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Abstract  Epstein–Barr virus (EBV) is arguably one of the most successful 
pathogens of humans, persistently infecting over ninety percent of the world’s 
population. Despite this high frequency of carriage, the virus causes apparently 
few adverse effects in the vast majority of infected individuals. Nevertheless, the 
potent growth transforming ability of EBV means the virus has the potential to 
cause malignancies in infected individuals. Indeed, EBV is thought to cause 1 % 
of human malignancies, equating to 200,000 malignancies each year. A clear fac-
tor as to why virus-induced disease is relatively infrequent in healthy infected indi-
viduals is the presence of a potent immune response to EBV, in particular, that 
mediated by T cells. Thus, patient groups with immunodeficiencies or whose 
cellular immune response is suppressed have much higher frequencies of EBV-
induced disease and, in at least some cases, these diseases can be controlled by 
restoration of the T-cell compartment. In this chapter, we will primarily review 
the role the αβ subset of T cells in the control of EBV in healthy and diseased 
individuals.
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1 � Introduction

Like all herpesviruses, the EBV replication cycle oscillates between phases of 
either lytic or latent viral gene expression in infected cells. During lytic replica-
tion, up to 80 genes are expressed in a temporally regulated manner resulting in 
the production of new viral particles, the death of the infected cell and transmis-
sion of the virus to other cells or spread to new hosts. Latent gene expression, in 
the case of EBV, can induce growth transformation of infected cells; these genes 
include the six Epstein–Barr nuclear antigens (EBNAs) and the two latent mem-
brane proteins (LMPs). Here, there is no virus production and ultimately the virus 
can enter a quiescent state where there is minimal, if any, viral gene expression 
allowing amplification of a reservoir of infected cells capable of reactivating virus 
in the future. These two patterns of gene expression give the immune system two 
potential sets of antigens that can be targeted to control the virus. Furthermore, 
in the normal biology of infection both sets of genes are likely expressed in dif-
ferent cellular backgrounds and different anatomical locations. Thus, latent anti-
gens are expressed in B lymphocytes within lymphoid tissue, while lytic antigens 
are expressed also in B lymphocytes but likely more frequently expressed in epi-
thelial cells of the oropharynx (Hadinoto et  al. 2009). These different cellular 
backgrounds and anatomical locations likely impact on the virus-specific T-cell 
response in terms of the function and subset of antigen-specific T cells which traf-
fic to these sites.

2 � T-Cell Response in Primary Infection

Primary infection with EBV mostly occurs in childhood and in the main results 
in an infection with few if any symptoms of acute virus infection. However, if 
infection is delayed until adolescence, some 25–75 % of infected individuals will 
develop the primary infection syndrome infectious mononucleosis (IM): an acute 
self-limiting febrile illness characterised by the development of lymphadenopathy, 
sore throat and associated with the massive expansion of activated CD8+ T lym-
phocytes (Balfour et al. 2013; Crawford et al. 2006). Most of what we know about 
primary infection and the host response comes from the study of IM patients as 
the symptoms provide a convenient marker to identify people undergoing primary 
infection.

2.1 � T-Cell Response in Infectious Mononucleosis

People who develop infectious mononucleosis are thought to have been infected 
with the virus for up to six weeks before the symptoms became apparent. Why 
primary EBV infection can result in IM is presently unclear, but several proposals 
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have been put forward. These include the development of T-cell specificities 
induced by non-EBV epitopes that cross-react with EBV epitopes and contribute 
to the expanded CD8+ T-cell response in IM (Clute et al. 2005; Selin et al. 2011). 
However, ex vivo analysis of such cross-reactive T-cell responses show they are 
low in frequency (Cornberg et al. 2010) and so their contribution to IM requires 
clarification. Others have proposed that IM may develop in part due to the reduced 
frequency of regulatory T cells found in IM patients compared to healthy donors 
(Wingate et  al. 2009). Two recent epidemiological studies have suggested that a 
genetic component may be responsible for the development of IM. Thus, same sex 
twins have a higher incidence of IM compared to first-degree relatives (Rostgaard 
et al. 2014), while the concordance for development of IM was twice as frequent 
in monozygotic twins compared to dizygotic twins (Hwang et  al. 2012). What 
form these genetic differences may take are unclear; however, polymorphisms or 
genetic markers associated with IM in immune response loci have been identi-
fied including polymorphisms in the promoters of IL-10 and IL-1 (Helminen et al. 
1999; Hatta et  al. 2007), polymorphisms in the TGF-β gene (Hatta et  al. 2007) 
and presence of certain microsatellite markers in the HLA locus (McAulay et al. 
2007).

At presentation, IM patients shed high levels of virus from the oropharynx and 
have high loads within their peripheral B-cell compartment. Few studies have been 
able to access samples from patients preceding the development of symptoms to 
determine what immune responses may be occurring at this time. Recent careful 
studies following EBV-negative university students who subsequently develop IM 
have shown that prior to the development of symptoms there is no obvious dis-
turbance of the CD4+ or CD8+  lymphocyte compartment (Balfour et al. 2013). 
However, once symptoms develop in the patient there is a major disturbance, prin-
cipally driven by the expansion of highly activated CD8+ T cells. Historically, the 
nature of these T cells was enigmatic, with initial studies analysing TCR usage 
indicating that these were monoclonal or polyclonal expansions suggestive of anti-
gen-driven proliferation (Callan et al. 1996). Ex vivo analysis of these populations 
by either cytotoxicity or cytokine secretion assays showed that they contained 
EBV specificities (White et  al. 1996; Steven et  al. 1996, 1997; Hoshino et  al. 
1999). The development of MHC class I tetramer reagents that could identify EBV 
reactive CD8+ T cells clearly showed that significant proportions of the expanded 
CD8+  cell population were in fact EBV-specific (Callan et  al. 1998). Further 
studies by numerous groups have now shown that in IM patients the expanded 
CD8+ population is mostly EBV-specific (Catalina et al. 2001; Hislop et al. 2002, 
2005) although evidence has been presented for the activation of other virus spe-
cificities during acute infection (Odumade et al. 2012; Clute et al. 2005).

