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Abstract Epstein-Barr virus primarily, though not exclusively, infects B cells and 
epithelial cells. Many of the virus and cell proteins that are involved in entry into 
these two cell types in vitro have been identified, and their roles in attachment and 
fusion are being explored. This chapter discusses what is known about entry at the 
cellular level in vitro and describes what little is known about the process in vivo. 
It highlights some of the questions that still need to be addressed and considers 
some models that need further testing.
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Abbreviations

EBV  Epstein-Barr virus
NK  Natural killer
CR2  Complement receptor type 2
CR1  Complement receptor type 1
SCR  Short consensus repeat
CTLD  C-type lectin domain

1  Introduction

Epstein-Barr virus (EBV) is shed in the saliva of persistently infected healthy car-
riers and is generally described as being orally transmitted. It ultimately estab-
lishes latency in the memory B cell compartment, but is also thought to replicate 
productively in epithelial cells, can, at least rarely, infect T cells and natural killer 
(NK) cells, and is found in the muscle cells of leiomyosarcomas. A full compre-
hension of virus entry, which encompasses access to vulnerable tissues at the 
organismal level as well as delivery of virus DNA to the nucleus at the cellular 
level, is nowhere near a reality. However, progress has been made, particularly in 
deciphering early events in entry into the two major target cells of the virus, B 
cells and epithelial cells. This chapter discusses what we know about these early 
events and starts to put them in the context of the broader picture of infection, 
transmission, and spread.

2  Early Events in B Cell Entry

2.1  Proteins Involved in Attachment

It was recognized early on that EBV is a B lymphotropic virus, and this, together 
with the fact that human B cells were relatively easily obtained and intensively 
studied, focused attention on identification of the virus and cell proteins important 
for B cell entry. Investigations were also simplified and facilitated by the efficient 
infection of B cells that could be achieved with cell-free virus.

Virus was first shown to attach to B cells as a result of a high-affinity inter-
action (Moore et al. 1989) between the abundant virion glycoprotein gp350 and 
complement receptor type 2, CR2 or CD21 (Fingeroth et al. 1984; Nemerow et al. 
1987; Tanner et al. 1987). Glycoprotein gp350 is a single-pass, heavily glyco-
sylated, type I membrane protein of 907 amino acids, and the CD21 binding site 
has been mapped to a glycan-free surface in the membrane-distal amino-terminal 
domain of the protein (Martin et al. 1991; Szakonyi et al. 2006). It includes a 
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peptide sequence with similarities to the natural ligand of CD21, the C3dg frag-
ment of complement (Nemerow et al. 1989). The ectodomain of CD21 consists 
of tandem repeats of modules of 60–75 amino acids known as short consensus 
repeats (SCRs), and the binding site for gp350 is contained in SCR1 and SCR2 
(Martin et al. 1991). These SCRs are those furthest from the cell membrane, and, 
somewhat problematically, attachment initially positions the virus approximately 
50 nm from the cell surface (Nemerow and Cooper 1984). However, the EBV 
virion also contains a splice variant of gp350, gp220, missing residues 500–757, 
but retaining the CD21 binding site (Beisel et al. 1985). Whether there is a switch 
from the use of gp350 to gp220 is not known, but perhaps this, together with the 
segmental flexibility of CD21 provided by the tandemly repeated SCRs, allows the 
virus to move closer to the cell following its initial attachment.

On primary B cells CD21 can exist independently, but is additionally found in 
a trimeric complex with CD19 and CD81 and in a complex with another comple-
ment receptor, complement receptor type 1, CR1 or CD35 (Tuveson et al. 1991). 
CD35 is also a ligand for gp350 that is capable of initiating infection (Ogembo 
et al. 2013). It possibly binds to the same glycan-free surface as has been shown to 
interact with CD21, though, since CD35 is lost when B cells are transformed with 
EBV, its properties as a receptor have only been discovered recently and have not 
been extensively studied. The trimeric CD21/CD19/CD81 complex is particularly 
interesting for two reasons. First, CD19 functions as a signal transducer. Cross-
linking of CD21 by gp350, as virus attaches, can then activate NF-κB (Sinclair 
and Farrell 1995; Sugano et al. 1997) and protein kinase C pathways and induce 
interleukin-6 production (D’Addario et al. 2001; Tanner et al. 1996). Although 
signaling may have no relevance to entry per se, it may profoundly influence 
downstream events. Second, CD81 and CD19 can both associate with HLA class 
II (Reem et al. 2004), a cell protein required for the next step in entry as discussed 
below.

