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Abstract Epstein-Barr virus (EBV) infection is a common feature of B cell 
lymphoproliferative disorders (LPDs), including diffuse large B cell lymphoma. 
Approximately 10 % of DLBCLs are EBV-positive, with the highest incidence in 
immunocompromised and elderly patients. Here, we review the clinical, genetic, 
and pathologic characteristics of DLBCL and discuss the molecular role of EBV 
in lymphoma tumorigenesis. Using EBV-positive DLBCL of the elderly as a 
model, we describe the key features of EBV-positive DLBCL. Studies of EBV-
positive DLBCL of the elderly demonstrate that EBV-positive DLBCL has a dis-
tinct biology, related to both viral and host factors. The pathogenic mechanisms 
noted in EBV-positive DLBCL of the elderly, including enhanced NFκB activity, 
are likely to be a generalizable feature of EBV-positive DLBCL. Therefore, we 
review how this information might be used to target the EBV or its host response 
for the development of novel treatment strategies.
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1  Introduction

Epstein-Barr virus (EBV) has been linked to a wide number of human cancers. 
Among these neoplasms, B cell lymphoproliferative disorders (LPDs) are the 
most frequent and strongly associated. Diffuse large B cell lymphoma is the most 
common lymphoid malignancy in adults, accounting for nearly a third of non-
Hodgkin’s lymphoma cases (NHL) globally (Fisher and Fisher 2004; Menon et al. 
2012; Jemal et al. 2011).

DLBCL is characterized by rapidly proliferating cells expressing B cell-asso-
ciated antigens CD19, CD20, CD22, and CD79a (Martelli et al. 2013; Swerdlow 
et al. 2008). Despite these common features, DLBCL is a heterogeneous disease 
from the standpoints of biology and clinical outcome (Dave 2010). Prognosis 
reflects this heterogeneity, with long-term survival rates ranging between 30 and 
90 %, dependent on clinical stage and disease subtype (Ziepert et al. 2010; Corti 
et al. 2010).

Roughly 10 % of DLBCLs are EBV-positive, with a significantly higher inci-
dence in setting of immunocompromised and elderly patients (Heslop 2005). 
There are additional biological differences that distinguish EBV-positive DLBCLs 
from other DLBCLs, particularly the activation of the NF-kB and JAK/STAT sign-
aling pathways (Montes-Moreno et al. 2012; Kato et al. 2014).

This chapter will review the challenges of classifying DLBCL, particularly 
with regard to EBV-positive lymphoid tumors. We will further review the clinical, 
genetic, and biological studies that have led to our current understanding of EBV-
positive DLBCL. Finally, implications for these findings on treatment strategies 
and patient care will be considered.

2  Classification Challenges of DLBCL

The general organizing principles of DLBCL as it understood today were initially 
presented in the REAL classification of 1994, and were subsequently incorporated 
into the WHO classification (Menon et al. 2012) which is now the widely accepted 
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standard. While these evolving classifications have provided a clearer categoriza-
tion of these tumors, the diagnosis does not capture all the observed clinicopatho-
logic heterogeneity that is commonly observed in the disease.

Significant effort has been dedicated to the subclassification of DLBCL into 
more clearly delineated disease entities (Swerdlow et al. 2008; Balague Ponz et al. 
2008). Table 1 depicts the subtypes of DLBCL defined in the 2008 WHO clas-
sification. Details of each category, including cellular immunophenotype, cytoge-
netics, gene expression patterns, and EBV association, are provided. The complex 
subdivisions in this scheme highlight diverse characteristics such as anatomic 
location (DLBCL leg type), patient age (EBV-positive DLBCL of the elderly), and 
presence of viral coinfections (HHV8+ DLBCL arising in the setting of multicen-
tric Castleman’s disease) (Swerdlow et al. 2008).

In addition to immunophenotyping and cytogenetics, microarray technology 
has provided new insight into molecular patterns of DLBCL through the examina-
tion of global gene expression alterations occurring in a given tumor. Gene expres-
sion profiling (GEP) of DLBCL tumors demonstrates that these tumors can be 
divided into two major subtypes based on their gene signatures (Alizadeh et al. 
2000; Rosenwald et al. 2002; Lenz et al. 2008a). These two entities, germinal 
center B cell (GCB) and activated B cell (ABC), show distinct clinical behavior 
and treatment outcomes. The five-year overall survival of ABC and GCB DLBCL 
is 30 and 59 %, respectively (Lenz et al. 2008a). The complexity of processing 
and interpreting microarray data has restricted its global applicability and has thus 
far prevented GEP classification from being incorporating into the WHO classi-
fication (Balague Ponz et al. 2008). However, immunohistochemistry provides a 
useful surrogate to GEP (Hans et al. 2004; Choi et al. 2009). GEP surrogates are 
a reproducible, less expensive alternative to microarrays and have been widely 
adopted by pathologists. A combination of five immunohistochemical mark-
ers, GCTE1, CD10, BCL-6, IRF4, and FOXP1, predicted clinical outcome and 
achieved 90 % concordance with GEP (Choi et al. 2009).

GEP data suggest that most DLBCLs originate either during a B cell’s tran-
sit through the germinal center reaction (GCB type) or in post-germinal center 
B cells (ABC type). Next-generation sequencing studies of DLBCL, including 
whole exome sequencing, genome copy number analysis, and RNA sequencing 
show that, in addition to having unique gene expression signatures, GCB and ABC 
tumors have different patterns of genetic mutation that likely reflect their distinct 
biology (Zhang et al. 2013; Morin et al. 2013; Pasqualucci et al. 2011). Distinct 
features of GCB and ABC DLBCL will be reviewed next.

