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    Chapter 19   
 Bioremediation of Toxic Metals Using Algae       

       Panchali     Bhattacharya    ,     Nabanita     Chakraborty    , and     Ruma     Pal    

19.1            Introduction 

 The rapidly growing population and expanding technological activities have accel-
erated the rate of addition of numerous poisonous  pollutants   especially the metal 
ions to the surrounding  environment  .  These   pollutants become deleterious due to 
their mobilization, transport and deposition in the various aquatic as well as terres-
trial  ecosystems  . The cyanobacteria and algae (commonly called together ‘Algae’) 
constitute  t  he most ancient groups of autotrophic microorganisms and are invariably 
affected by the presence of metal ions in  the   environment (Whitton,  1970 ). Algae 
are the organisms which can resist the metal toxicity by biochemical, chemical and 
physical mechanisms resulting in cell surface adsorption, metabolism dependent 
 accumulation   and precipitation (Gadd,  1988 ). They instantly interact with  metal 
  pollutants differently at cellular level showing different responses and  tolerance   
mechanisms, termed as ‘algae-metal  interactions  ’—which is the basis of phytore-
mediation process. 

 Metals and metalloids can be characterized based on their toxicity level towards 
biological organisms (Gadd,  1993 ). One of the most common toxic heavy metal is 
 lead  , causing severe damage to living organisms and  arsenic  , another  toxic   metal-
loid, ranking 28th in abundance on the earth’s crust, is widely encountered in  the 
  environment and severely damages metabolic pathways in different organisms from 
prokaryotes to human beings. Special emphasis would be given in this review on 
phycoremediation (removal of toxic metals by algae) of these two toxic elements 
and their probable mechanisms. 

 To understand the phycoremediation process by algae, it is important to investi-
gate the responses of particular alga to particular metal and  its   tolerance or  sensitivity, 
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together with the metal uptake capacity. The metal ions are either actively accumu-
lated by living cells or adsorbed by dead biomass of algae, may also be chelated 
with the extracted metabolites, polysaccharides or other constituents of the cell sur-
faces. Overall the metal uptake by the algal biomass is  consid  ered to be quite com-
plex phenomenon, infl uenced by several physico-chemical processes of the living or 
dead cells together with the external factors (Gadd,  1992 ). Overall there are two 
processes: (i) more rapid metabolism independent process or adsorption and, (ii) 
comparatively slower metabolism dependent process or uptake. In the fi rst category, 
the metal ions remain adsorbed on the cell surface ligands and in other process or 
active absorption, transportation of metal ions through the cell membrane into the 
cytoplasm occurred (Bates et al.,  1982 ; Mehta and Gaur,  2005 ). Thus the ability of 
cyanobacteria and microalgae to sorb  metal   pollutants from the  surrounding   envi-
ronment at a higher concentration is a fascinating phenomenon which may easily be 
compared to that of other chemical sorbents. Therefore, they are highly suitable for 
use in the treatment of  met  al contaminated industrial or other effl uents. 

 Almost countless reports are there regarding toxic metal removal by algae, few 
are mentioned here. As much as 98–100 % metal (Cd, Pb, Mn) removal effi ciency 
have been recorded by many marine and fresh water algal genera (Esteves et al., 
 2000 ; Ele-Sheekh et al.,  2005 ; Cervantes et al.,  2001 ) and it seems clear that differ-
ent species of algae accumulate metal in different degrees (Jordanova et al.,  1999 ). 
On the other hand, in the  natural   ecosystem, biomagnifi cation of toxic metals by 
algal genera may affect the entire food chain. Therefore, it is necessary to study the 
metal sorption  c  apacity of algal genera for using them in bioremediation purpose on 
one hand and for pollution risk assessment in ecological niche, on the other. A num-
ber of reviews have been published by several authors giving detail account of metal 
sorption by algae,  their   tolerance mechanisms and biotechnology (Whitton et al., 
 1981 ; Genter,  1996 ; Mehta and Gaur,  2005 ). Whitton ( 1984 ) reviewed the  metal 
  accumulation by algae including biomonitoring of metals from natural population, 
assay of metal composition from algal population in laboratory condition, algal 
adaptation to elevated level of metals and effect of different metals on species and 
community composition. Rai et al. ( 1981 ) reviewed in detail  the   tolerance mecha-
nisms of different algal genera giving special emphasis on metal binding on cell 
surface,  exudatio  n of metal complex ligands, effl ux of metal ions and sequestration 
by phytochelatins and metallothioneins intracellularly. Mehta and Gaur ( 2005 ) criti-
cally reviewed the  metal   accumulation process including data analysis, mode of 
action, factors affecting metal sorption, regulation and reuse of metals in detail. A 
comprehensive review on  microbial   arsenic resistance systems have been elabo-
rately illustrated by Mukhopadhyay et al. ( 2002 ), which stated about the global geo-
cycling  of   arsenic, nature of arsenic resistant genes,  arsenate   reductase families, 
 arsenite   oxidation and methylation processes by microbes. 