2.2  Proteins Involved in Internalization

Once attached to the B cell surface via CD21 virus is endocytosed into a low pH 
compartment from which it must ultimately escape by fusing its envelope with the 
vesicle membrane (Miller and Hutt-Fletcher 1992). Fusion requires four virus gly-
coproteins, gH, gL, gp42 and gB, and one cell protein, HLA class II (reviewed in 
(Hutt-Fletcher 2007). Glycoprotein gH, which has an apparent molecular weight 
of 85 kilodaltons and in the older literature is referred to as gp85, is, like gp350, a 
single-pass type I membrane protein. Glycoprotein gL (formerly gp25) is a periph-
eral membrane protein from which the signal peptide is cleaved and it dimerizes 
with gH. The crystal structure of gH and gL (Matsuura et al. 2010) reveals a four-
domain cylindrical complex in which the membrane-distal globular domain I is 
comprised of the amino terminus of gH and the entire cleaved gL. Coexpression 
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of gH and gL, from hereon referred to as a single entity, gHgL, is thus required for 
the correct folding of the structure.

Herpesvirus glycoprotein nomenclature has now settled on naming of mol-
ecules conserved throughout the entire herpesvirus family by letters of the alpha-
bet. Proteins not found in all subfamilies are referred to by either their apparent 
molecular weights or their gene names. The beta and gammaherpesviruses, but not 
apparently the alphaherpesviruses, have proteins that associate with gHgL. The 
first described was EBV glycoprotein gp42 (Li et al. 1995). Glycoprotein gp42 is 
a type II membrane protein which exists in virions in a cleaved and an uncleaved 
form, although the cleaved form is functionally optimal (Sorem et al. 2009). It 
associates non-covalently with gHgL, probably with domain II and the domain I/
domain II interface (Chen et al. 2012; Sathiyamoorthy et al. 2014), through resi-
dues 36–82 in its amino-terminal region (Kirschner et al. 2007). It binds to the β1 
domain of HLA class II, at the side of the peptide binding groove, via a C-type 
lectin domain (CTLD) at the carboxyl terminus (Mullen et al. 2002), and the inter-
action with HLA class II is required for the initiation of fusion (Haan et al. 2000; 
Li et al. 1997). A hydrophobic pocket within the CTLD domain also makes con-
tact with gHgL at the junction of domains II and III (Sathiyamoorthy et al. 2014).

Like gH and gp350, glycoprotein gB (referred to in the early literature as gp110 
or gp125, the glycosylated form carrying complex sugars) is a single-pass type I 
transmembrane protein. It exists as a trimer, and the crystal structure of gB closely 
resembles not only that of its HSV counterpart, but also the class III fusion pro-
teins of vesicular stomatitis virus and baculovirus (Backovic et al. 2009). The gB 
homologs of all herpesviruses are now generally considered to be the final execu-
tors of fusion, as discussed below.