Germinal centers (GCs) are transient structures that form in secondary lym-
phoid tissue in response to antigenic stimulation. During their passage through 
the GC, B cells undergo rapid proliferation, somatic hypermutation (SHM) of the 
variable chains of their immunoglobulin genes, class-switch recombination (CSR), 
and affinity selection (Victora and Nussenzweig 2012). The GC reaction is the 
process by which mature B cells are generated, and is thus absolutely critical to 
adaptive immunity. It is also a common site of lymphomagenesis. B cell transfor-
mation can occur during the GC reaction from the acquisition of mutations that 



318 J.A. Healy and S.S. Dave

Ta
bl

e 
1 

 D
L

B
C

L
 s

ub
ty

pe
s 

fr
om

 th
e 

W
H

O
 2

00
8 

cl
as

si
fic

at
io

n 
of

 ly
m

ph
om

as

Su
bt

yp
e

D
efi

ni
ng

 f
ea

tu
re

s
Im

m
un

op
he

no
ty

pe
C

yt
og

en
et

ic
s

G
E

P 
su

bt
yp

e
%

 E
B

V
 tu

m
or

 
po

si
tiv

ity
E

B
V

 la
te

nc
y 

pa
tte

rn
R

ef
er

en
ce

s

D
L

B
C

L
, N

O
S

– 
M

os
t c

om
m

on
 

N
H

L
 s

ub
ty

pe
 

– 
D

if
fu

se
 im

m
un

ob
-

la
st

s 
ef

fa
ci

ng
 n

or
m

al
 

tis
su

e 
ar

ch
ite

ct
ur

e 
– 

N
o 

de
fin

in
g 

ag
e/

di
se

as
e 

lo
ca

tio
n/

vi
ru

s

– 
(+

)C
D

19
/2

0,
 

C
D

22
, C

D
79

a,
 

PA
X

5 
(p

an
 B

 c
el

l 
m

ar
ke

rs
)

– 
3q

27
 r

ea
r-

ra
ng

em
en

t 
(3

0 
%

)–
 t(

14
:1

8)
 

(2
0 

%
)–

 M
Y

C
 

re
ar

ra
ng

em
en

t 
(1

0 
%

)

A
B

C
 o

r 
G

C
B

10
 %

I/
II

(M
ar

te
lli

 e
t a

l. 
20

13
; S

w
er

dl
ow

 
et

 a
l. 

20
08

; S
te

in
 

et
 a

l. 
19

84
)

T
 c

el
l/h

is
tio

cy
te

-
ri

ch
 la

rg
e 

B
 c

el
l 

ly
m

ph
om

a

– 
Sc

at
te

re
d 

im
m

un
o-

bl
as

ts
 (

<
10

 %
 c

el
ls

) 
w

ith
 p

re
do

m
in

an
t 

T
 c

el
l/h

is
tio

cy
te

 
ba

ck
gr

ou
nd

 
– 

Sp
le

no
m

eg
al

y 
B

M
 

in
vo

lv
em

en
t 

– 
C

an
 p

ro
gr

es
s 

to
 

D
L

B
C

L
 N

O
S

– 
N

eo
pl

as
tic

 c
el

ls
 

ex
pr

es
s 

pa
n 

B
 c

el
l 

m
ar

ke
rs

 
– 

(−
) 

C
D

30
/1

5 
– 

T
 c

el
ls

 (
+

) 
C

D
3/

4,
 T

IA
-1

, (
−

) 
G

ra
nz

ym
e 

B

– 
H

ig
h 

bu
rd

en
 

of
 c

hr
om

os
om

al
 

al
te

ra
tio

ns
 

– 
3q

27
 r

ea
rr

an
ge

-
m

en
t (

50
 %

) 
– 

X
 g

ai
n 

– 
17

p−

In
te

rm
ed

. 
be

tw
ee

n 
G

C
B

 
an

d 
R

ee
d–

St
er

nb
er

g 
ce

lls

20
 %

I/
II

(L
im

 e
t a

l. 
20

02
; 

Fr
an

ke
 e

t a
l. 

20
02

; 
Pi

tta
lu

ga
 a

nd
 J

af
fe

 
20

10
)

D
L

B
C

L
 

as
so

ci
at

ed
 

w
ith

 c
hr

on
ic

 
in

fla
m

m
at

io
n

– 
A

ri
si

ng
 a

t s
ite

s 
of

 
ch

ro
ni

c 
in

fla
m

m
a-

tio
n 

(e
.g

., 
m

et
al

-
lic

 p
ro

st
he

se
s,

 
py

ot
ho

ra
x)

– 
“L

oc
al

 
im

m
un

e 
de

fic
ie

nc
y”

 
du

e 
to

 c
hr

on
ic

 
in

fla
m

m
at

io
n

– 
Pa

n 
B

 c
el

l 
m

ar
ke

rs
– 

Se
e 

D
L

B
C

L
 

N
O

S
A

B
C

10
0 

%
II

I
(L

oo
ng

 e
t a

l. 
20

10
; 

N
ar

im
at

su
 e

t a
l. 

20
07

; N
ak

at
su

ka
 

et
 a

l. 
20

02
)

E
B

V
-p

os
iti

ve
 

D
L

B
C

L
 o

f 
th

e 
el

de
rl

y

– 
A

ge
 >

50
y,

 im
m

u-
no

co
m

pe
te

nt
, n

o 
pr

ev
io

us
 ly

m
ph

oi
d 

m
al

ig
na

nc
y

– 
Pa

n 
B

 c
el

l m
ar

k-
er

s 
– 

C
D

30
+

 (
50

 %
)

– 
Se

e 
D

L
B

C
L

 
N

O
S

A
B

C
10

0 
%

II
/I

II
(O

ya
m

a 
et

 a
l. 

20
03

, 2
00

7;
 O

k 
et

 a
l. 

20
13

)

(c
on

tin
ue

d)



319The Role of EBV in the Pathogenesis …

Ta
bl

e 
1 

 (
co

nt
in

ue
d)

Su
bt

yp
e

D
efi

ni
ng

 f
ea

tu
re

s
Im

m
un

op
he

no
ty

pe
C

yt
og

en
et

ic
s

G
E

P 
su

bt
yp

e
%

 E
B

V
 tu

m
or

 
po

si
tiv

ity
E

B
V

 la
te

nc
y 

pa
tte

rn
R

ef
er

en
ce

s

Pr
im

ar
y 

 
m

ed
ia

st
in

al
 

la
rg

e 
B

 c
el

l 
ly

m
ph

om
a

– 
C

om
m

on
ly

 y
ou

ng
 

ad
ul

ts
 

– 
D

er
iv

ed
 f

ro
m

 
m

ed
ul

la
ry

 th
ym

ic
 

B
 c

el
ls

– 
(+

) 
Pa

n 
B

 c
el

l 
m

ar
ke

rs
 

– 
(+

) 
C

D
30

 
– 

(−
) 

Su
rf

ac
e 

Ig

– 
9p

24
 g

ai
n 

co
m

m
on

T
hy

m
ic

 p
at

te
rn

, 
no

t A
B

C
 o

r 
G

C
B

0 
%

N
/A

(A
dd

is
 a

nd
 

Is
aa

cs
on

 1
98

6;
 

C
az

al
s-

H
at

em
 

et
 a

l. 
19

96
)

Pr
im

ar
y 

 
cu

ta
ne

ou
s 

D
L

B
C

L
, l

eg
 

ty
pe

– 
A

gg
re

ss
iv

e 
cu

ta
ne

-
ou

s 
ly

m
ph

om
a 

– 
Po

or
 p

ro
gn

os
is

– 
(+

) 
Pa

n 
B

 c
el

l 
m

ar
ke

rs
 

– 
(+

) 
B

C
L

2,
 I

R
F4

 
– 

(−
) 

C
D

10

– 
Se

e 
D

L
B

C
L

 
N

O
S

A
B

C
U

nk
no

w
n

U
nk

no
w

n
(M

ar
te

lli
 e

t a
l. 