 Many algae  exhibit    tolerance   to high concentration of toxic metals showing 
higher level of biosorption (De Filippis and Pallaghy,  1994 ).  The   tolerance limit 
differs for different metals for same or different algal genera (Whitton,  1970 ; Foster, 
 1982 ; Takamura et al.,  1989 ; Agrawal and Kumar,  1975 ; Harding and Whitton, 
 1976 ; Say et al.,  1977 ; Whitton,  1980 ). Metal tolerance of algae is the result of 
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 different physiological activities like cell surface adsorption, secretion of extracel-
lular ligands for metal complexation, exclusion of metals and sequestration by phy-
tochelatins, sequestration of  ROS    b  y  stress enzymes   and other chelators etc. (Rai 
et al.,  1981 ; Whitton,  1970 ; Mehta and Gaur,  2005 ). Among the metals used for 
these studies, most commonly used metals are cadmium, chromium (Cr II, III and 
VI), copper, nickel and zinc (De Carvalho et al.,  1995 ; Chong and Volesky,  1996 ; 
Sandau et al.,  1996 ; Roux,  1998 ; Singh et al.,  1998 ; Zhou et al.,  1998 ; Lau et al., 
 1999 ; Chong et al.,  2000 ; Mehta and Gaur,  2001a ,  b ,  c ; Yin et al.,  2001 ; Cossich 
et al.,  2002 ; Mehta et al.,  2002a ,  b ; Chaisuksant,  2003 ; Chojnacka et al.,  2004 ; Feng 
and Aldrich,  2004 ; Hashim and Chu,  2004 ; Lee et al.,  2004 ; Sheng et al.,  2004b ; 
Chojnacka et al.,  2005 ; Gardea-Torresdey et al.,  2005 ; Vijayaraghavan et al.,  2005 ). 
Other metals tested are aluminium, cobalt, iron, mercury  and   lead (Ting et al.,  1995 ; 
Matheickal and Yu,  1996 ; Sandau et al.,  1996 ; Gardea-Torresdey et al.,  1998 ; Ozer 
et al.,  1999 ; Carrilho and Gilbert,  2000 ; Klimmek et al.,  2001 ; Feng and Aldrich, 
 2004 ; Lee et al.,  2004 ; Chojnacka et al.,  2004 ; Prasher et al.,  2004 ; Mahapatra and 
Gupta,  2005 ; Vijayaraghavan et al.,  2005 ). Among the precious metals Au and Ag 
have been tried by a few authors for  bio  accumulation study and to estimate the safe 
and toxic concentration also (Steele and Thursby,  1983 ; Green et al.  1986 ; Ting 
et al.,  1995 ; Niu and Volesky,  2000 ; Lengke et al.  2006a ,  b ). Our laboratory has 
published a series of papers on  gold    accumulation   and recovery by algal genera of 
different groups like cyanobacteria, chlorophyta, diatoms, etc., associated with 
nanogold production or reduction of Au 3+  to Au 0  (Nayak et al.,  2006 ; Chakraborty 
et al.,  2006 ;  2009 ; Parial et al.,  2012 ). 