2.1.1 � CD8+ T-Cell Response in Infectious Mononucleosis

Analysis of the specificities within the expanded CD8+  T-cell population has 
shown that it is dominated by T cells specific for epitopes derived from the 
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immediate early (IE) gene products with lesser, yet still substantial, frequencies 
to some early (E) gene products and apparently few T cells specific for late (L) 
gene products (Pudney et al. 2005; Woodberry et al. 2005b). In some cases, indi-
vidual lytic epitope-specific responses can constitute between 1 and 50 % of the 
expanded CD8+ repertoire in the peripheral circulation (Hislop et al. 2005). What 
drives the IE > E >> L immunodominance hierarchy is not clear. Two proposals 
have been suggested: firstly, as IE antigens are expressed in the first wave of viral 
protein synthesis IE-specific T cells may clear infected cells before other antigens 
are produced, reducing the supply of antigen to restimulate other later specificities 
(Pudney et al. 2005). Secondly, as immune evasion proteins are expressed predom-
inantly in the E phase of lytic cycle, these reduce the presentation of epitopes on 
infected B cells that are derived from other E- and L-expressed proteins, limiting 
the ability of E- and L-phase epitope-specific T cells to be restimulated by infected 
cells (Hislop et al. 2007a).

Latent antigen-specific responses are also substantially expanded although 
generally not to the same degree as lytic epitope-specific T cells with individual 
epitope specificities representing from 0.1 to 5 % of the peripheral CD8+ T-cell 
population (Catalina et  al. 2001; Hislop et  al. 2002). In these cases, T cells are 
specific for epitopes predominantly drawn from the EBNA3 family of proteins and 
to a much lesser extent LMP2. EBNA1-specific responses are seen less frequently 
but in the context of certain HLA types strong responses have been observed 
(Blake et al. 2000) while CD8 specificities to LMP1 are rarely if ever seen (Hislop 
et al. 2002; Catalina et al. 2001; Woodberry et al. 2005b).

Although comprehensive studies of T-cell frequencies in the peripheral circula-
tion of IM patients have demonstrated the high-frequency responses, a more rel-
evant site to measure T-cell responses is the site of virus replication, namely the 
oropharyngeal lymphoid tissue making up Waldeyer’s ring. Estimation of EBV-
specific CD8+  T-cell frequencies in homogenised tonsillar preparations taken 
from IM patients showed substantial frequencies of EBV-specific CD8+ T cells 
in this anatomical compartment, with up to 25  % and 1.5  % of the CD8 popu-
lation being specific for EBV lytic or latent epitopes, respectively (Hislop et  al. 
2005). However, comparing these frequencies to matched peripheral blood mon-
onuclear cell (PBMC) preparations collected at the same time showed that these 
EBV-specific CD8+  T-cell frequencies were far lower in the tonsil than what 
was detected in periphery, particularly for lytic epitope-specific CD8+  T cells. 
This was despite very high virus genome loads being detected in these tonsillar 
preparations.

MHC class I tetramer-based analysis of the CD8+ T-cell response has yielded 
valuable information as to the phenotypic characteristics of EBV-specific T cells. 
These cells show evidence of being highly activated, expressing HLA-DR, CD38, 
CD69 and are in cycle as judged by the expression of ki-67(Callan et al. 1998). 
Historically, it has been known that PBMC from IM patients are highly suscep-
tible to apoptosis when manipulated in vitro (Moss et  al. 1985) and that this is 
likely a consequence of the low level of expression of the anti-apoptotic protein 
bcl-2 (Callan et al. 2000; Soares et al. 2004). Consistent with their highly activated 
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status, these EBV-specific T cells express little in the way of lymphoid homing 
markers such as CCR7 or CD62-L (Catalina et al. 2002; Hislop et al. 2002). This 
lack of expression may give some clue as to why relatively lower frequencies of 
EBV-specific T cells are seen in the tonsils compared to the peripheral circulation. 
Entry of T cells into the tonsils requires expression of lymphoid homing markers, 
particularly since tonsils do not have afferent lymphatics and lymphocytes cannot 
therefore drain into this lymphoid tissue from peripheral sites. Nevertheless, EBV-
specific T cells are found at this site and other mechanisms of recruitment may 
be relevant. Thus, activated T cells are known to express CXCR3, which binds 
the IFN-γ inducible chemokines CXCL9 and CXCL10, which may direct effec-
tors to this site. Conceivably, the inefficient recruitment of EBV-specific T cells to 
the tonsil during IM may explain why such high levels of virus are found at this 
location.

Within weeks, the symptoms of IM begin to resolve. During this time, there 
is a steep decline in virus genome loads found in the peripheral circulation 
although virus loads shed from the oropharynx remain high for several months 
(Fafi-Kremer et  al. 2005; Hislop et  al. 2005; Balfour et  al. 2005). During this 
time, the EBV-specific T cells in the periphery are culled and the frequency and 
absolute number decline rapidly. Lytic epitope-specific populations are dramati-
cally reduced, particularly those that are highly expanded (Catalina et  al. 2001; 
Hislop et al. 2002) leading to a distribution of epitope specificities which does not 
necessarily reflect the frequencies seen during acute infection. Although frequen-
cies of latent epitope-specific cells change less, with the contraction of the entire 
CD8 compartment numerically fewer latent epitope-specific cells will be present. 
Despite the dramatic impact, IM has on the T-cell compartment, when disease 
resolves there does not appear to be any attrition of pre-existing memory T cells, 
with absolute numbers of T cells specific to other viral epitopes broadly compara-
ble before and after acute EBV infection (Odumade et al. 2012).