20
13

; S
w

er
dl

ow
 

et
 a

l. 
20

08
; 

N
ak

at
su

ka
 e

t a
l. 

20
02

)

Pl
as

m
ab

la
st

ic
 

ly
m

ph
om

a
– 

H
IV

 a
ss

oc
ia

te
d 

– 
Ty

pi
ca

lly
 a

ri
se

s 
in

 
or

al
 c

av
ity

– 
(−

) 
C

D
20

, P
A

X
5 

– 
(+

) 
C

D
79

a,
 

C
D

13
8

– 
M

Y
C

 r
ea

r-
ra

ng
em

en
t c

om
-

m
on

 (
50

 %
)

A
B

C
50

–7
0 

%
II

/I
II

(C
as

til
lo

 e
t a

l. 
20

08
; V

al
er

a 
et

 a
l. 

20
10

; C
ap

el
lo

 
et

 a
l. 

20
10

)

In
tr

av
as

cu
la

r 
la

rg
e 

B
 c

el
l 

ly
m

ph
om

a

– 
L

ar
ge

 B
 c

el
ls

 in
 

bl
oo

d 
ve

ss
el

 lu
m

en
s 

– 
Sy

m
pt

om
s 

du
e 

to
 m

ic
ro

va
sc

ul
ar

 
in

fa
rc

ts
 

−
 R

ap
id

ly
 f

at
al

– 
Pa

n 
B

 c
el

l m
ar

k-
er

s 
– 

(−
) 

C
D

29
/5

4

– 
D

L
B

C
L

 N
O

S
A

B
C

0 
%

N
/A

(M
ur

as
e 

et
 a

l. 
20

07
; P

on
zo

ni
 

et
 a

l. 
20

07
)

L
ar

ge
 B

 c
el

l  
ly

m
ph

om
a 

ar
is

-
in

g 
in

 H
H

V
8-

as
so

ci
at

ed
 

m
ul

tic
en

tr
ic

 
C

as
tle

m
an

’s
 

di
se

as
e

– 
C

oi
nc

id
en

t H
H

V
8 

an
d 

(±
) 

an
d 

H
IV

 
in

fe
ct

io
ns

 
– 

A
ri

se
s 

in
 s

ev
er

el
y 

im
m

un
oc

om
pr

o-
m

is
ed

– 
Pa

n 
B

 c
el

l m
ar

k-
er

s 
– 

IR
F4

/M
U

M
1

– 
D

L
B

C
L

 N
O

S
A

B
C

R
ar

e
II

I
(C

or
ti 

et
 a

l. 
20

10
; 

C
ar

bo
ne

 a
nd

 
G

lo
gh

in
i 2

00
5)



320 J.A. Healy and S.S. Dave

either promote sustained proliferation or impair apoptosis. These mutations may 
be acquired during repeated cycle cellular replication or may result from off target 
effects of activation-induced cytidine deaminase (AID), the enzyme that initiates 
the processes of SHM and CSR in GC B cells (Orthwein and Di Noia 2012).

Gene mutations that occur more frequently in GCB compared to ABC-type 
DLBCL include C-MYC, EZH2, and GNA13 (Zhang et al. 2013). BCL2 translo-
cations have also been identified in roughly one-quarter of GCB tumors (Schuetz 
et al. 2012). BCL2 activation protects cells from programmed cell death (Kroemer 
1997). Chromosomal rearrangements involving C-MYC, or gain of function 
mutations, promote unregulated cellular proliferation in affected cells (Ott et al. 
2013). Gain of function mutations in EZH2, a histone methyltransferase, promote 
lymphoma by silencing cell cycle regulation genes and tumor suppressor genes 
(Béguelin et al. 2013). Loss of function mutations in GNA13, a G protein involved 
in cell–cell adhesion, enhance AKT signaling and cellular motility and are 
strongly associated with GCB DLBCL (Morin et al. 2013; Muppidi et al. 2014).

In contrast to GCB DLBCL, ABC tumors have gene expression profiles simi-
lar to those seen in activated B cells (Lenz et al. 2008a). The hallmark of ABC 
biology is believed to be chronically active B cell receptor signaling, leading to 
upregulated NFκB activity (Davis et al. 2001; Lenz et al. 2008b). Gene expres-
sion profiling in primary tumor samples, as well as ABC lymphoma-derived cell 
lines, demonstrates enhanced expression of NFκB target genes (Bea et al. 2005; 
Rosenwald and Staudt 2003). Augmented NFκB activity is driven by activating 
mutations in signaling proteins downstream of the B cell receptor and/or Toll-like 
receptors. Common genetic defects in the ABC subtype of DLBCL include gain of 
function mutations in CD79B (B cell receptor), MyD88, MALT1, and Card11, all 
of which promote canonical NFκB activity (Zhang et al. 2013; Morin et al. 2013). 
A20, a negative NFκB regulator, is subject to inactivating mutations (Kato et al. 
2009). These events promote oncogenesis by enhancing cell proliferation and sup-
pressing apoptotic signals. Constitutive NFκB activity may also explain the post-
germinal center phenotype of ABC DLBCL. NFκB promotes enhanced expression 
of IRF4 (interferon regulatory factor-4), a transcription factor that drives the plas-
mablastic differentiation (Staudt 2010). Another important aspect of ABC biology 
is IL-6 and IL-10 generation. These cytokines exert autocrine effects on the tumor 
cells, resulting in the activation of STAT3 (Ding et al. 2008). A subset of DLBCL 
tumors have high STAT3 target gene expression and nuclear localization of phos-
phorylated STAT3. These tumors also demonstrate higher expression of NFκB tar-
get genes (Lam et al. 2008).