3  Early Events in Epithelial Cell Entry

3.1  Proteins Involved in Attachment

Attachment of EBV to an epithelial cell is a more complicated issue than B cell 
attachment as a variety of virus glycoproteins, and cell proteins have been impli-
cated in the process. Some epithelial cells in culture express at least low levels 
of CD21 (Fingeroth et al. 1999), and both these and cells engineered to express 
CD21 can be infected at high levels (Borza et al. 2004; Li et al. 1992; Valencia 
and Hutt-Fletcher 2012). Determination of whether epithelial cells in vivo express 
CD21 has, however, been confounded by the fact that only a subset of antibod-
ies that recognize CD21 on B cells is reactive with all epithelial cells, reports 
from different groups using them have not always been consistent (Levine et al. 
1990; Niedobitek et al. 1989; Talacko et al. 1991; Thomas and Crawford 1989), 
and one commonly used antibody cross-reacts with an unrelated epithelial protein 
(Young et al. 1989). Analysis of expression of transcripts in epithelial cells iso-
lated by laser capture microdissection found CD21 mRNA in tonsil and adenoid 
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epithelium, but not elsewhere, although tissues that when normal failed to express 
CD21 became positive as they became dysplastic and expression levels correlated 
with an increase in the grade of dysplasia (Jiang et al. 2008, 2012). This may have 
implications for the development of nasopharyngeal carcinoma. Individuals who 
develop these tumors have increases in antibodies to lytic cycle proteins several 
years prior to diagnosis (Zeng 1985; Zeng et al. 1985), and the role of EBV has 
been postulated to be that of a tumor promoter rather than a tumor initiator (Lo 
et al. 2012).

In the absence of CD21, EBV can use gHgL, which includes a KGD motif, to 
bind to any one of a subset of αv integrins, αvβ5, αvβ6, or αvβ8 (Chesnokova and 
Hutt-Fletcher 2011; Chesnokova et al. 2009). However, infection by virus attached 
via gHgL and an integrin is not at all efficient, for reasons that are not yet clear. 
One possibility is that the use of gHgL for attachment compromises its ability to 
function in fusion (Borza et al. 2004). A second is that CD21 does more than sim-
ply tether virus to the cell surface. Cross-linking of CD21 on an epithelial cell by 
virus has been reported to result in an interaction between its cytoplasmic tail and 
the formin homolog overexpressed in spleen (FHOS/FHOD1) (Gill et al. 2004). 
Formins are scaffolding proteins that nucleate actin and link signal transduction 
to actin reorganization, which is required for intracellular transport of EBV to the 
nucleus. However, both a truncated form of CD21 lacking its cytoplasmic domain 
(Valencia and Hutt-Fletcher 2012) and a construct in which both the cytoplasmic 
domain and the transmembrane domain were replaced with those of gH (unpub-
lished) support infection as efficiently as the full-length protein. Whether there are 
interactions between the ectodomain of CD21 and other epithelial surface mole-
cules needs further exploration. There is precedent for this, for while neither CD35 
nor CD19 is found on epithelial cells, and their interactions with CD21 on a B cell 
can occur through the ectodomains of each (Fearon and Carter 1995).

A second interaction between EBV and an integrin has also been implicated 
in attachment, this time between an RGD motif in the BMRF2 gene product, a 
multi-span membrane glycoprotein, and αv, α3, α5, and β1 integrins (Tugizov 
et al. 2003; Xiao et al. 2008). Its major impact seems to be in infection of polar-
ized cells, although how much the role of pBMRF2 reflects an essential involve-
ment in attachment and how much it reflects effects on cell-to-cell spread (Xiao 
et al. 2009) are not entirely clear. pBMRF2 forms a dimeric complex with the 
BDLF2 gene product, a type II membrane protein (Gore and Hutt-Fletcher 2008). 
Homologs of these two proteins are found in other gammaherpesviruses, and, in 
the murine gammaherpesvirus, MHV68, they have been implicated in a membrane 
remodeling that is important to virus spread (Gill et al. 2008).