After resolution of disease, EBV-specific CD8+  T cells begin to return to a 
resting state, downregulate activation markers, come out of cycle and upregulate 
expression of anti-apoptotic proteins such as bcl-2 (Dunne et al. 2002). Latent, but 
not lytic, epitope-specific T cells begin to express CCR7 and CD62-L, and this is 
associated with recruitment of these T cells to the tonsil at a time when the control 
of growth transformation of B cells at this site is known to be controlled. Lytic 
epitope-specific cells remain poorly represented in this tissue, consistent with the 
continued high-level shedding of virus in saliva.

2.1.2 � CD4+ T-Cell Response in Infectious Mononucleosis

Turning to the CD4+ T-cell response to EBV during IM, less is known about the 
response mediated by these cells due to the low frequency of specific responses 
and the fact that until very recently assays to measure CD4 T-cell responses 
were relatively insensitive. However, there is now a better appreciation of these 
cells as potential effectors against MHC class II targets, such as EBV-infected B 



331T-Cell Responses to EBV

cells. During IM there is little, if any, expansion of the global CD4 compartment 
(Balfour et al. 2013) and in contrast to the CD8 compartment, TCR analysis shows 
there is no evidence of antigen-driven monoclonal or oligoclonal expansions of 
CD4 + T cells (Maini et al. 2000). Initial attempts to study CD4+ T-cell responses 
used cytokine secretion assays to measure responses from CD4+ T cells stimu-
lated with recombinant antigens or lysates of EBV-infected cells. These detected 
relatively weak responses to lytic and latent antigens with lytic antigens eliciting 
responses more frequently (Precopio et al. 2003; Amyes et al. 2003).

However, an increasing range of MHC class II tetramer reagents have recently 
become available and these have been employed to follow responses in IM 
patients from acute infection through resolution of disease (Long et  al. 2013). 
With the epitope-specific reagents used in this work, particular latent responses 
appeared to dominate lytic responses with up to 1.5 % of CD4+ T cells specific 
for individual latent epitopes, compared to a maximum of 0.5 % of CD4+ T cells 
for lytic responses. These measurements were substantially higher than those 
estimated by cytokine secretion analysis in this and previous studies. The EBV-
specific CD4 T cells, like CD8+ T cells, were highly activated and low frequen-
cies expressed lymphoid homing markers.

With resolution of acute symptoms, tracking the CD4+ T-cell response shows 
that the frequencies of EBV-specific cells drops precipitously over a short period 
of time (Long et al. 2013; Precopio et al. 2003). In contrast to other latent epitope 
specificities, EBNA1-specific CD4+  T-cell responses are not readily detected 
during acute infection but emerge with delayed kinetics over several months. 
This delayed appearance has been attributed to the restricted release of EBNA1 
from infected cells, thereby reducing antigen available for priming CD4+ T-cell 
responses (Long et al. 2013).

2.2 � T-Cell Response in Asymptomatic Primary Infection

Although IM has taught us much about the immune responses made during pri-
mary EBV infection, these responses likely do not represent the situation in 
the majority of primary infections which occur asymptomatically in children. 
Determining the host response to the virus in this situation is extremely difficult 
since, by definition, the infection occurs without obvious evidence.

Nevertheless, careful methodical studies following EBV-seronegative individu-
als over time have allowed cases of asymptomatic EBV infections to be identi-
fied. Early studies of infants monitored monthly for seroconversion indicated 
that they showed none of the features seen in IM patients in terms of disruption 
to the lymphocyte compartment or febrile illness (Biggar et  al. 1978; Fleisher 
et  al. 1979). More contemporary studies have shown that young adults undergo-
ing asymptomatic infection can have high virus loads in the peripheral circulation, 
equivalent to what is seen in IM patients; however, there is no lymphocytosis and 
unlike IM patients, most showed no disruption within the T-cell compartment of 
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the clonality of their TCR Vβ repertoire (Silins et al. 2001). A recent study exam-
ining African children undergoing asymptomatic infection has suggested that, like 
the young adults in the earlier work, children can have genome loads equivalent 
to IM patients. Moreover, they can have substantial frequencies of activated EBV-
specific CD8+ T cells as detected using MHC class I tetramers, up to 16  % of 
CD8+  T cells. Despite these high-frequency responses, there is no significant 
global expansion of CD8+ T-cell compartment (Jayasooriya et al. 2015).

Collectively these studies suggest that it is the global expansion of activated 
CD8+  T cells that is driving the pathology seen in IM. Although these studies 
are helpful for characterising the virus–host balance in asymptomatic infection, 
they do not explain the mechanism of control in the absence of pathology. Studies 
using the humanised mouse model of EBV infection have shed some light on this 
however, suggesting that specific subsets of natural killer cells may play a role in 
preventing the development of an IM like disease in this model (Chijioke et  al. 
2013) indicating that analysis of NK subsets in asymptomatic infected donors may 
be helpful.

3 � T-Cell Response in Established Infection

The T-cell response seen in people with established EBV infections shows that 
there are substantial frequencies of EBV-specific CD8+  and CD4+ T cells pre-
sent, although at a much reduced frequency and absolute number than what is seen 
in IM patients. In healthy donors, low frequencies of infected cells are detected 
in the memory B-cell compartment of the peripheral circulation (Babcock et  al. 
1998) and there is intermittent shedding of virus from the oropharynx (Fafi-
Kremer et al. 2005) indicating that these responses are maintained in the presence 
of low-level antigen expression.

3.1 � CD8+ T-Cell Response in Established Infection

Individual lytic antigen-specific CD8 responses can account for up to 2 % of the 
CD8+  population, while latent antigen-specific responses are smaller constitut-
ing up to 1 % of the CD8 population. As seen in IM patients, CD8+ T cells spe-
cific for immediate early-expressed epitopes are the dominant specificities with 
lower responses to a subset of early-expressed epitopes and rare responses to late-
expressed epitopes (Abbott et  al. 2013). Although responses to late epitopes are 
of low frequency, a diverse range of late antigens are targeted and these responses 
are thought to increase with age (Orlova et  al. 2011; Stowe et  al. 2007). Latent 
responses are mostly made to epitopes derived from the EBNA3 family of proteins 
and to a lesser extent LMP2, EBNA1 and EBNA2, while infrequent responses are 
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detected against EBNA-LP and LMP1. Interestingly, alterations to this hierarchy 
can be observed dependent on the HLA type of the donors. Thus, donors who are 
HLA B38 make strong responses to an epitope derived from EBNA2 (Chapman 
et  al. 2001) while donors who are HLA-A*02.03 make a strong response to an 
EBNA-LP-derived epitope (unpublished observations).