At a molecular level, constitutive NFκB activity is related to activating muta-
tions in proteins upstream of NFκB. In B cells, CARD11, MALT1, and BCL10 
form a signaling complex regulated by activation of the B cell receptor (Schulze-
Luehrmann and Ghosh 2006). Upon antigen stimulation, cytoplasmic CARD11 
is phosphorylated by PKCβ (Tan and Parker 2003). CARD11 is then recruited to 
the plasma membrane, where it serves as a molecular scaffold for the assembly 
of MALT1 and BCL10. This recruits the NFκB IKK complex, eventually leading 
to the activation of IKKβ. IKKβ is a kinase that phosphorylates the tonic NFκB 
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inhibitor IκBα. The inhibitor then dissociates with NFκB subunits p50/p65, leav-
ing them free to dimerize, translocate to the nucleus, and activate target genes 
(Staudt 2010). This process is critical for clonally expanding populations of anti-
body-producing B cells in response to an antigenic challenge. ABC tumors co-opt 
BCR signaling with activating mutations in CARD11 or CD79A/B (Lenz et al. 
2008c; Davis et al. 2010). Unbound to antigenic stimulation, affected B cells are 
now capable of sustained NFκB activity. This leads to the enhanced proliferation 
and evasion of cell death, both hallmarks of cancer.

2.1  Disease Etiology

DLBCL usually occurs as a de novo malignancy, or less frequently through the 
“transformation” of an indolent B cell neoplasm, such as follicular lymphoma or 
chronic lymphocytic leukemia (CLL). In latter instance, acquisition of additional 
mutations results in transformation to a more aggressive neoplasm, often referred 
to as Richter’s transformation (Giles et al. 1998).

A causative agent is not identifiable for most cases of DLBCL, though there 
are a number of known risk factors associated with its development, includ-
ing mutagens, toxins, immune dysfunction, and infections (Martelli et al. 2013). 
Chemical exposures including alkylating chemotherapeutics, industrial chemicals, 
pesticides, and fertilizers have been shown to increase a person’s risk of develop-
ing DLBCL (Fisher and Fisher 2004). This is due to the ability of these agents to 
mutagenize DNA. The high proliferation rate of hematopoietic cells renders them 
particularly vulnerable to these toxins.

Problems of immune dysregulation are common in patients with DLBCL 
(Smedby et al. 2006; Miranda et al. 2013). These include genetic and acquired 
causes of immunodeficiency, chronic inflammation, and autoimmune disease. The 
cause of this association is likely multifactorial, but T cell suppression resulting in 
impaired antitumor immunity is felt to play an important role (Yang et al. 2006). 
Immune suppression also permits the reactivation of lymphoma-associated viral 
pathogens, particularly EBV (Rickinson 2014).

Viral infections that increase the risk of DLBCL development include EBV, 
human immunodeficiency virus (HIV), hepatitis C (HCV), and human herpes-
virus-8(HHV8) (Rickinson 2014). Viral infections can increase the risk of lym-
phoma through diverse mechanisms. They can alter T cell suppressor function, 
such as in the case of HIV, which diminishes the body’s immune-mediated anti-
tumor surveillance (Carbone and Gloghini 2005). Viruses can also promote lym-
phoma by driving B cell hyperstimulation, as is the case with EBV infection 
(discussed in detail below), HCV, and HHV8 (Rickinson 2014).

Environmental exposures, immune dysfunction, and infections can operate syn-
ergistically to promote mutagenesis, suppress T cell function, and activate B cell 
stimulation. The cumulative effects of these processes increase the likelihood of 
lymphoma development.
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2.2  EBV and Lymphoma

Over 90 % of the world’s population is infected with EBV, though this infec-
tion is asymptomatic in the vast majority of individuals (Niederman et al. 1970). 
However, the oncogenic potential of EBV is undeniable, as it has been linked to a 
broad range of tumor subtypes, most of which are of B cell origin (De Martel et al. 
2012). The addition of EBV to primary B cells grown in culture leads to growth 
transformation and the generation of immortalized lymphoblastoid B cell lines 
(Nilsson et al. 1971). B cell neoplasms linked to EBV infection include DLBCL, 
post-transplant lymphoproliferative disease (PTLD), Burkitt lymphoma (BL), 
AIDS-related lymphoma (Primary CNS Lymphoma), plasmablastic lymphoma, 
and primary effusion lymphoma. These tumors are characterized by malignant 
B cells that frequently express EBV transcripts and proteins indicating EBV 
infection.

In PTLD, rates of EBV infection range from 70 to 100 % and are related to the 
length and degree of immunosuppression (Juvonen et al. 2003; Taylor et al. 2005). 
In the HIV-positive population, 80 % of DLBCL is EBV-positive (Park et al. 2007) 
and 100 % of primary CNS lymphomas are EBV-positive (Swerdlow et al. 2008; 
Gloghini et al. 2013). Primary effusion and plasmablastic lymphomas, which 
mostly occur in HIV-positive patients, are also positive for EBV in most cases 
(Hsi et al. 2011; Verma et al. 2005). Immunosuppression is a common pathogenic 
cofactor in these B cell neoplasms, and the relevance of this association requires a 
discussion of EBV virology.

EBV is a gamma-1-type herpesvirus that first discovered fifty years ago in 
Burkitt lymphoma tumors from pediatric patients in equatorial Africa (Epstein 
et al. 1964). EBV is similar to other herpesviridae in its capacity to persist in a 
latent state in infected cells. It is distinctive from other herpesvirus genera in its 
restriction to primate hosts, its tropism for establishing latency in B lymphocytes, 
and its ability to promote oncogenic transformation of B lymphocytes through its 
latent gene expression repertoire (Rickinson 2014; Nilsson et al. 1971).