 Cyanobacterial members are quite effi cient in metal removal process. Therefore, 
many authors used several cyanobacterial strains for bioaccumulation studies. Most 
successfully used taxa are  Oscillatoria ,  Anabaena ,  Spirulina ,  Lyngbya , 
  Synecho    coccus  PCC 7942,  Synechocystis ,  Microcystis  etc. (Sandau et al.,  1996 ; 
Gardea-Torresdey et al.,  1998 ; Pradhan et al.,  1998 ; Singh et al.,  1998 ; Ahuza et al., 
 1999 ; Donmez et al.,  1999 ; Klimmek et al.,  2001 ; Chojnacka et al.,  2004 ; Chojnacka 
et al.,  2005 ; Mahapatra and Gupta,  2005 ). Among the chlorophycean members 
Chlorella vulgaris and a few other species like  Scenedesmus ,  Selenastrum  and 
 Cladophora  are most commonly used for bioaccumulation studies for Cd, Cu, Ni, 
Zn and Au (Keeney et al.,  1976 ; Sandau et al.,  1996 ; Donmez et al.,  1999 ; Lau et al., 
 1999 ; Chong et al.,  2000 ; Mehta and Gaur,  2001a ,  b ,  c ; Mehta et al.,  2002a ,  b ). A 
 larg  e number of seaweeds have been employed for metal removal process like 
 Laminaria ,  Sargassum ,  Ulva ,  Ceramium ,  Ecklonia ,  Fucus ,  Gigartina ,  Padina , 
 Ascophyllum  and  Palmaria  for Au, Co, Cd, Cu and  Pb   accumulation study (De 
Carvalho et al.,  1995 ; Sandau et al.,  1996 ; Yu and Kaewsarn,  1999 ; Niu and Volesky, 
 2000 ; Yin et al.,  2001 ; Ofer et al.,  2003 ; Sheng et al.,  2004b ; Feng and Aldrich, 
 2004 ; Hashim and Chu,  2004 ; Lee et al.,  2004 ; Prasher et al.,  2004 ; Vijayaraghavan 
et al.,  2005 ).  Z   inc   accumulation by Macrocystis (999.50 mg g −1 ) indicated almost 
100 % accumulation (Pradhan et al.,  1998 ).  For   lead, maximum accumulation 
observed was 349.09 mg g −1  by  Laminaria japonica  (Lee et al.,  2004 ) and that of 
nickel was 437.98 mg g −1  by  Chlorella vulgaris  (Mehta et al.,  2002a ,  b ). The sea-
weed genus  Ascophyllum  accumulated 129.9 mg g −1  Cr (III) (Kratochvil and 
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Volesky,  1998 ), whereas 146.12 mg g −1  cadmium sorption was noticed by  Laminaria 
japonica  (Yin et al.,  2001 ). A few authors studied the role of alginate and fucoidan 
present in the cell wall of brown algae in metal binding  pr  ocess (Davis et al.,  2003 ). 
Haug ( 1967 ) reported different degrees of binding capacity of various metals by 
alginic acid extracted from  Laminaia digitata  in a descending series: Pb 2+  -Cu 2+  
-Cd 2+  -Ba 2+  -Sr 2+  -Ca 2+  -Co 2+  -Ni 2+  -Mn 2+  -Mg 2+ . 

 Availability  of   lead on the earth’s surface is quite high (5–25 mg kg −1 ), evolving 
from rocks, being released into  the   environment as gases during volcanic activity 
and associated with natural mobilisation into the environment (Goldberg and Gross, 
 1971 ). Chow ( 1968 ) reported that lead content of  lakes   and rivers varies between 1 
and 10 μg L −1 . As lead is one of the major heavy metals and is a potent  environmen-
tal   pollutant, it gained considerable importance in environmental research. 

 In contrast to higher plants comparatively less data are available regarding Pb 
uptake, transport and detoxifi cation process in algal systems. A few reports are 
available regarding bioaccumulation of Pb by different algal genera.    Lead content 
of red snow alga  Chlamydomonas  from Greenland and Spitspergen (Fjerdingstad 
et al.,  1974 ) were estimated employing proton induced X-ray spectrometry and 
found higher Pb content in Spitspergen (42.1 μg g −1 ) sample than that of  G  reenland 
(13.2 μg g −1 ). The high content of Pb in  Chlamydomonas  indicates the Pb  contami-
nated   environment due to more industrialisation in Spitspergen. Harding and 
Whitton ( 1978 ) reported the Zn and Pb content of  Nitella fl exilis  from Pb contami-
nated reservoir polluted by mining activities. The seaweed genus  Laminaria japon-
ica  and cyanobacterial member  Lyngbya taylori  showed comparatively high amount 
of  Pb   accumulation, which was 349.09 mg g −1  and 304.56 mg g −1  (DW) respectively 
(Lee et al.,  2004 ; Klimmek et al.,  2001 ). Another seaweed genus  Ecklonia  accumu-
lated 243 to 281 mg g −1   of   lead (Matheickal and Yu,  1996 ; Feng and Aldrich  2004 ). 
 B  ut other genera like  Spirulina ,  Schizomeris ,  Synechococcus ,  Chlorella  and 
 Palmaria  showed 0.01 to 65.47 mg g −1  of  Pb   accumulation (Chojnacka et al.,  2004 ; 
Sandau et al.,  1996 ; Ozer et al.,  1999 ; Prasher et al.,  2004 ). Holan and Volesky 
( 1994 ) reported Pb accumulation as much as 1.1 to 1.3 mmol g −1  in phaeophycean 
genera like  Ascophyllum ,  Sargassum  and  Fucus . 