In immune individuals, virus coated with immunoglobulin A can attach to the 
basolateral surfaces of epithelial cells via the polymeric IgA receptor (Sixbey and 
Yao 1992), although in polarized cells this leads to transcytosis rather than infec-
tion (Gan et al. 1997). Virus bound to CD21 on the surface of a B cell can also 
be transferred to a CD21-negative epithelial cell (Shannon-Lowe and Rowe 2011; 
Shannon-Lowe et al. 2006). Following EBV attachment, CD21 co-caps with and 
activates adhesion molecules which allow the B cell to form a virologic synapse 
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with an epithelial cell. Finally, there is a very low affinity, but saturable interac-
tion, possibly involving hydrogen and ionic bonds, between the BDLF3 gene 
product gp150 and an unknown molecule(s) on the surface of an epithelial cell 
(unpublished). However, virus lacking gp150, which is a highly glycosylated 
mucin-like protein, is very slightly more infectious for an epithelial cell than is 
wild-type virus (Borza and Hutt-Fletcher 1998) so this particular interaction would 
not appear to be productive.

3.2  Virus Proteins Involved in Internalization

Definitive information about internalization of virus has also been difficult to 
obtain because of the plasticity of epithelial cells in culture, because of the dif-
ferent behaviors of unpolarized, polarized, and stratified epithelial cells, and 
because, since it is often not feasible to obtain primary cultures, cancer cell lines 
have frequently been used. Fusion with primary foreskin epithelial cells occurs at 
neutral pH and unlike B cell fusion does not require endocytosis (Miller and Hutt-
Fletcher 1992). Entry into the SVKCR2 cell line, SV40-transformed keratinocytes 
engineered to express CD21 (Li et al. 1992), the AGS gastric cancer cell line, and 
hTERT-immortalized normal oral keratinocytes does not require actin remodeling, 
which is also consistent with fusion at the cell surface (Valencia and Hutt-Fletcher 
2012). However, whether or not entry into polarized or stratified epithelial cells 
follows the same route has not yet been reported.

It is known, however, that fusion with an epithelial cell requires a comple-
ment of virus and cell proteins different from those used for B cell fusion. This 
has allowed EBV to evolve an elegant strategy for switching tropism and cycling 
between its two major target cells. Glycoproteins gB and gHgL, sometimes 
referred to as the “core fusion machinery” of herpesviruses, are necessary for virus 
fusion with an epithelial cell, as they are for fusion with a B cell, but gp42 is not. 
Fusion is triggered not by HLA class II, which is not constitutively expressed on 
an epithelial cell, but by an interaction between gHgL and one of the three αv inte-
grins to which it binds (Chesnokova and Hutt-Fletcher 2011; Hutt-Fletcher and 
Chesnokova 2010). The interaction between gHgL and an integrin is blocked if 
gp42 is present, and access to both cell types is only possible because EBV carries 
both three-part gHgLgp42 complexes and two-part gHgL complexes in the virion 
envelope (Wang et al. 1998; Chen et al. 2012). Virus lacking gp42 can only infect 
a B cell if a soluble form of gp42, which can reform trimeric complexes, is added 
in trans, and the same soluble gp42, if added in saturating amounts to wild-type 
virus, can block infection of an epithelial cell (Wang et al. 1998). Virus produced 
in B cells carries a reduced number of the trimeric complexes because some bind 
to HLA class II in the endoplasmic reticulum and travel with HLA class II to the 
peptide-loading compartment, which is rich in proteases. This does not happen in 
HLA class II-negative epithelial cells, which produce virus that is enriched for tri-
meric complexes and which is as much as a hundred-fold more infectious for B 
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cells than virus produced by B cells themselves. In turn, B cell virus is about five-
fold more infectious for an epithelial cell than virus replicated in an epithelial cell. 
HLA class II and gp42 thus provide the mechanism for alternating replication in 
the two cell types (Borza and Hutt-Fletcher 2002).