EBV infection in humans occurs in three distinct stages: lytic phase, latent 
phase, and reactivation. First, EBV enters a host by infecting the polarized res-
piratory epithelial cells of the nasopharynx. This initial infection is followed by 
the entry of EBV into the surrounding mucosal lymphoid cells through transcyto-
sis, leading to infection of B cells. This initial lytic phase results in the cell death, 
sloughing of the respiratory epithelial cells and release of high titers of virus, a 
process that can also occur during viral reactivation (Lemon et al. 1977). During 
this phase, EBV binds to CD21 receptors on naive B lymphocytes (Carel et al. 
1990). Once EBV infects a B lymphocyte, the expression of viral genes initially 
promotes growth transformation in the infected cell. Transformed B cells are then 
believed to transit though the germinal center reaction, differentiating into long-
lived quiescent memory B cells (Thorley-Lawson and Gross 2004; Roughan and 
Thorley-Lawson 2009). At this stage, the viral genome persists in an episomal 
state, expressing only a limited number of viral antigens (Young and Rickinson 
2004). This is the latent phase of infection.
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The latent infection is often punctuated by brief periods of viral reactivation 
caused by perturbations in the EBV-infected memory B cell pool. EBV-positive 
memory B cells are thought to function similarly to other memory B cells. Thus, 
if a given cell encounters cognate antigen, it will awake from its resting state and 
undergo plasma cell differentiation. Plasma cell differentiation is a trigger of 
viral reactivation (Laichalk and Thorley-Lawson 2005). Reactivation is believed 
to occur as a result of the actions of XBP-1, a B cell transcription factor critical 
for plasma cell differentiation. XBP-1 is capable of activating the viral BZLF pro-
moter, which controls the expression of viral lytic genes (Sun and Thorley-Lawson 
2007). During this process, infected cells reinitiate the expression of viral antigens 
on their cell surface. In immunocompetent individuals, viral reactivation results 
in brisk humoral and cell-mediated immune responses (Jones and Straus 1987; 
Rickinson and Moss 1997). While antibodies to viral membrane proteins decrease 
viral shedding and infectivity, CD4 and CD8+ T cells are primarily responsible for 
suppressing lytic and latent EBV infections (Jones and Straus 1987). The immune 
system ensures that EBV-positive B cells that reactivate are promptly eliminated, 
thus re-establishing the steady state of latent infection. This is the usual cycle of 
EBV infection present in a normal, healthy individual.

Immunosuppressive states upset the virus–host balance by weakening the 
body’s principle defense against EBV reactivation: cell-mediated immunity. In the 
absence of the CD8+ T cell response, EBV-positive B cells are able to proliferate 
and express viral antigens. Hence, patients suffering from immune-deficient states 
associated with T cell dysfunction are particularly vulnerable to EBV reactivation. 
These include HIV infection and post-transplant immunodeficiency, where med-
ication-induced T cell suppression is necessary to prevent graft rejection. Aging 
can also result in T cell dysfunction due to reduced numbers of CD4/8+ T cells 
and reduction in naïve T cell receptor diversity (Miller 1996). Immune senescence 
is defined as age-related immune alterations that result in increased infections, 
autoimmunity, cancer, and reduced response to prophylactic vaccines. Consistent 
with these observations, the incidence of polyclonal EBV-positive lymphoprolif-
erative disease increases with age, as does the risk of DLBCL133. Figure 1 summa-
rizes the effect of EBV on the pathogenesis of lymphoma formation.

The oncogenic effect of EBV on B cells occurs through the action of a number 
of viral microRNAs and the protein LMP-1 (Rickinson 2014). EBV produces 44 
viral microRNAs, which are believed to regulate viral and cellular mRNA during 
the latent phase of infection (Lopes et al. 2013). These noncoding RNAs promote 
cell growth and immune evasion and prevent the transcription of proapoptotic 
signaling molecules. LMP-1 is a well-studied viral oncogene that is believed to be 
the prime actor in EBV-mediated B cell transformation (Kaye et al. 1993).

LMP-1 is expressed during the latent and lytic phases of infection and is pre-
sent in tumors corresponding to higher degrees of immune compromise (latency 
pattern II and III). LMP-1 is an integral membrane protein that behaves as a func-
tional mimic of CD40, a costimulatory receptor required for B cell activation 
(Uchida et al. 1999; Eliopoulos et al. 1997; Huen et al. 1995). Under physiologic 
conditions, helper T cells recognize antigens presented by B cells. During this 
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interaction, the extracellular portion of CD40 binds its ligand on the T cell mem-
brane. This activates CD40, inducing conformational shape changes that promote 
receptor oligomerization and nucleation of TRAF signaling proteins to its cyto-
plasmic domain (Tsubata et al. 1993). This leads to activation of canonical NFκB 
pathway signaling, cell cycle entry, and protection against apoptosis. Under nor-
mal conditions, these processes lead to adaptive immunity, resulting in the rapid 
generation of high affinity antibodies against foreign antigens. The viral LMP-1 
protein co-opts this process by behaving as a constitutively active CD40 (Uchida 
et al. 1999). In doing so, LMP1 uncouples B cell activation from antigen selection 
and activates AICDA (activation-induced cytidine deaminase), and leads to poly-
clonal lymphocytosis and the acquisition of additional mutations that increase the 
likelihood of transformation into overt lymphoma.

Dependent on the degree of host immune compromise, transformed B cells 
may express all, or just a portion of the EBV latency genes (Tierney et al. 1994). 
Latency I pattern corresponds to the expression profile present in a typical active 
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Fig. 1  The relationship of EBV to the pathogenesis of lymphoma. Naive B lymphocytes are 
infected with EBV and subsequently undergo transformation to memory cells via transit through 
the GC reaction. EBV establishes a latent infection in memory B cells. Upon memory B cell 
reactivation, EBV enters the lytic stage of infection, where it expresses viral antigens on the sur-
face of the infected cell. In immune competent hosts (green), this activates cell-mediated immu-
nity and the lytic phase cells are targeted for destruction. By contrast, immune compromise is 
associated with deficiency in cell-mediated immunity. In these individuals, EBV sets up a pro-
gram of proliferation and increased cell survival which promotes polyclonal lymphocyte expan-
sions or lymphoproliferative disease (red). Ongoing rounds of cellular division lead to the acqui-
sition of additional mutations. If a sufficient number of oncogenic driver and tumor suppressor 
mutations are achieved, then lymphoma occurs



325The Role of EBV in the Pathogenesis …

infection, latency II pattern is marked by the presence of a subset of viral anti-
gens, and latency III pattern results in the expression of the entire EBV repertoire 
(Young and Murray 2003). There may also be a role for viral genetic variation in 
the efficiency of B cell transformation; however, this remains to be fully defined 
through a careful study of cases and controls. Latency patterns may be significant 
as they may reflect distinct aspects of tumor biology. Table 2 depicts the proteins 
associated with each latency pattern and shows the malignancies possessing each 
pattern. The EBV latency patterns associated with different DLBCL subsets are 
indicated in Table 1.