    Arsenic, the other toxic metalloid, is widely spread in different layers of earth’s 
crust, with a concentration  range   from 0.1 to more than 1000 ppm (mg kg −1 ) in soil, 
50–400 ppm in atmospheric dust, up to 2.6 ppb in seawater, and up to 0.4 ppb in 
fresh water (Mukhopadhyay et al.,  2002 ). In many countries,    arsenic contamination 
in ground water have been reported like Bangladesh, India, China, Taiwan etc. and 
investigated by several authors (Dhar et al.,  1997 ; Biswas et al.  1998 ; Mandal et al., 
 1996 ,  1997 ; Liangfang and Jianghong,  1994 ; Chen et al.,  1995 ; Tondel et al.,  1999 ). 
The permissible limit for drinking water is only 0.01 mg L −1 , as designated by the 
World Health Organization (WHO). The national standard  of   arsenic concentration 
for drinking water in Bangladesh and India is 0.05 mg L −1 , which is much higher 
than the WHO standard  lim  it. The  highest   arsenic concentration has been recorded 
as 0.9 mg L −1  in Nadia district of West Bengal, India which is 90 times than the 
WHO standard limit and almost 2 mg L −1  in Bangladesh (Chakraborti,  1999 ; Tondel 
et al.,  1999 ). 
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 Different valency states  of   arsenic like, −3, 0, +3 and +5 are present in nature. 
Among them,    arsenite [As(III)] is the dominant form under reducing conditions 
whereas in oxygenated environments,    arsenate [As(V)] is the stable form. As is the 
predominant form in soil and in groundwater and in submerged soil condition, the 
predominant form  is   arsenite.    Methylated As are present in agricultural land, where 
microorganisms based conversion from  inorganic   arsenic to  organic   forms are 
reported including different forms of arsenic, like momomethyl arsinic acid 
(MMAA) and dimethyl arsinic acid (DMMA) (Takamatsu et al.,  1982 ). However, 
the main source  of   arsenic on the Earth’s surface is the igneous activity, i.e., formed 
during volcanic eruption. A schematic diagram for conversion is given in Fig.  19.1 .

   In  marine   ecosystem, the fl ora and fauna like phytoplanktons, macroalgae, crus-
taceans, mollusks and larger fi shes, being continuously exposed to arsenic pollu-
tion,  convert   arsenate to MMA, DMA or other forms  of   organic storage. They either 
store these  comp  ounds or secret into  the   environment (Knowles and Benson,  1983 ; 
Frankenberger,  2001 ). Many algal species are reported to accumulate  organoarseni-
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cal   compounds like water-soluble arsenosugars (i.e. dimethylarsenosugars) and 
lipid-soluble compounds (arsenolipids). Fish and marine invertebrates store 99 % of 
accumulated arsenic in the form of arsenobetaine, which are passed through the 
food chain by phytoplanktons (Klumpp  1980 ). Arsenobetaine in turn is degraded by 
microbial metabolism in coastal seawater sediments to methylarsonic acid  and    inor-
ganic   arsenic. This way biological cycling of arsenic occurs in the marine system 
(Mukhopadhyay et al.,  2002 ).     Ars  enic is metabolized by the human body quite dif-
ferently from food and water depending on the chemical species administered 
(National Research Council,  1999 ; Eisler,  1994 ) and also in the animal species 
(Aposhian,  1997 ; Vahter,  2000 ; Mitchell et al.,  2000 ). As a result  of   accumulation 
and bio-transformation processes,  the    organic   arsenic concentration varies from 
1–100 mg kg −1  in algae and marine animals (Cullen and Nelson  1993 ). Among the 
 nontoxic   organic forms  ar  senocholine (AsC), arsenobetaine (AsB) and arsenosug-
ars are the major biosynthetic products in marine animals (Gailer et al.,  1995 ; 
Larsen,  1995 ) and as a result trace amount of MMA and DMA are sometimes 
detected in seafood products. 