4  Mechanisms of Fusion

Although still incompletely understood, the individual roles of the virus glyco-
proteins involved in fusion are becoming clearer and models of fusion are being 
developed and tested. Probably, the major breakthrough came when the crys-
tal structures of first herpes simplex virus gB and then EBV gB were solved 
(Backovic et al. 2009; Heldwein et al. 2006). The striking resemblance of both 
proteins to the post-fusion conformations of other class III fusion proteins 
strongly supported the nascent hypothesis that gB was central and proximal to 
the event. Class III fusion proteins exist as rod-shaped trimers, and each mono-
mer of gB consists of five domains (Backovic and Jardetzky 2009). Domain I, 
modeled as closest to the virus membrane, is described as a fusion module and 
contains two fusion loops which are thought to insert into the cell membrane as 
fusion progresses. Mutations in the putative fusion loops of EBV gB abrogate 
fusion (Backovic et al. 2007a), and the same hydrophobic residues enable a 
truncated form of gB to form rosettes that are also typical of class I and class II 
fusion proteins in their post-fusion form (Backovic et al. 2007b). Domains II and 
IV contain β-sheets, and domain IV of EBV gB, which is found at the top of the 
trimeric spike, is thought to be flexible. Domain III has a long α-helix which in 
the trimer is part of a central coiled-coil. Domain V is an extended segment that 
inserts between the other two units in the trimer. The class III fusion protein of 
vesicular stomatitis virus, which is triggered by exposure to low pH, has been 
crystallized in both its post-fusion and its pre-fusion conformation and signifi-
cant, but reversible, refolding, such as is seen in class I fusion proteins, occurs as 
one transitions to the other (Roche et al. 2008). Exposure of EBV to a triggering 
integrin leads to a change in its proteolytic digestion pattern, suggesting that a, 
perhaps analogous, conformational shift occurs during EBV fusion (Chesnokova 
et al. 2014).

The role of gHgL with or without gp42 is now generally thought to be as a 
regulator rather than an effector of fusion per se. The structure of gHgL resembles 
that of no known fusion protein, a gB truncation mutant can mediate some epithe-
lial cell fusion in the absence of gHgL (McShane and Longnecker 2004), and heat 
can act as a partial surrogate for a gHgL interaction with an integrin, triggering the 
same change in the proteolytic digestion pattern of gB (Chesnokova et al. 2014). 
Clearly, however, under normal circumstances, an interaction between gHgLgp42 
and HLA class II or an interaction between gHgL and an αv integrin is essential.

The crystal structure of gp42 has been solved in both the presence and absence 
of HLA class II. Mutational analysis of gp42 had highlighted the functional 
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importance of a hydrophobic pocket within the CTLD (Silva et al. 2004), and 
comparison of the liganded and unliganded structures of gp42 indicated a small 
change in the hydrophobic pocket in the liganded form (Kirschner et al. 2009). 
It was originally suggested that this change, triggered by HLA class II bind-
ing, might affect a second interaction between gp42 and either gB or gHgL. 
The second interaction is now known to be with gHgL, and the introduction of 
an N-liked glycosylation site in gHgL at this interface reduces membrane fusion 
(Sathiyamoorthy et al. 2014). A model is developing in which binding of gp42 
to HLA class II causes the hydrophobic pocket in the protein to widen, and this 
change is transmitted via gHgL to gB. There is evidence from work done with her-
pes simplex virus and human cytomegalovirus that gHgL interacts with gB under 
conditions where fusion is possible (Atanasiu et al. 2007; Avitabile et al. 2007; 
Cairns et al. 2011; Vanarsdall et al. 2008), although whether this interaction occurs 
before or as fusion is triggered is equivocal. Whether or not EBV gB and gHgL 
interact has not yet been assessed.

