bytes of storage. In contrast,
the values of the PRNG bitstream are kept in memory permanently and they
consume 16 KiB of memory for our proposed bitstream length. Nevertheless, by
setting another bitstream length, the runtime memory overhead can be adjusted
as required.

6 Conclusion

In this work, we explored a novel hardware-assisted software protection app-
roach, which combines existing software-based techniques with PUFs. Using a
microcontroller’s SRAM as a PUF instance, we overcome the drawbacks of tradi-
tional hardware tamper-proofing solutions. Our software protection scheme ties
the execution of a software instance to a specific device, protects its program
code against manipulations, and can easily be retrofitted to already deployed
devices. To demonstrate our approach, we implemented it on a low-cost ARM-
based microcontroller. By adjusting certain security parameters, we are able
to balance security with performance. We showed that our software protection
scheme offers a high level of security against a static adversary and demonstrated
that a dynamic adversary requires a considerable amount of resources to perform
a successful attack. A further performance evaluation showed that an extensive
level of security is achievable with an acceptable performance degradation of ten
percent.

References

1. Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Memory leakage-
resilient encryption based on physically unclonable functions. In: Sadeghi, A.-R.,
Naccache, D. (eds.) Towards Hardware-Intrinsic Security. Information Security and
Cryptography, pp. 135–164. Springer, Heidelberg (2010)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Aucsmith, D.: Tamper resistant software: an implementation. In: Anderson, R.
(ed.) Information Hiding, vol. 1174, pp. 317–333. Springer, Heidelberg (1996)

4. van den Berg, R., Skoric, B., van der Leest, V.: Bias-based modeling and entropy
analysis of PUFs. In: ACM Proceedings of the 3rd International Workshop on
Trustworthy Embedded Devices TrustED (2013)

5. Blum, M., Kannan, S.: Designing programs that check their work. J. ACM JACM
42(1), 269–291 (1995)

6. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper
data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

20 F. Kohnhäuser et al.

7. Chang, H., Atallah, M.J.: Protecting software code by guards. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, pp. 160–175. Springer, Heidelberg (2002)

8. Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., Jakubowski, M.H.:
Oblivious hashing a stealthy software integrity verification primitive. In: Petit-
colas, F.A.P. (ed.) Information Hiding. LNCS, vol. 2578, pp. 400–414. Springer,
Heidelberg (2003)

9. Claes, M., van der Leest, V., Braeken, A.: Comparison of SRAM and FF PUF in
65nm technology. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161, pp. 47–64.
Springer, Heidelberg (2012)

10. Clang: A C language family frontend for LLVM. http://www.clang.llvm.org/
11. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys

from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

12. Gora, M.A., Maiti, A., Schaumont, P.: A flexible design flow for software IP binding
in commodity FPGA. In: IEEE Symposium on Industrial Embedded Systems IEEE
SIES (2009)

13. van Herrewege, A., Verbauwhede, I.: Software only, extremely compact, keccak-
based secure PRNG on ARM Cortex-M. In: ACM Proceedings of the 51st Annual
Design Automation Conference (2014)

14. Herzberg, A., Shulman, H., Saxena, A., Crispo, B.: Towards a theory of white-box
security. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT, vol. 297, pp.
342–352. Springer, Heidelberg (2009)

15. Horne, B., Matheson, L., Sheehan, C., Tarjan, R.E.: Dynamic self-checking tech-
niques for improved tamper resistance. In: Sander, T. (ed.) DRM 2001. LNCS, vol.
2320, pp. 141–159. Springer, Heidelberg (2002)

16. Jacob, M., Jakubowski, M.H., Venkatesan, R.: Towards integral binary execution:
implementing oblivious hashing using overlapped instruction encodings. In: ACM
Workshop on Multimedia & Security MM&Sec (2007)

17. KPMG: Managing the Risks of Counterfeiting in the Information Technol-
ogy Industry. http://www.agmaglobal.org/press events/press docs/Counterfeit
WhitePaper Final.pdf. Accessed 23 June 2015

18. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: IEEE Symposium on Security and Privacy S&P (2014)

19. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: IEEE Symposium on Code Generation and Optimization
(2014)

20. Lazebnik, F.: On systems of linear diophantine equations. In: Mathematics Maga-
zine (1996)

21. van der Leest, V., van der Sluis, E., Schrijen, G.-J., Tuyls, P., Handschuh, H.:
Efficient implementation of true random number generator based on SRAM PUFs.
In: Naccache, D. (ed.) Cryphtography and Security: From Theory to Applications.
LNCS, vol. 6805, pp. 300–318. Springer, Heidelberg (2012)

22. Maes, R., Verbauwhede, I.: Physically unclonable functions: a study on the state
of the art and future research directions. In: Sadeghi, A.-R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security, pp. 3–37. Springer, Heidelberg (2010)

23. Nithyanand, R., Solis, J.: A theoretical analysis: physical unclonable functions and
the software protection problem. In: IEEE Symposium on Security and Privacy
S&P (2012)

http://www.clang.llvm.org/
http://www.agmaglobal.org/press_events/press_docs/Counterfeit_WhitePaper_Final.pdf
http://www.agmaglobal.org/press_events/press_docs/Counterfeit_WhitePaper_Final.pdf

PUF-Based Software Protection for Low-End Embedded Devices 21

24. Schaller, A., Arul, T., van der Leest, V., Katzenbeisser, S.: Lightweight anti-
counterfeiting solution for low-end commodity hardware using inherent PUFs. In:
Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564, pp. 83–100. Springer,
Heidelberg (2014)

25. Schneier on Security: Security Risks of Embedded Systems. https://www.schneier.
com/blog/archives/2014/01/security risks 9.html. Accessed 23 June 2015

26. Wikipedia: DeCSS. http://www.en.wikipedia.org/wiki/DeCSS. Accessed 23 June
2015

https://www.schneier.com/blog/archives/2014/01/security_risks_9.html
https://www.schneier.com/blog/archives/2014/01/security_risks_9.html
http://www.en.wikipedia.org/wiki/DeCSS

Why Attackers Win: On the Learnability
of XOR Arbiter PUFs

Fatemeh Ganji(B), Shahin Tajik, and Jean-Pierre Seifert

Security in Telecommunications, Technische Universität Berlin
and Telekom Innovation Laboratories, Berlin, Germany
{fganji,stajik,jpseifert}@sec.t-labs.tu-berlin.de

Abstract. Aiming to find an ultimate solution to the problem of secure
storage and hardware authentication, Physically Unclonable Functions
(PUFs) appear to be promising primitives. While arbiter PUFs utilized
in cryptographic protocols are becoming one of the most popular PUF
instances, their vulnerabilities to Machine Learning (ML) attacks have
been observed earlier. These attacks, as cost-effective approaches, can
clone the challenge-response behavior of an arbiter PUF by collecting a
subset of challenge-response pairs (CRPs). As a countermeasure against
this type of attacks, PUF manufacturers shifted their focus to non-
linear architectures, such as XOR arbiter PUFs with a large number
of arbiter PUF chains. However, the natural question arises whether an
XOR arbiter PUF with an arbitrarily large number of parallel arbiter
chains can be considered secure. On the other hand, even if a mature
ML approach with a significantly high accuracy is adopted, the even-
tual delivery of a model for an XOR arbiter PUF should be ensured.
To address these issues, this paper presents a respective PAC learning
framework. Regarding our framework, we are able to establish a theoret-
ical limit on the number of arbiter chains, where an XOR arbiter PUF
can be learned in polynomial time, with given levels of accuracy and
confidence. In addition, we state how an XOR arbiter PUF with noisy
responses can be provably PAC learned. Finally, on the basis of learning
theory concepts, we conclude that no secure XOR arbiter PUF relying
on current IC technologies can be manufactured.

1 Introduction

An increasing demand for secure storage of encryption mechanisms as well as
hardware fingerprinting stimulates research on possible solutions. Techniques
depending on storing a secret key in non-volatile memory (NVM) have been
shown to be subject to physical attacks [12]. Other methods relying on the
implementation of cryptographic primitives are less practical due to the con-
straints of the IC technology [5]. To deal with the above-mentioned issues, Phys-
ically Unclonable Functions (PUFs) have been introduced [8,20]. From a general
point of view, the security-related functionality of PUFs, more specifically their
challenge-response behavior, is offered by the manufacturing variations of an IC.
One of the most celebrated types of PUF instances are arbiter PUFs, which
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 22–39, 2015.
DOI: 10.1007/978-3-319-22846-4 2

Why Attackers Win: On the Learnability of XOR Arbiter PUFs 23

are widely utilized in several different cryptographic protocols [5,13,17]. The
challenge-response behavior of an arbiter PUF is characterized by slightly differ-
ent propagation delays of identical paths, caused by chip imperfections. These
slight differences are further exploited to generate unique responses.

While authentication and fingerprinting methods enjoying this privilege have
been emerging, it has been demonstrated that arbiter PUFs are vulnerable to
different types of attacks. Different ML techniques contribute to the success of
non-invasive ML attacks against arbiter PUFs [13]. Aiming at mathematically
cloning an arbiter PUF, the attacker collects a set of challenge-response pairs
(CRPs), and attempts to provide a model that can approximately predict the
response of the PUF to an arbitrarily chosen challenge. Most of the ML attacks
benefit from the linear additive model of an arbiter PUF. This forces a migration
to modified structures of arbiter PUFs, in which non-linear effects are added to
the PUF in order to impair the effectiveness of ML attacks. To this end, XORing
the responses of multiple arbiter PUFs has been demonstrated as a promising
solution [28].

However, it has been shown that more advanced ML techniques can still break
the security of an XOR arbiter PUF (briefly called XOR PUF in this paper)
with a limited number of arbiter chains (here called chains) [23]. Going beyond
this limited number is suggested as a countermeasure by PUF manufacturers,
although they have encountered serious problems, namely the increasing number
of noisy responses as well as optimization of the silicon area required on the
respective chip [21]. Even in this case, physical side-channel attacks, such as
photonic emission analysis, can physically characterize XOR PUFs regardless of
the number of XORs [29]. In another attempt a combination of ML attacks with
non-invasive side channel attacks (e.g., power and timing) is suggested to model
XOR PUFs, with the number of chains exceeding the previously established
limit [24].

The latter attack is cost-effective due to its non-invasive nature, and there-
fore, it might be preferred to the semi-invasive one in practice. However, in con-
trast to pure ML techniques (i.e., without any side channel information), using
side channel information in combination with ML techniques requires physical
access to the device and reconfiguration of the circuits on the chip, which are not
always feasible in a real scenario [24]. Therefore, it is still tempting to develop
new pure ML techniques to break the security of XOR PUFs, with an arbitrary
number of chains. Nevertheless, it is still unclear how many chains should be
XORed to ensure the security of arbiter PUFs against ML attacks. Moreover,
when applying current ML attacks, the maximum number of CRPs required for
modeling an XOR PUF, with given levels of accuracy and final model delivery
confidence, is not known today.

Only recently, it has been shown how a single chain arbiter PUF under the
Deterministic Finite Automata (DFA) representation can be learned for given
levels of accuracy and confidence [7]. It is further proved that the run time of
their proposed algorithm is polynomial in the size of the DFA. We claim that
for the XOR PUFs, a more compact representation can be adopted to improve
the time complexity of this attack. Furthermore, to deal with noisy responses

24 F. Ganji et al.

of an XOR PUF more efficiently, in contrast to their method, an approach not
relying on majority voting can be applied.

We present a new framework to prove that XOR PUFs can be learned in
polynomial time, for given levels of accuracy and confidence. The main contri-
butions of our framework are summarized as follows:

Finding a theoretical limit for ML techniques to learn XOR PUFs
in polynomial time. Under a well-known representation of an XOR PUF, we
provide a theoretical limit as a function of the number of arbiter PUF stages and
the number of chains, where an XOR PUF can be provably learned in polynomial
time.

Learning of an XOR PUF for given levels of accuracy and confidence.
With regard to the proposed limit, we present an algorithm, which learns the
challenge-response behavior of an XOR PUF, for given levels of accuracy and
confidence. The run time of this algorithm is polynomial in the number of the
arbiter PUF stages, the number of chains, as well as the levels of accuracy and
confidence. Moreover, our approach requires no side channel information.

Modeling the XOR PUF even if the responses are noisy. A celebrated
model of noise fitting the purpose of our ML framework is applied to prove that
even in the presence of noise, the run time of our algorithm is still polynomial in
the number of the arbiter PUF stages, the number of chains, levels of accuracy
and confidence, and the noise rate. Finally, through a comprehensive discussion,
we will explain why secure XOR PUFs cannot be manufactured on chips based
on current technologies.

2 Notation and Preliminaries

This section focuses on the background information and notations required to
understand the general concept of arbiter PUFs, XOR PUFs, fundamentals of
LTFs, the perceptron algorithm, the PAC model, and finally PAC learning with
the Perceptron algorithm.

2.1 Arbiter and XOR PUFs

PUFs are most often related to the intrinsic silicon properties of a chip. They
are physical input to output mappings, which generate a response for a given
challenge. Let C = {0,1}n and Y = {0,1} be the set of challenges and the set of
responses, respectively. A PUF can be described by the function fPUF : C → Y
where fPUF(c) = y.

PUFs are evaluable, which means that for a given PUF, fPUF can be evalu-
ated in polynomial time. Given a set of PUF instantiations, each PUF is unique
and different from other PUFs with regards to its response set Y. A response
y = fPUF(c) is reproducible in a sense that different evaluations of the same
challenge yield “close” responses with respect to the considered distance metric.

Why Attackers Win: On the Learnability of XOR Arbiter PUFs 25

Fig. 1. Schematic of an arbiter PUF with n multiplexer stages and an arbiter at the
end of the chain. Each multiplexer stage consists of four different delays. Based on the
applied challenge, when the enable signal (denoted by “en”) is fed, either the direct
paths or the crossed paths are utilized for the signal propagation. Upon arrival of the
first signal, the arbiter generates a binary response.

As the name implies, PUFs are unclonable, i.e., it is nearly impossible to con-
struct another physical mapping (device) gPUF, where gPUF �= fPUF, but gPUF

and fPUF have a similar challenge response behavior. Moreover, PUFs are unpre-
dictable, which means that despite knowing a set U = {(ci, yi) | yi = fPUF(ci)},
it is practically impossible to predict yr = fPUF(cr), where cr is a random chal-
lenge with (cr, ·) /∈ U . Finally, PUFs are one-way, i.e., for a given y = fPUF(c),
the probability that a probabilistic polynomial time algorithm or a physical pro-
cedure A can output c is negligible, where c is drawn from a uniform distribution
on {0,1}n [25].

Utilizing the timing differences of symmetrically designed electrical paths on
a chip is the core idea of arbiter PUFs. The chain of an arbiter PUF consists of
n connected switches, or so called stages, and an arbiter at the end, see Fig. 1.
A challenge is an n-bit string c = c[1] · · · c[n], where the ith bit is fed into the
ith stage. There are four different paths in each stage. If c[i] = 1, the signal
propagates through the crossed paths, otherwise the direct paths are utilized,
see Fig. 1. Enabling the inputs of the first stage leads to the propagation of two
electrical signals on two symmetrically designed paths terminated by the arbiter.
Due to the imperfections on the chip the two signals arrive at the end of the
chain at different times. With regard to the arrival time of the signals, the arbiter
generates a binary response.

We define a random variable Ψi related to the delay within the ith stage, which
follows a Gaussian distribution with the mean μi and the deviation σi [7,22].
The realizations of the random variable Ψi are certain ψi,1, ψi,2, ψi,3, and ψi,4.
ψi,1 and ψi,2 are the delays of the upper and lower direct paths, whereas ψi,3 and
ψi,4 are the delays of the upper and lower crossed paths, respectively, see Fig. 1.
The delay differences between the upper and lower outputs of the ith stage are
denoted by βi,0 = ψi,1 − ψi,2 and βi,1 = ψi,4 − ψi,3, for direct paths and crossed
paths, respectively.

Let Z be a random variable which corresponds to the total delay between the
enable point and the outputs of the nth stage of the arbiter PUF. With regard
to the linear additive model of an arbiter PUF, we have Z =

∑n
l=1 Ψl [7,13]. ζ1

and ζ2 are the realizations of Z at the upper and lower output, respectively, see
Fig. 1. Let κ > 0 denote the precision of the arbiter. By comparing ζ1 and ζ2,

26 F. Ganji et al.

Fig. 2. Schematic of an XOR PUF. It consists of k chains of n-bit arbiter PUFs. The
responses of all arbiters are XORed together to generate the final binary response.

the arbiter makes a decision whether the output is either “1” or “0”. More
formally, we assume that the output of the PUF is “1” if Δ = ζ1 − ζ2 > κ,
whereas it is “0” if Δ < −κ. If |Δ| ≤ κ, the arbiter is assumed to be in a
metastable condition.

Following the procedure introduced in [7], in each stage, e.g., ith stage, ψi,j

can be mapped into an integer value ψi,j (1 ≤ j ≤ 4). It is known that ψi,j ∈
[μi − 3σi,μi + 3σi] with probability 99.7%. Now we define the mapping fint :
R �→ Z so that for all ψi,j ∈ [μi − 3σi,μi + 3σi], we have ψi,j = fint(ψi,j) =⌈
(ψi,j − μi + 3σi)/κ

⌉
. Without loss of generality, we assume that μ1 = · · · = μn

and σ1 = · · · = σn. Hence, by performing the mapping fint the maximum
and the minimum of the real valued delays ψi,j (1 ≤ i ≤ n and 1 ≤ j ≤
4) are mapped into m =

⌈
6σ
κ

⌉
and 0, respectively (for more details see [7]).

Furthermore, similarly, Δ can be mapped with a high probability to an integer
value Δ lying within a finite interval. In this case, the response of the arbiter
is “1” if Δ > 0, whereas it is “0” if Δ < 0. The arbiter is in the metastable
condition, if Δ = 0.

To improve the security of arbiter PUFs against machine learning attacks,
a modified construction called XOR PUF was suggested by [28]. An XOR
PUF consists of k different chains, all with the same number of stages n.
The responses of all arbiter PUFs are XORed together to generate the final
response, see Fig. 2. The response of the XOR PUF can be defined as fXOR(c) =⊕k

j=1 fjtharbiter PUF(c).

2.2 Linear Threshold Functions

We begin with the definition of a Perceptron (i.e., single-layer Perceptron), where
Pn denotes an n-input and single output Perceptron. Pn is represented by the

Why Attackers Win: On the Learnability of XOR Arbiter PUFs 27

function Ω → H, where the vector ω = (A[1],A[2], · · · ,A[n], θ) denotes a
state, and the set Ω ⊂ R

n+1 is the set of states. The function hω ∈ H with
hω : Rn �→ {0, 1} is defined as follows:

hω =

{
1, if

∑n
i=1 A[i]Φ[i] − θ ≥ 0

0, otherwise.
(1)

The sets of positive and negative examples of hω are half-spaces S1 and S0,
where S1 = {Φ ∈ R

n| ∑n
i=1 A[i]Φ[i] ≥ θ} and S0 = {Φ ∈ R

n| ∑n
i=1 A[i]Φ[i] <

θ}. Alternatively, by applying the mapping fmap : {0,1} �→ {1, − 1}, so that
fmap(0) = 1 and fmap(1) = −1, we have:

hω = sgn(Φ · A − θ), (2)

where the inner product of the vector A and Φ is denoted by Φ ·A. Equation (2)
denotes a linear threshold function (LTF), whose decision regions are S1 and S0

bounded by the hyperplane P : Φ · A = θ (for further details see [2]).

2.3 Perceptron Algorithm

The Perceptron algorithm is an online algorithm invented to learn LTFs effi-
ciently. By online we mean that providing the learner (i.e., learning algorithm)
with each example, e.g., Φi, it attempts to predict the response to that example.
Afterwards, the actual response (i.e., the label, for instance p(Φi)) is presented
to the learner, and then it can improve its hypothesis by means of this informa-
tion. The learning process continues until all the examples are provided to the
learner [14].

Let the input of the Perceptron algorithm be a sequence of r labeled exam-
ples ((Φ1, p(Φ1), · · · , (Φr, p(Φr)). The output of the algorithm is the vector A
classifying the examples. Executing the Perceptron algorithm, it initially begins
with ω0 = (A0[1],A0[2], · · · ,A0[n], θ) = (0, · · · , 0). When receiving each exam-
ple (e.g., Φj), the algorithm examines whether Aj [i]·Φj [i] ≥ θj and compares its
prediction with the received label. If the label and the prediction of the algorithm
differ, ωj is updated as follows:

ωj+1[k] =

{
Aj [k] − p(Φj) · Φj [k] 1 ≤ k ≤ n

θj − p(Φj) k = n + 1.

Note that if the prediction and the label of an example agree, no update is
performed [26].

Quantifying the performance of an on-line algorithm, the prediction error
(i.e., number of mistakes) of the algorithm is taken into account. In this way,
the upper bound of the mistakes is defined as a measure of the performance.
The Perceptron convergence theorem gives an upper bound of the error that can
occur while executing the Perceptron algorithm [6]:

28 F. Ganji et al.

Convergence Theorem of the Perceptron Algorithm: Considerr labeled
examples which are fed into the Perceptron algorithm, and ‖Φi‖ ≤ R (‖ · ‖
denotes the Euclidean length). Let u be the solution vector with‖u‖ = 1 whose
error is denoted byε (ε > 0). The deviation of each example is defined asdi =
max{0, ε−p(Φi)(u ·Φi)}, and D =

√∑r
i=1 d2i . The upper bound of the mistakes

of the Perceptron algorithm is

Nmis =
(

R + D

ε

)2

.

For the proof, the reader is referred to [6]. Let the parameter σ be the mini-
mum distance of any example from P, i.e.,

σ = min
Φ∈Φ

‖Φ · A‖
‖A‖ , (3)

where Φ is the set of all Φ’s. The order of 1/σ determines whether the data is
linearly separable. It has been demonstrated that when 1/σ is exponential in n,
the data is not linearly separable, and consequently, the Perceptron algorithm
cannot classify the data [4,26]. On the other hand, if 1/σ is polynomial in n, the
Perceptron algorithm can be applied.

2.4 PAC Model

As the name implies, the concept of PAC (Probably Approximately Correct)
model aims at learning an unknown target (i.e., a concept class Cn) under the
following circumstances: (a) after the learning phase, the output of the algorithm
is a hypothesis approximating Cn, and (b) with a high probability the learner
can deliver a good hypothesis.

To formalize the above mentioned definition, let Cn be defined over the
instance space Xn = {0, 1}n. Furthermore, X = ∪n≥1Xn and C = ∪n≥1Cn.
We have also Hn as the hypothesis space, and H defined in a similar fashion.
The learner is provided with a finite number of examples drawn randomly with
respect to the probability distribution D. For the target concept c ∈ C, the
error of the hypothesis is error(h) := Σx∈h�cD(x), where � is the symmetric
difference. Now we can define PAC learnability as followings.

Let p(·, ·, ·) be a polynomial, ε and δ be arbitrary values such that 0 < ε, δ <
1, and a distribution D on the instance space Xn (arbitrary distribution). When
a PAC learning algorithm L is fed by p(n,1/ε,1/δ) independent examples drawn
randomly with respect to D, then with probability at least 1 − δ the output of
L is a hypothesis h ∈ Hn such that error(h) ≤ ε. The sample complexity of L
is the smallest polynomial p. With regard to the relation between C and H, we
define that C is properly PAC learnable, when C = H. Otherwise, if H can be
evaluated on given instances in polynomial time, and C is PAC learnable by H,
C is called PAC learnable.

Why Attackers Win: On the Learnability of XOR Arbiter PUFs 29

2.5 PAC Learning of LTFs with Perceptron Algorithm

Several studies have focused on the PAC learning of an unknown LTF from
labeled examples by applying the Perceptron algorithm (for an exhaustive sur-
vey see [26]). Here we briefly describe how the Perceptron algorithm, as an
online algorithm, can be converted to a PAC learning algorithm, following the
conversion procedure defined in [26].

The learner has access to an Oracle EX, providing labelled examples. By
calling EX successively, a sequence of labeled examples is obtained and fed into
the online algorithm. Hypotheses generated by the algorithm are further stored.
At the second stage, the algorithm again calls EX to receive a new sequence of
labeled examples. This new sequence is used to calculate the error rate of the
hypotheses stored beforehand. The output of the procedure is a hypothesis with
the lowest error rate. Let ε and δ be the accuracy and the confidence levels of
the obtained PAC learning algorithm. Suppose that Nmis is the upper bound of
the mistakes made by the original online algorithm for the concept class C. The
following theorem is proved by Littlestone [15].

Theorem 1. Suppose that the online algorithm Lon improves its hypothesis,
only when its prediction and the received label of the example do not agree.
The total number of calls that the obtained PAC algorithm L makes to EX
is O (1/ε(log 1/δ + Nmis)).

From the convergence theorem of the Perceptron algorithm and Theorem 1,
it is straightforward to prove the following corollary [26]:

Corollary 1. Let the concept class Cn over the instance space Xn = {0, 1}n

be the class of linear threshold functions such that the weights Ai ∈ Z, and∑n
i=1 |A[i]| ≤ A, where A ∈ Z is the maximum sum over the weights. Then the

Perceptron algorithm can be converted to a PAC learning algorithm running in
time p(n,A, 1/ε, 1/δ).

3 PAC Learning of XOR PUFs

In this section we first present how and why an XOR PUF can be PAC learned
by the Perceptron algorithm. Furthermore, we provide the theoretical limit for
the learnability of XOR PUFs in polynomial time. Finally, the theoretical results
will be verified against experimental results from existing literature.

3.1 LTF-Based Representation of XOR PUFs

Here we briefly describe the LTF-based representation of an XOR PUF, which
is widely adopted [9,19,23]. Consider the delay vector AT defined as follows:

AT = (α1, α2, . . . , αn+1) with

⎧⎪⎨
⎪⎩

α1 = βi,0−βi,1
2

αi = βi−1,0+βi−1,1+βi,0−βi,1
2 , 2 ≤ i ≤ n

αn+1 = βn,0+βn,1
2

(4)

30 F. Ganji et al.

Fig. 3. Block diagram of the PAC learning framework. By calling the Oracle EX at
most rmax times, a sequence of examples is collected. Φi is fed into the third block
corresponding to our problem transformation. The output of the third block is fed into
the Perceptron algorithm.

where the integer valued βi,j (1 ≤ i ≤ n and 0 ≤ j ≤ 1, as shown in Fig. 1)
are the delay differences at the output of the ith stage. Wrt. the discretization
process described in Sect. 2.1, it is straightforward to show that βi,j lies within
the interval [−m,m], hence, αi (1 ≤ i ≤ n+1) lies within the interval [−2m, 2m].

Consider a challenge string represented by a vector c = (c[1], · · · , c[n]).
Φ = (Φ[1], · · · ,Φ[n], 1) is the encoded challenge vector, where Φ[i] =

∏n
j=i(1 −

2c[j]). We defined Δ as the delay difference at the outputs of the last stage.
According to the linear additive model of the arbiter PUF, we have Δ = AT ·Φ,
cf. [13,23]. Now let fmap : Y �→ {1, − 1}, so that fmap(0) = 1 and fmap(1) = −1.
The output of the arbiter can be defined as

fPUF = sgn(Δ) = sgn(AT · Φ). (5)

From Eq. (5), it is obvious that an arbiter PUF can be represented by an (n+1)-
dimensional LTF. In a similar fashion, an XOR PUF can also be represented by
an LTF, when the final response (YXOR) is mapped to {1, − 1}, cf. [23]:

fXOR =
k∏

j=1

sgn(AT · Φ) = sgn

(k⊗
j=1

AT ·
k⊗

j=1

Φj

)
= sgn(AT

XOR · ΦXOR)

(6)

where AXOR = ⊗k
j=1AT

j is the tensor product of the vectors AT
j , and similarly

ΦXOR = ⊗k
j=1Φj .

3.2 PAC Learning of XOR PUFs with Perceptron

We claim that by adopting a simple transformation the Perceptron algorithm
can be applied, particularly in our case. Comparing Eqs. (5) and (6), it can be
seen that the (n + 1)k-dimensional vectors AXOR and ΦXOR are substituted
for (n + 1)-dimensional vectors AT and Φ. In other words, XOR-ing k (n + 1)-
dimensional LTFs results in an O((n + 1)k)-dimensional LTF. Therefore, if we
transform the problem of learning the XOR of k (n + 1)-dimensional LTFs into
an O((n + 1)k) dimensional space, this problem can be solved by applying the
Perceptron algorithm. In order to support our claim, we begin with the following
theorem stating that examples are linearly separable in R

n+1.

Why Attackers Win: On the Learnability of XOR Arbiter PUFs 31

Theorem 2. For an XOR PUF, with fixed k, represented by an LTF in an
O

(
(n + 1)k

)
dimensional space, 1/σ is polynomial in n.

Proof. As described in Sect. 2, AXOR contains integer elements lying within
the limited interval [−2m,2m]. Furthermore, elements of ΦXOR are in {−1,1}.
Now we have

σ = min
ΦXOR∈ΦXOR

‖ΦXOR · AXOR‖
‖AXOR‖ = min

ΦXOR∈ΦXOR

√∑(n+1)k

i=1 α2
i√

(n + 1)k
, (7)

where ΦXOR is the set of all ΦXOR’s. Due to a non-trivial challenge-response
behavior of the given PUF, at least one of the elements of AXOR must be equal
to ±1. Therefore, min (

∑(n+1)k

i=1 α2
i)

1/2 = 1, and 1/σ = (n + 1)k/2. �

Figure 3 illustrates how the perceptron algorithm is applied in our PAC learn-
ing framework. The learner has access to an Oracle EX, which is related to the
XOR PUF as follows: EX := fXOR. At the first stage, the Oracle EX is called
successively to collect CRPs. The maximum number of calls is denoted by rmax.
For each CRP (e.g., (ci,p(ci))) a vector Φi is generated. Afterwards, Φi is trans-
formed to Φi

XOR, which is in an O
(
(n + 1)k

)
dimensional space. The Perceptron

algorithm predicts the response to Φi
XOR, and if its prediction and p(ci) dis-

agrees, its hypothesis will be updated.
Now we will elaborate on the upper mistake bound in our framework. Follow-

ing the convergence theorem of the Perceptron algorithm and Theorem 2, when
‖ΦXOR‖ ≤ (n + 1)k/2, we have Nmis = (n + 1)k/ε2. As an immediate corollary,
we have:

Corollary 2. Let k be constant and consider the class of XOR PUFs over the
instance space Xn = {0, 1}(n+1)k which is that class of linear threshold functions
such that αi ∈ Z, and

∑(n+1)k

i=1 |αi| ≤ 2m(n + 1)k. Then the Perceptron-based
algorithm running in time p((n + 1)k, 4m2, 1/ε, 1/δ) can PAC learn an XOR
PUF by calling EX at most O

(
log(1/δ)/ε + 4m2(n + 1)k/ε3

)
times.

There are some key implications from this corollary. First, with regard to
the PAC model, the hypothesis delivered by the algorithm must be evaluable in
polynomial time. The point here is that the term (n+1)k, related to the Vapnik-
Chervonenkis dimension of the representation [3], may grow significantly if k is
not a constant. In this case, our algorithm cannot find a hypothesis in polynomial
time, since the number of examples is super-polynomial in n. However, in Sect. 5
we will see that in practice, k cannot exceed the bound ln n�, and therefore,
XOR PUFs realized in practice are PAC learnable, as k must be reasonable small
and can be seen as constant when compared with n.

Second, it is tempting that an increase in m can help to ensure the security
of an XOR arbiter PUF. The upper bound for the number of CRPs calculated
according to the Corollary 2, for δ = 0.0001, k = 5 for n = 64 and n = 128, is
depicted in Fig. 4. This figure can provide a better understanding of the impact of

32 F. Ganji et al.

(a) n = 64, k = 5 (b) n = 128, k = 5

Fig. 4. Upper bound of the number of CRPs. The x-axis indicates m, whereas the
y-axis shows ε. The z-axis corresponds to the upper bound of the number of CRPs.

m on the learnability of an XOR arbiter PUF. A marginal increase in m cannot
dramatically increase the number of CRPs required for modeling an XOR arbiter
PUF. Although an arbitrarily large m can be suggested to ensure the security of
an XOR arbiter PUF, as stated in [7], m is restricted by technological limits (i.e.,
the yield and many other factors), and thus cannot be arbitrarily large. In Sect. 5
the impact of an increase in m on the learnability will be further discussed.

3.3 Validation of the Theoretical Results

We compare our theoretical findings with several experimental results reported
in [16,23]. As reported in [16], until now no effective pure ML attack has been
launched on XOR PUFs with k ≥ 5 (n = 64). Pure ML attacks proposed in
the literature are conducted on XOR PUFs with the maximum n being equal
to 128 [23,24]. Taking into account the long run time of pure ML algorithms,
even on the powerful machines employed by [23], XOR PUFs with n = 256 and
n = 512 have been targeted only by combined modeling attacks [24]. Therefore,
unfortunately, in the literature no practical limit for pure ML techniques has
been reported for XOR PUFs with n ≥ 128.

As an attempt to compare our theoretical results to what has been observed
in practice, we focus on the results reported in [23]. Note that although the
algorithm applied in [23] (Logistic Regression) differs from our algorithm, we
can compare the number of CRPs required by them to learn an XOR PUF with
a given accuracy. The argument supporting this claim is that the hypothesis
class of LR can be “discretized” so that it becomes finite [27]. Furthermore, due
to the fact that the delay values can be mapped to a finite interval of integer
values, the loss function of LR is also bounded. Therefore, LR can be converted
to a PAC learning algorithm, and the maximum number of EX calls made by
the obtained algorithm is polynomial in n, k, 1/ε and 1/δ. Moreover, note that
the theoretical limit of learning an XOR PUF in polynomial time is established
by the Vapnik-Chervonenkis dimension of the LTF representation of an XOR
PUF, as used in [23] as well. These enable us to compare their experimental
results with our findings.

Why Attackers Win: On the Learnability of XOR Arbiter PUFs 33

The authors of [23] have attempted to model 64-bit and 128-bit XOR PUFs
with up to 6 and 5 chains, respectively. Their results demonstrate that the pro-
posed model can predict responses to a set of arbitrary chosen challenges with
99% accuracy. However, the number of CRPs required for modeling a 64-bit
XOR PUF with k = 5 and k = 6 is increased drastically, comparing to those
with k ≤ 4. In this regard, the number of CRPs collected to predict the response
is increased from 12000 to 80000 and 200000 for k = 5 and k = 6, respectively
(ε = 0.01). As a result, the time spent to build a model is increased from a few
minutes to several hours, which shows an exponential growth. For a 128-bit XOR
PUF with k = 5, 500000 CRPs are required to model the XOR PUF, with 99%
accuracy, while for a PUF with k = 4, this number is only 24000. Consequently,
the learning time is again increased exponentially.

In the above-mentioned cases, an exponential growth in the number of CRPs
and the learning time can be clearly observed, when k exceeds 4. This matches
the theoretical limit proposed in Sect. 3.2.

4 PAC Learning of Noisy XOR PUFs

In the previous section, we have explained how the Perceptron algorithm can
be applied to PAC learn an XOR PUF. The natural and important question
would be whether the proposed framework is applicable in the case of noisy
responses. The term noisy response here refers to the response of the XOR
PUF to a challenge under either the metastable condition or the impact of
environment noise. Although it has been accepted that metastablity of an XOR
PUF must be solved by the PUF manufacturer, we consider this particular case
for completeness. From the point of view of PAC learning, this condition results
in incorrect labels generated by the Oracle EX. We aim to state that an XOR
PUF can be PAC learned by applying the Perceptron algorithm, even if noisy
responses are included in the collected set of CRPs.

Several versions of the Perceptron algorithm, which can tolerate noise, i.e.,
incorrect labels of examples, have been developed (for a comprehensive survey
see [11]). Here we follow the work by [1] to demonstrate that the original Per-
ceptron algorithm can be further applied in the case of noisy responses. In this
case, the number of CRPs required to be collected is polynomial in the number
of noisy responses.

At the first stage, we define a simple but effective model of noisy Oracle
EXη [1]. In our model, the examples are drawn with respect to the relevant
distribution D, and the label of each example is chosen in an independent random
fashion. More specifically, after drawing an example, an unfair coin (head with
probability 1−η) is flipped. If the outcome is head, the correct label is provided,
otherwise the label is incorrect. It is clear that η < 1/2, since η = 1/2 means
that no relevant information is provided by EXη, and the case of η > 1/2 is
irrelevant. We assume that an upper bound on η, denoted by ηb, is known.
Even if this assumption may not be the case in practice, following the procedure
defined in [1], ηb can be estimated. It is shown that the sample size is increased
very slightly in the case of unknown ηb (for further information and the proof
see [1]).

34 F. Ganji et al.

The Convergence Theorem of the Perceptron algorithm states that in the
case of noisy responses the condition p(Φi)(u.Φi) ≥ 0 cannot always be met.
This condition relates the accuracy of the prediction performed by the Per-
ceptron algorithm to the labels provided that afterwards update the respective
hypothesis. In the case of noisy examples, we suggest that this condition should
be modified so that it reflects the accuracy of the Perceptron algorithm in the
presence of noise. Suppose that an example, such as (Φi,p(Φi)), is provided by
EXη. The probability that this example disagrees with any hypothesis u can be
calculated as following:

Pr[p(Φi)(u · Φi) < 0] ≤ (1 − η)ε + η(1 − ε) < ηb + ε(1 − 2ηb) (8)

From Eq. (8) it can be inferred that the expected rate of disagreement is at
least η for the ideal hypothesis u. Therefore, the separation factor of at least
ε(1 − 2η) should be between an ideal hypothesis and an approximation of that
cf. [1]. As stated in the following theorem, the maximum number of mistakes
that can be made by the Perceptron algorithm is polynomial in this separation.

Theorem 3. Consider r labeled examples which are fed into the Perceptron algo-
rithm, and let ‖Φi‖ ≤ R. In the case of noisy labels, let un be the solution vector
with ‖un‖ = 1, and p(Φi)(un.Φi) ≥ ε(1 − 2ηb) > 0. Then

Nmis =
(

R

ε(1 − 2ηb)

)2

.

The key idea is that a separation factor of at least ε(1−2ηb) must exist between
u and un. It is straightforward to prove this theorem, and for more details the
reader is referred to [1].

Theorem 4. When PAC learning the noisy XOR PUF, the maximum num-
ber of mistakes that the Perceptron algorithm can make is Nmis = (n + 1)k/
(ε2(1 − 2ηb)2). Furthermore, the maximum number of CRPs required
for PAC learning a noisy XOR PUF is O

(
log(1/δ)/(ε(1 − 2ηb)) + 4m2(n + 1)k/

(ε3(1 − 2ηb)3)
)
.

Proof. Following Corollary 2 and Theorem 3, this can be easily shown. �

The most important message is that this maximum number of CRPs is poly-
nomial in n, ε, δ as well as the upper bound of η. According to experimental
results when the noise rate is 2%, the number of CRPs required to learn a 128-
bit XOR PUF (k = 4) is approximately increased by the factor 2, in comparison
to the noiseless scenario with approximately the same ε [23]. For the same XOR
PUF, increasing the noise rate to 5% and 10%, the number of CRPs is increased
2 times and 8 times, comparing with the case of ηb = 0.02. It has been concluded
that the number of CRPs collected to model the XOR PUF is polynomial in the
noise rate [23], which agrees with our theoretical result.

Why Attackers Win: On the Learnability of XOR Arbiter PUFs 35

5 Discussion

5.1 Theoretical Considerations

By providing the proof of vulnerability of XOR PUFs to PAC learning we have
demonstrated how fragile the security of this kind PUF is. The concept of PAC
learning of XOR PUFs was almost catched by Hammouri et al. [10]. Although the
authors benefit from one of the most adequate representations of the XOR PUFs,
which is LTF-based [9], they could not prove the PAC learnability of the XOR
PUFs. As the Vapnik-Chervonenkis dimension of an LTF representing an arbiter
PUF is equal to n + 1, this family of PUF primitives is subject to PAC learning
attacks [7]. It is straightforward to further prove that the Vapnik-Chervonenkis
dimension of the LTF representing an XOR PUF is (n+1)k. Therefore, for con-
stant k an XOR PUF with k chains (each with n stages) is also PAC learnable. In
this paper, instead of sticking to this obvious fact, we introduced an algorithm
that can PAC learn an XOR PUF, even in the case of noisy responses. How-
ever, the key argument supporting our claim is that the Vapnik-Chervonenkis
dimension of the proposed LTF-based representation should be finite. Wrt. this
argument, we have shown that by applying the Perceptron algorithm its run
time is polynomial in n, 1/ε, 1/δ, and k.

Another important aspect of our framework is the representation of an XOR
PUF. As mentioned earlier, it is clear that according to what has
been observed in [7], an XOR PUF can also be represented by a
DFA with O(nkm2k) states. Therefore, their proposed algorithm makes
O

((
1 + 2/ε ln(1/δ)

)
nkM2k + 2/εn2kM4k

)
calls to EX. Comparing this num-

ber of calls with the number of calls that our algorithm makes to EX (see
Corollary 2), it is clear that the numbers of calls made by both algorithms are
polynomial in n, m, 1/ε, and 1/δ. However, our algorithm outperforms in terms
of the number of calls, and consequently its time complexity.

Of crucial importance for our framework is how the algorithm deals with
noisy responses. In this paper we have proposed a model of noise, which is well-
studied in the PAC learning related literature, and agrees with what can be
seen in practice. Towards launching a machine learning attack, the adversary
applies a set of challenges and collects the responses, where the latter might be
noisy. From the lessons learnt from practice, the number of noisy response of an
XOR PUF is virtually equal to the sum of the number of noisy response of each
individual arbiter PUF [21]. In the literature majority voting is suggested as a
solution to deal with noisy responses [18,23]. This can impair the performance
of the proposed learning algorithm, when the attacker can observe each CRP
only once and cannot do majority voting. It is even suggested that in order to
reduce the effectiveness of ML attacks, the noise rate that can be observed by an
attacker can be artificially increased, while the verifier still observes only a small
noise rate [31]. In this latter scenario the majority voting cannot be helpful. On
contrary, we have proved that XOR PUFs can be PAC learned without the need
for majority voting.

36 F. Ganji et al.

We have stated that the maximum number of mistakes that the Perceptron
algorithm can make, and consequently, the maximum number of CRPs required
for PAC learning is polynomial in n, k, 1/ε, 1/δ as well as 1/(1 − 2η) in the
case of noisy responses. Since we have mainly aimed to prove this, the maximum
number of CRPs calculated in Sect. 3 ensures that the algorithm delivers an
approximation of the desired hyperplane, with the probability at least 1 − δ.
The proposed upper bound of the number of CRPs can be improved to even
reduce the number of required CRPs (see for instance [3]).

5.2 Practical Considerations

When proving that the Perceptron algorithm can be applied to PAC learn an
XOR PUF, we take the advantage of the lessons learnt from practice, namely (a)
the delay values can be mapped to a finite interval of integer values, and (b) the
number of chains contained in an XOR PUF (k) cannot exceed a certain value.
The importance of the first fact can be recognized in the recent proof of the PAC
learnability of an XOR PUF (see Corollary 2). The second fact confirms that the
Vapnik-Chervonenkis dimension of the LTF representing an XOR PUF is finite.
Whereas the first fact has been already reflected in [7], the second one has been
only partially discussed in the literature.

The results of experiments clearly demonstrate that XORing more than a
certain number of chains is not feasible [21]. In their experiments, different XOR
PUFs designed on 10 Xilinx Virtex 5 (LX110) FPGAs at the nominal condition
(temperature = 35◦ C and VDD = 1V) are employed. For k = 4, it is reported
that the noise rate is η = 23.2%, and a change in the condition (e.g., reducing
VDD) may result in an increase in the noise rate up to 43.2%. Their most
impressive achievement demonstrates that the noise rate of an XOR PUF is
approximately equal to the sum of the noise rate of each individual arbiter PUF.
For an arbiter PUF designed on 65 nm technology, a typical value of the noise
rate is about 4% [21]. Therefore, it can be approximated that the maximum of
k can be ideally equal to 12, where the noise ratio would be approximately 50%.
Under this condition, even majority voting cannot be helpful so that the PUF
cannot be verified. Another important factor limiting k is the silicon area used
for constructing an XOR PUF. Based on a rough estimation reported in [16],
the silicon area required for constructing an XOR PUF with k chains is k times
larger than a single arbiter PUF.

Despite the implementation and technological limits on k, we have proved
theoretical limits on when an XOR PUF can be learned in polynomial time.
In practical studies it is not stated how the learnability is theoretically limited,
even though the empirical upper bound reported in [16] and the experimental
results in [23] are in line with our theoretical limit. Moreover, the experimental
results presented in [30] are also evidences that support our findings. It has been
shown that when n = 64 and k ≥ 4, the number of CRPs required for the ML
attack, and consequently the time complexity, is increased drastically. The same
observation is repeated for n = 128 and k ≥ 5. These emphasize the importance
of our approach, in which not only the limit of the learnability in polynomial

Why Attackers Win: On the Learnability of XOR Arbiter PUFs 37

time is identified but also no side channel information is required to PAC learn
the XOR PUFs under this limit. To evaluate the security of an XOR PUF with
respect to this theoretical limit, the following scenarios can be distinguished:

– n is small (e.g., n ≤ 32): in this case, the security can be easily broken by
adopting a brute-force strategy.

– n is large (i.e., no brute-force strategy is applicable) and k � (ln n): under
this condition, the XOR PUF cannot be learned in polynomial time. How-
ever, no practical implementation of such an XOR PUF is feasible due to the
technological limits, more specifically the noisy responses.

– n is large and k � (ln n): the XOR PUF can be PAC learned.

In the latter scenario, it can be thought that an increase in m may lead to
a more secure XOR PUF. Neither is this a valid theoretical approach nor it is
possible in practice. From a theoretical point of view, although more CRPs are
required for PAC learning an XOR PUF with large m, the number of CRPs
is still polynomial in m, n and levels of accuracy and confidence. On the other
hand, from a practical perspective, a chip designed with the large σ neither might
work properly nor it can be utilized as a general purpose device [7]. Moreover,
it can be suggested to produce arbiters with high precision in order to enlarge
m. In this case, the cost of the chip is increased dramatically.

In previous studies, e.g., [23,24], powerful and costly machines have been
employed to prove the concept of learnability of XOR PUFs. It might not be
convenient to run a ML algorithm on such machines, particularly for XOR PUFs
with large k and n. Since our concrete proofs state how the security of XOR PUFs
can be broken in polynomial time, it seems redundant to conduct a simulation
or an experiment concerning this issue. Last but not least, we emphasize that
protocols relying on the security of XOR PUFs cannot be considered as an
ultimate solution to the issue of insecure arbiter PUFs. As it has been also
stated in [5], none of the XOR PUF-based protocols in its current form can be
thought of as being perfectly secure.

6 Conclusion

We have developed a PAC learning framework, which clearly states how an XOR
PUF can be learned, for given levels of accuracy and confidence. Furthermore, a
theoretical limit for ML attacks as a function of the number of the chains and the
number of arbiter PUF stages has been established. Moreover, we have proved
that the maximum number of CRPs required for our framework is polynomial
in the number of arbiter PUF stages, the pre-defined level of accuracy and con-
fidence. It is further shown that our approach deals with the noisy responses in
an efficient fashion so that in this case, the maximum number of CRPs collected
by the attacker is polynomial in the noise rate. Our rigorous mathematical app-
roach matches the results of experiments, which can be found in the literature.
The observation made to reveal the technological limits on the number of chains
contributes to the proof of vulnerability of XOR PUFs to PAC learning attacks.

38 F. Ganji et al.

Last but not least, on the basis of learning theory concepts, this study explicitly
states that the current form of XOR PUFs cannot be considered as an ultimate
solution to the problem of insecure arbiter PUFs. Furthermore, we believe that
this work can provide an insight not only into the academic research but also
for the design and manufacturing of delay-based PUFs.

References

1. Angluin, D., Laird, P.: Learning from noisy examples. Mach. Learn. 2(4), 343–370
(1988)

2. Anthony, M.: Computational Learning Theory. Cambridge University Press,
Cambridge (1997)

3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the
Vapnik-Chervonenkis dimension. J. ACM 36(4), 929–965 (1989)

4. Bylander, T.: Learning linear threshold functions in the presence of classification
noise. In: Proceedings of the Seventh Annual Conference on Computational Learn-
ing Theory, pp. 340–347 (1994)

5. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Secure lightweight entity
authentication with strong PUFs: mission impossible? In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 451–475. Springer, Heidelberg (2014)

6. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algo-
rithm. Mach. Learn. 37(3), 277–296 (1999)

7. Ganji, F., Tajik, S., Seifert, J.P.: PAC Learning of Arbiter PUFs, Security
Proofs for Embedded Systems-PROOFS (2014). https://eprint.iacr.org/2015/378.
pdf. Accessed 18 May 2015

8. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security, pp. 148–160 (2002)

9. Gassend, B., Lim, D., Clarke, D., Van Dijk, M., Devadas, S.: Identification and
authentication of integrated circuits. Concurrency Comput. Pract. Experience
16(11), 1077–1098 (2004)

10. Hammouri, G., Öztürk, E., Sunar, B.: A tamper-proof and lightweight authentica-
tion scheme. Pervasive Mobile Comput. 4(6), 807–818 (2008)

11. Khardon, R., Wachman, G.: Noise tolerant variants of the perceptron algorithm.
Journal Mach. Learn. Res. 8, 227–248 (2007)

12. Kömmerling, O., Kuhn, M.: Design principles for tamper-resistant security proces-
sors. In: USENIX Workshop on Smartcard Technology (1999)

13. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: A technique
to build a secret key in integrated circuits for identification and authentication
applications. In: Symposium on VLSI Circuits, 2004. Digest of Technical Papers,
pp. 176–179 (2004)

14. Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-
threshold algorithm. Mach. Learn. 2(4), 285–318 (1988)

15. Littlestone, N.: From on-line to batch learning. In: Proceedings of the Second
Annual Workshop on Computational Learning Theory, pp. 269–284 (1989)

16. Maes, R.: Physically Unclonable Functions: Constructions, Properties and Appli-
cations. Springer, Heidelberg (2013)

https://eprint.iacr.org/2015/378.pdf
https://eprint.iacr.org/2015/378.pdf

Why Attackers Win: On the Learnability of XOR Arbiter PUFs 39

17. Maes, R., Verbauwhede, I.: Physically unclonable functions a study on the state
of the art and future research directions. In: Sadeghi, A.-R., Naccache, D. (eds.)
Towards Hardware-Intrinsic Security. Information Security and Cryptography, pp.
3–37. Springer, Heidelberg (2010)

18. Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA PUF using programmable delay
lines. In: 2010 IEEE International Workshop on Information Forensics and Security
(WIFS), pp. 1–6 (2010)

19. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight secure PUFs. In: Pro-
ceedings of the 2008 IEEE/ACM International Conference on Computer-Aided
Design, pp. 670–673 (2008)

20. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(5589), 2026–2030 (2002)

21. Rostami, M., Majzoobi, M., Koushanfar, F., Wallach, D., Devadas, S.: Robust
and reverse-engineering resilient puf authentication and key-exchange by substring
matching. IEEE Trans. Emerg. Top. Comput. 2(1), 37–49 (2014)

22. Ruhrmair, U., Solter, J., Sehnke, F., Xu, X., Mahmoud, A., Stoyanova, V., Dror,
G., Schmidhuber, J., Burleson, W., Devadas, S.: PUF modeling attacks on simu-
lated and silicon data. IEEE Trans. Inf. Forensics Secur. 8(11), 1876–1891 (2013)

23. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.: Mod-
eling attacks on physical unclonable functions. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security, pp. 237–249 (2010)

24. Rührmair, U., Xu, X., Sölter, J., Mahmoud, A., Majzoobi, M., Koushanfar, F.,
Burleson, W.: Efficient power and timing side channels for physical unclonable
functions. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
476–492. Springer, Heidelberg (2014)

25. Sadeghi, A.R., Naccache, D. (eds.): Towards Hardware-Intrinsic Security: Founda-
tions and Practice, 1st edn. Springer, Heidelberg (2010)

26. Servedio, R.A.: Efficient Algorithms in Computational Learning Theory. Harvard
University, Cambridge (2001)

27. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, Cambridge (2014)

28. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the 44th Annual Design Automation
Conference, pp. 9–14 (2007)

29. Tajik, S., Dietz, E., Frohmann, S., Seifert, J.-P., Nedospasov, D., Helfmeier, C.,
Boit, C., Dittrich, H.: Physical characterization of arbiter PUFs. In: Batina,
L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 493–509. Springer,
Heidelberg (2014)

30. Tobisch, J., Becker, G.T.: On the Scaling of Machine Learning Attacks on
PUFs with Application to Noise Bifurcation (2015). https://www.emsec.rub.de/
research/publications/ScalingPUFCameraReady/. Accessed 18 May 2015

31. Yu, M.D.M., Verbauwhede, I., Devadas, S., MRaihi, D.: A noise bifurcation archi-
tecture for linear additive physical functions. In: 2014 IEEE International Sympo-
sium on Hardware-Oriented Security and Trust (HOST), pp. 124–129 (2014)

https://www.emsec.rub.de/research/publications/ScalingPUFCameraReady/
https://www.emsec.rub.de/research/publications/ScalingPUFCameraReady/

A Unified Security Analysis of Two-Phase Key
Exchange Protocols in TPM 2.0

Shijun Zhao1(B) and Qianying Zhang2

1 TCA Lab, Institute of Software Chinese Academy of Sciences,
Beijing 100190, China

{zqyzsj,zsjzqy}@gmail.com
2 College of Information Engineering, Capital Normal University,

Beijing 100048, China

Abstract. The Trusted Platform Module (TPM) version 2.0 provides
an authenticated key exchange functionality by a single key exchange
primitive, which can be called to implement three key exchange pro-
tocols (denoted as two-phase key exchange protocols in TPM 2.0): the
Full Unified Model, the MQV, and the SM2 key exchange protocols.
However, some vulnerabilities have been found in all of these protocols.
Fortunately, it seems that protections provided by the TPM can deal
with vulnerabilities of these protocols. This paper investigates whether
the TPM key exchange primitive provides a secure key exchange func-
tionality under protections of the TPM. We first perform an informal
analysis of the TPM key exchange primitive which helps us to model in
a precise way. Then we formally analyze the TPM key exchange primitive
in a security model for AKE, based on which all the protocols adopted
by TPM 2.0 can be analyzed in a unified way. Our analysis indicates
under what conditions the TPM 2.0 can provide a provable secure key
exchange functionality. In the end, we give suggestions on how to lever-
age the TPM key exchange primitive properly, and suggestions on how
to improve the security of current TPM key exchange primitive to enable
its wide use in practice.

Keywords: Authenticated key exchange · Security model · Security
analysis · Min-entropy · TPM 2.0

1 Introduction

Authenticated key exchange (AKE) is a very important public key primitive in
modern cryptography, which allows two parties to establish a shared secret ses-
sion key via the public insecure communication while providing mutual authen-
tication. To achieve security against active attackers, who control the public
communication channels, AKE protocols commonly use digital signatures or
message authentication codes (MAC) to explicitly authenticate the messages
exchanged. Some typical examples include: STS [5], SIGMA [8], TLS [11], and
JFK [3]. However, the authentication mechanism to resist active attacks incurs
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 40–57, 2015.
DOI: 10.1007/978-3-319-22846-4 3

A Unified Security Analysis 41

a significant increase in both the computation and communication complexity
compared to the basic Diffie-Hellman key exchange protocol.

In 1986, Matsumoto et al. first put forth the design of implicitly AKE pro-
tocols [20] which only required basic Diffie-Hellman exchanges while providing
identities authentication by combining the ephemeral keys and long-term keys
in the derivation of the session key. The implicitly AKE protocols achieve effi-
ciency in both communication and computation, so they are widely studied and
many protocols are proposed [13,14,16–19,21,23,27,29–31]. Among these pro-
tocols, the HMQV protocol [16] marks the milestone of the development of the
implicitly AKE protocols because it provides the first formal analysis of implic-
itly AKE protocols within a modern AKE security model (the CK model). By
now, it becomes a basic requirement for AKE protocols to achieve the security
defined by modern AKE security models, such as the CK [7] model or eCK
[17] model. The core security property defined by modern AKE security models
guarantees that the corruption of one session would not compromise the security
of other sessions. In modern AKE security models, a session of implicitly AKE
protocols is identified by a quadruple (Â, B̂,X, Y) where Â is the identity of the
holder of the session, B̂ the peer, X the outgoing ephemeral public key, and Y
the incoming ephemeral public key.

In this work, we focus on the two-phase key exchange primitive defined in
the new released TPM 2.0 specification [25], which supports three implicitly
AKE protocols: the Full Unified Model and Full MQV protocols described in
SP800-56A [4], and the SM2 key exchange protocol [29]. The three protocols are
described as two-phase key exchange protocols in TPM 2.0 as they require two
phases. In the first phase, the TPM generates an ephemeral DH key to be sent
to the other party. In the second phase, the TPM generates the unhashed shared
secret by combining ephemeral keys and long-term keys, and then the host of
the TPM uses the unhashed shared secret to derive the session key.

We first introduce some preliminaries used in the three protocols. Let G′ be a
finite Abelian group of order N , G ⊆ G′ be a subgroup of prime order q. Denote
by g a generator of G, by 1G the identity element, by G\1G = G− {1G} the set
of elements of G except 1G and by h = N/q the cofactor. We use multiplicative
notation for the group operation in G′. Let u ∈R Zq denote randomly selecting
an integer u between 1 and q − 1. Note that G actually is an elliptic curve in
this work as all the three protocols are based on elliptic curve cryptography. Let
P.x denote the x-coordinate of point P . The party having A as its public key
will be denoted by Â. The Full Unified Model, Full MQV and SM2 key exchange
protocols are described in Fig. 1. H1() and H2() are cryptographic hash functions.
The Full Unified Model protocol analyzed in this paper includes the ephemeral
public keys exchanged as suggested by [15]. The Full MQV protocol is a variant
of the original MQV protocol [21] (which doesn’t include parties’ identifiers in
the session key derivation, i.e., K = H2(ZA) = H2(ZB)).

42 S. Zhao and Q. Zhang

Fig. 1. The full unified model, full MQV, and SM2 key exchange protocols

1.1 Weaknesses of AKE Protocols in TPM 2.0

Unfortunately, all the three AKE protocols adopted by TPM 2.0 are not secure1.
We summarize their weaknesses in the following.

We find that the Full Unified Model key exchange protocol is completely
insecure if an attacker is able to learn the intermediate information Z1 = gab of
some session established by Â with B̂: the attacker transmits an ephemeral key
X ′ = gx

′
generated by himself to party B̂ and receives an ephemeral public key

Y ′ from B̂, then he can compute the session key K = H(Z1, Y
′x′

, Â, B̂,X ′, Y ′),
i.e., the attacker is able to impersonate Â to B̂ indefinitely.

Kaliski presented an unknown-key share (UKS) attack [15] on the original
MQV protocol in which the attacker M interfaces with the session establishment
between two honest parties Â and B̂ such that Â is convinced that he is sharing
a key with B̂, but B̂ believes that he is sharing the same session key with M.
M can mount Kaliski’s UKS attack by (a) registering with the CA a specific
key C = gc, and (b) sending a specific ephemeral public key X ′ to B̂. c and X ′

are cleverly computed by M such that session keys of sessions (Â, B̂,X, Y) and
(B̂,M, Y,X ′) are identical. Although the Full MQV protocol tries to overcome
the UKS weakness by including identities in the session key derivation, we find
that it still cannot achieve the security defined by modern AKE models if M is
able to learn the unhashed shared Z value: M performs the same steps above,
learns ZB by corrupting the session (B̂,M, Y,X ′), then M can compute the
session key of session (Â, B̂,X, Y), i.e., corruption of the session (B̂,M, Y,X ′)

1 The TPM 2.0 specification notes that the Full MQV and SM2 key exchange protocols
“may be susceptible to unknown key-share (UKS) attacks” [25].

A Unified Security Analysis 43

helps M to compromise another session (Â, B̂,X, Y). In the following of this
paper, we use MQV to denote the Full MQV.

Xu et al. introduced two attacks [29] on the SM2 key exchange protocol in
which an honest party Â is coerced to share a session key with the attacker M,
but Â thinks that he is sharing the key with another party B̂. Both attacks
requires M to reveal the unhashed shared ZB in B̂. Besides, the first attack
requires M to register with the CA a specific key C = Age where e ∈R Zq, and
the second attack requires M to perform some computations using his private
key after obtaining ZB .

From above attacks we can see that the three AKE protocols cannot achieve
the security property defined by modern AKE security models if the attacker is
able to get the unhashed Z values. Unfortunately, this is exactly how the TPM
2.0 two-phase key exchange primitive implements these three AKE protocols: Z1

of the Full Unified Model, unhashed Z value of the MQV and SM2 key exchange
protocols are returned to the host, whose memory is vulnerable to attacks. So it
seems that the TPM 2.0 key exchange primitive is not secure.

1.2 Motivations and Contributions

Fortunately, protections provided by the TPM improve the security of the TPM
key exchange primitive. We use tpm.KE to denote the TPM key exchange primi-
tive in this paper. First, all long-term keys are generated by TPM chip randomly,
so the attacker cannot use the TPM chip to generate a specific key such as the
cleverly computed key C = gc in Kaliski’s UKS attack or C = Age in Xu’s
first attack. Second, the TPM only provides fixed functionalities through TPM
commands [26] in a black-box manner: when a TPM command is invoked, the
TPM chip executes the pre-defined computation procedure, and returns the com-
putation result. The second feature constrains the attacker from using the key
to perform computations at will. It seems that above two features can prevent
Kaliski’s UKS attack and Xu’s attacks, and Zhao et al. [32] show that protec-
tions provided by the TPM indeed help the SM2 key exchange protocol to resist
Xu’s two attacks by an informal analysis. However, Zhao et al. don’t model the
two features above in their formal analysis, but perform their formal analysis by
adopting an easier approach: they modify tpm.KE not to return the unhashed Z
value but the session key, thus Z is not available to the attacker. This leads to
our first motivation:

1. How to precisely model protections provided by the TPM, and check whether
the protections can help current tpm.KE to be proven secure?

Although protections provided by the TPM help the MQV and SM2 key
exchange protocols to resist current attacks, the avf() and avf ′() used in the
MQV and SM2 key exchange protocols respectively make that no analysis can
prove these two protocols to be secure. Consider such a group G that the repre-
sentation of its elements satisfies that the �q/2� least significant bits (LSBs) of
the representation of points’ x-coordinate are fixed. In this case, the attacker can

44 S. Zhao and Q. Zhang

mount the so-called group representation attacks on MQV and SM2 key exchange
protocols, in which the attacker can impersonate Â to B̂ without knowing the
private key of Â. A group representation attack on MQV is described in [16], and
a similar attack on the SM2 key exchange protocol can be found in [32]. To make
this type of attacks more convincing, [32] proposes an approach to construct such
an elliptic curve in theory. HMQV, a variant of MQV proved secure in the CK
model, prevents this type of attack by replacing avf() with a cryptographic hash
function. [32] also suggests replacing the avf ′() of the SM2 key exchange proto-
col with a cryptographic hash function. However, group representation attacks
are not practical as in practice it’s difficult to find an elliptic curve whose �q/2�
LSBs of the representation of points’ x-coordinate are fixed. On the contrary,
the generation of the avf() and avf ′() seems to range in a uniform way over all
possible values. This leads to our second motivation:

2. Can we give a quantitative measure of the amount of randomness (entropy)
contained in the practical output distribution of avf() and avf ′(), and check
whether avf() and avf ′() provide enough entropy to prevent group represen-
tation attacks?

The tpm.KE is designed to support three implicitly AKE protocols through a
unified interface. However, current modern AKE security models only consider
how to formally analyze one single protocol. To the best of our knowledge, all
AKE protocols proven secure in the literature are analyzed separately. For exam-
ple, [32] only analyzes the SM2 key exchange protocol in TPM 2.0, and doesn’t
model the other two protocols. However, this analysis approach is insufficient for
tpm.KE. Suppose an honest party Â tries to establish a secure channel with B̂
through MQV, and the TPM of B̂ has a long-term key of the type SM2, which
is controlled by the attacker. Is the session key of Â still secure if the attacker
leverages the key of the type SM2 to complete the session? In this case, it’s desir-
able for tpm.KE to protect the session key of Â. We denote this security property
by correspondence property. However, current security models don’t capture this
security property. This leads to our third motivation:

3. Can we build a unified security AKE model, based on which we can give a
formal analysis of tpm.KE, which supports three AKE protocols?

Contributions. We summarize the contributions of this paper as follows:

1. We leverage the min-entropy, a notion from information theory, to give a
quantitative measure of the amount of randomness in the output distribu-
tion of avf() and avf ′(). We measure several series of elliptic curves used
in practice, covering all elliptic curves adopted by TPM 2.0 [24]. We also
compare the measurement with a cryptographic hash function, SHA-2. The
comparison results show that avf() and avf ′() provide almost the same level
of randomness as cryptographic hash functions.

2. We model the protections provided by the TPM by modeling the interfaces
of tpm.KE as oracles, and present a unified AKE security model for tpm.KE,
which captures not only the security property defined by modern AKE models
but also the correspondence property.

A Unified Security Analysis 45

3. We give a formal analysis of tpm.KE in our new model, and prove that tpm.KE
is secure under the condition that the unhashed shared secrets are not avail-
able to the attacker. This condition can be achieved by slightly modifying the
Full Unified Model functionality of TPM 2.0 or proper implementation of the
host’s software which derives the session key.

4. The tpm.KE defined by current TPM 2.0 specification opens a window of
opportunity to actually mount impersonate attacks, so we give suggestions
on how to avoid such attacks. We also give some suggestions on how to modify
TPM 2.0 specification to achieve a more secure tpm.KE.

1.3 Organization

In the rest of this paper, Sect. 2 gives some preliminaries. Section 3 introduces
the two-phase key exchange primitive defined by TPM 2.0 specification, gives
a quantitative measure of several series of elliptic curves used in practice, and
presents an informal analysis of tpm.KE. Section 4 presents our unified secu-
rity model for tpm.KE. Section 5 gives a formal description of tpm.KE. Section 6
proves the unforgeabilities of the functionalities of MQV and SM2 key exchange
provided by tpm.KE, which can simplify our analysis. Section 7 formally analyzes
tpm.KE in our new model. Section 8 discusses some further security properties,
and gives our suggestions on how to implement secure AKE protocols based on
current tpm.KE and how to modify current TPM 2.0 specification to achieve a
more secure key exchange primitive. Section 9 concludes this paper and gives our
future work.

2 Preliminaries

This section first introduces the notion of min-entropy and two commonly used
methods to calculate the min-entropy, then introduces CDH (Computational
Diffie-Hellman) and GDH (Gap Diffie-Hellman) assumptions used in this paper.

2.1 Min-entropy

Min-entropy is a notion from information theory, which provides a very strict
information-theoretical lower bound (i.e., worst-case) measure of randomness
for a random variable. High min-entropy indicates that the distribution of the
random variable is close to the uniform distribution. Low min-entropy indicates
that there must be a small set of outcomes that has an unusually high probability,
and the small set can help the attacker to perform the group representation
attack. Take the two extreme cases for example: if the min-entropy of a random
variable is equal with the length of the outcome, the distribution is a uniform
distribution, and if the min-entropy of a random variable is zero, the outcomes
of the random variable are a fixed value. From the two extreme cases we can
see that the higher the min-entropy is, the harder for the attacker to mount
group representation attacks. There are usually two methods to measure the
min-entropy of a random variable:

46 S. Zhao and Q. Zhang

1. NIST SP 800-90. This method is described in NIST specification 800-90
for binary sources. The definition for min-entropy of one binary bit is:
H = −log2(pmax), where pmax = max{p0, p1}, and p0, p1 are probabilities
of the binary bit outputs zero and one respectively. The min-entropy of an
n-bit binary string is defined by:

Htotal =
n∑

i=1

Hi (1)

2. Context-Tree Weighting compression. Context-Tree Weighting (CTW) [28] is
an optimal compression algorithm for stationary sources and is commonly
used for estimate the min-entropy.

2.2 CDH and GDH Assumptions

Definition 1 (CDH Assumption). Let G be a cyclic group of order p with
generator g. The CDH assumption in G states that, given two randomly chosen
points X = gx and Y = gy, it is computationally infeasible to compute Z = gxy.

Definition 2 (GDH Assumption). Let G be a cyclic group generated by an
element g whose order is p. We say that a decision algorithm O is a Decisional
Diffie-Hellman (DDH) Oracle for a group G and generator g if on input a triple
(X,Y,Z), for X,Y ∈ G, oracle O outputs 1 if and only if Z=CDH(X,Y). We
say that G satisfies the GDH assumption if no feasible algorithm exists to solve
the CDH problem, even when the algorithm is provided with a DDH-oracle for G.

3 The TPM Key Exchange Primitive

This section first presents how tpm.KE is implemented in TPM 2.0 and introduces
relevant TPM commands. Then we give an informal analysis of tpm.KE. In our
informal analysis, we present our solutions to prevent impersonation attacks on
the Full Unified Model protocol, and a quantitative measure of the randomness
of the output distribution of avf() and avf ′() on a wide range of elliptic curves
which have been widely used in practice.

3.1 Introduction of tpm.KE

tpm.KE consists of two phases. In the first phase, the TPM generates an
ephemeral key which is transferred to the other party. In the second phase,
the TPM generates the unhashed secret values according to the specification of
the selected protocol, then the host derives the session key from the unhashed
secret values. Before running the two phases, the Key Generation procedure
should be invoked first to generate the long-term key. As we aim to analyze
the whole AKE protocols adopted by TPM 2.0, tpm.KE introduced below not
only includes the key exchange functionality provided by the TPM, but also the
session key derivation procedure performed on the host.

A Unified Security Analysis 47

Key Generation. The relevant commands are TPM2 Create() and TPM2
CreatePrimary(). They take as input public parameters including an attribute
identifying the key exchange scheme for the long-term key. The scheme should
be one of the following three: TPM ALG ECDH, TPM ALG ECMQV, and
TPM ALG SM2. In this procedure, the TPM performs the following steps: if
the command is TPM2 Create(), it picks a random a ∈R Zq and computes
A = ga, and if the command is TPM2 CreatePrimary(), it derives a from a
primary seed using a key derivation function and computes A = ga; finally it
returns A, and a key handle identifying a.2

First Phase. The relevant command is TPM2 EC Ephemeral(). This command
is used to generate an ephemeral key. The TPM performs the following steps:
1. Generate x = KDFa(Random,Count), where KDFa() is a key derivation

function described in [9], Random is a secure random value stored inside
the TPM, and Count is a counter.

2. Set ctr = Count, A[ctr] = 1, Count = Count + 1, where A[] is an array
of bits used to indicate whether the ephemeral key has been used.

3. Set x = x mod q, and generate X = gx.
4. Return X and ctr.
Note that the TPM doesn’t need to store the ephemeral private key x as it
can be recovered using KDFa() and ctr.

Second Phase. The relevant command is TPM2 ZGen 2Phase(), which is the
main command of tpm.KE. This command takes the following items as input:
scheme a scheme selector indicating to the TPM which of the supported

schemes is to be used
keyA the key handle identifying the long-term private key a generated

in the Key Generation procedure
ctr the counter used to identify the ephemeral key generated in the

first phase
B the public key of B̂, with which Â wants to establish a session
Y the ephemeral public key received from B̂
1. The TPM first does the following checks:

(a) Whether scheme equals the scheme designated for key A in the key
generation procedure.

(b) Whether B and Y are on the curve associated with A.
(c) Whether A[ctr] = 1.

2. If the above checks succeed, the TPM recovers x = KDFa(Random, ctr),
and performs the following steps:
(a) Compute unhashed values according to the value of scheme:

Case TPM ALG ECDH:
set Z1 = Ba, Z2 = Y x;

Case TPM ALG ECMQV:
set Z1 = (Y Be)h(x+da), Z2=NULL, where d = avf(X) and e =
avf(Y);

2 Actually TPM2 Create() returns a key blob encrypted by a storage key, and the
TPM2 Load() command loads the key blob and returns the key handle. For simplicity,
we let TPM2 Create() directly return the key handle.

48 S. Zhao and Q. Zhang

Case TPM ALG SM2:
set Z1 = (BY e)h(a+dx), Z2=NULL, where d = avf ′(X) and
e = avf ′(Y);

(b) Set A[ctr] = 0.
(c) Return Z1 and Z2.

3. Finally, the host computes the session key after obtaining Z1 and Z2.
Note that when TPM2 ZGen 2Phase() completes successfully, the TPM
clears A[ctr], which ensures that the ephemeral private key x can only be
used once.

3.2 Informal Analysis

We have shown that two weaknesses in the design of tpm.KE prevent it from
achieving security property defined by modern AKE security models. One weak-
ness is that tpm.KE returns Z1 of the Full Unified Model protocol to the host
whose memory is vulnerable to attacks, which makes Z1 be available to the
attacker. If the attacker obtains Z1, the Full Unified Model protocol would be
completely insecure as we have shown in Sect. 1.2. The other one is the weakness
caused by the avf() and avf ′(), which results in group representation attacks
on the MQV and SM2 key exchange protocols. Although this type of attacks is
not feasible, it makes the two protocols cannot be proven secure.

We give two solutions to overcome the first weakness:

1. Perform the entire session key computation of Full Unified Model in the secure
environment of the TPM, i.e., modify the TPM2 ZGen 2Phase() command not
to return Z1 and Z2 but the session key, i.e., K = H1(Z1, Z2, Â, B̂,X, Y).

2. Protect Z1 and Z2 from malicious code running on the host as much as
possible such as keeping them only available in kernel mode, and delete Z1

and Z2 as soon as the session key is derived.

The first solution requires modifying the current TPM 2.0 specification, and the
second one requires that the software code of session key derivation running on
the host must be implemented properly and should be included in the Trusted
Computing Base (TCB). The two solutions have the same purpose: protecting
Z1 from the attacker, which helps us exclude Z1 of Full Unified Model from the
session state which the attacker can obtain in our formal analysis in Sect. 7.

As it seems that the second weakness only happens in theory, we perform
a quantitative measure of the min-entropy contained in the output distribution
of avf() and avf ′() to check whether this weakness can happen in practice. We
measure several series of widely deployed elliptic curves: the NIST series [12], the
BN series [2], the SECG series [22], and an SM2 elliptic curve [1]. Our measure
totals 17 elliptic curves and covers all elliptic curves adopted by TPM 2.0 [24].
We generate 16384 points for each elliptic curve, apply avf ′() to points of SM2
P256 curve, and apply avf() to points of the rest curves3. We also apply the
cryptographic hash function SHA-2 to the generated points of all curves. Then we
3 avf ′() is defined only for SM2 key exchange, and avf() is for MQV.

A Unified Security Analysis 49

measure the min-entropy of the output distributions of avf() (avf ′()) and SHA-
2. The min-entropy results calculated using method of NIST SP 800-90 (formula
1) and CTW compression are summarized in Table 1. Table 1 also compares the
min-entropy of the two output distributions. To our surprise, the min-entropy
of the output distribution of avf() and avf ′() is very close to the min-entropy
of the output distribution of SHA-2: the former is only about 1 bit less than the
latter. What’s more, the measure results indicate that the output distribution
of avf() and avf ′() is close to the uniform distribution. Take the measurement
of BN P256 for example, the min-entropy calculated by the NIST’s method is
126.93, very close to the output length of avf() which is 129=�256/2�+1, and
the CTW ratio is 98.08 % which is close to 1. Our practical measure indicates
that the outputs of avf() (avf ′()) on different elliptic curve points are almost
independent, and it is impractical for an attacker to mount group representation
attacks on protocols based on practical elliptic curves. So in our formal analysis
we model avf() and avf ′() as random oracles.

Table 1. Min-entropy results

Elliptic Curves NIST 800-89 CTW Ratio

avf() SHA-2 avf() SHA-2

NIST Series P192 95.19 95.94 97.13 % 97.92 %

P224 111.01 111.99 97.68 % 98.33 %

P256 126.86 127.89 98.08 % 98.65 %

P384 190.19 191.30 98.95 % 99.31 %

P521 258.73 259.80 100.01 % 100.11 %

BN Series P192 95.09 96.15 97.13 % 97.91 %

P224 111.03 111.95 97.67 % 98.34 %

P256 126.93 127.95 98.08 % 98.67 %

P384 190.23 191.19 98.95 % 99.32 %

P512 253.62 254.80 99.35 % 99.60 %

P638 314.97 316.13 100.04 % 100.23 %

SECG Series P192 95.17 95.99 97.13 % 97.92 %

P224 110.98 111.98 97.68 % 98.34 %

P256 126.63 127.90 98.07 % 98.65 %

P384 190.39 191.28 98.95 % 99.31 %

P521 258.64 259.62 100.08 % 100.11 %

SM2 P256 125.81 126.89 100.14 % 100.17 %

4 A Unified Security Model

This section presents our unified security model for tpm.KE, and describes the
attacker model which models the capabilities of the attacker by some queries.

50 S. Zhao and Q. Zhang

In our security model, each party has a long-term key generated by the TPM
and a certificate (issued by a Certificate Authority (CA)) that binds the public
key to the identity of that party. The long-term key can be one of the following
three types: TPM ALG ECDH, TPM ALG ECMQV, and TPM ALG SM2. A party
can be activated to invoke the interfaces of tpm.KE to run an instance of the
protocol supported by the long-term key, and an instance of a protocol is called
a session. In each session, a party can be activated as the role of initiator to
send the first ephemeral public key or responder to send the second ephemeral
public key by invoking the interface of the first phase of tpm.KE, and a party
can complete the session by invoking the interface of the second phase of tpm.KE
and computing the session key.

In previous AKE security models, a session is identified by a quadruple
(Â, B̂,X, Y) where Â is the identity of the owner of the session, B̂ the peer party,
X the outgoing ephemeral public key from Â, and Y the incoming ephemeral
public key from B̂. This kind of session identifier cannot identify a session estab-
lished by tpm.KE as tpm.KE supports more than one scheme (protocol). So we
use a quintuple (sc, Â, B̂,X, Y) to identify a session where sc denotes the scheme
of the session. The session (sc, B̂, Â, Y,X) (if it exists) is said to be matching
to session (sc, Â, B̂,X, Y), and the session (sc′, B̂, Â, Y,X) where sc′ �= sc (if it
exists) is said to be message-matching to session (sc, Â, B̂,X, Y).

The introduction of sc to the session identifier brings an issue we must
address: how about the security of the session (sc, Â, B̂,X, Y) if it has a cor-
rupted message-matching session? Previous AKE security models don’t capture
this attack as they don’t support formal analysis of multiple kinds of protocol
in a unified way. However, this attack can happen on tpm.KE as it supports
three AKE schemes and the TPM specification doesn’t force the TPM to check
the key type of its peer party. We say tpm.KE satisfies correspondence prop-
erty if it can resist above attack, i.e., the session (sc, Â, B̂,X, Y) is secure if its
message-matching session is compromised.

4.1 Attacker Model

The experiment involves multiple honest parties and an attacker M connected
via an unauthenticated network. The attacker is modeled as a probabilistic Tur-
ing machine and has full control of the communications between parties. M
can intercept and modify messages sent over the network. M also schedules all
session activations and session-message delivery. In addition, in order to model
potential disclosure of secret information, the attacker is allowed to access secret
information via the following queries:

– SessionStateReveal(s): M queries directly at session s while still incom-
plete and learns the session state for s. In our analysis, the session state
includes the values returned by interfaces of tpm.KE and intermediate infor-
mation stored and computed in the host.

– SessionKeyReveal(s): M obtains the session key for the session s.

A Unified Security Analysis 51

– Corruption(P̂): In other AKE security models, this query allows M to learn
the plaintext of the long-term private key of party P̂ . In our model, M doesn’t
learn anything about the plaintext of the private key but obtains the black-box
access of the long-term key via TPM interfaces.

– Test(s): This query may be asked only once throughout the game. Pick b
R←−

0, 1. If b = 1, provide M the session key; otherwise provide M with a value r
randomly chosen from the probability distribution of session keys. This query
can only be issued to a session that is “clean”. A completed session is “clean”
if this session as well as its matching session (if it exists) is not subject to
above three queries. A session is called exposed if M performs any one of
above three queries to this session.

Note that our model differs from previous AKE security models in that the
Corruption query to some party doesn’t provide the attacker with the plaintext
of the long-term private key of the party, but the black-box access of the long-
term key which is randomly generated and protected by the TPM. This difference
models the two protection features (see description in Sect. 1.2) provided by the
TPM for tpm.KE.

The security is defined based on a game played by M, in which M is allowed
to activate sessions and perform SessionStateReveal, SessionKeyReveal, and Cor-
ruption queries. At some time, M performs the Test query to a clean session
of its choice and gets the value returned by Test. After that, M continues the
experiment, but is not allowed to expose the test session and its matching session
(if it exists). Eventually M outputs a bit b′ as its guess, then halts. M wins the
game if b′ = b. The attacker with above capabilities is called a KE-attacker.
The formal security is defined as follows.

Definition 3. tpm.KE is called secure if the following properties hold for any
KE-attacker M defined above:

1. When two uncorrupted parties complete matching sessions, they output the
same session key, and

2. The probability that M guesses the bit b (i.e., outputs b′ = b) from the Test
query correctly is no more than 1/2 plus a negligible fraction.

The first condition is a “consistency” requirement for sessions completed
by two uncorrupted parties. The second condition is the core property for the
security of tpm.KE: it guarantees that exposure of one session doesn’t help the
attacker to compromise the security of another session. Note that our security
definition of tpm.KE allows the attacker to expose the message-matching session,
that is to say, the test session is still secure even if the message-matching session is
exposed by the attacker. Thus our model captures the correspondence property.

5 Formal Description of TPM.KE

This section formally describes tpm.KE from the view of how two-phase key
exchange protocols can be implemented leveraging the TPM.

52 S. Zhao and Q. Zhang

We use ephemA() to model the interface of the first phase of tpm.KE where
A is the long-term key of Â: once invoked, ephemA() generates an ephemeral
private/public key pair (r,R = gr), and returns an index ctr identifying the
private key r in the TPM. We model as oracles the black-box manner of the
key exchange functionalities provided by the second phase of tpm.KE. The Full
Unified Model, MQV, and SM2 key exchange functionalities provided by the
second phase of tpm.KE are modeled as oracle OEC

A , oracle OMQV
A , and oracle OSM2

A

respectively. OEC
A takes as input the input of TPM2 ZGen 2Phase(), and returns

the session key generated according to the specification of Full Unified Model.
Note that we model our solutions to the first weakness of tpm.KE by letting OEC

A

directly return the session key but not Z1 and Z2. OMQV
A and OSM2

A take as input
the input of TPM2 ZGen 2Phase(), and return the unhashed value according to
specifications of the MQV and SM2 key exchange protocols respectively. We now
formally describe tpm.KE by giving the following three session activations.

1. Initiate(sc, Â, B̂): Â invokes ephemA() of its TPM to obtain an ephemeral
public key X and an index ctrx identifying the ephemeral private key x stored
in the TPM, creates a local session which it identifies as (the incomplete)
session (sc, Â, B̂,X) where sc is the key exchange scheme supported by the
long-term key A, and outputs X as its outgoing ephemeral public key.

2. Respond(sc, B̂, Â,X) (sc is the scheme supported by B): After receiving X,
B̂ performs the following steps:
(a) Invoke ephemB() of its TPM to obtain an ephemeral public key Y and an

index ctry identifying the ephemeral private key y stored in the TPM.
(b) With input (sc, keyB, ctry, A,X) where keyB is the key handle of B,

invoke corresponding oracle according to the value of sc:
Case TPM ALG ECDH: Invoke OEC

B , set the session key K to be the
return result of OEC

B .
Case TPM ALG ECMQV: Invoke OMQV

B , obtain ZB from the return
result, and compute the session key K = H2(ZB , Â, B̂).

Case TPM ALG SM2: Invoke OSM2
B , obtain ZB from the return result,

and compute the session key K = H2(ZB , Â, B̂).
(c) Complete the session with identifier (sc, B̂, Â, Y,X).

3. Complete(sc, Â, B̂,X, Y): Â checks that it has an open session with identifier
(sc, Â, B̂,X), then performs the following steps:
(a) With input (sc, keyA, ctrx, B, Y) where keyA is the key handle of A,

invoke corresponding oracle according to the value of sc:
Case TPM ALG ECDH: Invoke OEC

A , set the session key K to be the
return result of OEC

A .
Case TPM ALG ECMQV: Invoke OMQV

A , obtain ZA from the return
result, and compute the session key K = H2(ZA, Â, B̂).

Case TPM ALG SM2: Invoke OSM2
A , obtain ZA from the return result,

and compute the session key K = H2(ZA, Â, B̂).
(b) Complete the session with identifier (sc, Â, B̂,X, Y).

A Unified Security Analysis 53

6 Unforgeability of MQV and SM2 Key Exchange
Functionalities

In this section, we first give formal definitions of MQV and SM2 Key Exchange
functionalities provided by tpm.KE, and formally prove their unforgeabilities
with a constraint on the attacker. The unforgeabilities can simplify our formal
analysis of tpm.KE.

Definition 4 (MQV Functionality of tpm.KE). The functionality, denoted
by OMQV

B , is provided by a party possessing a private/public key pair (b,B =
gb). A challenger, possessing a private/public key pair (a,A = ga), provides
OMQV

B with a challenge X = gx (x is chosen and kept secret by the challenger).
With the pair (A,X), OMQV

B first computes an ephemeral private/public key pair
(y, Y = gy), and returns Z = (XAd)y+eb where d = avf(X) and e = avf(Y).
The challenger can verify the return result (Y,Z) with respect to challenge X by
checking whether Z = (Y Be)x+da.