    Arsenic toxicity in algae and  their   tolerance limits have been reported by many 
authors. Algae accumulate and  transform   arsenate because of its similarity (analo-
gous) to the essential and often growth-limiting nutrient PO 4  [(PO-(OH) 3 ]. Arsenic 
induced growth inhibition tests were performed in  Chlamydomonas reinhardii  with 
100 mg L −1  As(V) (Jurewicz and Buikema,  1980 ). But no signifi cant effect on 
growth of  t  he freshwater diatom  Asterionella formosa  was recorded, when exposed 
to 160 μg L −1  As(V) (Conway,  1978 ). Sanders ( 1979b ) exposed the diatom 
Skeletonema costatum  to   organic  and    inorganic   arsenic and found that DMA had no 
signifi cant effect on carbon uptake, and additions of phosphate to the media reduced 
 the   arsenate toxicity. In case of other taxa also growth were not affected in high 
concentrations  of   arsenite or arsenate, like  Tetraselmis chui  and  Hymenomonas 
carterae  (Bottino et al.,  1978 ), Dunaliella sp. (Yamaoka et al.,  1988 ),  Chlorella 
vulgaris  (Maeda et al.,  1985 ) in 100 to 2000 mg L −1  As(V). Therefore, it can be 
inferred  that   arsenic does not affect the growth of some  algae   and cyanobacteria at 
even high concentrations. The pH level of experimental media also affects the toxic-
ity  of   arsenate as observed by Michnowicz and Weaks ( 1984 ) in  Selenastrum capri-
cornutum , where growth enhancement is recorded at a higher pH. There are many 
reports  regarding   arsenic toxicity in diatoms. Hollibaugh et al. ( 1980 ) studied the 
toxicity of arsenic to  Thalassiosira aestevalis . 

 Different studies have been done from time to time to understand the arsenic 
accumulating capacity of different cyanobacterial and algal population in natural 
and experimental  conditio  ns (Imamul Huq et al.,  2005 ; Shamsuddoha et al.,  2006 ). 
Maeda et al. ( 1987 ) exposed the cyanobacterium ( Nostoc  sp.) to 1 and 10 mg As(V) 
L −1  for 32 d and found 32 and 77 mg As kg −1  of dry cell weight with no signifi cant 
effect on growth. Methylation and excretion of As  by   arsenic resistant genus 
Phormidium has been reported by Maeda et al. ( 2004 ). They also reported increased 
growth rate of algal biomass up to 100 mg g −1  As in growth medium.  Skeletonema 
costatum  was found to increase their arsenic concentrations by 40 % (Sanders and 
Windom,  1980 ) and other phytoplanktons  acc  umulate arsenic from 5.7 to 
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17.7 mg kg −1  (dry weight) when cultured for 48–96 h at 25 μg L −1  As(V) (Sanders 
et al.,  1989 ). A study by Maeda et al. ( 1992 ) found  that   arsenate was actively accu-
mulated when the cells were exposed during the early exponential phase of 
 Chlorella . The other unicellular green alga  Dunaliella salina  accumulated  more 
  arsenic at higher nitrogen concentrations (Yamaoka et al.,  1992 ). Reuther ( 1992 ) 
observed that when arsenate was added to a freshwater  model   ecosystem, it was 
readily accumulated by plankton  with   arsenic residues of 37–47 mg kg −1  (dry 
weight) at 5 μg L −1  As(V) exposure and >200 mg kg −1  at 50 μg L −1  As(V) after 65 d 
exposures.    Arsenic also induced changes in cellular metabolites.     Ac  cumulation  of 
  inorganic As increased the beta carotene and fatty acids (C18:1 and C18:3) and 
water extractable carbohydrate content in the cells of  D. salina  (Yamaoka et al. 
 1992 ). 