3  Clinical and Pathologic Aspects of EBV-Positive DLBCL

3.1  EBV-Positive DLBCL as a Disease Model

Much of our current understanding of the clinical impact of EBV in DLBCL 
comes from studies of EBV-positive DLBCL of the elderly. This DLBCL classifi-
cation appeared first in the WHO classification of tumors in 2008 as a provisional 
entity (Swerdlow et al. 2008). EBV-positive DLBCL is defined as an EBV-positive 
monoclonal large B cell lymphoproliferation occurring in an immunocompetent 
patient greater than 50 years of age with no history of prior lymphoma. The age 
cutoff emphasizes the tendency of these tumors to arise in individuals of advanced 
age (Balague Ponz et al. 2008; Cho et al. 2008; Cohen et al. 2014), though 

Table 2  EBV latency patterns and associated malignancies

aEBNA, EBV virus nuclear antigen. EBNAs promote EBV genome maintenance and regulate 
gene expression. LMP, latent membrane protein. LMPs interfere with signaling pathways from 
various receptors in the B cell membrane to induce cellular proliferation and inhibit programmed 
cell death. LP, leader protein. LPs co-opt hormone receptors in the B cell nucleus to promote 
growth transformation (Igarashi et al. 2003)

Latency pattern Associated EBV 
proteins

Tumors

I LMP2Aa 
EBNA1a

Burkitt lymphoma 
DBCL NOS 
T cell-rich DLBCL

II #I proteins + 
LMP1 
LMP2B

Classic Hodgkin’s lymphoma 
Angioimmunoblastic T cell lymphoma 
NK/T cell lymphoma, N 
Nasopharyngeal carcinoma 
Gastric carcinoma

III #I/II proteins + 
LPa 
EBNA2 
EBNA3A 
EBNA3B 
EBNA3C

Primary EBV infection 
Post-transplant lymphoproliferative disease 
AIDS-related lymphomas (plasmablastic DLBCL, 
primary CNS lymphoma, primary effusion lym-
phoma) 
EBV + DLBCL of the elderly
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EBV-positive DLBCL has been reported in younger immunocompetent patients, 
albeit rarely (Cohen et al. 2014; Ao et al. 2014; Beltran et al. 2011a). It is pres-
ently unclear whether elderly patients can be truly considered immune compe-
tent, and thus distinct from other EBV-positive DLBCL subtypes, or whether the 
EBV reactivation in these patients is due to age-related T cell dysfunction (Miller 
1996). Regardless, compared to other EBV-positive DLBCL subtypes, EBV-
positive DLBCL of the elderly is not associated with concomitant immunosup-
pression, or use of transplant rejection medications, HIV or HHV8 coinfection, 
secondary malignancies, or chronic inflammatory disease. For this reason, EBV-
positive DLBCL of the elderly appears to be a good model for the study of how 
EBV affects DLBCL disease course and treatment response and it is instructive to 
review this disease entity in some detail.

3.2  Historical Perspective

EBV-positive DLBCL was initially described by Oyama et al. in 2003 as “senile 
EBV-positive lymphoproliferative disorder” (Oyama et al. 2003). In that case 
series of 22 Japanese patients, the authors described a spectrum of EBV-positive 
lymphoproliferative disease (LPD) ranging from polyclonal B cell lymphocytosis 
to DLBCL. Compared to EBV-negative LPD, patients with EBV-positive tumors 
had a higher rate of extranodal involvement, a more aggressive clinical course, fre-
quent refractory disease or early relapse, and worse overall survival. Since this ini-
tial observation, groups in other countries have confirmed the existence of DLBCL 
patients with EBV-positive tumors and without known immunodeficiency (Gibson 
and Hsi 2009; Beltran et al. 2011; Hoeller et al. 2010; Hofscheier et al. 2011; Uner 
et al. 2011; Al-Humood et al. 2014). Consistent with the initial report, these EBV-
positive immune competent individuals are almost exclusively elderly.

3.3  Epidemiology

Though there have been a number of studies assessing the prevalence rate of EBV 
positivity in DLBCL tumors from elderly, immune competent patients, the geo-
graphic prevalence of the disease appears variable. Groups from the USA and 
European countries have reported incidences <5 % (Gibson and Hsi 2009; Hoeller 
et al. 2010; Hofscheier et al. 2011) and some Asian and Latin American countries 
report rates as high as 10–15 % of DLBCLs (Beltran et al. 2011b; Hofscheier et al. 
2011), implicating potential genetic polymorphisms, coinfections, or environ-
mental factors in these geographic differences. However, some studies have dem-
onstrated significant variability within the same geographic region (Wada et al. 
2011), suggesting that there might be an additional confounding variable in the 
lack of standardized criteria for determining EBV positivity in clinical cases.
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Laboratories use differing cutoffs for the percentage of antigen expressing 
cells necessary for a tumor to be deemed EBV-positive (20 % vs. 50 %) (Wada 
et al. 2011). Furthermore, sample processing is not uniform. For example, there 
are various methods for separating EBV-positive tumor cells from contaminating 
background cells (Ok et al. 2013) and these methods are not always applied con-
sistently. Finally, there are different means of detecting EBV infection (EBERin 
situ hybridization or LMP-1 immunohistochemistry) that may affect the assay sen-
sitivity. Universal standardization of EBV testing is needed before definitive con-
clusions about geographic variation of this disease can be made.

3.4  Clinical Characteristics

The median age for EBV-positive DLBCL is 71, with the greatest proportion (20–
25 %) of cases occurring in patients greater than age 90 (Ok et al. 2013; Castillo 
et al. 2011). Initial descriptions of EBV-positive DLBCL of the elderly stressed 
that patients presented in later stage of the disease, measured by IPI and Ann Arbor 
stage, and possessed a high degree of extranodal involvement (Oyama et al. 2003, 
2007). Extranodal extension to GI tract, lung, liver, skin, soft tissue and bone were 
described. However, later studies in North American patients showed that, simi-
lar to EBV-negative DLBCL, both nodal and extranodal disease sites are common 
(Gibson and Hsi 2009; Hoeller et al. 2010; Hofscheier et al. 2011). No distinguish-
ing clinical features have been reliably associated with EBV positivity, except a 
trend toward higher Ann Arbor stage at presentation (Gibson and Hsi 2009).

Studies in Asia and Europe demonstrate that patients with EBV-positive 
DLBCL of the elderly respond poorly to treatment and have worse overall survival 
compared to those with EBV-negative tumors (Park et al. 2007; Hofscheier et al. 
2011; Oyama et al. 2007; Chang et al. 2014). Age, by itself, is a risk for poorer 
outcomes in DLBCL. However, EBV-positive DLBCL is also associated with an 
ABC GEP, which is known to have a worse outcome than GCB tumors (Kato et al. 
2014; Ok et al. 2014). Montes-Moreno et al. (2012) explored whether the differ-
ence in survival was merely due to a higher prevalence of ABC phenotype. They 
compared elderly patients with either EBV-positive DLBCL or EBV-negative 
DLBCL stratified by ABC versus GCB GEP and found that EBV positivity con-
ferred a worse outcome than ABC subtype alone, suggesting that EBV is an inde-
pendent risk factor for poor outcome.