Definition 5 (SM2 Key Exchange Functionality of tpm.KE). The func-
tionality, denoted by OSM2

B , is provided by a party possessing a private/public key
pair (b,B = gb). A challenger, possessing a private/public key pair (a,A = ga),
provides OSM2

B with a challenge X = gx (x is chosen and kept secret by the chal-
lenger). With the pair (A,X), OSM2

B first computes an ephemeral private/public
key pair (y, Y = gy), and returns Z = (AXd)b+ey where d = avf ′(X) and
e = avf ′(Y). The challenger can verify the return result (Y,Z) with respect to
challenge X by checking whether Z = (BY e)a+dx.

Theorem 1. Under the CDH assumption, with avf() modeled as a random ora-
cle, given a challenge X, it is computationally infeasible for an attacker to forge
a return result of OMQV

B on behalf of a challenger whose public key is A under
the constraint that (a, x) is unknown to the attacker.

Theorem 2. Under the CDH assumption, with avf ′() modeled as a random
oracle, given a challenge X, it is computationally infeasible for an attacker to
forge a return result of OSM2

B on behalf of a challenger whose public key is A
under the constraint that (a, x) is unknown to the attacker.

Due to the space limitation, we omit the proof of Theorems 1 and 2, and the
complete proof of the two theorems are given in the full version [33].

7 Security Analysis of tpm.KE

In this section, we analyze the security of tpm.KE in the security model defined
in Sect. 4. We first define the session state allowed to be revealed by the attacker.

Session State. In order to simulate the protections provided by the TPM, we
specify that a session state stores the results returned by the TPM and the
information stored in the host. For the Full Unified Model scheme, the session
state is the session key; for the MQV and SM2 key exchange schemes, the session
state is the unhashed value returned by the TPM.

54 S. Zhao and Q. Zhang

Theorem 3. Under the CDH and GDH assumptions, with hash functions H1()
and H2(), avf(), and avf ′() modeled as random oracles, tpm.KE is secure in our
unified model.

Due to the space limitation, we give the complete proof of above theorem in
the full version [33].

8 Discussion and Suggestions

In this section, we first discuss some further security properties for AKE proto-
cols, then give suggestions on how to use tpm.KE securely and suggestions on
how to improve the security of tpm.KE.

8.1 Further Security Properties

Besides the basic security property defined by modern security models, it’s desir-
able for AKE protocols to achieve the following security properties: (1) the key-
compromise impersonation (KCI) resistance property; that is, the knowledge of
a party’s long-term private key doesn’t enable the attacker to impersonate other,
uncorrupted, parties to the party; and (2) the Perfect Forward Secrecy (PFS)
property; that is, the expired session keys established before the compromise of
the long-term key cannot be recovered.

Note that our security model doesn’t capture the KCI resistance property and
PFS property as our model doesn’t allow the attacker to obtain the plaintext
of the long-term private key but only allows the attacker to control the handle
of the long-term key. The reason that we put such constraint on the attacker,
which is used to model protections provided by the TPM hardware chip, is that
we aim to check whether the tpm.KE defined by current TPM specification can
provide a secure key exchange functionality (Note that in scenarios where long-
term keys can be obtained by the attacker, for example keys are not protected
by hardware tokens, all the three protocols adopted by TPM 2.0 are not secure).

Although tpm.KE cannot achieve the rigorous KCI resistance and PFS prop-
erties, it can satisfy weak forms of the two properties: (1) constrained KCI; that
is, the control of a party’s long-term key handle doesn’t enable the attacker to
impersonate other, uncontrolled, parties to the party; and (2) the constrained
PFS property; that is, the expired session keys established before the attacker
controls the handle of the long-term key cannot be recovered. To prove weak
forms of the two properties, all is needed is to note that the proof of tpm.KE
in Sect. 7 still holds if we allow the attacker to corrupt Â and B̂ which are the
related parities of the test session, i.e., all the simulators don’t abort when Â
and B̂ are corrupted. The proof remains valid since the abort operations are
never used in the proof.

8.2 Suggestions

TPM 2.0 is an important industrial specification which might be deployed widely
in practice, so a formal analysis of its key exchange primitive is critical. In this

A Unified Security Analysis 55

work we formally show that tpm.KE can achieve the basic security property
defined by modern AKE models. However, this goal is achieved under some
constraints on the attacker, and if the host of a TPM doesn’t code its software
properly, tpm.KE would be vulnerable to attacks. In order to ensure proper use
of tpm.KE, we give the following suggestions:

1. As only in the environment that all long-term keys are protected by the TPM
can tpm.KE achieve rigorous security property, we suggest that the Certificate
Authority only issues certificates for keys that are generated by TPM chips.
This can be done via the Privacy CA protocol [10] or the direct anonymous
attestation (DAA) protocol [6] if higher anonymity is required.

2. Note that the Full Unified Model scheme would be definitely insecure if the
unhashed value Z1 is compromised by the attacker. We suggest that the
software running on the host which derives the session key from the return
results of the TPM should be well protected, and the software should delete
the return results of the TPM (especially Z1 of the Full Unified Model scheme)
immediately after the session key is derived.

In real world environments, it’s common that some parties are equipped
with the TPM and others are not, and some CAs only issue certificates for keys
protected by the TPM (for example, via Privacy CA or DAA protocol) and
some CAs issue certificates for keys no matter whether they are protected by
the TPM. For the keys that are not protected by the TPM, it’s feasible for the
attacker to obtain their plaintexts, and these keys open a window of opportunity
to mount Kaliski’s UKS attack and Xu’s attacks on tpm.KE: the attacker can
register specific long-term keys or long-term keys whose plaintexts are available
to him to compromise sessions of other honest parties. So current tpm.KE is not
suitable for use in real world environments. For the sake of enabling tpm.KE to
achieve rigorous security in real world environments, where plaintexts of some
parties’ long-term private keys are vulnerable to attacks, we give the following
suggestions:

1. Perform the session key derivation in the TPM rather than on the host,
i.e., perform H1() and H2() in the TPM. This modification to tpm.KE only
adds a hash to the TPM which is negligible compared to the elliptic curve
scalar multiplication. We have shown that protecting the unhashed value Z1

is a basic requirement for the security of the Full Unified Model protocol.
Protecting the unhashed value Z is also necessary for the security of MQV
and SM2 key exchange in real world environments: it has been shown in [16]
and [32] that the disclosure of Z of a session can lead to the vulnerability
of other sessions. That’s why Krawczyk mandates the hashing of Z in the
HMQV (a proven secure variant of MQV), and Zhao et al. suggest putting
the session key derivation of SM2 key exchange into the TPM.

2. Replace avf() and avf ′() with cryptographic hash functions. Although we
have shown that avf() and avf ′() can be modeled as random oracles as they
provide strong enough randomness, it’s still preferred to replace them with
cryptographic hash functions.

56 S. Zhao and Q. Zhang

9 Conclusions and Future Work

In this paper, we present a formal analysis of the key exchange primitive of
TPM 2.0 in a unified way. One feature of our analysis is that we eliminate
specific assumptions on the representation of group elements by measuring the
entropy contained in the output of the avf() and avf ′(). The entropy measure-
ment results enable us to model avf() and avf ′() as random oracles convincingly.
Another feature of our analysis is that we consider protections provided by the
TPM. Our analysis shows that the TPM 2.0 indeed can provide a proven secure
key exchange functionality if the following requirements are satisfied: all hon-
est parties use the TPM (or other hardware security tokens) to protect their
long-term keys, and the CA only issues certificates for keys from legitimate
TPMs. However, these requirements are somewhat impractical, which limit the
use of tpm.KE in real world environments. So we give suggestions on how to
improve the security level of tpm.KE to enable its use in real world environments.
A formal security analysis of the improved tpm.KE based on our unified security
model can be done in the future work.

References

1. GM/T 0003.5-2012: Public Key Cryptographic Algorithm SM2 Based on Elliptic
Curves Part 5: Parameter definition

2. ISO/IEC 15946–5:2009 Information technology - Security techniques - Crypto-
graphic techniques based on elliptic curves - Part 5: Elliptic curve generation

3. Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.D.,
Reingold, O.: Just fast keying: key agreement in a hostile internet. ACM Trans.
Inf. Syst. Secur. (TISSEC) 7(2), 242–273 (2004)

4. Barker, E.B., Johnson, D., Smid, M.E.: NIST SP 800–56A. recommendation for
pair-wise key establishment schemes using discrete logarithm cryptography (2007)
(revised)

5. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the station-to-
station (STS) protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560,
pp. 154–170. Springer, Heidelberg (1999)

6. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security, pp.
132–145. ACM (2004)

7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001)

8. Canetti, R., Krawczyk, H.: Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–
161. Springer, Heidelberg (2002)

9. Chen, L.: Recommendation for key derivation using pseudorandom functions. NIST
Spec. Publ. 800, 108 (2008)

10. Chen, L., Warinschi, B.: Security of the tcg privacy-ca solution. In: 2010 IEEE/IFIP
8th International Conference on Embedded and Ubiquitous Computing (EUC), pp.
609–616. IEEE (2010)

11. Dierks, T.: The transport layer security (tls) protocol version 1.2. (2008)

A Unified Security Analysis 57

12. FIPS, PUB: 186–2. Digital Signature Standard (DSS). National Institute of Stan-
dards and Technology (NIST) (2000)

13. Gennaro, R., Krawczyk, H., Rabin, T.: Okamoto-Tanaka revisited: fully authenti-
cated Diffie-Hellman with minimal overhead. In: Zhou, J., Yung, M. (eds.) ACNS
2010. LNCS, vol. 6123, pp. 309–328. Springer, Heidelberg (2010)

14. Jeong, I.R., Katz, J., Lee, D.-H.: One-round protocols for two-party authenticated
key exchange. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 220–232. Springer, Heidelberg (2004)

15. Kaliski Jr., B.S.: An unknown key-share attack on the MQV key agreement pro-
tocol. ACM Trans. Inf. Syst. Secur. (TISSEC) 4(3), 275–288 (2001)

16. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer,
Heidelberg (2005)

17. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

18. Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange
protocol. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 378–394. Springer, Heidelberg (2006)

19. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement. Des. Codes Crypt. 28(2), 119–134 (2003)

20. Matsumoto, T., Takashima, Y.: On seeking smart public-key-distribution systems.
IEICE Trans. (1976–1990) 69(2), 99–106 (1986)

21. Menezes, A., Qu, M., Vanstone, S.: Some new key agreement protocols providing
mutual implicit authentication. In: Second Workshop on Selected Areas in Cryp-
tography (SAC 1995) (1995)

22. SEC, Secg. 2: Recommended elliptic curve domain parameters (2000). http://www.
secg.org

23. Skipjack and NIST. KEA algorithm specifications (1998)
24. TCG: TCG Algorithm Registry Family 2.0, Level 00 Revision 15 January 2014
25. TCG: Trusted platform module library part 1: Architecture, family 2.0, level 00

revision 07 January 2014
26. TCG: Trusted Platform Module Library Part 3: Commands Family 2.0, Level 00

Revision 07 January 2014
27. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from

(H)MQV and NAXOS. Des. Codes Crypt. 46(3), 329–342 (2008)
28. Willems, F.M., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting method:

basic properties. IEEE Trans. Inf. Theo. 41(3), 653–664 (1995)
29. Xu, J., Feng, D.: Comments on the SM2 key exchange protocol. In: Lin, D.,

Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 160–171. Springer,
Heidelberg (2011)

30. Yao, A.C., Zhao, Y.: A new family of implicitly authenticated diffie-hellman pro-
tocols. Technical report

31. Yao, A.C.-C., Zhao, Y.: OAKE: a new family of implicitly authenticated diffie-
hellman protocols. In: Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter & Communications Security, pp. 1113–1128. ACM (2013)

32. Zhao, S., Xi, L., Zhang, Q., Qin, Y., Feng, D.: Security analysis of SM2 key
exchange protocol in TPM2. 0. security and communication. Networks 8(3), 383–
395 (2015)

33. Zhao, S., Zhang, Q.: A Unified Security Analysis of Two-phase Key Exchange
Protocols in TPM 2.0. http://eprint.iacr.org/2015/611

http://www.secg.org
http://www.secg.org
http://eprint.iacr.org/2015/611

On Making Emerging Trusted Execution
Environments Accessible to Developers

Thomas Nyman1(B), Brian McGillion1, and N. Asokan2,3

1 Intel Collaborative Research Institute for Secure Computing (ICRI-SC)
at Aalto University, Espoo, Finland

{thomas.nyman,brian.mcgillion}@aalto.fi
2 Aalto University, Espoo, Finland

3 University of Helsinki, Helsinki, Finland
asokan@acm.org

Abstract. New types of Trusted Execution Environment (TEE) archi-
tectures like TrustLite and Intel Software Guard Extensions (SGX) are
emerging. They bring new features that can lead to innovative security
and privacy solutions. But each new TEE environment comes with its
own set of interfaces and programming paradigms, thus raising the bar-
rier for entry for developers who want to make use of these TEEs. In
this paper, we motivate the need for realizing standard TEE interfaces
on such emerging TEE architectures and show that this exercise is not
straightforward. We report on our on-going work in mapping GlobalPlat-
form standard interfaces to TrustLite and SGX.

1 Introduction

For more than a decade the vast majority of smartphones and tablets have been
equipped with hardware security functionality, usually referred to as Trusted
Execution Environments (TEEs) [3]. A TEE is an isolated and integrity-
protected processing environment where sensitive computations, such as cryp-
tographic operations, can be safely carried out. Until recently, application
developers have not had the means to make use of TEEs to enhance the secu-
rity and privacy of their applications. New standardization efforts, such as
GlobalPlatform (GP) [5], and open source implementation initiatives, such as
OP-TEE [8] and Trusted Little Kernel [11] have the potential for ushering in
widespread use of TEEs by application developers.

Although the deployed base of mobile devices with TEEs is very large, num-
bering in hundreds of millions, they predominantly follow the same architectural
pattern: a computing device containing a physical or logical TEE where small
amounts of sensitive computation can be carried out in conjunction with a larger
software components operating outside the TEE. The chief example of such a
TEE architecture is ARM TrustZone [1] which is widely deployed in smart-
phones.

Recently new types of TEE architectures have been proposed. They range from
TEEs like TrustLite [7] and SMART [4] designed for tiny resource constrained
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 58–67, 2015.
DOI: 10.1007/978-3-319-22846-4 4

On Making Emerging Trusted Execution Environments 59

Fig. 1. Abstract view of computing device equipped with a TEE [5]

devices to Intel Software Guard Extensions (SGX) [10] intended primarily for
servers and desktops. They provide novel functionality but come with their own
Application Program Interfaces (APIs) and development environments. This con-
stitutes a high barrier for entry for developers making it more difficult for them
to benefit from such TEE functionality. A natural solution approach to this prob-
lem would be to support a set of standard TEE interfaces, such as those specified
by GP, on these emerging TEE architectures thereby allowing developers famil-
iar with the standard interfaces to readily make use of the new TEEs. However,
subtle differences in architectural assumptions pose some challenges in mapping
GP interfaces to these TEEs. In this work-in-progress paper, we examine these
challenges.

Our contribution is two-fold. First, we briefly juxtapose the features of
the emerging TEE architectures with the assumptions behind TEE standards
(Sect. 2). We then show the subtleties and challenges in realizing the Glob-
alPlatform model on two such example TEE architectures: TrustLite and SGX
(Sect. 3). We briefly describe our experience so far in resolving these challenges.

2 Background

The isolation and integrity-protection of the processing environment in a TEE
can be achieved in different ways. Contemporary TEE architectures commonly
utilize either a dedicated security co-processor or CPU extensions that allow
one physical processor to operate efficiently in two distinct isolated modes in a
so called split-world configuration. In either case, the device may be viewed as
having two separate environments, each with its own set of features, as shown in
Fig. 1. The Rich Execution Environment (REE) refers to the operating environ-
ment that houses the conventional OS and applications. In contrast, the TEE
typically only has a limited set of features that are only intended to address secu-
rity critical functionality offloaded onto the TEE by Client Applications (CAs) in
the REE. The isolation of the TEE itself and discrete pieces of software inside the
TEE, referred to as Trusted Applications (TAs) is realized by means of hardware
support. Services and APIs available to TAs, such as access to trusted storage,
are provided by a TEE OS, part of the TEE Trusted Computing Base (TCB).

60 T. Nyman et al.

2.1 TrustLite and TyTAN

TrustLite [7] is a generic hardware security architecture intended for low-cost and
exceedingly resource constrained embedded systems, such as automotive elec-
tronics, industrial control systems, medical implants or wearables. Such classes
of devices have particularly strong economic incentives to minimize development
and production costs, and hence typically lack hardware support for isolated exe-
cution or even support for paging and virtual memory. Nevertheless, in many
cases such devices are employed in security-sensive and safety-critical applica-
tions, which not only require real-time guarantees, but can also benefit from
certain security features, such as strong isolation and the possibility of attesting
local state to a (remote) verifier.

Lacking a conventional Memory Management Unit (MMU), memory access
in these constrained environments is typically mediated by a Memory Protection
Unit (MPU), which can be programmed in supervisor mode by the device OS
with memory access rules for the next task scheduled to run. In TrustLite the
basis for strong isolation between tasks is an Execution Aware Memory Pro-
tection Unit (EA-MPU), which not only enforces access control on all mem-
ory accesses, but does so considering the current program counter value when
validating a particular access to memory. Hence, a platform equipped with an
EA-MPU can enforce fine-grained access control based on the individual code
regions executed independently of the OS. TrustLite also introduces a secure
exception engine which maintains the memory isolation of secure tasks protected
by the EA-MPU even in the case of hardware and software interrupts.

Later work by Brasser et. al. leverages the TrustLite architecture to realize
TyTAN [2], a security architecture for embedded systems that provides strong
isolation of dynamically configurable tasks assisted by hardware features intro-
duced in TrustLite, as well real-time scheduling guarantees. TyTAN utilizes the
secure exception engine of TrustLite to provide a secure Inter Process Communi-
cation (IPC) mechanism, where both sender and receiver can be authenticated
using the digest of respective tasks measured upon loading. TyTAN does not
provide any built-in access control for IPC. Instead, e.g., the task on the receiv-
ing end of an IPC call can make access control decisions based on the verified
identity of the sender. TyTAN differs from the traditional TEE model in Fig. 1
in that normal and secure tasks co-exist in a single environment1, and rely on
scheduling provided by an untrusted (real time) operating system. The OS is
assumed to schedule tasks fairly without starvation. Normal tasks are isolated
from other tasks but are fully controlled and accessible by the OS. In contrast,
secure tasks are isolated by the EA-MPU from the rest of the system, including
the OS. Whereas CAs in Fig. 1 are thought to include the advanced domain logic
of an application, and TAs only very limited security sensitive functionality, all
tasks in TyTAN are relatively simple. The primary concern in TyTAN is the
correct operation of secure tasks, even in the face of an adversary who has full
control of the untrusted OS and normal tasks running on the platform.
1 Instead, the class of devices TrustLite represents may potentially be used as part of
a programmable secure co-processor.

On Making Emerging Trusted Execution Environments 61

2.2 Intel SGX

Intel Software Guard Extensions [10] is another hardware-based approach to
realize an isolated environment for preserving the confidentiality and integrity
of sensitive code and data. SGX consists of a set of new CPU instructions and
memory access changes to the Intel CPU architecture, which allows parts of
the application code and data residing in main memory to be encrypted using
a key accessible only in the CPU core. The protected portions of the applica-
tion’s virtual address space together with the corresponding SGX control data
structures are referred to as an enclave. Enclave creation and initialization is han-
dled via two dedicated instructions, Enclave CREATE (ECREATE) and Enclave
INIT (EINIT). When an enclave is operated on, a dedicated hardware unit on
the CPU package decrypts incoming, and encrypts outgoing traffic between the
main memory and CPU package, so that sensitive code and data never leave the
CPU package unencrypted. Transfer of execution into and out of an enclave is
strictly controlled.

Entry to an enclave occurs via a dedicated Enclave ENTER (EENTER) CPU
instruction, which causes any cached page table translations overlapping with
the protected address region of an enclave to be invalidated and transfers control
to code inside the enclave. While the CPU is executing in enclave mode, it has
access to the protected pages belonging to the currently executing enclave, as
well as any unprotected pages in the current processes’s virtual address space.
Accesses to protected pages belonging to other enclaves are prevented. Outside
of enclave mode, access attempts by the CPU to enclave pages are treated as
references to nonexistent memory, as are physical memory accesses by other
agents, such as DMA access by capable disk drive controllers, graphics cards
etc. Furthermore, SYSENTER and SYSCALL instructions are prohibited while in
enclave mode, requiring the enclave to be exited before making system calls.

Exit from an enclave may occur either as a result of an Enclave EXIT (EEXIT)
instruction, or asynchronously, such as when exceptions or interrupts occur dur-
ing enclave execution. In the latter case, an Asynchronous Enclave eXit (AEX)
event causes the processor state to be securely saved inside protected enclave
memory and the CPU registers to be scrubbed in order to avoid leakage of sensi-
tive data. Finally, the CPU leaves enclave mode. The enclave may subsequently
be re-entered with an Enclave RESUME (ERESUME) instruction, which restores
the execution state of the enclave. In both cases, any cached page translations
referring to the enclave’s protected address region are cleared.

In contrast to conventional split-world-based isolated execution approaches,
such as ARM TrustZone [1], the SGX hardware architecture results in much
simpler transitions to and from the secure CPU mode. There is no need to
manually transfer data back and forth between a secure and normal world, as the
isolated enclaves execute within the address space of the host process. In addition
there is no need for a separate operating environment to provide further isolation
between enclaves, as each enclave is already isolated from other processes in the
system, including it’s own host process and other enclaves.

62 T. Nyman et al.

2.3 Standardization

To date there have been many proprietary APIs developed for TEEs. Almost
every vendor of TEE technology has supplied their own implementations, with
varying levels of complexity and functionality. Many of these solutions are aimed
at the same market segments. They thus impact the consumers, namely Original
Equipment Manufacturers (OEMs) and operators in this case, in similar ways.
This fragmentation has been partly to blame for the slow uptake in the use of
TEE technology. OEMs find that they need to provide more engineering effort to
support essentially the same functionality on different hardware platforms. With
ever increasing demands for more services and growing awareness of end users’
need for privacy protection, OS vendors such as Google are mandating that more
of the security critical components of the OS are protected by hardware security
mechanisms.

This fragmentation and the need for OEMs to pass Compliance Test Suites
(CTSs), designed to test that the platform protects the security critical compo-
nents as mandated by the OS vendor, have led to the need to address this through
some form of standardization. There have also been a number of efforts to address
this by providing a standard operating system to run within the TEE, such as
Nvidia’s Trusted Little Kernel [11] (TLK) and Linaro’s OP-TEE [8]. Though a
common operating system is a good start to help adoption as it removes a lot of
engineering effort, it does not go far enough to address the needs of application
developers on platforms such as Android or iOS. To benefit these application devel-
opers there must be a consistent API by which TEE functionality can be accessed.

To this end GlobalPlatform (GP) [5], a non-profit association focused on pro-
moting the industry wide adoption of security standards, has been formulating
and driving standards for TEE APIs. Within the scope of the TEEs that we
describe in this paper, i.e. extensible TEEs that allow for the deployment of
trusted third-party code, GP has defined two main standards. The TEE Client
API, running in the host operating system, and the TEE Core API, running
inside the TEE. This provides standardization of both the TAs (so they can be
deployed in any GP compliant TEE irrespective of the HW vendor) and the
CAs that run on the host operating system. GP’s architecture is built around
the model defined in Fig. 1 where a CA running in the REE creates one or more
sessions to TAs in the TEE. This session establishes an effective Remote Proce-
dure Call (RPC) mechanism through which it is possible for the CA to invoke
commands in the TA. Via a well defined API a TA is able to provide its services
while also protecting itself from misuse. The first column in Table 1 summarizes
the GP TEE Core API internal TA interface.

To date GP is the forerunner in TEE standardization – numerous GP imple-
mentations are starting to emerge. Both TLK and OP-TEE provide some form
of GP compliance, though the exact extent of the compliance is unknown as the
GP compliance test suite is not readily available.

2.4 Open-TEE

In our previous work [9], while recognizing the efforts that have been undertaken
to address the issue of TEE compliance, we highlight other issues that hinder

On Making Emerging Trusted Execution Environments 63

Fig. 2. Open-TEE architecture [9] Fig. 3. GP architecture on TyTAN

widespread adoption of TEEs. Chief among them are the lack of access to debug-
enabled versions of existing TEEs and the difficulty of developing applications
for the TEE. This insight led to the development of Open-TEE, a virtual TEE
that complies with the GP standard and provides a fast and efficient proto-
typing platform for TAs / CAs. Fig. 2 shows the Open-TEE architecture as a
series of processes running on a development machine, thus allowing developers
to leverage the tools, e.g. editors and debuggers, that they are familiar with. The
Manager process provides the TEE runtime with services usually expected from
the TEE OS. Unlike a proper TEE OS, which would be self-contained and run
on bare hardware, the implementation of Manager utilizes APIs provided by the
host OS, in this case POSIX and a small number of APIs specific to Linux. The
sole purpose of the Launcher process is to pre-load the shared library implement-
ing the TEE Core API and serve as a base process used to clone the actual TA
processes, which are subsequently reparented onto Manager. Each TA process is
divided into two separate threads; the I/O thread and TA logic thread. The I/O
thread facilitates communication with Manager, whereas the TA logic thread
executes the TA logic. Open-TEE is publicly available2 under the permissive
Apache-V2 license.

3 Mapping GlobalPlatform Interfaces to New TEE
Architectures

Although not conventional TEE environments with their own OSs, TrustLite
and SGX provide the same security assurances i.e. integrity and confidential-
ity of both code and data. They do not enforce the split world view that has
become the de facto standard for extensible TEEs. However, there are still a
number of use cases where applying the GP concepts and having access to a GP
compliant implementation can be beneficial. First and foremost is the question
of portability – GP compliant applications should be readily deployable in any
compliant TEE. Second is the notion of a services framework – there are many
2 http://open-tee.github.io/

http://open-tee.github.io/

64 T. Nyman et al.

cases when a developer would like to use existing services provided by a TEE,
e.g. a keystore with key management and cryptographic routines, without the
need to reimplement these.

3.1 Realizing GP Interfaces on TrustLite / TyTAN

In Sect. 2.1 we noted how the isolation model in TyTAN differs from the typical
GP model. Consequently, mapping the GP APIs to platforms such as TyTAN
presents some challenges:

Placement of TEE Core API Implementation. Typically, the TEE Core
API and support for CA-to-TA communication would be provided as services
by the TEE OS. In TrustLite and TyTAN the OS itself is excluded from the
platform TCB; thus the TEE Core API implementation needs to be provided
in some other manner. An obvious alternative would be to provide it purely in
a library linked to each trusted task designated as a GP-style TA. This has a
number of drawbacks. First, due the lack of paging memory management and
caching, this leads to suboptimal memory utilization as identical functionality
would be replicated in each TA. Second, the implementation of certain APIs,
such as trusted storage access would be greatly simplified by platform support for
centralized secure storage. Therefore TEE Core API functionality could either
be provided directly by the TyTAN TCB, or in a less invasive approach, by
a separate secure task, referred to as TEE Core task, separately protected by
the EA-MPU. The TEE Core API library linked to TAs can then invoke IPC
calls to the TEE Core task, which resolves such calls appropriately. The overall
architecture is shown in the Fig. 3. In this case, the challenge stems from the
fact that the strong isolation provided by TrustLite is not based on a completely
separate environment, but on per-task isolation. Therefore, there is no separate
trusted OS part of the TCB as is the case in established TEEs.

Session Access Control. The TEE Client API is used for communication
between normal and secure tasks. The TEE Core API also provides an Internal
Client API, which allows one TA to act as a client to another TA. With regards
to TyTAN tasks, this can be utilized for communication from one secure task to
another. One challenge with this mapping is the need to enforce access restric-
tions on the TEE Core task so that only secure tasks are allowed to invoke TEE
Core API functionality. In addition, the TEE Client API provides session-based
access to TAs. As noted in Sect. 2.1, TyTAN does not provide any IPC access
control by itself, but leaves this up to individual secure tasks based on the hash
digest of the sender as reported by the IPC primitives part of the TyTAN TCB.
One approach would be to implement sessions, TEE Core task multiplexing and
access control in each secure task individually. However, providing this func-
tionality as part of a proxy in the TyTAN TCB has the same advantages as
the centralized TEE Core placement which is an important consideration in the
highly resource constrained environments that TyTAN targets. The challenge
here stems from a large disparity in levels of IPC abstraction between TyTAN,
and the GP specifications.

On Making Emerging Trusted Execution Environments 65

Table 1. Mapping TEE Core API internal TA entry points to SGX instructions

Other Issues. Apart from the Internal Client API, the TEE Core API provides
the TAs with internal programming interfaces for trusted storage, cryptographic
operations, time API, and an arithmetic API intended as building blocks for
developers to implement further asymmetric cryptographic algorithms. For per-
formance reasons, platforms based on TrustLite may require additional cryp-
tographic hardware accelerators to meet operational requirements, hence full
coverage of the TEE Core API is not only impractical, but also unnecessary for
many intended use cases. Due to its nature, it is likely that instantiations of
TrustLite for different use cases will have varying degrees of hardware support
for aforementioned features, and it is unlikely that a one-size-fits-all solution
would be applicable for devices of this scale.

3.2 Realizing GP with SGX Through Open-TEE

Open-TEE was conceived as a GP compliant tool for fast prototyping. However,
throughout its design, choices were made that would allow it to work as a fully
functional TEE environment when combined with the right hardware security
mechanisms, like SGX enclaves. An enclave is a ring-3 construct. As such code
in an enclave cannot make systems calls or other external interactions. Due to
these restrictions, an enclave must synchronize with the non-enclave part of the
application to perform external tasks on its behalf.

If we take a common usage scenario of a CA wishing to interact with a TA
that performs some operation involving access to secure storage, we can see
how Open-TEE’s architecture (Fig. 2) can be mapped to SGX [6]. The choice to
split the TA process into two distinct threads, one handling I/O, and the other
logic functionality facilitates this mapping. The I/O thread is responsible for
all communication with Manager and CA. It is also responsible for all system
interactions that may be required. The TA logic thread is where the TA code,
which can make use of the TEE Core API, is executed. Manager provides secure
storage functionality as a service to TA processes.

The CA initiates an open session call towards the TA. Manager noticing that
the TA is not running requests Launcher to create a TA process. At this point
the TA is a standard process and loads in accordance with the OS requirements.
Once the TA is created we must initialize the TA logic code which conforms
to the GP standard [5] by invoking TA CreateEntryPoint(). As all of the GP
conformant functionality is implemented within the enclave it is at this point
that the enclave must be created. The TA hands over the enclave code along

66 T. Nyman et al.

with any additional configuration data to the enclave creation service running
in supervisor mode. Once the enclave has been created and initialized control is
handed back to the TA application which enters the enclave to finalize the TA
initialization and establish the session to the CA.

Now that the session is established between the CA and the TA, the CA
can invoke TA commands using TEEC InvokeCommand(). Imagine that the CA
wishes to provision some data to the secure storage. It invokes the corresponding
TA command when the TA logic thread wants to access the secure storage. This
requires a read or write operation to the storage media, which is a system call
and is thus prohibited by SGX. In this case the Open-TEE implementation of
the TEE Core secure storage API initiates an interrupt towards the I/O thread
causing an AEX event which stores the enclave state and control is passed back
to the I/O thread. The I/O thread then invokes the Manager to read/write
encrypted data from/to persistent storage. When this action has been completed
the TA can resume execution in the TA logic thread. When the invoked task is
complete the enclave can be exited thereby returning control to the I/O thread
which can then respond to the CA on the status of the invoked command. Other
system services needed in the TEE Core API such as time functionality can be
handled in a similar fashion. Table 1 summarizes the mapping of TEE Core API
internal TA entry points to SGX instructions and events.

4 Conclusion

The GP TEE interfaces were designed to support split-world-based TEEs. We
have shown that, even though potentially beneficial for easing the adoption of
new, emerging TEE environments, mapping existing GP interfaces to them has a
number of challenges. In ongoing work we are implementing the GP TEE Client
API, and a subset of the TEE Core API on TyTAN. We are also exploring
practical subsets of the TEE Core API applicable to different use cases. In future
work we plan to investigate possible extensions to the TEE Core API relevant
for small scale devices as well as realize Open-TEE on SGX.

References

1. ARM Security Technology - Building a Secure System using TrustZone Technology
(2009). http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C trustzone security whitepaper.pdf

2. Brasser, F., et al.: TyTAN: tiny trust anchor for tiny devices. In: 52nd Design
Automation Conference (DAC) June 2015

3. Ekberg, J., Kostiainen, K., Asokan, N.: The untapped potential of trusted exe-
cution environments on mobile devices. IEEE Secur. Priv. 12(4), 29–37 (2014).
http://dx.doi.org/10.1109/MSP.2014.38

4. Eldefrawy, K., Tsudik, G., Francillon, A., Perito, D.: SMART: secure and minimal
architecture for (establishing dynamic) root of trust. In: 19th Annual Network and
Distributed System Security Symposium, NDSS 2012, San Diego, California, USA,
February 5–8 (2012). The Internet Society (2012). http://www.internetsociety.org/
smart-secure-and-minimal-architecture-establishing-dynamic-root-trust

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://dx.doi.org/10.1109/MSP.2014.38
http://www.internetsociety.org/smart-secure-and-minimal-architecture-establishing-dynamic-root-trust
http://www.internetsociety.org/smart-secure-and-minimal-architecture-establishing-dynamic-root-trust

On Making Emerging Trusted Execution Environments 67

5. GlobalPlatform: Device specifications for trusted execution environment. http://
www.globalplatform.org/specificationsdevice.asp

6. Intel: Software Guard Extensions Programming Reference (2013). https://
software.intel.com/en-us/isa-extensions/intel-sgx

7. Koeberl, P., Schulz, S., Sadeghi, A.R., Varadharajan, V.: TrustLite: a security
architecture for tiny embedded devices. In: Proceedings of the Ninth European
Conference on Computer Systems, pp. 10:1–10:14. EuroSys 2014. ACM, New York,
NY, USA (2014). http://doi.acm.org/10.1145/2592798.2592824

8. Linaro: OP-TEE. https://wiki.linaro.org/WorkingGroups/Security/OP-TEE
9. McGillion, B., Dettenborn, T., Nyman, T., Asokan, N.: Open-TEE - an open vir-

tual trusted execution environment. Technical report. Aalto University (2015).
http://arxiv.org/abs/1506.07367

10. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: Proceedings of the 2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy, pp. 10:1–10:1. HASP 2013. ACM, New
York, NY, USA (2013). http://doi.acm.org/10.1145/2487726.2488368

11. NVIDIA: Trusted Little Kernel (TLK). http://nv-tegra.nvidia.com/gitweb/?
p=3rdparty/ote partner/tlk.git;a=summary

http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp
https://software.intel.com/en-us/isa-extensions/intel-sgx
https://software.intel.com/en-us/isa-extensions/intel-sgx
http://doi.acm.org/10.1145/2592798.2592824
https://wiki.linaro.org/WorkingGroups/Security/OP-TEE
http://arxiv.org/abs/1506.07367
http://doi.acm.org/10.1145/2487726.2488368
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=summary
http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote_partner/tlk.git;a=summary

Trust and Users

Computing Trust Levels Based on User’s
Personality and Observed System

Trustworthiness

Michalis Kanakakis1, Shenja van der Graaf2, Costas Kalogiros1(&),
and Wim Vanobberghen2

1 AUEB, 76, Patission Str., 1034 Athens, Greece
{kanakakis,ckalog}@aueb.gr
2 iMinds-SMIT, Brussels, Belgium

{a.van.der.graaf,wim.vanobberghen}@vub.ac.be

Abstract. In this article, we describe an approach for computing the current
trust level of individual users towards an online system and present initial
validation results from a small-scale experiment. This trust computational model
relies upon survey research for identifying the set of key trust attributes and
grouping users into four segments of expected behaviors. Each user’s initial
trust level is computed based on a set of assumptions tailored to the specific
segment she belongs to, while the trust level evolution takes additionally into
account the system outcomes she has experienced so far. More specifically, the
trust update follows a machine learning approach, where during the training
phase that consists of a small number of system outcomes, users are asked to
report their actual trust levels. Finally, we demonstrate the trustors’ segmenta-
tion validity and trust estimation accuracy by performing a small-scale experi-
ment in the context of a fictitious online security service.

Keywords: Trust computational model � Trust � Trustworthiness � Trustor
attributes � Survey

1 Introduction

The increasing complexity to attain trust in trustworthy Information and Communica-
tions Technology (ICT) systems and the conditions that affect it, has warranted con-
tinuous scrutiny from researchers in various domains. While trust is important in the real
world too, it is said to be especially complex to achieve and sustain in Internet-based
marketplaces due to the lack of the providers’ physical presence and in certain settings
the rare frequency of transactions between two entities [1, 2]. In this view, the need for
models of trust and credibility in technology-mediated interactions can be detected,
particularly, those that are not-domain specific and technology-independent [3]. These
models can offer guidance for researchers across disciplines examining a range of
technologies and contexts, thereby highlighting multiple subcomponents, such as
associated with antecedents (i.e. preconditions of trust), processes of trust building (e.g.,
interdependence), the context of shaping trust-building (e.g., social relations, regula-
tion), decision-making processes in trust (e.g., rational choice, routine, habitual),

© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 71–87, 2015.
DOI: 10.1007/978-3-319-22846-4_5

implications and uses of trust (e.g., interpersonal entrepreneurial relations, moralistic
trust), and lack of trust, distrust, mistrust and repair (e.g., risks, over-trust, trust viola-
tions) [4]. In addition, much of this research seems to mainly address how to optimize
user trust.

In this study, we have taken the, arguably, complimentary perspective to examine
how different trust-related user experiences are guided by different sets of trustor’s
attributes underpinned by aspects of well-placed trust and trustworthy behaviors. The
reason for developing an approach conditioning the trust levels to individual entities, is
that trust formation is a dynamic, or, contextual, yet subjective process, drawing attention
to the presence of drivers, such as of a social, economic and legal nature [4, 5, 7]. More
specifically, trust is approached as a property of an entity (known as the trustor) reflecting
the strength of her belief that engaging in an online system (called the trustee) for some
purpose will produce an acceptable outcome [8]. Here, a trustee’s trustworthiness is
defined as an objective measure (probability) of the provider’s ability to produce an
acceptable outcome, assuming consensus on the criterion for determining whether an
outcome is acceptable or not. We argue that whenever such a criterion is not obvious it
could be defined by a regulatory authority, or in the extreme case set by the dominant
provider.

Estimating the current user’s trust level can be useful for a provider of ICT
systems/services both at design-time and run-time. In the former case, knowing the
trustors’ current trust level and the effects of both desirable and undesirable outcomes
on them would allow her to predict the actual demand and set the optimal combination
(s) of trustworthiness level and price. Obviously, failing to predict the true demand
would result either in missed opportunities for higher revenues, or higher costs. In the
latter case, a provider should meet users’ expectations in order to avoid customer churn
and do so in a cost-effective way at run-time. Thus, whenever the provider believes that
a user’s trust is lower than a certain threshold the former could make the necessary
changes to system in order to regain its trust.

Our main contribution, therefore, is to propose a conceptual trust computational
model that allows a provider to estimate the trust level of candidate trustors. Our
approach differentiates among trustors based on their attributes and highlights their
influence on trust. Our aim is to cover all the phases of the computation process: before
engaging with the system and after observing evidences about its performance. For
example, it is expected that a successful system outcome will not decrease the user’s
trust in the system, and similarly, an unsuccessful outcome should not cause an
increase. Thus, the trust computational model is based on system behavior instead of
user behavior (such as eye gaze). Against the standard methodology of the well-known
Bayesian models, which follows common initialization and evolution of trust among
individuals, we introduce a modification to capture the attributes making trust sub-
jective. The wide range of attributes affecting reactions of trust vis-à-vis ICT systems,
motivated us to execute a user survey and identify the key drivers to be considered as
trust indicators. Based on this analysis, the trustors were grouped into segments of
expected behaviors and their properties are formulated via the variables of the modified
Bayesian model. In order to demonstrate the validity of our approach we performed a
small-scale experiment in the context of a fictitious online security service.

72 M. Kanakakis et al.

The remaining sections are structured as follows; Sect. 2 introduces the basic
computational model that forms the basis for the proposed models. Section 3 presents
the trustors’ segments, using survey research, that were found to be statistically sig-
nificant and Sect. 4 describes the initialisation and update process of the personalised
trust computational model. Then, Sect. 5 presents the experiment setup and the vali-
dation results, while Sect. 6 motivates our work by providing an overview of trust
computational models that explicitly consider trustor attributes. Finally, we conclude
the paper and provide our future steps in Sect. 7.

2 The Basic Trust Computational Model

We consider a system characterized by a wide range of trustworthiness factors, notated
as J, e.g. reliability, availability, etc. In this work, we focus on factors resulting in
outcomes of binary form, i.e. they may be characterized either as a success or a failure.
The performance of the system for factor j 2 J, is determined by its actual trustwor-
thiness notated as wj;s; the probability of a successful transaction.

For each of them, any individual trustor estimates the trustworthiness in terms of a
random variable h which follows the Beta distribution and is determined by two
parameters “a, b” for specifying the current beliefs. The choice of this particular
distribution is inline with the related work (e.g., see [10] for more details). Given that
these parameters can capture all factors that result in trust being subjective (for instance
different trustor attributes) we use the notation a j

i;sðtÞ and b j
i;sðtÞ, where the indicators

i; j; s; t stand for the trustor, the metric, the system and the time respectively. From now
onwards, we simplify this notation by keeping only the indicators i; j and using s; t
when necessary. Thus, for each trustworthiness factor there is an objective probability
quantifying its trustworthiness level and a subjective trust level estimating the former.
Such a fine-grained approach should give the provider the flexibility to identify, at
run-time, the reason(s) for low trust and react accordingly.

Mathematically: hja j
i ;b

j
i �Beta a j

i ; b
j
i

� �
, with probability density function (PDF):

f h; a j
i ; b

j
i

� � ¼ ha
j
i�1ð1� hÞb j

i�1

R1
0 y

a j
i�1ð1� yÞb j

i�1dy
; a j

i ; b
j
i [0 ð1Þ

Over this context, trust should be considered as the subjective probability that the
system will provide a successful outcome in the next single transaction, and equals the
expected value of the Betaða j

i ; b
j
i Þ:

s ji ¼ E½hja j
i ; b

j
i � ¼

a j
i

a j
i þ b j

i

ð2Þ

Utilizing a PDF allows us to calculate not only trust, but also the confidence, i.e. the
probability that the actual trustworthiness lies within an acceptable error range around
trust. In general, higher value of a parameter indicates higher trust level (for equal
values of b), while confidence depend on their respective sum (for equal trust values).

Computing Trust Levels Based on User’s 73

The values of these parameters can evolve over time, reflecting the trustor’s ability
to interact with the system further and use those outcomes for getting a more accurate
idea of its trustworthiness. The Beta distribution is also appropriate for the update
phase, mainly because the process results to the same prior-posterior distributions
(before and after an outcome is observed). Indeed, if x stands for the binary outcome of
a single transaction, then x follows the Bernoulli distribution with parameter h, i.e.

xjh�Bern hð Þ ! f xjhð Þ ¼ hx 1� hð Þ1�x; x ¼ 0; 1 ð3Þ

Thus, for prior Beta a j
i ; b

j
i

� �
the posterior distribution for parameter h is as follows:

hjx; a j
i ; b

j
i �Beta xþ a j

i ; 1� xþ b j
i

� � ð4Þ

Note that if the outcome is successful ðx ¼ 1Þ, the a j
i parameter will be increased by

one, while b j
i parameter will be increased by one in the opposite case, ðx ¼ 0Þ.

3 Trustors Segmentation

For the examination of the conceptual dynamics underpinning trust-related user
experiences and sets of trustor attributes, input from different stakeholders was sought.
The focus was to yield insights into their trust perceptions and appetite towards digital
technologies, in particularly the Internet. A two-step approach was followed. The first
step consisted of survey and interview research where the stakeholders targeted were
derived from members of the public (or, (end)users), the business community, and
governmental institutions. Based on a thorough literature review focusing on designing
ICTs supporting (mediated) transactions, the exploratory empirical investigation
focused on drawing out several key aspects of trust, particularly, antecedents, processes
of trust building, the context of shaping trust-building, decision-making processes in
trust, implications and uses of trust, and lack of trust, distrust, mistrust and repair [4].

In doing so, we sought to draw out the combined underpinnings of relevant
(socio-legal-economic) trust drivers, and which guided the main categories for which
data were collected. Questions were asked about the disposition to and perceptions of
trust, cost of trust, content and information quality, legal constraints, organisational
trust, and demographics (user, organizations). These constructs were operationalized
with using five-point rating scales open questions, checklist questions, and ranking
questions.

As it was the aim to have a reliable question format and a good wording and order,
the questions were pre-tested with a group of 142 respondents determining the effec-
tiveness, the strengths and weaknesses of the questions. A principle factor analysis
(PCA), therefore, was conducted to detect relationships within the data set generated by
the survey in order to yield insight into the underlying structure of trust elements. PCA
works by revealing existing linear components in the data set and the way specific
variables contribute to that component. First, 49 items were checked for their suitability
by screening for high correlations (R < .9) and significance values over .05 (N = 142).

74 M. Kanakakis et al.

This led to the removal of one item. The Kaiser-Meyer-Olkin value was .850 and
Bartlett’s Test of Sphericity was highly significant (p < .001), both indicating a good
sampling adequacy. The PCA revealed 11 components with eigenvalues exceeding 1.
The first component explained 14.7 % of the total variance and all components com-
bined, explained 61.1 % of the total variance. A closer inspection of the scree plot and
running the Monte Carlo parallel analysis indicated that the first few eigenvalues for the
randomly generated data matrix scored below the observed eigenvalues from the
reduced matrix of data. As a result, it was decided to retain five components based on
their explained variance and the outcome of the reliability analysis (>.3). Together they
accounted for 50.01 % of the total variance. A Varimax rotation was used to help in
interpreting the components: Disposition to trust (e.g. stance towards trusting another
person or organization), trust management (e.g., tradeoff between personal information
disclosure vs accessing an application), trust constraints (e.g., availability of legal
guarantees, price), information and content quality (e.g., trust cues, transfer). The
results from pre-testing were then used to adjust problematic questions in the ques-
tionnaire before releasing the questionnaires to the target groups. In February and
March 2013, N = 203 responses served as input.

While the first step served mainly to learn about combined constructs in trust-related
experiences and attributes [8], the second step was to conduct a ‘segment-specific’
analysis so as to learn about different types of subjective trust-related user experiences in
this context. Examining the results of the (end user) survey (N = 90) linkages between
different sets of trustor attributes could be associated with trust-related concepts of
(1) Trust stance: the tendency of people to trust other people across a wide range of
situations and persons; (2) Trust beliefs in general professionals; (3) Institution-based
trust; (4) General trust sense levels in online applications and services; (5) ICT-domain
specific sense of trust levels; (6) Trust-related seeking behavior; (7) Trust-related
competences; and, (8) Perceived importance of trustworthiness design elements. And,
which underpin the segmentation of trust-related user experiences on trustor attributes.

For the analytical exercise, a K-means clustering was performed for segmentation
purposes and an Anova analysis was conducted to test for each item whether statistical
significance differences could be retrieved between the uncovered trust-related user
experience segments. Some iterative clustering and testing led us to a four segments
solution to best explain differences in trust-related user experiences. These segments
can be represented by the following terms, with the corresponding abbreviation to be
used for the remaining of this article: “High trust” (HT), “Ambivalent (A) trust”,
“Highly active trust seeking” (HATS) and “Medium active trust seeking” (MATS).
They differ on a number of aspects (see below), however, based on our analyses, three
major concepts are sufficient to explain their core differences. The three underpinning
concepts are ‘trust stance’ (e.g., ‘I usually trust a person until there is a reason not to’),
‘motivation to engage in trust-related seeking behavior’ (e.g., ‘I look for guarantees
regarding confidentiality of the information that I provide’) and ‘trust-related compe-
tences’ (e.g., ‘I’m able to understand my rights and duties as described by the terms of
the application provider’). They could be measured on 3, 7 and 4 item-scale with a
reliability coefficient of .69, .89 and .87 respectively. From this a few items could be
further reduced to the summarized Table shown below:

Computing Trust Levels Based on User’s 75

The user experience for the “HT” segment can be characterized by a high level trust
stance. This means an overall high trust level for the various online applications, such
as social networks and online banking, accompanied by only few trust seeking
behaviors, such as checking trust seals, even though the competences are present to
cognitively assess the trustworthiness of online applications and services.

For the “HATS” segment, the user experience can be highlighted in terms of a high
level of trust seeking behavior beyond the mere scanning of trustworthiness cues. It
also suggests that individuals are informed about procedures in case of harms and
misuse. It points to the capacity of certain competence level that facilitate the assess-
ment of trustworthiness and to possess, at least, a minimal understanding of the rules
and procedures to look for in case of complaints and misuse. Varied trust stance and
trust levels could be observed including medium to low trust stance/trust levels.

For the “MATS” segment, the user experience is similar to the “Highly active” one,
yet, here, trust seeking behavior is not so apparent. Thus, while drivers for trust seeking
behavior, such as a low trust stance, are present as well as competences to assess
trustworthiness, people’s motivation may be absent to look for trustworthiness cues.

The “A” trust segment seems to highlight a clear perceived inability to assess the
trustworthiness of online applications and services and which may be explained by the
personal competence level. Hence, only few active trust seeking behaviors can be
observed, yet do not equal low trust levels per se. Trust seems to be derived from either
the general trust stance or basic heuristics, such as ‘public organizations are more
trustworthy than commercial companies’. It seems that the “Ambivalent” nature of this
user experience can be explained by a failure to cognitively assess the trustworthiness
and a certain need to trust in order to avoid, or to lower the omnipresence of cautious
and other negative feelings, and which is a so-called ‘forced trust’ (that is, trust without
trustworthiness evidence and with a possible presence of cautious feelings). These
findings point to understanding trustworthiness indicators based on the experience of
others (referrals), as the main source of ‘trustworthiness information’ that is accessible
for this cluster, and underlying the outcome of the trustworthiness assessment.

Table 1. Segmentation results for the three underpinning concepts.

Total
(n = 90)

HT
(n = 24)

HATS
(n = 28)

MATS
(n = 18)

A
(n = 20)

Anova

Mean Mean Mean Mean Mean F Sig.

Trust stance 3,22 3,85 3,15 2,86 3,50 7,260 ,000
Trust related seeking
behaviour

3,52 3,14 4,27 3,34 3,01 24,383 ,000

Trust related
competences

2,44 2,71 2,42 2,94 1,44 13,361 ,000

76 M. Kanakakis et al.

4 Model Parameterization, Based on Segments’ Properties

In this section, we will present our methodology for transferring the fundamental
properties of each segment into the Bayesian trust computational model, both in the
initialization and evolution phases. Doing so will allow us to take into account user’s
personality when estimating it’s trust level.

4.1 Trust Initialization

The initial trust level of a user who has never interacted with the system in question
before could be based on information present on the system’s welcome screen, its past
experiences in using other systems, the opinion of others users etc. Here we assume
that the user has a glimpse of the actual system trustworthiness by looking at infor-
mation present on the system’s welcome screen (e.g., a page containing certifications,
attractive layout, etc.). We call this information ‘look and feel’ elements. The users
willing to invest sufficient amount of time in gaining information about system trust-
worthiness (or, equivalently those being extremely capable of finding evidences of
trustworthiness) before using it would always have a good estimation of the actual
trustworthiness. Furthermore, this will be the case regardless of how advanced strat-
egies a provider had followed in order to deceive users (adopting for example tech-
niques from social engineering).

Let dl;ml; cl stand for mean values of trust stance, motivation and competence
respectively, where l ¼ 1; 2; 3; 4 indicates the segment “HT”, “HATS” “MATS” and
“A” respectively. Additionally, let el ¼ mlþcl

2 be the factor quantifying the aggregate
impact of the two latter concepts.

In general, we consider that the closeness of initial trust to actual trustworthiness,
depends on the combined impact of both the motivation to engage in seeking behavior
and competences concepts, while trust stance determines whether it is under or over-
estimated. In order to compute the error magnitude and its sign we utilize the seg-
mentation results (see Table 1). More specifically we follow a normalization approach
using the second segment (HATS) as a benchmark, since it was found to achieve the
highest “e” factor among all and thus users therein estimate trustworthiness accurately.
Trustors in all other segments make an estimation error proportionally correlated to the
normalized value of “e”, i.e.: eel ¼ e2�el

e2
. Furthermore, under or overestimation is

determined by the correlation of the trust stance values, e.g., if ðdl � d2Þ[0 the
estimation error is added to the actual trustworthiness level.

In a mathematic formulation, the initial trust of user i in segment l is given by:

s ji2l;s 0ð Þ ¼ a j
i2l;s 0ð Þ

a j
i2l;s 0ð Þ þ b j

i2l;s 0ð Þ ¼
min max 0;wj;s þ eel� �

; 1
� �

; if dl [d2
min max 0;wj;s � eel� �

; 1
� �

; if dl � d2
; l ¼ 1; 2; 3; 4

�
;

ð5Þ

where we have restricted its value in the [0, 1] interval because it estimates the success
probability.

Computing Trust Levels Based on User’s 77

Notice that ‘trust level’ alone, is not enough to calculate the exact values of a and b
parameters, as an infinite number of their combinations may result to the same out-
come. In Sect. 2, we mentioned that for equal trust values, their sum reflects the
trustor’s confidence. We reasonably assume that the level of confidence proportionally
depends on the value of el coefficient and the number of look and feel elements with
respect to factor j, notated as k j

s . The equivalent mathematical expression is:

a j
i2l;s 0ð Þ þ b j

i2l;s 0ð Þ ¼ el � k j
s ð6Þ

Using (5) and (6) one can compute a pair of Beta parameters for each segment that
depend on Table 1 and thus will reflect the personality of the users in that segment.
Then, the initial trust level for each segment’s users can be computed using Eq. (2).

4.2 Trust Evolution with Observations Following a Machine Learning
Approach

Contrary to the standard process where each outcome is equally weighted, here we
consider that trustors apply greater importance to a success or failure: thus, biasing their
trust to over or under estimate the corresponding trustworthiness respectively. The
reason for doing so is that trust levels are subjective; two users having observed the
exact same sequence of system outcomes can have significantly different estimation
about the trustworthiness of the system in question. The subjectivity of trust will be
demonstrated in the next section (see Figs. 2 and 3), where the averages of the trust
levels being reported in a small-scale experiment varied significantly. Aligned with
Eq. (4), for each factor j a trustor in segment l updates her personal parameters as
follows:

a j
l t þ 1ð Þ ¼ a j

l tð Þ þ Aj
l and b j

l t þ 1ð Þ ¼ b j
l tð Þ þ Bj

l ð7Þ

where Aj
l and Bj

l stand for the increment coefficients of segment l, after each success
and failure observed with respect to trustworthiness factor j.

The parameters’ values determining the trust evolution may be adjusted so that the
theoretical model results to any given value “m”, after a specific number of outcomes.
This is easily feasible by setting:

a j
l 0ð Þ þ sðtÞAj

l

a j
l 0ð Þ þ s tð ÞAj

l þ b j
l 0ð Þ þ f ðtÞBj

l

¼ mðtÞ; ð8Þ

where sðtÞ and f ðtÞ stand for the number of successes and failures observed until time t
respectively. Note that if we apply this rule for the initial trust and two additional
different time moments (t1 6¼ t2), then we get a unique pair of increment coefficients,
assuming that they remain constant for all observations.

The value of factor m, may be derived by any assumption concerning the impact of
personal attributes on trust and trustworthiness correlation or may stand for actual

78 M. Kanakakis et al.

measurements based on trustor’s real responses. In this paper, we follow the latter
approach: the trusts levels, as reported by participants, will be averaged per segment
and fed into the theoretical model to reset the parameters so that they closely reflect the
former. The initial trust may be either explicitly provided or may be derived by the
relevant formula in the previous section. For completeness, we note that in this
approach (three points equation), the estimated trust is unique and does not depend on
the number of look and feel elements.

5 Validation Results

5.1 Experiment Setup

The experiment took place in October 2014 inviting participants to test and evaluate an
online security service. A fictitious provider was offering a service, called Distributed
Attack Detection and Visualization (DADV), for detecting virtual attacks on devices
connected to the Internet, such as personal computers. The approach followed for
attracting attackers was to deploy special decoy hosts in the subscribers’ network that
imitate vulnerable machines. All participants were assumed to be part of the same
organization requesting protection and thus a single set of honeypots was deployed.

Real-time information about those incidents was sent to the provider for further
processing so that the attack is prevented from expanding to other machines in the
network. The experiment was performed for two versions of the online service; the
Vanilla DADV where administrators are responsible for detecting and mitigating
attacks and the Automated one where all tasks are performed by sophisticated tools [9].

The first step was for the participants to fill in the online segmentation-related
(intake) questionnaire (See Sect. 5.2 below). In order to validate the trust initialization
approach, participants were asked to report their initial trust towards the system before
having any other evidence for its performance. To do so, each participant engaged with
the DADV system, separately for each version during two different days, starting with
the Vanilla DADV and then with the Automated one. After logging in to the online
website (and before any attack was performed), they were given the opportunity to
access the “about page” and familiarize themselves with the activated version. This
webpage provided general information of the system functionality and a high-level
description of its expected trustworthiness. Furthermore, users who had noticed and
clicked on a distinguishable hyperlink were redirected to a more detailed webpage,
which explicitly mentioned each system’s actual trustworthiness in terms of the metric
under interest. In this way we could validate the effects of “seeking motivation” on the
initial trust level of each segment.

Afterwards, they observed the service performance for a sequence of 10 attacks that
were identical for both DADV cases. During each attack, they could navigate to the
“health statistics page”, which was providing a holistic view of the system status. More
specifically the subjects could judge whether an attack was taking place by observing
the current CPU/memory/network load and observe the number of attempts initiated by
a compromised sensor to the rest network hosts. At the end of each attack a message
was appearing indicating whether the provider succeeded in preventing any network

Computing Trust Levels Based on User’s 79

host from being attacked, or not. These pop-up messages also contained a link to a
questionnaire where users were asked to indicate their current trust level that the
provider would prevent future attacks from compromised honeypots to their computers.
In other words, the metric of interest was the number of successfully mitigated attacks
of each DADV system over the total number of attacks. This step provided the actual
trust values, which after taking the average per segment, were utilized for training the
trust computational model (see Sect. 5.3).

The attacks resulted to the following sequences of outcomes, as depicted in Fig. 1.
The Automated DADV version outperformed the Vanilla one in preventing a con-
nection from being initialized since adminstrators had higher reaction times than their
counterparts. Remember that all users observed exactly the same sequence of out-
comes. This is essential to guarantee that the trust level was consistently monitored and,
hence, any differentiations were guided by different sets of trustor’s attributes only.

5.2 Validating Trustors’ Segmentation

In order to assess whether the four segmentation solution described in Sect. 3 could be
deployed, additional empirical research was carried out. For this purpose the intake
survey was dispersed using several Living Lab panels in September 2014. While 108
started the survey, 89 people from 11 European countries fully completed the survey
and these were used for further analysis. Some 55 % were aged between 25 and 34,
followed by 32 % that were aged between 35 and 44, and a few younger and older.
Also, some 65 % reported to have a university degree. The same steps were followed as
in Sect. 3. Thus, a K-means clustering to segment different trust-related user experi-
ences and an Anova analysis was performed to test the statistical significance for each
item, thereby highlighting statistical differences between uncovered trust-related user
experience segments. The results are shown in Table 2 below, where the absolute
differences from Table 1 appear inside the parentheses.

Despite the minor variations between the two exploratory analyses presented
below, the dominant drivers that seem to characterize users in each segment appear to
be relatively constant. Thus, the findings seem to correspond to the previous ones
indicating that the three underpinning users’ attributes appear as statistically significant
difference. More specifically, we observe that the combined aggregate factor of
“competences” and “seeking motivation” is again higher for the HATS segment. This
finding justifies our approach to correlate higher values of this factor with a more
accurate estimation (Eq. 5). Furthermore, it is confirmed that a high level of “trust
stance” results to trustworthiness overestimation (misplaced trust) and vice versa
(presence of overcautious users).

Fig. 1. The sequence of outcomes evidenced for each DADV version.

80 M. Kanakakis et al.

5.3 Validating the Trust Computational Model

In order to validate the trust computational model described in Sect. 4 we employ two
additional variations and compare the evolution of the computed trust levels with the
actual ones, as reported by the participants. Before proceeding, we mention that while
N = 89 were asked to fill in an online segmentation-related questionnaire, a subset
N = 27 decided to also take part in the experiment. Table 3 below shows the output of
the segmentation process and the mean values of the three trust-related concepts that
were used for setting the initial values of the Beta parameters a j

l 0ð Þ; b j
l 0ð Þ for each

segment l, as described in Sect. 4.1.

In Figs. 2 and 3 we juxtapose the actual trust values with those derived by the three
variations of the trust computational model (T1, T2 and T3), for the Vanilla DADV
experiment. Similar results are obtained for the Automated DADV, but omitted for
brevity.

The approaches used for the initialization and update phase for each of the three
variations To (where o ¼ 1; 2; 3 denotes the number of actual trust values used as input
to the model) are described below:

The T1 model computes the initialization parameters a j
l 0ð Þ; b j

l 0ð Þ for each segment
using the average of the actual trust values, as reported by their members before using
the system. Note that in this case, the number of “look and feel” elements affects the

Table 2. Intake survey segmentation results (n = 89 participants)

Total
(n = 89)

HT
(n = 25)

HATS
(n = 20)

MATS
(n = 32)

A
(n = 12)

Anova

Mean Mean Mean Mean Mean F Sig.

Trust stance 2,65
(−057)

3,42
(−0.43)

2,45
(−0.7)

2,33
(−0.53)

2,25
(−1.25)

27,053
(19.8)

,000
(0)

Trust related seeking
behaviour

2,38
(−1.14)

2,14
(−1)

3,02
(−1.25)

2,16
(−1.18)

2,44
(−0.57)

28,361
(3.98)

,000
(0)

Trust related
competences

3,65
(1.21)

3,88
(1.17)

4,29
(1.87)

3,63
(0.69)

2,17
(0.73)

53,592
(40.2)

,000
(0)

Table 3. Intake survey segmentation results for experiment participants (n = 27)

Total
(n = 27)

HT
(n = 5)

HATS
(n = 4)

MATS
(n = 10)

A
(n = 8)

Anova

Mean Mean Mean Mean Mean F Sig.

Trust stance 2,65 3,40 2,63 2,30 2,63 4,519 ,012
Trust related
seeking
behaviour

2,16 2,06 2,82 1,89 2,25 6,879 ,002

Trust related
competences

3,53 3,80 4,13 3.58 3.58 3,067 ,048

Computing Trust Levels Based on User’s 81

initial values of the Beta parameters and consequently the graph oscillations. After
observing the actual trust values and especially the significant trust degradation fol-
lowing each negative outcome we have set their number to one (k ¼ 1). Furthermore,
T1 relies on the standard unitary update coefficient for all segments (a ¼ 1, b ¼ 1) and
thus follows the basic Bayesian model for the update (see Sect. 2).

The T2 model uses Eqs. (5) and (6) for deriving the initial trust value and thus
follows the approach described in Sect. 4.1. For the update process, the respective
coefficients Aj

l and Bj
l are computed based on two measurements only using Eq. (8).

More specifically, we used the actual trust values after the 2nd and 8th outcome. These
four pairs of values, one for each segment, are denoted as (2, 8).

The T3 model requires three input values from the actual responses and can be seen
as a hybrid of T1 and T2. More precisely, T3 follows the same initialization process as
with T1, while the update process is similar to T2.

We observe that the models are aligned with the expected user reactions for most
segments; namely trust should not decrease after a success and should not increase after
a failure. The only exception is T2 for the “MATS” segment, which appears to con-
stantly increase with the number of trials. This can be attributed to the error in esti-
mating that particular initial value; in such cases the system of Eqs. (7)–(8) may result
in negative values for one or both update coefficients. Notice that T2 succeeds in
computing a very accurate initial trust value for the High Trust and Highly Active Trust
Seeking segments, while the relative error for the Ambivalent and Medium Active
Trust Seeking segments is 10 % and 20 %, respectively. Before proceeding further,
recall that T1 and T3 are initialized explicitly from the initial values, thus the effect
described above is avoided over these two methods.

Additionally, observe that T2 and T3 manage to closely estimate the average trust
of the HATS and Ambivalent segments, while for the rest segments the deviations tend
to vanish as the number of observed system outcomes increases. Concerning the T1
graph, it is easy to see that this naïve approach fails to capture the segment differen-
tiations in the trust evolution and thus its estimation is outperformed by both T2 and
T3. Intuitively the common update coefficients of T1, result in all segments converging
to the same value (which equals the actual trustworthiness) despite the personalized
initial trust values. Thus, any potential different reactions among the segments are not
captured on the trust evolution computation and the impact of the different initial values
fades out as the number of observations increases.

We now compare the accuracy of the three versions of the computational model for
different input pairs. More specifically, we fix the first part of the input data (always
after the second trial) and vary the second one. We consider the evaluation metric
“AAD” standing for the average absolute difference of estimated and actual values. In
order for the comparison to be fair the “AAD” is computed over the non-provided
points in each case, meaning that it is the average of 10, 9 and 8 points for T1, T2 and
T3 respectively. In Table 4, we report the measurements for the Vanilla version only,
for both T3 and T2 (when meaningful). For T1, this metric has a single value, as the
update coefficients are static and thus the input pair is not considered.

First note that the average absolute difference decreases, as we delay the second
input value for all segments over both T2 and T3. This is because the second trust value

82 M. Kanakakis et al.

provides collective knowledge about the user’s reaction at the intermediate trials, even
though the actual trust at these moments is not explicitly given in the model. Although
“AAD” is not always decreasing (meaning that we don’t always achieve a more
accurate trust estimation with more experimental trials), it seems to converge at
acceptable levels for input pairs where users have observed adequate evidence from the
system performance and consequently their trust appears with small variations (last
four trials). We expect that in a larger-scale experiment with increased number of trials,
“AAD” will reach even lower values, as more trust measurements will be available.

Concerning the comparison between T2 and T3, we can observe that the former is
more accurate for “HT” and “HATS”, despite the fact that it requires fewer user
responses. This seems to be due to the close estimation of initial trust in these two
segments, and which is also justified by the “A” segment where this property does not
hold and consequently T3 outperforms T2. Thus, T2 and T3 have similar performance,
meaning that our methodology for the trust initialization not only achieves to capture

Fig. 2. Actual and estimated trust values for the “HT” (left) and “HATS” (right) segments.

Fig. 3. Actual and estimated trust values for the “MATS” (left) and “A” (right) segments.

Computing Trust Levels Based on User’s 83

the segment properties but may also be utilized to estimate the actual trust values, when
limited input is available, or more desirable.

When looking at T1, on average, it outperforms T3 for the “MATS” segment.
Despite this fact, for all segments there is at least one input pair for which T3 provides
better estimations, with this observation being particularly apparent during the latest
pairs. Similarly, comparing T1 with T2 we observe that the latter outperforms the
former for the “HT” and “HATS” segments. From the average values of T2 and T3
over all input pairs, we notice an improvement reaching up to 50 % for “HT” when
using T2 compared to T1. The reason that the highest improvement appears for this
segment, is that its trust is clearly higher than the actual trustworthiness and our models
capture this deviation. This fact is less intense for the other segments, thus the
improvement is less impressive, but still remarkable: Notice that even though trust of
“HATS”, is the most accurate estimation of trustworthiness among all segments, our
approaches provide interesting results in this case also. This is because the evolution of
estimated trust levels closely matches the actual ones, another important property apart
from the accuracy in the long-run.

Thus, we may conclude that our approach to cluster users into segments and update
their trust level according to the segment they belong to seem to provide valuable
results towards a more accurate trust estimation.

6 Related Work

Significant research effort can be evidenced to understand the factors that affect a
trustor’s trust and build trust computational models that can be configured to make
autonomous decisions that mimic a personalized mental process. The rationale behind
this is that trust formation has been found to be a rather subjective and dynamic

Table 4. Comparing the accuracy of the 3 versions of the Trust Computational Model for the
Vanilla DADV version using the Average Absolute Difference (AAD) of estimated and actual
values.

SEGMENT &
MODEL

INPUT PAIR Average
(2,5) (2,6) (2,7) (2,8) (2,9) (2,10)

“HT”- T3 .0866 .1334 .0706 .0549 .0549 .0604 .0768
“HT”- T2 .0788 .1168 .0643 .0509 .0510 .0559 .0696
“HT”- T1 .1399
“HATS”–T3 .0118 .0224 .0106 .0107 .011 .0221 .0148
“HATS”-T2 .0109 .0210 .0099 .0101 .0102 .0202 .0137
“HATS”-T1 .0206
“MATS”–T3 .0286 .0790 .0386 .0299 .0287 .0311 .0393
“MATS”–T1 .0340
“A” –T3 .0246 .0500 .0285 .0222 .0222 .0236 .0285
“A”-T2 .0419 .0721 .0448 .0372 .0370 .0387 .0453
“A”-T1 .0302

84 M. Kanakakis et al.

process. Such computational models are usually initialized using reputation systems
that aggregate experiences of other trustors. Later, as users interact with the
system/service and get direct observations, their trust levels are updated. Below, we
provide an overview of trust computational models that explicitly consider trustor
attributes and how these differ from our model. For a comprehensive overview of such
models the interested reader is redirected to, for example, [10].

In [11] the following personal trust factors are considered when initializing a trust
level: (a) the effects of stereotypes such as appearance, the context and existence of
certificates proving expertise (b) trustor characteristics like general propensity to trust,
user expertise and user need, as well as, (c), similarity between persons (and empathy
when the trustee is a system). Even though the authors did not quantify the effect of
these personal factors, their importance has been validated via experiments. Further-
more, the resulting trust level is a single value (not a probability density function, or
PDF) and thus the confidence cannot be determined.

In [12] a computational model is provided that allows to reason about the produced
trust level by analyzing and formalizing the dynamics of trust in the light of experi-
ences. Furthermore, they hypothesize that trustors can be grouped into sets based on
their attributes, which, however, were not produced following a statistical approach nor
were associated with trustor attributes (such as trustor expertise).

In [13] a trust computational model is proposed that takes into account the fol-
lowing personal attributes for trust update only: (a) trust flexibility that expresses how
much each system outcome counts, (b) trust decay that defines how fast the trust level
goes back to a neutral state in absence of new experiences, and (c) autonomy that
indicates whether the trust level to one trustee is affected by the trust level to other
trustees. Even though the importance of these attributes has not been validated (using
surveys etc.) in the sequel paper [14] the authors suggested and compared four tech-
niques that could be used for estimating the values of these parameters from subjects’
responses.

A different approach for estimating a user’s trust level is based on user (as opposed
to system) behavior. In [15] they performed an experiment to identify that different eye
gaze and heart rate patterns could indicate different trust levels.

Our trust computational model builds upon a set of trust concepts that were found
to be statistically significant; (a) general propensity to trust, (b) user expertise, and
(c) motivation to search for stereotypes that prove provider trustworthiness. Thus,
although these concepts focus on trustor characteristics only, there is significant overlap
with the findings in [11, 12]. In addition, we utilize those trustor attributes to suggest
how the trust level of each segment should be initialized, as well as, updated after
successful or unsuccessful system outcomes. Thus, we argue that we follow a more
holistic approach compared to papers [11, 12, 13, 14].

7 Conclusions and Future Work

In this paper, we have drawn out the conceptual background for our proposed a trust
computational model that allows a provider to estimate the trust level of candidate
trustors, using a holistic approach. We also demonstrated the validity of our results via

Computing Trust Levels Based on User’s 85

a small-scale experiment in the online security service context. More specifically, we
have identified four segments with statistically significant differences which affect both
the initial level but also the evolution of trust towards a system. These differences are
captured by means of a modified Bayesian inference model, where the system out-
comes have a weighted impact on the trust of each segment. We observed that our
approach, i.e., to feed in the model with actual data so as to identify the individual
weights, results to remarkably improved trust estimation compared to the standard
process where the personal attributes are not considered in the trust update.

In the future we plan to revisit the initialization steps for the Medium Active Trust
Seeking and Ambivalent segments and perform another experiment, possibly in
another domain, where participants would engage with the system for more transac-
tions. In this way, it allows to accurately estimate all users’ trust level with a small
subset of actual trust values provided by the trustors themselves. Furthermore, we will
validate that the number of transactions necessary for the trust level to converge is
limited (*10–15) and, thus, the trust computational model can afterwards be used for
helping the provider to meet customers’ expectations at run-time.

References

1. Habib, S.M., et al.: Trust as a facilitator in cloud computing: a survey. J. Cloud Comput.
1(1), 1–18 (2012)

2. Riegelsberger, J., Sasse, M.A., McCarthy, J.D.: The mechanics of trust: a framework for
research and design. Int. J. Hum Comput Stud. 62(3), 381–422 (2005)

3. McKnight, D., Chervany, N.L.: Trust and distrust definitions: one bite at a time. In: Falcone,
R., Singh, M., Tan, Y.-H. (eds.) AA-WS 2000. LNCS (LNAI), vol. 2246, pp. 27–54.
Springer, Heidelberg (2001)

4. Lyon, F., Möllering, G., Saunders, M.N.K. (eds.): Handbook of Research Methods on Trust.
Edward Elgar, Cheltenham (2012)

5. Li, F., Kowski, D.P., van Moorsel, A., Smith, C.: Holistic framework for trust in online
transactions. Int. J. Manag. Rev. 14, 85–103 (2012)

6. Sztompka, P.: Trust: A Sociological Theory. Cambridge University Press, Cambridge (1999)
7. Gambetta, D.: Can we trust trust? In: Gambetta, D. (ed.) Trust: Making and Breaking

Cooperative Relations, pp. 213–238. Basil Blackwell, Oxford (1990)
8. Surridge, M., et al.: OPTET D2.1 – Socio-economic requirements for trust and

trustworthiness. Technical report, OPTET consortium (2013)
9. Gol Mohammadi, N., Bandyszak, T., Moffie, M., Chen, X., Weyer, T., Kalogiros, C.,

Nasser, B., Surridge, M.: Maintaining trustworthiness of socio-technical systems at run-time.
In: Eckert, C., Katsikas, S.K., Pernul, G. (eds.) TrustBus 2014. LNCS, vol. 8647, pp. 1–12.
Springer, Heidelberg (2014)

10. Pinyol, I., Sabater-Mir, J.: Computational trust and reputation models for open multi-agent
systems: a review. Artif. Intell. Rev. 40(1), 1–25 (2013)

11. Masthoff, J.: Computationally modelling trust: an exploration. In: Proceedings of the
SociUM Workshop Associated with the User Modeling Conference, Corfu, Greece (2007)

12. Jonker, C.M., Treur, J.: Formal analysis of models for the dynamics of trust based on
experiences. In: Garijo, F.J., Boman, M. (eds.) MAAMAW 1999. LNCS, vol. 1647,
pp. 221–231. Springer, Heidelberg (1999)

86 M. Kanakakis et al.

13. Hoogendoorn, M., Jaffry, S., Treur, J.: Modeling Dynamics of Relative Trust of Competitive
Information Agents. In: Klusch, M., Pěchouček, M., Polleres, A. (eds.) CIA 2008. LNCS
(LNAI), vol. 5180, pp. 55–70. Springer, Heidelberg (2008)

14. Hoogendoorn, M., Jaffry, S.W., Treur, J.: An adaptive agent model estimating human trust
in information sources. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Intelligent Agent Technology (2009)

15. Leichtenstern, K., Bee, N., André, E., Berkmüller, U., Wagner, J.: Physiological
measurement of trust-related behavior in trust-neutral and trust-critical situations. In:
Wakeman, I., Gudes, E., Jensen, C.D., Crampton, J. (eds.) Trust Management V. IFIP AICT,
vol. 358, pp. 165–172. Springer, Heidelberg (2011)

Computing Trust Levels Based on User’s 87

Enhancing the Trustworthiness of Service
On-Demand Systems via Smart Vote Filtering

Christos V. Samaras(B), Ageliki Tsioliaridou, Christos Liaskos,
Dimitris Spiliotopoulos, and Sotiris Ioannidis

Foundation of Research and Technology - Hellas (FORTH), Heraklion, Greece
{csamaras,atsiolia,cliaskos,dspiliot,sotiris}@ics.forth.gr

Abstract. Service on-demand (SoD) systems allow their users to reg-
ulate the sharing of common resources via a voting process. A com-
mon application example is the collaborative scheduling of multimedia
transmissions in e-radio or video streaming services. Therefore, high user
commitment and participation is critical to the success of a SoD system.
Securing a SoD system against common attacks, such as vote flooding,
can impose client anonymity retraction, online registering and access
control mechanisms. Nonetheless, such processes can degrade the users’
quality of experience, discouraging user participation. The present study
proposes a defense mechanism against vote flooding attacks that can
operate under complete vote anonymity and without any user access
restrictions. The novel scheme is implemented as a vote filtering scheme,
executed prior to each service scheduling decision. The proposed scheme
has linear complexity and is shown via simulations to considerably mit-
igate or completely negate the effects of several attacks types.

Keywords: Service on-demand · Client anonymity · Security · Query
filtering

1 Introduction

Service on-demand (SoD) systems constitute a particularly attractive means of
resource sharing and large-scale information dissemination. Users of SoD systems
can influence how often a server supplies a service via a voting system. For
instance, users of video-on-demand or e-radio systems can regulate the broadcast
frequency of multimedia files [25,27]. Therefore, high and unobstructed user
participation is critical to the operation and economic viability of SoD systems,
accentuating the need for user-friendliness. To this end, SoD systems may need
to operate on anonymous user votes and without any access control method
that may degrade the users’ quality of experience [26]. On the other hand, such
requirements facilitate the misuse by malevolent users who may, e.g., flood the
system with vast amounts of votes for personally preferred services, degrading
the trustworthiness of the process.

SoD systems typically follow a centralized architecture, comprising a server
and a set of clients in a virtual star topology. The server supports a set of
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 88–103, 2015.
DOI: 10.1007/978-3-319-22846-4 6

Enhancing the Trustworthiness of Service On-Demand Systems 89

actions that are provided in a cyclic fashion. After the end of an action, the
server proceeds to select the next action for execution. The selection is derived
from the votes of the users, which arrive continuously at the server and are
promptly enqueued. The selection process can consider the arrival times of the
votes at the server, as well as the total number of votes pertaining to each
supported action. Typical selection processes are the First Come-First Served,
Most Requests First and the RxW scheduler which takes into account both
considerations [13]. Given that the arrival time of a vote at the server cannot
be tampered with, a malevolent user may seek to influence the total number
of votes pertaining to one or more actions. Thus, the selection process can be
forced to produce results that no longer correspond to the preferences of the
normal (benevolent) users of the system.

Existing voting systems employ access control and user identification mech-
anisms in order to: (i) discourage or disable vote-flooding attacks and (ii) detect
the perpetrator in case of a successful attack [9,20]. A commonly followed access
control approach is to employ CAPTCHAs, automated challenge-response Tur-
ing tests, to disable vote flooding by bots [32,39]. However, the process is time-
consuming and degrades the quality of experience of the normal users.
Furthermore, the users may be requested to register to the system with an online
account, compromising their anonymity. Some approaches employ an interme-
diate anonymization server, which removes personal information from the vote
of a user prior to forwarding it to the SoD system [11]. Nonetheless, this app-
roach simply delegates the identification and access control process to another
system and still degrades the quality of experience. Furthermore, the approach
requires additional equipment, increasing the capital and operational expenses
of the system.

The present paper proposes a mechanism for defending against vote flooding
attacks in SoD systems, which requires no access control and does not com-
promise the anonymity of the users, even under attack. It can be classified as
a first-line, low-complexity defense mechanism that is implemented as a vote
filtering mechanism. The methodology of the presented scheme comprises an
attack detection and an actuation process. For the detection purposes, the votes
of the users are mapped to a stream of alarm indications, each designating the
presence or absence of malevolent behavior. A specially-designed, low-complexity
variation of the Misra-Gries algorithm [31] deduces the most frequent indication,
thus raising an alarm or deducing normal operation. In the case of an alarm,
the actuation process is activated and proceeds to filter the users’ votes prior
to every new scheduling decision. The success of an attack is measured in terms
of the increase it induces to the user query service ratio and service times. In
retaliation, the proposed scheme succeeds in keeping these metrics close to their
normal operation counterparts under several attack cases. Thus, it can promote
the trustworthiness of a SoD system, without compromises in the users’ quality
of experience.

The remainder of this paper is organized as follows. The related work on
trustworthy voting systems is given in Sect. 2. The prerequisites for the pre-
sentation and presentation of the novel scheme follow in Sect. 3. The scheme is

90 C.V. Samaras et al.

detailed in Sect. 4 and evaluated via simulations in Sect. 5. Finally, the conclusion
is given in Sect. 6.

2 Related Work

Research on secure service-on-demand systems has not proposed a voting mech-
anism that can operate on anonymous users with no access restrictions, to the
best of the authors knowledge. However, there exists a considerable amount of
work on electronic voting systems and polling protocols in general, which has
concentrated on a diverse set of desired properties and functionality such as accu-
racy, privacy, verifiability, eligibility, coercion resistance, availability and fault-
tolerance. A number of protocols, models, prototypes, and real-world systems
have been proposed and implemented to support e-voting and polling functions.

Electronic voting schemes are mainly divided into three categories, based
on the technique used to anonymize votes: (i) Homomorphic encryption allows
computations to be carried out on ciphertext, thus generating an encrypted
result which, when decrypted, matches the result of operations performed on the
plaintext. Protocols based on homomorphic encryption generally have a complex
mathematical structure thus inducing high computational costs. (ii) In blind
signature approaches the content of message/vote is disguised (blinded) before
it is signed, thus the signer (authenticator) is not given any knowledge about
the message. The voter unblinds the signed vote and submits it to the tallier
through an anonymized channel. Blind signature protocols usually exhibit the
advantages of simplicity, low computational costs and being ballot independent.
(iii) A mix network (mixnet) is a multistage system that uses cryptography and
permutations to provide anonymity. The design of a mixnet is based on providing
anonymity for a batch of inputs, by changing their appearance and removing the
order of arrival information. In mix network schemes, voters authenticate and
submit encrypted votes; votes are anonymized using a mix; and anonymized votes
are then decrypted. Mix network protocols involve less voter’s interactions, but
require complex proofs of correctness.

E-voting and polling have been an active area of research posing several
new challenges [2,16,19,23,34,38]. Comparison of existing voting schemes reveals
common security property tradeoffs [35]. REVS [22] is an electronic voting sys-
tem based on blind signatures and designed for distributed and faulty environ-
ments, which exploits server replication to allow a certain degree of failures.
Sensus [11] is a secure and private system for polling that requires at least two
servers, namely a validator and a tallier, for conducting an election or a survey
(i.e., a generic term of polling is considered). In [3] authors propose a prototype
implementation of SEAS, which is a portable and flexible system that preserves
the limited number of servers of the above-mentioned Sensus, but it avoids a
vulnerability that allows one of the entities involved in the election process to
cast its own votes in place of those that abstain from the vote. Civitas [9] is based
on mix networks and enforces verifiability (an integrity property) and coercion
resistance (a confidentiality property), whereas it does not rely on trusted super-
vision of polling places, making it a remote voting system.

Enhancing the Trustworthiness of Service On-Demand Systems 91

In the literature there also exist studies on polling protocols [5,14,17,20,21,
37], which cover areas such as: distributed polling, privacy, secret sharing, scala-
bility, social networks, peer-to-peer networks, and reputation systems. However,
anonymity systems are of significant practical relevance because they are the
best means of providing privacy for users. Further works relating to e-voting
and to methods for achieving anonymity and providing privacy for users, can be
seen in [4,6–8,10,15,24,28–30,41].

Given that existing systems do not cover the needs of SoD systems for com-
plete client anonymity and unrestricted access, the authors proposed an initial
solution based on early filtering of client queries [26]. The study defined prob-
able attack types and proposed a defense mechanism based on the Dendritic
algorithm, a nature-inspired process for intrusion detection based on danger and
safety signals. However, being a nature-inspired heuristic, the mechanics of the
Dendritic algorithm are still not well understood [18]. Particularly, it is not clear
how to parametrize and map the danger and safety signals to real attributes
of a given system. Thus, while the proposed Sensor Swarm Filter process was
shown to efficiently defend against several attack types, it could not account for
common attacks, such as random query flooding.

The present study proposes a superior query filtering process that: (i) is based
on the well-studied Misra-Gries classification algorithm [31], and (ii) utilizes
parameters that have an intuitive and clear meaning within the context of the
voting system.

3 Prerequisites

We assume a service-on-demand system, comprising a server and a set of con-
nected clients. The server hosts a number of service “items” (actions), each with
its own service time. The clients post queries in order to vote for the next action
to be taken by the server. In order to derive the next service action, the server
employs the RxW scheduler without preemption support, but enhanced to han-
dle actions with different processing times [1,36]. The RxW scheduler selects
the action with the highest number of hits, multiplied by the queuing time of its
oldest query.

The preferences of each client regarding the service actions are unknown to
the server, and are expressed as personal probability mass functions (p.m.f.):

pc,i, c = 1 . . . C, i = 1 . . . N, :
N∑
i=1

pc,i = 1 (1)

which denotes the percentage of queries of client c = 1 . . . C that refer to action i.
In order to establish a dependable ground-through on the popularity of each

action, an external, trusted entity provides the server with an approximate, per-
action p.m.f. as:

Pi, i = 1 . . . N :
N∑
i=1

Pi = 1 (2)

92 C.V. Samaras et al.

For example, in the case of a video on-demand service, the popularity of each
movie “item” can be derived by its ranking in online services (e.g., the Inter-
net Movie Database), hits in social networks (e.g., Tweets) or direct polling of
trustworthy, authenticated users (critics).