 Marine macro-algae like  Ascophyllum  and  Fucus  are known to accumulate As 
and selenium showing concentration factors of 1000 to 10000, compared to  their 
  environment (Lunde,  1970 ; Klumpp and Peterson,  1979 ). Several authors detected 
arseno-sugars using anion exchange HPLC or ICP-MS or by other methods from 
different genera of sea weeds like  Porphyra ,  Fucus ,  Sargassum ,  Ceramuim ,  Padina , 
 Enteromorpha ,  Ulva ,   Eich    lonia  etc. (McSheehy and Szpunar,  2000 ; Šlejkovec 
et al.,  2006 ; Edmonds and Francesconi,  1981 ; Madsen et al.,  2000 ). Many reports 
have illustrated the extraction and separation of arsenosugar species from marine 
algae.  Laminaria japonica  (brown algae),  Fucus serratus  and  Porphyra  (red algae) 
were found to contain four arsenosugars and methylarsonicals (Karthikeyan and 
Hirata,  2003 ).  In   environmental waters several algae infl uence the speciation  of 
  arsenic also (Bottino et al.,  1978 ; Conway,  1978 ).  Gree  n alga  Chlorella  has been 
reported to  reduce   arsenate  to   arsenite (Knauer and Hemond,  2000 ). Garcia-Salgado 
et al. ( 2006 ) identifi ed As(V) in  Hizikia  (46 ± 2 mg g −1 ),  Sargassum  (38 ± 2 mg g −1 ) 
and  Chlorella  (9 ± 1 mg g −1 ) samples and DMA in  Chlorella  (13 ± 1 mg g −1 ). Several 
authors have reported different species  of   arsenic like As(V), As(III), arsenobetaine, 
arsenocholine, arsenosugars, tri-MeOH-ribose, glycerol triethylated arsenoribo-
side; DMAE, dimethylarsenoyl ethanol; MA, methyl arsonate; DMA, dimethyl 
arsinate; TETRA, tetramethylarsonium ion; TMAO, trimethylarsine oxide in marine 
macroalgae,  Laminaria ,  Sargassum ,  Undaria ,  Hizika ,  Pelvetia ,  Myelophycus , 
 Ceramium ,  Gelidium ,   Cystose    ira ,  Enteromorpha ,  Fucus ,  Padina ,  Polisyphonia , 
 Ulva ,  Chladophora ,  Chlorella ,  Eucheuma  etc. (Meier et al.,  2005 ; Garcia-Salgado 
et al.,  2006 ; Hirata and Toshimitsu,  2007 ; Šlejkovec et al.,  2006 ; Rubio et al.,  2010 ).  

19.2     Mechanism of Phycoremediation 

 Algal cell walls from different groups with varied chemical nature have played 
important role in metal sorption process. Generally carboxylic group of cell wall 
polysaccharide play a  pred  ominant role in metal uptake by cyanobacteria and 
eukaryotic algae (Chojnacka et al.,  2005 ). The other functional group like sulpho-
nate, amino and hydroxyl groups in adsorption of various metal ions have also been 
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reported (Mehta and Gaur,  2005 ). Thiol group also plays an important role in sorp-
tion of metals like Cd at lower pH (Sheng et al.,  2004a ). Metal sorption by brown 
algae like  Ascophyllum ,  Sargassum  etc. is high due to their alginate content (Davis 
et al.,  2004 ). 

 A number of metals are  repor  ted to bind to intracellular polyphosphate granules 
of algal cells. Therefore, the metals remain in bound form in presence of high con-
centration of PO 4  3− . Reports are available regarding Zn and Cd binding to polyphos-
phate granules (Bates et al.,  1985 ; Walsh and Hunter,  1992 ). X-ray microanalysis 
revealed that polyphosphate bodies in  Chlorella  treated with Al, Fe, Cu and Zn 
(Wong et al.,  1994 ) and in  Anabaena cylindrica  exposed to lead (Swift and Forciniti, 
 1997 ). 

 Algal enzyme systems are active to  c  ombat the metal stress. Some enzymes take 
active part in metal detoxifi cation process by reducing the toxic metal to non-toxic 
form or by quenching  the   ROS (Hassan and Scandalios,  1990 ; Rice-Evans et al., 
 1996 ; Fridovich,  1997 ; Asada,  1999 ). In  Chlorella , mercuric chloride and phenyle 
mercuric acetate is reduced to metallic, volatile mercury by NADPH or NADH 
(Ben-Bassat and Mayer,  1977 ). 