A conformational change in gHgL between the domain I/domain II interface 
was also suggested when mutations affecting fusion were mapped to the crystal 
structure (Matsuura et al. 2010). There is a single unpaired cysteine residue in the 
groove between the two domains which allowed coupling of thiol-reactive, envi-
ronmentally sensitive, fluorescent probes to a soluble truncated form of gHgL. 
Addition of a soluble αv integrin, which on its own can trigger virus fusion with 
an epithelial cell, produced a conformational change that could then be detected 
by fluorescence spectroscopy (Chesnokova and Hutt-Fletcher 2011). Subsequently, 
additional mutations were made in gHgL which introduced a novel disulfide bond 
linking domain I and domain II, presumably constraining such a conformational 
change (Chen et al. 2013). The mutated protein could still mediate fusion with a B 
cell, but lost the ability to fuse with an epithelial cell. This parallels other mutations 
made in domain IV of gHgL which differentially affect fusion with a B cell and an 
epithelial cell (Wu et al. 2005; Wu and Hutt-Fletcher 2007). Though all mutations 
have been functionally tested only in the context of cell-based fusion assays, three 
monoclonal antibodies to gHgL, one which binds to domain IV, one which binds 
close to the domain I/domain II interface, and one which has not yet been mapped, 
all neutralize epithelial infection very efficiently, but have little to no effect on B 
cell infection (Chesnokova and Hutt-Fletcher 2011; Wu et al. 2005) suggesting that 
the observations are probably relevant to virus entry as well.

The further implication of the observations would seem to be that, as they interact 
with their cellular partners, the architecture of the two fusion complexes, gB and gHgL 
or gB and gHgLgp42, the latter of which has been partially described (Sathiyamoorthy 
et al. 2014), is different. What this means for how gHgL interfaces with gB is unclear, 
although it seems likely that the final events in fusion are similar for both cell types. 
Fusion can be achieved if gHgL and gB are expressed in trans as well as in cis, and a 
virus lacking gHgL can enter an epithelial cell expressing gHgL. Infection at low lev-
els can also be achieved in a B cell expressing gHgL without gp42, if a soluble integ-
rin is added, providing some support for the concept that, once activated for fusion, gB 
proceeds similarly in both cell types (Chesnokova et al. 2014).
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5  Transit to the Nucleus

The occurrence of fusion at different sites in a B cell and an epithelial cell, at 
least in the epithelial cells studied so far, has potential implications for transport 
of virus into the nucleus. A virus entering by endocytosis avoids the problem 
of crossing the actin cortex and is in a somewhat protected environment until it 
fuses out of the vesicle. There is precedent in other virus systems for vesicular 
transport well into the cell, although where precisely EBV fuses, is not known. 
Microtubules are required for delivery of virus DNA to the nucleus in both B cells 
and epithelial cells, the actin cytoskeleton also appears to be needed in epithelial, 
but not B cells, and it is clear that the process is much more efficient in a B cell 
than in an epithelial cell (Shannon-Lowe et al. 2009; Valencia and Hutt-Fletcher 
2012). Approximately half of the virus delivered into an epithelial cell is degraded 
within hours. What is perhaps surprising is that although only a small percentage 
of virus that binds to a cell actually makes it to the nucleus, that small amount that 
does infect either a B cell or an epithelial cell expressing CR2 is capable of effi-
cient gene expression (Borza et al. 2004; Shannon-Lowe et al. 2005).

6  Entry in Vivo

Translating what we know about entry at the cellular level into the reality of what 
happens in vivo is difficult. Beside the general assumption that virus transmitted 
in saliva first infects cells somewhere in the oropharynx, there is little or no con-
crete information on the subject. Both cell-free virus and cell-associated virus, 
or at least cell-associated virus DNA, are found in saliva (Haque and Crawford 
1997), but if the virus is cell-associated, which cell type it is associated with is 
unclear. There is certainly evidence for virus-producing desquamating epithelial 
cells in saliva (Lemon et al. 1977; Sixbey et al. 1984), and cell-free virus in saliva 
of carriers has the characteristics of virus shed from an HLA class II-negative cell, 
implying that it is being shed from an epithelial cell. It is higher in gp42 than virus 
made in a B cell from the same individual and binds via gHgL to αv integrins very 
poorly (Jiang et al. 2006). Modeling studies have also suggested that the levels 
of virus in saliva can only be accounted for by amplification of virus in epithelial 
cells (Hadinoto et al. 2009). However, whether or not virus-producing B cells are 
also present in saliva, or uninfected B cells to which virus is bound, both of which 
might allow for more efficient infection of mucosal epithelium (Shannon-Lowe 
et al. 2006; Tugizov et al. 2003), is not known.