Each service action may be requested multiple times over the operation of
the system by any user, without restrictions. On the client-side, each benevolent
user poses a query for a single service action and awaits for a maximum time
interval D (deadline). The server is oblivious to deadline expiration events, since
such an ability would be open to extensive misuse, even by non-expert users. If D
elapses and the server has not started to process the requested action, the client
abandons the query. Regardless of the outcome (served or not) a client poses a
new query after a random ThinkT ime [25]. The service ratio of the system is
defined as the total number of served queries over all clients divided by the total
number of posed queries.

Finally, the attacker model of [26] is assumed. According to it, a malevolent
user performs query flooding in order to tip the RxW scheduler to their favor.
An attack by a malevolent user is defined as:{

target, T̄ , ts, te
}

(3)

where ts is the time moment when the user begins posting consecutive queries
with mean interarrival T̄ until time te. The target of these queries, i.e., the action
that is being requested, defines the attack types introduced in [26]:

– Needed action. “Selfish” behavior which constitutes at flooding the sched-
uler with requests for the personally needed service action.

– Random action. Flooding the server with random queries.
– Less popular action. The scheduler is flooded with multiple requests for

the less wanted service action.
– Lengthiest action. The scheduler is forced to yield the most time-consuming

service, delaying all other actions.
– Smallest popularity-to-size ratio action, which combines the preceding

attacks.

The last three attack types assume that a malevolent user has obtained an
approximation of the the Pi p.m.f..

The proposed scheme seeks to improve the trustworthiness of the system by
(ideally) keeping the service/expiration ratio and the mean service time unal-
tered, despite the presence of an increasing number of malevolent users.

4 Misra-Gries-Based Query Filtering

A service-on-demand system defines a cycle of operation given in Fig. 1. A server
selects and executes an action from a given pool, based on the preceding votes
of the users. While the action is executed, the server enqueues all incoming
votes in a single queue, logging their arrival times as well. Once the execution

Enhancing the Trustworthiness of Service On-Demand Systems 93

Fig. 1. State chart of the service on-demand system, combined with the proposed
defense mechanism.

Fig. 2. Operation of an action “watcher”, responsible for raising an alarm when the
observed rate of incoming queries for the action, Pobserved, consistently surpasses the
expectation P.

of the current action is complete, the server proceeds to select the next action
for execution, given the user votes and the employed scheduler (e.g., RxW). The
proposed defense mechanism takes action before the execution of the scheduler,
by filtering the votes accumulated at the queue of the server. In this aspect,
the proposed mechanism has the added advantage of not disrupting the normal
operation of the used scheduler.

The defense mechanism comprises two components: the threat detection mod-
ule and the actuation module (i.e., query filtering).

The operation of the threat detection module is illustrated in Fig. 2. It com-
prises a set of N watcher processes running as daemons on the server. Each
watcher is responsible for detecting suspicious queries pertaining to a single
action offered by the server, with 1 − 1 correspondence. The watcher of action
i processes all incoming client queries before they enter the server’s queue, and
logs the running ratio of i−query occurrences, Pobserved

i,H , over three different time
horizons, H1, H2, H3. For example, if the span of time horizon H1 is S = 100
incoming client votes and action i was requested n = 10 times within this win-
dow, then P

observed
i,H = n/S = 0.1.

94 C.V. Samaras et al.

The P
observed
i,H logging over three time horizons makes for fast attack detec-

tion (smaller horizon, H1), vigilance after the attack (medium horizon, H2) and
indications of long-term attacks that may call for additional security measures
(large horizon, H3), such as CAPTCHA checks and client identification requests.
The span of the time horizons can be set intuitively. For example, assuming that
min {Pi} = p, H1 can be set at �1/p�, i.e., the span that accentuates the pres-
ence of votes for the least probable actions. H3 can be set to a maximum allowed
attack duration, and H2 in a value within [H1,H3].

Once the P
observed
i,H values have been derived for each horizon, the attack

detection module proceeds to compare them to the Pi expectations and deduce
whether they constitute threat indications. This task is accomplished by the
Misra-Gries (MG) classifier, incorporated to the watcher process.

The employed variation of the MG algorithm extracts the most frequent
object from a running stream [31]. MG assumes an associative array indexed by
the objects, ctrobj , which are initialized to zero. For each incoming object, MG
increases ctrobj by one and decreases all other counters by one unit. If a counter
has become negative, it is reset to zero. After K steps, the classifier yields the
most common object, obj∗, as:

obj∗ = argmax {ctrobj} (4)

From the (K + 1)th step and on, the MG process retains the classification result,
but the ctrobj counters are reset to zero and the process starts over. Thus, the
classification result is updated at the (2 · K)th step. The storage overhead of MG
is O(m), where m is the total number of possible objects, while its complexity
is constant, O(1).

In the case of the proposed defense mechanism, the MG objects are the
Boolean outcomes of the comparisons:

P
observed
i,H > Pi (5)

i.e., m = 2. In other words, MG deduces whether the votes pertaining to an
action i are persistently higher than the expectations, implying that an attack
may be in progress. In this case, MG is said to raise an “alarm”. Three MG
instances are used within each action watcher, each deducing the alarm state
over the three time horizons. The action watcher then yields an alarm state for
the monitored action if any of the three MG processes is positive.

The set of watchers, one per available server action, thus yield a Boolean
alarm level per action, Ai, at any requested time moment.

The actuation module (query filtering process of Fig. 1, formulated as
Algorithm 1) takes place before relinquishing operation to the RxW scheduler.

At first, Algorithm 1 counts the number of occurrences of each query for
action i within the server queue (lines 3 − 5). The Algorithm then proceeds to
calculate the expected (proper) occurrences for each action with a raised alarm
flag, Ai (lines 8− 12). However, it is possible that certain actions have presently
zero occurrences within the queue (e.g., when the corresponding Pi is low).

Enhancing the Trustworthiness of Service On-Demand Systems 95

Algorithm 1. Query filtering process.
INPUTS:

1. Presently Enqueued Queries Qk, k = 1 . . . Q;
2. Expectations Pi, i = 1 . . . N ;
3. Binary Alarm State per Action Ai, i = 1 . . . N .

1: timesi ← 0, ∀i = 1 . . . N ;
2: proper timesi ← 0, ∀i = 1 . . . N ;
3: for k = 1 . . . Q
4: timesQk = timesQk + 1;
5: end for
6: s ← 1 −∑i:{1...N|timesi=0 } Pi;
7: proper timesi ← timesi, i = 1 . . . N ;
8: for i = 1 . . . N
9: if timesi > 0 and Ai

10: proper timesi ← ⌊ Pi·Q
s

⌋
;

11: end if
12: end for
13: for i = 1 . . . N
14: if timesi > proper timesi
15: Remove the most recent proper timesi − timesi queries for action i from the
server queue.
16: end if
17: end for

The cumulative probability of these actions is logged (line 6) and is distrib-
uted to other actions with timesi �= 0 within the queue (line 10). This approach
ensures a less aggressive but more fair query filtering, since it takes into account
that zero action occurrences within the queue are normal from time to time.

The actual query filtering then takes place at lines 13 − 17. The occurrences
of each query type are reduced to their expected values by discarding the newest
queries first. Notice that the RxW scheduler schedules then next action for exe-
cution by checking the product of occurrences multiplied by the maximum query
waiting time for each action. Therefore, given the importance of waiting times,
discarding newest queries first ensures that older, potentially legitimate queries
are not harmed by the filtering process.

The maximum storage overhead and complexity of Algorithm1 is O(N),
which also represents the complexity of the complete defense mechanism, given
that static requirements of the MG and P

observed
i,H logging sub-processes.

5 Simulations

In this Section, the performance of the proposed Misra-Gries Filtering (MGF)
is compared via simulations to the Sensor Swarm Filtering (SSF) of [26]. The
simulator, implemented on the Anylogic platform [40], represents a broadcast on-
demand system, where “actions” correspond to “Web page items” with dynamic

96 C.V. Samaras et al.

content. The runs evaluate the ability to maintain acceptable service ratios and
mean service times while the system is under attack.

The system configuration assumes a star topology comprising a broadcast on-
demand server, connected to C = 100 clients via 20Mbps links. The upstream
direction (client-to-server, for posting queries) is considered trivial.

The server schedules its transmissions by employing the R × W on-demand
scheduler. Each transmission pertains to an item selected from a static pool of
N = 100 items with random sizes li ∈ [1, 10]KBytes (uniformly distributed),
representing simple Web pages.

The query deadline is set to 100msec due to the low item size/channel rate
ratio. Should the deadline be exceeded, the query is dropped and global query
service ratio is updated. Else, the query is answered successfully, and the aver-
age, global service time is updated. The clients’ ThinkT ime is picked uniformly
within [0, 10] sec.

The client query posing process operates as follows. Each client c has preset
preferences in the form of a p.m.f. over the items, pc,i, i = 1 . . . N , which is
unknown to the server. Pi is derived from a distributed consensus process. We
assume that the clients participate in a separate social network. The server also
participates as a single peer. In this network, each peer has a random number
of friends (other peers), which are represented as a connected graph. Each peer
c assigns a random weight gc,k ∈ (0, 1) (uniformly distributed) to each mem-
ber of his local network k = 1 . . .K, which comprises himself and his friends.
A distributed consensus is a rumor propagation process and gc,k expresses the
effect of a friendly peer on the formation of the personal opinion. A peer may
also use different sets of gc,k weights for each data item i (i.e., gc,k,i). The sole
restriction that must hold is

∑K
i=1 gc,k,i = 1.

The consensus process then operates as follows. Each peer initializes its esti-
mate, P(self)

c,i , as his personal preferences, pc,i, i = 1 . . . N . This estimate is then
sent to his immediate friends. Each peer collects the incoming estimates of all
his friends and updates his estimate as:

P
(self)
c,i ← P

(self)
c,i · gc,self,i +

∑
k=1...K, k �=self

P
(k)
c,i · gc,k,i, ∀i (6)

As proven in [12], the process converges iteratively, leading to P
(self)
c,i ≈ Pi, ∀c,∀i.

Normalization is finally applied to ensure that
∑

Pi = 1. The P
(self)
c,i update

period was set to 1 sec and convergence was typically achieved in 10 sec. The
pc,i preferences were set to yield a Zipfian p.m.f., Pi ∝ i−0.9, which has been
observed to describe client requests for Web pages [33]. Thus, both the server
and the malevolent users acquire Pi anonymously, without knowledge of the
individual pc,i. At that point, a varying number of malevolent users, ranging
from 1 − 10% · C, attack with a period of T̄ = 1msec each. The percentage of
malevolent users is assumed not to surpass 10% of the total users. Notice that
an on-demand system serves common needs. Thus, if the malevolent users were
the majority, or even a considerable minority, the system would inevitably abide

Enhancing the Trustworthiness of Service On-Demand Systems 97

Fig. 3. Effects of the “Needed action” attack on the performance of the system.

by their preferences. Furthermore, assuming a great percentage of highly skilled
users is not expected in general.

The proposed MGF uses a single watcher per item, monitoring the incoming
client queries over three horizons, h1 = 10, h2 = 30 and h1 = 50 (measured
in number of queries). Each internal Misra-Gries process yields a classification
result every K = 20 threshold events. Thus, the watcher process may deduce the
alarm state every 200, 600 and 1000 queries. Given that min {Pi} = 0.02, the
horizons h1−3 take the values of 4, 12 and 20, which roughly correspond to ≈ 1,
≈ 10 and 20 appearances of the less popular item per threshold event. Finally,
all SSF parameters are taken directly from [26].

The query service/expiration ratio and mean service time are logged and the
simulation ends when a 95% confidence has been attained. The results presented
below correspond to mean values derived over 10 Monte Carlo runs, randomly
varying the item sizes and the client preferences.

Figure 3 studies the robustness of the proposed MGF under a progressively
aggravating “Needed action” attack. MGF is shown to surpass SSF, while essen-
tially nullifying the attack. The query expiry ratio is kept at near-zero, while the
mean service time is constant, regardless of the increasing number of attackers.
On the other hand, SSF mitigates the attack for up to ≈ 5% malevolent user
percentage. From that point and on, the query expiry ratio and the service time
increases steadily, with a rate double than the proposed MGF. The behavior
of the system in absence of any filtering is provided to show the impact of the
attack. Without any defense mechanism, approximately 60% of the queries are
dropped. The service time decreases only when a considerable amount of queries
has been dropped. Therefore, MGF can be used to provide non-disrupted system
performance, even under attack.

98 C.V. Samaras et al.

Fig. 4. The “Random action” query flooding is the most effective attack type. The
proposed SSF is the only one offering a considerable degree of resilience.

Fig. 5. The behavior of the system under a “Less popular action” attack.

Malevolent users may also attempt to flood the server with random queries.
This case is examined in Fig. 4. According to [26], this type of attack is the most
effective in the examined voting systems. This can be explained if we consider
that a random attack of just a few users is tantamount to a high number of
attackers launching a “Needed action” attack. As a result, SSF is not able to
offer any defense against a “Random item” attack, even when the number of
malevolent users is very low. On the other hand, the proposed MGF performs
better, bounding the expiry ratio at ≈ 35% in the worst case, while keeping the

Enhancing the Trustworthiness of Service On-Demand Systems 99

Fig. 6. Operation under false queries for the item with the lowest Pi/li ratio (popularity-
to-size).

Fig. 7. Flooding the server with queries for the biggest item can yield slightly increased
service times.

average service time constant at ≈ 25msec. While the attack is not mitigated,
the system exhibits an increased degree of robustness against this attack type.
Figure 4 also accentuates the fact that the nature-inspired, Dendritic attack
detector of SSF is still not well understood [18]. The present simulations can
certainly not preclude that a different mapping of the nature-inspired process
to real-world attributes may perform better. However, such a mapping is not
straightforward and a well-defined process does not exist up to date.

Figures 5, 6 and 7 study the less probable attacks of “Less popular action”,
“Lowest Pi/li action” and “Lengthiest action” (i.e., biggest item). As shown in

100 C.V. Samaras et al.

Fig. 5, the “Less popular action” attack is easily detected and fully negated by
both MGF and SSF. The fact that a very unpopular item appears multiple
times in the server query queue facilitates attack detection and mitigation. The
performance of the system is not affected much when item popularity and size
are combined into one attack, as shown in Fig. 6. Both MGF and SSF mitigate
the attack, with SSF offering slightly better servicing times. This behavior is
owed to the fact that SSF takes into account the size of the items in the detection
phase. The internal alarm level of SSF increases faster for big items and slower for
small ones. This difference in performance is more discernible in Fig. 7, focusing
on “Biggest item” attacks only. While both SSF and MGF detect the attack, the
filtering of SSF is more aggressive against big items, leading to a gain in service
times. However, the “Lowest Pi/li item” and “Biggest item” attacks cannot be
considered as effective under presence of either MGF and SSF. Furthermore,
a hacker is more likely to launch “Needed item” and “Random” attacks, since
these are more impactful, as shown in Figs. 3 and 4. Therefore, the +2msec and
+10msec service time advantage of SSF over the proposed MGF in “Lowest
Pi/li item” and “Biggest item” is not deemed significant. Coupled with O(N)
complexity, the proposed MGF scheme can offer increased system robustness
under the most significant attack types, with minimal requirements.

6 Conclusion

The present paper proposed a mechanism for defending against vote flooding
attacks in service on-demand systems. The novel scheme was shown to suppress
the effects of such attacks, even when a considerable percentage of the users
are malevolent. Furthermore, the proposed scheme does not compromise the
anonymity of the users and imposes no access control that could degrade the
users’ quality of experience. Combining non-disrupted user-friendliness and non-
obstructed operation even under considerable attacks, the propose scheme can
constitute an attractive add-on for trustworthy on-demand systems.

Acknowledgment. This work was partially supported by EU FP7 project OPTET
(Grant no.317631).

References

1. Aksoy, D., Franklin, M.: R×W: a scheduling approach for large-scale on-demand
data broadcast. IEEE/ACM Trans. Network. 7(6), 846–860 (1999)

2. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic vot-
ing protocols in the applied pi-calculus. In: Proceedings of the 21st IEEE Computer
Security Foundations Symposium (CSF 2008), pp. 195–209, Pittsburgh, 23–25 June
2008 (2008). http://doi.ieeecomputersociety.org/10.1109/CSF.2008.26

3. Baiardi, F., Falleni, A., Granchi, R., Martinelli, F., Petrocchi, M., Vaccarelli, A.:
Seas, a secure e-voting protocol: design and implementation. Comput. Secur. 24(8),
642–652 (2005). http://dx.doi.org/10.1016/j.cose.2005.07.008

http://doi.ieeecomputersociety.org/10.1109/CSF.2008.26
http://dx.doi.org/10.1016/j.cose.2005.07.008

Enhancing the Trustworthiness of Service On-Demand Systems 101

4. Benkaouz, Y., Erradi, M.: A distributed protocol for privacy preserving aggrega-
tion with non-permanent participants. Computing. J. 3, 1–20 (2014). doi:10.1007/
s00607-013-0373-6

5. Benkaouz, Y., Guerraoui, R., Erradi, M., Huc, F.: A distributed polling with
probabilistic privacy. In: IEEE 32nd Symposium on Reliable Distributed Systems
(SRDS 2013), pp. 41–50, Braga, 1–3 October 2013 (2013). http://dx.doi.org/10.
1109/SRDS.2013.13

6. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

7. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985). http://doi.acm.org/
10.1145/4372.4373

8. Chen, Y., Jan, J., Chen, C.: The design of a secure anonymous internet voting
system. Comput. Secur. 23(4), 330–337 (2004). http://dx.doi.org/10.1016/j.cose.
2004.01.015

9. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: 2008 IEEE Symposium on Security and Privacy (S&P 2008), pp. 354–368,
Oakland, 18–21 May 2008. http://dx.doi.org/10.1109/SP.2008.32

10. Cortier, V., Smyth, B.: Attacking and fixing helios: an analysis of ballot secrecy.
J. Comput. Secur. 21(1), 89–148 (2013)

11. Cranor, L.F., Cytron, R.: Sensus: a security-conscious electronic polling sys-
tem for the internet. In: 30th Annual Hawaii International Conference on Sys-
tem Sciences (HICSS-30), pp. 561–570, Maui, 7–10 January 1997. http://doi.
ieeecomputersociety.org/10.1109/HICSS.1997.661700

12. Degroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)
13. Dykeman, H.D., Ammar, M.H., Wong, J.W.: Scheduling algorithms for videotex

systems under broadcast delivery. In: Proceedings of the International Conference
on Communications (ICC 1986), pp. 1847–1851, Toronto, June 1986

14. Englert, B., Gheissari, R.: Multivalued and deterministic peer-to-peer polling in
social networks with reputation conscious participants. In: 12th IEEE International
Conference on Ubiquitous Computing and Communications (IUCC-2013), pp. 895–
902, Melbourne, July 16–18 2013. http://dx.doi.org/10.1109/TrustCom.2013.109

15. Fan, C., Sun, W.: An efficient multi-receipt mechanism for uncoercible anony-
mous electronic voting. Math. Comput. Model. 48(9–10), 1611–1627 (2008).
http://dx.doi.org/10.1016/j.mcm.2008.05.039

16. Frith, D.: E-voting security: hope or hype? Netw. Secur. 2007(11), 14–16 (2007)
17. Gambs, S., Guerraoui, R., Harkous, H., Huc, F., Kermarrec, A.: Scalable and secure

polling in dynamic distributed networks. In: IEEE 31st Symposium on Reliable
Distributed Systems (SRDS 2012), pp. 181–190, Irvine, 8–11 October 2012. http://
dx.doi.org/10.1109/SRDS.2012.63

18. Greensmith, J., Aickelin, U., Tedesco, G.: Information fusion for anomaly detection
with the dendritic cell algorithm. Inf. Fusion 11(1), 21–34 (2010)

19. Gritzali, D.: Principles and requirements for a secure e-voting system. Comput.
Secur. 21(6), 539–556 (2002). http://dx.doi.org/10.1016/S0167-4048(02)01014–3

20. Guerraoui, R., Huguenin, K., Kermarrec, A., Monod, M., Vigfusson, Y.: Decen-
tralized polling with respectable participants. J. Parallel Distrib. Comput. 72(1),
13–26 (2012). http://dx.doi.org/10.1016/j.jpdc.2011.09.003

21. Hoang, B., Imine, A.: Efficient polling protocol for decentralized social networks.
CoRR abs/1412.7653 (2014). http://arxiv.org/abs/1412.7653

http://dx.doi.org/10.1007/s00607-013-0373-6
http://dx.doi.org/10.1007/s00607-013-0373-6
http://dx.doi.org/10.1109/SRDS.2013.13
http://dx.doi.org/10.1109/SRDS.2013.13
http://doi.acm.org/10.1145/4372.4373
http://doi.acm.org/10.1145/4372.4373
http://dx.doi.org/10.1016/j.cose.2004.01.015
http://dx.doi.org/10.1016/j.cose.2004.01.015
http://dx.doi.org/10.1109/SP.2008.32
http://doi.ieeecomputersociety.org/10.1109/HICSS.1997.661700
http://doi.ieeecomputersociety.org/10.1109/HICSS.1997.661700
http://dx.doi.org/10.1109/TrustCom.2013.109
http://dx.doi.org/10.1016/j.mcm.2008.05.039
http://dx.doi.org/10.1109/SRDS.2012.63
http://dx.doi.org/10.1109/SRDS.2012.63
http://dx.doi.org/10.1016/S0167-4048(02)01014--3
http://dx.doi.org/10.1016/j.jpdc.2011.09.003
http://arxiv.org/abs/1412.7653

102 C.V. Samaras et al.

22. Joaquim, R., Zúquete, A., Ferreira, P.: Revs-a robust electronic voting system.
IADIS Int. J. WWW/Internet 1(2), 47–63 (2003)

23. Jonker, H., Mauw, S., Pang, J.: Privacy and verifiability in voting sys-
tems: Methods, developments and trends. Comput. Sci. Rev. 10, 1–30 (2013).
http://dx.doi.org/10.1016/j.cosrev.2013.08.002

24. Li, C., Hwang, M., Liu, C.: An electronic voting protocol with deniable authenti-
cation for mobile ad hoc networks. Comput. Commun. 31(10), 2534–2540 (2008).
http://dx.doi.org/10.1016/j.comcom.2008.03.018

25. Liaskos, C., Petridou, S., Papadimitriou, G.: Towards realizable, low-cost broad-
cast systems for dynamic environments. IEEE/ACM Trans. Netw. 19(2), 383–392
(2011)

26. Liaskos, C., Papadimitriou, G., Douligeris, C.: Sensor swarm query filtering: height-
ened attack resilience for broadcast on-demand services. In: IEEE Symposium on
Computers and Communications (ISCC 2013), pp. 000312–000317. IEEE (2013)

27. Liaskos, C., Tsioliaridou, A., Papadimitriou, G., Nicopolitidis, P.: Minimal wireless
broadcast schedules for multi-objective pursuits. IEEE Transactions on Vehicular
Technology p. preprint (2014)

28. Malkhi, D., Margo, O., Pavlov, E.: E-voting without cryptography. In: Financial
Cryptography, 6th International Conference (FC 2002), pp. 1–15, Southampton,
11–14 March 2002. http://dx.doi.org/10.1007/3-540-36504-4 1

29. Meng, B.: A critical review of receipt-freeness and coercion-resistance. Inf. Technol.
J. 8(7), 934–964 (2009)

30. Meng, B., Li, Z., Qin, J.: A receipt-free coercion-resistant remote internet voting
protocol without physical assumptions through deniable encryption and trapdoor
commitment scheme. J. Softw. 5(9), 942–949 (2010)

31. Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Program. 2(2),
143–152 (1982)

32. Pardede, E., Taniar, D., Awan, I., Al-Sudani, W., Gill, A., Li, C., Wang, J., Liu,
F.: Protection through multimedia CAPTCHAs. In: Proceedings of the 8th Inter-
national Conference on Advances in Mobile Computing and Multimedia (MoMM
2010), p. 63. ACM Press (2010)

33. Pietronero, L., Tosatti, E., Tosatti, V., Vespignani, A.: Explaining the uneven
distribution of numbers in nature: the laws of Benford and Zipf. Physica A 293(1–
2), 297–304 (2001)

34. Qadah, G.Z., Taha, R.: Electronic voting systems: Requirements, design,
and implementation. Computer Standards Interfaces 29(3), 376–386 (2007).
http://dx.doi.org/10.1016/j.csi.2006.06.001

35. Sampigethaya, K., Poovendran, R.: A framework and taxonomy for com-
parison of electronic voting schemes. Comput. Secur. 25(2), 137–153 (2006).
http://dx.doi.org/10.1016/j.cose.2005.11.003

36. Sharaf, M.A., Chrysanthis, P.: On-Demand Broadcast: new Challenges and
Scheduling Algorithms. In: Proceedings of the 1st Hellenic Conference on the Man-
agement of Data (2002)

37. Sieka, B., Kshemkalyani, A.D., Singhal, M.: On the security of polling protocols in
peer-to-peer systems. In: 4th International Conference on Peer-to-Peer Computing
(P2P 2004), pp. 36–44, Zurich, 15–17 August 2004. http://doi.ieeecomputersociety.
org/10.1109/PTP.2004.1334929

38. Smart, M., Ritter, E.: True trustworthy elections: remote electronic voting using
trusted computing. In: Calero, J.M.A., Yang, L.T., Mármol, F.G., Garćıa Villalba,
L.J., Li, A.X., Wang, Y. (eds.) ATC 2011. LNCS, vol. 6906, pp. 187–202. Springer,
Heidelberg (2011)

http://dx.doi.org/10.1016/j.cosrev.2013.08.002
http://dx.doi.org/10.1016/j.comcom.2008.03.018
http://dx.doi.org/10.1007/3-540-36504-4_1
http://dx.doi.org/10.1016/j.csi.2006.06.001
http://dx.doi.org/10.1016/j.cose.2005.11.003
http://doi.ieeecomputersociety.org/10.1109/PTP.2004.1334929
http://doi.ieeecomputersociety.org/10.1109/PTP.2004.1334929

Enhancing the Trustworthiness of Service On-Demand Systems 103

39. Tsioliaridou, A., Zhang, C., Liaskos, C.: Fast and fair handling of multimedia
captcha flows. International Journal of Interactive Mobile Technologies (2015).
(To appear)

40. XJ Technologies: The AnyLogic Simulator (2013). http://www.xjtek.com/
anylogic/

41. Zwierko, A., Kotulski, Z.: A light-weight e-voting system with distrib-
uted trust. Electr. Notes Theor. Comput. Sci. 168, 109–126 (2007).
http://dx.doi.org/10.1016/j.entcs.2006.12.004

http://www.xjtek.com/anylogic/
http://www.xjtek.com/anylogic/
http://dx.doi.org/10.1016/j.entcs.2006.12.004

Design and Field Evaluation of PassSec: Raising
and Sustaining Web Surfer Risk Awareness

Melanie Volkamer1,3, Karen Renaud2, Gamze Canova1,
Benjamin Reinheimer1, and Kristoffer Braun1(B)

1 Technische Universität Darmstadt, Darmstadt, Germany
{melanie.volkamer,gamze.canova,benjamin.reinheimer,

kristoffer.braun}@secuso.org
2 University of Glasgow, Glasgow, UK

karen.renaud@glasgow.ac.uk
3 Karlstad University, Karlstad, Sweden

Abstract. This paper presents PassSec, a Firefox Add-on that raises
user awareness about safe and unsafe password entry while they surf
the web. PassSec comprises a two-stage approach: highlighting as the
web page loads, then bringing up a just-in-time helpful dialogue when
the user demonstrates an intention to enter a password on an unsafe web
page. PassSec was developed using a human-centred design approach. We
performed a field study with 31 participants that showed that PassSec
significantly reduces the number of logins on websites where password
entry is unsafe.

1 Introduction

Web surfers can be at risk: (1) if the website itself is masquerading as the genuine
entity; (2) the web page does not secure communications with the server by
using HTTPS. In this paper, we focus on the latter as 10 % of the top 100 sites
in the study country currently fail to do this (including the 8th, 9th and 11th

most popular sites, including three major email providers). Insecure transmission
has two consequences: communications being sniffed or the page itself being
manipulated by third parties. Web browsers could refuse to load insecure pages
but this relies on their being able to judge situations with 100 % reliability, an
unrealistic expectation. Failing this, users need to be wary, to protect themselves
when pages are insecure.

Popular web browsers currently do a poor job of supporting users in this
respect. Firstly, the main security indicator (HTTP or HTTPS with a padlock) is
usually placed in the address bar where it is easily missed [2,12,15,23,34]. Sec-
ondly, web browsers usually reassure rather than signal problems, with indicators
appearing only when communications are secured (padlock and/or highlighted in
green). This is counter-intuitive since people’s attention is generally deliberately
drawn to risk; they are not only told to relax in similar contexts.

To support users more effectively we developed a Firefox Add-On called
PassSec (see Fig. 1) to raise awareness in two stages: (1) highlight the password
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 104–122, 2015.
DOI: 10.1007/978-3-319-22846-4 7

Design and Field Evaluation of PassSec 105

Fig. 1. Screenshot of PassSec: highlighted password field and helpful dialogue as HTTPS
is not in place and the password field is focused.

field either in red with an icon to draw attention, or in green with a lock icon to
reassure, as the web page loads; (2) bring up a helpful dialogue when the user is
about to enter a password insecurely. The add-on was developed iteratively using
a human-centred approach. We performed a field study with 31 participants
and found that PassSec significantly reduced the number of logins on unsafe
web pages.

2 Development Process

We derived a list of guidelines from the literature to inform effective implemen-
tation of PassSec’s security indicators [6,11,13,21,29,31,32]. PassSec’s raison
dêtre is to raise awareness [17,27], to make security visible, thereby helping peo-
ple to understand risk. Guidelines apply either to the indicator mechanism as a
whole, or are specific to the delivered message. The overall guidelines for warning
indicators are that they should meet the following requirements:

Be Noticeable. According to the C-HIP model [29] and the human-in-the-loop
security framework [11], it is important to grab the user’s attention and then
maintain it [2,5,12,15,34].

Draw Attention and Reassure. The currently deployed HTTPS indicator and
address bar padlock icon only reassure. One cannot expect users to interpret the
lack of reassurance as something to be concerned about. Both must be provided.

Do Not Overstate. This risks habituation if people get used to dismissing
advice because it appears gratuitously. For example [19] report on warning sys-
tems in hospitals and explain that when warnings appear too often or falsely they

106 M. Volkamer et al.

lead to confusion and irritation. Breznitz [7] explain that repeated alarms dull
reactions so it is vital for indicators to signal genuine problems. This admonition
is confirmed by [26].

Respect User Autonomy. The final decision rests with the user, not with the
software. Wichman [28] points out that autonomy is a universal psychological
human need, which is related to well-being. Humans always strive to meet their
needs, so not respecting this is bound to be less than helpful.

Minimise Annoyance. Any advice that intrudes too often can be counter-
productive. Politis et al. [20] tested speech warnings for drivers in terms of
urgency, annoyance and effectiveness and argue for the importance of min-
imising annoyance in delivering warnings. Wogalter [30] also caution against
causing annoyance since it interferes with the user’s ability to interpret the
communication.

The message-specific guidelines for security indicators are that they should:

Be Explicit. Wolf et al. [33] recommend using simple and explicit language
in communications. Wogalter et al. [31,32] say interventions should identify the
problem, explain the consequences and offer directives for how to avoid the
problem. It is important for people to understand why wariness is recommended,
maximising personal relevance [22].

Offer Alternatives. Users do not like to abandon their intended action [16] so
offering them an alternative (where possible) is preferable to advising abandon-
ment.

Be Understandable. Many active warnings fail in this respect [12] so we need
to maximise understandability deliberately by using a human-centred design
approach.

Be Succinct and Minimise Effort. Too much text is likely to be daunting
and become ineffective [3]. Humans are “cognitive misers” [14] meaning that they
prefer to use intuition than to engage in effortful thinking. Moreover, we can not
rely on people clicking on explanatory links such as “More Information” [2] so
we should ensure that the most important information is displayed upfront.

These guidelines are not orthogonal. For example, understandability can help
to raise awareness and offering alternatives minimises annoyance. On the other
hand, a respect for autonomy can be taken too far: it could be used to jus-
tify removing interventions altogether, but that would not align with the ‘raise
awareness’ guideline. In effect, for each design decision we had to rank the guide-
lines and use the most relevant one to guide our decision. This list helped us to
make optimal design decisions, acknowledging the trade-offs that were sometimes
unavoidable.

2.1 Design Decisions

When to Intervene? We identified relevant contexts for raising awareness.
For each, we evaluated whether the password would be at risk while entering

Design and Field Evaluation of PassSec 107

Table 1. Risk in different contexts and how it is addressed.

Context At Risk Current With

Entry Send Browsers PassSec

HTTP e.g. http://edition.cnn.com Yes Yes – – Draw Attention

HTTPS with unencrypted main page
e.g. http://www.booking.com

Yes No – – Draw Attention

HTTPS e.g. https://www.amazon.
com

No No Reassures:
lock icon

Reassures

HTTPS with mixed passive content
[1] e.g. https://www.answers.com

No No Draw
Attention:
icon

Reassures

HTTPS with mixed active content [1]
e.g. https://www.answers.com

No No Blocks active
content,
shield icon

Reassures

HTTPS with certificate issues Maybe Maybe Active
warning

Reassures

or sending (Table 1). We deliberately do not warn about certificate issues since
these are only relevant when the website itself is fake, as is the case of web-
sites masquerading as the genuine entities. Web browsers routinely warn about
certificate issues and there is no point replicating this.

Redirect to HTTPS. It is technically possible to forward users to the secure
web page automatically1, if available, but automatic redirecting might be unnec-
essary if users do not plan to enter their password (not overstate). The other
option is to advise them to switch. We decided on the second approach to let
users decide, because it allows users to retain control: not treating them like chil-
dren (autonomy). It also allows users to learn about securing communications
and sustain awareness of insecure websites. Finally, it allows users to make the
decision to use the unsecured web page, which they might do because they know
that it is safe, despite appearances to the contrary (e.g. an internal company
website or due to a trash account being used for this web page) (autonomy). We
contemplated whether PassSec should provide an explanation or an easy-to-use
button to authorise redirection. While the first option might be preferable with
respect to raising awareness, we were concerned that it constituted too much
effort for the user (minimising effort). We thus provide a button.

Keep History. The next decision is related to whether to ask users whether
to switch to the HTTPS website every time an insecure web page is visited, or
only once per specific page. Both have advantages (better awareness when asked
each time) and disadvantages (likely to annoy). We incorporated a historical
function to store details of those web pages where the user decided to switch to
1 One could e.g. use the HTTPS-Everywhere Firefox Add-On https://www.eff.org/

https-everywhere (last access: June 23, 2015).

http://edition.cnn.com
http://www.booking.com
https://www.amazon.com
https://www.amazon.com
https://www.answers.com
https://www.answers.com
https://www.eff.org/https-everywhere
https://www.eff.org/https-everywhere

108 M. Volkamer et al.

the secure option. Any time a user visits a web page that appears in the history,
PassSec automatically redirects them to the secure web page (minimising effort
& annoyance).

Intervention Strategy. PassSec deploys a two-stage approach to maximise
effectiveness. The first stage is a specific passive security indicator that appears
as soon as the web page is loaded to immediately draw attention to a problem.
To achieve this, password fields are highlighted either to raise awareness or to
provide reassurance (raise awareness & reassure). The second a helpful dialogue
appears next to the password field as soon as users start entering their password
(just-in-time). Noticeability and effectiveness were evaluated in the field study.

2.2 Security Indicator Design

In [10], we showed that the combination of a red background and a yellow icon
attracts attention effectively in an unsafe context (cf. Fig. 2). To reassure, we
gave the input field a green border and a padlock icon (cf. Fig. 2). This proposal
was developed through several iterations incorporating feedback from potential
users. We started off with a green check mark but that confused people as they
were accustomed to seeing it when they entered their data correctly. We settled
on a padlock icon since it was perceived to be security-related. A green border
was used instead of utilising a green background that was perceived to be too
intrusive. The obvious concern with colour coding is that colour-blind users will
be disadvantaged. It is true that the red background will not attract colour-
blind users’ attention as reliably, but the icon, being yellow, will serve to attract
their attention. By using two independent indicators we make it less likely that
colour-blind users will miss the signal.

Fig. 2. Highlighting of password fields to draw attention (left) if HTTPS is not in place;
and to reassure (right) if HTTPS is in place.

2.3 Security Dialogue Design

The structure of the dialogues is based on Wogalter et al. [31,32] who recom-
mend that such dialogues should consist of four core components: (1) Signal
word to attract attention, (2) Identification of problem, (3) Explanation of con-
sequences, and (4) Directives to avoid problem. While this structure is in line
with the guidelines, we adapted it slightly. First, we do not utilise one signal
word to attract attention (1). Here, we share the opinion of Bauer et al. [4] that
a signal word is not necessary but that a corresponding icon should suffice to
draw attention. As an icon is already used in the highlighted field, we decided not
to add another in the dialogue. Second, we provide additional information about
the problem and the consequences for those who want to learn more (under-
standability and raise awareness). We ensure, however, that the most important

Design and Field Evaluation of PassSec 109

information is available without any extra effort being expended. We decided to
formulate the identified problem (2) as headline.

Icons. Based on feedback on first mockups of our dialogues, we realised we
had to incorporate meaningful icons. Wolf et al. [33] advise the use of icons to
reduce the amount of text (minimise effort). Thus, instead of using headlines
for the different elements of our dialogues we use corresponding icons. The icons
were chosen from other areas to maximise ease of association with the type of
information being provided (understandable). We used a light bulb to denote
recommendations and the well-known “i” icon with blue background for infor-
mation. After some iterations with potential users, we settled on a spy icon to
depict the potential consequences.

Options. Users receiving dialogues have two options. One is to dismiss the
dialogue and the other is to detour to the safe route, which is only possible if
HTTPS is available. We facilitated the latter (secure) course of action by providing
a button with green font based on findings about the efficacy of colour in this
respect [10]. We allowed them to add exceptions when HTTPS was not available.

Background Colour. We considered two background colours: neutral (grey)
or yellow. The first is less annoying while the second is more likely to be noticed.
We decided to go with the grey background since the dialogue already comes
with the password field highlighted in red. The design of a PassSec dialogue is
shown in Fig. 3.

Fig. 3. Design proposal for dialogues (Color figure online)

2.4 Dialogue Content

We conducted a feasibility study in order to test the viability of different terms
for different aspects as well as different phrases for different parts of the inter-
vention to maximise understandability and effectiveness. We studied in surveys:

110 M. Volkamer et al.

Term for ‘Eve’: The following terms were studied to find a common usage
term for what we understand by ‘Eve’: Unauthorised people, criminals, hack-
ers, attackers, and con men. The most promising common-usage term for ‘Eve’
turned out to be ‘unauthorised person’.

Headline. The following headlines were evaluated: ‘You are not protected here’,
‘Your password is endangered here’, ‘The connection is not encrypted’ as poten-
tial titles of the dialogue. ‘Your password is endangered here’ was promising, but
it turned out that some people thought that ‘endangered’ was the wrong term.
Therefore, we rephrased this proposal to ‘It is insecure to enter a password’.

Consequences. A number of alternative phrases were mooted to find a com-
mon usage phrase that is concrete, understandable and effective in depicting
Eve’s actual action: access, capture, reveal, publish, forward, distribute personal
data as well as use, have access to, abuse the account/data at your account. To
describe her malicious actions in the consequence ‘access your personal data’ was
the preferred option. Furthermore, during the discussion we realised the impor-
tance of mentioning the password again to explain how access is granted. The
final consequence reads: ‘Your password could fall into the hands of unauthorised
persons and could be used to access your personal data’.

Recommendation. The recommendation depends on whether HTTPS is avail-
able, or not. The dialogue text recommends switching to HTTPS whenever pos-
sible. This is the only recommended option (see Fig. 3) and the consequence
is that the web page will, in future, always be opened using HTTPS. Note, we
decided to use the term ‘Secure mode’ instead of using the term HTTPS to avoid
technical terms and maximise understandability. The actual text is: “You should
always use secure mode (https). Click on the ‘secure mode’ button and you will
be redirected to secure mode automatically in the future.”

If HTTPS is not available, the risk can be reduced by not re-using the password
entered on this web page. Consequently, the text reads: “This website does not
offer a secure option (https). If you decide to log in anyway, you should at least
use a different password for other websites.” We are aware of the fact that this
lacks substance, but being more explicit and prescriptive would result in a long
paragraph and might lead to users not reading it at all (minimise effort and
annoyance).

Options. The options provided in the dialogue depend on whether HTTPS is
available, or not. The recommended option for our context is to open the web
page via HTTPS whenever available, that is, the secure option. If HTTPS is not
available, there are two options. The first is for the user to add an exception.
This ensures that the decision is recorded and PassSec does not annoy the user
by asking him or her to re-affirm every time they access the page. The other
option is for the user to dismiss the dialogue by clicking on ‘Close’. The risk
of the first option is that an HTTPS option might be available in the future
and the exception would prevent PassSec from checking for the availability of
HTTPS. On the other hand, if the exception is not added this will lead to a
dialogue appearing every time, which is bound to lead to annoyance.

Design and Field Evaluation of PassSec 111

Amount of Visible Text. To balance succinctness and understandability, we
show the headline, the entire consequence, and the first part of the recommen-
dation (when HTTPS is available) as well as the entire recommendation (when
HTTPS is not available); with a link to more information. We ensure that the
most important information is always visible and does not require any addi-
tional action by the user as clicking on a link such as “More Information”.

2.5 Firefox Add-On

The described concepts were implemented as a Firefox Add-On called PassSec.
The dialogues are depicted in Figs. 4 and 5. PassSec acts after the browser has
judged the web page (what the browser blocks, stays blocked). In summary,
PassSec satisfies the guidelines identified in Sect. 2 as depicted in Table 2.

Fig. 4. A PassSec screenshot for when
HTTPS is not available. The expanded ver-
sion is shown.

Fig. 5. A PassSec screenshot for when
HTTPS is not available. The expanded
version is shown.

3 Field Evaluation

Testing security-related behaviour in a laboratory setting leads to unrealis-
tic and overly positive results. We thus carried out a field test to evaluate
PassSec’s noticeability, understandability and the succinctness of the dialogue
text. Acceptability was also considered in terms of the System Usability Scale2

(SUS) and feedback questions as this would be a necessary pre-condition for
PassSec’s potential success in the future. One cannot test security-related behav-
iour reliably in a laboratory setting since you get unrealistic and overly positive
results.
2 http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

(last access: June 23, 2015).

http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

112 M. Volkamer et al.

Table 2. Mapping guidelines to PassSec Add-On design.

guideline how achieved

noticeability locate next to password field

draw attention & reassure highlight field and add icon

not overstate redirect not enforced

respects user autonomy user decides whether to redirect or not

minimise annoyance appear only when password field focused

explicit dialogue design

offer alternatives ‘Secure mode’

understandability feasibility testing

be succinct ‘[more]’ links

minimise effort remember whitelist decisions

3.1 Study Design

Participants were told that the study was part of our research into Internet-
related warnings but we did not specify the types of risky situations we were
interested in. The field study comprised three phases. Participants used a deacti-
vated Add-On to record baseline performance. After three to four weeks, partici-
pants installed a logging PassSec. A link to a web page detailing the functionality
of PassSec, including information about the logging, was provided. Two weeks
later participants uninstalled PassSec and filled out an online survey. The online
survey elicited demographics, posed SUS usability-related questions [8] and ques-
tions relating to PassSec acceptability and the choices they made during their
usage of PassSec.

3.2 Study Prototype

The Pre-Study Add-On logged the following information together with time-
stamps whenever users focused on a password field: (1) Hash of the domain (sub
and top level domain) of the visited website, (2) Whether this was done via
HTTPS, (3) Whether users submitted their password via HTTP and (4) Whether
HTTPS was available (if not used by default). The PassSec Add-On additionally
logged whether and which of the buttons in the dialogue were pressed, whether
participants clicked on the ‘more information’ link, whether they submitted their
passwords via HTTP or HTTPS. The hashed domains were destroyed once they were
tallied to support analysis to preserve the privacy of our participants.

3.3 Recruitment, Reimbursement, and Ethics

Flyers were distributed across town, emailed to mailing lists, posted on web pages
and to social networks. Those we reached were asked to advertise the study to

Design and Field Evaluation of PassSec 113

get more participants, using a snowball approach. We did not pay participants
but they could win one of two iPad minis if they participated in all three phases.
Guidelines on ethical issues regarding research involving humans are provided by
an ethics commission at the host University. The relevant requirements for this
research relating to respondent consent and data privacy were satisfied. Logged
data, as well as survey data, was not linked to individuals and only used for
the purposes of this research. Visited domain details were hashed. Participants
could withdraw at any time and request that their stored logs be deleted.

4 Results

In total, 51 participants installed the Pre-Add-On and 37 installed the PassSec
Add-On. The final online survey was completed by 31 participants (sixteen
female and fifteen male), whose data informed our analysis. The average age
was 31, ranging from 19 to 73 with a standard deviation of 10.64. Out of the
31 participants, 14 people had something to do with IT (e.g. postgraduate or
undergraduate degree). The free-text responses were independently coded by two
of the authors using an inductive coding approach. Both reviewed the answers
and identified categories from participants’ responses. These were discussed and
iteratively developed.

4.1 Noticeability

There are two ways of testing noticeability. If one tests something in the lab you
can use eye-tracking equipment to see if people look at the part of the screen
where the dialogue appears, or you can ask people if they saw it. With a field
evaluation you cannot do this, so you have to use an indirect measure to detect
noticeability. In our case we tested whether people carried out fewer insecure
actions with the PassSec dialogues appearing. If we see a reduction in insecure
actions, one can assume that the dialogue must have been noticed, and affected
behaviour. We studied the impact of PassSec on participants’ behaviour. For
the purposes of this discussion we will use the following terms: for access via
HTTP we will use the term insecure and for access via HTTPS we will use the term
secure. Table 3 presents participants (P), attempting (A) to login to websites on
different domains (D) in phase-1 (Pre-Add-On) and phase-2 (PassSec). Figure 6
provides an overview of participants’ behaviour with PassSec (based on the logs
and survey responses).

Insecure Logins (HTTPS Available:): In total there were 476 insecure login
attempts executed by 19 participants on 19 different domains. With PassSec
there were 30 insecure login attempts by nine participants on 15 different
domains. Seven of these attempts happened after the participant had previously
switched to ‘secure mode’ to log in. This might have happened if participants
used PassSec on different devices. Seven of the nine participants subsequently
switched to secure mode. One participant only logged in once insecurely (he/she
did not return to the website thereafter). Another logged in five times on the

114 M. Volkamer et al.

Table 3. Number of insecure login attempts with and without PassSec.

HTTP Login

Attempts

By Participants At Domains

HTTPS Available 476 19 19

HTTPS Available (PassSec) 30 9 15

HTTPS Unavailable 105 7 9

HTTPS Unavailable (PassSec) 87 19 24

same insecure website. For the evaluation, we considered for each participant
(who – at least once – logged in insecurely) the difference between insecure login
attempts without and with PassSec. We first used the Kolmogorov-Smirnov test
to determine whether these differences were normally distributed. This hypothe-
ses had to be rejected (p = 0.011, p < 0.001). Therefore we applied a one-tailed
Wilcoxon signed-rank test to determine statistical significance. These differences
differ from zero in a highly significant manner (p < 0.001). Thus PassSec was
successful.

Switch to HTTPS: 17 participants switched to secure mode a total of 43 times.
Ten did so whenever the option was offered. In the online survey participants
were asked why they did not switch to the ‘Secure Mode’ (if applicable). Five
of the seven participants who failed to switch stated that they always switched
to the ‘secure mode’ before they logged in and two stated that they switched to
secure version of the website themselves.

Insecure Logins (HTTPS Unavailable): There were 105 insecure login
attempts on nine different domains without PassSec. Seven participants did this
at least once. There were 87 login attempts on 24 domains with PassSec. Fifteen
participants did this at least once.

Exceptions Added: Ten exceptions were added by five participants. Partici-
pants were asked to share their reasons for adding exceptions. One participant
cited the irrelevance of the dialogue for the specific website. Another said that
he/she was annoyed by the dialogue. Three said they had no alternative because
they wanted to log into their account so abandonment was not an option. Some
entries in the logfiles showed that dialogues were ignored whereas the expected
log entry detailing the dialogue was missing. We tried to reproduce this excep-
tion and noticed that we had failed to anticipate the fact that some people allow
the browser to store their passwords. In this case the browser populates the cre-
dentials automatically and the dialogue would not appear since it is triggered
only when the password is focused.

Background Colour: The survey contained a screenshot of the dialogue, as
shown in Fig. 4 and one with the same content but with a yellow background. We
asked participants to rate their appeal and ability to grab attention and asked
which one they would recommend. In terms of appeal and recommendation,

Design and Field Evaluation of PassSec 115

Fig. 6. Impact of PassSec on participants behaviour when faced with either of the
messages (P=Participants, D=Domains, A=Attempts/ Number of Actions).

both performed equally. With respect to grabbing attention, the yellow one was
much preferred. We tested the difference in grabbing attention with a two-tailed
Wilcoxon signed-rank test and it reached significance with p = 0.028.

4.2 Understandability and Succinctness

Participants were asked whether the message texts were easy to understand.
On a scale from 1 (not at all) to 5 (very understandable), the median of the
answers was 4. For the boxplot see Fig. 7. Participants were also asked whether
they were aware of the PassSec recommendation to consider changing their other
passwords One was indeed aware of the message text but 23 were not and two
were unsure. We also asked whether they changed their password based on the
recommendation. Seven answered ‘no’ and 19 argued that there was no recom-
mendation.

Confusion regarding the ‘Close’ button was identified from the free text
answers on feedback. Some participants seemed unsure of the consequences of
clicking on this button. It was sometimes interpreted as “leave this web page”.
Participants were asked whether the dialogues had the right amount of text. On
a scale from 1 (totally agree) to 5 (totally disagree), the median of the answers
is 2. For the boxplot see Fig. 7. The survey also contained a screenshot of a
shorter message text version (only headline and buttons and a link to get more
information) and a long version (as shown in Fig. 4). Participants were asked
whether the long version should be displayed immediately, or not. The longer
version was preferred by the majority of participants (21 out of 31).

116 M. Volkamer et al.

Fig. 7. Result for the survey questions related to amount and understandability of the
provided text, as well as satisfaction related questions.

4.3 Acceptability

Satisfaction. PassSec received an SUS score of 81.91. A score over 80 implies a
good-to-excellent result. Besides the SUS score, we asked the participants several
questions about its usability. Responses and ratings are depicted in Fig. 7. For
most of the questions the rating was very good (median). This includes helpful-
ness in detecting unsafe contexts, appreciating reassurance, not disturbing, not
irritating, and not annoying.

Intention to Use PassSec in Future. 18 participants wanted to continue to
use PassSec after the study; and ten were undecided. Three did not plan to use
it in future (all male). Examples of positive comments were: ‘easy to notice’,
‘increased attention that passwords are also requested on HTTP websites’, ‘feeling
more secure’, ‘does not disturb me but helpful’, and ‘easy to switch to HTTPS’.
Examples of negative comments: ‘too few technical details’ ‘Firefox was only
used to participate in the study’, ‘design should be improved first’, ‘other Add-
Ons installed such as https-everywhere’, ‘slows down browser’, and ‘not enough
protection’. We categorised them as negative and positive and not according the
three groups (wants to use it, not decided, does not want to use it again) because
in all three groups we found both negative and positive arguments.

Nice to have Features. In order to collect input regarding possible future func-
tionality and modifications, we requested suggestions for improvement from the
participants. They responded: ‘cover more critical form fields; e.g. bank account

Design and Field Evaluation of PassSec 117

details’, ‘allow users to enable HTTPS everywhere’, ‘provide more information
about algorithms/criteria’ ‘improve performance’, ‘not easy enough to see whether
HTTPS is available or not’, ‘option to close does not function as expected’ (as the
dialogue is displayed every time the password field is focused) and ‘improve rec-
ommendation for insecure situation’. Furthermore, we provided a list of possible
form fields which could also trigger PassSec dialogues in future versions. Bank
account number and credit card were selected 28 times, TANs 25 times, email
addresses 16 times, postal addresses 15 times, and name 13 times.

5 Discussion

Noticeability: PassSec significantly reduced the number of insecure login
attempts. Most participants who logged in insecurely either dismissed the dia-
logue or added an exception. The dialogues must have been noticed. It also
became clear that the highlighting of the password field was insufficient indi-
cation since participants with stored passwords logged in despite the password
field being highlighted in red. Thus, in PassSec 2.0 we need to ensure messages
are also displayed in this context, to improve noticeability. There are actually
two options: (1) detect the auto-fill of the password field and then show the dia-
logue (not two-stage but still passive) or (2) detect the auto-fill of the password
field and show the dialogue when user clicks the login button. In this case the
login would not be executed when clicked. It would be enabled again once the
dialogue was displayed (two-stage but active since it interferes with the user’s
activity and demands attention). Both require evaluation in a future study. The
survey answers indicate that noticeability could be further improved by using
a yellow background colour for the text which seems to improve noticeability
without increasing annoyance or decreasing appeal.

Understandability: The overall understandability rating was good but we
identified a number of areas for improvement. The semantics and consequences
of the ‘close’ and the ‘add exception’ buttons were unclear. There was no expla-
nation in the dialogue, an unfortunate omission. ‘Close’ may have confused par-
ticipants because it reappeared every time the user focused the password field.
This may also explain why one participant became annoyed by the dialogue. We
propose renaming the ‘close’ button to ‘Ok, got it’ in PassSec 2.0, and adding a
sentence: ‘If you do not want to see this dialogue again, add an exception’. More-
over, we will ensure that the dialogue only appears once per page. Another issue
was the recommendation to ‘change’ passwords on other websites. The phrase ‘If
you decide to log into this website anyway, you should use a different password
your other websites’ was unclear. We propose to rephrase this to ‘If you decide
to log into this website anyway and you use the same password for other website
accounts, you should change them immediately.’

Succinctness: Users accepted the amount of text and most voted against show-
ing less text. PassSec 2.0 will provide an option to switch to the short version.
Participants complained that it was difficult to distinguish between websites that

118 M. Volkamer et al.

could be opened securely from websites which could not, at first glance. Initially
the only difference was the green font versus the black font on the other button.
To make the difference more obvious, PassSec 2.0 will use a green background
for the secure mode button and a red one for the exception button.

Acceptability: PassSec performed very well with respect to usability. The free
text answers revealed a number of positive comments revealing ease of use, min-
imal disturbance and low annoyance. Many will continue to use PassSec, others
wanted their comments about usability addressed before they would consider
adoption. The main areas for improvement were performance and the amount of
information displayed. The performance issues were caused by the logging as well
as by the way that PassSec was implemented: It initially loaded the HTTP page,
then checked whether the user had previously elected to be redirected, and, if so,
loaded the HTTPS page. If not, it checked for the domain on the exception list.
The performance was particularly poor with slow Internet connections. This has
been improved in PassSec 2.0 by optimising the checks and directly loading the
HTTPS page if the website is in the secure mode list. We plan to extend the pro-
vided information and to provide a link to the website in the ‘More information’
part of the dialogue.

All participants recommended extending the mechanism to cover other kinds
of data entry. PassSec 2.0 identifies banking data related fields as well as name,
address, and email address fields. While most of these issues can, and will, be
addressed, there is a trust issue that appears when trying to recruit users. People
tend to mistrust Add-Ons in general, since they do not know whether additional
information is collected. This issue can be addressed if PassSec’s functionality is
integrated into browsers.

Limitations: Participants used PassSec for different lengths of time due to
recruitment difficulties and a fixed end date. Due to the fact that we conducted
a field evaluation, we do not know whether we logged data only from the actual
participant or whether he/she shared the device with others (which six stated
they did, three on a daily basis). Participants were told that we were going to log
their actions, and this might have influenced their behaviour, perhaps biasing
them towards behaving more securely than usual.

6 Related Work

Researchers have come up with a variety of innovative mechanisms to make
users aware of the dangers to their data while using the Internet. Based on the
literature there seem to be three ways of approaching this problem: (1) Educating
web surfers, (2) passive (non-blocking) security indicators, and (3) using active
(blocking) warnings that interrupt the user’s current workflow. A prominent
educational approach is Anti-Phishing Phil by Sheng et al. [24]. Their game
was designed to help users to differentiate between secure and fake URLs in a
playful way. They were able to show that their approach was superior to existing
teaching material. As other Phishing detection mechanisms cannot provide 100 %

Design and Field Evaluation of PassSec 119

protection, it is important not to discount the benefits of education; it is an
essential first step in making users more aware of threats. To warn about insecure
communications, technology can reliably check whether HTTPS is in place or
not and then either reassure or warn, augmenting the educational approach.
Some notable approaches in the field of passive approaches are LinkExtend3 and
research such as published by Shepherd et al. [25]. LinkExtend is a Firefox Add-
On considering many different security indicators including whether HTTPS is in
place or not. However, it displays the relevant information at the top of the web
browser while other research has shown that indicators in the address bar are
unlikely to be noticed [2,12,15,34]. Their approach is unlikely to be effective.

Active warnings have been studied e.g. by Brustoloni and Villamaŕın-Salomón
[9]. They evaluated their approach in a user study with 26 participants and this
led to participants being more risk averse. The active approach is likely to annoy
people in our case as they would get a warning even though they only want to
surf on the corresponding page. Maurer et al. [18] use a mix of passive and active
warnings. A warning dialogue is displayed whenever critical data type fields are
focused and the corresponding website is not yet white listed. They call their
approach “semi-blocking” as it does not actively interrupt the user’s current
workflow but requires deliberate action before submission is possible. Their main
purpose is to make users aware that they are about to enter sensitive data and
that they should make sure it is transmitted securely and the website is not a
Phishing website. Users can elect to add the web page to a whitelist in order
to reduce warnings, or just dismiss the warning. The system aimed to reduce
warnings and only display them when really required in order to reduce both
annoyance and minimise habituation effects. Their solution was comprehensibly
tested, both in the lab and in the field. In the lab, they tested whether people
could detect Phishing web sites with the help of their warning system. In the
seven day field study they focused on how their approach was perceived by real
users. As opposed to our work, their field study did not quantitatively evaluate
whether the tool reduced insecure behaviours in the wild but rather on whether
the number of warnings decreased over time.

In summary, education is definitely worthwhile in our context but augmenting
it with warnings is likely to improve matters even further. Existing approaches
proposing passive and passive indicators have their limitations. The approach
that most closely mirrors ours is the semi-blocking approach written about by
Maurer et al. [18]. Their main focus was on masquerading websites. They have
yet to test its effectiveness in reducing insecure behaviours in the field.

7 Conclusion and Future Work

We developed a Firefox Add-On, called PassSec, to effectively support users
in detecting insecure communications. By ensuring that we satisfied a number
of guidelines identified from the literature, and by applying a human-centered
3 https://addons.mozilla.org/de/firefox/addon/linkextend-safety-kidsafe-site/

(last access: June 23, 2015).

https://addons.mozilla.org/de/firefox/addon/linkextend-safety-kidsafe-site/

120 M. Volkamer et al.

design approach (both for the content and design of its dialogue) we were able
to achieve our aim. PassSec significantly reduced the number of insecure logins.
We have identified ways to improve PassSec 2.0. We delivered dialogues using a
Firefox Add-On, but it would be preferable for this functionality to be embedded
within current browsers. The results for the first phase of the field study indicated
that passwords are at risk in many situations and it became clear that such an
Add-On could lead to more secure behaviour. While PassSec is not the first
Add-On to attempt to support users in this respect, it is, to the best of our
knowledge the first that has been evaluated in a field study which is as close
to ecological validity as is possible in a controlled field study. For future work,
we plan to distribute PassSec 2.0. Since PassSec significantly reduced insecure
logins we hope that PassSec 2.0 will improve the situation even further.

References

1. Mixed Content Blocking Enabled in Firefox: 23! (2013). https://blog.mozilla.org/
tanvi/ (last Access: June 2, 2015)

2. Akhawe, D., Felt, A.P.: Alice in warningland: A large-scale field study of browser
security warning effectiveness. In: Usenix Security. pp. 257–272, Washington DC,
14–16 August 2013

3. Ayres, T.J., Gross, M.M., Wood, C.T., Horst, D.P., Beyer, R.R., Robinson, J.N.:
What is a warning and when will it work? In: Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, vol. 33, pp. 426–430. SAGE Publications
(1989)

4. Bauer, L., Bravo-Lillo, C., Cranor, L., Fragkaki, E.: Warning design guidelines.
Technical report, Carnegie Mellon University (2013). CMU-CyLab-13-002

5. Bravo-Lillo, C., Cranor, L.F., Downs, J., Komanduri, S., Sleeper, M.: Improv-
ing computer security dialogs. In: Campos, P., Graham, N., Jorge, J., Nunes, N.,
Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part IV. LNCS, vol. 6949,
pp. 18–35. Springer, Heidelberg (2011)

6. Bravo-Lillo, C., Komanduri, S., Cranor, L.F., Reeder, R.W., Sleeper, M., Downs,
J., Schechter, S.: Your attention please: designing security-decision UIs to make
genuine risks harder to ignore. In: Proceedings of the Ninth Symposium on Usable
Privacy and Security (SOUPS 2013), pp. 6:1–6:12. ACM (2013)

7. Breznitz, S.: Cry Wolf: The Psychology of False Alarms. Psychology Press, New
York (2013)

8. Brooke, J.: SUS: a Retrospective. J. Usability Stud. 8(2), 29–40 (2013)
9. Brustoloni, J.C., Villamaŕın-Salomón, R.: Improving security decisions with poly-

morphic and audited dialogs. In: Proceedings of the 3rd symposium on Usable
privacy and security, pp. 76–85. ACM (2007)

10. Canova, G., Volkamer, M., Bergmann, C., Borza, R.: NoPhish: an anti-phishing
education app. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743, pp.
188–192. Springer, Heidelberg (2014)

11. Cranor, L.F.: A framework for reasoning about the human in the loop. In: Proceed-
ings of the 1st Conference on Usability, Psychology, and Security (UPSEC 2008),
pp. 1:1–1:15. USENIX Association (2008)

12. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 581–590. ACM
(2006)

https://blog.mozilla.org/tanvi/
https://blog.mozilla.org/tanvi/

Design and Field Evaluation of PassSec 121

13. Egelman, S., Cranor, L.F., Hong, J.: You’ve been warned: an empirical study of
the effectiveness of web browser phishing warnings. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 1065–1074. ACM (2008)

14. Kahneman, D.: Thinking Fast and Slow. Farrar Strauss, Giroux, New York (2011)
15. Lin, E., Greenberg, S., Trotter, E., Ma, D., Aycock, J.: Does domain highlighting

help people identify phishing sites? In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI 2011), pp. 2075–2084. ACM (2011)

16. Locke, E.A.: Relationship of success and expectation to affect on goal-seeking tasks.
J. Pers. Soc. Psychol. 7(2), 125–134 (1967)

17. Maurer, M.E.: Bringing effective security warnings to mobile browsing. In: 2nd
International Workshop on Security and Privacy in Spontaneous Interaction and
Mobile Phone Use (in Conjunction with Pervasive 2010), Helsinki (2010)

18. Maurer, M.E., De Luca, A., Kempe, S.: Using data type based security alert dialogs
to raise online security awareness. In: Proceedings of the Seventh Symposium on
Usable Privacy and Security, p. 2. ACM (2011)

19. Meredith, C., Edworthy, J.: Are there too many alarms in the intensive care unit?
An overview of the problems. J. Adv. Nurs. 21(1), 15–20 (1995)

20. Politis, I., Brewster, S., Pollick, F.: Speech tactons improve speech warnings for
drivers. In: Proceedings of the 6th International Conference on Automotive User
Interfaces and Interactive Vehicular Applications (AutomotiveUI 2014), pp. 4:1–
4:8. ACM, New York (2014). http://doi.acm.org/10.1145/2667317.2667318

21. Potgieter, M., Marais, C., Gerber, M.: Fostering content relevant information secu-
rity awareness through browser extensions. In: Dodge Jr., R.C., Futcher, L. (eds.)
WISE 6/7/8. IFIP AICT, vol. 406, pp. 58–67. Springer, Heidelberg (2013)

22. Ruiter, R.A., Abraham, C., Kok, G.: Scary warnings and rational precautions: a
review of the psychology of fear appeals. Psychol. Health 16(6), 613–630 (2001)

23. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security
indicators. In: IEEE Symposium on Security and Privacy (SP 2007), pp. 51–65.
IEEE (2007)

24. Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cranor, L.F., Hong, J.,
Nunge, E.: Anti-phishing Phil: the design and evaluation of a game that teaches
people not to fall for phish. In: Proceedings of the 3rd Symposium on Usable
Privacy and Security, pp. 88–99. ACM (2007)

25. Shepherd, L.A., Archibald, J., Ferguson, R.I.: Reducing risky security behaviours:
utilising affective feedback to educate users. In: International Conference on Cyber
Forensics, Glasgow, 23–24 June 2014

26. Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., Cranor, L.F.: Crying wolf: an
empirical study of ssl warning effectiveness. In: USENIX Security Symposium, pp.
399–416 (2009)

27. West, R.: The psychology of security. Commun. ACM 51(4), 34–40 (2008)
28. Wichmann, S.S.: Self-determination theory: the importance of autonomy to well-

being across cultures. J. Humanistic Couns. 50(1), 16–26 (2011)
29. Wogalter, M.S.: Communication-human information processing (C-HIP) model.

In: Wogalter, M.S. (ed.) Handbook of Warnings. Lawrence Erlbaum Associates,
Mahwah (2006)

30. Wogalter, M.S., Conzola, V.C.: Using technology to facilitate the design and deliv-
ery of warnings. Int. J. Syst. Sci. 33(6), 461–466 (2002)

31. Wogalter, M.S., Desaulniers, D.R., Brelsford, J.W.: Consumer products: how are
the hazards perceived? In: Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 31, pp. 615–619. SAGE Publications (1987)

http://doi.acm.org/10.1145/2667317.2667318

122 M. Volkamer et al.

32. Wogalter, M.S., Godfrey, S.S., Fontenelle, G.A., Desaulniers, D.R., Rothstein, P.R.,
Laughery, K.R.: Effectiveness of warnings. Hum. Factors J. Human Factors Ergon.
Soc. 29(5), 599–612 (1987)

33. Wolf, M.S., Davis, T.C., Bass, P.F., Curtis, L.M., Lindquist, L.A., Webb, J.A.,
Bocchini, M.V., Bailey, S.C., Parker, R.M.: Improving prescription drug warnings
to promote patient comprehension. Arch. Intern. Medicine 170(1), 50–56 (2010)

34. Wu, M., Miller, R.C., Garfinkel, S.L.: Do security toolbars actually prevent phish-
ing attacks? In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems. pp. 601–610. ACM, Montreal, 22–27 April 2006

Trusted Systems and Services

Trustworthy Memory Isolation
of Linux on Embedded Devices

Hamed Nemati1, Mads Dam1, Roberto Guanciale1(B), Viktor Do2,
and Arash Vahidi2

1 KTH Royal Institute of Technology, Stockholm, Sweden
{hnnemati,mfd,robertog}@kth.se
2 SICS Swedish ICT, Lund, Sweden

{viktordo,arash}@sics.se

Abstract. The isolation of security critical components from an
untrusted OS allows to both protect applications and to harden the OS
itself, for instance by run-time monitoring. Virtualization of the memory
subsystem is a key component to provide such isolation. We present the
design, implementation and verification of a virtualization platform for
the ARMv7-A processor family. Our design is based on direct paging,
an MMU virtualization mechanism previously introduced by Xen for the
x86 architecture, and used later with minor variants by the Secure Vir-
tual Architecture, SVA. We show that the direct paging mechanism can
be implemented using a compact design, suitable for formal verification
down to a low level of abstraction, without penalizing system perfor-
mance. The verification is performed using the HOL4 theorem prover
and uses a detailed model of the ARMv7-A ISA, including the MMU. We
prove memory isolation of the hosted components along with information
flow security for an abstract top level model of the virtualization mech-
anism. The abstract model is refined down to a HOL4 transition system
closely resembling a C implementation. The virtualization mechanism is
demonstrated on real hardware via a hypervisor capable of hosting Linux
as an untrusted guest.

1 Introduction

A basic security requirement for systems that allow software to execute at differ-
ent levels of security is memory isolation: The ability to store secret information
within a designated part of memory and prevent the contents of this memory to
be affected by, or leaked to, parts of the system that are not authorized to access
it. Without the usage of special hardware, trustworthy memory isolation relies
on the correct implementation of the OS kernel. However, given the size and
complexity of modern OSs, the vision of comprehensive and formal commodity
OS verification is as distant as ever.

An alternative to verifying the entire OS is to delegate critical functionality to
special low-level execution platforms such as hypervisors, separation kernels, or
microkernels. Such an approach has some significant advantages. First, the size

c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 125–142, 2015.
DOI: 10.1007/978-3-319-22846-4 8

126 H. Nemati et al.

and complexity of the execution platform can be made much smaller, potentially
opening up for rigorous verification. The literature has many recent examples
of this, in seL4 [16], Microsoft’s Hyper-V project [17], Green Hills’ CC certified
INTEGRITY-178B separation kernel [22], and the PROSPER separation kernel
[10]. Second, the platform can be opened up to public scrutiny and certification,
independent of application stacks. Virtualization-like mechanisms can also be
used to support various forms of application hardening against untrusted OSs.
Examples of this include KCoFi [7] based on the Secure Virtual Architecture [9],
Overshadow [5], Inktag [14], and Virtual Ghost [8]. All these cases rely crucially
on memory isolation to provide the required security guarantees, typically by
virtualizing the memory management unit (MMU) hardware. MMU virtualiza-
tion, however, can be exceedingly tricky to get right, motivating the use of formal
methods for its verification.

In this paper we present an MMU virtualization API for the ARMv7 family
of processors (which is one of the widely adopted architectures for embedded
devices) that has been formally verified down to a low level of abstraction. The
API uses direct paging, a virtualization mechanism introduced by Xen [4] and
used later with some variations by the Secure Virtual Architecture [9]. In direct
paging, page tables are kept in guest memory and allowed to be read and directly
manipulated by the untrusted guest OS (when they are not in active use by
the MMU). Xen demonstrated that this approach has better performance than
other software virtualization approaches (e.g. shadow page tables) on the x86
architecture [4]. Moreover, since direct paging does not require shadow data
structures, this approach has small memory overhead. The engineering challenge
we posed ourselves was to design a minimal API that is (i) sufficiently expressive
to host a paravirtualized Linux, (ii) introduces an acceptable overhead and (iii)
whose implementation is sufficiently small to be subject to pervasive verification
for commodity CPU architecture such as ARMv7.

The security objective is to allow a malicious guest system to operate freely,
invoking the hypervisor at will, without being able to access memory or processor
resources that the guest has not received static permission for. The verification
is performed using a formal model of the ARMv7 architecture [11], implemented
in the HOL4 interactive theorem prover.

The verification is built on top a model, the top level specification (TLS),
which describes the ideal behavior of hypervisor’s handlers implementing the
virtualization mechanism, alternating with user mode execution under control
of a possibly malicious guest. Parts of the security state is stored in a model state,
by construction outside the reach of the guest. However, page tables are stored
in memory. This is a key complication forced by the direct paging approach, and
the solution to this problem is a key contribution of the paper. The upshot is
that it is no longer self-evident that the desired memory isolation properties, non-
exfiltration and non-infiltration in the terminology of [13], hold for the TLS, and
an important part of the verification is therefore to formally validate this fact.

To keep the TLS as simple and abstract as possible, the TLS addresses page
tables directly using their physical addresses. A real implementation cannot do
this, but must appeal to virtual addresses instead, in addition to managing

Trustworthy Memory Isolation of Linux 127

its internal data structures. To this end we introduce an implementation model,
essentially a state transition model operating on the real ARMv7-A state through
transitions that directly reflect handler execution at the binary level. We exhibit
a refinement from the TLS to the implementation model, prove its correctness,
and show, as a corollary, that the memory isolation properties proved at top
level transfer to the implementation level.

The verification highlighted three classes of bugs in the initial design of the
virtualization mechanism:

(i) Arithmetic overflows, bit field and offset mismatches, and signed operators
where the unsigned ones were needed.

(ii) Missing checks of self referencing page tables.
(iii) Approval of guest requests that cause unpredictable behaviors of the

ARMv7 MMU.

Moreover, the verification of the implementation model identified additional bugs
exploitable by requesting the validation of physical blocks residing outside the
guest memory. This last class of bugs was identified because the implementation
model takes into account the virtual memory mapping used by the handlers.

We report on a port of Linux kernel 2.6.34 and demonstrate the prototype
implementation of a hypervisor for which the core component is the verified
MMU virtualization API. Experiments demonstrate that the hypervisor can run
with reasonable performance on real hardware (Beagleboard-xM based on the
Cortex-A8 CPU).

2 Related Work

The ability to isolate security critical components from an untrusted OS allows
non critical parts of a system to be implemented while the critical software
remains adequately protected. This isolation can be used both to protect appli-
cations from an untrusted OS as well as to protect the OS itself from inter-
nal threats. For example, KCoFI [7] uses Secure Virtual Architecture [9] to
isolate the OS from a run-time checker. The checker instruments the OS and
monitors its activities to guarantee the control-flow integrity of the OS itself.
Related examples are application hardening frameworks such as Overshadow [5],
Inktag [14], and virtual ghost [8]. In all these cases some form of virtualization
of the MMU hardware is a critical component to provide the required isolation
guarantees.

Shadow page tables (SPT) is a common approach to MMU virtualization.
The virtualization layer maintains a shadow copy of page tables created and
maintained by the guest OS. The MMU uses only the shadow pages, which are
updated after the virtualization layer validates the OS changes. The Hyper-V
hypervisor, which uses shadow pages on x86, has been formally verified using
the semi automated VCC tool [17]. Related work [3,21] uses shadow page tables
to provide full virtualization, including virtual memory, for “baby VAMP”, a
simplified MIPS, using VCC. This work, along with later work on TLB virtual-
ization for an abstract mode of x64 [2], has been verified using Wolfgang Paul’s

128 H. Nemati et al.

VCC-based simulation framework. Also, the OKL4-microvisor uses shadow pag-
ing to virtualize the memory subsystem [12]. However, this hypervisor has not
been verified.

Some modern CPUs provide native hardware support for virtualization. The
ARM Virtualization Extensions augment the CPU with a complete new execu-
tion mode and provide a two stage address translation. Using this mechanism,
the MMU virtualization does not need to be implemented in software. Even
though such hardware support can significantly reduce the complexity of the
virtualization layer [24], it does not make software based solutions obsolete. For
example, the recent Cortex-A5 (used in feature-phones) and the legacy ARM11
cores (used in the 2014 “New Nintendo 3DS”) do not make use of such extensions.
Today, the IoT and wearable computing are dominated by microcontrollers (e.g.
Cortex-M). As the recent Intel Quark demonstrates, the necessity of executing
legacy stacks (e.g. Linux) is pushing towards equipping these microcontrollers
with a MMU. Quark and the upcoming ARMv8-R both support an MMU and
lack two stage page-tables. Furthermore, solutions based on FPGAs and soft-
cores (e.g. LEON) can benefit from software based virtualization since the gates
that are not used for virtualization extensions can be used to implement the
application specific logic (e.g. digital signal processing, software-defined radio,
cryptography).

Our Contributions. We present the first trustworthy virtualization mecha-
nism based on “direct paging”, an approach inspired by the paravirtualization
mechanism of Xen [4]. The design of the platform is sufficiently slim to enable
its formal verification without penalizing the system performance. The verifica-
tion is done down to a detailed model of the architecture, including a detailed
model of the ARMv7 MMU. This enable our threat model to consist of an arbi-
trary guest that can execute any ARMv7 instruction in user mode. We prove
complete mediation of the MMU configurations, memory isolation of the hosted
components, and information flow correctness. We demonstrate the platform via
a prototype hypervisor that is capable of hosting a Linux system while provably
isolating it from other services.

3 The Memory Virtualization API

The memory virtualization API supports two types of clients: (i) an untrusted
commodity OS guest (Linux) running non-critical software (e.g. GUI, browser,
server, games), and (ii) a set of trusted services such as controllers that drive
physical actuators, run-time monitors, sensor drivers, or cryptographic services.

To support this use case the memory virtualization subsystem needs to pro-
vide two main functionalities:

– Isolation of memory resources used by the trusted components.
– Virtualization of the memory subsystem to enable the untrusted OS to dynam-

ically manage its own memory hierarchy, and to enforce access restrictions.

Trustworthy Memory Isolation of Linux 129

Fig. 1. The virtualization API

The physical memory region allocated to each type of client is statically defined.
Inside its own region the guest OS is free to manage its own memory, and the
virtualization API is designed to provide the same guarantees to the guest OS
as when it is running in native mode.

3.1 Memory Management

The ARMv7 MMU uses a two level translation scheme. The first level (L1) is a
4096 entry table that divides up to 4GB of memory into 1MB sections. These
sections can either point to an equally large region of physical memory or to a
level 2 (L2) page table with 256 entries that maps the 1MB section into 4KB
physical pages.

We use direct paging [4] to virtualize the memory subsystem. Direct paging
allows the guest to allocate the page tables inside its own memory and to directly
manipulate them while the tables are not in active use by the MMU. Once the
page tables are activated, the hypervisor must guarantee that further updates
are possible only via the virtualization API to modify, allocate and free the page
tables.

Physical memory is fragmented into blocks of 4 KB. Since L1 and L2 page
tables have size 16 KB and 1 KB respectively, an L1 page table is stored in four
contiguous physical blocks and a physical block can contain four L2 page tables.
We assign a type to each physical block, that can be:

– data: the block can be written by the guest.
– L1 : contains part of an L1 and is not writable in user mode.
– L2 : contains four L2 and is not writable in user mode.

The virtualization API shown in Fig. 1 is very similar to the MMU interface
of the Secure Virtual Architecture [9] and consists of 9 hypercalls that selects,
creates, frees, maps, or unmaps memory blocks or page tables.

3.2 Enforcing the Page Type Constraints

Each API call needs to validate the page type, guaranteeing that page tables are
write-protected. This is illustrated in Fig. 2. The table in the center represents the
physical memory and stores the virtualization data structures for each physical

130 H. Nemati et al.

Fig. 2. Direct-paging mechanism

block; the page type (pt), a flag informing if the block is allocated to the guest
partition (gm), and a reference counter (rc).

The four top most blocks contain an L1 page table, whose 4096 entries are
depicted by the table L1-A. The top entry of the page table is a section descriptor
(T = S) that grants write permission to the guest (AP = (0, w)). This entry
points (Add) to the second physical section, which consists of 256 physical blocks.
Three other section descriptors of the L1 are depicted in the table: the first one
grants write accesses to the guest, the second one gives read-only permission to
the guest (0, r), the third descriptor prevents any guest access and enables write
permission for the privileged mode (1, w). The last two entries of the L1 are
PT-descriptors. These two entries point to two different L2 page tables that are
stored in the same physical block.

The API calls manipulating an L1 enforce the following policy; Any section
descriptor that allows the guest to access the memory must point to a section
for which every physical block resides in the guest memory space. Moreover, if
a descriptor enables guest to write then each block must be typed data. Finally,
all PT-descriptors must point to physical blocks of type L2.

The Figure depicts two additional L1 page tables; L1-B and L1-C. The
type of a physical block containing L1-B can be transformed to L1 by invoking
L1create. On the other hand, a block containing L1-C is rejected by L1create
since the block contains three entries that violate the policy. In fact,

(i) the first descriptor grants guest write permission over a section which has
at least one non data block, in this case L2,

Trustworthy Memory Isolation of Linux 131

(ii) the second section descriptor allows the guest to access a section of the
physical memory in which there exists a block that is outside the guest
memory, and

(iii) the third entry is a PT-descriptor, but points to a physical block that is not
typed L2.

The table L2-A depicts the content of a physical block typed L2 and that con-
tains four L2 page tables, each consisting of 256 entries. Each hypercall that
manipulates an L2 enforces the following policy: if any entry of the four L2 page
tables grants access permission to the guest then the pointed block must be in
the guest memory. If the entry also enables guest write access then the pointed
block must be typed data. For example a block containing L2-B is rejected by
L2create, since the block contains at least two entries that violate the policy.

A naive run-time check of the page-type policy is not efficient, since it requires
to re-validate the L1 page table whenever the switch hypercall is invoked. To
efficiently enforce that only blocks typed data can be written by the guest the
hypervisor maintains a reference counter, which tracks for each block the sum
of (i) the number of descriptors providing writable access in user mode to the
block, and (ii) the number of PT-descriptors that point to the block.

In Fig. 2 we use solid arrows to represent the references that are counted and
dashed arrows to represent the other references. The intuition is that a hypercall
can change the type of a physical block (e.g. allocate or free a page table) only
if the corresponding reference counter is zero.

3.3 Hypervisor Guest Page Table Access

The hypervisor APIs must be able to read and write guest page tables in order
to check the soundness of the requests and to apply the corresponding changes.
The naive solution requires handlers to change the current page table, enabling
a master page table whenever the guest memory must be accessed and then
re-enabling the original page table before the guest is restored. This solution is
expensive as it requires to flush TLB and caches. A solution tailored for Unixes
can rely on the injective mapping built by the guest, which can be used to
access the guest kernel memory. However, in our setting the hosted guest is
not trusted, thus this solution can not guarantee that the injective mapping is
obeyed by the guest. Instead, our design reserves a subset of the virtual address
space for hypervisor use. The hypervisor master page table is built so that this
address space is always mapped according to an injective translation (1-to-1)
allowing to easily compute the virtual address for each physical address in the
guest memory, similar to the direct memory maps supported by FreeBSD and
Linux.

3.4 Memory Model and Cache Effects

The presence of data caches and memory aliasing raise further issues. In ARMv7
CPUs such as the Cortex-A8 the MMU consults the data caches on TLB misses.

132 H. Nemati et al.

When a virtual mapping is changed, the hypervisor must in general invalidate the
corresponding TLB entries to guarantee that the MMU uses the updated page
descriptors. However, the ARM architecture reference manual [1] predicates only
weak cache coherence properties, even for single-core processors. For example, in
Cortex-A8 sequential consistency is not guaranteed if the same physical address
is accessed with mappings having different cacheability attributes. Thus, without
knowledge of the specific processor platform, care must be taken. To ensure that
the model remains valid we are forced to apply a conservative cache eviction
strategy. For this reason, the hypervisor must flush the cache before accessing
data stored by the guest.

More aggressive approaches (e.g. evicting only the necessary physical
addresses, or avoiding flushing altogether) may be adopted for some proces-
sor implementations, but require a more fine-grained modeling including caches
for their justification.

4 Verification Approach

The TLS models user mode execution of an arbitrary guest system on top of
an ARMv7 CPU with MMU support, alternating with abstract handler events.
These events model invocations of the hypervisor handlers as atomic transfor-
mations Ha operating on an abstract machine state. Abstract states are concrete
ARMv7 states extended by auxiliary (model) data such as page types or reference
counters that reflect the internal hypervisor state. Handler events represent the
execution of ARMv7 instructions at privileged level, in response to exceptions
or interrupts. Modeling handler effects as atomic state transformations is possi-
ble, since the hypervisor is non-preemptive, i.e. nested exceptions/interrupts are
ruled out by the implementation.

4.1 TLS Consistency Properties

Since guest systems can directly manipulate inactive page tables, the TLS needs
to explicitly store page tables in memory. We must show first that this does not
introduce unwanted interference between guest and hypervisor state:

1. The hypervisor must act as a security monitor for the MMU settings. If
complete mediation of the MMU settings is violated, then an attacker can
bypass the access policies and compromise the security of the entire system.

2. Executions of an arbitrary guest can not affect the “trusted world”, i.e. the
parts of the state the guest is not supposed to be able to write, such as
non-guest memory, inaccessible processor registers and status flags, and the
abstract state. We view this as an integrity property, similar to the non-
exfiltration property of [13].

3. Dually, absence of information flow from the “trusted world” to the guest,
confidentiality, similar to non-infiltration, must be guaranteed.

Trustworthy Memory Isolation of Linux 133

These properties, as in [13], are qualitatively different: The integrity property is
first-order, and concerns the inability of the guest to directly write some other
state variables. Since it is under guest control when and how to invoke the
virtualization API, there are plenty of indirect communication channels con-
necting guests to the hypervisor. For instance, a guest decision to allocate or
deallocate an L1 block affects large parts of the hypervisor state, without ever
directly writing to any internal hypervisor state variable. Enforcing this is in
a sense the very purpose of the hypervisor. On the other hand, the hypervisor
should be unable to affect guest state even indirectly: The only desired effects
of hypervisor actions should be to allocate/deallocate, map, remap, and unmap
virtual memory resources, leaving any observation a guest may make unaffected.
This is essentially a second-order information flow property, needed to break
guest-to-guest (or guest-to-service) information channels in much the same way
as intransitive noninterference is used in [19] to break guest-to-guest channels
passing through the scheduler in seL4.

4.2 Refinement

Accordingly, the first verification task is to establish the model consistency
properties 1, 2 and 3 above. Extending this to an actual implementation, how-
ever, requires more work, because of the TLS abstract state, and since the TLS
handlers access memory using the physical addresses. The virtualization code
need to execute under the same address translation as the guest, in order to
minimize the number of context switches. To show implementation soundness
we exhibit a refinement property relating TLS states to implementation states.
We demonstrate that the refinement relation is preserved by all atomic hyper-
visor operations; reads and updates of the page tables, reads and updates of
the hypervisor data structures. Moreover, we prove that the refinement relation
directly transfers both the consistency properties and the information flow prop-
erties of the TLS to the implementation level, completing the overall memory
isolation proof.