Although there is evidence of chronic EBV shedding and thus antigen pro-
duction, EBV-specific T cells circulating in the periphery show little evidence of 
activation. In contrast to the picture of IM, these cells appear mostly as resting 
antigen-experienced T cells expressing LFA-1 (Faint et al. 2001), they are not acti-
vated, are not in cycle and have relatively high levels of bcl2 (Callan et al. 2000; 
Hislop et al. 2001).

These T cells now also express variable levels of markers associated with hom-
ing to lymphoid tissues such as CCR7 and CD62L. The frequency of expression 
of these markers is higher on latent compared to lytic epitope-specific T cells for 
reasons that are unclear but perhaps related to the environment in which anti-
gen is presented to the T cell. Analysis of the frequency of EBV-specific T cells 
in matched blood and lymph node specimens has, however, shown no obvious 
enrichment of EBV specificities in this latter compartment (Remmerswaal et  al. 
2012). Some enrichment of lytic but not latent epitope specificities in bone mar-
row specimens has been described although what is driving this enrichment of 
lytic specificities is unclear as there is no obvious increase in EBV genome loads 
in this compartment compared to blood (Palendira et al. 2008). However, an obvi-
ous enrichment of EBV-specific T cells is seen in the tonsil, where an approximate 
threefold and tenfold increase in lytic and latent specificities, respectively, is seen 
(Hislop et al. 2005; Woodberry et al. 2005a). In some tonsils then, at least 20 % 
of the CD8+ T-cell population is specific for EBV. Correlating with this enrich-
ment is the surface expression of CD103 (αEβ7) by these EBV-specific T cells. 
This integrin binds to E-cadherin which is expressed by epithelial cells, thereby 
retaining the T cells at these sites. Furthermore, this molecule is now recognised as 
marker of resident memory T cells, a population of cells poised to reactivate at a 
site of previous antigen expression (Gebhardt et al. 2009).

In most healthy donors, the virus appears to establish a stable balance with 
the immune response although occasional fluctuations in the size of the response 
are seen, possibly due to subclinical reactivation (Crough et al. 2005). However, 
evidence for disruption of this balance and dysregulation of the T-cell response is 
emerging in older donors. Thus, elevated virus loads and CD8+ T-cell responses 
have been described in the elderly with some EBV-specific responses constitut-
ing up to 15  % of the CD8+  T-cell population in individuals over 60  years of 
age, although some loss of T-cell function was seen in these donors (Stowe et al. 
2007; Khan et al. 2004). Interestingly, these expansions were not seen or were less 
marked in elderly donors co-infected with cytomegalovirus (CMV), suggesting 
the presence of CMV may suppress immunity to other viruses (Khan et al. 2004; 
Stowe et al. 2007; Colonna-Romano et al. 2007; Vescovini et al. 2004).
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3.2 � CD4+ T-Cell Response in Established Infection

Analysis of people with established EBV infections shows the EBV-specific 
CD4+ T-cell response differs from the CD8+ responses in several respects. First, 
the size of the memory CD4+  T-cell response to individual epitopes is much 
smaller (Leen et  al. 2001; Amyes et  al. 2003; Long et  al. 2005, 2011, 2013). 
Second, the antigen targets of the CD4 T-cell response are also different, with 
latent reactivities tending to outnumber lytic reactivities (Long et al. 2013). Third, 
the proportion of central and effector memory CD4+ T cells is the same regard-
less of whether the cognate epitopes are from lytic or latent antigens (Long et al. 
2013); CD8+ T-cell responses to the former are concentrated in the effector mem-
ory pool. Fourth, the CD4 T-cell response against lytic antigens is spread equally 
between IE, E and L viral proteins (Long et  al. 2011), whereas the CD8 T-cell 
response is heavily skewed towards the former (Pudney et al. 2005).

The fact that EBV infects and persists in B cells, which constitutively express 
MHC class II, raises the possibility that CD4+ T cells may be able to act as direct 
effector cells in their own right. Reports from several groups clearly demonstrate 
that CD4+ T-cell clones against a wide range of EBV lytic and latent cycle anti-
gens are able to recognise and kill newly infected B cells or established EBV-
transformed lymphoblastoid cell lines (LCLs) (Adhikary et  al. 2006; Kobayashi 
et  al. 2008; Long et  al. 2005; Munz et  al. 2000; Sun et  al. 2002b; Haigh et  al. 
2008; Khanna et  al. 1997; Landais et  al. 2004; Omiya et  al. 2002; Demachi-
Okamura et al. 2006; Rajnavolgyi et al. 2000). Although only a minority of cells 
in such lines are lytically infected, structural and non-structural lytic cycle proteins 
are efficiently transferred to neighbouring LCLs sensitising them to recognition 
by lytic antigen-specific CD4 T cells (Adhikary et al. 2006; Landais et al. 2004; 
Long et  al. 2011). Receptor-mediated uptake of virions by LCLs likely explains 
the efficient transfer of structural proteins. The mechanism responsible for effi-
cient uptake, processing and presentation of non-structural lytic proteins is cur-
rently unknown, but it appears to be part of a general phenomenon since the latent 
cycle proteins EBNA2, EBNA3A, EBNA3B and EBNA3C are also efficiently 
transferred from antigen-positive to antigen-negative B cells (Taylor et  al. 2006; 
Mackay et al. 2009).