 Algal extracellular  polysaccha  rides (EPS) are potential compounds for metal 
removal process due to the presence of different metal chelating ligands and are 
used in different biotechnological purposes. Uronic acid and COOH −  group present 
in EPS of cyanophycean algae and COOH −  and SO 4  −  of heteropolysaccharides of 
green algal genera serve as prime metal chelating components. Oxidation of Myo- 
inositol is the key step in the formation of plant extracellular polymeric substances 
like gum, mucilage, glycoprotein etc. (Loewus and Loewus,  1983 ). From this point 
of view excess production of algal EPS in metal stressed condition can be attributed 
to oxidizing capacity of  the   ROS produced  wit  hin the cells. 

 Several cyanophycean and chlorophycean algal species have been reported to 
produce copper-complexing polysaccharidic ligands. Pistocchi et al. ( 1997 ) reported 
higher extracellular carbohydrate production in  Cylindrotheca fusiformis  than 
 Gymnodinium  sp. with increased toxic Cu concentration of 0.2 to 0.5 ppm after 12 
to 16 days of growth. McKnight and Morel ( 1979 ,  1980 ) detected strong copper 
complexing chelate in culture of cyanophytes at stationary growth phase. Results 
show that cyanobacteria complexes are generally stronger than those of eukaryotic 
ones. Nordi et al. ( 2005 )  inves  tigated the potentiality of EPS produced by  Anabaena 
spiroides  in binding Mn(II), Cu(II), Pb(II) and Hg(II) and successfully used for 
bioremoval process. The algal cell may show the metal resistance employing differ-
ent biochemical pathways as shown in Fig.  19.2 .

19.3        Phytoremediation and Oxidative Stress 

 Nonessential metals in sub lethal  concentrati  ons trigger oxidative stress to the plants 
leading to the formation of persistent reactive oxygen  species   (ROS), which dam-
ages the cell organelles and disturbs the cellular metabolism. Enzymatic 
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components like superoxide dismutase (SOD), catalase (CAT), glutathione peroxi-
dase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR) as well as 
non- enzymatic molecules such as ascorbic acid, cystein, reduced glutathione, 
α-tocopherol, hydroquinone, carotenoids and polyamines form the anti-oxidative 
systems of the cell suppressing the ROS level, therefore, reducing the metal toxicity. 
This is the main basis for phycoremediation of toxic metals. In metal exposure, 
oxidative stress results from reduced  antioxidant   enzymatic defense, or low molecu-
lar mass like glutathione, α-tocopherol, ascorbate and/or  a  n increase in production 
of reactive oxygen  species   (ROS) (Mallick and Mohan,  2000 ; Okamoto and 
Colepicolo,  2001 ; Pinto et al.,  2003 ). The  internal   ROS level exceeds  the   tolerance 
level for inducing oxidation of lipids, proteins and nucleic acids toxicity results 
(Halliwell and Gulleridge,  1999 ). Under severe metal pollution, not only excessive 
oxidation occurs, but the effi ciency of anti-oxidative defence is greatly altered. In 
non-resistant plants these mechanisms are weak. Algae generally respond at molec-
ular level quickly to combat the toxicity (Reed and Gadd,  1990 ; Rodriguez- Ariza 
et al.,  1991 ; Holovská et al.,  1996 ; Okamoto et al.,  1996 ; Pinto et al.,  2003 ). 

 One important major non-protein thiol- gluta  thione plays main role in scheming 
the  organism’s   antioxidant defense mechanism; especially the reduced thiols are 
reported to recycle the antioxidants, vitamin E and vitamin C (Constantinescu et al., 
 1993 ). It also acts as a reductant in the highly  oxidizing   environment of photosyn-
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  Fig. 19.2    Pathways of metal  seques  tration in the algal cell (arrows indicate metal sequestration 
pathways).       
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thetic cells in plants (Alscher,  1989 ; Noctor and Foyer,  1998 ). The SH group of GSH 
can be used to reduce peroxides derived as by-products of metabolism which in turn 
 may   lead to enhance the peroxidation of membrane lipids and loss of cell viability 
(De Vos,  1992 ; Pinto et al.,  2003 ). Therefore, consumption of cellular GSH in scav-
enging reactive species and free radicals produced in metal stressed condition is obvi-
ous. Reduction in GSH amount can also be seen in case of enhanced activity of H 2 O 2  
removing ascorbate oxidase (Apx) system. Actually, transfer of signal for translation 
of Apx transcript is inhibited by high levels of GSH (Karpinski et al.,  1997 ). Under 
conditions of oxidative stress when Apx activity is required, GSH levels would be 
 de  pleted to reduce dehydroascorbate (DHA) to ascorbate (AA) by means of DHA 
reductase. There are reports on correlation of acute metal stress and decreased 
reduced glutathione pool as found in treated cells in  Gonyaulax polyedra  exposed to 
the toxic metal Pb 2+  (Okamoto et al.,  1999 ). Nagalakshmi and Prasad ( 2001 ) observed 
progressive depletion of GSH content with increasing concentration of Cu. 