4.3 Processor Model

The verification uses the HOL4 model of ARMv7-A developed at Cambridge [11].
This model has been extensively tested and is phrased in a manner that retains a
high resemblance to the pseudocode used by ARM in the architecture reference
manual [1]. The Cambridge model has been extended by ourselves to include
MMU functionality. The resulting model gives a highly detailed account of the
ISA level instruction semantics at the different privilege levels, including relevant
MMU coprocessor effects. It must be noted that the Cambridge ARM model
assumes linearizable memory, and so can be used out of the box only for processor
and hypervisor implementations that satisfy this property, for instance through
adequate cache flushing as discussed in Sect. 3.

We outline the HOL4 ARMv7 model in sufficient detail to make the formal
results presented later understandable. An ARMv7 machine state is a record σ =
〈regs, psrs, coregs ,mem〉 ∈ Σ, where regs, psrs, mem and coregs, respectively,

134 H. Nemati et al.

represent the registers, program status registers, memory, and coprocessors. The
function mode(σ) returns the current privilege execution mode in the state σ,
which can be either PL0 (non-privileged or user mode, used by the guest) or
PL1 (privileged mode, used by the hypervisor). The memory is the function
mem ∈ 232 → 28. The coprocessor registers coregs control the MMU.

System behavior is modeled by the state transition relation →l∈{PL0,PL1}⊆
Σ ×Σ, where a transition is performed by the execution of an ARM instruction.
Non-privileged transitions (σ →PL0 σ′) start from and end in states that are

in non-privileged execution mode (i.e. mode(σ) = mode(σ′) = PL0). All the
other transitions (σ →PL1 σ′) involve at least one state in privileged level. The
raising of an exception is modeled by a transition that enables the level PL1. An
exception can be raised because: (i) a software interrupt (SWI) is executed, (ii)
the current instruction is undefined, or (iii) a memory access is attempted that
is disallowed by the MMU. Whenever an exception occurs, the CPU disables the
interrupts and jumps to a predefined address in the vector table to transfer the
control to the corresponding exception handler.

MMU behavior is modeled by the function mmu(σ, PL, va, req), which takes
a state σ, a privilege level, a virtual address va and an access request req ∈
{rd, wt, ex} (representing read, write and execute accesses) and yields pa ∈ 232∪
{⊥}, where pa is the translated physical address or an access denied. The state
transition relation queries the MMU whenever a virtual address is accessed, and
raises an exception if the requested access mode is not allowed.

5 Formalizing the Proof Goals

A TLS state is a tuple 〈σ, h〉, consisting of an ARMv7 state σ and an abstract
hypervisor state h of the form 〈pgtype, pgrefs〉 where pgtype indicates memory
block types and pgrefs maintains reference counters. Specifically, pgtype ∈ 220 →
{D,L1, L2} tracks the type of each 4kb physical block; a block can either be (D)
memory writable from the guest or data page, (L1) contain a L1 page table or
(L2) contain a L2 page table. The map pgrefs ∈ 220 → 230 tracks the references
to each physical block, as described in Sect. 3.

The TLS interleaves standard non-privileged transitions with abstract han-
dler invocations. Formally, the TLS transition relation 〈σ, h〉 →i∈{0,1} 〈σ′, h′〉 is
defined as follows:

– If σ →PL0 σ′ then 〈σ, h〉 →0 〈σ′, h〉; instructions executed in non-privileged
mode that do not raise exceptions behave equivalently to the standard ARMv7
semantics and do not affect the abstract hypervisor state.

– If σ →PL1 σ′ and mode(σ) = PL0 then 〈σ, h〉 →1 Ha(〈σ′, h〉); whenever
an exception is raised, the hypervisor is executed, modeled by the abstract
handler Ha.

In our setup the trusted services and the untrusted guest are both executed
in non-priviledged mode. To distinguish between these two partitions, we use

Trustworthy Memory Isolation of Linux 135

ARM domains. In the ARM architecture domains are the primarily access con-
trol mechanism used by the MMU. This mechanism is orthogonal to the CPU
execution modes. The architecture provides sixteen domains, each of them can
be activated independently. We reserve the domains 2-15 for the secure services.
In the following we use the predicate S(σ) to identify if the active partition is
the one hosting the secure services: the predicate holds if at least one of the
reserved domain is enabled.

5.1 TLS Consistency

We introduce a system invariant I(〈σ, h〉) used to constrain the set of consistent
initial states of the TLS. The invariant is needed, for instance, to ensure that
guests have write access to page tables only when they are inactive. We use QI

to represent the set of all possible TLS states that satisfy the invariant. We thus
need to show:

Theorem 1. Let 〈σ, h〉 ∈ QI and i ∈ {0, 1}. If 〈σ, h〉 →i 〈σ′, h′〉 then I(〈σ′, h′〉).
We say that two states are MMU-equivalent if for any virtual address va the

MMU yields the same translation and the same access permissions. Formally,
σ ≡mmu σ′ if and only if

mmu(σ, PL, va, req) = mmu(σ′, PL, va, req)

for any va, PL, req. Complete mediation (MMU-integrity) is demonstrated by
showing that neither the guest nor the secure services are able to directly change
the content of the page tables and affect the address translation mechanism.

Theorem 2. Let 〈σ, h〉 ∈ QI . If 〈σ, h〉 →0 〈σ′, h′〉 then σ ≡mmu σ′.

We use the approach of [13] to analyze the hypervisor data separation proper-
ties. The observations of the guest in a state 〈σ, h〉 is represented by the structure
Og(〈σ, h〉) = 〈uregs, cpsr ,memg, coregs〉 of user registers uregs, control register
cpsr , guest memory memg and coprocessor registers coregs. The register cpsr
and the coprocessor registers are visible to the guest since they directly affect
guest behavior, and do not contain any information the guest should not be
allowed to see. Evidently, however, all writes to the coprocessor registers must
be mediated by the hypervisor.

The remaining part of the state (i.e. the content of the memory locations that
are not part of the guest memory, special registers) and, again, the coprocessor
registers constitute the secure observations Os(〈σ, h〉) of the state, which guest
transitions are not supposed to affect.

The following theorem demonstrates that the context switch between the
untrusted guest and the trusted services is not possible without the mediation of
the hypervisor. The proof is straightforward, since S only depends on coprocessor
registers that are not modifiable in nonprivileged mode.

Theorem 3. Let 〈σ, h〉 ∈ QI . If 〈σ, h〉 →0 〈σ′, h′〉 then S(σ) = S(σ′).

136 H. Nemati et al.

The non-exfiltration property guarantees that a transition executed by the
guest does not modify the secure resources:

Theorem 4. Let 〈σ, h〉 ∈ QI . If 〈σ, h〉 →0 〈σ′, h′〉 and ¬S(σ) then Os(〈σ, h〉) =
Os(〈σ′, h′〉).

The non-infiltration property is a non-interference property guaranteeing
that guest instructions and hypercalls executed on behalf of the guest do not
depend on any information stored in resources not accessible by the guest.

Theorem 5. Let 〈σ1, h1〉, 〈σ2, h2〉 ∈ QI , i ∈ {0, 1}, and assume that
Og(〈σ1, h1〉) = Og(〈σ2, h2〉), ¬S(σ1) and ¬S(σ2). If 〈σ1, h1〉 →i 〈σ′

1, h
′
1〉 and

〈σ2, h2〉 →i 〈σ′
2, h

′
2〉 then Og(〈σ′

1, h
′
1〉) = Og(〈σ′

2, h
′
2〉).

5.2 The Implementation Model

A critical problem of verifying low level platforms is that intermediate states
of the MMU configuration can break the semantics of the high level language
(e.g. C). This is the reason we introduced the implementation model, that is
sufficiently detailed to expose misbehavior of the hypervisor accesses to the
observable part of the memory (i.e. page tables, guest memory and internal
data structure). The implementation interleaves standard non-privileged transi-
tions and hypervisor functionalities. In contrast to the TLS, these functionalities
now store their internal data in system memory, accessed by means of virtual
addresses. In practice, in the implementation model the hypervisor functional-
ities are expressed as executable specifications that are, however, very to close
the actions executed by an actual machine at instruction semantics level. We
demonstrate these differences by comparing two fragments of the TLS and the
implementation specifications.

The TLS models the update of a guest page table descriptor as σ′.mem =
write32(σ.mem, pa, desc), where pa is the physical address of the entry, desc is a
word representing the new descriptor and write32 is a function that yields a new
memory having four consecutive bytes updated. At the implementation level the
same operation is represented as

if ¬ mmu(σ, PL1, Gpa2va(pa)).wt
then ⊥
else write32(σ.mem,mmu(σ,PL1,Gpa2va(pa)).pa,desc)

where Gpa2va is the function used by the hypervisor to compute the virtual address
of a physical address that resides in guest memory. This function is statically
defined and is the inverse of the injective translation established by the hypervisor
master page table. The implementation can fail to match the TLS for two reasons:
(i) the current page table can prevent the hypervisor from accessing the computed
virtual address, and then the implementation terminates in a failing state (denoted
by ⊥), (ii) the current address translation does not respect the expected injective
mapping, thus mmu(σ, PL1, Gpa2va(pa)).pa
= pa and the implementation writes
in an address that differs from the one updated by the TLS.

Trustworthy Memory Isolation of Linux 137

The next example shows the difference between access of the reference counter
in the TLS and at implementation level. The TLS models this operation as
h.refs(b), where b is the physical block. The implementation models the same
operation using memory offsets as follows:

if ¬ mmu(σ, PL1, tblva + 4*b).rd)
then ⊥
else read32(σ.mem,mmu(σ, PL1, tblva + 4*b).pa) & 0xCFFFFFFF

This representation is directly reflected in the hypervisor code. For each block,
the page type (two bits) and the reference counter (30 bits) are placed con-
tiguously in a word. These words form an array, whose initial virtual address is
tblva.

The concrete handlers are represented by a HOL4 function Hr from concrete
ARMv7 states to concrete ARMv7 states. The function is the executable speci-
fication of the various exception handlers including the MMU functionalities.

Then, implementation behavior is determined by the state transition relation
→i∈{0,1}⊆ Σ × (Σ ∪ {⊥}) as follows:

– If σ →PL0 σ′ then σ →0 σ′; instructions executed in non-privileged mode that
do not raise exceptions behave according to the standard ARMv7 semantics.

– If σ →PL1 σ′ and mode(σ) = PL0 then σ →1 Hr(σ′); whenever an excep-
tion is raised, the hypervisor is executed and its behavior is modeled by the
function Hr.

5.3 The Refinement

To show implementation soundness we exhibit a refinement property relating
abstract states 〈σ1, h〉 to concrete states σ2. The refinement relation R requires
that: (i) the registers and coprocessors contain the same value in both states,
(ii) the guest memory contains the same values in both states, (iii) part of the
memory of the implementation state contains a mapping of the hypervisor data
structures of the TLS state and (iv) the reserved virtual addresses are always
mapped equivalently to the master page table. Observations of the guest Og

are defined on concrete states using the hypervisor data structure mapping in
analogy with the corresponding observations on abstract states defined above.

Theorem 6. Let 〈σ1, h〉 ∈ QI and σ2 ∈ Σ such that 〈σ1, h〉 R σ2. Let i ∈ {0, 1}.
Then σ2 →i σ′

2 if and only 〈σ1, h〉 →i 〈σ′
1, h

′〉 and 〈σ′
1, h

′〉 R σ′
2.

Finally we show that the security property of the TLS and the refinement
relation directly transfer the mmu-integrity/non-exfiltration/non-infiltration to
the implementation. We use ΣI to represent the space of consistent concrete
states: States σ2 such that if 〈σ1, h〉 R σ2 then I(〈σ1, h〉).
Corollary 1. Let σ1, σ2 ∈ ΣI , i ∈ {0, 1} Og(σ1) = Og(σ2):

– if σ1 →0 σ′
1 then σ1 ≡mmu σ′

1

– if σ1 →0 σ′
1 and ¬S(σ1) then Os(σ1) = Os(σ′

1)
– if σ1 →i σ′

1, σ2 →i σ′
2, and ¬S(σ1) and ¬S(σ2) then Og(σ′

1) = Og(σ′
2)

138 H. Nemati et al.

6 Linux Support

To evaluate the real-world feasibility of our approach we examine a virtual-
ized Linux guest. The Linux kernel v2.6.34 has been modified to run on top
of the hypervisor. This task required modification of architecture-dependent
parts of the Linux kernel like (i) execution modes, (ii) low-level exception rou-
tines and (iii) page table management. High-level OS functions such as process,
resource and memory manager, file system and networking did not require any
modifications.

CPU Privilege Modes. The target CPU includes only two execution modes:
privileged and unprivileged (user). Like for other approaches based on para-
virtualization, since the hypervisor executes as privileged, then the Linux kernel
has been modified to execute as unprivileged. To separate kernel and user appli-
cations, the hypervisor manages two separate unprivileged execution contexts:
virtual user and virtual kernel modes. In x86 these virtual modes can be imple-
mented by segmentation limits. This approach is not possible for CPUs that
do not provide this feature (e.g. x86 64-bits and ARM). Instead, for kernel-user
space isolation we use ARM domains, that implement an access control regime
orthogonal to the CPU execution modes. Notice that the main security goal
here is not to guarantee this OS-internal isolation, but to maintain the separa-
tion between the virtualized components.

CPU Exceptions. CPU exceptions such as aborts and interrupts change the
processor mode to privileged. These exceptions must therefore be handled in the
hypervisor, which after validation can forward them to the unprivileged excep-
tion handlers of the Linux kernel. The hypervisor supplies the kernel exception
handlers with some privileged data needed to correctly service an on-going excep-
tion (i.e. for pre-fetch abort, the privileged fault address and fault status registers
are forwarded to the guest). The exception handlers in the Linux kernel have
thus been slightly modified to support this.

Memory Management. Within the Linux kernel, virtual memory is handled
in two layers. The first is platform independent and provides a number of high-
level functions to the rest of the kernel. The second layer provides a number
of platform dependent functions to the first layer. To allow virtualization, we
modified the second layer to perform a hypercall instead of performing privileged
access to the hardware.

7 Benchmark and Evaluation

Runtime Overhead. To analyze runtime overhead we use LMBench [18]
(of which the fork benchmarks stress the MMU virtualization) running on
Linux 2.6.341 with and without virtualization. The outcome, measured on an
1 The virtualization API is independent of the hosted OS, thus porting and running

a different Linux kernel or BSD does not affect the security properties described in
this paper.

Trustworthy Memory Isolation of Linux 139

ARMv7-A Cortex-A8 powered embedded system (BeagleBoard-xM), is pre-
sented in Table 1. Additionaly, we use the creation (tar) and compression (gzip)
of archives as macrobenchmarks. The significant virtualization overhead for the
fork benchmarks is due to a large number of simple operations (in this case,
write access to a page-table) being replaced with a large number of expensive
hypercalls. It may be possible to reduce this overhead with minimal optimization
(e.g. batching).

In Table 1 we also report the overheads measured in [15] of several existing
hypervisors for ARM. We point out that these performance numbers have been
obtained from different sources, testing different ARM cores, boards and hosted
Linux kernels. Moreover, the numbers presented here use a completely unopti-
mized version of the hypervisor that we believe can be significantly improved.

Table 1. Benchmarks

Footprint. The main difference between our proposal and the existing verified
hypervisors is the MMU virtualization mechanism. The direct paging approach
requires a table which contains at most memsize/blocksize entries, where memsize

is the total available physical memory and block size is the minimum page size
(here, 4KB). Each entry in this table uses 2 + log2 maxref bits, with the first
two bits used to record entry type and maxref being the maximum number
of references pointing to the same page. Assuming this number is bound by the
number of processes, Table 1 indicates the memory overhead introduced by direct
paging. It should be noted that on ARMv7, most operating systems including
Linux dedicate one L1 page to each process and at least three L2 pages to
map the stack, the executable code and the heap. Then the OS itself has a
minimum footprint of 16KB + 3 ∗ 1KB per process. This footprint is doubled if
the underlying hypervisor uses shadow page tables.

Implementation and Verification Effort. The hypervisor is implemented
in C (and some assembly) and consists of 4529 lines of code (LOC). Excluding
platform dependent parts, the hypervisor core is no larger than 2066 LOC. The
memory virtualization subsystem consists of 1200 LOC. To paravirtualize Linux
we changed 1025 LOC of its kernel, 950 in the ARM specific architecture folder
and 75 in init/main.c. The paravirtuation is binary compatible with existing

140 H. Nemati et al.

userland applications. For comparison, the only other hypervisor that imple-
ments direct paging is the Xen hypervisor, which consists of 100KLOC and its
design is not suitable for verification. Instead, the small code base of our hyper-
visor makes it easier to experiment with different virtualization paradigms and
enables formal verification of its correctness. The formal specification consists of
1500 LOC of HOL4 and intentionally avoids any high level construct, in order
to make the model as similar as possible to the implementation, at the price of
increasing the verification cost. The proof consists of 18700 LOC of HOL4.

The verification highlighted a number of bugs in the initial design of the
APIs: (i) arithmetic overflow when updating the reference counter, caused by not
preventing the guest to create an unbounded number of references to a physical
block, (ii) bit field and offset mismatch, (iii) missing check that a newly allocated
page table prevents the guest to overwrite the page table itself, (iv) usage of
signed shift operator where the unsigned one was necessary and (v) approval of
guest requests that cause unpredictable MMU behavior. The verification of the
implementation model identified three additional bugs exploitable by the guest
by requesting the validation of page tables outside the guest memory.

The project was conducted in three steps. The design, modeling and verifica-
tion of the APIs for memory virtualization required nine person months. Here,
the most expensive tasks have been the verification of Theorems 1 [20] and 6.
The C implementation of the APIs and the Linux port has been accomplished
in three months. While the implementation team was completing the Linux port
the verification team started the verification of the refinement, which has taken
three months so far. This work is continuing, in order to complete the verification
from the HOL4 implementation level down to assembly.

8 Concluding Remarks

We presented the first hypervisor (i) for a COTS application processor archi-
tecture (ARMv7), (ii) whose spatial separation properties have been formally
verified, (iii) capable of hosting a Linux system. As example application, in [6]
we used the virtualization mechanism to support a tamper-proof run-time mon-
itor that prevents code injection in an untrusted Linux guest.

The only verified hypervisor in the literature capable of hosting a commodity
OS is Microsoft’s Hyper-V [17]. However, little detailed information about the
Hyper-V internal structure or the Hyper-V verification exercise is publicly avail-
able. As part of the Hyper-V verification project, a hypervisor for a simplified,
MIPS-like architecture including memory virtualization is described in [3,21].
However, the relation of the simplified hypervisor to Hyper-V itself is not clear.
As other, unverified, hypervisors for ARM such as the OKL4 microvisor [12] the
Hyper-V precursor of Paul et al. uses shadow page tables for MMU virtualiza-
tion. Our result demonstrates that secure isolation of a commodity OS can be
achieved with highly promising performance without requiring either specialized
hardware support or shadow data structures. This applies even before assembly
level and cache related optimizations are performed. This represents the first

Trustworthy Memory Isolation of Linux 141

trustworthy virtualization mechanism based on “direct paging”, an approach
inspired by the paravirtualization mechanism of Xen.

The implementation model takes into account low-level details (i.e. virtual
address translation, bit field manipulation, finite integer arithmetic, accesses to
the hypervisor data not mediated by high level data structures) and represent
an executable specification. The model is sufficiently detailed to spot possible
errors that arise when the hypervisor uses virtual addresses and exactly reflects
the control flow of the C-implementation. Part of our ongoing research efforts is
to adapt existing techniques [23] to verify the hypervisor binary code.

Acknowledgement. Work supported by framework grant “IT 2010” from the
Swedish Foundation for Strategic Research.

References

1. ARMv7-AR Architecture Reference Manual: Technical documentation ARM DDI
0406B. ARM Limited (2008)

2. Alkassar, E., Cohen, E., Kovalev, M., Paul, W.J.: Verification of tlb virtualization
implemented in c. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS,
vol. 7152, pp. 209–224. Springer, Heidelberg (2012)

3. Alkassar, E., Hillebrand, M.A., Paul, W., Petrova, E.: Automated verification of a
small hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.) VSTTE
2010. LNCS, vol. 6217, pp. 40–54. Springer, Heidelberg (2010)

4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM SIGOPS Operating
Syst. Rev. 37(5), 164–177 (2003)

5. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.: Overshadow: a virtualization-based approach
to retrofitting protection in commodity operating systems. In: ACM SIGOPS Oper-
ating Systems Review, vol. 42, pp. 2–13. ACM (2008)

6. Chfouka, H., Nemati, H., Guanciale, R., Dam, M., Ekdahl, P.: Trustworthy preven-
tion of code injection in linux on embedded devices. In: ESORICS (2015). Appear
on 2015

7. Criswell, J., Dautenhahn, N., Kcofi, V.A.: Complete control-flow integrity for com-
modity operating system kernels. In: 2014 IEEE Symposium on Security and Pri-
vacy (SP), pp. 292–307. IEEE (2014)

8. Criswell, J., Dautenhahn, N., Adve, V.: Virtual ghost: protecting applications from
hostile operating systems. In: SIGARCH Computer Architecture News, pp. 81–96.
ACM (2014)

9. Criswell, J., Lenharth, A., Dhurjati, D., Adve, V.: Secure virtual architecture: a
safe execution environment for commodity operating systems. In: ACM SIGOPS
Operating Systems Review, vol. 41, pp. 351–366. ACM (2007)

10. Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz, O.: Formal verifi-
cation of information flow security for a simple arm-based separation kernel. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communica-
tions Security, pp. 223–234. ACM (2013)

11. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the armv7 instruc-
tion set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol.
6172, pp. 243–258. Springer, Heidelberg (2010)

142 H. Nemati et al.

12. Heiser, G., Leslie, B.: The okl4 microvisor: convergence point of microkernels and
hypervisors. In: Proceedings of the First ACM Asia-Pacific Workshop on Workshop
on systems, pp. 19–24. ACM (2010)

13. Heitmeyer, C., Archer, M., Leonard, E., McLean, J.: Applying formal methods to
a certifiably secure software system. IEEE Trans. Softw. Eng. 34(1), 82–98 (2008)

14. Hofmann, O.S., Kim, S., Dunn, A.M., Lee, M.Z., Witchel, E.: Inktag: secure appli-
cations on an untrusted operating system. ACM SIGPLAN Not. 48(4), 265–278
(2013)

15. Iqbal, A., Sadeque, N., Mutia, R.I.: An overview of microkernel, hypervisor and
microvisor virtualization approaches for embedded systems. Report, Department
of Electrical and Information Technology, 2110. Lund University, Sweden (2009)

16. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an OS kernel. In: Proceedings SOSP
2009, pp. 207–220. ACM (2009)

17. Leinenbach, D., Santen, T.: Verifying the microsoft hyper-v hypervisor with vcc.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 806–809.
Springer, Heidelberg (2009)

18. McVoy, L., Staelin, C.: Lmbench: portable tools for performance analysis. In: Pro-
ceedings of the 1996 Annual Conference on USENIX Annual Technical Conference,
ATEC 1996, Berkeley, CA, USA, pp. 23–23. USENIX Association (1996)

19. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,
C., Gao, X., Klein, G.: sel4: from general purpose to a proof of information flow
enforcement. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 415–
429. IEEE (2013)

20. Nemati, H., Guanciale, R., Dam, M.: Trustworthy virtualization of the armv7 mem-
ory subsystem. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater,
J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 578–589.
Springer, Heidelberg (2015)

21. Paul, W., Schmaltz, S., Shadrin, A.: Completing the automated verification of
a small hypervisor – assembler code verification. In: Eleftherakis, G., Hinchey,
M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 188–202. Springer,
Heidelberg (2012)

22. Richards, R.J.: Modeling and security analysis of a commercial real-time operating
system kernel. In: Hardin, D.S. (ed.) Design and Verification of Microprocessor
Systems for High-Assurance Applications, pp. 301–322. Springer, New York (2010)

23. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified os
kernel. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 471–482. ACM (2013)

24. Varanasi, P., Heiser, G.: Hardware-supported virtualization on arm. In: Proceed-
ings of the Second Asia-Pacific Workshop on Systems, APSys 2011, pp. 11:1–11:5,
New York, NY, USA, ACM (2011)

LookAhead: Augmenting Crowdsourced Website
Reputation Systems with Predictive Modeling

Sourav Bhattacharya1(B), Otto Huhta2, and N. Asokan2,3

1 Bell Laboratories, Dublin, Ireland
sourav.bhattacharya@bell-labs.com

2 Aalto University, Espoo, Finland
otto.huhta@aalto.fi

3 University of Helsinki, Helsinki, Finland
asokan@acm.org

Abstract. Unsafe websites consist of malicious as well as inappropriate
sites, such as those hosting questionable or offensive content. Website
reputation systems are intended to help ordinary users steer away from
these unsafe sites. However, the process of assigning safety ratings for
websites typically involves humans. Consequently it is time consuming,
costly and not scalable. This has resulted in two major problems: (i) a
significant proportion of the web space remains unrated and (ii) there is
an unacceptable time lag before new websites are rated. In this paper, we
show that by leveraging structural and content-based properties of web-
sites, we can reliably and efficiently predict their safety ratings, thereby
mitigating both problems. We demonstrate the effectiveness of our app-
roach using four datasets of up to 90,000 websites. We use ratings from
Web of Trust (WOT), a popular crowdsourced web reputation system,
as ground truth. We propose a novel ensemble classification technique
that makes opportunistic use of available structural and content prop-
erties of web pages to predict their eventual ratings in two dimensions
used by WOT: trustworthiness and child safety. Ours is the first clas-
sification system to predict such subjective ratings. The same approach
works equally well in identifying malicious websites. Across all datasets,
our classification achieves average F1-score in the 74–90 % range.

1 Introduction

Internet scammers set up various types of “unsafe” websites to lure their vic-
tims. These include malicious sites, intended for phishing, drive-by-downloads of
malware and misusing private user data, as well as sites that are inappropriate
in some sense, e.g., websites hosting offensive, objectionable, hateful or illegal
content.

A variety of mechanisms have been developed for steering unsuspecting users
away from unsafe websites. Popular browsers present interstitial security warn-
ings when users attempt to navigate to a known malicious website [1]. Several
anti-virus vendors maintain website reputation systems (e.g., TrustedSource1).
1 http://www.trustedsource.org/

c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 143–162, 2015.
DOI: 10.1007/978-3-319-22846-4 9

http://www.trustedsource.org/

144 S. Bhattacharya et al.

Fig. 1. Cumulative availability (%) of WOT ratings, trustworthiness and child safety,
for the one million most popular webpages (as of July 2014).

These systems use a combination of machine learning techniques and manual
expert evaluations to arrive at the rating for a given website. A popular sub-
category of reputation systems use input ratings that are crowdsourced from the
users of the system. PhishTank2 and Web of Trust (WOT)3 are examples of
web reputation systems that rely fully or partly on crowdsourced ratings. An
advantage of crowdsourced ratings is that the ratings can cover a broader class
of unsafe websites, including those that are perceived to be inappropriate but
not outright malicious [9].

All reputation systems, especially those that involve humans in the rating
process, suffer from two major disadvantages: insufficient coverage and time
lag. For example, Fig. 1, shows the cumulative availability of WOT reputation
ratings (trustworthiness and child-safety) for one million most popular webpages
(obtained from alexa.com) and indicates that the majority of the pages are
unrated. The time gap between a new website coming online and the system
assigning a rating can be often in the order of days to months.

A consequence of these drawbacks is that users, who rely on such reputation
systems to protect them from unsafe websites, remain vulnerable when many
unsafe websites are unrated. Although, machine learning techniques have been
extensively used for detecting malicious websites based on the structure and
content of web pages [8,10,27], in this work we address the following research
question: Can we reliably predict the eventual rating of an unrated website?

We introduce LookAhead, a system that uses a combination of structural and
content-based features to predict the eventual rating a website is likely to receive.
In reality, the prediction task is non-trivial, as not all feature types are present
on all webpages (see Sect. 4). To mitigate this feature unavailability problem, we
propose an ensemble classification approach. We train different classifiers for each
feature type and present different combination strategies to estimate the overall
rating. For the structure of the websites, we consider HTML and JavaScript-
based features. However, we show that structural features alone would not be

2 http://www.phishtank.com/
3 https://www.mywot.com/

http://www.phishtank.com/
https://www.mywot.com/

LookAhead: Augmenting Crowdsourced Website Reputation Systems 145

sufficient for accurate predictions. Therefore, we introduce novel content-based
feature sets, which are extracted from outgoing links with low ratings and the
text present on a webpage. We make the following contributions:

(i) Use of Content-Based Features for effectively predicting future rat-
ings of websites. In particular, we propose a novel use of the empirical cumulative
distribution function (ECDF) as a feature set to extract clues about the content
of a web page based on ratings of outgoing hyperlinks in it (Sect. 4.2). We also
propose how topic modeling techniques can be used to extract features that cap-
ture the theme of a webpage (Sect. 4.2). (ii) LookAhead, an adaptive ensemble
classification technique that effectively combines several individual classifiers by
learning combination weights from the data (Sect. 4.3). (iii) Systematic Com-
parative Evaluation of LookAhead on several datasets with up to 90, 000 web
pages (Sect. 5). We show that the performance can be improved significantly
(statistically) when utilizing content-based features in addition to the structural
features of web pages (Sect. 6). In particular, this holds across both subjective
dimensions (trustworthiness and child safety), as well as maliciousness.

2 Related Work

A typical approach for helping users avoid malicious websites is to use blacklists
of known bad websites. For example, Microsoft’s Internet Explorer and Mozilla
Firefox warn users when they try to visit a page present on a blacklist. Unfortu-
nately, blacklists suffer from a number of shortcomings, e.g., they are required
to be updated periodically, are often slow to reflect new malicious websites, and
have poor coverage of malicious web space. To mitigate problems with blacklists,
Felegyhazi et al. [16] propose a system that, given an initial blacklist of domains,
tries to predict potentially malicious domains based on nameserver features and
registration information. Prakash et al. [26] propose five different heuristics that
allow synthesizing new URLs from existing ones. The authors use this idea to
enlarge the existing blacklist of malicious URLs.

Going beyond blacklists, application of machine learning techniques to suc-
cessfully identify malicious websites has become popular. Ma et al. [21] explore
the use of lexical features, including the length and number of dots in URLs,
host-based features, such as IP address, domain name and other data returned
by WHOIS queries [13] to identify malicious web links. Another popular app-
roach is to analyze the structural properties of webpages, especially looking for
known malicious patterns within the embedded JavaScript, to identify malicious
sites [10,12,15,20,27]. JSAND by Cova et al. [10] combines anomaly detection
with emulation and uses a naive Bayes classifier for malicious web page and script
detection. Cujo by Rieck et al. [27] considers both static and dynamic JavaScript
features and classifies websites using Support Vector Machines (SVM).
ZOZZLE by Curtsinger et al. [12] considers over 1.2 million JavaScript sam-
ples and achieves FPR and TPR in the range of 1.2–5.1 %.

Closest to our work is Prophiler by Canali et al. [8], which identifies mali-
cious websites by considering only static features related to the URL and the

146 S. Bhattacharya et al.

Fig. 2. (a) WOT user interface showing aggregated user ratings. (b) WOT divides the
reputation rating range into five (color-coded) levels.

structure of a page. For example, they consider 37 URL-based, 20 HTML and 26
JavaScript features and train three different classifiers, one for each feature type.
While systems like Prophiler [8] and JSAND [10] report good results for detect-
ing malicious websites, we consider a much broader and non-trivial problem of
predicting subjective rating dimensions like trustworthiness and child-safety of a
website. In addition, we consider not only the structure and URL of a web page
but also the content presented on that page.

3 Web Reputation System WOT

WOT provides reputation ratings of the domain of a given URL in two dimen-
sions, trustworthiness and child safety as integers in the range [0–100]. WOT
builds the reputation ratings of a web domain mainly based on crowdsourced
input ratings from a large user base and then applying a proprietary aggrega-
tion algorithm. It also uses input from other trusted sources, but the identities
of these sources are not public. WOT has seen well over 100 million downloads.
It is also used by large scale services like Facebook and Mail.ru. It is reasonable
to assume that the user base of WOT and similar rating systems runs into tens
of millions.

The front-end of WOT is a browser extension that scans the page being
rendered in the browser for URLs, looks up their reputation ratings in the WOT
back-end, and shows the results as color-coded glyphs. For example, Fig. 2(a)
shows a red glyph next to a website deemed unsafe by WOT. The rating space
is divided into five levels, with a color code assigned to each level, see Fig. 2(b).
WOT’s confidence in a rating is also indicated by a set of dark figurines (up to
five, Fig. 2(a)).

Our objective is to see if we can use information found on a hitherto unrated
web page to predict what rating it will receive. In this paper we use WOT
as the target reputation system. However, our proposed method is generic and
would work with any web reputation system. We therefore use existing WOT
ratings as the ground truth, and apply a supervised learning-based algorithm
for model building. Instead of building a regression model, we formulate the
web page reputation prediction as a binary classification task [4]. We divide

LookAhead: Augmenting Crowdsourced Website Reputation Systems 147

reputation ratings into two (coarse) groups by applying a suitable threshold on
the reputation ratings. This helps to minimize the effect of subjective variations
among users in their ratings. Given a reputation rating r ∈ [0, 100] of a URL,
the class information of the URL is computed using the following simple rule:

class(r) =

{
bad if r < Th

good otherwise
(1)

In our experiments (Sect. 6) we present results for Th = 40. Results for Th = 60
can be found in Appendix A.5 of the full version of this paper [2].

4 LookAhead: Predicting Safety Ratings

Our predictive approach utilizes existing reputation ratings of a large number
of webpages to learn a mapping function from various webpage features to a set
of target classes, in our case, either good or bad (see Eq. 1). Figure 3 illustrates
an overview of our web safety prediction approach combined with WOT. The
LookAhead part, highlighted in the figure, is composed of a web crawler, a
database, and a predictive model. The web crawler extracts various features
from webpages and stores them, along with reputation ratings in the two WOT
dimensions4, to a database. The predictive model learns a classification model
and uses it for predicting web safety of unrated URLs. We consider two types of
features to represent websites: (i) structural features, which are extracted from
the HTML and embedded JavaScript code, and (ii) content features that capture
ratings of outgoing web links and the thematic structure of page text.

4.1 Structural Features of Web Pages

For structural features, we mainly rely on past research that has identified and
successfully validated a large set of features (extracted from HTML and embed-
ded JavaScript code) to identify malicious webpages. Specifically, we adopt the
handcrafted and domain specific features used by Canali et al. for their Prophiler
system [8]. In the evaluation section (see Sect. 5.2), we consider Prophiler as our
main baseline algorithm.

HTML-Based Features: We adopt the same 20 HTML features5 used by
the Prophiler. Examples of the features include the number of iframe tags, the
number of hidden elements, the number of script elements, the percentage of
unknown tags, and the number of malicious patterns, e.g., presence of the meta
tag [8].

JavaScript-Based Features: We use the same 24 JavaScript-based features
used by the Prophiler, which are extracted by analyzing either the JavaScript
4 WOT ratings are obtained using their web API (https://www.mywot.com/wiki/

API).
5 See [8] for an exhaustive and in-depth description of all the HTML features.

https://www.mywot.com/wiki/API
https://www.mywot.com/wiki/API

148 S. Bhattacharya et al.

Fig. 3. An architectural overview of LookAhead in association with a crowdsourced
web reputation system WOT.

file or the <script> element embedded within the HTML text. Examples of
JavaScript-based features include the number of times the eval() function is
used, the number of occurrence of the setTimeout() and setInterval() functions,
the number of DOM modification functions, and the length of the script in
characters [8].

4.2 Content Features of Web Pages

Contrary to the state-of-the-art approaches, in this paper we propose the use of
a novel set of features based on (1) empirical cumulative distribution function
(ECDF) of the reputation ratings of embedded outgoing links and (2) topic mod-
eling. The main intuition behind using these features is that by learning (unsu-
pervised) webpage content properties, we avoid the need for handcrafted features
based on domain knowledge. In our evaluation, we show that the proposed novel
features improve the recognition performance significantly (see Sect. 6).

Embedded Link-Based Features: To extract simple yet effective clues about
the content of a web page, we hypothesize that the content of a page is related
to the content of the pages it links to. In other words, we conjecture that the
adage “You are the company you keep” is applicable here. This saying is based
on the fact that often knowledge about an unknown person’s friends provides
some idea about the person’s interests or personality. Similar ideas have been
successfully applied in recommender systems [6] and in detecting susceptibility
of mobile devices for malware infections [31].

Building on this idea, we propose a feature extraction scheme utilizing the
available reputation ratings of embedded links. However, web pages may contain
an arbitrary number of embedded links, ranging from none to several hundreds

LookAhead: Augmenting Crowdsourced Website Reputation Systems 149

or more. Moreover, the range of the reputation ratings can be arbitrary. Thus we
need a feature representation scheme that can compactly represent an arbitrary
number of outgoing links, while remaining robust in the face of arbitrary ranges
of ratings.

ECDF-based feature extraction has been previously explored in the field of
ubiquitous computing and mobile sensing to represent human motion charac-
teristics from continuous accelerometer data streams [3,18,25]. However, the
method has attracted very little attention outside the sensing domain. The sim-
plicity and fast computation time of the ECDF features make it a viable option
for using it in static web page analysis. Contrary to mobile sensing, in this paper
we primarily focus on discrete reputation ratings.

More formally, let R = {r1, r2, . . . , rn} denote the set of available reputa-
tion ratings of all the embedded web links on a page, where ri ∈ I[0,100], ∀i ∈
{1, . . . , n}. The ECDF Pc(r) of R can be computed as:

Pc(r) = p(X ≤ r), (2)

where, p(X = r) is the probability of observing an embedded web link with a
reputation rating of r, and X is a random variable that takes values from R
(uniformly at random). For example, Fig. 4(a) shows an exemplary histogram of
reputation ratings of web links found within a web page and Fig. 4(b) shows the
corresponding ECDF computed using Eq. 2. Note that Pc(r) is defined on the
entire range of the reputation ratings for embedded web links and is a monoton-
ically increasing function.

Often the distribution of reputation ratings for embedded links is multimodal,
e.g., as in our example shown in Fig. 4(a). In order to learn from such distrib-
utions, a recognition system should extract descriptors that relate to the shape
and spatial position of the modes [18]. The shape of the distribution is captured
as Pc increases from 0 to 1 (see Fig. 4(b)). To extract a feature vector f ∈ R

k

from the distribution, we first divide the range of Pc, i.e., [0, 1], into k equally
sized bins with centers respectively at [b1, b2, . . . , bk]. The ith feature component
fi ∈ R is then computed as:

fi = P−1
c (bi) (3)

Thus the feature vector f accurately captures the shape and positions from
the underlying probability function p(r), while the ECDF Pc can be computed
efficiently using Kaplan-Meier estimator [11]. For completeness, Fig. 4(c) shows
the extracted ECDF-based feature vector for k = 75. The only parameter for the
ECDF-based feature extraction method is the number of bins k, which controls
the granularity with which the shape of the underlying distribution is captured.
In our experiments we also append the mean of ratings in R as a feature value
to the extracted ECDF feature vector.

Adversarial Implications: If ECDF features were based on all outgoing links,
a malicious website may attempt to evade detection by embedding a large num-
ber of links to pages with high ratings. To deter such an attack, while con-
structing the set R (see above), we only allow ratings r ≤ Cr, where Cr is the

150 S. Bhattacharya et al.

Fig. 4. Exemplary illustration of (a) the distribution of reputation ratings, (b) their
Empirical Cumulative Distribution Function, and (c) ECDF-based features.

critical rating threshold. The choice of Cr can be application dependent and
ideally should be adapted based on the overall costs of making false negative
predictions.

Topic Model-Based Features: To gain further insight into the type of content
on a web page, we analyze the text in the page and extract a set of features that
captures the summary of the text as a distribution over a set of predefined topics.
A topic is defined as a probability distribution over a fixed set of words. In order
to learn the topics in an unsupervised manner, we employ the well established
Latent Dirichlet Allocation (LDA) model [5]. The main objective of LDA, or
in general in any topic modeling algorithm, is to extract short descriptions of
documents, while preserving statistical relationships that are useful, e.g., for
document summarization and classification. In this work, we only focus on text
in English. As a significant portion of the webpages in our evaluation dataset
(see Sect. 5.1) is non-english we use Google translation APIs, as part of the
web crawler, to convert text into english. To avoid translation errors, we use an
english dictionary to validate words before they are included in the vocabulary
set V used by the LDA model.

The main objective of the LDA model is to learn model parameters, such as
K topics β1:K , the topic proportions θd in the document d, and topic assignments
zn,d of observed word wn in document d from the corpus of webpages. A brief
overview of the topic model and the definitions of the parameters are given in
Appendix A.1 of the full version [2]. Once the LDA parameters are learned,
given the set of words w present on a webpage and the topics β1:K , the topic
model-based feature set for the webpage is computed as: p(θd|w, β1:K), i.e., the
estimated topic proportions.

Adversarial Implications: Similarly to the ECDF-based features, the topic
model-based features can be exploited by an adversary. As the topic propor-
tion term, i.e., p(θd|w, β1:K) captures the relative weight of various topics being
described within the text w, an attacker can simply add random words that can
boost the probability of certain topics. In Sect. 7 we propose a possible solution
to prevent this attack.

LookAhead: Augmenting Crowdsourced Website Reputation Systems 151

4.3 Ensemble Classification

One challenge in the feature extraction procedures, described above, is that
often one or more feature types are missing from a web page. For example, in
reality, not all web pages use JavaScript, contain embedded outgoing links, or use
textual descriptions, although the HTML features are always available. Thus, a
new classification technique is required that is able to overcome the problem of
feature unavailability. Existing approaches such as [8,21,29,30], do not address
this problem and therefore have limited generalizability.

According to Bayesian theory [19], given HTML (fH), JavaScript (fJ),
ECDF (fE), and Topic (fT) feature vectors, a URL should be assigned to the
class cj ∈ {bad, good}, if the posterior probability for class cj is maximum, i.e.

assign URL → cj if

p(cj |fH ,fJ ,fE ,fT) = max
i

p(ci|fH ,fJ ,fE ,fT) (4)

The computation of p(cj |fH ,fJ ,fE ,fT) depends on the joint probability func-
tions (likelihood) p(fH ,fJ ,fE ,fT |cj) and the prior probability p(cj), i.e.:

p(cj |fH ,fJ ,fE ,fT) ∝ p(fH ,fJ ,fE ,fT |cj) p(cj) (5)

The likelihoods are difficult to infer when one or more features are unavailable.
The likelihood computation can be simplified by combining decision support
of individual classifiers on different feature types [19]. Accordingly, we train
four classifiers CH , CJ , CE , and CT using valid fH , fJ , fE , and fT features
respectively, where each classifier returns a posterior probability distribution
over the bad and good classes. However during prediction, if a feature type is
unavailable, we do not include the corresponding classifier while computing the
overall posterior probabilities.

A number of strategies can be adopted to combine the posterior probabil-
ities of the classifiers to generate the overall belief. In this paper we propose
a linear combination rule that determines the combination weights of individ-
ual classifiers using the Fukunaga class separability score [17]. Our adaptive
weight selection method is based on the intuition that a classifier should be
given more importance if it is easy to separate among the bad and good classes
in the corresponding feature space. See Appendix A.2 of the full version [2] for
the definition of class separability we use and other popular combination rules.
For each classifier, we compute the separability score after correlation based fea-
ture subset selection. The separability scores, after normalization, are then used
as the respective weight wk for the classifier Ck. The final belief of the class cj
is estimated as:

p∗(cj |fH ,fJ ,fE ,fT) =
∑

k∈{H,J,E,T}
wk p(cj |fk) (6)

The final predicted class cj is inferred by applying the decision rule given in Eq. 4
using the computed belief above. Figure 5 shows the data adaptive ensemble
classification technique used by LookAhead.

152 S. Bhattacharya et al.

Fig. 5. Overview of the ensemble classification approach used by LookAhead.

5 Experimental Settings

5.1 Datasets

To perform an extensive and systematic study, we generated a pool of over
140, 000 URLs and obtained their reputation ratings in both dimensions using
the WOT API. Out of these, 80, 000 URLs have positive reputation ratings, and
60, 000 have negative ratings. For each URL we crawl the web page to extract
HTML, JavaScript, ECDF and topic model features where available. Figure 6
illustrates the histograms of reputation ratings for all webpages in our dataset.
The dataset, where at least HTML features and WOT ratings are available, is
referred to as the opportunistic dataset. Out of 140, 000 URLs, 89, 220 web pages
have trustworthiness ratings, and 84, 714 have ratings for child safety. However,
the number drops to 31, 995, in case of trustworthiness, and to 38, 118 for child
safety, when validity of all feature types are considered (for T h = 40). We refer
to this second dataset as the all-valid dataset. The significant drop in the size of
the all-valid dataset further highlights that feature unavailability is intrinsic to
web data analysis.

Fig. 6. Histograms of all webpages in our dataset in two reputation dimensions: trust-
worthiness (left) and child safety (right).

LookAhead: Augmenting Crowdsourced Website Reputation Systems 153

Existing research primarily focused on detecting if a webpage is malicious.
However, the malware dataset used in [8] is no longer available, which makes
exact replication of Prophiler results difficult. “Trustworthiness” in WOT does
not directly correspond to malware. In addition to the reputation ratings, WOT
provides category information, such as ‘malware’, ‘scam’, ‘suspicious’ and ‘good
site’, of websites based on votes from users and third parties. From the all-valid
dataset we generate a malware dataset consisting of 2, 784 webpages that were
categorized by WOT as ‘malware or virus’. To generate a dataset containing
both malware and benign webpages, we include an equal number of webpages
that got very high trustworthiness ratings and have all feature types. We refer
to this dataset as the malware dataset.

Lastly, we construct another dataset by considering only the URLs that fall
either in the top most or the bottom most trustworthiness rating categories,
see Fig. 2(b) for definitions of various rating categories used by WOT. As with
malware dataset, we only consider webpages for which all feature types are avail-
able. Our two-category dataset consists of 10, 118 sites with very poor ratings
and 13, 539 with excellent ratings.

5.2 Baseline Algorithms

In our experiments, we report comparison results against Prophier [8]. Prophiler
relies on HTML, JavaScript, and URL/HOST features to detect if a webpage is
malicious. However, it uses APIs to a proprietary WHOIS [14] system and uses a
private database for blacklisted URLs to extract URL/HOST features. Neither of
these are available openly, which makes the corresponding URL/HOST feature
vectors invalid for our datasets. API inaccessibility and unavailability of suitable
blacklisted database covering WOT URLs used in our dataset makes the major-
ity of the URL/HOST feature vectors in our experiments invalid. Consequently,
we do not use URL/HOST features in our ensemble classification system. Note
that it is very easy to incorporate additional feature types in our classification
system, e.g., training a classifier C using the new feature type and then consider-
ing the posterior probabilities in Eq. 6. Contrary to our approach, i.e., assigning
data driven weighting of classifiers to compute the final belief (see Sect. 4.3),
Prophiler uses the ‘OR’ combination rule (see Appendix A.3 of [2]). We system-
atically compare the performance of LookAhead with the ensemble classification
methodology considering different subsets of feature types.

5.3 Evaluation Metric

We use 10-fold stratified random cross validations when presenting classification
performance for all the approaches. As the primary performance metric, we use
Avg. F1-score, False Negative Rate (FNR), and False Positive Rate (FPR). The
definitions of all the evaluation metrics can be found in Appendix A.4 of [2].

154 S. Bhattacharya et al.

6 Evaluation

We begin our evaluation by first considering classification performance on the
all-valid dataset using Random Forest as the basic classifier6. Note that, all URLs
considered within this dataset have valid HTML (H), JavaScript (J), ECDF (E)
and Topic-based (T) features. This dataset allows us to systematically study
the influence of various feature combinations on the overall classification per-
formance of LookAhead. Table 1 summarizes the performance of LookAhead in
both reputation dimensions with the parametric settings T h = 40 (see Eq. 1),
and Cr = 40 (see Sect. 4.2). The table also includes the performance of Prophiler.

For trustworthiness, LookAhead achieves the highest Avg. F1-score of 81.3%,
when all feature types are considered (highlighted in gray), at the same time
achieving the lowest FNR (19%) and FPR (18.3%). Similarly for child safety,
LookAhead with all feature types achieves the best performance (86.4%), lowest
FNR (11.6%) and lowest FPR (16.2%). In both reputation dimensions, the per-
formance using all features, is significantly better (statistically) than all other fea-
ture combinations, i.e., p � 0.01 in McNemar χ2 test with Yates’ correction [22].

Prophiler shows a statistically weaker classification performance in both rep-
utation dimensions compared to LookAhead (employing all feature types). How-
ever, it achieves a better FNR in prediction than LookAhead. This is due to the
use of a conservative ‘OR’ classifier combination rule (see full version [2]) that
is more likely to report a URL as bad. This higher likelihood of predicting web
pages as bad improves the overall recall of the bad class, which consequently
pulls down the FNR for Prophiler, however, at the expense of a higher FPR.
Prophiler focuses solely on reducing FNR. In contrast, in use cases where overall
usability in prediction is important, both FNR and FPR should be reduced. For
example, in predicting safety ratings, a low FPR is also needed to avoid showing
frequent warnings to users for actually good websites.

In reality, not all feature types are available for all URLs. To evaluate the
performance of LookAhead under real life situations we next present results on
the opportunistic dataset. In these experiments, we only present the performance
of LookAhead while considering all available feature types. Moreover, we study
the performance of various classifier combination rules and present the results
in Table 2 for both reputation dimensions. In contrast to the all-valid dataset,
T h = 40, generates a high degree of class imbalance in our opportunistic dataset
(see Fig. 6). During the training phase the prevalence of one class affects the
process of learning, and the learned classifier is often biased towards the over-
represented class [23]. To mitigate class imbalances during training, we also
report experimental results when a simple class balancing approach, i.e., reducing
data from the prevalent class, is applied during classifier training. The data
driven, adaptive classification combination rule of LookAhead generates the best
classification performance, with a notable exception in the case of unbalanced
dataset for trustworthiness, where the ‘Product’ rule achieves the highest Avg.
F1-Score.

6 We also experimented using linear-SVM, SVM, KNN and C4.5 classifiers, and chose
Random Forest for its superior performance.

LookAhead: Augmenting Crowdsourced Website Reputation Systems 155

Table 1. Performance of LookAhead (under various feature combinations H = HTML,
J = JavaScript, E = ECDF, and T = Topic) and Prophiler on the all-valid dataset
(T h = 40, Cr = 40, and **: Statistically significant with 99 % confidence).

Table 2. Performance of LookAhead on the opportunistic dataset under various clas-
sifier combination rules (T h = 40 and Cr = 40, **: Significant with 99 % confidence,
*: 95 % confidence).

156 S. Bhattacharya et al.

Table 3. Performance of LookAhead and Prophiler on the malware and two-category
datasets (**: Significant with 99 % confidence).

Prophiler has previously been shown to perform well in detecting malicious
websites. To show how LookAhead (with all features) perform in such scenar-
ios, we repeated the experiments on the malware and two-category datasets and
present the results in Table 3. LookAhead achieves average F1-scores of 89% for
the malware dataset and 89.8% for the two-category dataset, which are signifi-
cantly better (p � 0.01) than Prophiler’s performance of 80.7% for the malware
dataset and 79.3% for the two-category dataset. LookAhead also generates bet-
ter FNR and FPR than Prophiler on both datasets.

7 Discussion

7.1 Feature Importance in Reputation Prediction

Our results show that the structural and content related properties of a website
can be effectively used to predict not only its maliciousness, but also the more
challenging properties of trustworthiness and child safety. In order to understand
the overall classification results, we study the importance of individual features
as computed by a Random Forest classifier7. In Fig. 7 we plot the average impor-
tance for all (120) features used in this work when training a Random Forest
classifier (using 100 trees) on the all-valid dataset. The higher the value, the
more important is the feature. Figure 7 further highlights that different features
are assigned different relative importances, while separating good websites from
bad ones in each reputation dimension.

Interestingly, the importance scores of the HTML and JavaScript-based fea-
tures look very similar for both trustworthiness and child safety predictions. The
most important features, shown by the dotted region A in the figure, are related
to script tags in HTML, direct assignments in JavaScript, and the total character
count in both. Although, a few structural (i.e., HTML and JavaScript) features
are found to be important, a majority of them have little or no significance.
Contrary to the structural features, ECDF features show significant differences
in importance scores for the two reputation dimensions. For trustworthiness, low
ratings of the embedded links (region B) play an important role in prediction. In
child safety, the mean value of the embedded ratings (region C) plays a signifi-
cant role also. For trustworthiness, the three most important topics (region E)
7 Feature importance is defined as the total decrease in node impurity averaged over

all the trees [7].

LookAhead: Augmenting Crowdsourced Website Reputation Systems 157

Fig. 7. Importance of individual features, while predicting trustworthiness and child
safety, computed by the Random Forest classifier on the all-valid dataset.

are related to money-making, news, and weather. Among the rest of the topic
features, none are significantly better or worse than the others. For child safety
prediction there are three other topics (region D) that play a significant role and
as expected, these topics correspond to adult content.

Although, we use the same feature set for predicting both reputation dimen-
sions, the feature selection inherent to the Random Forest classifier learns very
different mapping functions for each prediction task. Figure 7 provides evidence
that our proposed ECDF and Topic-based features contribute consistently in
predicting subjective ratings.

7.2 Tuning of Prediction Performance

Predictive performance of LookAhead can be primarily influenced by a number
of factors: (i) the type of features considered (e.g., HTML and ECDF), (ii) the
type of classifier used (e.g., Random Forest and SVM), (iii) strategies used to
overcome class imbalances in the training data, and (iv) the combination rule
used for computing the final posterior probability (e.g., Adaptive and Sum rule).
Often, once the prediction pipeline is deployed, the factors (i)–(iii) are kept con-
stant, as they are time consuming to re-build. However, the classifier combination
strategy can be adapted in real time to control the overall performance of the
LookAhead system. Based on the requirements, the system administrator can
focus more on lowering the overall FNR by using the ‘OR’ combination rule, e.g.,
while predicting child safety a very low FNR is expected for parental filtering
systems. As evident from Table 2, often emphasizing FNR inflates FPR. Our
LookAhead system demonstrates a good balance of both FNR and FPR.

158 S. Bhattacharya et al.

Table 4. Detection rates for various classifiers settings.

7.3 Detection Rate

When considering the implications of our results, in addition to the FNR and
FPR, the proportion of good and bad websites in the wild should also be taken
into account. In reality, this so-called base rate Br, is biased towards good web-
sites. Thus we look at the detection rate for bad websites, i.e., what percentage
of web pages that our classifier predicts as bad are truly bad. From WOT statis-
tics [28], we see that roughly 20 % of websites that have a rating are dangerous
regarding either trustworthiness or child safety. We use this number as our esti-
mate for Br, and compute the detection rate as:

Dr =
(1 − FNR) · Br

(1 − FNR) · Br + FPR · (1 − Br)
, (7)

Table 4 presents detection rates of LookAhead and Prophiler on all-valid and
opportunistic datasets for both reputation dimensions. We can see that due to
the biased base rate, the detection rates are in the range of 30−40% for Prophiler
and 40 − 57% for LookAhead, indicating better classification performances of
LookAhead. For example, in case of a warning system for users, when all features
are present, 52.5% of possible warnings for untrustworthy web pages would be
correct for LookAhead. The corresponding detection rate of 37.4% for Prophiler
is significantly lower. The results highlight that, while in general the problem of
predicting reputation ratings is challenging, considering content-based features
significantly improves the detection rate.

7.4 Applications

Fast-Tracking Publication of Ratings: Crowdsourced reputation rating ser-
vices like WOT do not announce a rating for a web site until they have enough
input ratings to reach a sufficient level of confidence. If a partially accumulated
rating (that has not reached a sufficient level of confidence) matches the rating
predicted by our classifier, the reputation service may choose to fast-track the
publication of the rating.

LookAhead: Augmenting Crowdsourced Website Reputation Systems 159

Table 5. Time analysis for extracting various feature types.

Feature type Average extraction time

HTML + JavaScript 3.1 s / link

ECDF 1.9 s / link

Topic + translation 3.4 s / link

Topic + without translation 1.3 s / link

Intermediate User Feedback: If a user attempts to navigate to an unrated
page that is predicted by our classifier to have a potentially bad rating, the
browser extension can warn the user accordingly. Earlier research [24] raised
concerns about the usefulness of crowdsourcing for security and privacy appli-
cations. Nevertheless, given the popularity of systems like WOT, we argue that
a tool like LookAhead is essential for the security of users who have chosen to
rely on such systems. Also, note that although our analysis was done with WOT
as the target rating system, the methodology is applicable to any website safety
rating system, whether crowdsourced or expert-rated.

7.5 Performance Considerations

We summarize the performance of our various feature extraction techniques and
report the average measured running time needed for computing them. For the
purpose of computing the average extraction time we randomly selected 1, 000
URLs from our dataset and measured the time required to extract different
classes of features on a standard Linux desktop computer (8 Gb RAM, 2.4
GHz processor). In case of Topic model features we also recorded the time for
performing translation of non-english web pages. Table 5 summarizes the time
analysis of our feature extraction methods. The time of 3.1 s that LookAhead
needs for extracting structural features is comparable to that of 3.06 s reported
by Prophiler. When including the content based features, in total, LookAhead
needs 6.3 s to extract all features from an English-language web page (and 8.4 s
if translation is needed). Moreover, caching and pre-fetching of features can be
employed to further reduce the feature extraction time.

7.6 Limitations

Perhaps the most significant limitation of any system using machine learning to
detect bad websites is the potential for adversaries to manipulate the system:
either by modifying their website to avoid detection or by manipulating the
classifier itself. While the use of the ECDF-function protects against manipula-
tion of outgoing links, as we pointed out in Sect. 4.2, the simplistic approach of
using topic modeling is vulnerable to an attacker who attempts to influence the
inferred topic model for a page he controls. Instead of directly using the proba-
bility distribution of topics as we do in Sect. 4.2, we could convert to a boolean

160 S. Bhattacharya et al.

vector (indicating if the topic is present on the page). Such an approach will
reduce false negatives (since an attacker can no longer gain by adding text to his
page to make it appear to belong to an innocuous topic as the dominant topic),
but will also raise false positives. We are currently investigating this avenue.

Another limitation is that, although the performance of LookAhead is com-
parable to previous solutions, real time use will require further speedup. One
option here is to use server-side assisted feature extraction. Finally, an open
question is how the use of predicted ratings will influence the actual rating. For
example, if the predicted rating is used for intermediate user feedback as sug-
gested above, it might sway future input ratings from the crowd towards the
predicted rating.

7.7 Current Work

We are conducting a longitudinal study on a large number of websites that do
not yet have a WOT rating. We plan to see (a) how well our predictions match
those websites that do eventually get a rating and (b) how do our predictions as
well as the actual ratings evolve over time.

Acknowledgments. This work was partially supported by the Intel Institute for Col-
laborative Research in Secure Computing (ICRI-SC) and the Academy of Finland
project “Contextual Security” (Grant Number: 274951). We thank Web of Trust for
giving access to their data which we used in this work. We also thank Timo Ala-
Kleemola and Sergey Andryukhin for helping us understand the WOT data, Jian Liu
and Swapnil Udar for helping to develop the web crawler. We would also like to thank
Petteri Nurmi, Pekka Parviainen, and Nidhi Gupta for their feedback on an earlier
version of this manuscript.

References

1. Akhawe, D., Felt, A.P.: Alice in warningland: a large-scale field study of browser
security warning effectiveness. In: Proceedings of the 22Nd USENIX Conference on
Security, SEC 2013, pp. 257–272. USENIX Association, Berkeley, CA, USA (2013)

2. Bhattacharya, S., Huhta, O., Asokan, N.: Lookahead: augmenting crowdsourced
website reputation systems with predictive modeling (2015). http://www.arxiv.
org/pdf/1504.04730.pdf

3. Bhattacharya, S., Nurmi, P., Hammerla, N., Plötz, T.: Using unlabeled data in
a sparse-coding framework for human activity recognition. Pervasive and Mobile
Computing, May 2014

4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2007)

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

6. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, pp. 43–52 (1998)

7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

http://www.arxiv.org/pdf/1504.04730.pdf
http://www.arxiv.org/pdf/1504.04730.pdf

LookAhead: Augmenting Crowdsourced Website Reputation Systems 161

8. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-
scale detection of malicious web pages. In: Proceedings of the 20th International
Conference on World Wide Web, pp. 197–206. ACM (2011)

9. Chia, P.H., Knapskog, S.J.: Re-evaluating the wisdom of crowds in assessing web
security. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 299–314. Springer,
Heidelberg (2012)

10. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious javascript code. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 281–290. ACM (2010)

11. Cox, D.R., Oakes, D.: Analysis of Survival Data. Champman and Hall, CRC (1984)
12. Curtsinger, C., Livshits, B., Zorn, B.G., Seifert, C.: Zozzle: fast and precise in-

browser javascript malware detection. In: USENIX Security Symposium, pp. 33–48
(2011)

13. Daigle, L.: Whois protocol specification
14. Daigle, L.: Rfc 3912: Whois protocol specification, September 2014. http://www.

tools.ietf.org/html/rfc3912
15. Feinstein, B., Peck, D.: Caffeine monkey: automated collection, detection and

analysis of malicious javascript. In: Proceedings of the Black Hat Security Con-
ference, 2007 (2007)

16. Felegyhazi, M., Kreibich, C., Paxson, V.: On the potential of proactive domain
blacklisting. In: Proceedings of the 3rd USENIX Conference on Large-scale Exploits
and Emergent Threats: Botnets, Spyware, Worms, and More, LEET 2010, p. 6.
USENIX Association, Berkeley, CA, USA (2010)

17. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic
Press, San Diego (1990)

18. Hammerla, N., Kirkham, R., Andras, P., Plötz, T.: On preserving statistical char-
acteristics of accelerometry data using their empirical cumulative distribution. In:
Proceeding of International Symposium on Wearable Computers (ISWC) (2013)

19. Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans.
Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

20. Likarish, P., Jung, E., Jo, I.: Obfuscated malicious javascript detection using clas-
sification techniques. In: 4th International Conference on Malicious and Unwanted
Software (MALWARE), pp. 47–54 (2009)

21. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious URLs. In: Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2009, pp. 1245–1254. ACM, New York, NY, USA (2009)

22. McNemar, Q.: Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika 12, 153–157 (1947)

23. Menardi, G., Torelli, N.: Training and assessing classification rules with imbalanced
data. Data Min. Knowl. Disc. 28(1), 92–122 (2014)

24. Moore, T., Clayton, R.C.: Evaluating the wisdom of crowds in assessing phishing
websites. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 16–30. Springer,
Heidelberg (2008)

25. Plötz, T., Hammerla, N.Y., Olivier, P.: Feature learning for activity recognition in
ubiquitous computing. In: International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1729–1734 (2011)

26. Prakash, P., Kumar, M., Kompella, R., Gupta, M.: Phishnet: predictive blacklisting
to detect phishing attacks. In: 2010 Proceedings IEEE INFOCOM, pp. 1–5, March
2010

http://www.tools.ietf.org/html/rfc3912
http://www.tools.ietf.org/html/rfc3912

162 S. Bhattacharya et al.

27. Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of
drive-by-download attacks. In: Proceedings of the 26th Annual Computer Security
Applications Conference, pp. 31–39. ACM (2010)

28. Ruvolo, J.: WOT statistics, December 2014. https://www.mywot.com/en/
community/statistics

29. Seifert, C., Welch, I., Komisarczuk, P.: Identification of malicious web pages with
static heuristics. In: Telecommunication Networks and Applications Conference
(ATNAC), pp. 91–96 (2008)

30. Seifert, C., Welch, I., Komisarczuk, P., Aval, C., Popovsky, B.: Identification of
malicious web pages through analysis of underlying dns and web server relation-
ships. In: 33rd IEEE Conference on Local Computer Networks (LCN), pp. 935–941
(2008)

31. Truong, H.T.T., Lagerspetz, E., Nurmi, P., Oliner, A.J., Tarkoma, S., Asokan,
N., Bhattacharya, S.: The company you keep: mobile malware infection rates and
inexpensive risk indicators. In: Proceedings of the 23rd International Conference
on World Wide Web, pp. 39–50 (2014)

https://www.mywot.com/en/community/statistics
https://www.mywot.com/en/community/statistics

Ripple: Overview and Outlook

Frederik Armknecht1, Ghassan O. Karame2(B), Avikarsha Mandal3,
Franck Youssef2, and Erik Zenner3

1 University of Mannheim, Mannheim, Germany
armknecht@uni-mannheim.de

2 NEC Laboratories Europe, 69115 Heidelberg, Germany
{ghassan.karame,franck.youssef}@neclab.eu

3 University of Applied Sciences, Offenburg, Germany
{avikarsha.mandal,erik.zenner}@hs-offenburg.de

Abstract. Ripple is a payment system and a digital currency which
evolved completely independently of Bitcoin. Although Ripple holds the
second highest market cap after Bitcoin, there are surprisingly no studies
which analyze the provisions of Ripple.

In this paper, we study the current deployment of the Ripple payment
system. For that purpose, we overview the Ripple protocol and outline
its security and privacy provisions in relation to the Bitcoin system. We
also discuss the consensus protocol of Ripple. Contrary to the statement
of the Ripple designers, we show that the current choice of parameters
does not prevent the occurrence of forks in the system. To remedy this
problem, we give a necessary and sufficient condition to prevent any fork
in the system. Finally, we analyze the current usage patterns and trade
dynamics in Ripple by extracting information from the Ripple global
ledger. As far as we are aware, this is the first contribution which sheds
light on the current deployment of the Ripple system.

Keywords: Ripple · Bitcoin · Security · Forks

1 Introduction

The wide success of Bitcoin has lead to a surge of a large number of alternative
crypto-currencies. These include Litecoin [1], Namecoin [2], Ripple [6,38], among
others. Most of these currencies are built atop the Bitcoin blockchain, and try to
address some of the shortcomings of Bitcoin. For example, Namecoin offers the
ability to store data within Bitcoin’s blockchain in order to realize a decentralized
open source information registration based on Bitcoin, while Litecoin primarily
differs from Bitcoin by having a smaller block generation time, and a larger
number of coinbases, etc. While most of these digital currencies are based on
Bitcoin, Ripple has evolved almost completely independently of Bitcoin (and
of its various forks). Currently, Ripple holds the second highest market cap
after Bitcoin [4]. This corresponds to almost 20 % of the market cap held by
Bitcoin. Recently, Ripple Labs have additionally finalized the financing of an
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 163–180, 2015.
DOI: 10.1007/978-3-319-22846-4 10

164 F. Armknecht et al.

additional 30 million USD funding round to support the growth and development
of Ripple [5].

Ripple does not only offer an alternative currency, XRP, but also promises
to facilitate the exchange between currencies within its network. Although Rip-
ple is built upon an open source decentralized consensus protocol, the current
deployment of Ripple is solely managed by Ripple Labs. Originally, the Ripple
network was created with a limited supply of 100 billion XRP units; 20 % of
those units are retained by Ripple founders, 25 % are held by Ripple Labs, while
the remaining 55 % are set to be sold. This represents the largest holdback of
any crypto-currency [4], but has not apparently stopped the adoption of Rip-
ple by a considerable fraction of users. At the time of writing, Ripple claims
to have a total network value of approximately 960 million USD with an aver-
age of almost 170 accounts created per day since the launch of the system [33].
Moreover, there are currently a number of businesses that are built around the
Ripple system [14,20]. For instance, the International Ripple Business Associ-
ation currently deploys a handful of Ripple gateways [22], market makers [23],
exchangers [21], and merchants [24] located around the globe.

Although crypto-currencies are receiving considerable attention in the litera-
ture [11,16,28,31,37], there are surprisingly no studies—as far as we are aware—
that investigate the Ripple system. In this paper, we remedy this problem and
we analyze the deployment and security provisions of the Ripple payment sys-
tem. More specifically, we overview the Ripple protocol and discuss the basic
differences between the current deployments of Ripple and Bitcoin. Motivated
by recent forks in the Ripple consensus protocol [25], we provide a new necessary
and sufficient condition that provably prevent the realization of a fork in Ripple.
Finally, we extract information on the current usage patterns and trade dynam-
ics in Ripple from almost 4.5 million ledgers which were generated in the period
between January 2013, and January 2015. Our findings suggest that—although
it has been introduced almost 2 years ago—most Ripple users seem inactive and
their trade volume is not increasing. As far as we are aware, this is the first
contribution which investigates the current deployment of Ripple.

The remainder of this paper is structured as follows. In Sect. 2, we detail
the Ripple protocol and the underlying consensus protocol. We also discuss the
security and privacy provisions of Ripple in relation to the Bitcoin system. In
Sect. 3, we analyze the conditions for forking in Ripple. In Sect. 4, we analyze
the current usage patterns of Ripple by extracting information from the Ripple
ledgers. In Sect. 5, we discuss related work in the area, and we conclude the
paper in Sect. 6.

2 The Ripple Protocol

In what follows, we introduce and detail the Ripple system. We also analyze
Ripple’s consensus protocol and compare it to Bitcoin.

Ripple: Overview and Outlook 165

2.1 Overview of Ripple

Ripple [38] is a decentralized payment system based on credit networks [19,29].
The Ripple code is open source and available for the public; this means that
anyone can deploy a Ripple instance. Nodes can take up to three different roles in
Ripples: users which make/receive payments, market makers which act as trade
enablers in the system, and validating servers which execute Ripple’s consensus
protocol in order to check and validate all transactions taking place in the system.

Ripple users are referenced by means of pseudonyms. Users are equipped
with a public/private key pair; when a user wishes to send a payment to another
user, it cryptographically signs the transfer of money denominated in Ripple’s
own currency, XRP, or using any other currency. For payments made in non-
XRP currencies, Ripple has no way to enforce payments, and only records the
amounts owed by one entity to the other. More specifically, in this case, Ripple
implements a distributed credit network system.

A non-XRP payment from A to B is only possible if B is willing to accept
an “I Owe You” (IOU) transaction from A, i.e., B trusts A and gives enough
credit to A. Hence, A can only make a successful IOU payment to B if the
payment value falls within the credit balance allocated by B to A. This may be
the case, e.g., if the participants know each other, or if the involved amounts are
rather marginal; typically however, such transactions require the involvement of
“market makers” who act as intermediaries. In this case, enough credit should
be available throughout the payment path for a successful payment.

For example, a trust line can be established between market maker U1 and A
(cf. Fig. 1) by A depositing an amount at U1. In our example, A wants to issue
a payment to B with the amount of 100 USD. Here, the payment is routed from
A → U1 → U2 → U4 → B. This is possible because available credit lines are
larger than the actual payment for every atomic transactions. Notice that we did
not route through U3 as there is not enough credit available between U1 → U3.
However, we note that it is possible to break down the payment amount at U1,
route a payment below 90 USD through U1 → U3 → B and transfer the rest
through U1 → U2 → U4 → B (extra fee at U3 required). In typical cases, Ripple
relies on a path finding algorithm which finds the most suitable payment path
from the source to the destination. By implementing credit networks, Ripple can
act as an exchange/trade medium between currencies; in case of currency pairs
that are traded rarely, XRP can act as a bridge between such currencies.

Ripple’s Ledger: Ripple maintains a distributed ledger which keeps track of all
the exchanged transactions in the system. Ledgers are created every few seconds,
and contain a list of transactions to which the majority of validating servers have
agreed to. This is achieved by means of Ripple’s consensus protocol [38] which
is executed amongst validating servers. A Ripple ledger consists of the following
information: (i) a set of transactions, (ii) account-related information such as
account settings, total balance, trust relation, (ii) a timestamp, (iv) a ledger
number, and (v) a status bit indicating whether the ledger is validated or not.
The most recent validated ledger is referred to as the last closed ledger. On the
other hand, if the ledger is not validated yet, the ledger is deemed open.

166 F. Armknecht et al.

Fig. 1. Exemplary sketch of IOU payments in Ripple. Here, A wants to pay 100
USD to B.

Consensus and Validating Servers: Each validating server verifies the pro-
posed changes to the last ledger; changes that are agreed by at least 50 % of the
servers are packaged into a new proposal which is sent to other servers in the
network. This process is re-iterated with the vote requirements increasing to
60 %, 70 %, and 80 % after which the server validates the changes and alerts the
network of the closure of the last ledger. At this point, any transaction that
has been performed but did not appear in the ledger is discarded and can be
considered as invalid by Ripple users. Each validating server maintains a list of
trusted servers known as Unique Node List (UNL); servers only trust the votes
issued by other servers which are contained in their UNL. We detail and analyze
Ripple’s consensus protocol in Sect. 2.3.

Currently, 5 Ripple validating servers are run by Ripple Labs [7]; note how-
ever, that any entity can run its own server [34] (e.g., Snapswap [8]). By doing
so, Ripple enables different institutions (e.g., banks which run their own servers)
to reach a consensus with respect to the fate of financial transactions. For
instance, in September 2014, Ripple Labs sealed a partnership agreement with
two US banks which agreed to adopt Ripple’s open-source distributed transac-
tion infrastructure [9].

Ripple: Overview and Outlook 167

2.2 Ripple Transactions

Ripple currently supports six types of transactions [35], namely:

Payment: This is the most common type of transactions, and allows an entity
to send funds from one account to another.

AccountSet: This transaction allows an entity to set options relevant for one’s
account. Notice that an AccountSet transaction enables the cancellation of
a transaction with the same SequenceNumber provided that the transaction
has not been incorporated yet in a validated ledger.

SetRegularKey: This transaction allows an entity to change/set the key used
by the entity to sign future transactions.

OfferCreate: This transaction expresses an intent to exchange currencies.
OfferCancel: This transaction removes an offer from the ledger.
TrustSet: This transaction creates (or modifies) a trust link between two

accounts.

As shown in Table 1, all six transaction types contain some common fields.
Notice that for any entity to open an account in Ripple, it has to issue a payment
with a value larger than the minimum XRP (i.e., 20 XRPs) to an account number
which does not exist yet. Once this transaction is processed, a new AccountRoot
node will be added to the global ledger to reflect the newly-created account.

2.3 The Consensus Protocol

As mentioned earlier, Ripple’s consensus protocol is an asynchronous round-
based protocol which is executed by the network’s validating servers. At the end
of every round, a new last closed ledger is published by all involved servers. The
consensus protocol comprises three phases: the collection phase, the consensus
phase, and the ledger closing phase.

In the collection phase, the validating servers collect the transactions that
they receive from the network. Recall that transactions are typically broadcasted
in the network. Upon receiving a transaction, validating servers check its authen-
ticity; for that purpose, they verify the issuer’s public key (from the ledger), and
they check the validity of the corresponding signature. Transactions which come
equipped with valid signatures are temporarily stored in the candidate set CS
for subsequent validation. The validating servers then check the correctness of
transactions stored in CS ; this includes verifying that enough credit is available
in the issuing account by going over the history of all transactions pertaining
to that account (in case of an XRP transactions), or the existence of a trust
path between the sender and receiver (in case of an IOU payment), etc. Each
validating server packages validated transactions in an (authenticated) proposal
and broadcasts its proposal in the network. In Ripple, this is achieved by con-
structing a hash tree of all validated transactions, and subsequently signing the
root of the tree.

When validating server v receives a new proposal from the network, it checks
that the proposal’s issuer is a server which appears in its UNL and verifies the

168 F. Armknecht et al.

Table 1. Common fields contained in all Ripple transaction types.

Field Internal Type Description

Account Account The unique address of the account that initiated
the transaction

AccountTxnID Hash256 (Optional) Hash value identifying another
transaction. This field allows the chaining of
two transactions together, so that a current
transaction is only valid unless the previous
one (by Sequence Number) is also valid and
matches the hash

Fee Amount (Required) Integer amount of XRP, in drops, to
be destroyed as a fee for distributing this
transaction to the network

Flags UInt32 (Optional) Set of bit-flags for this transaction

LastLedgerSeq UInt32 (Optional) Highest ledger sequence number that
a transaction can appear in

Memos Array (Optional) Additional information used to
identify this transaction

Sequence UInt32 (Required) A transaction is only valid if the
sequence number is exactly 1 greater than the
last-validated transaction from the same
account

SigningPubKey PubKey (Required) ASCII representation of the public
key that corresponds to the private key used
to sign this transaction

SourceTag UInt32 (Optional) Arbitrary integer used to identify the
reason for this payment

TransactionType UInt16 The type of transaction

TxnSignature VariableLength (Required) Transaction signature

correctness of the transactions included in the received proposal. In the positive
case, these transactions are included into the locally managed transactions list
TLv. Moreover, the server maintains a vote list Votet for every transaction t.
This list is updated according to the received proposal. That is, if the transaction
t is part of the proposal received from a server w (t ∈ TLv and w ∈ UNLv), v
will register t in Votet.

During the consensus phase, a validating server continuously processes and
sends proposals. Here, the validating server only sends proposals which are
agreed by more than θ percent of the servers in its UNL. This threshold value θ
is initially set to 50 % and is gradually increased in each iteration by 10 % – until
a proposal reaches consensus from 80 % of the servers in the UNL. Iterations are
triggered by a local timer maintained by each validating server.

As shown in Algorithm 1, once a transaction t reaches 80 % acceptance, it will
be removed from the candidate set, checked for double-spending (i.e., by checking

Ripple: Overview and Outlook 169

L ← PreviousLedger
foreach t ∈ TLv do

if
(

|Votet|
|UNLv | ≥ 0.8

)
then

if t /∈ L then
L.apply(t)

CSv ← CSv \ {t}

TLv ← TLv \ {t}
Votet ← θ

end
σL ← Sign(H(L))
Broadcast (L, σL)
foreach u ∈ UNLv do

Receive (Lu, σLu)
end
Find the ledger L′ among Lu’s with valid signature which has clear majority
(more than 80 %)
CurrentLedger ← L′

Algorithm 1. Closing the ledger

against the transactions included in the ledger). This transaction will be then
appended to the ledger (L.apply(t)), and the balance of the sender/recipient will
be appropriately updated. Each validating server v will forward a signed hash
of its version of L in the network. A ledger is considered validated (and closed)
by server v when a clear majority 80% of validating servers which are contained
in v’s UNL also sign the same ledger L. After closing the ledger, transactions
which have been received during the consensus phase will be processed, and the
next round will start.

2.4 Ripple Vs. Bitcoin

In what follows, we briefly discuss the security and privacy provisions of Ripple
in relation to the well-investigated Bitcoin system.

Security: Similar to Bitcoin, Ripple relies on ECDSA signatures to ensure the
authenticity and non-repudiation of transactions in the system. Furthermore,
since Ripple is an open payment system (like Bitcoin), all transactions and their
orders of execution are publicly available. This ensures the detection of any
double-spending attempt (and of malformed transactions). In Ripple, validating
servers check the log of all transactions in order to select and vote for the correct
transactions in the system. In this way, Ripple adopts a voting scheme across
all validating servers (one vote per each validating server); the transactions for
which (80 % of) the validators agree upon are considered to be valid [36]. Ripple
Labs claim it is easy to identify colluding validators and recommend users to
choose a set of heterogenous validators which are unlikely to be coerced as a
group and are unlikely to collude.

170 F. Armknecht et al.

Notice that if validators refuse to come to a consensus with each other, this
is detectable by other validators, which then pronounce the network broken. In
this case, the only way to resolve the problem would be to manually analyze the
signed validations and proposals to see which validators were being unreasonable
and for all honest participants to remove those validators from the UNLs (i.e.,
from the lists of validators they try to come to a consensus with). As far as we
are aware, there is no formal security treatment of the correctness of Ripple’s
consensus protocol; this protocol has recently received some criticism [13,25].
In Sect. 3, we show that the current choice of parameters does not prevent the
occurrence of forks in the system, and we give a necessary and sufficient condition
to prevent any fork in the system.

In contrast, Bitcoin security has been thoroughly investigated in numerous
studies, and as such is better understood than Ripple. In Bitcoin, transaction
security is guaranteed by means of Proof of Work (PoW) which replaces the vote
per validating server notion of Ripple, with a vote per computing power of the
miners that are solving the PoW. Unlike Ripple, once transactions are confirmed
in the global ledger (i.e., once transactions receive six confirmation blocks), it
is computationally infeasible to modify these transactions [30]. In contrast, in
Ripple, if at any instant in time the majority of the validating servers becomes
malicious, then they can rewrite the entire history of transactions in the system.
Recall that, at the time of writing, there are only a handful of Ripple validating
servers which are mostly maintained by the Ripple Labs; if these servers are
compromised, then the security of Ripple is at risk.

Fast Payments: In Bitcoin, payments are confirmed by means of PoW in Bit-
coin blocks every 10 min on average. A study in [26] has shown that the gen-
eration of Bitcoin blocks follows a geometric distribution with parameter 0.19.
This means that, since transactions are only confirmed after the generation of
six consecutive blocks, then a payment is only confirmed after 1 hour on average.
Although Bitcoin still recommends merchants to accept fast payments—where
the time between the exchange of currency and goods is short (i.e., in the order
of few seconds), several attacks have been reported against fast payments in
Bitcoin [26]; a best-effort countermeasure has also been included in the Bitcoin
client [26].

Unlike Bitcoin, Ripple inherently supports fast payments. As shown in
Fig. 3(a), almost all ledgers are closed within few seconds; this also suggests
that payments in Ripple can be verified after few seconds from being executed.

Privacy and Anonymity: Ripple and Bitcoin are instances of open payment
systems. In an open payment system, all transactions that occur in the system
are publicly announced. Here, user anonymity is ensured through the reliance
on pseudonyms and/or anonymizing networks, such as TOR [15]. Users are also
expected to have several accounts (corresponding to different pseudonyms) in
order to prevent the leakage of their total account balance. Notice that, in
Bitcoin, transactions can take different inputs, which originate from different
accounts. This is not the case in Ripple, in which payments typically have a
single account as input.

Ripple: Overview and Outlook 171

Although user identities are protected in Ripple and Bitcoin, the transac-
tional behavior of users (i.e., time and amount of transactions) is leaked in
the process—since transactions are publicly announced in the system. In this
respect, several recent studies have shown the limits of privacy in open payment
systems [11,31,37]. There are also several proposals for enhancing user privacy in
these systems; most proposals leverage zero-knowledge proofs of knowledge and
cryptographic accumulators in order to prevent tracking of expenditure in the
network [10,28]. Although most of these studies focus on the Bitcoin system, we
argue that they equally apply to Ripple. Recently, a secure privacy-preserving
payment protocol for credit networks which provides transaction obliviousness
has been proposed [29].

Clients, Protocol Update, and Maintenance: Both Ripple and Bitcoin
are currently open source, which allows any entity to build and release its own
software client to interface with either systems. The official clients for Bitcoin and
Ripple are however maintained and regularly updated by the Bitcoin foundation,
and Ripple Labs respectively. Bitcoin clients can also run on resource-constrained
devices such as mobile phones—owing to the simple payment verification of
Bitcoin [30]. As far as we are aware, there exists no secure lightweight version of
Ripple.

Notice that all changes to the official Bitcoin client are publicly discussed in
online forums, well justified, and voted on amongst Bitcoin developers [18]. This
process is however less transparent in Ripple.

((De-)Centralized Deployment: Ripple and Bitcoin leverage completely de-
centralized protocols. Nevertheless, a recent study has shown the limits of de-
centralization in the current deployment of Bitcoin; here, it was shown that only
a handful of entities can control the security of all Bitcoin transactions [18].

We argue that the current deployment of Ripple is also centralized. At the
time of writing, most validating servers are run by Ripple Labs. Although there
are few other servers that are run by external entities, the default list of validating
servers for all clients point to the ones maintained by Ripple Labs. This also sug-
gests that Ripple Labs can control the security of all transactions that occur in
the Ripple system. Moreover, Ripple Labs and its founders retain a considerable
fraction of XRPs; this represents the largest holdback of any crypto-currency [4]
and suggests that Ripple Labs can currently effectively control Ripple’s economy.
We contrast this to Bitcoin, where the current system deployment is not entirely
decentralized, yet the entities which control the security of transactions, the pro-
tocol maintenance and update, and the creation of new coins are distinct [18].
In Ripple, the same entity, Ripple Labs, controls the fate of the entire system.

3 Analysis of Forking in Ripple

The security of Ripple relies on the fact that the majority of the validating
servers are honest and correctly verify all the received transactions. Here, ledgers
fork constitute a major threat to the correct operations of the system. Forks can

172 F. Armknecht et al.

occur if two conflicting ledgers get clear majority votes, and could lead to double-
spending attacks [26].

Ripple claims that forks cannot occur if the UNL of any two servers u and v
intersect in at least 20 % of the remaining validating servers ID [38]:

|UNLu ∩ UNLv| ≥ 1
5

max{|UNLu|, |UNLv|}∀u, v. (1)

Recently, several forks [13,25] however lead to serious concerns about the
correctness of the Ripple consensus protocol and the requirements for forks in
the system. In what follows, we take a second look at the conditions for which a
fork can occur in Ripple. More precisely, we investigate the values wu,v, such that:

|UNLu ∩ UNLv| ≥ wu,v(max{|UNLu|, |UNLv|})∀u, v. (2)

Notice that in the current specification of Ripple, wu,v = 0.2 is required. We
now show that this threshold is not sufficient to prevent forks in the system by
means of a counter-example. Namely, consider the situation where |UNLu| =
|UNLv| = 5 and |UNLu ∩UNLv| = 2. Obviously, it holds that |UNLu ∩UNLv| =
0.4 · max{|UNLu|, |UNLv|}. Assume now that one server in UNLu ∩UNLv votes
for L1 and the other for (conflicting ledger) L2. Moreover, assume that all servers
in UNLu\UNLv vote for L1 and similarly all servers in UNLv\UNLu vote for L2.
This means that a majority of 80 % in UNLu vote for L1 and likewise a majority
of 80 % in UNLv vote for L2. This clearly results in a fork in the system.