One caveat to the survival studies is that most patients were treated prior to 
the time when rituximab, a monoclonal antibody directed against CD20, became 
a standard addition to chemotherapy regimens targeting B cell lymphoma. A 
study performed on DLBCL patients treated with R-CHOP demonstrated no sur-
vival difference between EBV-positive and EBV-negative patients, suggesting that 
rituximab alone may overcome the survival difference noted in previous reports 
(Montes-Moreno et al. 2012). The possibility of rituximab having activity in 
EBV-positive DLBCL is not unexpected, since rituximab monotherapy effectively 
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eliminates the majority of mature B cells and is a highly effective treatment for 
EBV-positive PTLD (Taylor et al. 2005). More studies are needed to clarify the 
impact of rituximab on the clinical outcomes of this lymphoma.

3.5  Histopathology

EBV-positive DLBCLs typically demonstrate an effacement of nodal and extran-
odal tissue architecture by large, rapidly proliferating immunoblasts with inter-
dispersed areas of geographic necrosis (Al-Humood et al. 2014; Oyama et al. 
2007; Dojcinov et al. 2011). The cellular makeup of the tumor is variable, with 
both polymorphic and monomorphic subtypes described. Polymorphic tumors 
display numerous reactive cells, including histiocytes, plasma cells, and normal 
lymphocytes intermingled with malignant large cells. The monomorphic subtype 
is characterized by sheets of uniform-appearing large cells with minimal reactive 
component. Both entities may contain Reed–Sternberg cells (Oyama et al. 2007), 
which are commonly present in Hodgkin’s lymphoma, another B cell tumor asso-
ciated with EBV. Despite differing appearances, histological subtypes do not have 
prognostic significance (Oyama et al. 2007).

The immunophenotype of EBV-positive DLBCL is that of an aggressive B cell 
tumor of post-germinal center origin. Malignant cells are typically positive for B 
cell markers CD19, CD20, CD79a, and PAX-5. Ki67, a marker of proliferation, is 
usually present in greater than 50 % of tumor cells (Swerdlow et al. 2008; Montes-
Moreno et al. 2012; Al-Humood et al. 2014). Using immunohistochemical mark-
ers, post-germinal center (ABC-associated) proteins IRF4, MUM1, are typically 
positive. GC markers CD10 and BCL6 are usually negative (Montes-Moreno et al. 
2012). In comparison with Reed–Sternberg cells found in Hodgkin’s lymphoma, 
CD15 immunostaining of the neoplastic cells in EBV-positive DLBCL is negative, 
though most specimens (50–89 %) are CD30 positive (Montes-Moreno et al. 2012).

EBV positivity is measured either by fluorescent in situ hybridization of the 
EBERRNA (Chang et al. 1992) or by immunohistochemical detection of the 
LMP-1 protein (Gulley 2001). The expression of EBV latency genes in EBV-
positive DLBCL reveals EBNA-1 and LMP-1 expression in >90 % of tumors, and 
28 % positive for EBNA2, which is consistent with a viral latency II or III pattern, 
similar to that seen in PTLD (Oyama et al. 2003; Hofscheier et al. 2011; Oyama 
et al. 2007; Nguyen-Van et al. 2011; Shimoyama et al. 2008).

3.6  Genetics

Cytogenetic and FISH studies in tumors from EBV-positive DLBCL of the 
elderly have revealed no characteristic abnormalities (Al-Humood et al. 
2014). Chromosomal translocations involving the heavy chain locus occur in 
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approximately 15 % of samples (Montes-Moreno et al. 2012). Cytogenetic alter-
ations have been reported, including copy number gains of the C-MYC, BCL2, 
and BCL6 loci (Dojcinov et al. 2011). Al-Humood et al. (2014) reported that the 
mean total number of chromosomal alternations per case was less than that seen 
for EBV-negative disease. This suggests that the EBV itself, rather than acquired 
mutations, may be driving the pathogenesis of infected tumor cells.

B cell clonality in EBV-positive DLBCL is common, as measured by PCR of 
VH-JH rearrangements in the Ig locus. Most patients demonstrate light chain restric-
tion by Kappa and Lambda immunostaining (Al-Humood et al. 2014). The EBV 
genomes of these specimens also demonstrate clonality, as evidenced by FISH 
probes design to detect the EBV terminal repeat regions (Oyama et al. 2007).

There is also a high incidence of T cell clonality in EBV-positive DLBCL patients, 
with 24 % of cases demonstrating monoclonality in at least one TCR-gamma gene 
(Oyama et al. 2007). The significance of this finding is unclear, however, since 
clonal T cells have also been demonstrated in many healthy elderly individuals. 
Some reports show a prevalence of T cell clones greater than 80 % in asymptomatic 
patients over the age of 75 years (Hadrup et al. 2006). These clones are believed to 
reflect the reduction of T cell diversity inherent to age-related immune senescence.

3.7  Biology

EBV-positive DLBCL is associated with ABC phenotype, which is characterized 
by upregulated NFκB signaling (Staudt 2010). In 2012, Montes Moreno et al. 
assessed the state of NFκB activation in EBV-positive DLBCL tumors by Western 
blot analysis and subcellular localization of classical NFκB subunits p105/p50 and 
alternative pathway subunits p100/p52 (Montes-Moreno et al. 2012). They found 
nuclear localization of these factors in 79 and 74 % of tumors, respectively. Over 
half of tumors demonstrated nuclear expression of both canonical and alternative 
NFκB pathways, significantly greater NFκB activity than that seen in ABC lym-
phoma alone. Furthermore, Kato et al. (2014) found that infecting human ABC 
DLBCL-derived cell lines with EBV enhanced NFκB activity measured by elec-
trophoretic mobility shift assay.