Beyond this, there are several questions that can be raised. Does virus repli-
cate its way through an epithelial barrier to reach B cells (Temple et al. 2014), is 
it transcytosed across epithelium (Tugizov et al. 2013), is it picked up by mac-
rophages or dendritic cells (Tugizov et al. 2007), and does it gain access as a result 
of breaks in the epithelial barrier, as is assumed for human papillomaviruses? 



230 L.S. Chesnokova et al.

Given that the only symptomatic primary infection associated with EBV is infec-
tious mononucleosis, which has an estimated incubation period of several weeks, 
it is likely that we will have to rely on future studies with non-human primate 
lymphocryptoviruses to provide answers to these questions. Examination of the 
path of virus reactivated in persistent carriers may, however, be more amenable to 
study.

Work done on oral hairy leukoplakia in the 1990s reinforced the assumption 
that, while B cells are the reservoir of latent virus, epithelial cells are normally the 
site of lytic infection and virus is latent only in malignant or pre-malignant epithe-
lial tissue. Although a model akin to that of human papillomaviruses, where virus 
establishes latency in basal epithelial cells and replication is differentiation-linked, 
had been proposed (Allday and Crawford 1988; Sixbey 1989), it was reported that 
while productive replication was indeed probably differentiation-linked (Young 
et al. 1991), there was no detectable virus in basal epithelium (Niedobitek et al. 
1991). Reexamination by real-time reverse transcriptase PCR of RNA in cells 
isolated by laser capture microdissection from sections of oral hairy leukoplakia, 
however, not only confirmed the presence of lytic transcripts in middle and upper 
layers of epithelium, but also found EBER expression in the absence of lytic tran-
scripts in basal cells (unpublished). Similarly, basal epithelial cells in normal ton-
sils, identified by faint EBER in situ hybridization staining, expressed EBERs in 
the absence of lytic transcripts, although, in the sections examined to date, no lytic 
transcripts have been found in cells in the layers above. This does, however, sug-
gest that perhaps the “papilloma virus” model should be revisited. If virus is shed 
by a terminally differentiating infected B cell in, for example, the tonsil, then on 
its path out into saliva, it would plausibly first encounter the basal surface of a 
basal epithelial cell. B cell-mediated transfer infection of polarized cells occurs 
only through the basal surface (Shannon-Lowe and Rowe 2011), and the integrins, 
needed for fusion, are primarily in the basolateral membrane. The virus that is 
shed from a B cell is also low in gp42 and hence epithelial-tropic. Differentiation 
of latently infected basal epithelial cells might then sporadically lead to production 
of virus at the epithelial surface. Virus shed from the epithelial cell is of course 
highly lymphotropic, and release at the epithelial surface is perhaps more likely to 
result in shedding than in reinfection at the apical surface. Such a model is most 
consistent with the idea that access to a new B cell occurs where the epithelial bar-
rier is damaged.

7  Conclusions

Progress has clearly been made in understanding virus entry. We know many, 
though probably not all, of the proteins initially involved at the cellular level, and 
we are beginning to understand how some of them function. However, we know 
little about intracellular transport and delivery of DNA to the nucleus, which 
marks the completion of the successful entry process. Also, most efforts have 
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focused on just two cell types, when it is clear that EBV can infect more than B 
lymphocytes and epithelial cells. We notice this principally when things go wrong, 
when, for example, leiomyosarcomas or NK/T cell lymphomas develop, but does 
it happen in uneventful infections? If not, what changes make these cells accessi-
ble? We need to be continually mindful of the fact that almost all we know comes 
from the study of virus cell interactions out of context in a tissue culture dish. 
How representative is this of what happens in vivo? Perhaps, the biggest barrier 
to better understanding of the biology of EBV is its strict human tropism. At the 
same time, almost all of us are infected, so the population we have available for 
study is huge. We need to make better and more imaginative use of it.
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