As this example shows, the condition displayed in Eq. 2 cannot prevent forks
in general for values wu,v ≤ 0.4. In the following, we will prove that if the
intersection set size between the UNL of any two servers is more than 40 % of
size of the largest UNL, that is wu,v > 0.4, then forks in Ripple are impossible.
The consequence is that forks in Ripple are impossible if and only if

|UNLu ∩ UNLv| > 0.4 · max{|UNLu|, |UNLv|}∀u, v. (3)

For the sake of readability, we denote the threshold value for any transaction
to get clear majority votes by ρ where 0.5 < ρ ≤ 1. We then prove that forks
are not possible if wu,v > ρ/2 for any servers u and v.

Recall that a fork refers to the situation that two different validating servers
u and v agree on conflicting ledgers L1 �= L2. This means that at least a fraction
ρ of servers in UNLu agree on ledger L1 and at least a fraction ρ of servers in
UNLv agree on ledger L2. We consider the following sets:

A := UNLu \ UNLv, B := UNLu ∩ UNLv, C := UNLv \ UNLu. (4)

For each server contained in UNLu ∪ UNLv, three possible cases my occur:

Case 1: The server publishes ledger L1.
Case 2: The server publishes ledger L2.
Case 3: The server does not reply or publishes any other ledger besides L1

and L2.

Ripple: Overview and Outlook 173

In the sequel, we denote by A1 the subset of servers in set A publishing L1, by
A2 the subset of servers in A publishing L2, and by A3 the subset of servers
publishing neither L1 nor L2. Clearly, A1, A2 and A3 are mutually exclusive,
and |A1| + |A2| + |A3| = |A|. Analogously, we define sets B1, B2, B3, C1, C2,
and C3 (cf. Eq. 4).

Necessary Conditions for Forking: According to the specification of Ripple,
it holds that if more than a fraction ρ of the servers present in any server’s UNL
publishes the same validation ledger hash, that ledger will be accepted by that
server. Hence,

1. Ledger L1 will be accepted by server u if and only if

|A1| + |B1| ≥ ρ(|A1| + |A2| + |A3| + |B1| + |B2| + |B3|)
⇔ (1 − ρ)(|A1| + |B1|) ≥ ρ(|A2| + |A3| + |B2| + |B3|)

⇔ |A1| + |B1| ≥ ρ

1 − ρ
(|A2| + |A3| + |B2| + |B3|) (5)

2. Likewise, ledger L2 will be accepted by server v if and only if

|B2| + |C2| ≥ ρ

1 − ρ
(|B1| + |B3| + |C1| + |C3|) (6)

Minimum Intersection Size: Notice that a fork is only possible if both
Eqs. 5 and 6 are satisfied. Assuming that |UNLu ∩UNLv| > wu,v max{|UNLu|,
|UNLv|}∀u, v, we show in what follows that wu,v ≥ 0.4 ensures that no fork can
occur in Ripple.

Observe that:

|UNLu ∩ UNLv| > wu,v · |UNLu|
|B1| + |B2| + |B3| > wu,v(|A1| + |A2| + |A3| + |B1| + |B2| + |B3|)

(1 − wu,v)(|B1| + |B2| + |B3|) > wu,v(|A1| + |A2| + |A3|)
(|B1| + |B2| + |B3|) >

wu,v

1 − wu,v
(|A1| + |A2| + |A3|) (7)

Similarly, we have:

(|B1| + |B2| + |B3|) >
wu,v

1 − wu,v
(|C1| + |C2| + |C3|) (8)

Now, adding Eqs. (7) and (8) we get,

(|B1| + |B2| + |B3|) >
wu,v

2(1 − wu,v)
(|A1| + |A2| + |A3| + |C1| + |C2| + |C3|) (9)

Assuming that both Eqs. 5 and 6 are satisfied, it follows that:

|A1| + |B1| + |B2| + |C2| ≥ ρ

1 − ρ
(|A2| + |B2| + |B1| + |C1| + |A3| + |C3|)

+
2ρ

1 − ρ
|B3|

|A1| + |C2| ≥ ρ

1 − ρ
(|A2| + |C1| + |A3| + |C3|)

+
2ρ − 1
1 − ρ

(|B1| + |B2| + |B3|) +
1

1 − ρ
|B3|. (10)

174 F. Armknecht et al.

Combining Eqs. 9 and 10, we get the following strict inequality:

|A1| + |C2| >
ρ

1 − ρ
(|A2| + |C1| + |A3| + |C3|)

+
(2ρ − 1)wu,v

2(1 − ρ)(1 − wu,v)
(|A1| + |A2| + |A3| + |C1| + |C2| + |C3|)

+
1

1 − ρ
|B3|

This can be rephrased to:

(1− (2ρ − 1)wu,v

2(1− ρ)(1− wu,v)
) >

1

(|A1|+ |C2|)
︸ ︷︷ ︸

≥0

·

⎡

⎢

⎢

⎢

⎢

⎣

(
ρ

1− ρ
︸ ︷︷ ︸

≥0

+
(2ρ − 1)wu,v

2(1− ρ)(1− wu,v)
︸ ︷︷ ︸

≥0

) (|A2|+ |A3|+ |C1|+ |C3|)
︸ ︷︷ ︸

≥0

+
1

1− ρ
|B3|

︸ ︷︷ ︸

≥0

⎤

⎥

⎥

⎥

⎥

⎦

As already marked, the right-hand side is ≥ 0. Hence, this cannot hold if:

(1 − (2ρ − 1)wu,v

2(1 − ρ)(1 − wu,v)
) ≤ 0

(2 − 2ρ)(1 − wu,v) − (2ρ − 1)wu,v ≤ 0
(2 − 2ρ − wu,v) ≤ 0

wu,v ≥ 2(1 − ρ)

In consequence, if |UNLi ∩UNLj | > 2(1 − ρ)max{|UNLi|, |UNLj |}∀i, j, then
no fork can occur in Ripple for sure. Since ρ = 0.8 in the current Ripple system,
a sufficient condition for preventing forks is to ensure wu,v > 0.4 for all servers
u and v.

4 Ripple Under the Hood

In this section, we study the current deployment of Ripple. For that purpose, we
extract relevant statistics about the use of Ripple in the period from January
2013 till January 2015.

At the time of writing, there are more than 12 million ledgers starting from
January 2013 [33]. Ripple also claims to have little above 150,000 accounts with
an average of almost 170 accounts created per day since the launch of the system.

To better understand the current usage and dynamics in Ripple, we built a
parser using Java, which uses the Websocket protocol to download and parse
ledgers created in the period between January 2013 and January 2015 from the
main Ripple server1, and from three auxiliary servers2. Our parser leverages the
1 Available from s1.ripple.com.
2 Available from s-east.ripple.com, and s-west.ripple.com.

http://www.s1.ripple.com
http://www.s-east.ripple.com
http://www.s-west.ripple.com

Ripple: Overview and Outlook 175

Fig. 2. Distribution of the number of transactions per address in Ripple in Janu-
ary/February 2015.

Tyrus library [3] and a connection pool to access a local MySQL database which
stores information acquired from the downloaded ledgers. For ease of presenta-
tion, we divide the period of study into 5 different time intervals comprising of
2 months each. In total, we parsed a total of 4,645,799 ledgers comprising over
33,304,766 transactions, and 153,637 total accounts.

Transactions per account: Figure 2 depicts the distribution of transactions
per Ripple account in the parsed ledgers. Our results show that most (> 99%)
Ripple accounts have performed very few transactions in the system. Notice
that this does not necessarily provide evidence that Ripple users are inactive;
for example, privacy-aware users could set up, in theory, different accounts for
each transaction they perform in order to prevent the leakage of their total
balance in the system [11].

Ledger closing time: In Fig. 3(a), we measure the time elapsed between the
creation of two successive ledgers in the time interval spanning across January
and February 2015. Our results show that indeed most ledgers are finalized in
few seconds; while we observe that some ledgers take around 30–40 s to close,
almost 99 % of the ledgers created in the first two months of 2015 were closed
in less than 20 s.

Transactions dynamics over time: In Fig. 3(b), we compute the number of
performed Ripple transactions over time. Our findings show that the number
of transactions performed in the Ripple system has been steadily increasing
over time. For instance, in the first two months of 2015, more than 20,000,000
Ripple transactions have been executed. Our findings however indicate that more
than 60 % of these transactions correspond to Offers in the system—and not to
actual payments—while OfferCancel transactions correspond to 20 % of the total
transactions in the system. Payment transactions comprise less than 15 % of the
total transactions in the system, and are only increasing marginally over time.
For example, there are almost 33,000 payment transactions per day, on average,
starting from March 2014 and until February 2015. Our results also show that
there were a total of 6765 distinct accounts whose trust had been extended to
using TrustSet transactions.

176 F. Armknecht et al.

Fig. 3. Characterization of the Ripple system in the period between January 2013 and
January 2015.

In Fig. 3(c) and (d), we further analyze the payment transactions performed
in the Ripple system; our findings show that direct XRP to XRP transactions
comprise the majority of transactions performed in Ripple. For example, in the
first two months of 2015, there were almost 2 million payments in Ripple (cf.
Fig. 3(b)); as shown in Fig. 3(c), almost 1.8 million of those correspond to direct
XRP transactions.

Although Ripple was used as a medium to exchange BTCs in March/April
2014, we further remark that Bitcoin trade in Ripple has considerably shrunk
in the first two months of 2015 to less than 1 % of the performed payments.
Moreover, in July/August 2014, our findings suggest that the Ripple system has
witnessed a considerable setback in the number of direct XRP transactions, and
in the trade of digital currencies, such as Bitcoin. We also remark that other
digital currencies, such as Stellar, are rarely traded in the Ripple system.

In terms of the trade of fiat currencies, our results show that trading of fiat
currencies represents almost 10 % of the actual payments in Ripple in the start of
2015. However, as shown in Fig. 3(d), our findings suggest that extremely large
amounts of fiat currencies are being traded in Ripple. For instance, we measure
the trading of almost 1 · 1016 USD in March/April 2014. Our results show that
only a handful of payments trade such obscene amounts; we believe that these
payments are not actual payments, but could result from testing/debugging in
the system3.
3 Recall that Ripple has no means to enforce the execution of payments.

Ripple: Overview and Outlook 177

Fig. 4. Characterization of IOU payments in the Ripple system over time starting from
February 2013.

OfferCreate evolution: Figure 4(a), (b), (c), and (d) depict the distribution of
OfferCreate transactions in the system. Recall that these transactions comprise
almost 60 % of Ripple transactions, and are mainly performed by the market
makers that populate the system. Our findings suggest that, as expected, the
biggest market makers offer the trading of XRP to BTCs, USD, and EUR.
Additional market makers offering the trade of XRP to CNY and JPY emerged
starting from November 2013, and March 2014, respectively. There are also a
considerable number of Offers for trading major fiat currencies such as USD and
EUR. Although the total number of offers is growing over time, we do not find
evidence for growth of the corresponding Ripple payments.

Summary of findings: In summary, our results suggest that—although it has
been introduced almost 2 years ago—Ripple is still far from being used as a trade
platform. Ripple advertises a large number of active accounts [33]. However, we
do not find strong evidence that users are active in Ripple; most accounts con-
tain a small number of XRPs—which users e.g., could have received from the
one of the many giveaways organized by Ripple Labs [32]. Moreover, although
the number of transactions in Ripple seems to be considerably increasing over
time, most of the transactions in the system (>70 %) correspond to OfferCreate
and OfferCancel transaction types. The number of actual payments in the sys-
tem is only marginally increasing over time, and is dominated by direct XRP
payments. Finally, although there are a number of currency exchanges performed

178 F. Armknecht et al.

via Ripple—some of which deal with huge amounts—it is hard to tell whether
those transactions have been actually concluded since the Ripple system has no
way to enforce IOU transactions.

5 Related Work

Although Bitcoin and its many variants have received considerable attention in
the literature, there are surprisingly no studies—as far as we are aware—which
analyze Ripple.

Bonneau et al. [12] provide a comprehensive exposition of the second gener-
ation crypto-currencies, including Bitcoin and the many alternatives that have
been implemented as alternate protocols. However, this work does not provide
any insights on the Ripple protocol.

In [26,27], Karame et al. thoroughly investigate double-spending attacks in
Bitcoin and show that double-spending fast payments in Bitcoin can be per-
formed in spite of the measures recommended by Bitcoin developers. In [11,17],
the authors evaluate user privacy in Bitcoin and show that Bitcoin leaks consid-
erable information about users. In [31], Ober et al. studied the time-evolution
properties of Bitcoin. In [29], Moreno-Sanchez et al. propose a provably secure
privacy-preserving payment protocol for credit networks, such as Ripple.

6 Conclusion

In this paper, we studied the current deployment of the Ripple payment system.
We showed that although Ripple leverages a decentralized consensus protocol,
the current deployment of Ripple is not decentralized, and offers unconditional
power for Ripple Labs to control the fate and security of all Ripple transactions.

We also showed that the currently adopted assumptions to prevent the occur-
rence of forks in the system are insufficient. Namely, our findings show that the
intersection set size between the UNL of any two validating servers needs to be
more than 40 % of the maximum UNL set size in order to ensure the absence of
any fork in the system. Finally, we analyzed the current usage of the Ripple sys-
tem; our results show that most users in Ripple seem inactive, and that Ripple
is still not being widely used as a trade platform.

Our results motivate the need for a rigorous analysis of the Ripple system
prior to any large scale deployment. We therefore hope that our findings solicit
further research in this area.

Acknowledgements. The authors would like to thank Ludovic Barman for the help
in extracting the relevant statistics from the Ripple ledgers.

Ripple: Overview and Outlook 179

References

1. Litecoin: Open source P2P internet currency. https://litecoin.org/
2. Namecoin: A trust anchor for the internet. https://namecoin.info/
3. Project tyrus. https://tyrus.java.net/
4. Ripple. http://en.wikipedia.org/wiki/Ripple %28payment protocol%29
5. Ripple labs circling 30m$ in funding. http://www.pymnts.com/news/2015/

ripple-labs-circling-30m-in-funding/#.VRLnJfnF98F
6. Ripple: Opening access to finance. https://ripple.com/
7. Ripple validating servers. https://ripple.com/ripple.txt
8. Snapswap Ripple gateway. https://snapswap.us/#/
9. US banks announce Ripple protocol integration. http://www.coindesk.com/

us-banks-announce-ripple-protocol-integration/
10. Androulaki, E., Karame, G.O.: Hiding transaction amounts and balances in Bit-

coin. In: Trust and Trustworthy Computing - 7th International Conference, TRUST
2014, Heraklion, Crete, Greece, 30 June – 2 July, 2014. Proceedings, pp. 161–178
(2014)

11. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013)

12. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy, May 2015

13. Buterin, V.: Bitcoin network shaken by blockchain fork. https://bitcoinmagazine.
com/3668/bitcoin-network-shaken-by-blockchain-fork/

14. Coinist Inc., Ripple gateways. https://coinist.co/ripple/gateways
15. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion

router. In: Proceedings of the 13th Conference on USENIX Security Symposium,
SSYM 2004, Berkeley, CA, USA, vol. 13, p. 21. USENIX Association (2004)

16. Elias, M.: Bitcoin: Tempering the digital ring of gyges or implausible pecuniary
privacy (2011). http://ssrn.com/abstract=1937769

17. Gervais, A., Capkun, S., Karame, G.O., Gruber, D.: On the privacy provisions
of bloom filters in lightweight bitcoin clients. In: Proceedings of the 30th Annual
Computer Security Applications Conference, ACSAC 2014, 8–12 December, 2014,
New Orleans, LA, USA, pp. 326–335 (2014)

18. Gervais, A., Karame, G.O., Capkun, V., Capkun, S.: Is Bitcoin a decentralized
currency? IEEE Secur. Priv. 12(3), 54–60 (2014)

19. Ghosh, A., Mahdian, M., Reeves, D.M., Pennock, D.M., Fugger, R.: Mechanism
design on trust networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS,
vol. 4858, pp. 257–268. Springer, Heidelberg (2007)

20. International Ripple Business Association. Listed businesses. http://www.xrpga.
org/listed-businesses.html

21. International Ripple Business Association. Ripple exchangers. http://www.xrpga.
org/exchangers.html

22. International Ripple Business Association. Ripple gateways. http://www.xrpga.
org/gateways.html

23. International Ripple Business Association. Ripple market makers. http://www.
xrpga.org/market-makers.html

24. International Ripple Business Association. Ripple merchants. http://www.xrpga.
org/merchants.html

https://litecoin.org/
https://namecoin.info/
https://tyrus.java.net/
http://en.wikipedia.org/wiki/Ripple_%28payment_protocol%29
http://www.pymnts.com/news/2015/ripple-labs-circling-30m-in-funding/#.VRLnJfnF98F
http://www.pymnts.com/news/2015/ripple-labs-circling-30m-in-funding/#.VRLnJfnF98F
https://ripple.com/
https://ripple.com/ripple.txt
https://snapswap.us/#/
http://www.coindesk.com/us-banks-announce-ripple-protocol-integration/
http://www.coindesk.com/us-banks-announce-ripple-protocol-integration/
https://bitcoinmagazine.com/3668/bitcoin-network-shaken-by-blockchain-fork/
https://bitcoinmagazine.com/3668/bitcoin-network-shaken-by-blockchain-fork/
https://coinist.co/ripple/gateways
http://ssrn.com/abstract=1937769
http://www.xrpga.org/listed-businesses.html
http://www.xrpga.org/listed-businesses.html
http://www.xrpga.org/exchangers.html
http://www.xrpga.org/exchangers.html
http://www.xrpga.org/gateways.html
http://www.xrpga.org/gateways.html
http://www.xrpga.org/market-makers.html
http://www.xrpga.org/market-makers.html
http://www.xrpga.org/merchants.html
http://www.xrpga.org/merchants.html

180 F. Armknecht et al.

25. Joyes, K.: Safety, liveness and fault tolerance - the consensus choices. https://www.
stellar.org/blog/safety liveness and fault tolerance consensus choice/

26. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in Bit-
coin. In: Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, CCS 2012, New York, NY, USA, pp. 906–917. ACM (2012)

27. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbehavior
in Bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst.
Secur., 18(1), 2:1–2:32 (2015)

28. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from Bitcoin. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy, SP 2013, Washington, DC, USA, pp. 397–411. IEEE Computer Society
(2013)

29. Moreno-Sanchez, P., Kate, A., Maffei, M., Pecina, K.: Privacy preserving payments
in credit networks: Enabling trust with privacy in online marketplaces. In: Network
and Distributed System Security (NDSS) Symposium (2015)

30. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009). http://
bitcoin.org/bitcoin.pdf

31. Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the Bitcoin
transaction graph. Future Internet 5(2), 237–250 (2013)

32. Ripple Labs Inc., Giveaways - XRPtalk. https://xrptalk.org/forum/105-giveaways/
33. Ripple Labs Inc., Ripple charts. https://www.ripplecharts.com
34. Ripple Labs Inc., Setup a validating server. https://wiki.ripple.com/Setup a

validating server
35. Ripple Labs Inc., Transactions. https://ripple.com/build/transactions/
36. Ripple Labs Inc., Why is Ripple not vulnerable to Bitcoin’s 51 % attack?
37. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.

In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013)

38. Schwartz, D., Youngs, N., Britto, A.: The Ripple protocol consensus algorithm
(2014). https://ripple.com/files/ripple consensus whitepaper.pdf

https://www.stellar.org/blog/safety_liveness_and_fault_tolerance_consensus_choice/
https://www.stellar.org/blog/safety_liveness_and_fault_tolerance_consensus_choice/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://xrptalk.org/forum/105-giveaways/
https://www.ripplecharts.com
https://wiki.ripple.com/Setup_a_validating_server
https://wiki.ripple.com/Setup_a_validating_server
https://ripple.com/build/transactions/
https://ripple.com/files/ripple_consensus_whitepaper.pdf

Time to Rethink: Trust Brokerage Using
Trusted Execution Environments

Patrick Koeberl1, Vinay Phegade2, Anand Rajan2, Thomas Schneider3,
Steffen Schulz1(B), and Maria Zhdanova4

1 Intel Labs, Darmstadt, Germany
{patrick.koeberl,steffen.schulz}@intel.com

2 Intel Labs, Portland, ON, USA
{vinay.phegade,anand.rajan}@intel.com

3 TU Darmstadt, Darmstadt, Germany
thomas.schneider@ec-spride.de

4 Fraunhofer SIT, Darmstadt, Germany
maria.zhdanova@sit.fraunhofer.de

Abstract. Mining and analysis of digital data has the potential to pro-
vide improved quality of life and offer even life-saving insights. However,
loss of privacy or secret information would be detrimental to these goals
and inhibit widespread application. Traditional data protection measures
tend to result in the formation of data silos, severely limiting the scope
and yield of “Big Data”. Technology such as privacy-preserving multi-
party computation (MPC) and data de-identification can break these
silos enabling privacy-preserving computation. However, currently avail-
able de-identification schemes tend to suffer from privacy/utility trade-
offs, and MPC has found deployment only in niche applications.

As the assurance and availability of hardware-based Trusted Exe-
cution Environments (TEEs) is increasing, we propose an alternative
direction of using TEEs as “neutral” environments for efficient yet secure
multi-party computation. To this end, we survey the current state of the
art, propose a generic initial solution architecture and identify remaining
challenges.

1 Introduction

Large amounts of data are created and accumulated all around us. This trend is
increasing and data is commonly named the digital fuel of the 21st century. In
fact, analyzing such “big data” has huge expected business value. Already today,
many applications in all areas of life benefit from such big data analysis ranging

Thomas Schneider—This work has been co-funded by the European Union (EU
FP7/2007-2013) grant agreement n. 609611 (PRACTICE), by the DFG project E3
within the CRC 1119 CROSSING, by the BMBF within EC SPRIDE, and by the
Hessian LOEWE excellence initiative within CASED.
Maria Zhdanova—This work has been co-funded by the EU project PRIPARE ID
610613.

c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 181–190, 2015.
DOI: 10.1007/978-3-319-22846-4 11

182 P. Koeberl et al.

from “people you might know” in social networks, over rating and reputation
systems on eBay, to product recommendations on Amazon. However, privacy
and security of data is increasingly critical to these applications as consumers
become aware of the risks associated with aggregating digital identities, payment
information and personal profiles in the cloud. Similarly, companies are hesitant
to make their data assets available for external analysis due to the risk of losing
control or violating their clients’ privacy. As a result, vast amounts of data remain
locked in data silos, unavailable to use for business and research.

Breaking the Data Silos. A solution to privacy-preserving multiparty compu-
tation must assure that data owners retain control of the data during transfer,
storage and processing. In addition to data confidentiality, it must be assured
that privacy is maintained even when results of different computations are com-
bined or correlated with public information. Privacy-preserving filtering schemes
must be applied to prevent such attacks, and the system must allow the data
owners to flexibly negotiate and enforce such policies. Finally, data owners must
obtain assurances that the requested policies are enforced and able to revoke
access on violation. However, even if a solution meets all these security and
privacy requirements, which have been the focus of much prior work, it must
also meet some key ecosystem requirements in order to qualify as a practical
solution:

1. Solution Cost: This includes cost to design the solution, and total cost to
run and maintain the solution during deployment. The cost will increase if
the system is complex to design, maintain or requires frequent re-design for
different usages. Enabling existing developer skill sets, leveraging tools and
automation are important factors for broad ecosystem acceptance.

2. Data Utility: In order to assure the privacy and confidentiality of the com-
putation, implementations may demand sacrifices on the extent and accu-
racy of data sets. An ideal implementation should not limit the available
privacy/utility trade-offs.

3. Performance & Scalability: Computational performance is important for
the overall cloud analytics scenario to be economically viable. For interactive
applications, users require acceptable application responsiveness. Addition-
ally, as data size grows from terabytes to petabytes, the computation should
be able to scale to distributed storage and computation networks.

Our Contributions. This position paper proposes a TEE-based “trust broker-
age” approach that enables multiple parties to compute under previously agreed
security assurances. We review current approaches based on Secure Multi-Party
Computation (MPC) and Data De-Identification (DDI) in Sect. 2, pointing to
the significant recent advances in Trusted Execution Environments (TEEs). We
then describe a generic TEE-based solution architecture in Sect. 3 and compare
it with previous approaches. As expected, a TEE-based solution is more efficient
than MPC and enables better data utility and flexibility than DDI. We conclude
with a call to action in Sect. 4, detailing the major research challenges that must
still be resolved to achieve a secure and scalable solution.

Time to Rethink: Trust Brokerage Using Trusted Execution Environments 183

2 Research Developments and State of the Art

In the following we review the state of the art in secure multi-party computation
(Sect. 2.1), data de-identification (Sect. 2.2), and trusted execution environments
(Sect. 2.3).

2.1 Secure Multi-party Computation

Secure Multi-party Computation (MPC) was invented in the late 1980s [12,27].
It allows two or multiple parties to jointly evaluate a function on their joint
inputs without revealing anything but the result of the computation.

During the first twenty years after its invention, MPC was perceived as a
feasibility result of theoretical interest. However, the situation changed in 2004
where the Fairplay project presented the first MPC implementation [16]. Since
then, MPC has received renewed interest and many tools have been

The first real-world deployment of MPC was the Danish sugar beets auction
in 2009 [3]. Since then, some small companies have developed the first MPC prod-
ucts, e.g., Cybernetica’s Sharemind1 to analyze confidential data, The Alexandra
Institute’s Partisia2 for auctions and exchanges, or Dyadic Security3 to protect
against server breaches. However, some major roadblocks remain for large-scale
deployment of MPC, mainly due to its low performance and high design costs
that do not yet meet RoI expectations.

The drawback of MPC is that protocols often represent the computation
function as a Boolean circuit, which results in of billions of gates for realistic
applications. The runtime and communication of today’s most efficient MPC
protocols is linear in the size of this circuit.

MPC is designed for a world without trusted third parties, which would
otherwise be able to retrieve all necessary inputs, compute the function and
return the output to participants. In fact, MPC literature often argues that such
trusted third parties do not exist or point to the poor computation and I/O
capabilities of smartcards. However, some researchers also suggested to improve
MPC performance by extending it with trusted hardware, e.g., [7,13].

2.2 Data De-Identification (DDI)

Data De-identification (DDI) is a procedure where personally identifying infor-
mation is removed from a data set to ensure that distinct data items cannot be
linked to individuals. It is different from anonymization and pseudonymization in
that some identifying information may be retained in the data or remain acces-
sible to trusted parties. Depending on the context, various types of information
may be considered personally identifying, for example, it was shown that 87 %
of US citizens can be uniquely identified by the combination of ZIP code, date of
birth, and sex [25]. Unlike direct identifiers which are easily masked or deleted,

1 https://sharemind.cyber.ee.
2 http://alexandra.dk/uk/expertise/products/partisia.
3 https://www.dyadicsec.com.

https://sharemind.cyber.ee
http://alexandra.dk/uk/expertise/products/partisia
https://www.dyadicsec.com

184 P. Koeberl et al.

such quasi-identifiers tend to be valuable for analytics and are often retained,
leaving a risk of re-identification.

Methods for mitigating the risk of re-identification were presented as early as
1974 as part of Statistical Disclosure Control (SDC) [4]. SDC methods include
(1) non-perturbative techniques that re-encode attributes without modifying ini-
tial values, (2) perturbative techniques which add noise, randomize or aggregate
attributes, and (3) generation of synthetic data such that the initial relation-
ships and characteristics are preserved. However, depending on the computation
to be performed, such modifications can destroy the integrity of data, reduce
their quality and change overall statistics, rendering them useless for analytics.
Moreover, SDC does not consider the problem of combining results of multiple
carefully crafted queries to extract private information [25].

The first formalized privacy protection model which considers the challenge of
outsourcing data for processing by remote parties was introduced as k-anonymity
in 2002 [25]. Generally, k-anonymity can be achieved, e.g., by generalizing or sup-
pressing identifying attributes until the data item does not differ anymore from
the other k − 1 items. However, neither k-anonymity nor its various variations
achieve reasonable data utility while ensuring complete privacy [8].

Besides respondents privacy, two additional dimensions are distinguished
when outsourcing sensitive data for external analytics today: the privacy of data
owners and that of data users [5]. Owner privacy aims to protect both the data
and associated knowledge, for example, data mining rules. This is the focus of
privacy-preserving data mining which comprises a variety of methods from sta-
tistics and database theory to cryptography to allow sharing of data for analysis
and publish the results without jeopardizing owner privacy [26]. Among these,
differential privacy emerged to achieve strong privacy guarantees for statistical
databases which does not depend on the background knowledge of an adversary
(data linkage attacks) or her ability to perform series of random queries (data-
base reconstruction attacks) [9]. Differential privacy considers the setting where
a trusted database curator processes statistical queries of the users, using a ran-
domized mechanism to ensure that the published results do not reveal if any
single data item is part of the computation or not [10]. Several implementations
have been proposed recently [10], e.g., Fuzz4 and GUPT5, however, the balance
between data utility and privacy assurance remains a problem.

User privacy deals with hiding user access patterns to a remote data source,
such as which particular item the user wanted to retrieve with the query. Pri-
vate Information Retrieval (PIR) solves this problem with reasonable efficiency6,
though it does not scale well with the number of accessible records [5].

2.3 Advancements in Trusted Execution

Trusted Execution Environments (TEEs) allow the execution of software in such
a way that the main operating system and other “untrusted” software outside the
4 http://privacy.cis.upenn.edu/software.html.
5 https://github.com/prashmohan/GUPT.
6 http://percy.sourceforge.net/.

http://privacy.cis.upenn.edu/software.html
https://github.com/prashmohan/GUPT
http://percy.sourceforge.net/

Time to Rethink: Trust Brokerage Using Trusted Execution Environments 185

Fig. 1. Generic architecture of a Trust Brokerage solution.

TEE and its Trusted Computing Base (TCB) can neither violate the integrity
of the performed computation nor the secrecy of processed data [1,11].

Considering this conservative definition, variations of TEE technology have
been available and in fact widely deployed for many years in the form of secure
co-processors, remote management interfaces and smartcards. However, these
implementations are typically presented as fixed-function devices without an
option for user programming.

With the rise of modern Trusted Computing technology, the benefits of con-
trolled environments for verifiable (attested) code execution became more and
more apparent. A significant body of research investigated the design and imple-
mentation of execution environments which would remain unaffected by security
bugs in the “untrusted” or “non-secure” world and whose correct deployment,
execution and outputs could be cryptographically confirmed by the underlying
security infrastructure [17,21,24]). A variety of compelling usages have been
examined under this model including secure online banking, credential storage,
digital rights management and trusted virtual domains [2,18,24].

Today, we may be at the brink of a revolution in computer security as TEE
technology becomes a wide-spread feature of computing platforms. Products
such as ARM TrustZone and Texas Instruments M-Shield, which partition hard-
ware in a simple secure/non-secure world view, are starting to embrace the con-
cept of user-defined “trusted apps” which may be owned by different stakeholders
and managed through a platform-independent API [11].

The Intel� Software Guard Extensions (SGX) [14,19] represent the next
major step in this development. Intel� SGX enables users to run a large number
of independent TEEs with only minor performance overhead [22]. It provides
strong protection against software attacks including compromised hypervisors
and platform firmware, and also defeats some common hardware attacks [1].
Application developers are offered a single TEE API across large segments of the
computing spectrum, enabling modern software development and deployment
practices such as “trusted app markets”.

Following the trends in recent TEE research and attestation [6,15,20], we
expect this development to continue down to low-end, resource-constrained
devices, enabling an expansion of the trusted computing and TEE continuum
across the whole IoT spectrum.

186 P. Koeberl et al.

Table 1. Comparison of alternate approaches

Secure multiparty Data TEE solution

computation De-Identification

Solution Cost design per application design per data design per

& data application

Scalability multi-party multi-party multi-party

& interconnected

Data Utility filters applied after computation can be filters applied after

computation obstructed by filters computation

Performance low good good

Assurance high good good

Maturity deployed in niches widely deployed new approach

3 TEE-based Trust Brokerage and Computation

We propose to leverage modern TEEs and attestation for trust brokerage and
computing. As illustrated in Fig. 1, an analytics application running in a TEE
would perform computation on data sourced from multiple, mutually untrusting
data providers. The analytics application can be sourced from external software
providers and executes in a neutral environment with strong protection against
hardware and software attacks, while attestation and trusted channels enable
negotiation and commit to security and privacy policies.

In more detail, we envision the following generic flow: (1) The user selects
an analytics application, possibly from external application providers, and sub-
mits it for processing into the TEE of the compute provider. The application is
bundled with one or more supported security and privacy policy options to be
selected by the user. (2) The analytics application contacts the data providers,
attesting to the application identity, and security and privacy configuration
which were loaded into the TEE. (3) Before sourcing data to the analytics appli-
cation, the data providers verify the information provided in the attestation
report against the security and privacy policy associated with the requested
data set. (4) If the request complies with the respective policies, the data is pro-
vided to the analytics application using a trusted channel. The data or channel
may be subject to additional privacy protection filters depending on data pro-
tection policy. (5) The analytics application leverages TEE assurances to enforce
the security and privacy policies while computing the result. Data providers may
employ additional monitoring of requested data in order to validate the enforced
protection policy. (6) On completion, the analytics application may apply addi-
tional privacy-filters as determined by the data protection policy before returning
the results to the user.

Comparison of Approaches. Table 1 compares our TEE-based solution and
previously pursued MPC and DDI approaches with regard to the requirements

Time to Rethink: Trust Brokerage Using Trusted Execution Environments 187

Fig. 2. Major challenges in TEE-based Trust Brokerage.

outlined in Sect. 1. As can be seen, MPC achieves high assurance by using well-
established cryptographic techniques. Privacy filters can be applied after compu-
tation to provide privacy and confidentiality while maintaining high data utility.
Unfortunately, MPC solutions incur a high performance penalty and require
re-design for each application and data set. On the other hand, DDI solutions
achieve good performance, however, data utility is lowered as the computation
results may be distorted from privacy filters and designs cannot be generalized
across data sets. In comparison, our TEE-based solution exhibits good perfor-
mance as well as data utility. A lower solution cost is expected as applications
and privacy filters can be ported once and re-used as enforced by TEE policy.
Depending on the implementation, TEEs can deliver good assurance, however,
additional research is required to analyze the security of TEEs in this scenario
and mitigate possible attacks (see Sect. 4).

4 Research Challenges in TEE-based Trust Brokerage

While TEEs offer a scalable and efficient approach to trust brokerage, Fig. 2
points to a number of challenges which need to be addressed before a compre-
hensive solution can be achieved.

(1) Security Assessment. A number of TEE solutions have been proposed,
and it can be expected that more products with different security properties will
push into this market to cover the complete range of the computing spectrum. To
maximize the use of this technology, it is necessary to investigate and assess their
security properties and determine shortcomings based on the various possible
usages, such as the resistance to side-channel attacks, malicious cloud providers
and the level of isolation between multiple TEEs on the same platform.

(2) Application Security. While TEEs enable a major reduction of the trusted
computing base, it must be expected that TEE applications will have their
share of security vulnerabilities. Attackers will continue trying to trick users
into installing trojan horses and making wrong decisions. Hence we must revisit
known problems and solutions w.r.t. TEE applications, adopt modern defenses
such as control-flow integrity and investigate the role that new deployment and
attestation protocols might play.

188 P. Koeberl et al.

(3) Formalization and Policy. An advantage of MPC and DDI is their abil-
ity to provide formally provable assurances. This helps reasoning about provided
assurances and can be a basis for determining and negotiating abstract security
policies. We require a similar formalization of TEE security properties to nego-
tiate, assess and enforce a similar level of assurance.

(4) Privacy Processing. The assured execution provided by TEEs allows to
enforce privacy filtering after the computation has been performed, making it
less application dependent and also potentially enabling better privacy / data
utility trade-offs. Processing larger data chunks or streams may also enable more
efficient PIR schemes.

(5) Application Enablement. While prior work was focused on local TEE
usages such as secure credential storage (see Sect. 2.3), we envision multi-party
compute and collaboration services to enable a new secure cloud experience.
Some applications may only require a generic TEE compatibility layer, while oth-
ers will uniquely benefit from the deployment and policy negotiation technology
supported by TEEs. Examples in this direction are the Contractual Anonymity
System [23] and Verifiable Confidential Cloud Computing [22].

5 Conclusion

In this paper we propose TEE-based trust brokerage as a practical alternative
to privacy-preserving multi-party computation. Recent advances in TEEs move
us closer to a generic solution architecture that compares favorably with previ-
ous approaches in terms of efficiency, data utility and flexibility. A number of
research challenges remain to be solved in order to meet security and scalabil-
ity requirements; we detail these and suggest a path towards a comprehensive
solution.

References

1. Asokan, N., Ekberg, J.E., Kostiainen, K., Rajan, A., Rozas, C., Sadeghi, A.R.,
Schulz, S., Wachsmann, C.: Mobile trusted computing. Proceedings of the IEEE
102(8), 1189–1206 (2014)

2. Berger, S., Cáceres, R., Pendarakis, D.E., Sailer, R., Valdez, E., Perez, R.,
Schildhauer, W., Srinivasan, D.: TVDc: Managing security in the trusted virtual
datacenter. Operating Syst. Rev. 42(1), 40–47 (2008)

3. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.)
FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

4. Dalenius, T.: The invasion of privacy problem and statistics production. an
overview. Statistik Tidskrift 12, 213–225 (1974)

5. Danezis, G., Domingo-Ferrer, J., Hansen, M., Hoepman, J.H., Métayer, D.L.,
Tirtea, R., Schiffner, S.: Privacy and data protection by design - from policy to
engineering. Technical report, ENISA (2015)

Time to Rethink: Trust Brokerage Using Trusted Execution Environments 189

6. Defrawy, K.E., Francillon, A., Perito, D., Tsudik, G.: SMART: Secure and minimal
architecture for (establishing a dynamic) root of trust. In: Network and Distributed
System Security Symposium (NDSS 2012). The Internet Society (2012)

7. Demmler, D., Schneider, T., Zohner, M.: Ad-hoc secure two-party computation
on mobile devices using hardware tokens. In: USENIX Security Symposium, pp.
893–908. USENIX (2014)

8. Domingo-Ferrer, J., Torra, V.: A critique of k-anonymity and some of its enhance-
ments. In: Conference on Availability, Reliability and Security (ARES 2008) (2008)

9. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

10. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1),
86–95 (2011)

11. Global Platform: TEE system architecture v1.0 (2011). http://www.globalplat
form.org/specificationsdevice.asp

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Symposium on Theory
of Computing (STOC 1987), pp. 218–229. ACM (1987)

13. Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using stan-
dard smartcards. In: ACM CCS 2008, pp. 491–500. ACM (2008)

14. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., Del Cuvillo, J.: Using innovative
instructions to create trustworthy software solutions. In: Hardware and Architec-
tural Support for Security and Privacy (HASP). ACM (2013)

15. Koeberl, P., Schulz, S., Sadeghi, A.R., Varadharajan, V.: Trustlite: A security
architecture for tiny embedded devices. In: European Conference on Computer
Systems (EuroSys). ACM (2014)

16. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay – a secure two-party compu-
tation system. In: USENIX Security Symposium, pp. 287–302. USENIX (2004)

17. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVi-
sor: Efficient TCB reduction and attestation. In: Security and Privacy (S&P), pp.
143–158. IEEE (2010)

18. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An execu-
tion infrastructure for TCB minimization. In: European Conference on Computer
Systems (EuroSys), pp. 315–328. ACM (2008)

19. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue,
V., Savagaonkar, U.R.: Innovative instructions and software model for isolated exe-
cution. In: Hardware and Architectural Support for Security and Privacy (HASP).
ACM (2013)

20. Noorman, J., Agten, P., Daniels, W., Strackx, R., Van Herrewege, A., Huygens, C.,
Preneel, B., Verbauwhede, I., Piessens, F.: Sancus: Low-cost trustworthy extensi-
ble networked devices with a zero-software trusted computing base. In; USENIX
Security Symposium. USENIX (2013)

21. Pfitzmann, B., Riordan, J., Stüble, C., Waidner, M., Weber, A.: The PERSEUS
system architecture. Technical report, RZ 3335 (#93381), IBM Research (2001)

22. Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz,
G., Russinovich, M.: VC3: Trustworthy data analytics in the cloud using SGX. In:
IEEE Security and Privacy (S&P 2015). IEEE (2015)

23. Schwartz, E.J., Brumley, D., McCune, J.M.: A contractual anonymity system. In:
Network and Distributed System Security (NDSS). The Internet Society (2010)

24. Singaravelu, L., Pu, C., Haertig, H., Helmuth, C.: Reducing TCB complexity for
security-sensitive applications: three case studies. In: European Conference on
Computer Systems (EuroSys). ACM SIGOPS (2006)

http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp

190 P. Koeberl et al.

25. Sweeney, L.: k-anonymity: A model for protecting privacy. Int. J. Uncertainty,
Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002)

26. Verykios, V.S., Bertino, E., Fovino, I.N., Provenza, L.P., Saygin, Y., Theodoridis,
Y.: State-of-the-art in privacy preserving data mining. SIGMOD Rec. 33(1), 50–57
(2004)

27. Yao, A.C.: How to generate and exchange secrets. In; Foundations of Computer
Science (FOCS 1986). pp. 162–167. IEEE (1986)

Trust and Privacy

REWIRE – Revocation Without Resolution:
A Privacy-Friendly Revocation Mechanism

for Vehicular Ad-Hoc Networks

David Förster1(B), Hans Löhr1, Jan Zibuschka1, and Frank Kargl2,3

1 Robert Bosch GmbH, Stuttgart, Germany
{david.foerster,hans.loehr,jan.zibuschka}@de.bosch.com

2 Ulm University, Ulm, Germany
3 University of Twente, Enschede, The Netherlands

frank.kargl@uni-ulm.de

Abstract. We propose a novel mechanism for excluding misbehaving
participants from a vehicular ad-hoc network (V2X system) that does
not require resolution of pseudonyms. Our approach enables a revocation
authority to exclude the sender of a given message from pseudonymous
communication without resolving (or otherwise learning) his long-term
identity. This is achieved by broadcasting (or geocasting) a request for
self-revocation to which only the holder of the pseudonym in question
will respond by revoking all relevant pseudonyms. Compliance to the
request is enforced by a trusted component in each vehicle that ensures
the integrity and correct operation of its V2X on-board unit.

With our revocation mechanism the deployment of privacy-friendly
pseudonymschemes that do not implement pseudonymresolution becomes
practical.

1 Introduction

Vehicular ad-hoc networks (VANET) based on Vehicle-to-X (V2X) communica-
tion will be deployed in the next years [6,12]. In the US the National Highway
Traffic Safety Administration (NHTSA) has initiated an effort to make V2X
support a mandatory requirement for all passenger cars in the near future [17].
V2X systems are expected to deliver new safety and comfort functions as well
as improvements in traffic efficiency. Examples for envisioned V2X functions are
“intersection collision warning”, “emergency electronic brake lights” or “traf-
fic light optimized speed advisory” [8]. These functions are based on messages
that are exchanged between vehicles in an ad-hoc manner using short-range
radios, as currently being standardized by ETSI [10] and IEEE [1]. Authentica-
tion is required in order to restrict communication to legitimate participants of
the V2X network, as forged messages could cause confusion or even accidents.
For privacy-friendly message authentication a scheme of short-lived pseudonym
certificates (short: pseudonyms) is employed [18,19,21]. The pseudonyms are
usually obtained from a certificate authority (CA) after authentication with a
long-term credential [18] (we call this scheme the basic pseudonym scheme).
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 193–208, 2015.
DOI: 10.1007/978-3-319-22846-4 12

194 D. Förster et al.

Revocation is needed to remove misbehaving nodes from the network. There
are two main scenarios in which revocation is required. Technical defect: A vehicle
is sending invalid messages (e.g. with incorrect data about its speed, position,
etc.) due to a malfunctioning sensor or a technical problem in the V2X com-
ponent. Malicious attacker: An attacker is intentionally sending manipulated
messages with valid authentication data, e.g. by manipulating sensor inputs to
the V2X component. Regardless of the cause, the misbehaving entities must be
barred from communication as soon as possible (or rather, other participants
should be able detect such messages as invalid and discard them) in order to
avoid confusion and disruption of the network operation. The detection of mis-
behavior is a research area of its own (cf. Bißmeyer [2]) and is not in the scope
of this work.

In most approaches to revocation, first, the misbehaving sender’s long-term
identity is resolved from a message he sent and that constitutes the misbehavior.
Second, information about the revocation of the sender’s long-term credentials
(sometimes also about his pseudonyms) is disseminated to the other participants
through certificate revocation lists (CRL) or other means. For instance, the app-
roach proposed for the V2X network in Europe does not distribute pseudonym
CRLs to vehicles, but allows revocation of a vehicle’s long-term credential on a
CA level [9], i.e., a revoked vehicle would not be able to obtain new pseudonyms.

These revocation mechanisms only work if the pseudonym scheme that is used
in the V2X system supports resolution of participants’ long-term identities from
their pseudonyms. However, this is detrimental to the protection of their privacy.
Even though resolution can typically only be performed by a dedicated (possibly
distributed) authority, it still poses a threat to drivers’ privacy, e.g. when the
resolution authority is compromised or in countries where the authorities are not
fully trusted.

A privacy-friendly V2X system, where pseudonym resolution is not possible,
can be be set up in several ways. Trivially, the basic pseudonym scheme [18] can
be implement such that the CA does not keep any logs about the pseudonyms
it issues. Verifiable privacy can be achieved using advanced cryptography. The
PUCA scheme by Förster et al. does not implement resolution of pseudonyms and
employs anonymous credentials to offer strong privacy-guarantees [11].
Calandriello et al. propose a scheme, where vehicles generate pseudonyms for
themselves using group signatures [5]. While their proposal includes pseudonym
resolution, this property could be removed to strengthen privacy by using a dif-
ferent group signature scheme. Unfortunately, until now it has been unclear how
revocation of misbehaving participants can be implemented in systems where
resolution of pseudonym is not possible.

In this paper, we propose to leverage trusted hardware components (which
are increasingly used in the automotive domain) to support revocation without
identification. Security hardware for automotive electronic control units has been
introduced some time ago (see, e.g., [4] for an example) – in particular, for V2X
on-board units [13] – and recently, the Trusted Computing Group (TCG) has
also released a specification for an automotive Trusted Platform Module [25].

REWIRE – Revocation Without Resolution 195

Our Contribution

We propose a novel mechanism for excluding participants from a communica-
tion system that does not require resolution of pseudonyms. Instead, it is based
on revocation orders broadcasted into the network and self-identification of par-
ticipants. To ensure nodes follow self-revocation orders our solution leverages a
trusted component in devices held by participants of the communication system.
This allows for privacy-friendly solutions, where participants cannot be identified
by the messages they send. It is still possible to revoke participants’ authoriza-
tion to participate in the system, without requiring any link to their identifiers
or pseudonyms.

We apply our proposed solution to a V2X system. This allows the deployment
of very privacy-friendly pseudonym schemes in this application field, while still
making sure that malfunctioning or manipulated vehicles can be removed from
the system quickly. In contrast to approaches where revocation information must
be delivered to all network participants, our scheme scales very well as revocation
information is only sent to a limited region via geocast.

The rest of the paper is organized as follows. We discuss related work in
Sect. 2 and provide our system model and the attacker model in Sect. 3. In Sect. 4
we put forward our requirements. Our solution REWIRE (Revocation without
resolution) is described in Sect. 5 and evaluated against the requirements in
Sect. 6. We conclude the paper in Sect. 7.

2 Related Work

Petit et al. survey pseudonym systems in vehicular networks, including resolu-
tion and revocation mechanisms [21]. Papadimitratos et al. give an overview over
security in vehicular communication systems in general [18]. They also describe
several revocation mechanisms, all of which are based on pseudonym resolu-
tion. Several contributions describe the distribution of certificate revocation lists
(CRL) in VANETs, e.g. via road-site infrastructure [20], car-to-car epidemic dis-
semination [15] or the radio data system (RDS) [18]. The V-Token scheme by
Schaub et al. implements revocation by embedding the holder’s encrypted iden-
tity in his pseudonym certificates [23]. Based on the encrypted identity, they
implement resolution of pseudonyms by a distributed resolution authority. Our
approach, in contrast, does not require resolution at all, but uses the encrypted
identity for self-identification of vehicles.

Raya et al. propose RTC [22], a protocol for remote wiping of key material
from a V2X component that is equipped with a trusted component. While their
general approach is similar to ours, they require the vehicle’s identity to be known
for revocation, whereas we specifically implement revocation of vehicles whose
identity is not known and cannot be resolved. Stumpf et al. use a trusted platform
module (TPM) for generating privacy-friendly T-IVC certificates [24]. In their
suggestion the users’ privacy can be revoked by the authorities for revocation,
whereas our revocation mechanism is designed to work without revocation of
privacy (i.e. resolution of pseudonyms).

196 D. Förster et al.

Trusted hardware extensions have been proposed for the automotive domain
in the past – see, e.g., [4,14] – and recently, the Trusted Computing Group
has also introduced a profile of its Trusted Platform Module (TPM) for auto-
motive use [25]. The EVITA project explored the use of a trusted component
to secure in-vehicle communication [13]. The “Evita HSM Full Version” would
be a good candidate for implementing our proposal. Recent European projects
(EU or national) in the area of V2X communication, such as CONVERGE1 or
PRESERVE2, typically rely on hardware security modules as a trust anchor.

Li and Wang survey geocast routing protocols for VANETs [16], which are
an essential building block for our scheme. The CONVERGE project proposes a
geomessaging protocol for a hybrid communication scenario with a combination
of V2X short-range radio and cellular LTE connectivity [7].

3 System Model and Scenario

We assume a V2X system with the following participants:

– Participating vehicles Vi. Each vehicle is equipped with a V2X on-board
unit (OBU), that contains a long-term credential which constitutes the vehi-
cle’s authorization to participate in the V2X system. Furthermore, each vehi-
cles has some kind of identity associated, that may allow inference of its owner,
e.g. its vehicles identification number (VIN) or the fingerprint of its long-term
credential.

– The certificate authority (CA) issues long-term credentials and pseudonym
certificates.3

– The revocation authority (RA) receives reports about misbehavior and takes
decision about revocation of participants.

3.1 System Operation

Based on the established abstract pseudonym lifecycle for V2X systems as des-
cribed by Petit et al. [21], the system’s operation can be split into the following
phases.

Pseudonym issuance. Vehicles obtain pseudonyms from the CA after authen-
tication with their long-term credential. We assume that a privacy-preserving
protocol is used to obtain the pseudonyms and that resolution, i.e. resolving
the holder’s identity from a pseudonym, is not possible. (Therefore, we omit
the pseudonym resolution phase.)

Pseudonym use. The participating vehicles communicate using ad-hoc radio
communication in order to execute V2X-based safety and comfort functions.
All messages are signed using pseudonym certificates.

1 See http://www.converge-online.de/.
2 See http://preserve-project.eu/.
3 Some schemes require dedicate long-term and pseudonym certificate authorities. We

assume one single CA, without loss of generality, as this has no impact on our scheme.

http://www.converge-online.de/
http://preserve-project.eu/

REWIRE – Revocation Without Resolution 197

Pseudonym change. In order to prevent long-term tracking, vehicles change
their active pseudonym certificate every once in a while.

(Pseudonym) revocation. When vehicle is detected to send invalid messages
its credentials (both pseudonyms and long-term) must be revoked in order
to prevent further disruption of the network’s operation.

We assume that a misbehavior detection mechanism is in place that allows
vehicles to detect messages with implausible or invalid content (cf. Bißmeyer [2]).
Furthermore, we assume the availability of a geocast mechanism, such as the
one proposed by the CONVERGE project [7]. Figure 1 gives an overview of our
system model.

3.2 Attacker Model

We consider three types of attackers that threaten the operation of the V2X
system.

A.1 The unintentional insider attacker is sending messages with invalid content
due to a malfunctioning sensor or a technical problem in the V2X compo-
nent. The messages are properly authenticated and the driver of vehicle is
most likely not aware of the problem.

A.2 The malicious insider attacker actively and intentionally manipulates mes-
sage contents. The manipulation could be done by plugging into the vehicles
OBD bus or by feeding manipulated sensor inputs directly into the V2X box.
The attacker might even remove the V2X component and operate it outside
of the car. His motive could be personal advantage in traffic, to manipulate

Fig. 1. The vehicle V1 obtaines pseudonym certificates from the certificate authority
(CA) and uses them to secure its communication with V2. In case it detects any mis-
behavior it reports it to the revocation authority (RA), which may decide to revoke
the reported vehicle.

198 D. Förster et al.

traffic flow, or simply to cause confusion for other drivers. The messages this
attacker sends contain valid authentication data.

A.3 The outsider attacker tries to disrupt the V2X system’s operation from the
outside. In contrast to A.1 and A.2 he is not in possession of any credentials
and is unable to produce properly authenticated messages.

4 Requirements

We put forward the following requirements for revocation schemes in V2X
systems.

R.1 Revocation based on messages. It must be possible to exclude the sender of
a given message from the V2X system.

R.2 Effectiveness of revocation. It must not be possible for a vehicle that is
subject to revocation to prevent the revocation to become effective.

R.3 Short delay. Revocation must take effect as soon as possible.
R.4 Scalability. The revocation mechanism must be applicable in a V2X system

with a large number of participants.
R.5 DoS-resistance. It must not be possible to trigger revocation of a partici-

pant that was behaving correctly, as this would constitute a denial-of-service
attack.

R.6 No resolution required. Revocation must be possible in a system without
pseudonym resolution, i.e. where the holder of a given pseudonym (or the
sender of a given signed message) cannot be identified.

Note that identifying the sender of invalid messages is not a requirement.

5 REWIRE – Revocation Without Resolution

We first describe the intuition behind our approach. Assume a vehicle VA sends
a message m which contains invalid data and hence constitutes misbehavior.
VB detects this and sends a misbehavior report to the revocation authority RA.
The report contains the pseudonym public key that was used to sign m, the GPS
location where the mesage was received, and the type of misbehavior detected.
Depending on its policy the RA may require several independent reports before
taking action. We recall that it is impossible to resolve VA’s identity from the
information contained in the report. Instead the RA constructs a order for self-
revocation (short: OSR) and geocasts it to all vehicles in the surrounding area
where m was received. The OSR message is constructed such that VA will recog-
nize that it is the designated recipient (we call this self-identification) whereas
all other vehicles will ignore the message. Upon receipt of the OSR VA con-
firms it to the RA, immediately stops sending V2X messages, and deletes all key
material used for pseudonymous V2X communication (possibly after a certain
delay). Compliance to the request is enforced by a trusted component (TC) that
is contained in every vehicle’s OBU and that ensures that its behavior cannot
be altered, at least with regard to V2X communications. Figure 2 shows a high
level sketch of the revocation procedure.

REWIRE – Revocation Without Resolution 199

Fig. 2. The white vehicle reports the black vehicle for sending invalid messages to the
RA (a). After checking its revocation policy, the RA geocasts an OSR (order for self-
revocation) to the surrounding area where the misbehavior occurred (b). The order is
ignore by all except the designated vehicle, which complies by ceasing communication
and deleting its key material.

Self-revocation. When a participant receives an OSR directed to him he must
stop sending V2X messages immediately. He sends a signed confirmation message
to the RA. He deletes all his key material after the time Tkeep has elapsed.
Keeping the key material for some time is necessary as the RA may send more
OSR messages that are directed to one of his other pseudonyms.4 Those must
be confirmed with a signed message, too.

When a vehicle’s V2X unit is disabled, the driver should be informed that
the vehicle requires maintenance. Once the reason for revocation (e.g. a mal-
functioning sensor) has been identified and fixed the V2X unit can be equipped
with new key material and resume its operation.

Revocation Policy. The RA’s revocation policy determines its reaction to mis-
behavior reports. We refrain from suggesting a specific policy as it may depend
on the misbehavior strategy employed. The policy is always a trade-off between
avoiding false negatives (discard valid reports) and preventing denial-of-service
attacks (someone deliberately files incorrect reports).

4 Pseudonyms are unlinkable, hence the RA needs to send out separate OSRs for each
pseudonym that was reported for misbehavior.

200 D. Förster et al.

Geocast Strategy. The RA will send out OSRs periodically every Trepeat sec-
onds until it receives a confirmation message or Tsend seconds elapsed. With
every iteration the radius of the target area is increased as the target vehicle
may have moved further away from the location the misbehavior was observed.
Depending on the specific geocast mechanism, messages may for example be
sent to road-side units in the target area that distribute them to passing vehi-
cles, using DAB, or via direct cellular connection to vehicles in the target area.
Some geocast protocols also use forwarding between participants for message
dissemination.

5.1 R-Tokens for Self-identification

For our concept of self-identification, the OSR must contain some information
that allows a receiving OBU to determine, whether it is the designated recipient.
We propose two variants of our revocation scheme.

In the plain version the OSR contains the pseudonym public key that was
submitted to the RA as part as the misbehavior report. For self-identification a
vehicle receiving an OSR checks whether the public key belongs to one of the
pseudonyms it has stored. However, the vehicle may have changed pseudonyms
already and may have deleted the old pseudonym, if submission and processing of
the misbehavior report takes some time. Note that in this version, other vehicles
can observe which vehicles are misbehaving.

Toaddress thisweproposeR-Tokens, an adaptation of theV-Token pseudonym
scheme by Schaub et al. [23]. In their scheme, prior to requesting pseudonyms,
a vehicle obtains a number of V-Tokens from the CA that contain the vehicle’s
encrypted identity and are signed by the CA. By using a blind signature scheme,
the CA does not learn their actual values, hence, it cannot link them to the vehicle’s
identity later on. At the same time it ensures their correct value using a “cut and
choose protocol” (asking the requester to unveil some of the submitted tokens).
Pseudonyms are requested in a second step (which the CA cannot link to the first
one). Each pseudonym that is submitted to the CA for signing must contain a valid
V-Token. In case of misbehavior the (distributed) revocation authority can resolve
the owner of a pseudonym by decrypting the contained V-Token.

For our R-Token approach, we modify the encryption such that only the
owner can decrypt the R-Token (thus removing the option for resolution). This
is achieved by using a randomized asymmetric encryption scheme, e.g. ElGamal.
In the cut and choose protocol the CA can verify the correctness of some of the
R-Tokens by reproducing the encryption with the random input provided by the
vehicle. If all verifications succeeds, the CA generates a blind signature on the
R-Token. Furthermore, the pseudonym issuance protocol must be extended by
requiring a valid R-Token to be included in each pseudonym to be signed by
the CA. As R-Tokens are not linkable to its owners identity, this does not affect
the privacy properties of the pseudonym scheme in use. The modification can
be made for any pseudonym scheme, where vehicles obtain pseudonyms from
a CA, e.g. the PUCA scheme [11]. In the R-Token variant of our scheme, the
RA includes the R-Token extracted from the reported pseudonym instead of

REWIRE – Revocation Without Resolution 201

Vk

PKVk , IDk)

N
(1 ≤ i ≤ N)

mi := enc(PKVk , ri; IDk)
Ci := (mi)

bi

Ci

1 ≤ j ≤ N
j

∀i �= j :
ri, b

−1
i

(∀i �= j)

mi := (Ci)
b−1
i

mi = enc(PKVk , ri; IDk)

σ := sig(SK sig,Cj)
σ

:= σb−1
j

PKVk , IDk)

p

p

p

σ := sig(SK sig, p)
σ

(p, σ)

Fig. 3. Two step pseudonym issuance protocol: R-Tokens are obtained in the first step
using blind signatures and a “cut and choose” approach, similarly to the original V-
Token proposal [23]. The CA learns the vehicle’s public key and identity, and makes
sure it is contained in the R-Token before signing it. V2X pseudonyms with R-Tokens
embedded are submitted for signature in the second step. The CA does not learn the
vehicle’s identity as it cannot decrypt the R-Tokens. For unlinkability of pseudonyms
the second step must be executed independently for each pseudonym to be requested.

202 D. Förster et al.

the pseudonym public key itself. This enables self-identification, even after the
pseudonym that was part of the misbehavior report has already been deleted
by its holder. Figure 3 shows how R-Tokens are obtained in the first step and
included in pseudonyms in the second step. How exactly the R-Tokens are embed-
ded into the pseudonyms p depends on the pseudonym scheme, e.g. a field in a
pseudonym certificate could be used.

The plain approach can be used without modification to certificate for-
mats as specified in upcoming standards [1,10] and with no modification to
the pseudonym issuance scheme used. The R-Token approach is more robust
but requires an additional field in the pseudonym certificate format and changes
to the pseudonym issuance scheme.

5.2 Protocols and Message Formats

The revocation protocol is given in Fig. 4. In the following we specify the message
formats that are used.

Misbehavior Report. Report that the message m signed by the pseudonym
pmb was identified as misbehavior of type type, observed at GPS location l and
time t. The message is signed with the reporter’s pseudonym prep.

mb-rep := (“report”,m,SIGpmb
(m), pmb , type, l, t)︸ ︷︷ ︸

mb-rep-plain

,SIGprep
(mb-rep-plain)

Order for Self-revocation (OSR). Message directed to the vehicle that was
using the pseudonym pmb for signing messages. reason may contain additional
information about the reason for revocation. The order is signed by the RA.
In the R-Token variant the message contains the R-Token extracted from pmb

instead of the pseudonym pmb itself.

osr-req := (“revoke”, pmb , reason)︸ ︷︷ ︸
osr-req-plain

,SIGRA(osr-req-plain)

Revocation Confirmation. Confirmation that the OSR was received by its
designated recipient. The message is sent prior to deleting all V2X key material
and is signed with the pseudonym pmb . In the R-Token variant the message is
signed with the vehicle’s long-term key, as the pseudonym in question may have
been deleted already.

osr-conf := (“confirm”, pmb)︸ ︷︷ ︸
osr-conf-plain

,SIGpmb
(osr-conf-plain)

REWIRE – Revocation Without Resolution 203

5.3 Trusted Computing Integration

To provide adequate protection against malicious attackers, the mandated reac-
tion to an OSR must be enforced via a trusted component (TC) that is contained
in each vehicle’s OBU. Figure 5 displays the architecture of a typical V2X OBU
including a trusted component, similar to proposals from the automotive indus-
try (e.g. the EVITA project [13]).

The TC protects all private keys by storing them in internal secure storage
(or at least protected by a Root of Trust for Storage (RTS)) and performs all
cryptographic operations that involve those keys. Moreover, it contains a Root
of Trust for Measurement (RTM) to enable secure boot or runtime integrity
verification on the V2X OBU. It may also include a Root of Trust for Reporting
(RTR) for remote attestation, i.e. the possibility to prove the integrity of the
software on the V2X OBU to a remote verifier.

We envision different levels of protection. In the basic protection level, the
TC is only used for key storage, for cryptographic operations that require private
keys, and for processing OSRs. This approach enables self-revocation because the
TC controls the private keys and deletes them upon authorized request. However,
a compromised software stack on the V2X OBU might be able to prevent the
TC from receiving OSRs by recognizing OSRs for this vehicle and filtering them.
The full protection level also includes checks of the OBU’s integrity by the TC,
either at boot time (using secure boot) or at run-time (with run-time integrity
verification). Secure boot prevents the execution of modified or unauthorized
software, because the TC checks hash values and signatures on the code before
running it. For run-time integrity verification, the TC verifies the software during
execution and aborts if manipulations are discovered. Optionally, the TC may
also allow for remote attestation of integrity during pseudonym issuance, to
make sure new pseudonyms are only issued to vehicles whose on-board unit
has not been tampered with. In this case, the TC records hash values of the
running software, signs them with an attestation key, and sends the result to the
certificate authority together with the request for pseudonyms. Thus, the CA
can verify that a V2X OBU with an authorized TC executing only authorized
software is requesting the certificates. For this, an anonymous attestation scheme
must be used to avoid revealing the OBU’s identity, such as direct anonymous
attestation (DAA, see [3]). Trusted Platform Modules (TPMs), for instance,
support DAA since version 1.2.

5.4 Prevent Blocking of OSR Messages

It is crucial that an attacker cannot prevent OSR from reaching the trusted
component. We propose several countermeasures.

Ensure Software Integrity. To prevent any software-level manipulations we
can use the integrity checks for the full protection profile (see Sect. 5.3) to estab-
lish a secure I/O path from the radio transceiver to the trusted component.
When a vehicle requests new pseudonym certificates, the RA can require it to

204 D. Förster et al.

Vx

Ta

Fig. 4. Revocation protocol. A vehicle sends a misbehavior report to the RA which
handles it according to its revocation policy. If revocation is required it sends an OSR
(order for self-revocation) to all vehicles in the surrounding area where the misbe-
havior occurred. Only the designated recipient reacts to the message by confirming
the receipt and deleting his key material, all other recipients ignore the message. All
critical processing is done inside the TC.

prove the integrity of its systems using remote attestation. Then, before any
new pseudonyms are granted, the RA can ensure that the requesting vehicle is
exposed to all unresolved OSRs (for which the RA has not received confirmation).
This countermeasure is most effective in combination with short pseudonym life-
times.

Detect Blocking Using Keep-Alive Messages. To detect malicious vehicles,
that manage to block revocation orders, the RA regularly sends dummy keep-
alive OSR messages, that do not entail a revocation action, but also require
confirmation by the TC on the vehicle. To make the dummy OSR messages
indistinguishable from real OSR messages, all OSR messages can be encrypted
with keys stored in the TC. The RA can identify vehicles that filter messages by
keeping track of rate of answered dummy OSRs or unanswered dummy OSRs

REWIRE – Revocation Without Resolution 205

Fig. 5. A typical V2X on-board unit (OBU) that includes a trusted component

during a specific timeframe. Alternatively, the TC itself can detect filtering by the
lack of keep-alive messages and act accordingly, e.g. by suspending its operation.

6 Evaluation and Discussion

We evaluate our proposal against the requirements from Sect. 4.

R.1 Revocation based on messages is achieved with our concept of self-
identification. This alleviates the need for resolution of pseudonyms.

R.2 Effectiveness of revocation is ensured by the trusted component (TC) con-
tained in each vehicle. Secure boot ensures that only authorized software
can be executed on the V2X OBU, hence, software cannot prevent the
TC from processing self-revocation orders. To block messages successfully,
an advanced attacker would have to introduce additional hardware unless
secure boot is not implemented properly or authorized software can be
exploited.

R.3 Short delay is achieved by a vehicle’s immediate reaction of ceasing V2X
communication upon receipt of an OSR.

R.4 Scalability is maintained by geocasting the OSR to a limited region only
(whose size is independent of the total system size), depending on the loca-
tion of misbehavior. This prevents flooding of the network with a large
number of OSR messages. Confirmation from revoked vehicles makes sure
that an OSR messages is only sent until it has reached the target vehicle.
The timeout Tkeep ensures that a vehicle can still confirm additional OSRs
(addressed to its other pseudonyms) after having been revoked, while Tsend

prevents that unanswered messages are sent indefinitely.
R.5 DoS-resistance is implemented by requiring all misbehavior reports to be

signed by the reporter. Sending unjustified misbehavior reports would con-
stitute misbehavior in itself and can be handled by revoking the misbehaving
reporter.

206 D. Förster et al.

R.6 No resolution required. Our concept of self-identification enables revocation
without requiring knowledge of the revocation subject’s actual identity.

The attackers introduced in Sect. 3.2 pose different threats to our revocation
scheme.

A.1 The unintentional insider attacker will not actively resist revocation. The
only case when revocation fails is when he does not receive the OSR mes-
sage. This could be the case if he already ended his trip or if he was not
in the coverage of RSUs or cellular network when it was sent. However,
his misbehavior will most likely be noticed on one of his future trips and
revocation will eventually succeed.

A.2 The malicious insider attacker on the other hand may actively try to block
the revocation message reaching the TC in his V2X OBU. Software manip-
ulation is prevented by the integrity checks described in Sect. 5.3. Due to
the secure I/O path, revocation cannot be avoided, once the messages has
been received successfully.

This leaves attacks on the wireless transmission level. Radio jamming
or otherwise modifying the input to the V2X OBU requires an advanced
attacker with additional hardware. This attack can be countered using the
dummy OSR keep-alive messages.

An attacker may choose to come online exclusively to perform malicious
actions, and evade the OSRs by simply not being available for communica-
tion. This is addressed by requiring remote attestation of software integrity,
whenever a participant requests new pseudonym certificates, and exposing
him to all OSRs that have not been confirmed yet.

Obviously, an attacker might try to extract the V2X key material from
the TC. We assume that the TC provides adequate protection against this
type of attack, e.g., by using state-of-the-art smartcard technology.

A.3 The outsider attacker cannot interfere with our revocation scheme in any
meaningful way as he does not process any valid credentials and is unable to
produce properly authenticated messages. For this protection to be effective,
it is crucial that participants discard all messages that are not properly
signed without further processing.

7 Conclusion

Vehicular ad-hoc networks are on the brink of deployment, and privacy is a
crucial success factor for their acceptance by the general public. The Rewire
revocation protocol can complement proposals for privacy-friendly authentica-
tion in V2X systems. It does not require resolution of pseudonyms to exclude
misbehaving entities and therefore avoids the negative privacy implications of
previously suggested revocation schemes. To achieve this, we propose a novel
self-revocation mechanisms, where we leverage a trusted hardware component
(as they are currently proposed for V2X on-board units) for enforcement. Our
proposal is well suited for systems that have a large number of participants.

REWIRE – Revocation Without Resolution 207

As revocation information is only sent to the affected region via geocast, the
communication overhead is independent of the total system size.

The basic variant of our solution is compatible with existing standards from
the US [1] and Europe [10]. It requires no modifications to certificate or message
formats and could also be deployed in parallel with other revocation mechanisms.
The R-Token variant has additional advantages and requires the addition of one
field in the format for pseudonym certificates.

Overall, we have shown that strong anonymity in vehicular networks can be
achieved, despite the need for revocation of misbehaving entities.

Acknowledgments. This work was partially funded within the project CONVERGE
by the German Federal Ministries of Education and Research as well as Economic
Affairs and Energy.

References

1. WG - Dedicated Short Range Communication Working Group: 1609.0-2013 - IEEE
guide for wireless access in vehicular environments (WAVE) - architecture (2013)

2. Bißmeyer, N.: Misbehavior detection and attacker identification in vehicular ad-hoc
networks. Ph.D. thesis, TU Darmstadt, Germany, December 2014

3. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Atluri,
V., Pfitzmann, B., McDaniel, P.D. (eds.) Proceedings of the 11th ACM Confer-
ence on Computer and Communications Security, CCS 2004, 25–29 October, 2004,
Washington, DC, USA, pp. 132–145. ACM (2004)

4. Bubeck, O., Gramm, J., Ihle, M., Shokrollahi, J., Szerwinski, R., Emele, M.: A
hardware security module for engine control units. In: Proceedings of the 10th
ESCAR Conference (2011)

5. Calandriello, G., Papadimitratos, P., Hubaux, J.P., Lioy, A.: Efficient and robust
pseudonymous authentication in vanet. In: Proceedings of the Fourth ACM Inter-
national Workshop on Vehicular Ad Hoc Networks, pp. 19–28. ACM (2007)

6. CAR 2 CAR Communication Consortium: Memorandum of understanding on
deployment strategy for cooperative ITS in europe, June 2011

7. CONVERGE: Deliverable D4.3 “Architecture of the car2x systems network”,
section 4.1.2, January 2015

8. ETSI Technical Committee Intelligent Transport Systems (ITS): Intelligent Trans-
port Systems (ITS); Vehicular Communications; Basic Set of Applications; Defin-
itions. Technical report, 102 638 V1.1.1, European Telecommunications Standards
Institute, June 2009

9. ETSI Technical Committee Intelligent Transport Systems (ITS): Intelligent Trans-
port Systems (ITS); Security; Security Services and Architecture. Technical report,
TS 102 731 V1.1.1, European Telecommunications Standards Institute, September
2010

10. ETSI Technical Committee Intelligent Transport Systems (ITS): Intelligent Trans-
port Systems (ITS); Cooperative ITS (C-ITS); Release 1. Technical report, 101 607
V1.1.1, European Telecommunications Standards Institute, May 2013

11. Föster, D., Kargl, F., Löhr, H.: PUCA: A pseudonym scheme with user-controlled
anonymity for vehicular ad-hoc networks (VANET). In: Proceedings of the IEEE
Vehicular Networking Conference 2014 (VNC 2014). IEEE (2014)

208 D. Förster et al.

12. General Motors: Cadillac to introduce advanced ‘intelligent and connected’
vehicle technologies on select 2017 models, September 2014. http://media.gm.
com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2014/Sep/
0907-its-overview.html

13. Henniger, O., Ruddle, A., Seudié, H., Weyl, B., Wolf, M., Wollinger, T.: Secur-
ing vehicular on-board it systems: The EVITA project. In: VDI/VW Automotive
Security Conference (2009)

14. Herstellerinitiative Software (HIS): SHE secure hardware extension version 1.1.
(2009). http://portal.automotive-his.de

15. Laberteaux, K.P., Haas, J.J., Hu, Y.C.: Security certificate revocation list distri-
bution for vanet. In: Proceedings of the Fifth ACM International Workshop on
Vehicular Inter-Networking, VANET 2008, pp. 88–89. ACM (2008)

16. Li, F., Wang, Y.: Routing in vehicular ad hoc networks: a survey. IEEE Veh.
Technol. Mag. 2(2), 12–22 (2007)

17. National Highway Traffic Safety Administration (NHTSA): Federal motor
vehicle safety standards: Vehicle-to-vehicle (V2V) communications. Advance
notice of proposed rulemaking (ANPRM) (2014). http://www.nhtsa.gov/About+
NHTSA/Press+Releases/NHTSA-issues-advanced-notice-of-proposed-rulemaking
-on-V2V-communications

18. Papadimitratos, P., Buttyan, L., Holczer, T., Schoch, E., Freudiger, J., Raya, M.,
Ma, Z., Kargl, F., Kung, A., Hubaux, J.P.: Secure vehicular communication sys-
tems: design and architecture. IEEE Commun. Mag. 46(11), 100–109 (2008)

19. Papadimitratos, P., Buttyan, L., Hubaux, J.P., Kargl, F., Kung, A., Raya, M.:
Architecture for secure and private vehicular communications. In: 7th International
Conference on ITS Telecommunications, ITST 2007, pp. 1–6. IEEE (2007)

20. Papadimitratos, P., Mezzour, G., Hubaux, J.P.: Certificate revocation list distri-
bution in vehicular communication systems. In: Proceedings of the Fifth ACM
International Workshop on Vehicular Inter-Networking, VANET 2008, pp. 86–87.
ACM (2008)

21. Petit, J., Schaub, F., Feiri, M., Kargl, F.: Pseudonym schemes in vehicular net-
works: a survey. IEEE Commun. Surv. Tutorials 17(1), 228–255 (2015)

22. Raya, M., Papadimitratos, P., Aad, I., Jungels, D., Hubaux, J.P.: Eviction of mis-
behaving and faulty nodes in vehicular networks. IEEE J. Selected Areas Commun.
25(8), 1557–1568 (2007)

23. Schaub, F., Kargl, F., Ma, Z., Weber, M.: V-tokens for conditional pseudonymity
in VANETs. In: Wireless Communications and Networking Conference (WCNC),
pp. 1–6. IEEE (2010)

24. Stumpf, F., Fischer, L., Eckert, C.: Trust, security and privacy in VANETs - a
multilayered security architecture for C2C-communication. In: VDI BERICHTE
2016, 23. VDI/VW-Gemeinschaftstagung Automotive Security, Wolfsburg, p. 55,
November 2007

25. Trusted Computing Group: TCG TPM 2.0 Library profile for automotive
thin specification, version 1.0. TCG Specification, 2015. http://www.trusted
computinggroup.org/resources/tcg tpm 20 library profile for automotivethin

http://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2014/Sep/0907-its-overview.html
http://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2014/Sep/0907-its-overview.html
http://media.gm.com/media/us/en/gm/news.detail.html/content/Pages/news/us/en/2014/Sep/0907-its-overview.html
http://portal.automotive-his.de
http://www.nhtsa.gov/About+NHTSA/Press+Releases/NHTSA-issues-advanced-notice-of-proposed-rulemaking-on-V2V-communications
http://www.nhtsa.gov/About+NHTSA/Press+Releases/NHTSA-issues-advanced-notice-of-proposed-rulemaking-on-V2V-communications
http://www.nhtsa.gov/About+NHTSA/Press+Releases/NHTSA-issues-advanced-notice-of-proposed-rulemaking-on-V2V-communications
http://www.trustedcomputinggroup.org/resources/tcg_tpm_20_library_profile_for_automotivethin
http://www.trustedcomputinggroup.org/resources/tcg_tpm_20_library_profile_for_automotivethin

DAA-TZ: An Efficient DAA Scheme for Mobile
Devices Using ARM TrustZone

Bo Yang1(B), Kang Yang1, Yu Qin1, Zhenfeng Zhang1,
and Dengguo Feng1,2

1 Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{yangbo,yangkang,qin yu,zfzhang,feng}@tca.iscas.ac.cn
2 State Key Laboratory of Computer Science, Institute of Software

Chinese Academy of Sciences, Beijing, China

Abstract. Direct Anonymous Attestation (DAA) has been studied for
applying to mobile devices based on ARM TrustZone. However, current
solutions bring in extra performance overheads and security risks when
adapting existing DAA schemes originally designed for PC platform. In
this paper, we propose a complete and efficient DAA scheme (DAA-TZ)
specifically designed for mobile devices using TrustZone. By considering
the application scenarios, DAA-TZ extends the interactive model of orig-
inal DAA and provides anonymity for a device and its user against remote
service providers. The proposed scheme requires only one-time switch of
TrustZone for signing phase and elaborately takes pre-computation into
account. Consequently, the frequent on-line signing just needs at most
three exponentiations on elliptic curve. Moreover, we present the archi-
tecture for trusted mobile devices. The issues about key derivation and
sensitive data management relying on a root of trust from SRAM Physi-
cal Unclonable Function (PUF) are discussed. We implement a prototype
system and execute DAA-TZ using MNT and BN curves with different
security levels. The comparison result and performance evaluation indi-
cate that our scheme meets the demanding requirement of mobile users
in respects of both security and efficiency.

Keywords: DAA · Privacy · Mobile devices · ARM TrustZone · PUF

1 Introduction

With the development of wireless communication network as well as modern
mobile devices, a variety of mobile applications have been realized to provide
users convenient and comprehensive services. Depending on these achievements,
online interactive applications such as mobile payment, mobile ticketing, mobile
shopping and mobile voting, are benefiting people’s daily lives. However, with the
widespread use of mobile services, users are faced with the risk of privacy disclo-
sure. Generally, authenticating the users’ legitimate identity is regarded as one
prerequisite for access to those remote application services. This authentication
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 209–227, 2015.
DOI: 10.1007/978-3-319-22846-4 13

210 B. Yang et al.

is associated with an individual mobile device, a SIM card or a service account.
As a result, when a user logins to enjoy services, his personal information, per-
haps involving his real identity, locations, bank accounts or records of network
behaviors etc., is potentially linked to each other and leaked to service providers
[28]. And what is worse, the personal information could be further shared with
some third parties, for example, to send consumers behaviorally targeted adver-
tisements [8]. Thus, the issue of information leakage is seriously threatening
mobile users’ personal privacy and information security.

On PC platform, the analogous problem can be effectively solved by DAA [2],
which is standardized by the Trusted Computing Group (TCG). DAA allows an
embedded processor on a motherboard, called Trusted Platform Module (TPM),
to anonymously attest the certain statements about the configuration of the
host machine as well as its legitimate status to remote third parties [1]. The
key requirement behind DAA is that this attestation is done in a way that
maintains the privacy of the machine (i.e., the user). On the other hand, DAA
is an anonymous credential system designed specifically to encapsulate security-
critical operations within TPM, and the sensitive data including secret signing
key and parameters are well protected by TPM. An adversary hardly shares
a legitimate user’s credential by just stealing related data on the host to gain
unauthorized access to remote services. The DAA [2] is originally proposed based
on strong RSA assumption. For better computing efficiency and shorter signature
length, researches constructs several DAA schemes based on elliptic curves and
bilinear maps [3,4,6,7], which we call ECC-DAA. Moreover, Bernhard et al. [1]
give a new security model and a generic DAA protocol on it. Xi et al. [27] first
add the property of forward anonymity. To date, DAA has gained lots of favor
with industry and standard bodies [5,22,23], which renders it better prospects
for practical applications than other anonymous credential systems [30].

For mobile platform, DAA is still attractive as an alternative anonymous
authentication solution. Unfortunately, previous DAA schemes are exclusively
designed for the model of TPM inside a host. The prevalent mobile devices are
rarely equipped with special-purpose chip like TPM, so that the direct use of
DAA on mobile platform would cause trouble. Opaak [12] is a simplified DAA
scheme for mobile devices, but its executable codes and sensitive data are easily
compromised or stolen by malwares.

The technique of Trusted Execution Environment (TEE) on mobile devices
could lend us a helping hand. Isolated from a Rich Execution Environment
(REE) where the Guest OS runs, TEE aims to protect sensitive code execution
and assets. As an example of providing TEE for embedded devices, ARM Trust-
Zone [26] has been used to execute security-critical services [20,21]. By Trust-
Zone, TEE’s resources are physically isolated from REE, such that adversaries
in REE hardly access them directly [11]. As a hardware-based security exten-
sion of ARM architecture, TrustZone is widely supported and applied by many
mobile manufacturers. Leveraging TrustZone, some solutions are proposed to
construct software-based ECC-DAA with security-critical codes running within
TEE, and treat REE as the role of “host”. Wachsmann et al. [25] put forward
an authentication scheme based on DAA and TLS but without user-controlled

DAA-TZ: An Efficient DAA Scheme for Mobile Devices 211

linkability. Yang et al. [28] present LAMS for anonymous mobile shopping, which
is compatible with four unmodified ECC-DAA schemes. Given by Zhang et al.
[30], Mdaak provides a general and flexible DAA framework for mobile devices.
Nevertheless, these solutions neither implement pre-computation for anonymous
signing nor consider comprehensive protection for DAA sensitive data. Further-
more, in these solutions, implementing unmodified or simply modified DAA in
TrustZone brings much extra meaningless overhead and security issues. First,
DAA does not concern the number of interactions between TPM chip and the
host, while it is a problem for mobile devices using TrustZone. Each switching the
context between TEE and REE carries both performance overhead and power
consumption. In practice, these cannot be neglected, especially if the system or
software is complicated, or the switch action needs to be triggered frequently
[16]. When many switch actions occur, data transmission and protection for
DAA procedure are also cumbersome, memory-consuming and time-consuming.
Second, extra operations are demanded in original DAA for the sake of the lim-
ited bandwidth of TPM, which seems superfluous for TrustZone. Last but not
least, TPM itself is hardware-based root of trust with inside root key for sensi-
tive data management, while TrustZone does not definitely provide this root. To
the best of our knowledge, there is no DAA scheme specially designed to adapt
for mobile devices using TrustZone.

Our Contributions. In this paper, based on elliptic curves and bilinear maps,
we propose an efficient DAA scheme (DAA-TZ) for mobile devices who are
resource-constrained as compared with PC platform. DAA-TZ enables remote
service providers to authenticate mobile users’ trusted status or legitimate infor-
mation without disclosing users’ identity. DAA-TZ makes full use of ARM
TrustZone and modifies the traditional interactive model as well as procedure
of original DAA. The main signing efficiency for users is improved without the
expense of security. Our work is summarized as follows.

– This is the first complete work that designs an efficient DAA scheme deeply
integrated with TrustZone and expressly for mobile devices. In order to reduce
the time delay and space overhead, the scheme minimizes the switch times of
TrustZone for the frequent signing phase.

– According to the ecosystem of mobile devices, DAA-TZ supports manufactur-
ers to acquire a batch of credentials through cooperative and trusted chan-
nels, and then embed them into devices before they leave factory. Users could
immediately execute anonymous signing after getting devices.

– The pre-computation is carefully added into DAA-TZ, so that the on-line
anonymous signing at most needs only three exponentiations on elliptic curve
which is thought of as quite expensive computation.

– DAA-TZ utilizes the on-chip SRAM PUF to reproduce a root key seed and
further create keys serving different purposes. The mechanism for sensitive
data management using related keys is presented in detail.

– We implement a prototype system with full functions of DAA-TZ. The evalu-
ation on it with two types of curves is performed. Both theoretical comparison
and testing results show the high efficiency of our scheme.

212 B. Yang et al.

2 Preliminaries

2.1 Notation

Throughout this paper, λ denotes the security parameter. We use a ← S to
denote sampling a from a set S uniformly at random. We also use 1G to denote
the identity element of a group G. For any group G, G

∗ denotes G\{1G}.
MACk(m) denotes the message authentication code for a message m computed
with the secret key k, and Enck(m) denotes a ciphertext of a message m produced
with the symmetric key k. Let Λ = (p,G1,G2,GT , e, g1, g2) to be a description
of bilinear groups which consist of three (multiplicatively written) groups G1,
G2 and GT of prime order p equipped with a bilinear map e : G1 × G2 → GT ,
where g1 and g2 be generators of G1 and G2 respectively. In this paper, we only
consider the Type-3 pairings [9], thus G1 �= G2 and there is no known efficiently
computable isomorphism between G1 and G2.

2.2 ARM TrustZone

ARM TrustZone [15] is a hardware-based security extension technology incor-
porated into ARM processors. It enables a single physical processor to execute
codes in one of two possible operating worlds: the normal world and the secure
world. Accordingly, the system is separated into two domains to run the domain-
dedicated OS and software. The isolation mechanisms of TrustZone are well
defined. Access permissions are strictly under the control of the secure world
that normal world components cannot access the secure world resources. As the
processor only runs in one world at a time, to run in the other world requires con-
text switch. A secure monitor mode controls the switch and migration between
the two worlds. To date, TrustZone has been popularized and applied by many
mainstream mobile manufacturers to achieving secure applications [28].

2.3 Physical Unclonable Functions

Physical Unclonable Functions (PUFs) [18] are functions where the relationship
between input (or challenge) and output (or response) is decided by a physical
system. Randomness and unclonability are two significant properties of PUFs.
The unclonability originates from random variations in a device’s manufacturing
process. With the help of a fuzzy extractor that eliminates the noise from the
response, PUFs are able to implicitly “store” a piece of secret data. PUFs pro-
vide much higher physical security by extracting the secret data from complex
physical systems rather than directly reading them from non-volatile memory.
Additionally, PUFs are cost-effective, since they take the advantage of the results
from a preexisting manufacturing process [30].