As described earlier, EBNA1 does not appear to be transferred between cells 
in culture (Leung et al. 2010; Long et al. 2013). Instead, EBNA1 is able to access 
the MHC-II pathway within the infected cell itself via macroautophagy (Paludan 
et al. 2005) a catabolic pathway in which cytoplasmic contents are enveloped by 
double-membrane vesicles that in turn fuse with lysosomes. However, EBNA1’s 
normal nuclear localisation limits its processing by macroautophagy (Leung 
et  al. 2010) and such ‘nuclear shelter’ from macroautophagy means only a sub-
set of EBNA1 CD4+ T-cell epitopes are presented by LCLs (Paludan et al. 2005; 
Khanna et al. 1995; Mautner et al. 2004; Leung et al. 2010). These observations 
may resolve the paradox that although EBNA1 is essential for viral persistence 
(Humme et al. 2003), it nevertheless contains the largest number of CD4+ T-cell 
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epitopes of any latent cycle protein and most EBV-infected individuals possess 
good CD4+  T-cell responses against the protein (Leen et  al. 2001; Long et  al. 
2013; Munz et al. 2000).

3.3 � Other T-Cell Subsets in Established Infection

Turning to other subsets of T cells, little so far is known about the relevance of 
more specialised T cells such as Th9, Th17 or Th21 T cells in EBV infection. 
Some studies have suggested a role for invariant natural killer T cells (iNKT) in 
control of EBV. Thus, patients deficient in the SLAM-associated protein (SAP) 
encoded by SH2D1A have no NKT cells and are exquisitely sensitive to EBV 
infection and may develop a life-threatening lymphoproliferative disease upon 
EBV infection (Nichols et al. 2005). However, such mutations also affect conven-
tional T-cell and natural killer (NK) cell function making it unclear whether this 
disease is solely due to lack of iNKT cells (Tangye 2014). Similarly, patients with 
mutations in the BIRC4 gene, which encodes the X-linked inhibitor of apoptosis 
protein (XIAP), show sensitivity to EBV infection and have low numbers of iNKT 
cells (Rigaud et al. 2006). These patients have normal numbers of T cells; how-
ever, these are more sensitive to apoptotic stimuli, again making it unclear whether 
iNKT numbers are the solely responsible for controlling disease (Lopez-Granados 
et al. 2014). Other models and observations hint to a role of iNKT cells: patients 
with EBV-associated malignancies have lower circulating numbers of these cells, 
while iNKT cells adoptively transferred into immunodeficient mice then chal-
lenged with EBV-related malignant cells show reduced tumour formation (Yuling 
et  al. 2009). Similarly, in vitro studies of resting B cells challenged with EBV 
showed higher frequencies of transformation when NKT cells are depleted from 
such cultures (Chung et al. 2013).

Some 1–10 % of the total T-cell population is comprised of γδ T cells that rec-
ognise a distinct range of antigenic targets and have a broad functional phenotype 
upon activation (Vantourout and Hayday 2013). The importance of these cells in 
controlling natural EBV infection is not known, but several observations suggest 
they could play a role. The Vδ1 subset of γδ T cells can directly recognise and lyse 
EBV-transformed LCLs in vitro (Hacker et al. 1992) and high frequencies of these 
cells have been described in transplant recipients who have previously experienced 
EBV reactivation (Fujishima et al. 2007; Farnault et al. 2013). The Vγ2 Vδ9 sub-
set of γδ T cells can also recognise and lyse LCLs in vitro, but efficiency is low 
unless the cells are activated with pamidronate and then positively selected using 
anti-γδ-TCR-specific beads (thus delivering a TCR signal to the cells) (Xiang et al. 
2014). However in mice reconstituted with human immune system components, 
pamidronate administration was sufficient to significantly reduce EBV-positive 
lymphoproliferative disease and this control was dependent upon Vγ2 Vδ2 T cells 
(Xiang et al. 2014). The antigens that allow selective recognition of EBV-infected 
LCLs by γδ T cells are currently unknown.
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4 � T-Cell Responses in Patients with EBV-Associated 
Malignancy

The EBV-specific T-cell response generated by natural infection is important to 
control the growth transforming activity of the virus for the lifetime of the host. 
Loss of this control, as occurs in patients receiving immunosuppression, can lead 
to post-transplant lymphoproliferative disease (PTLD). Tumours that occur in 
the first year of transplantation, when immunosuppression is greatest, typically 
express the full range of EBV latency proteins including the EBNA3A, EBNA3B 
and EBNA3C proteins that are immunodominant targets of CD8 T-cell immunity. 
Furthermore, these tumours display high levels of HLA class I and II molecules. 
Accordingly, restoring immunological control by adoptive transfer of EBV-
specific T-cell preparations generated in vitro has been used by several groups for 
prophylaxis or treatment of PTLD following solid organ or haematopoetic stem 
cell transplantation (Rooney et  al. 1995; Khanna et  al. 1999; Sun et  al. 2002a; 
Barker et al. 2010; Haque et al. 2007) with an excellent track record of safety and 
efficacy (Heslop et al. 2010).