There is only one report of gene expression profiling for EBV-positive DLBCL 
thus far. Kato et al. (2014) studied a total of 61 patients meeting criteria for the 
diagnosis of EBV-positive DLBCL of the elderly and compared these tumors to 36 
EBV-negative DLBCL specimens. The authors found that immune and inflamma-
tory gene pathways are highly expressed in EBV-positive DLBCL of the elderly, 
including NFκB, JAK/STAT, NOD receptor, and Toll-like receptor signaling 
pathways. Expression analysis of the transcriptional targets of NFκB and STAT3 
signaling revealed that these pathways are overactive in EBV-positive tumors. 
The authors went on to evaluate the effect of EBV status on the subset of ABC 
tumors. They found that NFκB and STAT3 expression gene sets were enriched in 
EBV-positive tumors. Finally, the authors evaluated other EBV-positive lymphoma 
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subtypes to determine whether EBV positivity promoted NFκB and JAK/STAT 
signaling in other tumor types. NFκB target gene enrichment was the character-
istic of HIV-associated DLBCL, EBV-positive Hodgkin’s lymphoma, and NK cell 
lymphoma, whereas the STAT3 signature was only associated with B cell lym-
phoma subtypes. These data suggest that NFκB and STAT3 activity may be defin-
ing features of EBV pathogenesis as it relates to lymphoma.

4  Novel Treatment Approaches for EBV-Positive DLBCL

Recent insights into the biology of EBV-positive DLBCL of the elderly have 
revealed the distinct biology of B cell lymphomas that arise in the setting of EBV 
infection. Further, there are many reports suggesting that patients with EBV-
positive lymphoma have worse prognosis than their EBV-negative counterparts. 
For these reasons, new treatments are needed to address the unique pathogenesis 
of this disorder. Possible therapeutic approaches include the following: antiviral 
strategies, EBV-targeted adoptive immunotherapy, and/or agents that target the 
NFκB or STAT3 signaling pathways.

4.1  Antiviral Therapy

Antiviral drugs offer clear potential for the treatment of EBV-positive lymphoma. 
There are other lymphoma subtypes that have previously demonstrated response 
to iradication of an associated microorganism. Gastric MALT (mucosa-associated 
lymphoma) is an extranodal marginal zone lymphoma that is highly associated 
with Helicobacter pylori infection and can be effectively treated with antibiotics in 
70 % of patients (Bayerdörffer et al. 1995). Owing to its potential for latent infec-
tion in resting B cells, EBV is a less straightforward treatment target than H. pylori. 
Treatment of EBV with antiviral medications would first require activation of the 
virus into the lytic phase of infection. Known EBV lytic phase inducers include 
DNA methylase transferase inhibitors, HDAC inhibitors, and chemotherapeutics 
(Feng et al. 2004). Recently, HDAC inhibitors panobinostat and vorinostat have 
demonstrated potent induction of EBV lytic genes in cell lines (Ghosh et al. 2012), 
as well as activity in EBV-associated lymphoma (Piekarz et al. 2011; Younes 2009). 
Induction therapy with an EBV lytic phase inducing agent, followed by EBV antivi-
ral therapy, would provide a potential solution to the latency issue.

4.2  EBV-Targeted Adoptive Immunotherapy

EBV-targeted adoptive immunotherapy is a strategy in which T cells isolated 
from a patient’s peripheral blood are expanded in vitro and activated by exposure 
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to EBV-specific antigens. These cells are then re-introduced into the patient, 
where they colonize tissues and attack lymphoma cells expressing EBV anti-
gens (Gattinoni et al. 2006). Adoptive transfer of EBV-specific CD8+ T cells in 
solid organ transplant recipients has been undertaken successfully (Sherritt et al. 
2003). Adoptive immunotherapy used in combination with DLBCL chemotherapy 
regimens may result in improved response compared to chemotherapy alone for 
patients with EBV-postive DLBCL.

4.3  Biology of Targeted Therapies

The NFκB and JAK/STAT pathways are attractive therapeutic targets in EBV-
positive DLBCL. If given in combination with traditional DLBCL regimens, tar-
geted agents may mitigate the survival differences seen between EBV-positive and 
EBV-negative tumors. Therapeutic strategies that directly inhibit NFκB signaling 
have been fraught with difficulties. NFκB is critical to physiologic processes in many 
cells. Deficiency in genes IKKβ and p65 provokes massive hepatocyte apoptosis 
during development (Strnad and Burke 2007). Adult hepatocytes are less perturbed 
by reductions in these proteins, but still show high sensitivity to toxin and cytokine-
related injury. It is still possible that these inhibitors could be useful in tumors that 
are highly reliant on NFκB activity and provided that the appropriate concentra-
tion of inhibitor can be achieved. Bortezomib is a proteasome inhibitor that is capa-
ble of inhibiting both canonical and noncanonical NFκB signaling (Staudt 2010). 
Bortezomib is widely used in the treatment of multiple myeloma as is well tolerated 
both alone and in combination with other agents. Bortezomib suppresses NFκB acti-
vation by degrading IαBα, an inhibitor of NFκB nuclear translocation. Bortezomib 
is cytotoxic to human EBV-infected lymphoblastoid cell lines (Zou et al. 2007). 
Drugs that target JAK/STAT signaling would also be of potential therapeutic benefit 
to EBV-positive DLBCL. At present, there is much interest in the development of 
potent, selective STAT3 inhibitors for the treatment of lymphoid malignancies.

5  Conclusions

In this chapter, the clinical, genetic, and pathologic characteristics of DLBCL 
were presented, followed by an explanation of the role of EBV in DLBCL tum-
origenesis. Using EBV-positive DLBCL of the elderly as a model, we describe 
the key clinical and pathologic characteristics of EBV-positive DLBCL. We also 
discussed the recent insights into EBV-positive lymphoma biology and potential 
treatment strategies.

Studies of EBV-positive DLBCL of the elderly have provided key insight into 
the pathogenic role that EBV plays in DLBCL. These data demonstrate that EBV-
positive DLBCL has a distinct tumor biology, which is related to the tenuous 
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relationship that the EBV virus establishes with its B cell host. The pathogenic 
mechanisms noted in EBV-positive DLBCL of the elderly, including enhanced 
NFκB activity, are likely to play a role in all forms of EBV-positive DLBCL.

More work is needed to determine whether EBV-positive DLBCLs occurring 
in distinct contexts of immune dysfunction are biologically different tumors. The 
current WHO classification scheme includes subgroups for plasmablastic DLBCL, 
DLBCL associated with chronic inflammation, and EBV-positive DLBCL of the 
elderly, all of which are EBV-positive DLBCL tumors. It would be interesting 
and informative to compare gene expression profiles from these subtypes to see 
whether they are similar. If EBV is contributing to the tumor pathogenesis in each 
case, the other subtypes may also demonstrate marked NFκB and JAK/STAT acti-
vation. This work would confirm that EBV-positive DLBCL has a unique biology 
and provide new clues to treating this disease by methods that disrupt the life cycle 
of EBV viral infection or the signaling pathways induced in these tumors.
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