Strictly speaking, TrustZone just provides an isolated environment. Only
equipped with a root of trust, it becomes a real “trusted” execution environment
(TEE) [31]. Because TrustZone almost does not internally install an available
root key, it loses the capability to offer a root of trust. To cover this shortage,

DAA-TZ: An Efficient DAA Scheme for Mobile Devices 213

a PUF can be employed to properly act as the root of trust. In this paper, DAA-
TZ takes the secret data extracted from the PUF as a root key seed to generate
other keys. We adopt SRAM PUF [10] that leverages the relationship between
an SRAM cell’s address for the challenge and its power up value for the response.

3 System Model and Assumptions

3.1 System Model

The system model of DAA-TZ is composed of four kinds of entities: mobile
device D, manufacturer M, issuer I and verifier V. In practice, there could
be a number of D and V, thus we use Di and Vj to represent an individual
unite respectively. Di is directly accessed by a user and equipped with ARM
processor having TrustZone extension technology. M, who produces Di, per-
forms embedding some credentials to each Di in advance before it leaves factory.
I is responsible for issuing credentials to legitimate (or trusted) Di. I could
be an independent trusted authority or a part of mobile network provider. The
procedure of issuing could be executed with either M or Di respectively. Ser-
vice providers play the role of V in this interactive model. Vj outsources some
verification strategies to I for confirming the legitimacy of Di. The verifica-
tion strategies may involves Di’s configuration, user’s membership status or the
accounting and billing (e.g., Vj ’s subscription fees accounted with user’s mobile
phone bill). With these strategies, Vj authorizes I to distribute service-related
credentials to Di. When requesting Vj for a service, the user generates an anony-
mous signature based on the corresponding credential to attests his legitimacy
with other necessary information, such as the integrity measurement values of
executing applications on Di, the amounts of e-cash or the content of e-ticket.
The specific information structure and content are particularly defined by the
service protocol. Vj authenticates the user’s request by verifying his signature
without revealing his identity. In some scenarios, I and V could be one entity.
Figure 1 illustrates the system model for our proposed scheme.

Fig. 1. System model of DAA-TZ.

214 B. Yang et al.

3.2 Assumptions and Threat Model

In the system model, there is a dedicated channel between M and I, which
could be either physical connection or other forms of out-of-band communica-
tion, for I issuing credentials via M. To simplify our design, we assume that
data communications between M and I, and between Di and Vj build on secure
transport protocols, like TLS/SSL, which can provide confidentiality, authentic-
ity and integrity protection. Note that the secure channel between Di and Vj is
only verifier-authentication (i.e., unilateral authentication) in case Di’s identity
is revealed. Additionally, Public Key Infrastructure (PKI) is also assumed to
realize authenticating I. As a consequence, M, Vj and Di can accurately obtain
public keys, public parameters and revocation list from I who displays the public
information with certificate for being downloaded.

Actually, the establishment of the whole system requires some premised trust
relationships. First, the cooperation is assumed to be credible between I and
each M who ensures not to embed credentials to illegal Di or the Di without
available TrustZone. Second, Vj trusts that, before issuing credentials, I always
checks Di’s legitimacy by using verification strategies provided by Vj . As a result,
Vj would believe that the right credentials are in the right users’ hands. Another
accepted fact is that the user trusts M not to deliberately damage his Di’s
security. Constrained by the market supervision and the force of law, the above-
mentioned trust relationships are easily established and maintained.

Based on the assumptions, DAA-TZ protects against the following adversary:

– The adversary can attack the scheme itself by attempting to pretend entities,
manipulate data transmission between entities and forge data.

– The adversary can perform any software-based attacks which compromise the
mobile Rich OS or existing applications running in REE. DAA-TZ interfaces
in REE are also available for the adversary.

– The adversary can physically access the mobile device. He can reboot the
device and gain access to data residing on persistent storage.

However, we ignore the malicious behaviors of tampering with the TrustZone
hardware or mounting side-channel attacks on PUF [14]. Moreover, pointed out
by [25], since in general it is not possible to prevent simple relay attacks, we do
not consider that an adversary just forwards a DAA signature from Di to Vj .

4 DAA-TZ Scheme for Mobile Device

In this section, we give the specific design for the architecture of trusted mobile
device, and then present the key derivation and sensitive data management.
Depending on these, DAA-TZ scheme are detailed afterwards.

4.1 The Architecture of Trusted Mobile Device

Leveraging TrustZone and PUF technology, we design the architecture of trusted
mobile device specifically for DAA-TZ. The software-based implementation of

DAA-TZ: An Efficient DAA Scheme for Mobile Devices 215

Fig. 2. Architecture of trusted mobile device for DAA-TZ.

DAA-TZ functionality on existing hardwares targets at economy, flexibility and
extensibility. Figure 2 shows the detailed architecture with the way components
interact with each other.

DAA-TZ functionality in the architecture contains two components: untrusted
DAA-TZ Proxy in normal world (NW) and security-sensitive DAA-TZ Service in
secure world (SW). In reality, SW instantiates TEE, while NW implements REE.
DAA-TZ Service is isolated via TrustZone from other codes running in NW. The
components are formally described as follows.

DAA-TZ Proxy. It is the component visible for mobile applications in NW.
Waiting for their DAA-TZ service requests, the proxy handles the parameters
and preprocesses them. According to the request type, the proxy would call
DAA-TZ Service for substantive computations of the scheme and finally return
the results. DAA-TZ Proxy consists of the following four subcomponents:

– Software Stack: provides top DAA-TZ interfaces for mobile applications. It
parses the service requests and gives back service response results.

– Crypto Library: offers cryptographic algorithm support for Preprocessing
Engine. In NW, this library only supports exponentiations on elliptic curves.

– Preprocessing Engine: executes pre-computation for DAA-TZ when one
of two conditions is satisfied: a new credential is generated successfully, or a
pre-computed result is consumed correctly.

– Command Caller: formats calling command and interacts with DAA-TZ
Service. It sends the command through the GP TEE Client API [17], requests
to switch NW to SW via NW-Driver and waits for the returned values.

DAA-TZ Service. It is the core component to perform DAA-TZ critical com-
putations and operations. The execution of the component codes is under the
well protection of TrustZone isolation mechanism. Five following subcomponents
constitute DAA-TZ Service component:

216 B. Yang et al.

– API Functions: receives a service request from DAA-TZ Proxy and parses
the command. The functions transmit instructions to Logic Engine and waits
for results that would be forwarded back to DAA-TZ Proxy.

– Key Manager: creates cryptographic keys using the unique root key seed
extracted from SRAM PUF and provides keys to Data Handler.

– Data Handler: receives message to be signed from application service and
seals or unseals sensitive data. To prevent adversary from forging message,
Data Handler only receives message produced by application service in SW.
Besides, using keys from Key Manager, Data Handler seals sensitive data to
store them in the insecure persistent storage space of mobile device.

– Crypto Library: offers cryptographic algorithm support for Logic Engine
and Data Handler. In SW, it supports bilinear maps, computations on elliptic
curves, and other cryptographic operations.

– Logic Engine: executes the computations of security-sensitive parts of DAA-
TZ scheme. Logic Engine reads necessary parameters and data to run opera-
tions relying on scheme specification.

Application and Application Service. The corresponding application should
be launched if the user wants to enjoy a remote service from Vj . The secure
application released by Vj consists of two parts: App for NW and App Service
for SW. App provides the GUI and basic functions. When App has the need to
execute DAA-TZ procedures for remote service authenticating user’s legitimacy
with the message as service input, it calls DAA-TZ Proxy using its Software
Stack. App could notify App Service in SW to prepare message to be signed
through inter-domain communication mechanism supported by TrustZone [11].
App Service is trusted for processing security-sensitive data. It is sometimes
non-existent if the remote service does not require secure computation or signed
message as input.

Components in Kernels. SW-Driver in TEE OS Kernel and NW-Driver in
Mobile OS Kernel handle the communication requests and responses with respect
to switching the worlds. Implemented as Secure Monitor defined by TrustZone,
the Monitor controls hardwares to fulfill the switching action.

Components in Hardwares. The hardware of mobile device support ARM
TrustZone extension technology. Protected by TrustZone mechanism, SRAM
PUF component is only accessible for SW.

4.2 Key Derivation and Sensitive Data Management

Prior to describing the concrete construction of our DAA scheme, we show how
to derive various keys for different purposes using the root key seed extracted
from SRAM PUF and how to utilize the derived keys to protect sensitive data.

Root Key Seed Extraction. We use the technique of SRAM PUF in [31] to
extract the secret root key seed s, which is a unique bit string picked randomly
by M who “stores” it in Di through the physical features of one SRAM inside
Di. From SRAM PUF component, s is only reproduced and securely cached by

DAA-TZ: An Efficient DAA Scheme for Mobile Devices 217

Key Manager when Di starts up every time in normal use. The confidentiality
of s is rigidly guaranteed by TrustZone.

Key Derivation. Key Manager has the deterministic key derivation function
KDF : S̃ × D̃ → K̃, where S̃ is the key seed space, D̃ is a set of strings for
statement of purposes with possible variables, and K̃ is the derived key space.
Using the KDF, the device key pair which is analogous to the endorsement key
pair in [22,23] and the storage root key for generating specific storage keys can be
derived as (dsk, dpk) ← KDFs(‘identity’) and srk ← KDFs(‘storage root’)
respectively, where s is the root key seed. Whereafter, we also use the storage
keys derived from KDF with the storage root key srk to preserve sensitive data.
The hierarchical structure of storage keys enhances the security for key usage.
Note that all the derived keys are never stored permanently. Instead, they are
regained via KDF with s at the same way when needed.

Sensitive Data Management. We can utilize the storage keys derived from
the storage root key srk to seal the DAA-TZ’s public parameters params, some
mobile device Di’s credential cred and a pair (f, T), where f is Di’s secret key
and T = gf

1 for some fixed basis g1. The sealed results of these data can be
stored in the insecure positions of NW.

– Protect integrity for params: mkparams ← KDFsrk(‘storage key’, ‘MAC’, 0),
blobparams ← Data Seal(‘MAC’,mkparams, params), where

blobparams := params||MACmkparams
(params).

– Protect integrity for cred: mkcred ← KDFsrk(‘storage key’, ‘MAC’, T) and
blobcred ← Data Seal(’MAC’,mkcred, cred), where

blobcred := cred||MACmkcred
(cred).

– Protect both confidentiality and integrity for (f, T): generate two kinds of keys
by (skf ,mkf) ← KDFsrk(‘storage key’, ‘Enc+MAC’, T), and then blobf ←
Data Seal(‘Enc+MAC’, skf ,mkf , f, T), where

blobf := Encskf
(f)||T ||MACmkf

(Encskf
(f)||T).

Data Handler can use Data Unseal() to recover and verify the sensitive data from
blobs with the related keys regained by Key Manager.

4.3 The Details of DAA-TZ Scheme

Some preliminary work needs to be done as premise to start the normal proce-
dures of the scheme. Specifically, when M initializes Di in the factory, M guides
Di in SW to use its root key seed to generate the unique device key (dsk, dpk)
which could uniquely identity Di. Then, M issues a certificate cert for the pub-
lic key dpk to indicate M’s recognition for Di. The certificate cert contains the
configuration information (e.g., whether TrustZone is available) of Di.

218 B. Yang et al.

For Di-centered design, DAA-TZ scheme consists of seven phases: Setup,
KeyGen, Embed, Sign, Verify, Revoke and Rejoin. First of all, Setup is executed
to create the public parameters. After that, the issuer I can execute KeyGen
to generate its public/private key pair according to the public parameters. In
addition, KeyGen and Embed are compelled to execute sequentially before Di

leaves the factory. Then, other phases are able to execute correctly according to
application requirements. We adopt the techniques in [1,6,27] to build DAA-TZ
scheme. The phases of DAA-TZ scheme are presented in detail as follows.

Setup. Given a security parameter λ, pick the suitable bilinear groups para-
meters Λ = (p,G1,G2,GT , e, g1, g2) such that the bit-length of p is 2λ. In
addition, choose three independent collision-resistant hash functions:

H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → G1, H3 : {0, 1}∗ → Zp.

Finally, publish (p,G1,G2,GT , e, g1, g2,H1,H2,H3) as the public parameters
params. For each mobile device Di, M imports params to Di and calls
Data Seal() to seal the params. The resulting blob blobparams is stored in Di.

KeyGen. This phase initializes the public/private key pair for the issuer I and
generates a mobile device Di’s key.
–Key Generation for Issuer. Given params as input, I picks x, y ← Z

∗
p,

and computes X := gx
2 and Y := gy

2 . I sets (x, y) as the private key skI
and publishes (X,Y) as the public key pkI . We assume that some mobile
device Di and verifier Vj could get the correct pkI from I via verifying the
certificate1 for pkI . Besides, I initializes a revocation list RL as empty.
–Key Generation for Mobile Device. In SW of a mobile device Di, Logic
Engine calls DAATZ SW Create() to generate key blob blobf that seals the
Di’s secret key f and public information T . It runs as:

blobf ← DAATZ SW Create(blobparams),

where the API mainly has the following four operations:
(1) Unseal the blob blobparams to get params by calling Data Unseal().
(2) Pick f ← Z

∗
p and compute T := gf

1 .
(3) Call Data Seal() to seal the pair (f, T) to obtain the key blob blobf .
(4) Output blobf .

Di switches back to NW and stores blobf in its non-volatile memory.
Embed. In this phase, a credential cred for each mobile device Di is produced

and embedded into the device before Di leaves the factory as follows.
1. M obtains T from the key blob blobf and sends T to I through the

dedicated channel. Because of the cooperative relationship, I trusts M
is asking for producing credential to embed into a Di with legitimate
configurations. Thus, I does not check the validity of Di any more. But
in this phase, only the credentials that do not require other more strict
verification strategies from Vj are permitted to issue.

1 Utilizing PKI solution, a Certificate Authority (CA) issues a public key certificate
for pkI to the issuer I.

DAA-TZ: An Efficient DAA Scheme for Mobile Devices 219

2. On input of a group element T , I runs the following signature algorithm
to generate a credential cred for T .

(A,B,C,D, cI , sI) ← SIG Cred(params, skI , T)

The signature algorithm has the following four steps:
(1) Choose a ← Z

∗
p and compute A := ga

1 , B := ga·y
1 , C := ga·x

1 · T a·x·y,
D := T a·y and t := a · y.

(2) Choose rI ← Zp and compute RI1 := grI
1 , RI2 := T rI .

(3) Compute cI := H1(B||D||g1||T ||RI1||RI2).
(4) Compute sI := rI + cI · t (mod p).
Then, I sends (A,B,C,D, cI , sI) to M.

3. M imports the tuple (A,B,C,D, cI , sI) into SW of Di. Logic Engine calls
the API DAATZ SW Join() to check the elements from I and generate a
credential blob blobcred to store:

blobcred ← DAATZ SW Join(blobparams, pkI , T, A,B,C,D, cI , sI),

where the API executes the following operations:
(1) Call Data Unseal() to unseal the blob blobparams to obtain params.
(2) Compute R′

I1 := gsI
1 · B−cI and R′

I2 := T sI · D−cI .
(3) Compute c′

I := H1(B||D||g1||T ||R′
I1||R′

I2).
(4) Check whether the relations A �= 1G1 , e(A, Y) = e(B, g2), e(C, g2) =

e(A · D,X) and cI = c′
I hold.

(5) If all the relations hold, set cred := (A,B,C,D).
(6) Call Data Seal() to seal cred, and output the resulting blob blobcred.
Note that M could send simultaneously a set of {Ti}n

i=1 to I by a single
interaction, and obtain the corresponding credential set {credi}n

i=1.
4. After a credential cred is successfully obtained by Di, TrustZone switches

to NW and DAA-TZ Proxy executes pre-computation in the background
to prepare for user’s fast anonymous signing operation in the following
Sign phase. Preprocessing Engine calls DAATZ NW PreCmpt() to gener-
ate a blinded credential:

(l, S, U, V,W) ← DAATZ NW PreCmpt(blobparams, blobcred),

where the algorithm consists of the following steps.
(1) Get the prime p and credential cred by directly reading the plaintext

part of blobparams and blobcred respectively.
(2) Parse cred as (A,B,C,D).
(3) Choose l ← Z

∗
p and compute (S,U, V,W) := (Al, Bl, Cl,Dl).

(4) Output (l, S, U, V,W).
Preprocessing Engine stores the output (l, S, U, V,W). Now that opera-
tions in M have been done, Di is going to be delivered to the hand of a
user.

Sign. This phase enables a user to anonymously attest the legitimacy of both
his status and his mobile device.

220 B. Yang et al.

1. App of a mobile device Di connects a remote verifier Vj . Then, Vj nego-
tiates with Di to decide a basename bsn ∈ {0, 1}∗. If bsn is empty (i.e.,
bsn = ⊥), it means that the signatures created by Di are unlinkable. If
bsn is a non-empty basename (i.e., bsn �= ⊥), the signatures produced
by Di are pseudonymous, i.e., signatures under the same basename could
be linked and signatures under different basenames are unlinkable. In
addition, Vj chooses a nonce nVj

← {0, 1}2λ and sends it to Di.
2. In NW, it is optional for App to notify App Service to prepare authentica-

tion information as message m to be signed. The notification is combined
with the command for DAA-TZ Proxy to request generating signature.

3. On account of the request, the environment is switched into SW. App
Service may need its user to securely input some information, such as
password, to generate m. Then, Logic Engine calls DAATZ SW Sign() to
create a DAA signature σ using the related pre-computation result as:

σ ← DAATZ SW Sign(blobparams, blobf , blobcred, bsn, nVj , m, l, S, U, V, W),

where the detailed process is presented as follows:
(1) Unseal the blobs to get params, f , T and cred by calling

Data Unseal().
(2) If bsn �= ⊥, compute J := H2(bsn) and K := Jf , else set J,K := 1G1 .
(3) Choose rDi

← Zp and compute RDi1 := JrDi and RDi2 := Bl·rDi .
(4) Compute cDi

:= H3(J ||K||S||U ||V ||W ||RDi1||RDi2||bsn||nVj
||m).

(5) Compute sDi
:= rDi

+ cDi
· f (mod p).

(6) Output a signature σ := (K,S,U, V,W, cDi
, sDi

).
After σ is generated successfully, the environment is switched back to NW
with the returned outputs m and σ that are eventually sent to Vj .

4. Through the above step, a pre-computation result (l, S, U, V,W) is con-
sumed. Preprocessing Engine deletes the previous pre-computation result,
then calls DAATZ NW PreCmpt() again to get a new pre-computation
tuple (l′, S′, U ′, V ′,W ′) for the next use. This pre-computation process
is executed parallelly in the background of NW without causing obvious
time delays felt by the user.

Verify. In this phase, a verifier Vj checks whether or not a signature σ on a
message m is valid.
1. Vj verifies (m,σ) by the means of calling verification algorithm Verify() as:

res ← Verify(params, pkI , bsn, nVj
,m, σ),

where the algorithm runs in detail as follows:
(1) Parse σ as (K,S,U, V,W, cDi

, sDi
).

(2) For each frvk ∈ RL, if W = Ufrvk , then set res := false and abort.
(3) If bsn �= ⊥, compute J ′ := H2(bsn), else set J ′ := 1G1 .
(4) Compute R′

Di1
:= J ′sDi · K−cDi and R′

Di2
:= UsDi · W−cDi .

(5) Compute c′
Di

:= H3(J ′||K||S||U ||V ||W ||R′
Di1

||R′
Di2

||bsn||nVj
||m).

(6) Check whether the relations S �= 1G1 , e(S, Y) = e(U, g2), e(V, g2) =
e(S · W,X) and cDi

= c′
Di

hold.

DAA-TZ: An Efficient DAA Scheme for Mobile Devices 221

(7) If all the relations hold, then res := true, else res := false.
According to the verification result res, Vj decides whether to accept the
message/signature pair (m,σ) and provide service for the owner of Di.

Revoke. In this phase, if a secrete key f has been revealed, it could be revoked.
1. I has the duty to censor the Internet. By collecting and analyzing daily

logs, I tries to find the clue indicating the leakage of f and its declared
valid credential cred. If the pair (f, cred) is found, I checks whether cred
is a valid credential on the f with params and pkI . For valid one, I adds
f into RL, i.e., RL := RL ∪ {f}.

2. Vj maintains locally a revocation list RL which is regularly updated from
the revocation list published by I.

Rejoin. This phase enables Di to recreate a new secret key f ′ and obtain a related
new credential cred′, when an old key f of Di has already been revoked, or Di

intends to apply for a membership credential under a new public key created
by either a new or an existing issuer2. We choose an IND-CCA secure public
key encryption scheme (ENC,DEC) for the following usage with the device
key pair (dpk, dsk). In particular, C ← ENCdpk(M) and M ← DECdsk(C)
denote that encrypting the message M with the public key dpk to obtain a
ciphertext C, and decrypting the ciphertext C with the secret key dsk to
recover a message M respectively. This phase is executed as follows.
1. DAA-TZ Proxy sends Di’s dpk and its certificate cert to I.
2. I checks whether dpk is valid with cert for confirming Di’s configurations.

Utilizing the verification policy from Vj , I checks other properties of Di

and its owner. If all the checks are passed, I randomly chooses a key k
for MAC operation, and a nonce nI ← {0, 1}2λ. I then adds nI into a
nonce list NL which is initially empty, i.e., NL := NL ∪ {nI}. Next, I
generates a commitment request by encrypting k and nI with dpk, i.e.,
commreq ← ENCdpk(k||nI). Finally, I sends commreq to Di.

3. DAA-TZ Proxy invokes DAA-TZ Service with inputting commreq. In SW,
DAATZ SW Commit() is called to generate a commitment response:

commres ← DAATZ SW Commit(commreq),

where the process is executed as follows:
(1) Recover the device private key dsk using the root key seed s, i.e.,

(dsk, dpk) ← KDFs(‘identity’).
(2) Use the secret key dsk to decrypt commreq: k||nI ←

DECdsk(commreq).
(3) Call DAATZ SW Create() to generate a blob blobf ′ associated with a

new secret key f ′ and the corresponding T ′ = gf ′
1 .

(4) Compute τ ← MACk(T ′||nI) and commres := (τ, nI , T ′).
Finally, Di switches back to NW and sends commres to I.

2 If the public key of an existing issuer has expired, it should refresh its public key by
creating a new one and obtaining the corresponding certificate.

222 B. Yang et al.

4. I first verifies whether commres is valid by computing τ ′ ← MACk(T ′||nI)
and checking if the relations nI ∈ NL and τ = τ ′ hold. If hold, as in the
Embed phase, I runs the SIG Cred() algorithm with the public parameters
params, its secret key sk′

I and the T ′ contained in commres as the input
to obtain a tuple commcred := (A′, B′, C ′,D′, c′

I , s′
I), i.e.,

(A′, B′, C ′,D′, c′
I , s′

I) ← SIG Cred(params, sk′
I , T ′).

Finally, I sends the above tuple commcred to Di.
5. As in the Embed phase, DAA-TZ Service in SW calls DAATZ SW Join()

with the tuple commcred to generate a credential blob blob′
cred, i.e.,

blob′
cred ← DAATZ SW Join(blobparams, pk′

I , T ′, A′, B′, C ′,D′, c′
I , s′

I),

where pk′
I is the public key of I.

6. Back to NW, Preprocessing Engine invokes DAATZ NW PreCmpt() to
obtain a pre-computation tuple, i.e.,

(l′, S′, U ′, V ′,W ′) ← DAATZ NW PreCmpt(blobparams, blob
′
cred).

4.4 Security Analysis

DAA-TZ satisfies the desired security properties for mobile devices, such as
anonymity (including forward anonymity and pseudonymity), traceability and
non-frameability. The detailed description of these properties and the analysis
can be found in the full paper [29].

5 Implementation and Evaluation

In this section, we first present the prototype system of DAA-TZ from both
aspects of hardware and software. Afterwards, we show the comparison of the
proposed scheme to other four solutions. Finally, we give the performance eval-
uation and analysis based on our prototype system.

5.1 Implementation

Hardware Platform. To simulate real environment, we implement the role of
manufacturer on one PC platform. Issuer and verifier are together implemented
on another PC platform. For simulating mobile device, we leverage a develop-
ment board Zynq-7000 AP Soc Evaluation Kit [24] to implement functions of
DAA-TZ. It is TrustZone-enabled and equipped with ARM Cortex-A9 MPCore,
1GB DDR3 memory and On-Chip Memory (OCM) module including 256 KB
SRAM. However, this SRAM is initialized by BootROM once the board is pow-
ered on, which prevents us from reading its initial data. Then we utilize an
SRAM chip that is the type IS61LV6416-10TL [18] to act as our SRAM PUF.
SRAM initial data is transferred to the Zynq development board by an FPGA

DAA-TZ: An Efficient DAA Scheme for Mobile Devices 223

implementation of Universal Asynchronous Receiver/Transmitter (UART) in
Verilog hardware description language. A UART receiver in the Zynq board
receives and stores the SRAM data in a RAM cache. Then the processor can
fetch the SRAM data in the RAM cache via the bus.

Software Implementation. The software implementation on the development
board for mobile device is divided into two parts. In secure world, we use Open
Virtualization SierraTEE as the basic TEE OS which is compliant with GP’s
TEE Specifications [17]. For Key Manager of DAA-TZ Service, the fuzzy extrac-
tor of PUF is constructed on an open source BCH code [13]. For Crypto Library,
we use OpenSSL-0.9.8y for general cryptographic algorithms, and Pairing-Based
Cryptography (PBC) 0.5.14 library for computations of elliptic curves and pair-
ings. We choose SHA256 for H2(), 1280-bit RSA key pair for the device key and
128-bit AES encryption with HMAC-SHA256 for sealing and unsealing opera-
tions. 2315 lines of code (LOC) in C language totally make up our components
and auxiliary functions in secure world. In normal world, we run a Linux as REE
OS with kernel 3.8.6. The SieraTEE project provides the Linux with NW-Driver
and GP TEE Client API., DAA-TZ Proxy totally comprises 1651 LOC. Besides
we program one test application that could request executing DAA-TZ scheme.
It contains 1068 LOC running in NW. In addition, there are several tens of
thousands of LOC for implementing manufacturer, issuer and verifier.

5.2 Comparison

Dedicated for TrustZone security extension, DAA-TZ achieves some valuable and
meaningful properties. In Table 1, we show how our scheme compares to existing
solutions from the latest literature. These are ISC10 [25], BCL08 in LAMS [28],
BL10 and CPS10 in Mdaak [30]. Likewise building on ECC-DAA and TrustZone
technology, these solutions are all designed for mobile platform. The comparison
focuses on the items related to mobile device, involving the most time-consuming
computation amount of on-line anonymous signing (that leads user to wait for
its instant result) depending on whether bsn is null, the switch times between
SW and NW when executing signing, and other properties including realized
pre-computation, user-controlled pseudonym, forward anonymity and sensitive
data management using a root of trust. The notations used in the table are as
follows: when we write EG1 or EGT

, we mean the exponentiation is in group
G1 or GT ; E2

G1
denotes 2 simultaneous exponentiations on G1, i.e. computing

ab1
1 · ab2

2 ; P is short for pairing computation; the check mark (✔) denotes the
solution considers or has this property while the X mark (✘) denotes not; the
slash (/) indicates it does not support pseudonym.

From the table, it is clear that the proposed scheme not only has the least on-
line computation amount and switch times for mobile devices in signing phase,
but also provides all other listed properties. The signing phase is the most fre-
quent execution and deeply influences the whole scheme’s efficiency. Overall, the
combination of these advantages endows DAA-TZ with a good user experience
as well as high security.

224 B. Yang et al.

Table 1. Comparison of DAA-TZ to other related solutions

Computation Amount Switch Times Pre- Controllable Forward Data

of On-line Signing of Signing Compute Pseudonym Anonymity Management

bsn = ⊥ bsn �= ⊥
ISC10 4EG1

/ � 1 ✘ ✘ ✘ ✘

BCL08 (LAMS) 3EG1
+4EGT

+3P / 2 ✘ ✘ ✘ ✘

BL10 (Mdaak) 4EG1
+E2

G1
+EGT

+P 2 ✘ ✔ ✘ ✔

CPS10 (Mdaak) 7EG1
1 ✘ ✔ ✘ ✔

DAA-TZ EG1
3EG1

1 ✔ ✔ ✔ ✔

5.3 Performance Evaluation

We measure the performance of DAA-TZ on the prototype system revolving
around mobile device through a series of experiments with different parameters.
Referring to ISO/IEC 15946-5 standard [19], we select two kinds of elliptic curves
that are suitable for realizing Type-3 pairings. These curves are MNT curve with
embedding degree 6 and BN curve with embedding degree 12. For testing various
security levels of curves, we totally conduct 6 experiments respectively using
MNT160, MNT224, BN160, BN192, BN224 and BN256, where each number
denotes the approximate number of bits to optimally represent an element of
the group G1. More precisely, MNT160 and BN160 provide 80-bit security level;
MNT224 and BN192 provide 96-bit; BN224 and BN256 respectively provide 112-
bit and 128-bit. Our experiments simulate the whole DAA-TZ running process
covering instantiated protocol, TrustZone switch and sensitive data management.
Each average experimental result is taken over 20 test-runs.

Fig. 3. Time overheads of the critical processes with 80-bit security level.

On MNT and BN curves with 80-bit security level, Fig. 3 illustrates the
average time overheads of critical processes including the computations of pre-
compute, Sign (excluding pre-computation) and Rejoin on mobile device and
Verify on PC for verifier. The results indicate that using both curves the fre-
quent computations about either pre-compute or Sign only take less than 500
milliseconds (ms), while infrequent and time-consuming Rejoin spends less than
1550 ms. Even if the computation amount of Verify is quite large, the time
overhead is indeed low on PC platform.

DAA-TZ: An Efficient DAA Scheme for Mobile Devices 225

Fig. 4. On-line time overheads of Sign phase with different security levels.

Figure 4 shows the average on-line time overheads of single Sign phase
(excluding pre-computation) on mobile device using two curves with different
security levels. From the figure, we can see that as the security levels increase,
the time overheads of Sign phase have evident growth. Encouragingly, all the
resulting overheads spend less than 820 ms, which is completely acceptable for
a mobile user.

Actually, a direct performance comparison of our competitive scheme to oth-
ers is difficult because of four inevitable differences: the hardware platforms, the
algorithm libraries, the selections of elliptic curves, and the completeness degrees
of programming. Anyhow, according to our comparison and experimental results,
DAA-TZ can be considered as a reasonably efficient scheme for mobile device.
In regard to adopting modern mobile devices that are much more powerful than
our development board and a more optimal library to implement elliptic curves
and parings, the time overhead of our scheme could be further decreased.

6 Conclusion

In this paper, we propose DAA-TZ, a complete and efficient DAA scheme using
TrustZone, to deal with the security and privacy issues specially for mobile users.
DAA-TZ enables manufacture to embed credentials into devices and guarantees
the minimal switch times of TrustZone during signing phase. Pre-computation
is also carefully taken into consideration to raise scheme’s efficiency. The root of
trust provided by SRAM PUF, key derivation and sensitive data management
collectively enhance the security of our scheme. The implementation and evalu-
ation convince that DAA-TZ is quite practical for mobile users. Our next step
is to design the concrete secure applications based on DAA-TZ.

Acknowledgment. We thank Shijun Zhao and the anonymous reviewers for their
valuable comments. This work was supported in part by grants from the National
Natural Science Foundation of China (No. 91118006, No. 61202414 and No. 61402455)
and the National 973 Program of China (No. 2013CB338003).

226 B. Yang et al.

References

1. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous
attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)

2. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM CCS, pp. 132–145. ACM (2004)

3. Brickell, E., Chen, L., Li, J.: A New Direct Anonymous Attestation Scheme from
Bilinear Maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 166–178. Springer, Heidelberg (2008)

4. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources.
In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 181–195. Springer, Heidelberg (2010)

5. Chen, L., Li, J.: Flexible and scalable digital signatures in tpm 2.0. In: Proceedings
of the 20th ACM CCS, pp. 37–48. ACM (2013)

6. Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient
DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS
2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010)

7. Chen, X., Feng, D.: Direct anonymous attestation for next generation tpm. J.
Comput. 3(12), 43–50 (2008)

8. Commission, F.T., et al.: Mobile privacy disclosures: Building trust through trans-
parency. Federal Trade Commission Staff Report (2013)

9. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Discrete Appl.
Math. 156(16), 3113–3121 (2008)

10. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

11. Jang, J., Kong, S., Kim, M., Kim, D., Kang, B.B.: Secret: Secure channel between
rich execution environment and trusted execution environment. In: NDSS 2015
(2015)

12. Maganis, G., Shi, E., Chen, H., Song, D.: Opaak: using mobile phones to limit
anonymous identities online. In: Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, pp. 295–308. ACM (2012)

13. Morelos-Zaragoza, R.: Encoder/decoder for binary bch codes in c (version 3.1)
14. Oren, Y., Sadeghi, A.-R., Wachsmann, C.: On the effectiveness of the remanence

decay side-channel to clone memory-based PUFs. In: Bertoni, G., Coron, J.-S.
(eds.) CHES 2013. LNCS, vol. 8086, pp. 107–125. Springer, Heidelberg (2013)

15. ARM: Trustzone. http://www.arm.com/products/processors/technologies/
trustzone. Last accessed 5 May 2015

16. GENODE: An exploration of arm trustzone technology. http://genode.org/
documentation/articles/trustzone. Last accessed 1 May 2015

17. GlobalPlatform: Tee client api specification version 1.0 (2010)
18. Integrated Silicon Solution Inc: IS61LV6416-10TL. http://www.alldatasheet.com/

datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html
19. ISO/IEC: 15946–5: 2009 information technology-security techniques: Crypto-

graphic techniques based on elliptic curves: Part 5: Elliptic curve generation (2009)
20. Proxama (2015). http://www.proxama.com/platform/
21. Sansa Security: Discretix (2014). https://www.sansasecurity.com/blog/

discretix-becomes-sansa-security/. Last accessed 22 June 2014
22. Trusted Computing Group: TPM main specification version1.2, revision 116

(2011). http://www.trustedcomputinggroup.org. Last accessed 25 October 2014

http://www.arm.com/products/processors/technologies/trustzone
http://www.arm.com/products/processors/technologies/trustzone
http://genode.org/documentation/articles/trustzone
http://genode.org/documentation/articles/trustzone
http://www.alldatasheet.com/datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html
http://www.alldatasheet.com/datasheet-pdf/pdf/505020/ISSI/IS61LV6416-10TL.html
http://www.proxama.com/platform/
https://www.sansasecurity.com/blog/discretix-becomes-sansa-security/
https://www.sansasecurity.com/blog/discretix-becomes-sansa-security/
http://www.trustedcomputinggroup.org

DAA-TZ: An Efficient DAA Scheme for Mobile Devices 227

23. Trusted Computing Group: Trusted platform module library, family 2.0 (2013).
http://www.trustedcomputinggroup.org. Last accessed 10 March 2015

24. Xilinx: Zynq-7000 all programmable soc zc702 evaluation kit. http://www.xilinx.
com/products/boards-and-kits/EK-Z7-ZC702-G.htm

25. Wachsmann, C., Chen, L., Dietrich, K., Löhr, H., Sadeghi, A.-R., Winter, J.:
Lightweight anonymous authentication with TLS and DAA for embedded mobile
devices. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 84–98. Springer, Heidelberg (2011)

26. Wilson, P., Frey, A., Mihm, T., Kershaw, D., Alves, T.: Implementing embedded
security on dual-virtual-cpu systems. IEEE Des. Test 24(6), 582–591 (2007)

27. Xi, L., Yang, K., Zhang, Z., Feng, D.: DAA-related APIs in TPM 2.0 revisited.
In: Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564, pp. 1–18. Springer,
Heidelberg (2014)

28. Yang, B., Feng, D., Qin, Y.: A lightweight anonymous mobile shopping scheme
based on daa for trusted mobile platform. In: 2014 IEEE 13th International Con-
ference on TrustCom, pp. 9–17. IEEE (2014)

29. Yang, B., Yang, K., Qin, Y., Zhang, Z., Feng, D.: DAA-TZ: An effcient DAA
scheme for mobile devices using ARM Trust Zone (full version) (2015) (ePrint)

30. Zhang, Q., Zhao, S., Xi, L., Feng, W., Feng, D.: Mdaak: A flexible and efficient
framework for direct anonymous attestation on mobile devices. In: Information and
Communications Security. Springer (2014)

31. Zhao, S., Zhang, Q., Hu, G., Qin, Y., Feng, D.: Providing root of trust for arm
trustzone using on-chip sram. In: Proceedings of the 4th International Workshop
on Trustworthy Embedded Devices, pp. 25–36. ACM (2014)

http://www.trustedcomputinggroup.org
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm
http://www.xilinx.com/products/boards-and-kits/EK-Z7-ZC702-G.htm

DAA-A: Direct Anonymous Attestation
with Attributes

Liqun Chen1 and Rainer Urian2(B)

1 Hewlett-Packard Laboratories, Bristol, UK
liqun.chen@hp.com

2 Infineon Technologies AG, Neubiberg, Germany
rainer.urian@infineon.com

Abstract. The TPM 2.0 specification has been designed to support a
new family of Elliptic Curve (EC) based Direct Anonymous Attestation
(DAA) protocols. DAA protocols are limited to anonymous or pseudony-
mous attestations. But often a more flexible attestation would be needed.
For instance, attesting that the platform is a certain model from a cer-
tain vendor. Such an attestation would require to bind the attributes
“model”and “vendor” to the TPM.

This paper shows how the DAA protocols can be augmented with
an arbitrary number of attributes. This gives a new family of protocols
called DAA-A, which means DAA with attributes. In a DAA-A protocol,
the user of the TPM/platform can select which attributes he will show to
the verifier and which attributes he will hide. The authenticity of the hid-
den attributes will be proved by a zero knowledge protocol. The DAA-A
protocols have user controlled linkability in the same way as the DAA
protocols. We show explicitly, how the two most prominent EC based
DAA protocols for TPM 2.0 can be extended to DAA-A protocols.

Keywords: Direct anonymous attestation · Attributes · Trusted plat-
form module

1 Introduction

Direct Anonymous Attestation (DAA) is a cryptographic protocol used to pro-
vide verifiable attestation for a computer platform with a TPM chip. The attes-
tation is done by showing a signed authentication token to the verifier (e.g.
service provider). The TPM chip and the host processor of the platform share
the calculation of the authentication token. The TPM chip performs only a minor
part of the calculations. Advanced arithmetic, like pairing calculations, will be
done by the host processor. Since privacy protection is very important, the DAA
protocol has two modes of user controlled linkability.

– Full anonymous attestation mode. This means, if two attestations to the same
or to different service providers have been performed it is not possible for
anyone to decide if both attestations have been done by the same platform or
by two different ones.

c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 228–245, 2015.
DOI: 10.1007/978-3-319-22846-4 14

DAA-A: Direct Anonymous Attestation with Attributes 229

– Pseudonymous attestation mode. In this mode a service provider can recognize
a platform by its pseudonym. But different service providers get different
pseudonyms for the same platform. This implies that nobody can correlate
two pseudonymous attestations.

The current TPM 2.0 specification [14] supports two different DAA proto-
cols which are based on pairings over elliptic curves. The first [4] is based on
Camenisch-Lysyanskana (CL) credentials [7] and the second one [5] is based
on sDH credentials [2]. The paper from Chen and Li [9] shows how both DAA
protocols can be used with a TPM 2.0 chip.

In some circumstances neither anonymous nor pseudonymous attestation is
ideally suited. For instance, consider the following use-case. The platform man-
ufacturer wants to provide the customers of its premium models a free cloud
account. Instead of requiring a cumbersome registration procedure from the cus-
tomer, he uses the TPM chip to attest the cloud service the manufacturer and
model version of the platform. In order for this to work, the platform manufac-
turer must somehow bind the attributes ‘manufacturer’ and ‘model’ to the TPM.
Privacy is also an important issue here. Therefore, the user must always be in
control what attributes he will show to the service provider and what attributes
he will hide from him. On the other hand, the service provider shall only get
the attributes he really needs for the attestation process. In data privacy this is
called the minimum disclosure principle.

The purpose of this paper is to show how the DAA protocols can be extended
with attributes. Instead of representing the possession of a single secret in a DAA
signed token, the signed authentication token in DAA-A represents the posses-
sion of a set of attributes. The platform user can select which attributes he will
disclose to the service provider and which attributes he will hide from him. The
authenticity of the hidden attributes will then be proved by a zero knowledge
protocol. This new protocol family is therefore called DAA-A, which means DAA
with Attributes. Each attribute can optionally be associated to a pseudonym and
can be protected by the TPM chip. Protecting the attribute in a TPM chip pro-
vides much greater security. In addition to that, it has also a further benefit. The
TPM 2.0 specification contains so called policy authorizations. One can associate
to each TPM protected attribute an authorization policy which constraints the
usage of the attribute. This makes the following use-cases possible:

– Binding a user password authentication to the token.
– Providing the token with an expiration date.
– Providing the token with a limited number of authentication uses.

We show DAA-A extensions for the CL- and sDH-based DAA protocols. In
summary, our proposed DAA-A protocols have the following features:

– They are based on CL or sDH DAA protocols with user controlled linkability.
– They can have an arbitrary number of additional attributes.
– Each attribute can be associated with a pseudonym.
– Each attribute can be stored in TPM shielded location.
– Each attribute can be selectively disclosed under control of the user.

230 L. Chen and R. Urian

From a high level view, our DAA-A construction consists of an underlying DAA
scheme with an anonymous credential of a public key. But in contrast to a DAA
scheme, the public key does not correspond to a single secret key, but is the result
of a discrete logarithm representation of multiple attributes. A DAA protocol
is a special case of the DAA-A protocol. By using a single attribute, one gets a
protocol which is mathematically identical to the DAA protocol. By hiding all
attributes one gets a protocol which is equivalent to the DAA protocol, i.e. it
has the same security and privacy properties.

Although the DAA-A protocols have been primarily designed for use with a
TPM chip they can also be used in other contexts, for instance as an identity
smart card. In this case, the complete signing operation of the protocol has to
be performed on the smart card. The CL based DAA-A protocol is especially
well suited for this, because it uses only standard elliptic curve calculations. The
whole protocol can therefore effectively be implemented on a standard Java card.

2 Related Work

The first RSA DAA protocol was introduced by Brickell, Camenisch and Chen [3]
for the TPM 1.2 specification [13]. The Idemix protocol uses the same RSA based
anonymous credential scheme as that DAA protocol and adds attributes with
selective disclosure [6]. But Idemix can neither be used with a TPM 1.2 nor with
a TPM 2.0.

The U-Prove protocol [11] from Microsoft is an attribute based protocol with
user controlled selective disclosure. The paper of Chen and Li [9] shows how U-
Prove can be integrated with a TPM 2.0 chip. But the U-Prove protocol has
the severe drawback that it is not multi-show unlinkable. The reason for this is
that the authentication token of the U-Prove protocol is signed by a Schnorr-
like signature and the signature value can be used as a correlation handle. To be
unlinkable, a U-Prove token may only be used once. Our DAA-A protocols use
similar tokens like the U-Prove protocol. One can therefore interpret our DAA-A
protocols as U-Prove with anonymous credentials.

Bangerter et al. [1] show a cryptographic framework for multi-show and selec-
tive disclosure protocols. But their framework does not support the integration
of a TPM. They show the BM-CL protocol as an application for their frame-
work. This protocol is also based on CL credentials. But it uses a symmetric
type I pairing, while our CL-DAA proposal uses a type III pairing, which is
more efficient. In order to get comparable cryptographic strength to a 256 bit
type III curve, the finite field of the type I curve must have approximately 1536
bit. Also, a BM-CL authentication token needs two curve points per attribute,
while our CL-DAA protocol needs only one point per attribute. This implies that
our protocol is much more efficient. Finally, type I pairings cannot be integrated
with TPM 2.0 chips, based on the current TPM 2.0 specification [14].

DAA-A: Direct Anonymous Attestation with Attributes 231

3 Two DAA-A Schemes

3.1 A General View of Them

Preliminaries. Let F be a finite base field and F̃ be a finite extension field
of F. Let E be an elliptic curve defined over F with a base point G. Let Ẽ

denote the points of E over the extension field F̃ and G̃ be a base point of
Ẽ. The curve E shall be equipped with a type III pairing τ : E × Ẽ → F̃.
Uppercase Latin or Greek letters always indicate elliptic curve points on the
curve E. Uppercase Latin or Greek letters with a tilde on top will denote elements
on the curve Ẽ. The operation on E (resp. Ẽ) is written with additive notation.
Multiplication by scalars is always written on left. Scalars are always defined on
Zq, where q is the group order of the subgroup 〈G〉 in E. Arithmetic has to be
understood in the respective finite fields. Two hash functions: H1 : {0, 1}∗ → Zq

and H2 : {0, 1}∗ → E, are used in these two schemes.
The public system parameters consist of the additional group elements G1,

. . . , Gn ∈ E. As the same as in a DAA scheme, players in a DAA-A scheme
include signers, verifiers and a certificate issuer. The issuer has a secret signature
key isk and its corresponding public verification key ipk.

A signer generates its authentication token denoted by Γ . Let x1, . . . , xn be
elements from Zq which encodes attributes belonging to the signer. The authen-
tication token is then a discrete logarithm representation:

Γ :=
n∑

k=1

xkGk.

Without losing generality, the first attribute x1 is used as the signer identity key.
When the signer is separated into the TPM and host, as discussed in Sect. 6.1,
this attribute is the TPM DAA-A secret key tsk, and the corresponding public
key is tpk = x1G1. All the other attributes can be either held by the TPM or by
the host. Each attribute can be associated with a pseudonym. For user-controlled
linkability, we need a pseudonym associated to the signer identity key.

In a DAA-A scheme, the issuer will calculate a certificate for the token Γ .
How the issuer gets the token and checks its authenticity is out of scope for this
paper. The issuer may know all attributes of the token, i.e. the whole discrete
logarithm representation of the token. But it may also be the case that the issuer
knows only some or none of the attributes of the token; particularly with a TPM
involvement the issuer should never know the TPM identity key. In this case,
the issuer must probably get some assurance that the token is authentic. One
way to do this is to use the Sign/Verify protocol of an already established token.
We understand that this is an application and implementation decision.

The Join Protocol. The Join protocol is performed by the issuer and signer
and the later can be split between the TPM and host.

1. The issuer gets the token value Γ . The method to achieve this is dependent
on implementations for specific applications. As an example, this can be done
in any of the following cases.

232 L. Chen and R. Urian

– The signer sends only the value tpk to the issuer. For each of the other
attributes xk : k = 2 . . . n, the issuer must get either the attribute xk itself
or the corresponding public key Pk := xkGk. The issuer calculates Γ from
tpk and x2(resp. P2), . . . , xn(resp. Pn).

– The signer directly sends the value Γ to the issuer.
– The signer sends part of the Γ value and the issuer finds the remaining

part from other resources.
2. The issuer calculates a signature on Γ under its isk, denoted by cre, and

returns cre back to the signer.
3. The signer verifies cre. This step is optional. If there is a perfect trust rela-

tionship between issuer and signer, then this step can be omitted.

When the TPM is involved, this means that the issuer will authenticate the
TPM. The details of this implementation will be discussed in Sect. 4.

The Sign/Verify Protocol. The Sign/Verify protocol is performed by the
signer and verifier. Let D ⊆ {2 . . . n} denote the indices of the disclosed attributes
and U = {1 . . . n}\D the set of non disclosed attributes. Note that the first index
is the signer ID attribute which is never disclosed. Let T ⊆ U be the attributes
held by the TPM and P ⊆ U be the attributes which are associated with a
pseudonym. Without loss of generality, let U = {1 . . . u} and P = {1 . . . p}
where p ≤ u.

1. The verifier sends a challenge m to the signer. The challenge usually includes
a message to be signed and the verifier’s nonce in order to guarantee that
the signature is fresh. In order to link the signer identity key x1 to a par-
ticular base name, denoted by bsn1, both the signer and verifier should be
aware of this value. If two signatures by the same signer using the same bsn1
value, they should be linked. In reality, any hidden attribute with associated
pseudonym can be used to check if tokens are linked or not. Pseudonyms must
not be unique; they can also be associated to groups. By combining several
pseudonyms, arbitrary linking policies can be defined. For simplicity, we only
consider linking or not linking by the signer identity key.

2. The signer randomizes cre to obtain cre′ in such a way that given cre′ one
cannot connect it to the original cre. This is done by the host. The signer
computes a DAA-A signature σ on m under ∀xk ∈ U . The signature includes
the pseudonym Jk = H2(bsnk) and Kk = xkJk associated to attribute xk if
k ∈ P . The special attribute x1 with associated pseudonym is used for two
purposes:
(a) if x1 is in RogueList, a verifier can reject any signature under this signer;
(b) if two signatures signed by the same signer and using the same bsn1, they

can be linked.
3. The signer sends the signature to the verifier.
4. The verifier first check if the signer identity key has been revoked or not:

∀x̂1 ∈ RogueList, if K1 = x̂1J1, reject σ and abort.

If x1 is not in RogueList, the verifier verifies the signature.

DAA-A: Direct Anonymous Attestation with Attributes 233

5. If required, the verifier checks the linkability: Given two valid signatures σ =
(. . . , K1, . . .) and σ̄ = (. . . , K̄1, . . .) with the same bsn1 value, if K1 = K̄1,
output linked; otherwise output not linked.

In the next two subsections, we will introduce two concrete DAA-A schemes.
These two DAA-A schemes can be seen as an extension of their corresponding
underlying DAA schemes [4,5]. The difference between them is only the way
to generate a credential cre, which will naturally affect the way to generate a
DAA-A signature. In the first scheme, cre is a modified CL signature [7], and in
the second scheme, cre is an sDH based signature [2]. We call these two schemes
the CL-based scheme and the sDH-based scheme, respectively. We only explain
the credentials and DAA-A signatures in these two schemes and omit the other
parts, since they follow the general view we have just talked about.

3.2 The CL-Based Scheme

Issuer Parameters. The Issuer parameters consist of the following elements:

– The public group elements G,G1, . . . , Gn ∈ E and G̃, G̃1, . . . , G̃n ∈ Ẽ cor-
responding to the token attributes, where Gk = rkG and G̃k = rkG̃ for
k = 1 . . . n and rk ∈R Zq.

It is required that the values rk for k = 1 . . . n are generated by the setup
system and erased after the setup process, such that there is no known discrete
logarithm relation between any Gk and Gj and between any Gk and G.

– The secret signature keys x, y ∈ Zq.
– The public signature group elements X̃ = xG̃, Ỹ = yG̃.

Generate and Verify cre. The issuer generates cre by performing the following
steps:

1. Calculate a modified Camenisch-Lysyanskaya (CL) signature for the signer’s
authentication token Γ , denoted by (A,B,C,D,Ek) with r ∈R Zq:

A = rG; B = yA; C = xA + rxyΓ ; D = ryΓ ; Ek = ryGk, k = 1 . . . n.

2. Perform a Schnorr ZK proof written as (ĉ, ŝ), which shows that the discrete
logarithms to the base G of B, to the base Gk of Ek and to the base Γ of D
are equivalent:

w ∈R Z; ĉ = H1(wG‖wG1‖ . . . ‖wGn‖wΓ‖m); ŝ = w − ĉry,

where m is a message for freshness agreed by the issuer and signer. This step
is optional. If the issuer and signer have a trust relationship, these steps can
be skipped.

3. Form the certificate cre = (A,B,C,D,E1, . . . , En, ĉ, ŝ).

Given the credential cre, the signer verifies it as follows. This step is also optional.
If the issuer and signer have a trust relationship, these steps can be skipped.

234 L. Chen and R. Urian

1. Verify the certificate cre:

τ(A, Ỹ) ?= τ(B, G̃); τ(A + D, X̃) ?= τ(C, G̃).

2. Verify the discrete logarithm equivalence via (ĉ, ŝ):

ĉ
?= H1(ĉB + ŝG‖ĉE1 + ŝG1‖ . . . ‖ĉEn + ŝGn‖ĉD + ŝΓ‖ m).

3. Accept cre if both the above verification pass; otherwise reject it.

Generate and Verify σ. To generate a DAA-A signature σ, the signer performs
as follows:

1. Blind: Choose blinding factors: a ∈R Zq, and blind the modified CL certifi-
cate:

A′ = aA; B′ = aB; C ′ = aC; D′ = aD; E′
k = aEk, k = 1 . . . n.

2. Commit: For k ∈ U compute the commit values. If k ∈ T then this calcula-
tion is done by the TPM, else by the host.
(a) If k ∈ T , the TPM returns Rk to the host and store wk in a protected

place.
(b) if k ∈ P then calculate Jk = H2(bsnk); Kk = xkJk; Lk = wkJk;

3. Hash: The host calculates the Hash value.

c = H1

(

A′‖B′‖C′‖D′‖E′
1‖ . . . ‖E′

n‖
∑

k∈U

Rk ‖J1‖K1‖L1‖ . . . ‖Jp‖Kp‖Lp‖ m

)

4. Sign: For k ∈ U compute the sign values. If k ∈ T then this calculation is
done by the TPM, else by the host.

sk = wk − cxk

5. Form a Signature:

σ = (A′, B′, C ′,D′, E′
1, . . . , E

′
n, c, sk∈U , xk∈D, J1,K1, . . . , Jp,Kp).

Given a signature σ, the verifier performs as follows to verify its validation.

1. Verify the modified CL certificate,

τ(A′, Ỹ) ?= τ(B′, G̃); τ(A′ + D′, X̃) ?= τ(C ′, G̃).

2. Verify the discrete logarithm equivalence by the batch proof trick:

t1, . . . tn ∈R Z; τ

(∑
k=1...n

tkE′
k, G̃

)
?= τ

(
B′,

∑
k=1...n

tkG̃k

)
.

3. Verify the Schnorr ZK proof of knowledge of the hidden attributes:

μ := c

(
D′ −

∑
k∈D

xkE′
k

)
+

∑
k∈U

skE′
k

c
?
= H1

(

A′‖B′‖C′‖D′‖E′
1‖ . . . ‖E′

n‖µ‖J1‖K1‖cK1 + s1J1‖ . . . ‖Jp‖Kp‖cKp + spJp‖ m
)

.

4. Accept the signature σ if all the above verifications pass; otherwise reject it.

DAA-A: Direct Anonymous Attestation with Attributes 235

3.3 The sDH-Based Scheme

Issuer Parameters. The Issuer parameters consist of the following elements:

– The public group elements G,G0, G1, . . . , Gn,H ∈ E and G̃ ∈ Ẽ. It is required
that the elements are generated randomly, such that there is no known discrete
logarithm relation between any two elements.

– The secret signature key x ∈ Zq.
– The public signature verification key X̃ := xG̃.

Generate and Verify cre. The issuer generates cre by calculating a sDH sig-
nature cre for the authentication token Γ :

ξ ∈R Zq; A := (x + ξ)−1(G0 + Γ); cre = (A, ξ).

The signer verifies cre = (A, ξ). This step is optional. If the issuer and signer
have a trust relationship, this step may be skipped.

τ(A, X̃ + ξG̃) ?= τ(G0 + Γ, G̃).

Remark 1. The additional group element G0 is necessary here. Otherwise the
signer could chosen an arbitrary integer α and create a second valid token Γ ′ :=
αΓ ; A′ := αA

Generate and Verify σ. To generate a DAA-A signature σ, the signer performs
as follows:

1. Blind: Randomize the group element A.

η ∈R Zq; A′ := A + ηH.

2. Commit: For k ∈ U compute the commit values, Rk = wkGk where wk ∈R

Zq. If k ∈ T then this calculation is done by the TPM, else by the host.
(a) compute c. If k ∈ T the TPM returns Rk to the host and store wk in a

protected place.
(b) if k ∈ P then calculate Jk = H2(bsnk); Kk = xkJk; Lk = wkJk;

3. Hash: The host calculates the Hash value.

wα, wβ , wγ ∈R Zq; μ := τ
(
wαH, X̃

)
; ω := τ

(
wβA′ + wγH +

∑
k∈U

Rk, G̃

)

c := H1 (μω‖J1‖K1‖L1‖ . . . ‖Jp‖Kp‖Lp‖ m)

sα := wα − cη; sβ := wβ + cξ; sγ := wγ − cηξ;

4. Sign: For all k ∈ U compute the sign values. If k ∈ T then this calculation
is done by the TPM, else by the host.

sk := wk − cxk

236 L. Chen and R. Urian

5. Form a Signature:

σ = (A′, c, sα, sβ , sγ , sk∈U , xk∈D, J1,K1, . . . , Jp,Kp).

Given a signature σ, the verifier performs as follows to verify its validation.

1. Verify the signature:
μ := τ

(
cA′ + sαH, X̃

)

ω := τ

(
sβA′ + sγH +

∑
k∈U

skGk − cG0 − c
∑
k∈D

xkGk, G̃

)

c
?= H1 (μ · ω ‖J1‖K1‖cK1 + s1J1‖ . . . ‖Jp‖Kp‖cKp + spJp‖ m) .

2. Accept the signature σ if the above verification passes; otherwise reject it.

4 Implementation of DAA-A with TPM 2.0

In this section, we present how the TPM operations in the DAA-A scheme
can be implemented by using a TPM 2.0 chip. Most of the TPM commands
have multiple options, regarding to different types of keys and applications.
For simplicity, we only explain these options that are related to the DAA-A
implementation, and we also omit some input and output information if they
are not relevant to our purposes.

4.1 TPM 2.0 Hosted Attributes

When attributes are stored in a TPM, they can be treated as ECDAA signing
keys. Each attribute value is the private key part. Let attrk denote the handle of
the TPM signing key which is associated to the TPM hosted attribute. Although
the public key part will not be used by the ECDAA protocol, the TPM needs
it for security reasons. There are two different ways how the attributes will be
bound to a TPM. The attribute can be generated by the TPM itself or it can be
generated by a third party and then imported by the TPM. The TPM generates
a key by using the TPM2 Create() command. The command returns the public
key part and an encrypted key blob containing the private key. The host will
then send the public part of the generated key to the issuer. Before the TPM
can use the key, the private key blob must be loaded with the TPM2 Load()
command.

The attribute may also be provided by a third party, which is normally the
issuer. For instance, this could be an issuer chosen identifier which is used for a
revocation check. The TPM will import such a key with the TPM2 LoadExternal()
command.

The TPM has restricted resources and can only host a few keys at the same
time. One strategy is that the TPM creates for each key attrk a context blob ctxk

with the TPM2 ContextSave(attrk) command. This returns an encrypted context

DAA-A: Direct Anonymous Attestation with Attributes 237

blob which can be stored on the host. If the key is needed it can be reloaded
to the TPM with the TPM2 ContextLoad(ctxk) command, which returns the key
handle attrk. The procedure for using a TPM hosted key is then as follows:

1. Load the key blob with attrk = TPM2 ContextLoad(ctxk).
2. Execute TPM2 Commit(attrk, . . .) or TPM2 Sign(attrk, . . .).
3. Unload the key with TPM2 FlushContext(attrk), to make room for the next one.

4.2 The TPM 2.0 DAA-A Join Process

The Join process is basically an agreement of the token Γ between the issuer
and the prover (i.e. host/TPM). It is not necessary that the issuer knows all
the attributes xk of Γ . The issuer must only get enough information form the
prover that the issuer can reconstruct the token Γ :=

∑n
k=1 xkGk. It is equally

well possible that the prover sends only the public part Hk = xkGk of some
attributes xk. More generally, the prover may also send some linear combination
of attributes, i.e. the sub-token Γ ′ := Hk1+Hk2+· · ·+Hkl

. This could be useful in
the following situation: The prover wants to keep an attribute xk hidden from the
issuer. But if that attribute has low entropy, sending the public part Hk = xkGk

reveals the same information then sending the private value xk, because the
issuer can simply calculate xk by exhaustive search. To mitigate this threat, the
prover chooses a second attribute xr with high entropy, e.g. a random value, and
calculates Hr = xrGr. He then builds the sub-token Γ ′ = Hk + Hr and sends it
to the issuer.

There are numerous other methods, how the issuer and prover can share
information of the token. Here are two further examples:

– Host and issuer have pre-agreed on some attributes by some out-of-band
process.

– Host and issuer perform a Diffie-Hellman key agreement to build a shared
secret attribute.

How the issuer, host and TPM get assurance that the attributes are correct
and from the correct party is depending on the particular situation. One typical
use-case would be the following adaption from the standard DAA scheme as
described in [12], ch. 12.4: The TPM master private key sDAAkey is assigned
to the first attribute x1. The host and issuer agree on the other attributes
x2, . . . , xn. The host then sends the TPM public key pDAAkey to the issuer. The
issuer calculates the token Γ = pDAAKey +

∑n
k=2 xkGk. The further issuance

steps go in the same way as described in [12], ch. 12.4. The only difference is
that the issuer creates a credential for Γ instead of for pDAAKey.

4.3 The TPM 2.0 DAA-A Sign/Verify Process

The verification process does not involve a TPM. Therefore we describe here the
sign process only. We assume that in advance the verifier and host have agreed
upon the basename values bsnk for each k ∈ P and a message msg, which

238 L. Chen and R. Urian

primary use is to proof freshness of the signature. The TPM is only involved
in the Commit and Sign substeps of the Sign/Verify protocols. We describe the
process for the sDH scheme only. This can be easily adapted to the CL based
scheme by replacing the points Gk with E′

k.

Commit: The TPM command TPM2 Commit() has two modes, one for attributes
with assigned pseudonyms and the other one for attributes without associated
pseudonyms. Both variants get a handle of the loaded TPM key attrk and the
base point Gk as input parameter and return the commitment point Rk and an
integer value countk, i.e. (Rk, countk) = TPM2 Commit(attrk, Gk). This counter
value is incremented for each call to the TPM2 Commit() command. The counter
is used as an index to the committed value. It will be given as a parameter for
the corresponding TPM2 Sign() command, such that both commands can be
correctly associated.

The variant with pseudonym gets the additional parameter bsnk and yk

as input parameter. The reason for the parameter yk is the following. The
TPM must calculate a point Jk on the elliptic curve from bsnk. To do that,
it first hashes the bsnk value by the hash function which has been associated
to the key attrk beforehand. That results in the x-coordinate of the elliptic
curve point Jk. Since the related y coordinate is not unique, it will be given
as a further parameter. The commit function returns the additional points Kk

and Lk, which are used for the pseudonym calculation: (Rk,Kk, Lk, countk) =
TPM2 Commit(attrk, Gk, bsnk, yk).

Sign: The sign step will be performed by the TPM2 Sign() command. This
command gets the key handle attrk, the counter value cntk from the related
TPM2 Commit() command and the hash value c which has been calculated by
the host in the Hash step. The Sign command returns the integer sign value:
sk = TPM2 Sign(attrk, countk).

5 Performance Comparison

Here we compare the performance of both proposed DAA-A schemes. Token
issuance will be done very rarely compared to signing and verification of the
token. Therefore we only analyze sign and verification step of the DAA-A pro-
tocol. We will also not make performance estimations of TPM hosted attributes
and pseudonyms. In this chapter we use the following assumptions: Let λ be the
bit size of the prime field. We are working with a Barreto-Naehrig curve over
this prime field with cofactor 1. Therefore the extension field will have degree
12 and the bit size of the group order will be λ. Let n denote the number of
attributes, u the number of hidden attributes and p the number of pseudonyms.

5.1 Token Size

First we analyze the token size. We assume that elliptic curve points are encoded
in compressed form. That means, an elliptic curve point over the base field will
need λ bits of space. We further assume that the attribute values are encoded
in λ bits. Then we get the following table

DAA-A: Direct Anonymous Attestation with Attributes 239

Scheme Token size

sDH DAA-A (5 + n + 2p) · λ

CL DAA-A (5 + 2n + 2p) · λ

5.2 Computational Cost

By using Karatsuba multiplication we get the time complexity m(λ) := O(λlog23)
for multiplication in a finite prime field of size λ bits. We make the simplifying
assumption that field multiplication and squaring operations are of the same
time complexity. An elliptic curve addition uses 14 finite field multiplications
and an elliptic curve doubling operation uses 10 multiplications in projective
coordinates. We assume the standard “double and add” algorithm for scalar
multiplication in the elliptic curve. Assuming that half of the bits of the scalar
multiplicand will require an addition operation, a scalar multiplication in the
elliptic curve will cost:

ε(λ) := (10 + 14/2) · λ · m(λ)

In the extension field of degree 12, a multiplication costs 45 base field multi-
plications (see [10], ch. 5). Scalar multiplication in the elliptic curve over the
extension field of degree 12 will cost

ε̃(λ) := 17 · λ · 45m(λ)

According to ([10], ch. 8.5), a type III Tate pairing over an elliptic curve with
embedding degree 12 will cost

τ(λ) := 203 · λ · m(λ)

We will only count elliptic curve scalar multiplication and pairing operations, as
they dominate the execution time. This gives us the following time complexity
table:

Scheme Sign cost Verify cost

sDH DAA-A (3 + u + p) · ε(λ) + 2 · τ(λ) (5 + u + 2p) · ε(λ) + 2 · τ(λ)

CL DAA-A (4 + u + 2p) · ε(λ) (2n + 2p) · ε(λ) + n · ε̃(λ) + 6 · τ(λ)

The table shows that the CL DAA-A scheme is more efficient for the signer,
while the sDH DAA-A scheme is more efficient for the verifier.

Measurements of a typical TPM 2.0 chip showed the following timings for a
256 bit elliptic curve:

A typical host computer with optimised big number arithmetic will perform
a 256 bit elliptic curve exponentiation in less than 1 ms.

240 L. Chen and R. Urian

Command Timing

TPM2 Commit (with pseudonym) ≈ 400 ms

TPM2 Sign ≈ 90 ms

TPM2 ContextLoad/FlushContext < 50 ms

6 Security Analysis of the DAA-A Schemes

6.1 Formal Security Definition of DAA-A

In this section, we discuss the security definition of DAA with Attributes (DAA-
A). We modify the DAA security model described in [8] by adding the concept
of attributes to get the security model of a DAA-A scheme. In a DAA scheme a
signer has a single DAA secret which is usually used as the signer’s identity. In
a DAA-A scheme, except the secret identity a signer also has a set of attributes.
Some attributes may be kept at secret (i.e., given a DAA-A signature one can’t
tell the values of these attributes) and others may appear in a DAA-A signature;
in this paper, we call them “hidden attributes”and “open attributes”. In reality, a
signer has a single identity but can have multiple sets of attributes. For simplicity,
we assume that each signer will only have one set of attributes. We also consider
only the most important case that the first attribute is held by the TPM and has
an associated pseudonym. All other attributes are held by the host and have no
associated pseudonym. Some attributes might not be known to any adversary,
but in this security model we assume that any attribute value is not a secret
although it might be a hidden attribute. We believe that this will not make the
security model weaker than it should be against common real life threats.

The same as a DAA scheme, a DAA-A scheme involves four types of players:
a DAA-A issuer i, a set of TPM mi ∈ M, host hi ∈ H and verifier vj ∈ V.
Throughout the paper, for the purpose of simplicity, we may omit some of the
index values if it does not occur any confusion. There might be more than one
issuer involved in a system but we assume that they are independent to each
other.

The players mi and hi form a computer platform in the trusted computing
environment and share the role of a DAA-A signer. More specifically, mi plays
a major role of the signer by holding a secret key tski that is cryptographically
bounded with the signer’s identification (denoted as IDi in the security model);
hi plays a helper role of the signer by holding a set of attributes atti and the cre-
dential crei associated with tski atti. The set atti means here only the additional
attributes, i.e. not including the first attribute, which is the signer’s secret iden-
tity key tski. A DAA scheme can be seen as a special case of a DAA-A scheme
with |atti| = 0.

Like in the DAA security model, the following three cases are considered in
the DAA-A security model: (1) neither mi nor hi is corrupted by an adversary,
(2) both of them are corrupted, and (3) hi is corrupted but not mi. We do not
consider the case that mi is corrupted but not hi.

DAA-A: Direct Anonymous Attestation with Attributes 241

A DAA-A scheme DAA-A = (Setup, Join,Sign,Verify, Link) consists of the
following five polynomial-time algorithms and protocols:

– Setup: On input of a security parameter 1t, i uses this randomized algorithm
to produce a pair (isk, pp), where isk is the issuer’s secret key, and pp is the
global public parameters for the system, including the issuer’s public key ipk,
a description of a DAA-A credential space C, a description of a finite message
space M and a description of a finite signature space Σ. We will assume that
pp are publicly known so that we do not need to explicitly provide them as
input to other algorithms.

– Join: This protocol is performed between a signer (mi, hi) and an issuer i. mi

inputs a secret key tski, hi and i jointly select a set of attributes atti, and
i with the input of isk produces crei that is a DAA-A credential associated
with tski and atti. As a result, mi saves tski, hi holds atti and crei, and i
records crei.

– Sign: On input of tski, atti (with an indication of hidden/open attributes),
crei, a basename bsnj (the name string of vj or a special symbol ⊥), and a
message m that includes the data to be signed and optionally the verifier’s
nonce nV for freshness, mi and hi run this protocol to produce a randomized
signature σ on m under (tski, atti, crei) associated with bsnj . The basename
bsnj is used for controlling the linkability.

– Verify: On input of m, bsnj , a candidate signature σ for m, and a set of rogue
signers’ secret keys RogueList, vj uses this deterministic algorithm to return
either 1 (accept) or 0 (reject). Note that how to build the set of RogueList is
out the scope of the DAA-A scheme.

– Link: On input of two signatures σ0 and σ1, vj uses this deterministic algorithm
to return 1 (linked), 0 (unlinked) or ⊥ (invalid signatures). The algorithm
will output ⊥ if, by using an empty RogueList (which means to ignore the
rogue TPM check), either Verify(σ0) = 0 or Verify(σ1) = 0 holds. Otherwise,
the algorithm will output 1 if signatures can be linked or 0 if the signatures
cannot be linked. Note that, unlike Verify, the result of Link is not relied on
whether the corresponding tsk ∈ RogueList or not.

In this security model, a DAA-A scheme must hold the notions of correctness,
user-controlled-anonymity and user-controlled-traceability. They are defined as
follows.

Correctness. If both the signer and verifier are honest, that implies tski �∈
RogueList, the signatures and their links generated by the signer will be accepted
by the verifier with overwhelming probability. This means that the above DAA-A
algorithms must meet the following consistency requirement.

If (isk, pp) ← Setup(1t),
(tski, atti, crei) ← Join(isk, pp), and
(mb, σb) ← Sign(mb, bsnl, tski, atti, crei, pp)|b={0,1}, then
1 ← Verify(mb, bsnl, σb, pp,RogueList)|b={0,1}, and
1 ← Link(σ0, σ1, pp)|bsnl �=⊥.

242 L. Chen and R. Urian

Further if (tskj , attj , crej) ← Join(isk, pp), i �= j;
(m3, σ3) ← Sign(m3, bsnl, tskj , attj , crej , pp), then
0 ← Link(σb, σ3, pp)|bsnl �=⊥.

User-Controlled-Anonymity. The notion of user-controlled-anonymity is de-
fined via the following game played by a challenger C and an adversary A, in
which except for an arbitrary pair of legitimate signers the adversary A could
be any player (including the issuer, verifiers or other legitimate signers):

– Initial: C runs Setup(1t) and gives the resulting isk and pp to A. Alternatively,
C receives pp from A with a request for initiating the game, and then verifies
the validation of the pp by checking whether each element of the pp is in the
right groups or not.

– Phase 1: C is probed by A who makes the following queries:
• Corrupt. A submits a signer’s identity ID of his choice to C, who responds

with the values tsk and att of the signer.
• Join. A submits a signer’s identity ID and a set of attributes of his choice

to C. They run the protocol Join, in which C plays as the signer and A plays
as the issuer. As a result the values tsk, att and cre are created. C verifies
the validation of cre and keeps tsk and att.

• Sign. A submits a signer’s identity ID, a set of attributes att (with the
hidden/open indication), a base name bsn (either ⊥ or a data string) and
a message m of his choice to C, who runs Sign to get a signature σ and
responds with σ.

– Challenge: At the end of Phase 1, A chooses two signers’ identities ID0 and
ID1, two sets of attributes att0 and att1 each for one signer, a message m and
a base name bsn of his choice to C. A must not have made any Corrupt query
on either ID0 or ID1, and not have made the Sign query with the same bsn if
bsn �= ⊥ with either ID0 or ID1. One more condition, the attribute sets att0 and
att1 must include the same number of attributes and the same open attribute
values. Note that their hidden attributes could be different to each other. To
make the challenge, C chooses a bit b uniformly at random, signs m associated
with bsn under (tskb, attb, creb) to get a signature σ and returns σ to A.

– Phase 2: A continues to probe C with the same type of queries that it made in
Phase 1. Again, it is not allowed to corrupt any signer with the identity either
ID0 or ID1, and not allowed to make any Sign query with bsn if bsn �= ⊥
with either ID0 or ID1.

– Response: A returns a bit b′. We say that the adversary wins the game if b = b′.

Definition 1. Let A denote an adversary that plays the game above. We denote
by Adv[Aanon

DAA−A] = |Pr[b′ = b] − 1/2| the advantage of A in breaking the user-
controlled-anonymity of DAA-A. We say that a DAA scheme is user-controlled-
anonymous if for any probabilistic polynomial-time adversary A, the quantity
Adv[Aanon

DAA−A] is negligible.

Note that a value is negligible means this value is a function ε(t), which is
said to be negligible in the parameter t if ∀ c ≥ Z>0 ∃ tc ∈ R>0 such that
∀ t > tc, ε(t) < t−c.

DAA-A: Direct Anonymous Attestation with Attributes 243

User-Controlled-Traceability. The notion of User-Controlled-Traceability is
defined via a game played by a challenger C and an adversary A as follows:

– Initial: There are two initial cases. In Initial Case 1. C executes Setup(1t) and
gives the resulting pp to A, and C keeps isk secret. This indicates that A does
not corrupt the issuer i. In Initial Case 2. C receives pp from A and does not
know the value of isk. This indicates that A is i. In both the cases, C setups
a list of RogueList starting with empty.

– Probing: C is probed by A who makes the following queries:
• Corrupt. This is the same as in the game of user-controlled-anonymity,

except that at the end C puts the revealed tsk into the list of RogueList.
• Join. There are three join cases of this query; the first two are used asso-

ciated with the Initial Case 1, and the last one is used associated with the
Initial Case 2. Suppose that A does not use a single ID for more than one
join case or more than one time; this means that each signer will only have
a triple (tsk, att, cre).
∗ Join Case 1: A submits a signer’s identity ID and attributes att of his

choice to C, who runs Join to create tsk and cre for the signer, and then
C sends cre to A and keeps tsk secret. This case indicates that A is the
host h.

∗ Join Case 2: A submits a signer’s identity ID with a tsk value and
attributes att of his choice to C, who runs Join to create cre for the signer
and puts the given tsk into the list of RogueList. C responds A with cre.
This case indicates that A is the signer (m, h).

∗ Join Case 3: A submits a signer’s identity ID and attributes att of his
choice to C, who runs Join with A to create tsk and to obtain cre from A.
C verifies the validation of cre and keeps tsk secret. This case indicates
that A is the issuer i and the host h.

• Sign. The same as in the game of user-controlled-anonymity.
• Semi-sign. A submits a signer’s identity ID along with the data transmitted

from h to m in Sign of his choice to C, who acts as m in Sign and responds
with the data transmitted from m to h in Sign. Here A is the host h and
makes use of C as m.

– Forge: A returns a signer’s identity ID, a signature σ, its signed message m
and the associated basename bsn. We say that the adversary wins the game
if either of the following two situations is true:
1. With the Initial Case 1 (A does not have access to isk),

(a) Verify(m, bsn, σ,RogueList) = 1 (accepted), but σ is neither a response
of the existing Sign queries nor a response of the existing Semi-sign
queries (partially);

(b) In the case of bsn �= ⊥, there exists another signature σ′ associated
with the same identity and bsn, and the output of Link(σ, σ′) is 0
(unlinked); and/or

(c) Verify(m, bsn, σ,RogueList = empty) = 1 (accepted without checking
RogueList), but att in σ is different from the attributes in Join Cases
1 or 2 associated with the same identity.

244 L. Chen and R. Urian

2. With the Initial Case 2 (A knows isk), the same as the item (a), in the
condition that the secret key tsk used to create σ was generated in the
Join Case 3 (i.e., A does not have access to tsk).

Definition 2. Let A be an adversary that plays the game above. We denote
Adv[Atrace

DAA−A] = Pr[A wins] as the advantage that A breaks the user-controlled-
traceability of DAA-A. We say that a DAA scheme is user-controlled-traceable if
for any probabilistic polynomial-time adversary A, the quantity Adv[Atrace

DAA−A] is
negligible.

Note that if a DAA-A scheme is implemented with a single signer, e.g., a
smartcard plays both the roles of m and h, the above security definition is still
valid, and it only requires some minor modification by removing the cases that
A corrupts h but not m. In reality, if a DAA-A scheme can be proved secure
under the security model above, a modified scheme with only merging m and h
should be secure as well.

6.2 Security Proofs

Due to the limited page space of each paper in the conference proceedings, the
security proofs will be given in the full version of this paper.

References

1. Bangerter, E., Camenisch, J.L., Lysyanskaya, A.: A cryptographic framework for
the controlled release of certified data. In: Christianson, B., Crispo, B., Malcolm,
J.A., Roe, M. (eds.) Security Protocols 2004. LNCS, vol. 3957, pp. 20–42. Springer,
Heidelberg (2006)

2. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

3. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM Conference on Computer and Communications Security, CCS
2004, 25–29 October 2004, Washington, DC, USA, pp. 132–145 (2004)

4. Brickell, E., Chen, L., Li, J.: A (Corrected) DAA scheme using batch proof and
verification. In: Chen, L., Yung, M., Zhu, L. (eds.) INTRUST 2011. LNCS, vol.
7222, pp. 304–337. Springer, Heidelberg (2012)

5. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources.
IACR Cryptology ePrint Archive 2010, 67 (2010)

6. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: Proceedings of the 9th ACM Conference on
Computer and Communications Security, CCS 2002, 18–22 November 2002, Wash-
ington, DC, USA, pp. 21–30 (2002)

7. Camenisch, J.L., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

DAA-A: Direct Anonymous Attestation with Attributes 245

8. Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M.,
Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer,
Heidelberg (2010)

9. Chen, L., Li, J.: Flexible and scalable digital signatures in TPM 2.0. In: 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2013, 4–8
November 2013, Berlin, Germany, pp. 37–48 (2013)

10. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

11. Microsoft. U-prove cryptographic specification v1.1 (revision 3) (2014). http://
research.microsoft.com/en-us/projects/u-prove

12. Proudler, G., Chen, L., Dalton, C.: Trusted Computing Platforms - TPM2.0 in
Context. Springer, Heidelberg (2014)

13. TCG. TPM main specification version 1.2 (2003). http://www.
trustedcomputinggroup.org/resources/tpm main specification

14. TCG. Trusted platform module library specification family 2.0 (2013). http://
www.trustedcomputinggroup.org/resources/tpm library specification

http://research.microsoft.com/en-us/projects/u-prove
http://research.microsoft.com/en-us/projects/u-prove
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification

Building Blocks for Trust

Proposed Processor Extensions for Significant
Speedup of Hypervisor Memory Introspection

Andrei Lut,as,1,2, Sándor Lukács1,2(B), Adrian Coles,a2, and Dan Lut,as,1,2

1 Bitdefender, Cluj-Napoca, Romania
{alutas,slukacs,dlutas}@bitdefender.com

2 Technical University of Cluj-Napoca, Cluj-Napoca, Romania
adrian.colesa@cs.utcluj.ro

Abstract. Hypervisor based memory introspection can greatly enhance
the security and trustworthiness of endpoints. The memory introspec-
tion logic requires numerous memory address space translations. Those
in turn, inevitably, impose a considerable performance penalty. We iden-
tified that a significant part of the overall overhead induced by introspec-
tion is generated by mappings of guest pages into the virtual memory
space of the hypervisor. We show that even if we employ highly efficient
software caching, the mapping overhead still remains significant. We pro-
pose several new x86 instructions, which can fully eliminate the mapping
overhead from memory introspection techniques. We give performance
estimates for and argue why we strongly believe the implementation
of such instructions to be feasible. The introspection logic also relies on
monitoring guest page tables. Here we identified a second important per-
formance overhead source, showing that numerous VM-exits induced by
EPT violations are caused by the CPU updating page table A/D bits.
We propose a set of simple x86 architectural modifications, that can fully
eliminate this overhead.

Keywords: Hypervisor · Memory introspection · Memory mappings ·
New x86 instructions · Access/dirty bits

1 Introduction

Memory Introspection (MI) can be roughly defined as the process of analyzing
a guest VM’s memory from the hypervisor level. MI can be used to enforce the
integrity of in-guest components or to detect a wide range of attacks against the
OS kernel or user mode applications. MI scores a growing number of research in
academia [9,10,14,18,22] and widening adoption by industry [11,27].

While having numerous advantages over conventional in-guest security solu-
tions, like isolation and transparency, MI needs to solve two key challenges. The
first one is the semantic gap [6,10], briefly described in Sect. 2.2.

The second challenge arises from the fact that running MI logic outside the
guest implicitly imposes running it inside a separate virtual memory address
space, without direct access to the virtual memory space of the guest OS kernel
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 249–267, 2015.
DOI: 10.1007/978-3-319-22846-4 15

250 A. Lut,as, et al.

or user mode processes the MI is protecting. For each guest memory area that
needs to be accessed and analyzed by the MI logic (e.g. an instruction, a simple
DWORD operand, a guest OS kernel structure etc.) it needs to parse, interpret
and create paging structures that allows it to access the in-guest data from
the hypervisor’s virtual memory address space. While creating translations and
mappings across various memory address spaces is a frequent operation in widely
used operating systems, such as creating shared memory between two processes
or mapping memory pages from the kernel into user space, the problem and
impact of address space translations is exacerbated in memory introspection
scenarios. During a typical MI analysis process we need to frequently access
numerous and usually small sized in-guest data structures, in most cases only
for a very short period of time, like for instance, only for the time it takes to
execute a couple of “if ” instructions. We show that such a usage pattern imposes
a considerable performance penalty on the overall memory introspection process.

Besides the two key challenges, there are limitations imposed by the archi-
tecture and implementation of the underlying platform’s support for hardware
accelerated virtualization (in our case Intel x86) and/or by the guest VM’s OS.
One such limitation appears when the MI logic decides to perform detailed mon-
itoring of a guest VM’s paging structures. Such monitoring can be achieved by
write-protecting the guest page tables at EPT level, but doing so, numerous
unwanted VM-exits will be generated when the processor regularly updates the
accessed/dirty (A/D) bits of the guest page tables.

The main contributions of this paper are:

– we identify guest-to-hypervisor memory mappings as being responsible for a
significant part of performance overhead induced by MI (Sect. 3.2);

– we show that even with very good software caching (Sect. 3.1) there is still
significant room to improve performance of guest-to-hypervisor memory map-
pings, thus there is a valid reason to consider hardware based speedups;

– we show that A/D-bit update is a key source of overhead, limiting efficient
MI on Intel x86 platforms (Sect. 3.3);

– we propose several new x86 instructions (Sect. 4.1) that can fully eliminate
the memory mapping overhead from memory introspection, propose small
architectural changes that can fully eliminate the A/D-bit update overhead
(Sect. 4.2), argue why it should be feasible to implement them on future x86
platforms (Sect. 4.3) and present performance estimations based on synthetic
tests (Sect. 4.4).

During our research we did not explicitly seek to propose new processor
instructions. We were focused on the speed-up of the MI logic and the underly-
ing hypervisor. The feasibility of new instructions came when we realized that
during the effective analysis process the MI logic from the hypervisor repeat-
edly needs to do very complex steps in order to access guest memory, while for
the processor (just a couple of instructions before, while running in the guest)
accessing the very same memory was a simple and straightforward thing to do.
We initially noticed the overhead induced by A/D-bit updates by basic profiling,
and subsequent detailed analysis revealed its significant impact.

Proposed Processor Extensions for Significant Speedup 251

1.1 Our Use-Case Scenario

We performed our work on a production-grade proprietary thin-layer security
hypervisor, built upon Intel x86 hardware virtualization acceleration technol-
ogy. Our intended final use-case scenario imposed the MI logic to be capable
of synchronously securing live Windows client endpoints (e.g. such as a typical
office PC or home laptop running Windows), providing extensive protection for
both the OS kernel and user-mode applications. We need to underline that such
a use-case scenario requires both a very low overhead solution (the analysis is
done on-the-fly for the running VMs) and not relying on in-guest modules at all
(due to security reasons we assume the guest to be potentially malicious). Thus,
our scenario excluded from the very beginning several traditional MI related
approaches known in the prior art (such as, but not limited to, binary trans-
lation, shadow paging, asynchronous and/or snapshot based processing, source
code level enlightenment of guest OS or that of the monitored applications, or
relying on hardware memory acquisition).

While it is beyond the scope of this article to describe in details what our
MI method covers, in order to place in context the measurements, we indicate
some of the key capabilities. In kernel mode we mainly protect kernel and driver
code sections and function tables (such as the IATs, SSDT, IRP dispatch tables
and so on). In user mode we protect code sections, stacks, heaps, among others.
Our method heavily relies on detailed monitoring of gust page tables with EPT
interceptions on all 4 hierarchical levels. We use generic detection logic to identify
events like code injections, function detouring or malicious code unpacking. We
apply protection on the most critical user-mode applications, such as Adobe
Acrobat, Microsoft Office or web-browsers, as those are key targets for the most
prevalent malware and cyberattacks today.