Until recently, the T cells used to treat patients with PTLD were gener-
ated using EBV-transformed LCLs as the antigen source. The key T-cell effec-
tors mediating clinical responses in patients were therefore thought to be the 
EBNA3A-, EBNA3B- and EBNA3C-specific CD8+  T cells that tend to domi-
nate LCL-stimulated T-cell preparations. Undoubtedly, these T cells are important 
(Gottschalk et al. 2001), but recent data suggests that other specificities may also 
contribute to tumour control. Thus, LCL-stimulated T-cell preparations containing 
a higher level of CD4+ T cells were associated with better outcome in a multicen-
tre phase II trial of adoptive therapy (Haque et al. 2007). The antigenic specific-
ity and function of these CD4 T cells were not characterised, and it is possible 
that their importance reflects the provision of CD4-mediated T-cell help rather 
than that of a role as direct effectors. Nevertheless, this result is intriguing given 
the multiple reports of CD4 T-cell clones specific for a range of EBV latent and 
lytic cycle proteins directly recognising and killing LCLs (Adhikary et al. 2006; 
Kobayashi et al. 2008; Long et al. 2005; Munz et al. 2000; Sun et al. 2002b; Haigh 
et al. 2008; Khanna et al. 1997; Landais et al. 2004; Omiya et al. 2002; Demachi-
Okamura et  al. 2006; Rajnavolgyi et  al. 2000). Not all T-cell clones are capable 
of such recognition and it is clear that the abundance of different CD4+  T-cell 
epitopes on the target cell surface can vary markedly, even for epitopes derived 
from the same protein (Long et al. 2005; Leung et al. 2010). CD4+ T cells incapa-
ble of direct recognition of EBV-positive cells could still be of value, however, by 
providing T-cell help to the overall immune response. Cultures of T cells prepared 
using LCLs as stimulators also include CD4+ T cells specific for non-viral anti-
gens upregulated in B cells by EBV transformation (Gudgeon et  al. 2005; Long 
et  al. 2009). These cellular-antigen-specific CD4+ T cells can also control LCL 
outgrowth and may therefore enhance the anti-tumour effect, but do not appear 
to be essential since T-cell lines prepared without the use of LCLs, presumably 
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lacking such responses, yield clinical responses in transplant recipients with PTLD 
or undergoing EBV reactivation (Gerdemann et al. 2012; Icheva et al. 2013).

Most cases of EBV-associated malignancy, however, develop in people who are 
not iatrogenically immunosuppressed and express a smaller number EBV antigens 
(Table 1). These malignancies include lymphomas of B-cell origin such as Burkitt 
lymphoma (BL), Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma and 
a smaller number of cases of non-B-cell origin such as extranodal NK/T-cell lym-
phoma (ENKTL). EBV is also linked to almost all cases of undifferentiated naso-
pharyngeal carcinoma (NPC) and a proportion of gastric carcinomas (GCa). The 
immunodominant EBNA3A, EBNA3B and EBNA3C proteins are absent in these 
tumours, but the EBV antigens that are expressed are still bona fide T-cell targets 
(Hislop et  al. 2007b). Given that loss of EBV immune control underpins post-
transplant lymphoma, an important question is whether the EBV-specific T-cell 
response is perturbed in patients with these other malignancies. This appears to 
be the case for endemic Burkitt lymphoma, which occurs in areas of holoendemic 
Plasmodium falciparum malaria. Recurrent malarial infection of young children 
adversely affects the EBV-specific T-cell response as measured using regression 
assays (Moss et al. 1983; Whittle et al. 1984). Studies of children in high- and low-
incidence malaria areas show the former have high EBV viral loads (Moormann 
et al. 2005). Subsequent studies have shown that children living in endemic malar-
ial areas have reduced CD8 T-cell responses to EBV lytic and latent antigens 
(Moormann et al. 2007) or phenotypic changes in these responses consistent with 
greater differentiation (Chattopadhyay et  al. 2013); each could conceivably alter 
the virus–host balance to favour the development of Burkitt lymphoma.

Table 1   EBV-associated malignancies and their expression of EBV antigens

aSome 10–15 % of endemic BLs express EBNA1, EBNA3A, EBNA3B EBNA3C, EBNA-LP and 
BHRF-1
b LMP2B is expressed from a novel mRNA transcript in the absence of LMP2A
cReports of wider range of EBV latency genes reported in some cases
dBARF1 expression is reported in a proportion of these tumours

Tumour Subtype % EBV positive EBV proteins expressed

Burkitt Lymphoma Endemic
AIDS-related

100
30–40

EBNA1a

T/NK Lymphoma Extranodal 100 EBNA1, LMP2Bb

Diffuse large B-cell 
lymphoma

Late PT-DLBCL
Elderly DLBCL
AIDS-related

>50
>50
~50

EBNA1, LMP1, LMP2c

Hodgkin lymphoma Classical
AIDS-related

30
100

EBNA1,
LMP1, LMP2

Lympho-proliferative 
disease

Post-transplant, 
AIDS-related

100 EBNA1, EBNA2, 
EBNA3A, EBNA3B, 
EBNA3C, EBNA-LP, 
LMP1, LMP2

Nasopharyngeal 
carcinoma

Undifferentiated 100 EBNA1, LMP1, LMP2d

Gastric carcinoma 5–15 EBNA1, LMP2d
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An alterative, but not necessarily mutually exclusive explanation for the devel-
opment of Burkitt lymphoma is that the tumours are able to develop because they 
escape immune control. The focus of attention here has been EBNA1 since this is 
the only EBV protein expressed in the majority of Burkitt lymphoma cases (Kelly 
et  al. 2002). Although it is now known that the glycine/alanine repeat domain 
within EBNA1 does not afford complete protection from the MHC class I pro-
cessing pathway (Tellam et  al. 2004; Voo et  al. 2004; Lee et  al. 2004), Burkitt 
lymphoma cells show reduced expression of HLA class I molecules as well as the 
TAP-1 and TAP-2 proteins required for transport of antigenic peptides into the 
endoplasmic reticulum for HLA binding. Together, these defects contribute to a 
profound impairment of the ability of CD8+ T cells to recognise BL cells (Rowe 
et  al. 1995; Khanna et  al. 1994) even in cases when the tumours express strong 
immune targets (Kelly et al. 2002). Burkitt lymphoma cells do, however, express 
HLA class II and have normal HLA class II processing function (Khanna et  al. 
1997; Taylor et al. 2006). EBNA1-specific CD4+ T cells can recognise and lyse 
Burkitt lymphoma cells in vitro (Paludan et al. 2002) and can control tumours in a 
murine model (Fu et al. 2004). It is therefore interesting that fewer children with 
endemic Burkitt lymphoma had detectable EBNA1 T-cell responses in the one 
study published to date (Moormann et al. 2009).