2 Memory Introspection on X86 Platforms

2.1 Hardware Accelerated X86 Virtualization and Security

Although hardware accelerated x86 virtualization [16] was not specifically
designed for security, because it provides strong isolation, it can be used to
efficiently isolate a security solution from a possibly malicious environment or
to isolate several execution environments from each other [20,21]. Virtualization
can be used in numerous ways to enhance security, such as providing secure
execution environments [8,30], do malware analysis [9,29], provide integrity pro-
tection or attestation, among others. Lately, beside academic and open source
community research, also traditional security solution vendors [11,13,27,28] and
security startups embraced virtualization based security [3].

Intel implements hardware accelerated second level address translation
(SLAT) technology in their processors, termed Extended Page Table (Intel EPT),
since 2008. Using it a hypervisor can efficiently control the physical memory seen
by a virtual machine and specify read/write/execute permissions with 4KB page
level granularity. The introduction of the EPT was essential to support efficient
implementation of MI based security solutions.

252 A. Lut,as, et al.

2.2 Memory Introspection

Using Virtual Machine Introspection (VMI) [14] or hypervisor-based Memory
Introspection (MI) we can analyze from the outside the contents of a guest VM,
either suspended or in execution, observing not only objects inside the guest’s
memory space (like processes, modules, heaps, stacks, threads), but also events
in real-time (such as the creation of a new process, allocation of memory or alter-
ation of paging structures managed by the guest OS). While MI can have many
other useful applications, the most widely researched area is to use MI to enhance
security [9,10,18,19,22,25], which led to its adoption by industry [11,26,27]. The
two key security supporting strengths of MI are (1) isolation, by which the security
module can be isolated by hardware from the possibly malicious or under-attack
guest (e.g. an attacker inside the guest does not have access to the MI module run-
ning outside the guest, see Fig. 1), and (2) transparency, which ensures that a MI
solution can analyze the content of the guest without the need to alter it (e.g. with-
out the need to use and rely on in-guest filter drivers, hooks or similar).

A key challenge that MI needs to solve is the so called semantic gap [6]
between what the in-guest OS sees and what the MI running outside the guest,
in the hypervisor, can see. In a rough approximation, we could say that an in-
guest OS kernel and security solution, using well known OS provided APIs, can
see and interpret the guest VM’s memory as processes, threads, modules, heaps,
stacks and various other, semantically rich and interconnected structures. In
contrast with this, an out-of-guest, hypervisor level MI might see on the same
VM only just a huge sequence (several gigabytes) of physical memory bytes, split
into 4KB pages, plus some processor registers to start the analysis with.

Fig. 1. Memory Introspection. General setup and memory address translations involved

Proposed Processor Extensions for Significant Speedup 253

Fig. 2. Useful work steps (6 & 13) in the exemplary execution of two successive memory
introspection related EPT violation events

In order to bridge the semantic gap, a MI solution needs to analyze the
contents of the guests’ memory and understand its contents. This way, data
structures, code sections and other objects can be identified inside the guest
OS. Figure 1 illustrates the place of the MI module, as well as all the guest
and hypervisor elements involved in the introspection process. Eventually, using
such analysis of the raw physical memory, the MI can reconstruct the entire
image of the OS by determining where the kernel is loaded, where the drivers,
heaps, stacks, processes and threads are. In addition, information about user-
mode objects can be inferred and protection can be provided for user-mode
code and data as well. Once the semantic gap has been bridged, the MI can
provide protection for many objects that lie inside the guest memory. First of
all, inside the kernel-space, objects such as the kernels and drivers code sections
or function tables can be write protected using EPT page permissions (set in
Fig. 1, item IV). To achieve this, the MI logic needs to determine their detailed
GVA-to-GPA mappings (item III). Similarly, objects such as the stacks or heaps
can be protected against execution using EPT, in both user and kernel memory
space. To achieve this, the MI logic needs to analyze numerous GVA-to-GPA
mappings (such as item I and II). Every time a violation of EPT access rights
takes place (for example, the guest tries to write inside a page that is flagged as
non-writable), the processor generates an EPT violation, which causes a VM-
exit (a transition from the guest to the hypervisor). The hypervisor forwards the
event to the MI module, which can analyze the attempt and decide whether it is
legitimate or not. If it is legitimate, the instruction that triggered the violation
can be either emulated or single-stepped. If the attempt is malicious, security
measures can be taken. In its simplest form, the MI can decide to simply skip
the instruction without doing any modification to the accessed page (e.g. this
way could avoid setting a kernel hook). In another example, the MI logic can
identify the process trying to do the illegal action and can terminate it.

Figure 2 illustrates, in a very simplified way, two typical guest ⇔ host tran-
sitions performed due to EPT violations, as a response to MI configured EPT
access rights (item IV in Fig. 1). Initially, the guest is executing code during step
1. An EPT violation takes place, which causes a transition from the guest to the
hypervisor at step 2. This may cause the MI to initially map the memory page
containing the offending instruction at step 3 into MI accessible virtual memory
(item V in Fig. 1). The analysis of the instruction takes place at step 4, and it
is followed by the mapping of the page that has been offended during step 5.

254 A. Lut,as, et al.

The actual useful work performed by MI follows in step 6, such as analyzing the
write attempt and deciding whether to allow it or not based on its malicious-
ness. This is followed by the unmapping of the previously mapped pages during
step 7, after which a VM-entry can be performed during step 8, resuming the
execution of guest code.

As we will further describe in Sect. 3.1, we implemented software caches
to speed-up many repetitive guest-to-hypervisor memory mappings. A simple
example could be the execution of successive instructions from a page marked
non-executable in the EPT tables. In such a case, it is useful to avoid remap-
ping the same guest page for each successive instruction. In line with this, in
another example, during guest code execution in step 9 another violation may
take place that will cause a transition to hypervisor in step 10. This time, map-
pings might be present in internal software caches, which can be used during step
11 to search for the offending instruction’s RIP and similarly, to lookup already-
mapped pages that contains the written page. The evaluation of the instruction
takes place during step 12, and it is followed by the useful MI logic during step
13. It is important to point out, that using caches involves also maintaining
them up-to-date, so, while mappings might take much less time compared to
the previous example, we need an additional step 14 to handle software cache
maintenance. Finally, a VM-entry can be done during step 15, then the guest
can resume its execution again in step 16.

3 Problems and Limitations of Memory Introspection

3.1 Software Speedup of Guest-to-Hypervisor Memory Mappings

Employing software caching to speedup memory translation or instruction emu-
lation is not new. Among others Zhang et al. use [36] per-VCPU software caching
to reduce the overhead associated with privileged instruction emulation.

In order to improve guest-memory accesses, our HV also employs several soft-
ware caching layers. The first one is a decoded-instructions cache, which stores
information about instructions located at certain addresses inside the guest.
The second cache is a guest-mapping cache which stores translations informa-
tion for guest-virtual and guest-physical pages. The third one is a GPA-to-HVA
translation cache, which stores HV mappings for the most used guest-physical
pages. Instead of the third cache we could have used alternative mechanisms,
such as mapping the entire GPA space into the HVA space. Though, such an
approach would incur additional memory consumption and be more difficult to
maintain in a many-guest-VM environment. Based on our measurements, our
caching mechanisms had a hit rate of more than 99 %, offering a very signifi-
cant performance improvement. Particularly, in the case of the third cache, the
performance improvement obtained was over 400x.

3.2 Overhead of Guest-to-Hypervisor Memory Mappings

The total overhead of the steps the MI module performs when accessing the
guest memory is illustrated in Fig. 3. The measurements were made on a DELL

Proposed Processor Extensions for Significant Speedup 255

Fig. 3. Time consumed (percents of in-hypervisor time) by various phases during the
handling of memory introspection related EPT violation events

Optiplex990, 8GB RAM, i7-2600 CPU system, using both Windows 7 SP1× 64
and Windows 8.1× 64 and four different testing scenarios. Firstly, the impact
has been measured in idle conditions, with all software caches enabled. Then, the
measurement has been made using typical light usage scenario, which included
Internet browsing, opening PDF and MS Office documents. During the whole
process, not only the guest OS kernel, but the browsers, Acrobat Reader and
office applications were also protected by the MI module. The same two scenarios
have been repeated, but this time without any software caches. The execution
time has been accounted using the RDTSC instruction. We measured the total
ticks spent inside VMXROOT (ring -1) and the total time spent inside the
operations illustrated in Fig. 1 together with the total number of VM-exits. The
average time spent inside the guest memory access functions was computed using
the formula 100∗tf

T , where tf is the number of processor ticks spent in a mea-
sured function and T is the total number of processor ticks spent in VMXROOT.
It is worth specifying that in our measurements a small part of the operations
overlap. For example, translating guest-virtual memory also involves mapping
guest-physical memory and mapping guest-virtual memory also involved trans-
lating guest-virtual memory and mapping guest-physical memory.

In the light usage scenario the performance impact may be easily over 15 %
with caches and over 30 % without. Considering the workload involved, we
believe the actual real impact may be even much higher in practice. We explicitly
didn’t try to obtain much finer grained or detailed measurements. On one hand
this would have not been possible without extensive changes to the hypervisor,
which in turn would generate biased results. On the other hand, it can be clearly
seen from our analysis that the magnitude of the results is really significant.

Figure 4 illustrates the performance impact for two representative user-mode
process operations: heap creation and destruction. Firstly, a scenario without any
caches involved has been tested. The last two scenarios involves all the caches
(as described in Sect. 3.1) and a special, application-specific cache. This special
cache was created to maximize efficiency by keeping the heaps-array page mapped.
However, this cache could not deal with the location of the newly created heap,
which was rarely the same, and it still needed to map at least one guest-virtual
page. We can see that software caches offer a significant improvement of about 3x.

256 A. Lut,as, et al.

Fig. 4. Heap “create-destroy” software cache speedup of MI mappings (ms)

As the difference between the generic and the application-specific cache is very
small, we conclude that it is very difficult to come up with any additional software
optimizations, even if they are highly specific.

3.3 Overhead of A/D-Bit Update Induced VM-exits

Looking at Fig. 1, it is important to consider that GVA-to-GPA mappings are
usually dynamic in time. The guest OS can arbitrarily alter them, such as by
remapping a certain page to different GPAs due to the page swapping process.
This imposes some important challenges for MI, as it needs to monitor not only
the GPA addresses, but also the guest page tables that are used to perform
GVA-to-GPA translations. This way, each time the guest OS performs a write
to a page table, in order to update its content, the MI logic will be notified via
an EPT violation, and thus, it can update its monitoring logic.

This process can impose a considerable penalty if numerous writes take place
on guest page tables. While at first, intuitively, it might seem that this is not the
case, we need to factor in that on x86 platforms the CPU updates accessed/dirty
bits regularly on guest page tables and any such update will generate an EPT
violation that needs to be processed by the MI module, if and only if the MI

Fig. 5. Number of EPT violation VM-exits due to A/D bit updates (Idle)

Proposed Processor Extensions for Significant Speedup 257

Fig. 6. Percentage of EPT violation VM-exits due to A/D bit updates (Idle)

logic is monitoring that particular page table. As the system load increases, so
does the number of paging operations (e.g. allocation, mapping, swapping), and
also the overhead induced by MI. While not exclusively so, this phenomenon
is highly specific to user-mode introspection, where the GVA-to-GPA mappings
(items I and II in Fig. 1) are more frequently changed than in the case of kernel
mode introspection (item III in Fig. 1).

To analyze the impact of A/D bit updates done by the CPU page-walking
on MI (we excluded the ones caused by the OS, which periodically clears those
flags), we have carried out numerous tests on a Broadwell CPU based system,
with 4 GB RAM and Windows 8.1× 64. Each test was run for roughly 600 s, and
we have done sampling of EPT violation events at each second. Protected user-
mode applications included Opera, Firefox, IE, Acrobat Reader and one custom
memory-intensive application. We activated all MI protection mechanisms, both
for user-mode and kernel-mode. The page table structures were not monitored
entirely, only portions of them associated with protected guest memory areas.

We analyzed the impact of A/D bit updates in several different scenarios.
The first scenario, as shown in Figs. 5 and 6 corresponds to an idle system that
was running no other tasks than the OS itself. We consider this to be a baseline
scenario. The easily observable spikes in this scenario are most likely related to
periodic background OS processing.

Fig. 7. Percentage of EPT violation VM-exits due to A/D bit updates (Light)

258 A. Lut,as, et al.

Fig. 8. Number of EPT violation VM-exits due to A/D bit updates (Intensive)

Fig. 9. Percentage of EPT violation VM-exits due to A/D bit updates (Intensive)

A second scenario is depicted in Fig. 7. This corresponds to a typical light
office workload, including browsing the internet with IE, playing YouTube videos,
downloading files and opening documents with Adobe Reader. The spikes in
this scenario are correlated with the creation of new MI-protected user-mode
processes. This test clearly confirmed us that process creation regularly induces
much bigger performance overhead for user-mode MI, as each new process
requires the setup of complete memory spaces, thus heavily page-table (and
implicitly A/D bit update) related workloads.

In a third case, as shown in Figs. 8 and 9, we analyzed the impact in the case
of an intensive workload scenario. Here a test application was doing repeated
allocations and processing of 2 GB memory chunks each 30 s, interleaved with
starting a new IE, Opera or Firefox process every 10 s.

In Figs. 6, 7 and 9 we illustrate the distribution in time of the proportion A/D-
bit induced EPT violations (as percents from all EPT violations). One can easily
see that there are many cases when almost all of the EPT violations are caused by
the CPU page-walker setting the accessed or dirty bits. In Figs. 5 and 8 we illus-
trate the absolute numbers ofA/D-bit inducedEPTviolations, showing that under
intensive memory pressure, we may have up to 200,000 A/D-bit induced EPT vio-
lations per second.

Finally, Fig. 10 aggregates all previous results, highlighting the high impact
of the A/D-bit induced EPT violations and making it clear that they can be

Proposed Processor Extensions for Significant Speedup 259

Fig. 10. Estimated total CPU time impact of VM-exits due to A/D bit update

a major bottleneck. The most important slowdown appears on the creation of
protected processes and under heavy memory pressure, accounting for up to 90 %
of all the EPT violations and up to over 60 % of the total CPU time. For the later
one, we done our estimates normalizing the measurements to a 3 GHz clocked
CPU and considering an average EPT violation handling time of 10000 clock
ticks (without going into lengthy technical details, this includes the platforms
round-trip, the HV context saving/restoring, handling software caches, decoding
and emulation instructions, among others).

We underline that our results do not show that hypervisor based MI for user-
mode applications would not be feasible at all, quite the contrary: for typical
client endpoint doing everyday office work (as shown in the light workload sce-
nario) the average overhead is acceptable. Our analysis confirmed our presump-
tion that the biggest overhead is induced by workloads that put big pressure
on the guest page table structures, indicating also the overhead’s magnitude
in unfavorable conditions. We plan to do more detailed analysis in the future,
covering well standardized, server specific workloads also. We also point out for
clarification that there is no relevant technical difference from the point of view
of the MI logic between how user-mode and kernel-mode page tables are treated.
What makes more costly for MI logic to monitor the page-tables of user-mode
applications is the more dynamic nature of user-mode processes (e.g. start/stop,
loading of modules) and much more dynamic virtual memory space allocation
patterns, compared with kernel-mode code.

4 Proposed X86 Processor Extensions

4.1 New X86 Instructions for Direct Guest Memory Access

We propose the introduction of several new simple, yet very powerful x86 instruc-
tions, according to the following logic:

1. READGPAB/W/D/Q <dest-reg>, [<src-gpa-addr>]
2. READGVAB/W/D/Q <dest-reg>, [<src-gva-addr>]
3. WRITEGPAB/W/D/Q [<dest-gpa-addr>], <src-reg>
4. WRITEGVAB/W/D/Q [<dest-gva-addr>], <src-reg>

260 A. Lut,as, et al.

Those instructions differ in one essential way from a common MOV instruc-
tion: the translation of the operand’s virtual address is to be performed in the
virtual address space indicated by the guest CR3 value from the current VMCS
(and not the current host CR3). The common step of GPA-to-HPA translation
can be performed using the EPT pointer (EPTP) from the current VMCS, just
as they are already performed by existing CPUs.

Handling of potential failures could be done easily. If the indicated GVA
or GPA address is invalid or not present (or any other condition that would
normally trigger a page-fault is encountered), the proposed instructions might
simply set a common flag (e.g. carry flag) to indicate the error condition. This
way, their usage should be very simple and straightforward.

4.2 Mechanism to Avoid VM-exits on A/D-Bit Updates

EPT violations caused by the MMU page-walker setting the A/D-bit are gener-
ally not needed by the MI logic, although they induce a significant performance
penalty. We propose simple extensions that would eliminate the performance
impact caused by these exits.

Firstly, the A/D-bit induced EPT violations could be globally disabled via
a control field inside the VMCS. This should inhibit any EPT violation that
would be generated by the CPU page-walker when setting the A/D-bit. Such a
mechanism would not restrict or alter the guest’s functionality at all (e.g. the
guest will be able to use page swapping as usual), and any effects would be
visible only at the level of the CPU and of the EPT violation handling MI logic.

Secondly, the mechanism may be made more fine-grained by selectively flag-
ging certain guest-physical pages as being “guest page tables”. One bit inside the
EPT page table entries could be reserved for this purpose: whenever the CPU
page-walker sets the A/D-bit in a guest-physical page that has the “is guest
page-table” bit set inside the EPT, an EPT violation would not be triggered (in
other cases the exception shall be generated as usual). Using such a mechanism,
the HV would have greater flexibility to control exiting on A/D-bit updates.

4.3 About the Feasibility of the Proposed Extensions

While we are not CPU designers, observing a set of relevant facts, we can still
meaningfully argue on weather the proposed extensions are reasonable or not to
be implemented. We assume as a general rule of thumb, that implementation
complexity increases proportionally with functional complexity.

– We can be sure that in many cases translation information is already present
inside the processor TLB for GVA or GPA addresses that cause EPT viola-
tions. This become clear if we consider two aspects. On one hand, since 2008
Intel already supports a feature called virtual processor IDs (VPIDs). When
activated, the TLBs tag each cached memory address translation with a guest
specific unique ID, with the ID 0 being reserved for the hypervisor. Later
on, when the HV asks the processor to invalidate cached translations, it can

Proposed Processor Extensions for Significant Speedup 261

specify individual VPIDs to specify the target of the invalidation. Thus, while
executing code inside the HV, all translation cached in the TLB on behalf of
the guest OS remain valid and present, unless the HV explicitly requires their
invalidation. On another hand, when dealing with MI related EPT violations,
we can safely suppose that most of the in-guest memory addresses involved
are already in the TLB, as they are from the last instruction being executed
by the guest, the one that just triggered the EPT violation. We also note that
if we need to access other different in-guest structures, not directly related to
the last executed instruction, the processor might still need to perform a ded-
icated page walk and address translation, using the already available in-CPU
page walking logic (but using a different root).

– ARM architecture processors [1] already include today control registers and
instructions to perform translations from a GVA to either an intermediate
physical address (GPA) or to a HPA.

– Regarding the proposed A/D-bit optimization, the CPU already knows during
the EPT violation generation whether the fault was caused by the MMU page-
walker setting the A/D-bit. This information is already explicitly provided in
the exit-qualification field on EPT violations. Therefore, in our opinion, it
would be simple and straightforward to just ignore the generation of the EPT
violation for such cases.

– Intel delivered regularly new CPU enhancements during the last few years.
Many of them are directly related to virtualization and security, such as EPT,
#VE, nested-VMCS, very fast round-trip latency for VM-exits, APICv among
others. From this, we conclude that they are actively looking into ways to
enhance their platform. We can also easily realize that the complexity of any
of those extensions is much greater than what we are proposing here.

4.4 Estimated Speed-Up

Initially we considered extending BOCHS [2] to simulate the functionality of the
proposed instructions, but abandoned the idea after we analyzed its capabilities.
First of all, its slow simulation speed would mostly prohibit running any serious
workload to be executed on. Secondly, such a simulation would not provide us
any accurate and representative time measurements. Obviously, we did not had
the capability to implement the instructions in real silicon either. Therefore, we
decided to simulate the existence of these instructions by forcibly keeping some
guest pages mapped inside the hypervisor virtual address space.

To estimate the speed-up of guest-memory access instructions, we performed
a simple synthetic test: we created a test application that generated 1 million
EPT violations in a loop by writing to a write-protected page. Each write gener-
ated an EPT violation, which in turn triggered a VM-exit. The MI logic analyzed
each faulty attempt, but both the page containing the faulty instruction and the
written page were kept permanently mapped inside the HVA memory space.
Therefore, only the core processing was made by the MI, the guest memory
reads being replaced by simple comparisons to validate the violation’s address,
and redirections to the permanently mapped HVA addresses. We believe this to

262 A. Lut,as, et al.

Fig. 11. EPT write violation speedup using the proposed new instructions (ms)

be an as close as possible software estimation for what a real, in-silicon imple-
mentation could provide, as we replaced each READGVA with a sequence of
only a few other x86 instructions. Besides, both the throughput and latency
values of comparable MOV instructions are very low, so we believe that the esti-
mation’s replacement sequence to use at least as much time as it would take for
any in-silicon implementation of those instructions to execute.

As seen in the results from Fig. 11, with all our software caches, the total time
needed to execute the test application was around 19.3 s. With the simulation
of the fast instructions, this reduced to little over 5 s. While the performance
boost is significant, it is important to point out that it would be infeasible to
use this synthetic optimization on a larger scale. First of all, keeping guest pages
mapped inside the hypervisor is not scalable because virtual addresses inside
the guest may overlap with virtual addresses inside the hypervisor or in other
guests, and they may be swapped in and out of the physical memory. Therefore,
maintaining this kind of mappings can be done only for guest physical pages,
and translation for guest virtual pages would still be needed. Even so, in the case
of multi-guests, keeping these mappings synchronized would induce significant
performance impact, not to mention the implementation complexity.

In the case of A/D-bit induced EPT violations we didn’t need to do any
further performance estimation. We argue that the performance impact would
be eliminated entirely by our proposal, as no more EPT violations would be
generated at all when the CPU updates the A/D bits. As we have shown already
in Sect. 3.3, with an average processing time of about 10000 clock ticks inside
the HV, the A/D-bit induced EPT violations processing may account for up to
over 60 % of the entire CPU time in intensive workload scenarios. We believe
this to be a significant result to support in-hardware optimizations.

Proposed Processor Extensions for Significant Speedup 263

5 Related Work

There are several in-silicon improvements introduced by Intel in the last years
that greatly enhance the performance of memory introspection. As a first exam-
ple, Intel is steadily working with each CPU generation to reduce the round-trip
VM-exit/VM-entry time, from over 3000 cycles in the original VT-x implementa-
tion to around 500 cycles in the Haswell [15] and around 400 cycles in their latest
Broadwell [7] architecture. As another example, most likely, Intel is also working
towards providing finer-grained memory monitoring CPU primitives [29]. Yet
another technology is Virtualization Exceptions #VE, introduced in the Broad-
well CPUs, which sustains moving the MI module inside a guest VM in order to
further eliminate many of the round-trip overhead [12]. However, #VE has several
limitations. Currently only EPT violations are delivered using this mechanism,
and other events important for MI (e.g. such as MSR or CR accesses) need to be
handled inside the hypervisor – thus forcing the implementation of split MI logic:
some parts inside the HV, others in a guest agent. Besides this, in the context
of a #VE agent, memory-validations are still needed – for example, the agent still
has to translate a GVA that points inside user-space before accessing it. While
not the scope of this paper, we can mention that our preliminary in-lab analysis
indicated that using #VE to handle A/D bit update induced EPT violations can
eliminate roughly about 25 % of the overall overhead, compared with the results
presented in Sect. 3.2. However it is important to point out, that such improve-
ment would came mainly from the reduced round-trip latency of #VE and thus
it would not be mutually exclusive with the A/D bit update speedup proposed
by us, but instead, would lead to a cumulative improvement.

Memory introspection was introduced in [14] by Garfinkel and Rosenblum in
2003 as a way to implement an intrusion detection system that is well isolated
from the host system. Jain et al. have done recently [17] a good survey of MI
research. Jiang and Wang [18] implemented high-interaction honeypots based on
memory introspection. Dinaburg et al. [9] uses virtualization to analyze malware.
Among others, Dolan-Gavitt et al. [10] tries to overcome the semantic gap in
automatic ways. Mohandas and Sahita [29] use virtualization and introspection
to perform behavioral malware monitoring.

Originally VMware products [4] instrumented page table updates and other
guest writes by the means of shadow page tables. However, on modern CPU
with hardware accelerated SLAT, shadow paging mechanisms are not used any-
more for efficiency reasons. Chang et al. [5] also describe a number of techniques
to accelerate memory address translation, but their implementation is done in
QEMU, based on binary translation, and thus is not applicable for our scenario.
Somewhat similar to the #VE approach, Srinivasan et al. presents [32] a method
to relocate the context of a monitored process so that it runs in the same context
with the security agent (usually in a separate VM). This has significant imple-
mentation challenges on close-source operating systems. Sharif et al. proposes
[31] the injection of an MI agent inside the monitored VM, to perform the most
critical tasks. While protected by the hypervisor, any in-guest code can still be
attacked through numerous vectors (e.g. such as via stack or shared data).

264 A. Lut,as, et al.

There are several noteworthy results on using MI in an asynchronous way,
both for malware analysis [22,23] and for on-premise security solutions [13].
We must however note, that our live VM protection scenario imposes very fast
processing, thus we can’t afford using tools like Volatility or relying on PDB
metadata as Lengyel et al. does.

Vasudevan et al. performed a great work on identifying the requirements for
trustworthy hypervisors on x86 platforms [35], and presented the implementation
and formal verification of a module hypervisor framework [33]. They also present
tamper-resistant execution environments for x86 platforms [34].

Well known, mainstream hypervisors, such as Xen, have been extended
to support MI [24], and several traditional security solution vendors, such as
McAffee/Intel [27] or Bitdefender [11], developed MI-based security technologies.

6 Conclusions

We analyzed some of the main performance overhead sources of EPT-level moni-
toring based synchronous live memory introspection, with focus on introspection
of user-mode applications on x86 Windows platforms. Our research clearly indi-
cates that a significant part of the overall overhead of user-mode introspection
is induced by mappings of guest pages into the virtual memory space of the
hypervisor. Our analysis shows, that even if we employ several software caches
that reduce the mapping overhead by a factor of three, significant room remains
for speedup. We believe the ultimate solution would be the introduction of new
x86 instructions to allow reading/writing the guest virtual memory space from
introspection logic executing inside the hypervisor’s context. We strongly believe,
that the proposed changes could fully eliminate both the memory mapping over-
head and the overhead induced by numerous unnecessary VM-exits due to guest
page table A/D bit updates incurred by memory introspection techniques. The
overall speeding up of MI can be conservatively estimated to be at least 25 %.

In the last few years Intel was continuously improving both the virtualization
and security related in-silicon capabilities of the x86 processors, regularly intro-
ducing new instructions and technologies with every new processor generation.
We argue that the proposed instructions could be rather easily incorporated into
future x86 processors, as their functional complexity is much smaller than that
of numerous recently introduced extensions and all required building blocks are
known to be already present inside the processor.

Although simple in essence, the value and usability of the proposed exten-
sions go far beyond the realms of MI based security. They could be used to
speedup numerous other virtualization tasks, unrelated to security or introspec-
tion. Beside their presented form, the instructions themselves could be enhanced
in several ways. For instance, they could be extended to support reading-writing
memory not only inside the guest context of the active VMCS, but inside the
guest context of an arbitrary VMCS, selected by a third operand.

Proposed Processor Extensions for Significant Speedup 265

Acknowledgments. Adrian Colesa’s work on this paper was supported by the Post-
Doctoral Programme POSDRU/159/1.5/S/137516, project co-funded from European
Social Fund through the Human Resources Sectorial Operational Program 2007-2013.

References

1. ARM: ARM Architecture Reference Manual ARMv7-A and ARMv7-R (2014)
2. BOCHS: The cross-platform IA-32 emulator. http://bochs.sourceforge.net/.

Accessed on 24–11–2014
3. BROMIUM: Bromium vSentry and LAVA products (2014–11-24). http://www.

bromium.com/products.html. Accessed on 24–11–2014
4. Bugnion, E., Devine, S., Rosenblum, M., Sugerman, J., Wang, E.Y.: Bringing vir-

tualization to the x86 architecture with the original vmware workstation. ACM
Trans. Comput. Syst 30(4), 12:1–12:51 (2012)

5. Chang, C.J., Wu, J.J., Hsu, W.C., Liu, P., Yew, P.C.: Efficient memory virtual-
ization for cross-ISA system mode emulation. In: Proceedings of the 10th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE 2014), pp. 117–128. ACM, New York (2014)

6. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proceedings of
the Eighth Workshop on Hot Topics in Operating Systems (HOTOS 2001), IEEE
Computer Society, Washington, DC (2001)

7. Chennupaty, S., Jiang, H., Sreenivas, A.: Technology Insight: Intel’s Next Gener-
ation 14nm Microarchitecture for Client and Server (2014)

8. Citrix: XenClient XT. The ultimate in multi-level secure local virtual desktops.
http://www.citrix.com/products/xenclient/features/editions/xt.html. Accessed
on 24–11–2014

9. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS 2008), pp. 51–62. ACM, New York
(2008)

10. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: narrowing the
semantic gap in virtual machine introspection. In: IEEE Symposium on Security
and Privacy (SP), pp. 297–312. IEEE (2011)

11. Dontu, M., Sahita, R.: Zero-Footprint Guest Memory Introspection from Xen. In:
XenProject Developer Summit (2014)

12. Durham, D.: Mitigating exploits, rootkits and advanced persistent threats. In: Pro-
ceedings of the 2014 Symposium on High Performance Chips (Hot Chips 2014),
IEEE Technical Committee on Microprocessors and Microcomputers in Coopera-
tion with ACM SIGARCH (2014)

13. FireEye: Advantage FireEye. Debunking the Myth of Sandbox Security (2013)
14. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architec-

ture for Intrusion Detection. In: Proceedings of Network and Distributed Systems
Security Symposium, pp. 191–206 (2003)

15. Hammarlund, P.: 4th Generation Intel Core Processor, codenamed Haswell. In:
HotChips (2013)

16. Intel Corporation: intel R© 64 and IA-32 Architectures Software Developer’s Manual
(2015). Accessed on 02 Feb 2015

http://bochs.sourceforge.net/
http://www.bromium.com/products.html
http://www.bromium.com/products.html
http://www.citrix.com/products/xenclient/features/editions/xt.html

266 A. Lut,as, et al.

17. Jain, B., Baig, M.B., Zhang, D., Porter, D.E., Sion, R.: SoK: Introspections on trust
and the semantic gap. In: Proceedings of the 2014 IEEE Symposium on Security
and Privacy (SP 2014), pp. 605–620. IEEE Computer Society, Washington, DC
(2014)

18. Jiang, X., Wang, X.: “Out-of-the-box” monitoring of VM-based high-interaction
honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol.
4637, pp. 198–218. Springer, Heidelberg (2007)

19. Joshi, A., King, S.T., Dunlap, G.W., Chen, P.M.: Detecting past and present
intrusions through vulnerability-specific predicates. In: Proceedings of the Twenti-
eth ACM Symposium on Operating Systems Principles (SOSP 2005), pp. 91–104.
ACM, New York (2005)

20. Lampson, B.: Accountability and freedom (2005)
21. Lampson, B.: Privacy and security: usable security: how to get it. Commun. ACM

52(11), 25–27 (2009)
22. Lengyel, T., Kittel, T., Webster, G., Torrey, J.: Pitfalls of virtual machine intro-

spection on modern hardware. In: 1st Workshop on Malware Memory Forensics
(MMF) (2014)

23. Lengyel, T.K., Neumann, J., Maresca, S.: Virtual machine introspection in a hybrid
honeypot architecture. In: Presented as part of the 5th Workshop on Cyber Security
Experimentation and Test. USENIX, Berkeley (2012)

24. LibVMI: Virtual machine introspection tools. http://libvmi.com/. Accessed on 20–
06-2015

25. Ligh, M.H., Case, A., Levy, J., Walters, A.: The Art of Memory Forensics: Detect-
ing Malware and Threats in Windows, Linux, and Mac Memory, 1st edn. Wiley,
New York (2014)

26. Luţaş, A., Lukács, S., Luţaş, D., Coleşa, A.: U-HIPE: hypervisor-based protection
of user-mode processes in windows. J. Comput. Virol. Hacking Tech. 9(1), 1–14
(2015)

27. McAfee: A New Paradigm Shift: Comprehensive Security Beyond the Operating
System (2012)

28. McAfee: McAfee DeepSAFE and Deep Defender (2013)
29. Mohandas, R., Sahita, R.: Detecting Evasive Malware in Sandbox. In: Focus Secu-

rity Conference (2014)
30. Rutkowska, J., Wojtczuk, R.: Qubes OS. http://www.qubes-os.org/. Accessed on

24–11–2014
31. Sharif, M.I., Lee, W., Cui, W., Lanzi, A.: Secure in-VM monitoring using hardware

virtualization. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS 2009), pp. 477–487. ACM (2009)

32. Srinivasan, D., Wang, Z., Jiang, X., Xu, D.: Process out-grafting: an efficient “out-
of-VM” approach for fine-grained process execution monitoring. In: Proceedings
of the 18th ACM Conference on Computer and Communications Security (CCS
2011), pp. 363–374. ACM, New York (2011)

33. Vasudevan, A., Chaki, S., Jia, L., McCune, J., Newsome, J., Datta, A.: Design,
implementation and verification of an eXtensible and modular hypervisor frame-
work. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy (SP
2013), pp. 430–444. IEEE Computer Society, Washington, DC (2013)

34. Vasudevan, A., McCune, J., Newsome, J., Perrig, A., van Doorn, L.: CARMA: a
hardware tamper-resistant isolated execution environment on commodity x86 plat-
forms. In: Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security (ASIACCS 2012), pp. 48–49. ACM, New York (2012)

http://libvmi.com/
http://www.qubes-os.org/

Proposed Processor Extensions for Significant Speedup 267

35. Vasudevan, A., McCune, J.M., Qu, N., van Doorn, L., Perrig, A.: Requirements for
an integrity-protected hypervisor on the x86 hardware virtualized architecture. In:
Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101,
pp. 141–165. Springer, Heidelberg (2010)

36. Zhang, F., Chen, J., Chen, H., Zang, B.: CloudVisor: retrofitting protection of
virtual machines in multi-tenant cloud with nested virtualization. In: Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP
2011), pp. 203–216. ACM, New York (2011)

MWA Skew SRAM Based SIMPL Systems
for Public-Key Physical Cryptography

Qingqing Chen1(&), Ulrich Rührmair2, Spoorthy Narayana1,
Uzair Sharif1, and Ulf Schlichtmann1

1 Institute for Electronic Design Automation,
Technische Universität München, Munich, Germany

{qingqing.chen,spoorthy.narayana,uzair.sharif,

ulf.schlichtmann}@tum.de
2 Horst Görtz Institute for IT Security,

University of Bochum, Bochum, Germany
ruehrmair@ilo.de

Abstract. SIMulation Possible, but Laborious (SIMPL) systems are a novel
cryptographic concept for physical cryptography that have been suggested in
recent years. They can potentially solve inherent vulnerabilities of conventional
public-key cryptography that is based on unproven mathematical hypotheses.
The security of SIMPL systems rests on their physical unclonability and on the
runtime difference between the real-time behavior of the unique SIMPL system
and any adversarial simulation or emulation of it. One first circuit-based reali-
zation of SIMPL systems via so-called skew SRAMs has previously been dis-
cussed in the literature. This paper presents an approach to enhance the security
of skew SRAM based SIMPL systems by introducing more complicated and
parallel computing behavior taking place in the skew SRAM, which we call
multiple-wordline-activation (MWA) skew SRAM. Simulations of the MWA
skew SRAM show expected behavior complexity that can be taken advantage of
in SIMPL systems to amplify the speed advantage over emulators (functional
physical clones) or simulators (digital clones), which plays a key role in the
security of SIMPL systems.

Keywords: Security � Cryptography � Physical cryptography � Public-key
physical cryptography � Physical unclonable function � Simulation possible, but
laborious system � SIMPL system � Public physical unclonable function � Public
PUF � Skew SRAM � MWA skew SRAM � Multiple wordline activation

1 Introduction

SIMulation Possible, but Laborious systems (SIMPL systems or just SIMPLs) [1, 2] are
a novel cryptographic concept within so-called physical cryptography. Unlike physical
unclonable functions (PUFs) [3–7], whose aim is to resolve inherent issues of con-
ventional private-key cryptography, SIMPL systems and public PUFs [8] are new
cryptographic primitives for typical public-key like scenarios.

A PUF is a physical function that maps challenges (inputs) to responses (outputs)
depending on the physical phenomena taking place in the PUF structure. Based on the

© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 268–282, 2015.
DOI: 10.1007/978-3-319-22846-4_16

challenge-response pairs (CRPs), a PUF is able to serve in various cryptographic
protocols [9], e.g., challenge-response authentication. However, all these protocols
require a piece of previously shared information that must be kept secret, restricting the
application of PUFs as secret-key like primitives. Similar to a PUF, every SIMPL
system also realizes an individual function that maps challenges to responses. Unlike
PUFs, however, any SIMPL system possesses an individual public numeric simulation
program. This allows everyone to simulate and calculate the responses of the SIMPL
system, and therefore to verify the correctness of the responses received from the party
who claims to be in possession of the original SIMPL system. As the SIMPL system is
designed such that any adversarial simulation or hardware emulation of it is slower and
more time consuming than the real-time behavior of the original SIMPL system, which
means that only the person physically holding the original SIMPL system can compute
the responses at a certain speed (equal to or faster than a threshold speed value that is
publicly available, together with or given by the simulation program), everyone may
verify the realness of the claimant’s possession of the SIMPL system by checking the
quickness (speed) of the responses with a timer and the correctness with the simulation
program. It has been shown that the speed advantage or “speed gap” can be used for a
number of different cryptographic protocols, including identification, key exchange, bit
commitment, zero-knowledge protocols, and digital rights management applications [1].

1.1 SIMPL Systems and Public PUFs

SIMPL systems and public PUFs are actually equivalent cryptographic concepts.
However, recent research on both primitives has shown a slightly different accentua-
tion. Publications on public PUFs have mostly focused on nanoelectronic solutions,
trying to achieve an exponential time gap between the public PUF hardware and any
adversaries [10, 11]. While being scientifically highly interesting, such exponential
time gaps between hardware and its simulation may be hard to achieve in practical,
inexpensive, and stable implementations. Furthermore, an exponential time gap makes
the simulation of the public PUF, which is one inherent protocol step, very time
consuming, leading to practically inefficient schemes. For these reasons, recent
investigations on SIMPL systems followed a different route [1, 2, 12, 13]: They
examined practical, circuit-based implementations with a sufficiently large, but con-
stant time gap. In order to avoid attacks, the SIMPL system implemented a
non-parallelizable function, whose computation is closely tied to the maximal clock
frequency of today’s integrated circuits. It is well-known that this frequency cannot be
raised indefinitely due to physical constraints imposed by semiconductor materials.
This strategy promises to thwart many attacks while still maintaining practicality.

We follow and extend this route in this paper, attempting to achieve a substantial
improvement over previous skew-SRAM-based designs of SIMPL systems: We try to
lift the relative security margin from a small factor of around 2 to larger factors of 2n by
a new, so-called multiple wordline activation (MWA) skew SRAM, in which n repre-
sents the number of wordlines that can possibly be activated simultaneously in skew
SRAM write operations.

MWA Skew SRAM Based SIMPL Systems 269

1.2 Implementation of SIMPL Systems via Skew SRAMs

A first implementation of SIMPL systems known as skew SRAM based SIMPL
systems has been introduced in [2, 12, 13]. It uses specially designed (“skew”) SRAM
architectures to outperform their emulators/simulators when executing certain, spe-
cialized computing tasks that skew SRAMs are designed for. Figure 1 shows the
structure of the skew SRAM based SIMPL system of [12, 13]. The system consists of
four main blocks, namely a skew SRAM block (SS), a challenge control block (CC), a
voltage control block (VC), and a feedback and output control block (FOC).

Similar to PUFs, SIMPL systems calculate responses Ri when fed with challenges
Ci. The challenge control block CC “scrambles” the challenge and generates voltage
select (SEL), read/write address (ADR), write data (DIN) and other control (CTRL)
signals, e.g., write enable, for the skew SRAM. References [12, 13] suggested realizing
the challenge control block with a hash function. The skew SRAM block SS is
designed similar to normal SRAMs, except that different types of cells (normal cells
and skew cells, of which skew cells differ from normal, i.e., standard SRAM cells in the
sizing of their transistors and therefore in their electrical characteristics, specifically
their write behavior) are distributed in the array and write operations taking place in
those specially designed skew cells may fail to modify their previously stored contents
depending on the current supply voltage (controlled by voltage control block VC). To
be specific, the skew cells discussed in [12, 13], which were designed for a 0.18-µm
CMOS technology, will retain their previously stored values when the VDD to the
skew SRAM block SS is 1.3 V, and the write operation will be successful (like in
conventional SRAM cells) when the VDD is 1.8 V. Therefore, writing and reading
successively in a cell of such a skew SRAM is effectively a computation process based
on the VDD and DIN signals, as well as the type and the current contents of the cell.

As the skew SRAM behavior cannot be outperformed by emulators or simulators
[13], its speed advantage can be used to distinguish real SIMPL systems from faked
ones. The speed advantage of the SIMPL system over emulators/simulators can be
amplified if the data read out from the skew SRAM in a cycle is fed back into the
challenge control, thus influencing the next cycle. This can of course be repeated
multiple times. In [12, 13], the feedback loop is realized with a linear feedback shift
register (LFSR) that XOR’s the read-out data DOUT of the skew SRAM block. More
details of the operation and the design can be found in [12, 13].

By randomly allocating skew as well as normal cells in the skew SRAM array SS, a
specific design is achieved. However, individualized SIMPL systems should not be
realized by creating many different designs with different skew/normal cell distribution
patterns, as it is too expensive to fabricate just one single or several chips out of one
design for usual commercial applications. References [12, 13] suggested to randomly
modify a portion of the skew and normal cells in the array to become fixed-“0” or
fixed-“1” cells, which can be realized with laser fuses and “burn-in” fabrication steps.
These fixed-“0” and fixed-“1” cells have their data nodes directly connected to GND
and VDD, respectively. Their stored and read-out values will remain fixed no matter
what operation is carried out. Depending on where the fixed-“0” and fixed-“1” cells are
located, a practically infinite number of different SIMPL systems can be fabricated out

270 Q. Chen et al.

of one design, with properly chosen parameters including the skew SRAM array sizes
and the portions of skew and normal, as well as fixed cells.

In public-key applications, the public key, i.e., the simulator part, implements a
function that calculates response Ri when fed with the description D(S) of a SIMPL
system S as well as the challenge Ci (the challenge Ci should be given by the verifier).
The simulator should also be able to tell the response time limit tmax of the legal SIMPL
system S, so that a verifier can check both the quickness and the correctness criteria
discussed at the beginning of this section. To create such a public simulation program
for a specific SIMPL system, one needs to know the accurate logic functionalities of
each block of the system including the configurations of the skew SRAM block, i.e.,
allocations of normal, skew, as well as fixed cells. The simulation program just needs to
implement the logic functionality of the SIMPL system in software, and, based on the
specifications, calculate the response time limit tmax of the legal SIMPL system.

The security of SIMPL systems is determined by the speed/performance advantage
which the systems have over all emulators or simulators of them. Specifically for skew
SRAM based SIMPL systems, the security results from the speed advantage of skew
SRAM write operations over emulators using conventional memories and logic, as well
as simulators using standard computing systems [13], which can theoretically mimic
each skew SRAM write operation in three sequential steps: (1) read out the contents
and the type of addressed cells; (2) compute the result of the write operation; (3) write
back the result into addressed cells. However, as technology develops, the speed
advantage of a previously fabricated skew SRAM may decrease since
emulators/simulators using new technologies become faster, making the secured ser-
vice lifetime of a skew SRAM based SIMPL system shorter. To further enhance the
security of skew SRAM based SIMPL systems and to ensure longer service lifetime,
the concept of multiple wordline activation (MWA) skew SRAM is proposed in this
paper. This concept attempts to write into multiple cells in each column of a skew
SRAM array by activating multiple wordlines simultaneously in a write operation.

Fig. 1. Schematic illustration of the skew SRAM based SIMPL system [12, 13].

MWA Skew SRAM Based SIMPL Systems 271

The rest of the paper is organized as follows: Section 2 proposes the security
enhancement approach using MWA skew SRAM for SIMPL systems. Section 3 pre-
sents a design of MWA skew SRAM. Section 4 shows simulations of the design.
Section 5 briefly assesses the security enhancement of the MWA skew SRAM and
summarizes the paper.

2 MWA Skew SRAM Based SIMPL Systems

As discussed in Sect. 1, the long-term security of skew SRAM based SIMPL systems
can be enhanced by increasing the speed advantage executing an operation in the skew
SRAM over mimicking it through emulation/simulation. To enlarge the speed asym-
metry, multiple wordline activation during write operations is introduced, which allows
the attempt of writing the same data appearing on skew SRAM bitlines into multiple
cells on simultaneously activated wordlines. Multiple wordline activation is only
allowed in write operations, but not in read operations.

As an example, Fig. 2 shows when wordlines WL2 and WL4 are activated (become
logic ‘1’) at the same time in a write operation, the write data ‘1’/‘0’ appearing in bitline
BL/BLB attempts to overwrite the internal data node Q/QB, respectively. Depending on
the type of the addressed cells, the current supply voltage level, as well as their previ-
ously stored contents, the write operation may succeed or fail (i.e., previously stored
contents stay unchanged, and are different from the write data). Since the activation of
multiple wordlines connects the internal data nodes of multiple cells electrically through

Fig. 2. Part of the schematic of an MWA skew SRAM array, withWL2 andWL4 activated at the
same time. The two illustrated cells of the same column are activated simultaneously for write
operations.

272 Q. Chen et al.

access transistors and bitlines, the operations of these cells influence each other (e.g., if a
‘1’ is to be written, and one of the two activated cells already contains a ‘1’, then writing
‘1’ into the other cell becomes easier), making the computation taking place in write
operations even more complicated. As any combination (defined by the challenge
control module, see Fig. 1) of wordlines can be activated simultaneously, this parallel
write operation can be emulated or simulated only by evaluating the type and the current
contents of all the addressed cells together. That would require the emulator/simulator to
read all needed information from different addresses, which cannot be done in a single
read operation using normal memories or standard computing systems (resources
available for attackers making functional physical clones or digital clones discussed
in [13]). And the same also holds for the writing of the computed results back into those
addresses, which cannot be done in a single write operation. While the SIMPL system
can effectively perform reading, computing, and writing-back in one single cycle, an
attacker will have to read the necessary data one by one in multiple cycles, compute the
results based on all readout information, and write back again in multiple cycles. That
would make the attacker’s emulator/simulator many times slower, and the factor is
dependent on the number of wordlines that can possibly be activated at the same time.
Further discussions about the security assessment of the MWA skew SRAM are carried
out in Sect. 5.

As the security of the skew SRAM based as well as the MWA skew SRAM based
SIMPL system relies on the speed advantage of the skew SRAM block, other blocks
described in Sect. 1 may stay unchanged. Section 3 presents a specific design of our
MWA skew SRAM that enhances the security of the SIMPL system based on skew
SRAM concepts.

3 Design of an MWA Skew SRAM

As a proof of concept, an MWA skew SRAM design using 45-nm PTM nano-CMOS
models [14] is presented below, with up to two simultaneously activated wordlines (in
each write cycle, one or two wordlines are activated simultaneously for writing) and two
different supply voltages (1.0 V and 1.3 V). Two types of skew cells (Type 1 skew cell
S1, and Type 2 skew cell S2) are designed, which differ in their transistor sizing and thus
in their write behavior. They are randomly distributed in the skew SRAM array, with
some of them configured to be fixed cells in post fabrication steps [13]. Therefore, four
types of fixed cells exist (F1: S1 fixed to ‘0’; F2: S1 fixed to ‘1’; F3: S2 fixed to ‘0’; F4: S2
fixed to ‘1’). All types of cells work normally as conventional SRAM cells do in read
operations, but show relatively complicated behavior when data is attempted to be
written into them, depending on the combination of cell types activated in the write
cycle, the current supply voltage, the previously stored data in the activated cells, as well
as the data to be written into them. The defined write behavior is presented in Table 1.

The left-most column specifies the type(s) of the activated cell(s) in write opera-
tions, with previously stored data in the parentheses. The upper-most two rows give the
operating conditions (supply voltage VDD during the write cycle, and the data WD to
be written). Non-bold numbers in the rest of the table are the stored data (result) of
corresponding activated cells after the write operation.

MWA Skew SRAM Based SIMPL Systems 273

Compared to the behavior definition of the skew SRAM cells (normal/skew/fixed
cells) described in [12, 13], we name the MWA skew SRAM cells differently, since no
cell behaves the same as normal SRAM cells under all conditions. For the MWA skew
SRAM, two types of skew cells, which behave differently in write operations, are
defined. As described in Table 1, the “S2(0), S2(1)” line defines that when a Type 2
skew cell (with previously stored data ‘0’) and another Type 2 skew cell (with pre-
viously stored data ‘1’) from the same column are activated simultaneously in a write
cycle under the condition that VDD is 1.3 volt and the write data is ‘1’, the first S2 cell
succeeds to store the new data ‘1’, while the second S2 cell remains storing the
previously stored data ‘1’, which is the same as the write data. Figure 3 shows the
schematic and carefully chosen transistor sizes of Type 1 and Type 2 skew cells, which
fulfill the behavior specification of Table 1.

Table 1. Write behavior of MWA skew cells

Cell typea (prev. stored data) VDD = 1.0 Vb VDD = 1.3 V
WD = 0b WD = 1 WD = 0 WD = 1

S1 0 1 0 1
S2 0 1 0 - d

S1, S1 0, 0 1, 1 0, 0 1, 1
S1, S2 0, 0 1, 1 -, - -, -
S2(0), S2(0) 0, 0 0, 0 0, 0 0, 0
S2(0), S2(1)

c 0, 0 1, 1 0, 0 1, 1c

S2(1), S2(1) 0, 0 1, 1 1, 1 1, 1
Fx(0), Sx 0, 0 0, 0 0, 0 0, 0
Fx(1), Sx 1, 1 1, 1 1, 1 1, 1
Fx, Fx -, - -, - -, - -, -
aThe type(s) of cells that are activated simultaneously for write. For
example, “S1, S2” means that a Type 1 skew cell and a Type 2 skew cell
are activated simultaneously (both cells are from the same column,
sharing the same bitline). “S1” only means that one single Type 1 skew
cell is activated. “Fx, Sx” stands for a fixed cell of any type and a skew
cell of any type activated simultaneously. Data in the parentheses is the
previously stored data in the corresponding cell, or the fixed value in case
of a fixed cell. Without parentheses means that the previously stored data
could be ‘1’ or ‘0’.
b“VDD” is the supply voltage of the current write cycle. “WD” is the
data to be written in that cycle.
c “1, 1” here means the stored data of the first S2 (with previously stored
data ‘0’) and the second S2 (with previously stored data ‘1’) cells after the
write operation, respectively: Under the condition of VDD=1.3V and
WD=1, ‘1’ is successfully written into the first S2 cell, while the second
S2 cell retains its previously stored data ‘1’, which is the same as the
write data.
d“-” means that previously stored data remains unchanged after the write
operation.

274 Q. Chen et al.

Fixed cells are simulated by adding connections between internal nodes Q to VDD
(for Fixed ‘1’ cells) or GND (for Fixed ‘0’ cells) through resistors of 600 ohm (a typical
value for antifuses using ONO, i.e., oxide-nitride-oxide technologies [15]).

As up to two wordlines need to be activated at the same time in write cycles, the
challenge control block (see Fig. 1) and/or the address decoder of the skew SRAM
need to be redesigned. A simple solution is to double the address (output of challenge
control) bit width for the skew SRAM row decoder which controls the activation of
wordlines, and duplicate the row decoder, with each taking half of the row address as
input. The two row decoders may produce the same or different outputs, and each
wordline is controlled by an “OR”-gate taking the corresponding output bits of the two
row decoders as its inputs. Thus, one or two wordlines of the array will be activated
simultaneously in each write cycle. In read cycles, the inputs of the two row decoders
should be the same, so that only one wordline is activated in read cycles. This can be
realized with simple logic based on the state of the R/W signal (read/write signal, which
is part of the CTRL signal of Fig. 1).

Other modules, i.e., voltage control and feedback & output control modules, of the
skew SRAM based SIMPL system do not require any modification.

4 Simulation

We simulate an MWA skew SRAM column as shown in Fig. 4 to verify the design. In
the MWA skew SRAM column, S1 and S2 cells are randomly distributed. Several cells
are chosen to be fixed cells. All combinations of situations described in Table 1 are
simulated for verification. Figure 5 shows part of the simulation that verifies, e.g., the
“S1(1), S2(0)” situation with VDD = 1.3 V and WD = 1 of Table 1 at simulation time
420 ns. It can be seen that the write operation of the S2 cell fails (to overwrite its
previously stored value ‘0’, see signal “qs22”) as is desired, while the operation of the

 Type 1 Type 2
M1, M3 180 / 45 145 / 45
M2, M4 50 / 90 115 / 45
M5, M6 85 / 45 54 / 45

M5 Q

VDD

QB M6

M2 M4

M1 M3
BL BLB

WL

Fig. 3. Schematic of skew cells and transistor sizing (W/L in nanometer) of Type 1 and Type 2
skew cells using 45-nm PTM nano-CMOS models [14].

MWA Skew SRAM Based SIMPL Systems 275

S1 cell (see signal “qs12”) can be regarded as successful although WD is the same as
its previously stored value. Through simulations, all functionalities under different
situations defined in the specification of Table 1 have been verified.

To approximately evaluate the yield of the design, simulations of the MWA skew
SRAM column of Fig. 4 considering global process variations were carried out to
verify the design further. Gaussian distributed variations (with three standard devia-
tions of 30 millivolt, i.e., about 16.7 %) of the threshold voltages of PMOS and NMOS
transistors were considered. However, since the simulated circuit is not small and there
are a lot of different situations (Table 1) to check, it is time-consuming to run a large
amount of Monte Carlo simulations. Our solution was to sweep the process variation
parameters and find the parameter space boundary first. Within the boundary, all the
specifications of Table 1 should be met. This greatly reduced the number of required
simulations. After that, we just need to check if a Monte Carlo sample falls in the yield
region or not. Out of all 1,000,000 Monte Carlo samples, 997,334 (over 99.7 %) totally
meet the specification of Sect. 3 in all cases.

S1

S2

S1

S2

F1

F2

F3

F4

Precharge

WriteDriver

VDD
PC

WL0

WL1

WL2

WL3

WL4

WL5

WL6

WL7

WE
WD

BL BLB

(s11)

(s21)

(s12)

(s22)

Fig. 4. MWA skew SRAM column design for simulation (PC: precharge; WLn: wordlines; WE:
write enable; WD: write data; BL/BLB: bitlines; S1: Type 1 skew cell; S2: Type 2 skew cell; Fx:
fixed cells).

276 Q. Chen et al.

5 Discussion and Conclusion

This section briefly discusses the security improvement of the MWA skew SRAM
based SIMPL system over the original described in [2, 12, 13] and concludes the paper.

5.1 Security Assessment

As in [12, 13], three basic possibilities for a faker to imitate the SIMPL system are
discussed.

Exact Physical Clone. Similar to the conventional skew SRAM based SIMPL system,
the MWA skew SRAM based SIMPL system is also refabricatable in a silicon foundry,
if one-time costs of millions of US dollars are available for the faker [12]. However, if
the value to be protected by the SIMPL system is much lower than that, which is the
usual case for consumers or individual hackers and consumer application scenarios,
fabricating an exact physical clone of the system is not only practically difficult, but
also pointless from an economic perspective.

Furthermore, it is interesting to compare the attacker’s need to fabricate a certain
ASIC in silicon to the security level of secret binary keys, say, be they stored in
classical memory or in alternative technologies like PUFs. In the past, such individual

Fig. 5. Waveform of Type 1 and Type 2 skew cell operations. The voltage of logic ‘1’ varies
between 1.0 V and 1.3 V as VDD changes. Signals: we (write enable), wd (write data), s11/qs11
(WL/Q of an S1 cell), s21/qs21 (WL/Q of an S2 cell), s12 and qs12 (WL/Q of a second S1 cell),
s22 and qs22 (WL/Q of a second S2 cell).

MWA Skew SRAM Based SIMPL Systems 277

keys can and have been read out by professional hacker teams on several occasions
[16, 17]. In the case of satellite TV boxes, such attacks have reportedly been mounted
by hacker teams hired by the direct competitors of the TV companies [18]. The sup-
posedly protective keys can then be distributed quickly and conveniently over the dark
net, since they are fully digital, and can be downloaded and used even by relatively
untrained private consumers to commit fraud. The same does not hold for IP protection
based on SIMPL systems, as attacks here require the professional fabrication of an
ASIC in silicon. This offers a potentially game-changing novel security feature for
large consumer markets.

Functional Physical Clone. Building functional physical clones using resources like
“normal” (mass-manufactured) memories, logic IC components, PLDs and FPGAs that
are available for consumers or individual hackers is discussed.

Figure 6 shows the basic structure of an emulator of the MWA skew SRAM using
normal mass-manufactured memories and logic, which mimics the behavior of the
MWA skew SRAM and attempts to catch up with it in computing speed. However,
since the result of a write cycle is dependent on the type and the previously stored data
of addressed cells, the emulator needs to first read out celltype and the previously stored
data Dprev of the addressed cells from the configuration memory and the data memory,
respectively, and then calculate (together with the write data DIN and the voltage select
signal SEL) in the logic block the new data (result of the write cycle) to be written back
into the data memory. For an MWA skew SRAM emulator, the data for celltype as well
as for Dprev for different MWA wordlines come from multiple addresses, making it

Computing
Logic

Reg

Reg

Reg

Data
Memory

Conf.
Memory

FSM

OutputSEL

DIN

DOUT

ADR

CTRL

CLK

clk

Skew-SRAM
Emulator

cm_ctrl

celltype
&
Dprev

output_en
dm_ctrl

Fig. 6. Basic structure of an MWA skew SRAM emulator based on normal SRAMs and logic.

278 Q. Chen et al.

impossible to read in a single cycle. Therefore, celltype and Dprev must be read out with
multiple read operations (to be specific, n read operations where n is the number of
simultaneously activated wordlines) and stored at the input of the logic block until all
needed information is collected for calculation. For writing back, a similar procedure
must be done (to be specific, in n write operations where n is the number of simul-
taneously activated wordlines), since writing back into multiple addresses simulta-
neously is not possible. Thus, write back data must be present at the output of the logic
block until all data are written back into the data memory cycle by cycle. And a finite
state machine (FSM) needs to be implemented to control all the operations, e.g., the
cycle-by-cycle read out and write back should be controlled by the FSM through
cm_ctrl and dm_ctrl that contains the addresses and other control signals for each
operation cycle. Since a write operation in the MWA skew SRAM has to be substituted
with multiple read and multiple write operations in sequence, this emulator is at least a
factor of 2 × n slower in write operations where n is the number of wordlines activated,
if the configuration and the data memories work at the same speed as our MWA skew
SRAM, and if the delay of the computing logic of the emulator is ignored. Realizing
the same structure of Fig. 6 with FPGAs wouldn’t be dramatically different in speed
since the multiple read and write operations have to be done in sequence.

Another possible FPGA-based emulation approach is to replicate the behavior of
the MWA skew SRAM block cell by cell. Emulating the logic behavior of a single cell
defined in Table 1 is not complicated. However, to be noted is that determining the
result of MWA write operations in a Type 1 or Type 2 skew cell (S1 or S2) requires
some knowledge about the other simultaneously activated cell in the same column (on
the same bitline). An emulated S1 cell needs to know the cell type of the other activated
cell, while an emulated S2 cell needs to know both the cell type and the cell contents
(previously stored data) of the other activated cell. Since any two cells in the same
column may be activated at the same time, there must be a path between a skew cell
and all the other cells in the same column to communicate the cell type (for both S1 and
S2 cells) and the cell contents (for S2 cells). That indicates a large amount of con-
nections between cells. Directly connecting all the cells would be impossible, since it
quickly uses up the wiring resources of FPGAs. A crossbar-like implementation [19]
based on multiplexers and demultiplexers may solve the wiring resource problem, if the
array size is not too large. However, that causes more delays as many stages of
multiplexing are required for a large MWA skew SRAM array. Although emulating a
single cell with FPGA is possible, another issue arises when emulating a complete
MWA skew SRAM array. As the logic behavior of MWA skew cells are much more
complicated than the original skew cells described in [12, 13], the number of config-
urable cells (look-up-tables or LUTs, and Flip-flops) required for emulating their
behavior increases a lot. To verify that, we implemented a 2 Kbit (with 32 bit
word-width) MWA skew SRAM array with a Xilinx Virtex-6 FPGA (fabricated with a
40-nm technology). Even in such a highly simplified case with only 16.7 % S1 and
16.7 % S2 cells randomly distributed in the array, already 84 % LUT resources of the
FPGA were used. Implementing a 512 Kbit (an optimal array size suggested in [13])
MWA skew SRAM array with commercially available FPGAs would be simply
impossible. Even if an emulator can be built by connecting hundreds of FPGAs, the
communication delay between FPGA chips would further widen the speed gap between

MWA Skew SRAM Based SIMPL Systems 279

the emulator and the “legal” monolithic SIMPL system. As the maximum operating
frequency for MWA write operations achieved with the Xilinx Virtex-6 FPGA
implementing a 2 Kbit array is only 21 MHz, implementing a full-size MWA skew
SRAM array with hundreds of FPGA chips would end up with an even much slower
emulator. By increasing the number of wordlines n that may be activated at the same
time, the connections between skew cells and other cells in the same column will also
at least linearly increase when implementing the emulator in the cell-by-cell way
described above. And since the complexity of skew cell logic behavior also increases
with n, emulating the MWA skew SRAM array will become even harder and slower as
n increases.

Digital Clone. Building a digital clone using standard computing systems like PC and
software could be the most cost-effective way to emulate the behavior of an MWA
skew SRAM. However, due to the data dependency of a computing cycle on its
previous cycles, parallelization of the computation taking place in the MWA skew
SRAM is impossible. As discussed in [13], building a digital clone wouldn’t produce a
faster system compared to a functional physical clone. Even if the delay for computing
logic (for calculating the new data to be stored) is ignored, just reading the data
required for computing logic and writing back the new data already makes the emulator
(implemented with an Intel Core 2 Quad CPU working at 2.5 GHz and a 3 GB RAM)
at least 25 times slower [13]. By applying MWA designs, this speed gap will be further
enlarged by at least a factor of n (where n is the number of simultaneously activated
wordlines) in write operations, as the data bit-width of PCs is just comparable with that
of skew SRAMs, and any combination of wordlines to be activated in a cycle may
happen, today’s memory architectures in standard computing systems are not able to
parallelize or speed up the required cycle-by-cycle read out and write back procedure as
described in building “functional physical clone(s)”.

5.2 Conclusion and Future Scope

This paper presented a multiple wordline activation (MWA) skew SRAM design to
improve the security of the original skew SRAM based SIMPL systems discussed in
[12, 13]. By enabling parallel computations taking place in different cells controlled by
multiple wordlines using the MWA skew SRAM design, the security of SIMPL sys-
tems based on that is enhanced by a factor linearly related to the number of simulta-
neously activated wordlines. Simulations of the enhanced skew SRAM show expected
behavior complexity and satisfying yield considering manufacturing process variations.
This makes our approach one of the first practically viable, circuit-based implemen-
tations of SIMPL system and public PUFs.

The security level can be further enhanced by increasing the number of supply
voltages and/or the number of simultaneously activated wordlines. However, as the
number of supply voltages and/or the number of simultaneously activated wordlines
increase, the stability of the skew behavior against ambient noises, temperature
changes, supply voltage ripples as well as process variations may decrease. A trade-off
between security level and stability needs to be determined in future work.

280 Q. Chen et al.

References

1. Rührmair, U.: SIMPL systems: on a public key variant of physical unclonable functions. In:
IACR Cryptology ePrint Archive, No. 2009/255 (2009)

2. Rührmair, U., Chen, Q., Stutzmann, M., Lugli, P., Schlichtmann, U., Csaba, G.: Towards
electrical, integrated implementations of SIMPL systems. In: Samarati, P., Tunstall, M.,
Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033,
pp. 277–292. Springer, Heidelberg (2010)

3. Suh, E., Devadas, S.: Physical unclonable functions for device authentication and secret key
generation. In: Proceedings of the 44th annual Design Automation Conference, DAC 2007,
pp. 9−14. ACM Press (2007)

4. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Rührmair, U.: The bistable ring PUF: a new
architecture for strong physical unclonable functions. In: Proceedings of the 2011 IEEE
International Symposium on Hardware-Oriented Security and Trust, HOST 2011, pp. 134−141.
IEEE Press (2011)

5. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.J., Tuyls, P.: The butterfly PUF protecting
IP on every FPGA. In: Proceedings of the 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust, HOST2008, pp. 67–70. IEEE Press (2008)

6. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfigurable
devices. In: 3rd Benelux workshop on information and system security, WISSec 2008, 17
(2008)

7. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Rührmair, U.: Characterization of the
bistable ring PUF. In: Proceedings of the 2012 Design, Automation & Test in Europe
Conference & Exhibition, DATE 2012, pp. 1459–1462. IEEE Press (2012)

8. Beckmann, N., Potkonjak, M.: Hardware-based public-key cryptography with public
physically unclonable functions. In: Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009.
LNCS, vol. 5806, pp. 206–220. Springer, Heidelberg (2009)

9. Rührmair, U., Sölter, J., Sehnke, F.: On the foundations of physical unclonable functions. In:
IACR Cryptology ePrint Archive, No. 2009/277 (2009)

10. Potkonjak, M., Meguerdichian, S., Nahapetian, A., Wei, S.: Differential Public Physically
Unclonable Functions: Architecture and Applications. In: Proceedings of the 48th annual
Design Automation Conference, DAC 2011, pp. 242–247. ACM Press (2011)

11. Meguerdichian, S., Potkonjak, M.: Matched public PUF: ultra low energy security platform.
In: Proceedings of International Symposium on Low Power Electronics and Design,
ISLPED 2011, pp. 45−50 (2011)

12. Chen, Q., Csaba, G., Ju, X., Natarajan, S., Lugli, P., Stutzmann, M., Schlichtmann, U.,
Rührmair, U.: Analog circuits for physical cryptography. In: Proceedings of the 12th
International Symposium on Integrated Circuits, ISIC 2009, pp. 121–124. IEEE Press (2009)

13. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Stutzmann, M., Rührmair, U.:
Circuit-based approaches to SIMPL systems. J. Circuits Syst. Comput. 20(01), 107–123
(2011)

14. Predictive technology model, Nanoscale Integration and Modeling (NIMO) Group, ASU.
http://ptm.asu.edu/

15. Trimberger, S.: Field-Programmable Gate Array Technology, p. 100. Springer, New York
(1994)

16. Anderson, R.: Security Engineering. John Wiley, New York (2008)
17. Helfmeier, C., Boit, C., Nedospasov, D., Seifert, J.: Cloning physically unclonable

functions. In: Proceedings of the 2013 IEEE International Symposium on Hardware
Oriented Security and Trust, HOST 2013, pp. 1–6. IEEE Press (2013)

MWA Skew SRAM Based SIMPL Systems 281

http://ptm.asu.edu/

18. Biddle, P., England, P., Peinado, M., Willman, B.: The darknet and the future of content
protection. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 155–176. Springer,
Heidelberg (2003)

19. Sonntag, S., Reinig, H., Linz, S., Pitter, F., Ruhwandl, M.; XB07: a highly reusable crossbar
architecture for multiprocessor system on chip (MPSoC). In: IP Based Electronic System
Conference, IP 2007, pp. 307−311 (2007)

282 Q. Chen et al.

Secure Erasure and Code Update
in Legacy Sensors

Ghassan O. Karame(B) and Wenting Li

NEC Laboratories Europe, 69115 Heidelberg, Germany
{ghassan.karame,wenting.li}@neclab.eu

Abstract. Sensors require frequent over-the-air reprogramming to
patch software errors, replace code, change sensor configuration, etc.
Given their limited computational capability, one of the few workable
techniques to secure code update in legacy sensors would be to execute
Proofs of Secure Erasure (PoSE) which ensure that the sensor’s memory
is purged before sending the updated code. By doing so, the updated
code can be loaded onto the sensor with the assurance that no other
malicious code is being stored. Although current PoSE proposals rely on
relatively simple cryptographic constructs, they still result in consider-
able energy and time overhead in existing legacy sensors.

In this paper, we propose a secure code update protocol which consid-
erably reduces the overhead of existing proposals. Our proposal naturally
combines PoSE with All or Nothing Transforms (AONT); we analyze
the security of our scheme and evaluate its performance by means of
implementation on MicaZ motes. Our prototype implementation only
consumes 371 bytes of RAM in TinyOS2, and improves the time and
energy overhead of existing proposals based on PoSE by almost 75 %.

Keywords: Secure code update · All or nothing transformations ·
Proofs of secure erasure

1 Introduction

Sensors and actuators require frequent over-the-air reprogramming to update
their cryptographic credentials, patch software errors, change configuration, etc.
Clearly, code update needs to be securely realized in order to ensure that the
newly downloaded code is installed in its entirety and can be correctly executed
in the installation environment with the assurance that no other malicious code
is being stored.

The literature features a number of solutions based on device attestation to
secure code execution in embedded devices [13,14,18,26,27]; however, recent
studies show that existing (hardware and software-based) techniques are still far
from being practical to be deployed in legacy sensors [22].

To remedy this, Perito and Tsudik [22] introduced the notion of Proofs of
Secure Erasure (PoSE) in order to secure code update. PoSE enable a device to
prove to a remote verifier that it has purged all of its memory. For example, in a
c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 283–299, 2015.
DOI: 10.1007/978-3-319-22846-4 17

284 G.O. Karame and W. Li

PoSE, the prover downloads large amounts of incompressible data which fills all
of its writable memory contents, and then proves (e.g., using MACs, or Proofs of
Data Possession schemes [5,15,29]) to a remote verifier that it has downloaded
the data in its entirety. The main intuition here is that if the prover can attest
that it is storing new data which covers all of its writable memory, then the
prover must have purged its (old) memory contents. By doing so, PoSE can be
used as a prelude to secure code update [22]; once all prior state has been erased,
new code can be downloaded onto the device with the assurance that no other
malware or malicious code is being stored.

Although existing PoSE schemes rely on relatively simple cryptographic con-
structs, such as MACs, these schemes still result in considerable energy and
time overhead in existing low-cost sensors. For example, in MicaZ motes, the
computation of HMACs based on SHA1 for 648 KB of data (which constitutes
the total memory of a MicaZ mote) requires almost 90 s, and consumes 3.5µJ
per byte [22]. This is mainly due to the fact that legacy sensors are still not
optimized to execute cryptographic algorithms.

In this paper, we address this problem and we propose an efficient PoSE
scheme which considerably improves the verification overhead of existing PoSE
proposals in legacy sensors. Our construction makes use of basic operations such
as XORing and cyclic bitwise shifting; we show that our solution incurs mod-
erate computational costs when compared to existing PoSE proposals—while
ensuring secure memory erasure. We then extend our proposal and present a
secure code update protocol, SUANT (Secure code Update based on All or Noth-
ing Transforms), which naturally combines PoSE with an efficient all or nothing
transform; SUANT requires the same number of communication rounds as PoSE,
and results in a considerably smaller computational overhead when compared
to existing secure code update protocols based on PoSE. We evaluate the per-
formance of SUANT by means of implementation on MicaZ sensor nodes [2].
Our evaluation results show that our scheme only consumes 371 bytes of RAM,
and incurs approximately 75 % energy and time savings when compared to the
optimized secure code update protocol of [22].

The remainder of this paper is organized as follows. In Sect. 2, we present
PoSE, and describe the building blocks that we will use throughout the paper. In
Sect. 3, we introduce our proposals aimed at efficiently proving memory erasure
and secure code update. In Sect. 4, we implement and evaluate our secure code
update protocol using MicaZ motes. In Sect. 5, we overview related work in the
area, and we conclude the paper in Sect. 6.

2 Background and Preliminaries

We start by outlining our system and attacker model. We then discuss the
shortcomings of device attestation for sensors, introduce PoSE, and the building
blocks that we will use throughout this paper.

Secure Erasure and Code Update in Legacy Sensors 285

2.1 Model

Our system consists of a verifier V and a resource-constrained prover P. Here, V
is interested in updating the code of P; for that purpose, V transmits over the
air the required code to be updated. To ensure that P can correctly execute the
new code update, V requires a proof that P has correctly downloaded the code
update, and does not host any malware in its memory. By memory, we refer to
the entirety of the writable storage available to P. We assume that V has a larger
memory than P, and knows the exact memory size of P. This is a reasonable
assumption since we consider the typical case where P is a sensor mote, whose
total memory capacity is accurately reported in its datasheets.

We assume a computationally bounded adversary A which controls P. Here,
A is a program or a malware executing on P, and has complete read/write access
over the memory of P. We assume, nevertheless, that A does not have write
access to a small part of the read-only memory (ROM) of the device. Read-only
memory can be instantiated in most embedded devices by locking parts of the
device’s memory. Writing to this memory portion without physically accessing
the device is not possible.

Similar to existing software attestation protocols [22,26,27], we assume that
A cannot modify the hardware configuration of P, and can only communicate
with the verifier (and no other external entity). Assuming wireless communi-
cation with the sensors, this can be practically enforced if the verifier actively
jams the prover throughout their interaction phase. Jamming can be effectively
realized by the verifier—without affecting the ability of the prover to interact
with the verifier—by emitting signals with larger strength than the maximum
threshold set at prover’s side [20,22].

Notice that since A is restricted to P’s running environment without any
external help, then A is bounded by the computational and storage capabilities
of the prover (i.e., by P’s memory). Similar to existing protocols, we assume that
the device authenticates the verifier prior to the start of the secure code update
protocol. To this end, we assume, e.g., that the public key of the verifier and the
authentication algorithm are stored in the ROM of the device. Throughout the
rest of the paper, we do not focus on the overhead incurred by authenticating
the verifier since this step is not particular to our protocols and applies to all
similar protocols.

2.2 Remote Attestation

As mentioned earlier, device attestation constitutes one possible way to ensure
that an embedded device is executing correct software. Device attestation can
be categorized in two main branches: hardware-based attestation, and software-
based attestation.

Hardware-based attestation leverages hardware support, such as TPM chips,
ARM Trustzone [3], Intel SGX [4], to securely bootstrap a trusted measurement
environment. Hardware-based attestation offers strong security guarantees but

286 G.O. Karame and W. Li

is unfortunately not yet supported on low-cost embedded devices [12]. On the
other hand, software-based attestation [26,27] aims to verify the correctness
of software executing on a device without the reliance on additional hardware
support. Recently, several attacks have been reported against existing software-
based attestation schemes [8,28,30].

In [13], Jakobsson and Johansson propose the reliance on a memory print-
ing algorithm to practically enable software-based attestation. The proposed
algorithm acquires a random seed from a secure source of (pseudo-)randomness
located in the close proximity of the device (e.g., a SIM or a smart card), exe-
cutes an expansion function using the seed as input to fill the RAM of the device,
then mixes and shuffles the output of the expansion function. By doing so, if a
malware is executing in the RAM of the device, then this will slow down the
aforementioned process that requires all the RAM for fast computation—which
would facilitate the detection of misbehavior. This solution is, however, unsuit-
able for legacy sensors which do not have any SIM/smart card slot and solely
rely on the slow radio channel for communication. This renders the detection of
delays originating from the execution in RAM a rather challenging task.

2.3 Proofs of Secure Erasure (PoSE)

In [22], Perito and Tsudik proposed proofs of secure erasure (PoSE) for resource-
constrained sensor nodes. Their PoSE comprise two steps:

Step 1: Erase memory. The prover erasures all of its memory by downloading
high entropy data (e.g., an encrypted stream of data) sent by the verifier.
Here, the code must be large enough to fill all the writable memory of the
prover.

Step 2: Proof of erasure. The prover attests to the verifier that it has stored
all the downloaded code. This can be done e.g., by sending a MAC of the
downloaded code to the verifier.

As shown in [22], the basic PoSE protocol described above can be transformed
into a secure code update protocol by invoking an additional communication
round between the prover P and the verifier V. The resulting code update pro-
tocol is depicted in Fig. 1. Here, the verifier first chooses a random encryption key
K ′ and encrypts the code1 to be updated P1, . . . , Pn using a semantically secure
encryption function Enc. Upon reception of the ciphertext blocks C0, . . . , Cn,
the prover uses the last m blocks as a MAC key K, constructs a MAC over the
remaining ciphertext blocks MAC (K,C0, . . . , Cn−m), and sends the MAC to V
who verifies it. If the verification passes, V sends to P key K ′ in order for P to
decrypt C0, . . . , Cn into the plaintext code.

The aforementioned PoSE protocol, and the corresponding secure code
update protocol incur considerable communication and computational costs on
the prover, namely:
1 In case the code size to be updated is smaller than the total writable memory of the

device, the verifier pads the code with zeros until it reaches the device’s memory size.

Secure Erasure and Code Update in Legacy Sensors 287

Fig. 1. Summary of the optimized secure code update protocol of [22].

1. The prover needs to download data which is as large as its own memory (e.g.,
648 KB in MicaZ nodes).

2. The prover needs to compute a MAC over the entire data to verify that the
prover has indeed stored the downloaded bytes2.

3. The secure code update protocol results in an additional communication
round for the verifier to send the encryption key K ′ in case the PoSE protocol
successfully completes.

One possible alternative to reduce the downloaded data size would be to
make use of a secure expansion function which fills the entire prover’s memory
with high entropy data (similar to [13]). By doing so, it might be possible to
detect if a malware still resides in the memory of the device by timing the
verification step (i.e., I/O access vs. heavy computations). In an experiment that
we conducted, we measured the time and energy required by a MicaZ sensor to
erase its total memory by (i) downloading code from an external verifier over the
radio channel as in [22] or by (ii) adapting the memory printing algorithm of [13]
to fill the prover’s memory. Our findings show that the former approach consumes
8.64 µJ/B at 8.86 KB/s,3 while the latter solution consumes 35.74µJ/B with
a throughput of 0.77 KB/s. Therefore, filling the prover’s memory with data
downloaded from an external verifier emerges as the most workable mechanism
to purge the memory of legacy sensors.

On the other hand, to reduce the computational costs of the PoSE protocol in
Fig. 1, one alterative would be to selectively verify a fraction of the downloaded
data (e.g., similar to POR/PDP [5,15,29]). This approach considerably speeds
up the verification stage in PoSE, but still requires that the verifier verifies the
2 As shown in [22], computing an HMAC-SHA1 over 648 KB of data in a MicaZ mote

requires almost 90 s.
3 The maximum claimed transmission throughput of TI-CC2420 radio chip used in

MicaZ motes is 250 kbps, which translates to 31250 bytes/sec. However, our experi-
ments show that the effective throughput is around 8860 bytes/sec using TinyOS 2.0.

288 G.O. Karame and W. Li

integrity of a considerable fraction of the data in order to acquire reasonable
guarantees that the prover did not erase a small part of its memory. Notably,
assuming a block size of m bits, and that the prover did not erase c out of the
total t blocks of data, then the verifier needs to selectively verify d blocks to
achieve a detection probability of 1− (1− c

t)
d. As an example, in a MicaZ mote,

the total memory is 648 KB; assuming m = 128 bit, then to detect that the prover
did not keep 1,000 bits of its old code, the verifier would have to selectively check
almost 30 % of the data blocks to achieve a detection probability close to 90 %.

2.4 All or Nothing Transforms (AONT)

An All or Nothing Transform (AONT) is a transform that outputs sequences
of blocks such that given all but one of the output blocks, it is infeasible to
compute any of the original input blocks [16]. An AONT is given by a pair of
p.p.t. algorithms (E,D) where [10,16]:

E The encoding algorithm is a probabilistic algorithm which takes as input a
message x ∈ {0, 1}∗, and outputs ciphertext y.

D The decoding algorithm is a deterministic algorithm which takes as input
ciphertext y, and outputs either a message x ∈ {0, 1}∗ or ⊥ to indicate that
the input ciphertext is invalid.

To construct an AONT, Rivest [25] suggested the package transform which
leverages a block cipher and maps m block strings to m+1 block strings. The first
m output blocks are computed by encrypting the input blocks using a random
key K. The last output block is computed by XORing K with the encryption of
each of the previous output blocks, using a key K0 that is publicly known.

Desai [10] proposed a faster version where the block cipher round which uses
K0 is skipped and the last output block is computed as the XOR of all the
ciphertext blocks: That is, given block cipher F/F−1 and on input x[1] . . . x[m],
Desai’s transform outputs y[1] . . . y[n], with n = m + 1, where:

y[i] = x[i] ⊕ FK(i), 1 ≤ i ≤ n − 1,

y[n] = K
n−1⊕
i=1

y[i].

Notice that Desai’s AONT leverages a block cipher to ensure that the output
blocks have high entropy. In this paper, we leverage Desai’s AONT to construct
an efficient secure code update scheme for legacy sensors. By doing so, our con-
struct requires that the prover fetches all the output code blocks in order to
decode any part of the (plaintext) code; if the prover possesses all but one out-
put block, then it is computationally infeasible for the prover to acquire any
meaningful bit of information about any plaintext block. As we show later, this
also removes the need for an additional communication round to transmit the
code encryption key.

Secure Erasure and Code Update in Legacy Sensors 289

Fig. 2. Sketch of our lightweight PoSE scheme. Here, we assume that the code
C1, . . . , Cn, of size mn, fills the total writable memory of P (with the exception of
the minimum amount of volatile memory required to execute the PoSE scheme).

3 Lightweight Proofs of Secure Erasure and Code Update

In this section, we present and analyze our proposal for secure code update.
We will do so incrementally, starting with an initial scheme which enables the
construction of efficient proofs of secure memory erasure, and later extending it
to construct our code update protocol, SUANT.

3.1 Lightweight Proofs of Secure Erasure

Our solution shares the same intuition with existing PoSE proposals [22]; namely,
the prover fills its memory with high-entropy data acquired from the verifier and
proves to the latter that it has stored all the downloaded data. As mentioned in
Sect. 2.3, this alternative is more efficient than filling the memory of the prover
using a local source of pseudo-randomness. The main difference between our
proposal and the PoSE of [22] lies in the fact that, here, the data is specifically
constructed in such a way that if the prover has stored that data in its entirety,
then P can issue a compact proof of memory erasure—without the need to rely
on MACs.

In our solution, this is achieved as follows: the verifier picks a random secret,
divides the data into equal sized-blocks, and XORs the secret with (a function
of) the data blocks which the prover is requested to download. The output of
the XOR is appended and sent to the prover as the last data block. If the prover
can correctly extract the secret inserted by the verifier, then this offers a strong
proof that the prover has downloaded all the data sent by the verifier.

Notice that the straightforward XORing of the data blocks with the secret
does not offer a proof of memory erasure, since a malicious prover can simply
XOR all the downloaded blocks without the need to store them. Later on, after
receiving the last block (which is the XOR of the secret with the remaining data
blocks), the prover can correctly revert the secret without having to store all the

290 G.O. Karame and W. Li

downloaded data. Therefore, we require that the bits pertaining to different data
block are pseudorandomly (cyclic) shifted before being XORed; here, we reveal
the (pseudorandom) seed used in the shifting procedure at the very end of the
data transmission. By doing so, our solution ensures that the advantage of an
adversary in correctly computing the secret by performing intermediate results,
or dropping a fraction of the data bits/blocks is negligible.

The detailed protocol of our PoSE scheme unfolds in Fig. 2. We stress that
the code required to execute our PoSE scheme resides in a read-only part of the
prover’s memory (cf. Sect. 4); this does not give any advantage for the adversary
to modify this code.

The verifier V first chooses n random data blocks C1, . . . , Cn of length m
bits each, such that mn fills the total available writable memory of the device.
This corresponds to the total writable memory of the device excluding (i) the
memory occupied by the code required to download and process the data, and
(ii) the minimum amount of volatile memory necessary to execute the code of
PoSE. V then chooses a random secret K1 and a seed s of size m bits each, and
executes the following ShiftXOR procedure:

1: procedure K̄1 ← ShiftXOR(s,K1, C1, . . . , Cn)
2: S ← G(s)
3: l = log2 m
4: K̄1 ← K1

5: for i = 0 . . . n − 1 do
6: c ← Sil→l(i+1)

7: K̄1 ← K̄1 ⊕ {C(i+1)}�c

8: end for
9: end procedure

Here, Sx→y refers to the bit sequence of S indexed from position x to y, X�y

refers to the bitwise cyclic shift of X by y positions, and G : {0, 1}m → {0, 1}nl
is an expansion function. For example, G can be instantiated by iteratively
applying a hash function using as input the seed and a counter until the required
number of bits are reached. The verifier then sends C1, . . . , Cn||K̄1||s to the
prover. Notice that the ShiftXOR procedure is symmetric. That is, K1 can be
obtained by computing ShiftXOR(s, K̄1, C1, . . . , Cn).

Claim 1. Assuming a secure cryptographic source of randomness on V, the pro-
tocol of Fig. 2 enables the verifier to detect that an adversary has not erased any
m bits in its memory with overwhelming probability.

Proof Sketch. Suppose that a malicious code of size b > 0 persists in the mem-
ory of P after the completion of our PoSE. Then, this means that the adversary
was able to compute K1 without storing all the downloaded data in its mem-
ory. Recall that we assume that C1, . . . , Cn fill the total writable memory of the
prover with the exception of the minimum amount of volatile memory required to
run the PoSE code. Moreover, K1 is generated from a cryptographically secure
source of randomness and therefore cannot be easily guessed. Moreover, since s is

Secure Erasure and Code Update in Legacy Sensors 291

Fig. 3. Sketch of SUANT. Our construct combines PoSE with Desai’s AONT in order
to reduce the communication rounds required to prove secure code update.

communicated to P at the very end of the transmission, then this precludes any
straightforward pre-computation of K1. Since the data is also generated from a
secure source of randomness on V, then its entropy also rules out any possibility
of compression. Recall also that the adversary cannot modify the code required
to execute our PoSE scheme, since this code resides in a read-only part of P’s
memory.

Without knowledge of s, notice that each bit of each data block can affect the
outcome of any bit of K1 (due to the ShiftXOR routine). That is, any intermediate
processing on the received bits (e.g., dropping some bits, XORing bits) can affect
any of the m bits of the computed response. In other words, if the adversary
stores b > 0 m-bits blocks of malicious code after the completion of the protocol
(e.g., by dropping bm bits of the received data), then the adversary has to guess
the correct shifting applied to at least b blocks of received data. This guessing
probability is bounded by max(m−b, 2−m).

Assuming m = 128 bits, the probability that a malicious code of size 1000 bits
persists in the memory of P is bounded by 2−56. We contrast this to existing
PoSE schemes based on selective checking, where the probability that the verifier
detects that the adversary did not erase 1,000 bits of its old memory contents
after checking the integrity of 30 % of the downloaded blocks is approximately
90 %, when the prover’s memory size is 648 KB.

3.2 SUANT: Secure Code Update Based on AONT

We now show how to extend our aforementioned PoSE scheme in order to con-
struct an efficient secure code update protocol.

Notice that extending a PoSE into a secure code update protocol can be
easily realized by (i) first padding the code to be updated to reach the total
memory size of the prover, (ii) encrypting the padded code, and (iii) execut-
ing PoSE is over encrypted code. However, as shown in [22], this results in an

292 G.O. Karame and W. Li

additional communication round between the prover and the verifier in order to
enable the latter to communicate the encryption key once PoSE is completed. We
point out that the decryption key should only be shared with P after the PoSE
has correctly completed since, otherwise, there is a risk that malware acquires
access to the newly updated code which might contain sensitive information
(e.g., credentials).

In what follows, we offer a natural extension to our PoSE scheme which
satisfies this requirement without incurring an additional communication round.
Our extension, dubbed SUANT, combines PoSE with an AONT in order to
ensure that only if the prover has downloaded and stored all the encrypted code
update, then it can acquire the necessary decryption key to revert the encrypted
code and update its code.

The detailed protocol of SUANT is depicted in Fig. 3. Here, the code to be
updated is first encrypted using key K1, which will be subsequently used as the
secret XORed with the data blocks in the ShiftXOR procedure. From that point
on, SUANT unfolds similarly to our PoSE protocol in Fig. 2. Recall here that the
code required to execute our scheme resides in a read-only part of the prover’s
memory (cf. Sect. 4).

Notice that by first encrypting the code and then XORing all the cipher-
text blocks with the encryption key, this exactly yields the AONT transform of
Desai (cf. Sect. 2.4). One major difference between SUANT and Desai’s AONT
lies in the fact that the last output block is replaced with K̄1, as outputted by
ShiftXOR, which corresponds to the XOR of the pseudorandomly shifted cipher-
text blocks with K1. As mentioned earlier, this prevents the adversary from
computing intermediate XOR on the fly, without the need to store the down-
loaded blocks.

Claim 2. Assuming a secure cryptographic source of randomness on V, the pro-
tocol of Fig. 3 enables the verifier to detect that an adversary has not securely
updated his code with overwhelming probability.

Proof Sketch. It is easy to see that, given our assumptions, (i) the prover has a
fixed and known memory size, and (ii) the adversary cannot modify the hardware
of the provers, the security of SUANT follows directly from Claim1 (cf. Sect. 3.1)
and from the security of Desai’s transform [10].

Namely, since the downloaded code has high entropy (recall that the code
is encrypted), and fills the total memory of the prover, then this prevents any
straightforward attack where the adversary e.g., compresses the code. Similarly,
the adversary cannot hide malware in parts of the writable memory, since our
code update fills the entire memory of the device, including the volatile mem-
ory (with the exception of the minimum amount of RAM required to execute
SUANT). Moreover, the use of Desai’s AONT also ensures that the prover can-
not acquire any meaningful bit of plaintext code unless it has processed all the
output ciphertext blocks [10].

Since s is communicated at the very end of the transmission, then the prover
has to store all the blocks, in order to subsequently revert K̄1, compute K1, and
decode the encrypted blocks to acquire the code update. As shown in Claim 1,

Secure Erasure and Code Update in Legacy Sensors 293

the probability that a malicious code of size bm bits resides in the memory of
P after the successful completion of SUANT is given by max(m−b, 2−m), which
corresponds to the probability that the adversary guesses the correct shifting of
all the b blocks or the key K1.

Reducing I/O Costs in SUANT: The ShiftXOR routine employed by SUANT
incurs high I/O costs since it requires access to each and every data block. Notice
that this overhead can be reduced if ShiftXOR only operates on a randomly
chosen fraction f of the blocks. Such an alternative approach ensures that the
secret is XORed (line 7 of ShiftXOR) with a randomly selected fraction f of
the data blocks and thus requires the prover to only fetch those blocks from
memory—thus tremendously reducing I/O costs. Here, the advantage of the
adversary in computing the correct key K1 without storing any given b ciphertext
blocks of size m is bounded by max(m−b, (1 − f)b). For example, when f = 0.5,
if the adversary does not delete 1,000 bits of its old code (e.g., and selectively
deletes 8 ciphertext blocks with size m = 128 bits each), then the probability that
she can correctly compute K1 is bounded by 0.004. We evaluate the comparative
performance of this approach in Sect. 4.

4 Implementation and Evaluation

In this section, we implement and evaluate SUANT in MicaZ motes. For com-
parison purposes, we also evaluate the secure code update protocol of [22].

4.1 Implementation Setup

In order to evaluate the performance of our proposal in a realistic setting,
we implemented SUANT on the ATMEGA128 micro-controller mounted on a
MicaZ sensor. MicaZ [2] has a total memory of 648 KB, divided into 512 KB of
external flash memory, 128 KB of internal flash, 4 KB of SRAM, and 4 KB of
EEPROM. To access the on-chip memory, we made use of the InternalFlashC
and ProgFlashC 4 modules from TinyOS bootloader (TOSBoot). The maximum
transmission throughput of MicaZ is bounded by 250 kbps; however, our exper-
iments suggest that only 30 % of this throughput can be effectively attained in
a realistic scenario.

In addition to SUANT, we implemented f -SUANT, the optimized version of
SUANT in which a fraction f of the data blocks are randomly processed by the
ShiftXOR routine. In our implementation, we set f = 0.5; as mentioned earlier,
this ensures the detection of a malicious prover which did not erase 1,000 bits
(or more) of its old memory content with a probability of 0.996. For comparison
purposes, we also implemented the optimized secure code update protocol of [22]
(SCU) and a variant protocol adapted from [22] which replaces the verification of
the entire downloaded code by a probabilistic verification (using MACs) of a frac-
tion p = 0.3 of the downloaded data blocks5; we refer to this protocol by p-SCU.
4 For that purpose, we extended the ProgFlash interface using AVR Libc.
5 In this case, the probability to detect that a prover did not delete 1,000 bits of its old

code is 0.9.

294 G.O. Karame and W. Li

Fig. 4. Performance evaluation using MicaZ sensors. Each data point is averaged over
10 independent measurements; we do not include the corresponding 95 % confidence
intervals due to their small size.

Table 1. Required code and volatile memory sizes.

Total Memory (bytes) RAM (bytes) ROM (bytes)

SUANT 15,516 371 6822

f-SUANT 15,718 384 6960

SCU 19,256 610 8562

p-SCU 19,436 614 9722

Our implementation was integrated with TinyOS2. We relied on the TinySec
and TinyECC libraries [17,19] to implement the cryptographic algorithms. We
instantiated MACs using HMAC-SHA1, and made use of the Lehmer pseudo-
random number generator [21]. In all the implemented schemes, we assume a
fixed block size m = 128 bits.

Since all the implemented protocols require the initial transmission of a code
of size mn bits and its decryption, we did not measure the overhead incurred by
these processes. As shown in Sect. 2.3, our findings show that the code transmis-
sion to a MicaZ mote consumes 8.64µJ/B at 8.86 KB/s.

In our experiments, we measured the time and energy that are consumed
by the above mentioned four protocols, namely SUANT, f -SUANT, SCU, and
p-SCU, in accessing and computing the memory blocks until the decryption key
is obtained. To measure the energy consumption of the implemented protocols,
we relied on the Avrora simulator [32] which provides an accurate cycle-based
simulation of the ATMEGA128 micro-controller. All data points in our (latency)
plots are averaged over 10 independent measurements; where appropriate, we
also show the corresponding 95 % confidence intervals.

Ideally, the code update protocol should be stored in the ROM of the device
to prevent tampering with the process. At present, many embedded devices sup-
port the use of mask ROM (e.g., the MSP430 micro-controller). In our case, we
included the codes responsible for executing SUANT, f -SUANT, SCU, and p-SCU

Secure Erasure and Code Update in Legacy Sensors 295

(respectively) in the internal flash of the MicaZ mote. Recall that ATmega128
allows part of its internal flash to be locked from writing—thus emulating a read-
only memory. For instance, setting Boot Lock Bit 0 to ‘10’ in ATmega128 and
the BOOTSZ fuse to ‘00’ on the bootloader section grants us an 8 KB equiva-
lent of read-only memory in the internal flash [1]. Notice that, once locked, this
memory can only be unlocked by means of physical access through the JTAG
debugger.

4.2 Evaluation Results

Latency and Energy Overhead: In Fig. 4, we compare the latency and energy
overhead incurred by SUANT and f -SUANT, when compared to SCU and p-SCU,
with respect to the varied writable memory size of the device. Our results show
that SUANT improves by more than 75 % the energy and time consumption of
SCU, and results in more than 30 % energy and latency savings when compared
to p-SCU. For example, to securely update code installed on MicaZ sensors whose
total memory size is 648 KB, SUANT only requires 23.3 s and 0.94 joules, while
SCU requires 96.6 s and 3.87 joules. f -SUANT further improves the performance
of SUANT by reducing I/O costs by almost 50 %; our findings indicate that
f -SUANT improves the latency and energy of p-SCU by almost 60 %. Recall
that both SUANT and f -SUANT achieve higher detection probabilities when
compared to p-SCU (which relies on selectively verifying 30 % of the downloaded
code blocks).

Memory Usage: Table 1 summarizes the memory usage of SUANT and f -
SUANT. Our results show that the total code size of SUANT (and f -SUANT)
is almost 4 KB smaller than that of SCU and p-SCU. Moreover, SUANT almost
halves the RAM consumption of SCU and only requires up to 371 bytes of RAM.
These memory savings mainly originate from the fact that SUANT does not make
use of cryptographic hashes and only relies on basic operations such as bitwise
shifting and bitwise XORing—which consume less memory in legacy sensors.
As shown in [22], HMAC-SHA1 alone occupies around 4500 bytes of ROM, and
120 bytes of RAM when loaded into memory. Since SUANT (and f -SUANT)
leaves a smaller footprint in the RAM, this makes it harder for the attacker to
compress the data and hide the malicious code—when compared to SCU.

Notice that since we integrated our implementation with TinyOS, the under-
lying code size for all protocols was larger than the maximum lockable memory
in the bootloader section of the MicaZ mote. To remedy this, we can separate
our codes into two parts: one part containing the memory accessing and compu-
tation routines (such as ShiftXOR) which we include in the bootloader section of
the flash. The second part containing the necessary networking routines (such
as the code required to send and receive bits) can be stored in the remaining
part of the internal flash (i.e., in the application section). Recall that program
code within the bootloader section has the capability to read/write to the entire
internal flash memory through SPM (Store to Program Memory) instruction [1].

296 G.O. Karame and W. Li

In Table 1, we show the minimum code size which should be included in
read-only memory (labelled by “ROM”) for all protocols; our results show that
SUANT consumes a total of 6822 bytes of ROM—-almost 2 KB less ROM than
SCU. Recall that the bootloader section is limited to 8 KB in size; this suggests
that SUANT and f -SUANT can be directly integrated into the MicaZ motes
using this approach. The critical parts of SCU (and p-SCU) on the other hand
cannot fit entirely in the bootloader section in MicaZ.

5 Related Work

In this section, we overview related work in the area.

Securing Code-Update in Embedded Devices: Deng et al. [9] propose the
use of Merkle hash trees and hash chains in order to authenticate code distri-
bution in wireless sensor networks. In [11], Dutta et al. leverage authenticated
streams in order to secure code update in the TinyOS network programming sys-
tem. In [33], Ugus et al. propose to authenticate code updates using an efficient
stateful verifier T-time signature scheme based on Merkle’s one-time signature.
However, these proposals do not aim at proving to a remote party that the code
has been securely distributed and installed within the embedded device.

In [26], Seshadri et al. propose indisputable code execution in order to dynam-
ically establish a trusted code base on remote untrusted wireless sensor nodes.
In [13,14], the authors propose the reliance on a novel memory printing algo-
rithm to practically enable software-based attestation. However, the proposed
scheme relies on a trusted proxy that executes secure cryptographic algorithms,
such as SIM card, that needs to be located in the close proximity of the device;
clearly, this assumption cannot be met in existing sensor nodes.

A number of contributions address the problem of secure data deletion
[6,23,24]; however, as far as we are aware, only few works consider the prob-
lem of securely deleting data in resource-constrained devices [22] and proving to
a third party that data was securely deleted from these devices. In [22], Perito
and Tsudik propose the notion of Proofs of Secure Erasure (PoSE) as an enabler
of secure code update in embedded devices. In this paper, we borrow the notion
of PoSE, and we propose lightweight PoSE and secure code update protocols
that considerably improve the performance and energy consumption of existing
proposals.

All or Nothing Transforms: All-or-nothing transforms (AONTs) were first
introduced in [25] and later studied in [7,10,16]. The majority of AONTs leverage
a secret key that is embedded in the output blocks. Once all output blocks are
available, the key can be recovered and single blocks can be inverted. As such,
AONT is not an encryption scheme and does not require the decoder to have
any key material.

In [31], Stinson proposed a fast linear all or nothing transform based on
matrix multiplication. Karame et al. showed in [16] that by first encrypting the

Secure Erasure and Code Update in Legacy Sensors 297

data then post-processing it using an efficient Stinson-like transform over the
field F

2, one can construct an encryption mode which ensures that any single
block of data cannot be decrypted unless the adversary has acquired almost all
the ciphertext blocks and the encryption key.

6 Conclusion

In this paper, we tackled the problem of securing code update in legacy sensors.
Here, code update needs to be securely realized in order to ensure that the newly
downloaded code is installed in its entirety and can be correctly executed in the
installation environment with the assurance that no other malicious code is being
stored.

To this end, we proposed an efficient secure code update scheme, SUANT,
which naturally combines PoSE with an efficient all or nothing transform inspired
by Desai’s transform [10]. We analyzed the security of SUANT, and we evaluated
its performance by means of implementation on MicaZ sensor nodes [2]. Our
evaluation results show that our scheme consumes a small footprint in RAM,
and considerably improves the time and energy overhead of existing secure code
update protocols.

References

1. ATmega128 Datasheet: Available from http://www.atmel.com/images/doc2467.
pdf

2. MicaZ: Wireless Measurement System. http://www.openautomation.net/
uploadsproductos/micaz datasheet.pdf

3. Building a Secure System using TrustZone Technology (2009). http://infocenter.
arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C
trustzone security whitepaper.pdf

4. Software Guard Extensions Programming Reference (2013). https://software.intel.
com/sites/default/files/329298-001.pdf

5. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: Proceedings of the 4th International Conference on Secu-
rity and Privacy in Communication Netowrks, SecureComm 2008, pp. 9:1–9:10.
ACM, New York, NY, USA (2008)

6. Bauer, S., Priyantha, N.B.: Secure data deletion for linux file systems. In: Proceed-
ings of the 10th Conference on USENIX Security Symposium - Volume 10, SSYM
2001. USENIX Association, Berkeley, CA, USA (2001)

7. Boyko, V.: On the security properties of OAEP as an all-or-nothing transform.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer,
Heidelberg (1999)

8. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: Proceedings of the 16th ACM
Conference on Computer and Communications Security, CCS 2009, pp. 400–409.
ACM, New York, NY, USA (2009)

http://www.atmel.com/images/doc2467.pdf
http://www.atmel.com/images/doc2467.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD 29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD 29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD 29-GENC-009492C_trustzone_security_whitepaper.pdf
https://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/329298-001.pdf

298 G.O. Karame and W. Li

9. Deng, J., Han, R., Mishra, S.: Secure code distribution in dynamically program-
mable wireless sensor networks. In: Proceedings of the 5th International Conference
on Information Processing in Sensor Networks, IPSN 2006, pp. 292–300. ACM, New
York, NY, USA (2006)

10. Desai, A.: The security of all-or-nothing encryption: protecting against exhaustive
key search. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 359–375.
Springer, Heidelberg (2000)

11. Dutta, P.K., Hui, J.W., Chu, D.C., Culler, D.E.: Securing the deluge network pro-
gramming system. In: Proceedings of the 5th International Conference on Infor-
mation Processing in Sensor Networks, IPSN 2006, pp. 326–333. ACM, New York,
NY, USA (2006)

12. Eldefrawy, K., Francillon, A., Perito, D., Tsudik, G.: SMART: secure and mini-
mal architecture for (establishing a dynamic) root of trust. In: NDSS 2012, 19th
Annual Network and Distributed System Security Symposium, San Diego, USA,
5–8 February 2012

13. Jakobsson, M., Johansson, K.-A.: Practical and secure software-based attestation.
In: LightSec (2011)

14. Jakobsson, M., Stewart, G.: Mobile malware: why the traditional AV paradigm
is doomed, and how to use physics to detect undesirable routines. In: BlackHat
(2013)

15. Juels, A., Jr., B.S.K.: PORs: proofs of retrievability for large files. In: ACM Con-
ference on Computer and Communications Security, pp. 584–597 (2007)

16. Karame, G.O., Soriente, C., Lichota, K., Capkun, S.: Securing cloud data in the
new attacker model. IACR Cryptology ePrint Archive 2014, p. 556 (2014)

17. Karlof, C., Sastry, N., Wagner, D.: Tinysec: a link layer security architecture for
wireless sensor networks. In: Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, SenSys 2004, pp. 162–175. ACM, New York,
NY, USA (2004)

18. Koeberl, P., Schulz, S., Sadeghi, A.-R., Varadharajan, V.: Trustlite: a security
architecture for tiny embedded devices. In: Proceedings of the Ninth European
Conference on Computer Systems, EuroSys 2014, pp. 10:1–10:14. ACM, New York,
NY, USA (2014)

19. Liu, A., Ning, P.: Tinyecc: a configurable library for elliptic curve cryptography in
wireless sensor networks. In: Proceedings of the 7th International Conference on
Information Processing in Sensor Networks, IPSN 2008, IEEE Computer Society,
Washington, DC, USA (2008)

20. Martinovic, I., Pichota, P., Schmitt, J.B.: Jamming for good: a fresh approach to
authentic communication in wsns. In: Proceedings of the Second ACM Conference
on Wireless Network Security, WiSec 2009, pp. 161–168. ACM, New York, NY,
USA (2009)

21. Payne, W.H., Rabung, J.R., Bogyo, T.P.: Coding the lehmer pseudo-random num-
ber generator. Commun. ACM 12(2), 85–86 (1969)

22. Perito, D., Tsudik, G.: Secure code update for embedded devices via proofs of
secure erasure. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 643–662. Springer, Heidelberg (2010)

23. Reardon, J., Basin, D., Capkun, S.: Sok: secure data deletion. In: Proceedings of
the 2013 IEEE Symposium on Security and Privacy, SP 2013, pp. 301–315. IEEE
Computer Society, Washington, DC, USA (2013)

Secure Erasure and Code Update in Legacy Sensors 299

24. Reardon, J., Ritzdorf, H., Basin, D., Capkun, S.: Secure data deletion from persis-
tent media. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2013, pp. 271–284. ACM, New York, NY, USA
(2013)

25. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997)

26. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: Scuba: secure code
update by attestation in sensor networks. In: Proceedings of the 5th ACM Work-
shop on Wireless Security, WiSe 2006, pp. 85–94. ACM, New York, NY, USA
(2006)

27. Seshadri, A., Perrig, A., Doorn, L.V., Khosla, P.: Swatt: software-based attestation
for embedded devices. In: Proceedings of the IEEE Symposium on Security and
Privacy (2004)

28. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, CCS 2007, pp. 552–561. ACM, New York,
NY, USA (2007)

29. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

30. Shankar, U., Chew, M., Tygar, J.D.: Side effects are not sufficient to authenticate
software. In: Proceedings of the 13th Conference on USENIX Security Symposium -
Volume 13, SSYM 2004, pp. 7–7. USENIX Association, Berkeley, CA, USA (2004)

31. Stinson, D.R.: Something about all or nothing (transforms). Des. Codes Crypt.
22(2), 133–138 (2001)

32. Titzer, B.L., Lee, D.K., Palsberg, J.: Avrora: scalable sensor network simulation
with precise timing. In: Proceedings of the 4th International Symposium on Infor-
mation Processing in Sensor Networks, IPSN 2005. IEEE Press, Piscataway, NJ,
USA (2005)

33. Ugus, O., Westhoff, D., Bohli, J.-M.: A rom-friendly secure code update mechanism
for wsns using a stateful-verifier t-time signature scheme. In: Proceedings of the
Second ACM Conference on Wireless Network Security, WiSec 2009, pp. 29–40.
ACM, New York, NY, USA (2009)

Efficient Provisioning of a Trustworthy
Environment for Security-Sensitive Applications

Adrian Coleşa1(B), Sándor Lukács1,2, Vlad Topan1,2,
Radu Ciocaş1,2, and Adrian Pop2

1 Technical University of Cluj-Napoca, Cluj-Napoca, Romania
adrian.colesa@cs.utcluj.ro

2 Bitdefender, Bucharest, Romania
{slukacs,itopan,rciocas,apop}@bitdefender.com

Abstract. We propose a method to provide the users a trusted secure
environment to run their security-sensitive applications within. Our solu-
tion runs user applications in different virtual machines (VMs): security-
sensitive applications in a trusted green VM, while the others in an
untrusted red VM. We isolate the two VMs using hardware virtualization
mechanisms and run them alternatively. This contributes for a smaller
hypervisor, a safer VM isolation and trusted I/O channels to the green
VM. Switching between VMs is based on the ACPI S3 sleep events.
The trustworthiness of the green VM is sustained by its reduced and
restricted software stack and its launch-time integrity attestation. We
focus on reducing the red-to-green VM switching time by applying a
stateless strategy for the green VM: use a RAM-disk and start it in a
pristine state any time a red-to-green VM switch is performed. We load
the green VM’s image in memory and reserve memory space for the green
VM at boot time. This leads to a lower switching time of about 18 s.

Keywords: Virtualization · Red/green virtual machines · Isolation ·
Protection · Integrity · Trusted path · Fast switch

1 Introduction

We aim to protect security-sensitive user actions, like performing transactions on
e-banking/e-commerce sites in an Internet browser. It is essential in such cases
that the users trust their systems. Securing end-user systems is not an easy task.
The traditional solutions that placed the security tool inside the user system
proved to be ineffective due to the numerous vulnerabilities of the underling OS.

One of the most credited alternative approach relies on virtualization [4] to
better isolate the security tool from the user system. The original user system
is run in a virtual machine (VM) and the security tool is placed outside that
VM, either in another dedicated VM or inside the virtualization system, i.e.
the hypervisor (HV). The HV isolates and protects VMs from one another and
provides the security tool mechanisms to transparently control the user VM.

c© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 300–309, 2015.
DOI: 10.1007/978-3-319-22846-4 18

Efficient Provisioning of a Trustworthy Environment 301

One type of such virtualization-based security tool uses introspection [3] of
the protected VM. The main problem the introspection faces is the semantic gap.
Different solutions proposed lack either generality or precision. Introspection also
induce performance penalties not acceptable for all types of user applications.

Another approach [6] separates user applications in different classes based on
their security requirements and run them in separate VMs:

1. A red VM, which imposes no restriction on the user applications that can
be run, actions that could be performed and remote services that could be
accessed. The red VM exposes a large attack surface. It is therefore considered
untrustworthy and used as the untrusted environment (though with a rich
functionality) to run the security-insensitive applications in.

2. A green VM, which imposes high security restrictions on the user applications
that could be run and the actions that could be perform. The green VM
exposes a narrower attack surface. Furthermore, its integrity can be measured
and attested at launch time and specialized security tools could protect it.
All these measures make the green VM to be considered trustworthy and used
as the trusted environment (though with a restricted, well-defined particular
functionality) to run the security-sensitive applications in.

There are two different ways the red and green VMs could be used.
Running the two VMs concurrently [8] has the advantage of providing the

user the possibility to simultaneously use both types of applications. This strat-
egy increases the attack surface of the green VM: firstly, due to an increased
complexity and size of the HV needed to virtualize the resources shared between
the two VMs, and secondly, due to the difficulty to close all side-channels opened
by resource sharing. It is also difficult to assure the privacy and security of I/O
channels between the user and the green VM [11].

Running the two VMs alternatively [15] eliminates almost entirely side chan-
nel attacks and reduces considerably the HV complexity and size, while the
hardware resources must not be virtualized, since they are given directly to the
only running VM. It also makes straightforward providing trusted I/O channels
between the user and the green VM as long as only the running VM is in con-
trol and use of the I/O devices. The main problem of such strategy, though, is
the relatively large switching time between the VMs, usually in range of tens
of seconds [15]. Notwithstanding, from the users’ point of view that could be
considered acceptable as long as they generally agree to trade time for security,
especially when the security-sensitive applications are run infrequently.

We decided to develop a solution based on running the two VMs alternatively.
Our HV uses hardware virtualization support for isolation and protection of the
green VM. Like other solutions [9,14], we aimed for getting a light, security-
dedicated HV. We used ACPI sleep events to switch between VMs, in a non-
intrusive and transparent way.

The main contributions of our solution over the general approach are:

– a reduced switching time from the red VM to the green VM, obtained by
(1) preparing a small image of the green VM, reducing its software stack to

302 A. Coleşa et al.

a simplified OS and only the protected user application, (2) saving a partial
system snapshot in the green VM’s image, (3) loading the green VM’s image
in memory at HV’s boot time (avoiding reading it from a HDD), (4) reserving
the needed memory space for the green VM at boot time, which allowed us
using the faster transition to the ACPI S3 sleep state instead of the S4 one
[15], (5) configuring the green VM to use a RAM-based disk;

– an improved trustworthiness of the green VM, by (1) reducing its size (as
mentioned before), (2) attesting both locally and remotely the green VM’s
integrity at launch time, (3) always switching to its pristine state.

2 Threat Model and Objectives

We consider that an attacker can compromise and control the entire software
stack in the red VM. A malicious software in the compromised red VM could try
to attack the HV and the green VM. Denial of service (DoS) attacks are out of
scope of our solution. The user’s physical system is inaccessible to the attacker.

We consider all the chipset hardware and I/O devices trusted. We also include
in our Trusted Computing Base (TCB) the HV and the software stack in the
green VM. The latter is large in general, though we reduce it at minimum and
apply usage restrictions and security protection mechanisms. In case the pro-
tected user application accesses a remote service, we also consider it trusted.
The privacy and security of the communication channel between the client user
application and the remote server is done by cryptographic methods.

Our solution assumes existence on the protected user system of hardware
virtualization support (e.g. Intel VT-x), including SLAT and IOMMU extensions
(e.g. Intel EPT and VT-d), and platform-level enhancements for supporting
trusted environments (e.g. TPM and Intel TXT).

3 “Alternative Red-Green VMs” Protection Method

Our HV schedules the two VMs alternatively, having just one VM running at
one moment, with the other one suspended. A switch from the currently running
VM to the suspended one is triggered when a dedicated ACPI sleep event is
transparently generated in the running VM and intercepted by the HV.

The VM switching mechanism is built on the assumption that APCI events
are handled in each VM by its OS, which deals with saving the entire machine
state in order to be able to resume it later. The only task the HV is responsible
for is to intercept the ACPI sleep request sent by the guest OS (at the end of
its own internal sleep request handling) to power off the CPU. At that moment
the HV could suppose that the current VM’s state was completely saved by that
VM’s guest OS according to the generated sleep request. By interposing on the
normal APCI sleep path, the HV avoids the final step (i.e. powering off the CPU),
translating it instead in an ACPI wake-up signal sent to the suspended (sleeping)
VM. Following that moment, the VM switching, i.e. loading and resuming the

Efficient Provisioning of a Trustworthy Environment 303

Fig. 1. Alternative execution of the red and green VMs and the way the VM switching
is performed. The gray boxes indicate the running software component

new VM, is supposed to be performed entirely by its guest OS, based on the VM’s
state saved previously. Figure 1 illustrates the alternate execution strategy.

Having just one VM running at one moment allows our HV to give the
currently running VM direct access and control over almost all host’s hardware
resources. This strategy drastically reduces the HV’s size and complexity.

The HV’s main responsibility is to isolate and protect the memory areas
where itself and the green VM are loaded against accesses from the red VM.
The memory protection is based on hardware virtualization support.

Another important security property is the trustworthiness of the I/O chan-
nels of the green VM. When the green VM is woken up it considers all host’s
I/O devices to be in an inconsistent state and re-initializes them. This way, an
attacker in the compromised red VM cannot store malicious data in the I/O
devices in an attempt to influence the green VM state and behavior.

4 Improve the Green VM’s Trustworthy Properties

While trusted by design, the green VM can still be compromised due to its large
software stack. We propose a few techniques to reduce such risks.

Integrity Attestation. One common method is to securely measure the state of
the booted software on the user system (e.g. firmware, boot-loader, HV and green
VM’s software stack). This mechanism is called secure boot and could be used to
attest both locally and remotely that the current system’s state is trustworthy.
The green VM is not launched if its image is corrupted. The remote service could
also ask the user system to attest its integrity, not accepting a communication
with a client that cannot prove its integrity.

Stateless Green VM. There are two mechanisms involved:

1. Start the green VM in its pristine state any time a switch is performed to it.
That state is loaded in memory during the host system’s boot. There is no
state information saved by the HV, when the user switches from the green
to the red VM. So, the user cannot resume a previous green “session”. While
such a strategy suffers from usability restrictions, it limits any possible control
of the green VM an attacker obtained in a previous session.

2. Our green VM is configured to use a RAM-based disk. We eliminate thus any
interference between the two VMs through a shared HDD.

304 A. Coleşa et al.

Fig. 2. Structure of the host system memory. The host’s HDD is used just for the red
VM. The green VM is configured to use a RAM-disk. The HV is the first one loaded
and run to isolate and protect all memory domains from each other.

Reduced and Restricted Software Stack. We applied this method by:

1. Preparing the green VM to only contain just one particular security-sensitive
application. Our strategy requires therefore a different green VM’s image for
each different security-sensitive application a user wants to run.

2. Reducing the green VM’s OS configuration to the minimum required to run
only the security-sensitive application, which could also be configured to
include just the needed functionality.

3. Restricting the URLs that can be accessed from the green VM. The custom
application (e.g. an Internet browser) could be changed to allow access to just
one trusted URL, i.e. that of the service that application should access.

Runtime Protection. We used U-HIPE [7], a virtualization-based introspec-
tion module that runs in HV and protects both the guest OS and the custom
application in the green VM. The protection mechanism imposes W ⊕X (write
XOR execute) permissions for all memory pages of the green VM. Initially, all
pages are marked as read-only. When a page is firstly accessed, if an execution
is tried, that page is permanently set for X but not W, while if a write is tried,
the W but not X is set.

5 Reduce the Switching Time to the Green VM

Memory Boot. The green VM’s image is loaded in memory at the host system’s
boot time (see its place in memory in Fig. 2) and protected as read-only by the
HV. The green VM will boot faster from memory, the only operation performed
is making a writable copy of the image in the green VM’s reserved memory.

Standby-Based Switch. The ACPI sleep states that could be used to alternate
the execution of the two VMs are S3 and S4. In both states all devices are
powered-off, losing their state, excepting the memory in S3 state. As long as
our HV reserves at boot-time memory for both VMs and the green VM’s image
(see Fig. 2), it can use the faster ACPI S3 transition, based on the fact that the
memory’s contents are not affected during the ACPI-based switch.

Efficient Provisioning of a Trustworthy Environment 305

RAM-Disk Usage. Using a RAM-based HDD for the green VM not only makes
it safer, but also reduces its boot time, as only the memory is accessed.

Reduced Memory Needs. This is a logical result of customizing the green
VM for having a reduced software stack: the smaller the VM’s image, the faster
its boot time, so the faster the switch from red to green VM.

6 Implementation Technical Aspects

The green VM image consists of a custom built Linux kernel with an embed-
ded minimal initramfs, which contains a BusyBox -based environment, a X.Org
installation and a Chromium browser. The image has a size of around 130MB.

The green VM image is loaded during the boot of the HV and its authenticity
is validated. Hardware support for enforcing a secure boot process (e.g. Intel
TXT) is used when available. After the image is loaded, the red and green VMs
are created. The green VM is only partially initialized at this stage.

When the red VM requests the memory layout from the BIOS (using “int
0 × 15/E820”), the call is intercepted by the HV and the memory map is altered
to mark the space used by the green VM as reserved. Additionally, the red VM
is denied access to that area by the HV, using Intel EPT.

The switch from the red to the green VM occurs on a dedicated sleep event.
The user presses a button which, after notifying via a VMCALL the HV to
switch to the green VM, initiates the ACPI S3 state using the Windows API.
The HV intercepts the I/O event that signals the CPU to enter S3 sleep. At this
point all devices have been placed in S3 sleep by their OS drivers. The CPU is
prevented from entering the sleep state and the green VM is woken up.

In order to provide the green VM with a “default” state of the hardware,
ACPI methods are used to power on the entire PCI hierarchy. Each PCI config-
uration area is restored to a snapshot of the contents it had during the host boot
or just before calling the Windows API S3 sleep request. Fine tuning to specific
hardware situations may be required, but the alternative of embedding drivers
for all possible network and video cards inside the HV for a proper initialization
of each device is infeasible and would greatly increase the TCB size.

The memory map of the green VM is configured via the EPT to allow access
to the range reserved for it on boot and to the memory ranges used by the devices
for MMIO. The RAM address range it receives is compacted via remapping to a
continuous space above the 1MB address and remapped through VT-d as well.

After the Linux kernel boots and runs BusyBox as the “init” process, the
X.Org environment and then the Chromium browser are started, with the custom
web site set as the homepage. Special iptables rules are in place, which restrict
network access strictly to the requirements of the secured application.

After the user completes the secure operations inside the green VM, another
ACPI sleep event is used to restore control to the red VM.

306 A. Coleşa et al.

7 Performance Measurements

Our host system was a Dell Optiplex 990 with an Intel i7@3.4 GHz CPU, 4GB
DDR3 RAM and a 500GB HDD. The red VM ran Windows 7/x64 and was
allocated the host’s memory minus what was needed for HV, green VM’s image
and running green VM, i.e. about 2.5 GB. The green VM was allocated 1GB
RAM and configured to use a RAM-disk based on initramfs. It ran Linux 3.8.8,
over which we configured a minimal user-space environment built from BusyBox
1.23, X.Org X11R7.6 package, and Chromium 31.0. We used a proprietary HV.

We estimated the minimum space needed for the green VM and got a com-
pressed (LZO) image size of about 138MB from the uncompressed 8MB Linux
kernel, 81MB X.org and 225MB Chromium. First column of Table 1 illustrates
different sizes of the VM’s image, based on different compression methods. The
minimum memory needed to run such a distribution was about 1GB.

Table 1. Green VM’s Linux startup time without HV

Compression
method

Size [MB] Kernel startup
time [s]

X.org & Chromium
startup time [s]

Total time [s]

GZIP 125 6 1.92 7.92

BZIP2 112 15 1.97 16.97

LZMA 82 12 1.94 13.94

XZ 81 11 1.93 12.93

LZO 138 5 1.91 6.91

We measured the overhead induced by the HV functionality. It consists of two
components: (1) Boot time, needed to load both the HV and green VM. Being
an one-time operation, its overhead is attenuated over the system runtime. It
depends on the sizes of HV and green VM’s image and the read bandwidth of
the booting device. In our tests we booted from PXE using a 1GB network link,
which takes about 2 s for the given sizes. (2) Protection overhead, imposed by the
HV operation. Our HV introduces practically no overhead, while it intercepts
very few events: “int 0× 15” and ACPI S3 sleep. Both are generated only in
singular situations, i.e. VM’s boot time and the user’s switching request, respec-
tively. Otherwise, the HV overhead is only that induced by the virtualization
hardware, which is not relevant relative to what we can optimize.

For measuring the red-to-green VM switching time we considered the main
three steps involved: (1) red VM’s Windows sleep (internal handling of the sleep
request), (2) HV ACPI S3 interception and preparation for waking-up the green
VM, and (3) wake-up of the green VM’s Linux. Table 2 illustrates the average
of measured times. The total switching time was about 18 s on average, an
approximately 2x reduction compared to Lockdown [15].

Efficient Provisioning of a Trustworthy Environment 307

Table 2. Red-to-Green VM switching time with LZO/Linux in green VM

Red VM’s windows
sleep [s]

HV S3 handling [s] Green VM’s linux
startup [s]

Total time [s]

4.10 4.60 9.30 18.00

We measured the Linux startup time on the bare hardware for different
images we got. Table 1 illustrates the results. The difference of about 2s between
the last line total time and the time in Table 2 column 3 is the HV’s overhead
due to I/O device preparation in order to consistently wake-up the green VM’s.

8 Related Work

The most similar solution to ours is Lockdown [15]. Main differences consist in
the methods we use to improve the trustworthy of the green VM and reduce the
red-to-green VM switching time.

SecureSwitch [13] also uses a similar strategy, but they do not use virtual-
ization to isolate the two environments, but the BIOS and SMM. Even if faster
and based on a smaller TCB, their method is less flexible and general than ours.

Other low-level solutions like Oasis [12], HyperCheck [16], even if based
on a smaller TCB due to usage of lower-level hardware mechanisms, are lim-
ited regarding the trusted (green) environment they provide or are based on
custom hardware. Actually, newer processors [5] will include specialized hard-
ware support (e.g. Intel SGX) to isolate parts of an application (enclaves) from
the untrusted application’s parts and environment, so they naturally provide a
reduced TCB. Their main problem, compared to our strategy results from the
fact that isolation alone is not enough to run real-life applications, which need
to cooperate with the untrusted environment.

In this context, other solutions like Flicker [10], Wimpy-kernel [17], Over-
shadow [1], VirtualGhost [2] propose ways for the isolated enclaves to trustily
communicate with the untrusted OS. There is however no general method to
verify such a communication. Even if more heavyweight, our strategy allows
running complex-functionality applications and also naturally provides trusted
I/O channels between the user and that applications.

9 Conclusions

We proposed a method to provide the users a trustworthy environment to run
their applications in. Our method runs alternatively two VMs: red (untrustwor-
thy) and green (trustworthy). We developed methods to improve both the green
VM’s trustworthiness and the red-to-green VM switching time.

The alternative red-green VMs protection method suffers some limitations,
which we want to deal with in the near future. One problem regards the usability

308 A. Coleşa et al.

of the method due to the still relatively large switching time and usage restric-
tions. Other problems refer to ways to convince the users to switch to the green
VM when running security-sensitive applications, be aware of the VMs they
interact with, attest visually the authenticity of the green VM etc.

Acknowledgments. Adrian Coleşa’s work on this paper was supported by the Post-
Doctoral Programme POSDRU/159/1.5/S/137516, project co-funded from European
Social Fund through the Human Resources Sectorial Operational Program 2007–2013.

References

1. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.K.: Overshadow: a virtualization-based app-
roach to retrofitting protection in commodity operating systems. SIGOPS Oper.
Syst. Rev. 42(2), 2–13 (2008)

2. Criswell, J., Dautenhahn, N., Adve, V.: Virtual ghost: protecting applications from
hostile operating systems. SIGPLAN Not. 49(4), 81–96 (2014)

3. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proceedings of the Network and Distributed Systems
Security Symposium, pp. 191–206 (2003)

4. Garfinkel, T., Warfield, A.: What virtualization can do for security. Login: USENIX
Mag. 32(6), 28–34 (2007)

5. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., Del Cuvillo, J.: Using innovative
instructions to create trustworthy software solutions. In: Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy, HASP 2013, ACM (2013)

6. Lampson, B.: Privacy and security: usable security: how to get it. Commun. ACM
52(11), 25–27 (2009)

7. Lutas, A., Lukács, S., Colesa, A., Lutas, D.: U-HIPE: hypervisor-based protection
of user-mode processes in windows. J. Comput. Virol. Hacking Tech. pp. 1–14
(2015)

8. Lutas, D.H., Lukacs, S., Tosa, R.V., Lutas, A.V.: Towards secure network commu-
nications with clients having cryptographically attestable integrity. In: Proceedings
of the Romanian Academy, 14(Special issue), 338–356 (2013)

9. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVi-
sor: efficient TCB reduction and attestation. In: 2010 IEEE Symposium on Security
and Privacy (SP), 0, pp. 143–158. IEEE, May 2010

10. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an execu-
tion infrastructure for TCB minimization. SIGOPS Oper. Syst. Rev. 42(4), 315–
328 (2008)

11. Newsome, J., McCune, J.M., Zhou, Z., Gligor, V.D.: Building verifiable trusted
path on commodity x86 computers. In: 2012 IEEE Symposium on Security and
Privacy, SP 2012, 0, pp. 616–630. IEEE, May 2012

12. Owusu, E., Guajardo, J., McCune, J., Newsome, J., Perrig, A., Vasudevan, A.:
OASIS: on achieving a sanctuary for integrity and secrecy on untrusted platforms.
In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2013, pp. 13–24. ACM (2013)

Efficient Provisioning of a Trustworthy Environment 309

13. Sun, K., Wang, J., Zhang, F., Stavrou, A.: SecureSwitch: BIOS-assisted isolation
and switch between trusted and untrusted commodity OSes. In: Proceedings of the
19th Annual Network and Distributed System Security Symposium (2012)

14. Vasudevan, A., Chaki, S., Jia, L., McCune, J., Newsome, J., Datta, A.: Design,
implementation and verification of an eXtensible and modular hypervisor frame-
work. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP
2013. pp. 430–444. IEEE Computer Society (2013)

15. Vasudevan, A., Parno, B., Qu, N., Gligor, V.D., Perrig, A.: Lockdown: towards a
safe and practical architecture for security applications on commodity platforms.
In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang,
X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 34–54. Springer, Heidelberg (2012)

16. Zhang, F., Wang, J., Sun, K., Stavrou, A.: HyperCheck: a hardware-assisted
integrity monitor. IEEE Trans. Dependable Secure Comput. 4, 332–344 (2014)

17. Zhou, Z., Yu, M., Gligor, V.D.: Dancing with giants: wimpy kernels for on-demand
isolated I/O. In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 308–323.
IEEE, May 2014

Poster Session

Towards a Trust Model for Social Networks
of Wireless Smart Objects

Work-in-Progress

Jonathan Ouoba1(&), Cyril Cassagnes2, and Tegawendé F. Bissyandé2

1 VTT Technical Research Center, Espoo, Finland
jonathan.ouoba@vtt.fi

2 SnT - University of Luxembourg, Luxembourg, Luxembourg
cyril.cassagnes@vtt.fi, tegawende.bissyand@uni.lu

Abstract. Smart wireless objects are now pervasive in our lives. As these devices
are increasingly used in chain to deliver rich services to users, the next trend will
make them evolve in their own social network with the different challenges that it
entails. In this paper, we focus on how trust can be modeled and managed in such
a network to preserve user privacy and ensure the security of peer-to-peer
interactions. We propose to rely on light-weight machine-learning mechanisms to
allow these devices, which can be perceived as people’s extensions, to mimic the
human behavior of their owners regarding trust.

Keywords: IoT • Trust management • Wireless smart objects • Machine
learning • Social network

An Adaptive Trust Model for Wireless Smart Objects

According to Cisco IBSG predictions, the number of smart connected objects is
expected to reach billions of items by 2020 [5]. As such, a lot of effort has gone into the
initiation of research projects in the field of Internet-of-Things (IoT).

At a very high level, IoT represents the conceptual framework for various systems
designed to handle the interactions among smart wireless objects. The roadmap is then
to pursue the development of more efficient and interoperable solutions regarding the
interconnection of wireless objects with network infrastructures (e.g., High-Speed
Internet or other future networks) and the direct interconnections among the objects
themselves [1]. Transversal to those functional concerns, security and privacy
challenges must be overcome to accelerate and strengthen public acceptance of
IoT-based systems.

Security and privacy issues are becoming pressing as the paradigm of social-IoT is
becoming commonplace [1]. In our work, we focus on the possible interactions among
personal wireless smart objects [3] and the resulting trust issues. Indeed, such
interactions increasingly threaten privacy as, in many cases, personal data, with different
levels of sensitivity, is exchanged. There is still a need to investigate in a generic
framework the notion of trust underlying the possible links between wireless objects to
allow communications following the degree of sensitivity of the information [6].

© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 313–314, 2015.
DOI: 10.1007/978-3-319-22846-4

Although initial approaches have been emerging recently for trust management in
“social network” of smart objects, we take a different approach. Our analytical
perspective is based on assumptions derived from the relationship that exists between
the objects and their owners. As personal devices, wireless smart objects can be
considered as “extensions” of their human owners. As such, these owners can expect
that the interactions among their respective objects follow the “rules” of real life (e.g.,
requirements to recognize people, possibilities for direct exchanges to retrieve useful
complementary information, etc.). Our approach is backed by the fact that it is now
commonly accepted that to develop systems which are suitable for mobility contexts, a
relevant option is to base the design on models mimicking the behavior of people in
real life [2, 4].

The central question of our work is thus as follows: how can one adequately build a
trust scheme integrating the mechanisms of autonomous reasoning which makes it
possible for personal smart objects to properly exchange information of different levels
of sensitivity?

We propose to answer this question as follows:

– By setting the basis for an adaptive trust model inspired by human behavior, in
particular with regards to how trust is incrementally build and destroyed.

– By discussing with practical use cases how machine-learning mechanisms help to
realize a trust engine for interactions of smart wireless objects.

– By proposing an empirical demonstration of the suitability of our approach to
supporting a consistent behavior of wireless smart objects.

References

1. Atzori, L., Iera, A., Morabito, G.: From “smart objects” to “social objects”: the next
evolutionary step of the internet of things. IEEE Commun. Mag. 52(1), 97–105 (2014)

2. Chaumette, S., Ouoba, J.: Multilevel and secure services in a fleet of mobile phones: the
multilevel secured messaging application (MuSMA). In: Uhler, D., Mehta, K., Wong, J.L.
(eds.) MobiCASE 2012. LNICST, vol. 110, pp. 169–185. Springer, Heidelberg (2013)

3. Chaumette, S., Ouoba, J.: Direct transmission vs relay transmission for information
dissemination in a manet: an analytical study. In: 10th IEEE International Conference on
Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom
2014, Miami, Florida, USA, 22-25 October 2014, pp. 442–446 (2014)

4. Chaumette, S., Ouoba, J.: A multilevel platform for secure communications in a fleet of
mobile phones. In: In: 6th International Conference on Mobile Computing Applications and
Services, MobiCASE 2014, Austin, TX, USA, 6–7 November 2014, pp. 173–174 (2014)

5. Evans, D.: The internet of things - how the next evolution of the internet is changing
everything. Technical report, Cisco (2011)

6. Sicari, S., Rizzardi, A., Grieco, L., Coen-Porisini, A.: Security, privacy and trust in internet
of things: the road ahead. Comput. Netw. 76, 146–164 (2015)

314 J. Ouoba et al.

BYOD for Android — Just add Java

Jessica Buttigieg, Mark Vella(&), and Christian Colombo

PEST Research Lab, University of Malta, Msida, Malta
{jessica.buttigieg.12,mark.vella,

christian.colombo}@um.edu.mt

Bring-Your-Own-Device (BYOD) implies that the same mobile device is used for both
work and personal purposes. This poses a security concern where untrusted
user-installed applications might interfere maliciously with corporate ones. Android
has only limited support for dual work-personal contexts. Our proposition, BYOD-RV,
uses Dynamic Binary Instrumentation (DBI) and Runtime Verification (RV). DBI
(in-memory code patching) avoids Android source code changes as typically required
by similar approaches, e.g. [3]. RV (runtime monitoring of program correctness
properties) enables expressing dynamic policy rules in Java, e.g. [2].

Method. The architecture for the Dalvik runtime (libdvm) version is shown in Fig. 1 -
left. The DBI component is loaded in process memory via ptrace and patches
libdvm (G) to create in-line hooks that intercept (C) security-sensitive Android
method calls by re-defining them as native. This is lightweight DBI that requires no
code block copying. Device events e.g. low battery or incoming call events, are
intercepted (D) with the inclusion of a BroadcastReceiver component. The DBI
component is injected into every launched application by a system ‘starter’ application
(requires a firmware update). It requires root privileges/SELinux re-configuration.
Intercepted events are passed to the RV monitor, which is loaded through JNI (A) as
Dalvik bytecode, rendering all application and framework classes available for calling
from policy rules (B). Rules take an event|condition !action form (inspired
by [1]), where conditions distinguish between work/personal modes and actions
prescribe execution resumption. All is captured in familiar Java/Android API syntax as
per following ‘Photo Capture’ rule snippet:

wifi.ruleset.add(new Rule("Photo_capture"){
public boolean condition(){

if(wifi.ruleset_work_WIFI || wifi.ruleset_work_location) return true; else return false; }
public void action() {

wifi_ruleset.continue_exec = false; ShowToast("Access Denied"); } });

Experimentation. BYOD-RV was implemented on Android 4.4 using the DDI toolkit.1

The following policy rules have been successfully experimented with. Conditions:
identification of the workplace wifi; workplace geolocation; and executing corporate
apps. Application access-control actions: blocking photo captures and video/voice
recording at the workplace. Application modification actions: restrict Internet access in
work mode to a URL white-list; append a corporate signature at the end of all outgoing
messages in work mode. The device events experimented with so far are the low battery
and incoming call events, resulting in the termination of non-work applications for the

1 https://github.com/crmulliner/ddi.

© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 315–316, 2015.
DOI: 10.1007/978-3-319-22846-4

prior and terminating calls in case of an ongoing video conference for the latter. Due to
ahead-of-time compilation by dex2oat of all Dalvik bytecode to OAT files, porting to
ART (libart) requires hooking Android methods at alternate locations (Fig. 1 - right).
Patching native libraries (H) to intercept native library calls (E) made by the system OAT
(compiled Android framework and core Java libraries) is one option, which however
introduces a semantic gap challenge. Patching OAT files through pre-compilation
bytecode patching (I) avoids this issue by intercepting Android method calls made by
application OATs (F), but requires disabling OAT integrity checks. BYOD
configuration is to be further simplified with a Domain-Specific Language (DSL).

References

[1] Colombo, C., Francalanza, A., Mizzi, R., Pace, G.J.: polyLARVA: Runtime verification with
configurable resource-aware monitoring boundaries. In: Eleftherakis, G., Hinchey, M.,
Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 218–232. Springer, Heidelberg
(2012)

[2] Falcone, Y., Currea, S., Jaber, M.: Runtime verification and enforcement for android
applications with RV-Droid. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687,
pp. 88–95. Springer, Heidelberg (2013)

[3] Russello, G., Conti, M., Crispo, B., Fernandes, E.: MOSES: supporting operation modes on
smartphones. In: SACMAT. pp. 3–12. ACM (2012)

Fig. 1. BYOD-RV. Dalvik -left- and Android Runtime (ART) -right- versions.

316 J. Buttigieg et al.

Script Fuzzing with an Attacker’s Mind-Set

John Galea(&) and Mark Vella

PEST Research Lab, University of Malta, Msida, Malta
{john.galea.10,mark.vella}@um.edu.mt

Attackers primarily target memory corruption vulnerabilities inside script
engine-hosting application, e.g. web browsers or most PDF viewers. Such
applications are widely popular, and the discovery of vulnerabilities made by
attackers ahead of security researchers diminishes the trustworthiness of their
deployment. Typically, fuzzers are employed to generate unexpected inputs, with the
aim of crashing applications and exposing errors. State-of-the-art fuzzers produce
random byte sequences that comply with file/protocol formats. In the case of script
fuzzers, random inputs need to constitute strings that are parse-able statements with
respect to the scripting language used [1]. However, focusing solely on syntax-based
randomness does not reflect the attacker’s mind-set, as generated inputs are not
optimized for narrowing in on vulnerabilities. A demand exists for smarter fuzzers in
order to accelerate the process of finding exploitable errors.

The attacker’s mind-set: Fundamentally, script engine-hosting applications embody
two levels of abstraction, namely, the script-level which defines the interaction with
host components as script statements, and the \emph{native-level} which parses and
executes scripts. An example of this is when JavaScript statements access HTML DOM
nodes in a web browser, where scripts are interpreted by an engine coded in C/C++,
and in turn invokes other native routines.

When working at script-level, programmers are relieved from the concern of
memory management, enabling them to focus on the task at hand such as web design.
In contrast, attackers define script statements with the intention of triggering specific
native-level behaviour to carry out exploitation. These differing mind-sets are depicted
in Fig. 1. A web designer uses createElement() to alter the current web page.
However, for an attacker, it is a method to force memory allocations whilst being
confined at the script-level, where memory management is not available directly. This
is due to the implementation of createElement(), as it involves a call to a memory
allocation function, e.g. malloc(). Such a script statement is referred to as a
primitive [2], which serves as an exploit building block to break through to the lower
level. In particular, createElement() is one possible memory allocation primitive.
Other types exist, including memory deallocation and access primitives.

Reaching the native-level through primitives is essential since it is in this level
where memory vulnerabilities reside. Moreover, in the presence of such vulnerabilities,
attackers gain access to the crucial primitive types that are required to complete the
exploit. Examples include those with the ability to overwrite memory at key locations

J. Galea—The work disclosed is partially funded by the Master it! Scholarship Scheme (Malta).

© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 317–318, 2015.
DOI: 10.1007/978-3-319-22846-4

defined by attackers, so that process-layout information may be leaked and allow the
bypassing of ASLR and DEP [3]. Overall, a script exploit consists of a combination of
primitives, which defines its generic exploit pattern.

Method and ongoing work: Our novel fuzzer is based on exploit patterns, that mirrors the
attacker’s mind-set. The key idea is that inputs are generated by randomly selecting
primitives according to defined exploit patterns. The focus on primitives is due to their use
as building blocks in triggering bugs, whilst exploit patterns describe their arrangement for
test case generation. This technique is a step forward from the current syntax-centric
approach in favour of a semantically-richer one. The three stages of the script fuzzer are:
(1) Defining exploit patterns derived from existing exploits; (2) Identifying primitives
from source scripts in relation to host application components; and (3) Generating inputs
through the random selection of primitives for each type in the pattern.

A prototype was developed which uses the Apache Velocity Engine for expressing
exploit patterns as HTML templates. In order to validate the approach, patterns were
derived from two exploits that target Internet Explorer. Interestingly, the prototype
generated multiple exploits that managed to crash the web browser and successfully
expose the vulnerabilities. This result shows that a single pattern is capable of
generating mutations from the original exploitation that is still fully capable of
achieving its objective. The potential here lies in the generation of new exploits that
exercise other possibly unknown vulnerabilities. The next research step will undertake
the large-scale mining for patterns from exploit repositories.

References

[1] Guo, T., Zhang, P., Wang, X., Wei, Q.: Gramfuzz: fuzzing testing of web browsers based on
grammar analysis and structural mutation. In: 2013 Second International Conference on
Informatics and Applications (ICIA), pp. 212–215. IEEE (2013)

[2] Serna, F.J.: The info leak era on software exploitation. Black Hat USA (2012)
[3] Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.R.: Just-in-time

code reuse: On the effectiveness offine-grained address space layout randomization. In: 2013
IEEE Symposium on Security and Privacy, SP 2013, pp. 574–588 (2013)

Fig. 1. The attacker’s mind-set in comparison to that of a web designer.

318 J. Galea and M. Vella

Trust and Trustworthiness Maintenance:
From Architecture to Evaluation

Mohamed Bishr1(&), Christian Heinz1, Torsten Bandyszak1,
Micha Moffie2, Abigail Goldsteen2, Willis Chen3, Thorsten Weyer1,

Sotiris Ioannidis4, and Costas Kalogiros5

1 Paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{Mohamed.Bishr,Christian.Heinz,Torsten.Bandyszak,

Thorsten.Weyer}@paluno.uni-due.de
2 IBM Research Haifa, Haifa, Israel

{moffie,abigailt}@il.ibm.com
3 IT Innovation Centre, Southampton, UK
wxc@it-innovation.soton.ac.uk

4 FORTH, Heraklion, Greece
sotiris@ics.forth.gr

5 AUEB, Athens Greece
ckalog@aueb.gr

1 The OPTET Approach for Maintaining User Trust
and System Trustworthiness

Designing systems to be trustworthy is the first phase of OPTET. However, when such
systems are deployed in real world scenarios they face externalities which are diverse
and unpredictable. These externalities pose threats to trust and trustworthiness of these
systems and require a technical solution for the maintenance of trust and
trustworthiness throughout the lifetime and operation of the systems. During runtime
of the system this maintenance requires continuous monitoring to detect potentially
disruptive events, analysis of these events to identify threats to trust and
trustworthi-ness followed by mitigation of these threats.

In this work, we build upon our previous work [1] and present an overview of the
trust and trustworthiness maintenance architecture (as depicted in Fig. 1) followed by
an overview of the evaluation scenarios.

The Monitor Component requires detection of data points of the monitored system,
referred to as system behaviours, for example CPU load. The raw behaviours are
risk-neutral and are not forwarded for management. System wide behaviours are fed
into a Complex Event Processing engine (CEP) to identify irregularities during
run-time. The CEP then juxtaposes multiple behaviours with different contexts and
applies a set of detection patterns to identify “misbehaviours”. User specific behaviours
are fed to the Trust Metric Estimator to estimate the user’s perception of the system
behavior, and to the User Behaviour Estimator to estimate the user’s overall trust in the
system. Both of these also trigger “misbehaviours” in case of anomalous trust values.
All misbehaviours are forwarded to the Management engine for deeper analysis.

© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 319–320, 2015.
DOI: 10.1007/978-3-319-22846-4

The Management Component includes several components able to process the
misbehaviour alerts reported by the Monitor. The processing of misbehaviours then
translates to threats to trust and trustworthiness. This is achieved through the
Trustworthiness Evaluator and Trust Evaluator, that analyze the current likelihood of
active threats through complex processing enabled by a knowledge base of threats and
controls, in addition to the Optimal Control Selector that identifies the optimal threat
mitigation controls.

2 Evaluation Scenarios

To evaluate the trust and trustworthiness maintenance tool, we use a Secure Web Chat
(SWC) use case with client/server architecture. It aims to support experts in managing a
cyber-crisis, and it has to meet strict user trust and system trustworthiness requirements.

• In the Trustworthiness Scenario we will demonstrate the effectiveness of the
OPTET approach in restoring system trustworthiness through performance and
reliability as critical trustworthiness attributes in the Secure Web Chat.

• In the Trust Scenario we will monitor user behaviour in order to identify a user
with low trust and propose a Trust related mitigation action.

• In the Optimal Control Selector Scenario we will demonstrate the selection of the
most cost-effective control in order to meet customer expectations related to
system response time.

Reference

1. Goldsteen, A., Moffie, M., Bandyszak, T., Gol Mohammadi, N., Chen, X.,
Meichanetzoglou, S., Ioannidis, S., Chatzidiam, P.: A tool for monitoring and maintaining
system trustworthiness at runtime. In: Proceedings of the 1st International Workshop on
Requirements Engineering for Self-Adaptive and Cyber Physical Systems (RESACS),
CEUR Workshop Proceedings (2015)

Fig. 1. Trust and Trustworthiness Maintenance Tool Architecture

320 M. Bishr et al.320

Increasing the Trustworthiness of Embedded
Applications

Elias Athanasopoulos1, Martin Boehner2, Cristiano Giuffrida3,
Dmitry Pidan4, Vassilis Prevelakis5(&), Ioannis Sourdis6,

Christos Strydis7, and John Thomson8

1 Foundation for Research and Technology – Hellas, Hellas, Greece
2 Elektrobit Automotive GMBH, Erlangen, Germany

3 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
4 IBM – Science and Technology LTD, Haifa, Israel

5 Technische Universität Braunschweig, Braunschweig, Germany
prevelakis@ida.ing.tu-bs.de

6 Chalmers Tekniska Högskola, Göteborg, Sweeden
7 Neurasmus BV, Rotterdam, The Netherlands

8 OnApp Limited, Cambridge, UK

Abstract. Embedded systems, by their nature, often run unattended with
opportunistic rather then scheduled software upgrades and, perhaps most
significantly, have long operational lifetimes, and, hence, provide excellent
targets for massive and remote exploitation. Thus, such systems mandate higher
assurances of trust and cyber-security compared to those presently available in
State-of-the-Art ICT systems. In this poster we present some techniques we utilize
in the SHARCS project to ensure a higher level of security for embedded systems.

Keywords: Embedded systems • Security • Security-by-design • Instruction set
randomization (ISR) • Control flow integrity • SHARCS

Through tremendous changes such as Medical IoT, Smart Cars, Smarter Grids etc.,
society as a whole and individual citizens rely more and more on critical applications
that sense and control systems in the physical environment. Such embedded systems
often run unattended with opportunistic rather then scheduled software upgrades and,
most significantly, have long operational lifetimes. As the example with the hacked
Internet-aware fridge amply demonstrates [1], when such devices get connected to the
Internet, their security vulnerabilities can be massively and remotely exploited. Clearly,
there is a need for a new way of attaining improved security in embedded platforms,
and this can only be achieved by adopting a security-by-design approach. This is the
objective of the SHARCS project (Secure Hardware-Software Architectures for Robust
Computing Systems) and is based on the integration of software and hardware security
techniques for achieving demonstrable improvements in security.

SHARCS utilizes techniques such as Instruction Set Randomization (ISR) [2],
Control Flow Integrity (CFI) [3], Memory Protection, Dynamic Type Safety, and so on

This work was supported by the H2020 ICT-32-2014 project SHARCS under Grant Agreement
No. 644571.

© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 321–322, 2015.
DOI: 10.1007/978-3-319-22846-4

to allow the runtime environment to ensure the safe execution of applications. ISR
encodes code regions in the address space of the executing process with different keys.
The CPU has a special register where it stores the decryption key for the currently active
code region. Thus, encrypted instructions frommemory are correctly decoded by the key
and then passed on to the CPU for execution. Injected code, or code that does not belong
to the active region, will not be correctly decoded and will likely cause the program to
crash. CFI carries the principle further by ensuring that changes in the control flow of the
program comply with the call graph of that program. The last two techniques are
concerned with memory violations whereby a program may attempt to access memory
past the end of a buffer potentially overwriting other critical data, leading to security
vulnerabilities. By encoding the length of the buffer in the pointer, or by creating a
fine-grained memory protection architecture, we can detect such memory violations.

Where the selection of hardware architecture limits the native use of security
techniques, SHARCS provides additional models of execution where execution speed
is traded for security. In Fig. 1, the left hand model describes the hardware assisted
mode of operation for the SHARCS architecture, while the other two depict the use of
hardware emulation (middle) and software monitoring (right hand) models that allow
the SHARCS techniques to work on commodity hardware architectures.

The SHARCS project will use the Leon processor as the basis for the hardware
modifications and will demonstrate the above techniques in three applications
concerning implantable medical devices, vehicular ECUs, and cloud applications.

References

1. Economist Newspaper. Spam in the fridge: When the internet of things misbehaves, 23 Jan 2014
2. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with

instruction-set randomization. In: ACM Conference on Computer and Communications
Security (CCS) (2003)

3. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou, W.:
Practical control flow integrity and randomization for binary executables. In: Security and
Privacy Symposium, pp. 559–573 (2013)

Fig. 1. Examples of different SHARCS framework operational models.

322 E. Athanasopoulos et al.

Exploring Graph Centralities for Detecting
Anomalous Behavior in Large Networks

Nidhi Rastogi(&) and James Hendler

Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY, USA
raston@rpi.edu, hendler@cs.rpi.edu

Abstract. Large-scale information retrieval, while a boon to modern needs of
data analysis, poses a huge challenge for noise removal and information
extraction. Researchers have targeted this problem through approaches like
machine learning of data, clustering those with similar properties and labeling
them accordingly. This complemented with other existing techniques, promises
to reduce the amount of data to be analyzed making anomaly detection a much
faster process. The goal, however remains to minimize data collection without
compromising quality. Approaches to this end, however, differ in means,
application and kind of data to be analyzed - stored vs. real time. This research
introduces a graph theoretic approach to analyze large networks for detecting
anomalies that may lead to systemic threats on the cyber world. It works by
identifying specific nodes, known as node centralities that can monitor anomalies
effectively and rapidly.

Keywords: Security • Networks • Graphs • Centrality

1 Introduction

Modern day critical infrastructures, from transportation systems to healthcare, face
increasing complexity and connectivity with their networks. Threats of intrusion and
corruption of these systems via cyber attacks can lead to crippling effects on nations
worldwide. Stuxnet [5], known as one of the most infamous attacks on the
cyber-physical network, was highly sophisticated and custom-designed for stealth
and blitzkrieg critical infrastructure-systems. Duqu, Flame, and others ensued by
exploiting a combination of multiple zero-day vulnerabilities, stolen certificates, and
social engineering. With enough monetary support, expertise, and incentive, hackers
cannot be assumed to stay limited to just attacking the cyber-physical world. Its effect
shall be seen on sectors like IT, energy, banking, communication, defense, emergency
services, healthcare, and transportation. Our solution, although under progress, is based
on sound principles of computer science that have been successfully used for other
applications. Graph analytics [4] provides several tools that can be used to study
systemic behavior of large complex networks and we continue to challenge it with this
unique problem. A graph model of the aforementioned network can capture anomalous
data from a limited set of crucial nodes [3], forming a sparse network, thus preventing

© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 323–324, 2015.
DOI: 10.1007/978-3-319-22846-4

the need to digitally collect everything. Although many challenges lie in expanding
these for large networks comprising billions of nodes [1], increasing computability and
advanced algorithms are bringing it closer to reality.

2 Main Idea

A common assumption in the security domain is that each and every node (or endpoint)
should contribute to the detection. Data collected regularly is then stored locally or
remotely. This capability mostly exists, but its relevance is low as analyzing big data
can be an overwhelming task for even the most computationally capable
infrastructures. It may not even lead to desirable results in the required time frame.
Graph centralities will enable us to shift our focus to those nodes that can provide
relevant information applicable in a given context. Our preliminary analysis of various
centrality measures led us to focus on information centrality (IC), as a promising
proposition closely matching with our research needs. IC by definition calculates the
value of a node as an average of a characteristic of all paths originating from that node.
For our purpose, it calculates the average number of times a characteristic’s presence in
a node and in nodes that lie on its path (or trail or path). For example, consider a graph
where nodes are identified by unique IP address, an edge is referred by at least 3 TCP
packet exchanges, edge weight by total packets exchanged divided by 3, TCP packet
sent (received) to (from) a node and the anomaly being the value of the characteristic
w.r.t. a baseline number ‘x’. Our next steps involve exploring other statistics that can
be calculated for a given set of characteristics and identifying anomalies based on
analysis. This is the first work of its kind where graph analytics is being used for
anomaly detection in large networks.

References

1. Ineichen, Y., Bekas, C., Curioni, A.: Scalable large scale graph analytics. In: The
Sixth SIAM Workshop on Combinatorial Scientific Computing (2014)

2. Yim, U.-S.: Communication method among a plurality of virtual LANs in an IP subnet. U.S.
Patent Application 09/939,558

3. Estrada, E.: The structure of complex networks: theory and applications. Oxford University
Press (2011)

4. The Stuxnet Dossier. www.symantec.com/content/en/us/enterprise/media/security_response/
whitepapers/w32_stuxnet_dossier.pdf

324 N. Rastogi and J. Hendler

Extending the Operational Envelope
of Applications

Vassilis Prevelakis(&) and Mohammad Hamad

Technische Universität Braunschweig, Braunschweig, Germany
{prevelakis,hamad}@ida.ing.tu-bs.de

Abstract. Despite continuing reliability problems, complex systems are still
being developed using ad-hoc development practices and unsafe languages. The
response to excursions outside the nominal profile usually lead to the termination
of the program. In many situations, however, such a course of action may not be
satisfactory. For example, systems such as air traffic control, on-line auctions etc.
cannot afford to shut down just because we suspect that the software has a
problem. Here we present the concept of Red Zone whereby we tolerate
off-nominal behavior by taking actions to contain the misbehaving process.

Keywords: Red Zone • Resilience • Policy violation • Execution envelope

Despite continuing reliability problems, complex systems are still being developed
using ad-hoc development practices and unsafe languages. Being unable to trust that a
program will behave as intended, numerous techniques have been developed with the
aim of detecting when a program has deviated from its intended execution envelope.
The response to such excursions outside the nominal profile usually lead to the
termination of the program. In many situations, however, such a course of action may
not be satisfactory. For example, systems such as air traffic control, on-line auctions
etc. cannot afford to shut down just because we suspect that the software has a problem.

Using the least priviledge methodology we wish to restrict the execution envelope of
a program to the minimum required for it to carry out its objectives. By doing this we
place outside the nominal execution of the program actions that are of different severity
in terms of security (e.g. we prevent the program from accessing /etc/passwd as well as a
file in /tmp). Recognizing that not all violations are equal, we define an area outside of
the operational envelope of an application, which we call the Red Zone, and we define it
to contain unauthorized actions that are nor considered critical to the security of the
system. If the program enters the Red Zone, we know that the behavior of the program is
off-nominal, but we do not know the cause and the severity of the problem. Rather than
terminating the program, we place the runtime environment into an increased state of
readiness and allow the code to continue running, taking actions to limit the damage
caused by the misbehaving program. Figure 1 shows the program’s intended execution
envelope (blue rectangle) which represents the set of conditions that are assumed to be
valid during the execution of the program. A program’s actual execution envelope
(green blob) represents the set of conditions exercised by the program during runtime.

© Springer International Publishing Switzerland 2015
M. Conti et al. (Eds.): TRUST 2015, LNCS 9229, pp. 325–326, 2015.
DOI: 10.1007/978-3-319-22846-4

This work is part of the Deutsche Forschungsgemeinschaft (DFG) Research Unit Controlling
Concurrent Change, funding number FOR 1800.

Typically, the actual execution envelope does not cover exactly the intended execution
envelope; the program may not exercise all its functionality, or unanticipated events
(due to software faults or security attacks) may force the program to move outside the
boundaries of the intended execution envelope. Typically, it is the role of software
testing to ensure that the program has been exercised adequately (so that the entire
envelope has been covered) before the software is released to its user community, but
limitations in the testing regime in practically all cases allow both “bonus” (unintended)
functionality as well as missing functionality in released software.

Beyond the intended execution envelope is the Red Zone area. Essentially, the Red
Zone extends the operational envelope of the program. When a program violates its
intended operational envelope, it may either enter or overflow the Red Zone. When the
program enters the Red Zone, it continues with its execution, but the runtime system
moves into a state of alert. When the program overflows the Red Zone, it is terminated by
the runtime system. We implemented Red Zone processing in two prototypes. The first
uses a custom memory allocator to provide overflow protection for buffers so that Red
Zone processing allows a program, which overflowed a buffer, to continue operating by
accessing the overflow area. The second prototype extends our existing library
invocation protection system [1], and creates runtime policies consisting of allowed
library calls. We have used this system to implement a dynamic honeypot whereby when
a program makes an unauthorized library call, it enters its Red Zone. It is, then, placed in
a sandbox and all further access to local files is simulated. We intend to use this to create
a system that automatically tracks and keeps busy any detected attacker to the system.

Reference

1. Kim, J.W., Prevelakis, V.: Base line performance measurements of access controls for
libraries and modules. In: Proceedings of the 2nd IEEE International Workshop on Security
in Systems and Networks (SSN2006), Rhode Island, Greece, April 2006

Fig. 1. Intended and actual program execution envelopes and Red Zone area.

326 V. Prevelakis and M. Hamad

Author Index

Armknecht, Frederik 163
Asokan, N. 58, 143
Athanasopoulos, Elias 321

Bandyszak, Torsten 319
Bhattacharya, Sourav 143
Bishr, Mohamed 319
Bissyandé, Tegawendé F. 313
Boehner, Martin 321
Braun, Kristoffer 104
Buttigieg, Jessica 315

Canova, Gamze 104
Cassagnes, Cyril 313
Chen, Liqun 228
Chen, Qingqing 268
Chen, Willis 319
Ciocaş, Radu 300
Coleşa, Adrian 249, 300
Colombo, Christian 315

Dam, Mads 125
Do, Viktor 125

Feng, Dengguo 209
Förster, David 193

Galea, John 317
Ganji, Fatemeh 22
Giuffrida, Cristiano 321
Goldsteen, Abigail 319
Guanciale, Roberto 125

Hamad, Mohammad 325
Heinz, Christian 319
Hendler, James 323
Huhta, Otto 143

Ioannidis, Sotiris 88, 319

Kalogiros, Costas 71, 319
Kanakakis, Michalis 71

Karame, Ghassan O. 163, 283
Kargl, Frank 193
Katzenbeisser, Stefan 3
Koeberl, Patrick 181
Kohnhäuser, Florian 3

Li, Wenting 283
Liaskos, Christos 88
Löhr, Hans 193
Lukács, Sándor 249, 300
Luţaş, Andrei 249
Luţaş, Dan 249

Mandal, Avikarsha 163
McGillion, Brian 58
Moffie, Micha 319

Narayana, Spoorthy 268
Nemati, Hamed 125
Nyman, Thomas 58

Ouoba, Jonathan 313

Phegade, Vinay 181
Pidan, Dmitry 321
Pop, Adrian 300
Prevelakis, Vassilis 321, 325

Qin, Yu 209

Rajan, Anand 181
Rastogi, Nidhi 323
Reinheimer, Benjamin 104
Renaud, Karen 104
Rührmair, Ulrich 268

Samaras, Christos V. 88
Schaller, André 3
Schlichtmann, Ulf 268
Schneider, Thomas 181
Schulz, Steffen 181
Seifert, Jean-Pierre 22
Sharif, Uzair 268

Sourdis, Ioannis 321
Spiliotopoulos, Dimitris 88
Strydis, Christos 321

Tajik, Shahin 22
Thomson, John 321
Topan, Vlad 300
Tsioliaridou, Ageliki 88

Urian, Rainer 228

Vahidi, Arash 125
van der Graaf, Shenja 71
Vanobberghen, Wim 71

Vella, Mark 315, 317
Volkamer, Melanie 104

Weyer, Thorsten 319

Yang, Bo 209
Yang, Kang 209
Youssef, Franck 163

Zenner, Erik 163
Zhang, Qianying 40
Zhang, Zhenfeng 209
Zhao, Shijun 40
Zhdanova, Maria 181
Zibuschka, Jan 193

328 Author Index

	Preface
	Organization
	Contents
	Hardware-Enhanced Trusted Execution
	PUF-Based Software Protection for Low-End Embedded Devices
	1 Introduction
	1.1 Contributions
	1.2 Structure

	2 Related Work
	3 PUF-Based Software Protection Solution
	3.1 Code Integrity Check
	3.2 Device Authenticity Check
	3.3 Response Functions
	3.4 Mutually Checking Code Regions

	4 Security Evaluation
	4.1 Static Attacker Model
	4.2 Dynamic Attacker Model

	5 Proof of Concept
	5.1 PUF Characteristics
	5.2 Implemented Protection Mechanisms
	5.3 Performance Evaluation

	6 Conclusion
	References

	Why Attackers Win: On the Learnability of XOR Arbiter PUFs
	1 Introduction
	2 Notation and Preliminaries
	2.1 Arbiter and XOR PUFs
	2.2 Linear Threshold Functions
	2.3 Perceptron Algorithm
	2.4 PAC Model
	2.5 PAC Learning of LTFs with Perceptron Algorithm

	3 PAC Learning of XOR PUFs
	3.1 LTF-Based Representation of XOR PUFs
	3.2 PAC Learning of XOR PUFs with Perceptron
	3.3 Validation of the Theoretical Results

	4 PAC Learning of Noisy XOR PUFs
	5 Discussion
	5.1 Theoretical Considerations
	5.2 Practical Considerations

	6 Conclusion
	References

	A Unified Security Analysis of Two-Phase Key Exchange Protocols in TPM 2.0
	1 Introduction
	1.1 Weaknesses of AKE Protocols in TPM 2.0
	1.2 Motivations and Contributions
	1.3 Organization

	2 Preliminaries
	2.1 Min-entropy
	2.2 CDH and GDH Assumptions

	3 The TPM Key Exchange Primitive
	3.1 Introduction of tpm.KE
	3.2 Informal Analysis

	4 A Unified Security Model
	4.1 Attacker Model

	5 Formal Description of TPM.KE
	6 Unforgeability of MQV and SM2 Key Exchange Functionalities
	7 Security Analysis of tpm.KE
	8 Discussion and Suggestions
	8.1 Further Security Properties
	8.2 Suggestions

	9 Conclusions and Future Work
	References

	On Making Emerging Trusted Execution Environments Accessible to Developers
	1 Introduction
	2 Background
	2.1 TrustLite and TyTAN
	2.2 Intel SGX
	2.3 Standardization
	2.4 Open-TEE

	3 Mapping GlobalPlatform Interfaces to New TEE Architectures
	3.1 Realizing GP Interfaces on TrustLite / TyTAN
	3.2 Realizing GP with SGX Through Open-TEE

	4 Conclusion
	References

	Trust and Users
	Computing Trust Levels Based on User's Personality and Observed System Trustworthiness
	Abstract
	1 Introduction
	2 The Basic Trust Computational Model
	3 Trustors Segmentation
	4 Model Parameterization, Based on Segments' Properties
	4.1 Trust Initialization
	4.2 Trust Evolution with Observations Following a Machine Learning Approach

	5 Validation Results
	5.1 Experiment Setup
	5.2 Validating Trustors' Segmentation
	5.3 Validating the Trust Computational Model

	6 Related Work
	7 Conclusions and Future Work
	References

	Enhancing the Trustworthiness of Service On-Demand Systems via Smart Vote Filtering
	1 Introduction
	2 Related Work
	3 Prerequisites
	4 Misra-Gries-Based Query Filtering
	5 Simulations
	6 Conclusion
	References

	Design and Field Evaluation of PassSec: Raising and Sustaining Web Surfer Risk Awareness
	1 Introduction
	2 Development Process
	2.1 Design Decisions
	2.2 Security Indicator Design
	2.3 Security Dialogue Design
	2.4 Dialogue Content
	2.5 Firefox Add-On

	3 Field Evaluation
	3.1 Study Design
	3.2 Study Prototype
	3.3 Recruitment, Reimbursement, and Ethics

	4 Results
	4.1 Noticeability
	4.2 Understandability and Succinctness
	4.3 Acceptability

	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Trusted Systems and Services
	Trustworthy Memory Isolation of Linux on Embedded Devices
	1 Introduction
	2 Related Work
	3 The Memory Virtualization API
	3.1 Memory Management
	3.2 Enforcing the Page Type Constraints
	3.3 Hypervisor Guest Page Table Access
	3.4 Memory Model and Cache Effects

	4 Verification Approach
	4.1 TLS Consistency Properties
	4.2 Refinement
	4.3 Processor Model

	5 Formalizing the Proof Goals
	5.1 TLS Consistency
	5.2 The Implementation Model
	5.3 The Refinement

	6 Linux Support
	7 Benchmark and Evaluation
	8 Concluding Remarks
	References

	LookAhead: Augmenting Crowdsourced Website Reputation Systems with Predictive Modeling
	1 Introduction
	2 Related Work
	3 Web Reputation System WOT
	4 LookAhead: Predicting Safety Ratings
	4.1 Structural Features of Web Pages
	4.2 Content Features of Web Pages
	4.3 Ensemble Classification

	5 Experimental Settings
	5.1 Datasets
	5.2 Baseline Algorithms
	5.3 Evaluation Metric

	6 Evaluation
	7 Discussion
	7.1 Feature Importance in Reputation Prediction
	7.2 Tuning of Prediction Performance
	7.3 Detection Rate
	7.4 Applications
	7.5 Performance Considerations
	7.6 Limitations
	7.7 Current Work

	References

	Ripple: Overview and Outlook
	1 Introduction
	2 The Ripple Protocol
	2.1 Overview of Ripple
	2.2 Ripple Transactions
	2.3 The Consensus Protocol
	2.4 Ripple Vs. Bitcoin

	3 Analysis of Forking in Ripple
	4 Ripple Under the Hood
	5 Related Work
	6 Conclusion
	References

	Time to Rethink: Trust Brokerage Using Trusted Execution Environments
	1 Introduction
	2 Research Developments and State of the Art
	2.1 Secure Multi-party Computation
	2.2 Data De-Identification (DDI)
	2.3 Advancements in Trusted Execution

	3 TEE-based Trust Brokerage and Computation
	4 Research Challenges in TEE-based Trust Brokerage
	5 Conclusion
	References

	Trust and Privacy
	REWIRE -- Revocation Without Resolution: A Privacy-Friendly Revocation Mechanism for Vehicular Ad-Hoc Networks
	1 Introduction
	2 Related Work
	3 System Model and Scenario
	3.1 System Operation
	3.2 Attacker Model

	4 Requirements
	5 REWIRE -- Revocation Without Resolution
	5.1 R-Tokens for Self-identification
	5.2 Protocols and Message Formats
	5.3 Trusted Computing Integration
	5.4 Prevent Blocking of OSR Messages

	6 Evaluation and Discussion
	7 Conclusion
	References

	DAA-TZ: An Efficient DAA Scheme for Mobile Devices Using ARM TrustZone
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 ARM TrustZone
	2.3 Physical Unclonable Functions

	3 System Model and Assumptions
	3.1 System Model
	3.2 Assumptions and Threat Model

	4 DAA-TZ Scheme for Mobile Device
	4.1 The Architecture of Trusted Mobile Device
	4.2 Key Derivation and Sensitive Data Management
	4.3 The Details of DAA-TZ Scheme
	4.4 Security Analysis

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Comparison
	5.3 Performance Evaluation

	6 Conclusion
	References

	DAA-A: Direct Anonymous Attestation with Attributes
	1 Introduction
	2 Related Work
	3 Two DAA-A Schemes
	3.1 A General View of Them
	3.2 The CL-Based Scheme
	3.3 The sDH-Based Scheme

	4 Implementation of DAA-A with TPM 2.0
	4.1 TPM 2.0 Hosted Attributes
	4.2 The TPM 2.0 DAA-A Join Process
	4.3 The TPM 2.0 DAA-A Sign/Verify Process

	5 Performance Comparison
	5.1 Token Size
	5.2 Computational Cost

	6 Security Analysis of the DAA-A Schemes
	6.1 Formal Security Definition of DAA-A
	6.2 Security Proofs

	References

	Building Blocks for Trust
	Proposed Processor Extensions for Significant Speedup of Hypervisor Memory Introspection
	1 Introduction
	1.1 Our Use-Case Scenario

	2 Memory Introspection on X86 Platforms
	2.1 Hardware Accelerated X86 Virtualization and Security
	2.2 Memory Introspection

	3 Problems and Limitations of Memory Introspection
	3.1 Software Speedup of Guest-to-Hypervisor Memory Mappings
	3.2 Overhead of Guest-to-Hypervisor Memory Mappings
	3.3 Overhead of A/D-Bit Update Induced VM-exits

	4 Proposed X86 Processor Extensions
	4.1 New X86 Instructions for Direct Guest Memory Access
	4.2 Mechanism to Avoid VM-exits on A/D-Bit Updates
	4.3 About the Feasibility of the Proposed Extensions
	4.4 Estimated Speed-Up

	5 Related Work
	6 Conclusions
	References

	MWA Skew SRAM Based SIMPL Systems for Public-Key Physical Cryptography
	Abstract
	1 Introduction
	1.1 SIMPL Systems and Public PUFs
	1.2 Implementation of SIMPL Systems via Skew SRAMs

	2 MWA Skew SRAM Based SIMPL Systems
	3 Design of an MWA Skew SRAM
	4 Simulation
	5 Discussion and Conclusion
	5.1 Security Assessment
	5.2 Conclusion and Future Scope

	References

	Secure Erasure and Code Update in Legacy Sensors
	1 Introduction
	2 Background and Preliminaries
	2.1 Model
	2.2 Remote Attestation
	2.3 Proofs of Secure Erasure (PoSE)
	2.4 All or Nothing Transforms (AONT)

	3 Lightweight Proofs of Secure Erasure and Code Update
	3.1 Lightweight Proofs of Secure Erasure
	3.2 SUANT: Secure Code Update Based on AONT

	4 Implementation and Evaluation
	4.1 Implementation Setup
	4.2 Evaluation Results

	5 Related Work
	6 Conclusion
	References

	Efficient Provisioning of a Trustworthy Environment for Security-Sensitive Applications
	1 Introduction
	2 Threat Model and Objectives
	3 ``Alternative Red-Green VMs'' Protection Method
	4 Improve the Green VM's Trustworthy Properties
	5 Reduce the Switching Time to the Green VM
	6 Implementation Technical Aspects
	7 Performance Measurements
	8 Related Work
	9 Conclusions
	References

	Poster Session
	Towards a Trust Model for Social Networksof Wireless Smart ObjectsWork-in-Progress
	BYOD for Android — Just add Java
	Script Fuzzing with an Attacker’s Mind-Set
	Trust and Trustworthiness Maintenance:From Architecture to Evaluation
	Increasing the Trustworthiness of EmbeddedApplications
	Exploring Graph Centralities for DetectingAnomalous Behavior in Large Networks
	Extending the Operational Envelopeof Applications
	Author Index