The immunological situation in NPC and HL is quite different. In both cases, 
the tumours express a wider range of EBV proteins: EBNA1, LMP2 and, in a pro-
portion of cases, LMP1 as well. Furthermore, cell lines derived from NPC (Lee 
et  al. 2000; Khanna et  al. 1998) and HL (Lee et  al. 1998) have functional HLA 
class I processing capacity in vitro, and HLA class I, TAP-1 and TAP-2 are fre-
quently detected in biopsies from patients with these diseases (Lee et  al. 1998; 
Murray et  al. 1998; Khanna et  al. 1998; Yao et  al. 2000). Indeed, compared to 
EBV-negative cases expression of HLA class I is more frequently detected and is 
present at higher levels in EBV-positive HL (Huang et al. 2010; Liu et al. 2013). 
HLA class II is also detected in over half of EBV-positive HL and NPC biopsies 
tested (Huang et al. 2010; Liu et al. 2013). These observations suggest that HL and 
NPC tumours could be susceptible to CD8 and CD4 T cells effectors of appropri-
ate specificity and this certainly seems to be the case in the clinic with several 
groups reporting clinical responses in NPC and HL patients treated with EBV-
specific T cells (Comoli et  al. 2005; Louis et  al. 2010; Chia et  al. 2014; Smith 
et al. 2012; Bollard et al. 2014).

The fact that adoptively transferred EBV-specific T cells can control a propor-
tion of NPC and HL cases raises the question whether T-cell responses are com-
promised in these patients in the first place. Screening of Chinese NPC patients 
and healthy donors using a panel of defined HLA class I and II epitope peptides 
has found that the T-cell response in patients is generally unimpaired apart from 
a single HLA-B*40.01 restricted LMP2 epitope that was absent in patients (Lin 
et  al. 2008). This work, however, examined only a single EBNA1 CD8 T-cell 
epitope. A subsequent study focusing on the CD8+  T-cell response to EBNA1 
reported that the frequency of such cells in patients was lower (Fogg et al. 2009). 
In some cases, T-cell responses could be rescued from patients by in vitro culture, 
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suggesting that EBNA1-specific T cells may have become unresponsive rather 
than being lost. Similarly, the EBNA1-specific CD4 T-cell response is decreased 
in patients with Hodgkin lymphoma and AIDS–non-Hodgkin lymphoma (Heller 
et al. 2008; Piriou et al. 2005). The recent observation that adoptively transferred 
EBNA1-specific effectors can yield clinical benefit in patients with post-transplant 
lymphoma (Icheva et  al. 2013) suggests that EBNA1-specific effectors could be 
candidates for the treatment of NPC and HL and that the above-described defects 
may therefore have clinical relevance.

In contrast to T-cell responses to EBNA1, LMP2-specific T cells appear less 
impaired in patients and CD8 T-cell responses are frequently detected in patients 
with HL and NPC (Lee et al. 2000; Fogg et al. 2009; Chapman et al. 2001; Lin 
et  al. 2008) although the frequency of these cells may be lower in some cases 
(Gandhi et  al. 2006). The increasing evidence linking HLA polymorphism with 
the risk of developing different EBV-associated malignancies is therefore intrigu-
ing. For Hodgkin lymphoma, HLA-A*01 increases and HLA-A*02 decreases 
the risk of developing EBV-positive but not EBV-negative disease (Niens et  al. 
2007). For NPC, a similar pattern is observed, although different HLA alleles are 
involved. Thus, a particular subtype of the HLA-A2 allele, A*02.07, increases 
disease risk, whereas the HLA-A*11.01 allele reduces risk (Su et  al. 2013). 
Note that in most racial groups, the HLA-A*02.07 subtype is rare apart from the 
Chinese population, in whom NPC is a common malignancy and this subtype 
also increases the risk of developing HL in this population (Huang et  al. 2012). 
For both diseases, it is notable that no EBV T-cell epitopes have yet to be identi-
fied as being presented by the HLA-A*01 or HLA-A*02.07 risk alleles, whereas 
the protective alleles can present multiple epitopes from a range of EBV proteins 
including LMP2 which is expressed in these malignancies. These observations 
are consistent with the hypothesis that a deficit in T-cell immunity may underpin 
the development of these malignancies (Niens et al. 2007; Brennan and Burrows 
2008). However as noted earlier, patients with NPC and HL often possess detect-
able LMP2-specific T-cell responses at the time of their diagnosis. The in vivo 
situation is therefore likely to be more complex than a simple deficit in tumour 
surveillance.

Recent evidence suggests that some tumours may express additional viral anti-
gens that could be exploited therapeutically. Although no LMP2 protein or mRNA 
could be detected in ENKTL cell lines, these cells were nevertheless efficiently 
recognised and killed by LMP2-specific CD8+  T-cell clones (Fox et  al. 2010). 
This apparent paradox was resolved by the identification of a novel LMP2 mRNA 
transcript expressed from a different promoter that could not be detected by the 
standard molecular assays in use at the time but still contained the majority of 
T-cell epitopes. Although described as a lytic cycle protein, BARF1 is detected 
in many of the cases of the EBV-positive epithelial malignancies apparently in 
the absence of lytic replication (Decaussin et al. 2000; Seto et al. 2005; Stevens 
et al. 2006). Little is known about the immune response against BARF1. Several 
HLA-A2-restricted epitopes have been identified and T-cell responses are present 
at greater frequencies in NPC patients (Martorelli et  al. 2008). The existence of 
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other immune responses to BARF1 is possible since a systematic analysis of the 
immune response against the protein has not yet been performed.

Very little is known about the EBV-specific immune response in patients 
with other EBV-positive cancers such as GCa, ENKTL and DLBCL. EBV-
positive DLBCL of the elderly is now recognised as a provisional entity in the 
World Health Organisation classification and is defined as a clonal B-cell lym-
phoid proliferation occurring in patients older than 50 years without immunode-
ficiency or prior lymphoma. The detection of EBNA3 expression in a proportion 
of cases (Nguyen-Van et  al. 2011; Cohen et  al. 2013) and the fact that the dis-
ease is associated with ageing has led to the suggestion that the disease arises in a 
background of lowered EBV-specific immunity caused by ageing (Dojcinov et al. 
2011). However, paediatric EBV-positive DLBLCL cases have been reported and 
although these occur at higher frequency in immunocompromised children at least 
some cases arise in apparently immunocompetent children (Cohen et  al. 2013). 
Careful analysis of the antigen-processing phenotype and pattern of EBV gene 
expression in the tumour and the corresponding EBV-specific immune response in 
the blood of the patient will be required to provide a complete picture of whether 
virus-specific immunity is compromised in patients with EBV-positive GCa, 
ENKTL or DLBCL.

5 � Suppression of EBV-Specific T-Cell Responses  
in Patients with EBV-Associated Malignancy

Evading immune destruction is a recognised hallmark of cancer (Hanahan and 
Weinberg 2011). In this regard, several mechanisms are employed by EBV-
associated malignancies to suppress T-cell responses. Although HL tumours are 
heavily infiltrated by immune cells, these infiltrates are dominated by CD4+ regu-
latory and CD4+  Th2 cells. Many reports do not differentiate between EBV-
positive and EBV-negative cases, but this distinction is important to make because, 
although the two subtypes appear superficially similar, several important dif-
ferences exist between them, namely the tumour immune microenvironment. 
Firstly, EBV-positive HL has a distinct gene signature with markers indicat-
ing cytotoxic and Th1 responses being increased (Chetaille et  al. 2009; Barros 
et  al. 2012) although markers of suppression such as LAG-3 and IL-10 are also 
raised (Morales et al. 2014). Secondly, while the frequency of regulatory T cells 
is increased in the blood and particularly the tumour infiltrates of HL patients 
(Marshall et  al. 2004), the presence of EBV correlates with higher numbers 
of both natural and induced regulatory T cells (Assis et  al. 2012; Morales et  al. 
2014). The increased numbers of the former in EBV-positive disease may stem 
from EBNA1-mediated upregulation of CCL20 in the malignant Hodgkin/Reed–
Sternberg cells (Baumforth et al. 2008). The immunoregulatory molecule PD-L1 
is also expressed by HRS cells and in the case of EBV-positive disease, this may 
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result from LMP1- and LMP2-mediated upregulation of an AP-1-dependent path-
way rather than an increase in PD-L1 gene dosage through chromosome 9p24.1 
amplification (Yamamoto et al. 2008; Juszczynski et al. 2007; Green et al. 2012).

Less is known about the microenvironment of NPC. The most common sub-
type, undifferentiated NPC, is always EBV-positive and the tumours contain a 
sizeable infiltrate of lymphoid cells recruited to the tumour via CXCR6 and CCR5 
(Parsonage et  al. 2012). Regulatory CD4 + T-cell numbers are increased in the 
blood of some patients and these cells are also consistently detected in tumours 
(Lau et al. 2007; Yip et al. 2009). The presence in tumours of CD8+ FoxP3+ lym-
phocytes with suppressive function has also been reported (Li et al. 2011). In cer-
tain respects, HL and NPC tumour cells use similar strategies to evade immune 
responses. For example, an immunomodulatory galectin (galectin-1 in HL, galec-
tin-9 in NPC) (Juszczynski et  al. 2007; Gandhi et  al. 2007; Klibi et  al. 2009) is 
expressed by a proportion of cases of each disease as is Fas ligand, which may 
act as a tumour defence molecule (Dutton et al. 2004). However, important differ-
ences exist between HL and NPC. For example, few cases of EBV+ve HL express 
HLA-G, an inhibitor of T- and NK-cell function, whereas it is expressed by 80 % 
of NPC tumours with high expression predicting poor survival (Cai et al. 2012).

Expression of the immunoregulatory molecule PD-L1 was detected in 90 % of 
EBV-positive HL cases and NPC cases as well as a wide range of EBV-associated 
malignancies including extranodal NK/T-cell lymphoma, diffuse large B-cell lym-
phoma and PTLD (Chen et al. 2013). These diseases may therefore be amenable 
to immune checkpoint inhibitors that target the PD1/PD-L1 axis (Pardoll 2012). 
Several of these inhibitors are being tested in late-stage trials for melanoma and 
non-small cell lung cancer, and they have yielded impressive clinical outcomes. 
Whether PD1/PDL1 inhibition will be similarly effective in the context of EBV-
associated malignancies is currently unknown. They may be effective when used 
as single agents or could be combined with existing adoptive T-cell therapy or 
therapeutic vaccination strategies (Smith et  al. 2012; Chia et  al. 2014; Bollard 
et al. 2014; Taylor et al. 2014; Hui et al. 2013) since they clearly have synergistic 
potential (Wolchok et al. 2013). Rational combination approaches may be of par-
ticular value in cases of advanced disease which currently represents a challenging 
clinical problem.

6 � Future Directions

1.	 Defining the immunological factors influencing whether primary EBV infec-
tion is asymptomatic or leads to infectious mononucleosis.

2.	 Determining what sort of immunity is important in determining the viral load 
set point and how control over this is lost in elderly populations.

3.	 Understanding the role of innate immune cells in limiting primary EBV infec-
tion and whether such cells can be harnessed for therapy of EBV-associated 
malignancies.
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4.	 Characterising the repertoire of immunomodulatory mechanisms operating in 
the different EBV-associated malignancies and whether perturbing those mech-
anisms can unleash EBV-specific T-cell immunity to attack the tumour.

5.	 Understanding the immunology of emerging EBV-associated malignancies 
such as EBV-positive gastric carcinoma and DLBCL, and how these causes of 
morbidity and mortality can be targeted immunologically.

6.	 Improving the efficacy of immunotherapies to treat EBV-associated malignan-
cies, particularly in cases of advanced disease, and developing ways to apply 
immunotherapies to patients in low-resource countries where many cases of 
EBV-associated malignancy occur.
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