 The harmful H 2 O 2  is removed catalytically by catalase (CAT) and ascorbate per-
oxidase (APX). Catalytic breakdown of H 2 O 2  to H 2 O and O 2  is induced by CAT and 
this occurs in peroxisomes (Halliwell and Gulleridge,  1999 ), but in cyanobacteria 
catalase  acti  vity is located in cytosol (Regelsberger et al.,  1999 ). Catalysis of H 2 O 2  
is done differently by APX, which removes it by using it to oxidize ascorbate, pro-
ducing mono-dehydro-ascorbate (MDHA) and H 2 O. There are at least three distinct 
isoenzymes of APX: thylakoid bound, stromal and cytosolic APX which are 
restricted to higher plants, algae and some cyanobacteria (Mittler and Zilinskas, 
 1993 ). These enzymes counteracting H 2 O 2  exposure, is part of the integrated net of 
strategies that make the redox status of algal cells (Barros et al.,  2003 ). An increase 
in peroxidase activity is regarded as a reliable indicator of stress from toxicity of 
heavy metals/metalloids, which may cause disruption of the plasma membrane by 
lipid peroxidation and  the   ROS production (Macfarlane and Burchett,  2001 ). 

 Dismutation of O 2  −  by SOD produces H 2 O 2 ,  a   weak oxidizing agent that can 
cross the cell membrane easier than O 2 . −  and possesses a steady state high concen-
tration (Chance et al.,  1979 ). A 7-fold increase in catalase activity 
(90.7 nmol min −1  mg −1  proteins) was observed by Loretto et al. ( 2005 ) in  Scytosiphon 
lomentaria  inhabiting copper enriched  coastal   environments indicating involvement 
of catalase in buffering oxidative stress  in vivo . The SOD generally catalyses super-
oxide anion radicals produced in different compartments of plant cells to H 2 O 2 . On 
the other hand, transition heavy metals (e.g. Cu, Fe) catalyse the formation of •OH 
radicals from O 2  −  (superoxide) in the nonenzymatic Fenton reaction. The protective 
function of CAT is limited due to its localization mainly in peroxisomes. Ascorbate 
(ASC) is known as a major  pri   mary   antioxidant, reacting directly with •OH, super-
oxide (O 2  − ) and singlet •O 2  (Buettner and Jurkiewicz,  1996 ). Ascorbate peroxidase 
(APX) and glutathione reductase (GR) are vital constituents of the ascorbate- 
glutathione pathway which are required to scavenge H 2 O 2  and to maintain the redox 
state of the cell (Asada,  1992 ). Under oxidative stress increased GR activity could 
be required to supply reduced glutathione (GSH) to the ascorbate-glutathione cycle. 

 Flavonoids are found in higher plants and brown algae and are directly linked 
with scavenging •OH, ONOOH (peroxynitrous acid) and HOCl (hypochlorous 
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acid) in order to inhibit lipid peroxidation. Since fl avonoids bind to metal ions, the 
scavenging effi ciency of  fl avon  oids is directly proportional to the number of 
hydroxyl groups (Rimbach et al.,  2003 ). 

 Under  unfavourable   environmental conditions, among all amino acids, proline is 
accumulated rapidly and more frequently. It acts as a powerful  secondary   antioxi-
dant reducing the oxidized form of α-tocopherol (Buettner and Jurkiewicz,  1996 ). 

 Lipid peroxidation of membranes is an indicator of oxidative damage, which is 
caused by free radicals and hydroperoxides (Smirnoff,  1993 ). It involves oxidative 
 d  egradation of polyunsaturated fatty acyl residues of membranes (Girotti,  1990 ). A 
reduced level of saturated fatty acids and high levels of unsaturated fatty acids of 
membranes in several plant species are brought about by metal ions through lipid 
peroxidation (Halliwell and Gulleridge,  1999 ). These results suggest that decreased 
activities  of   antioxidant enzymes could result in an increased level of lipid peroxida-
tion, thus contributing to damage of cell membranes leading to cell death (Blum and 
Ebercon,  1981 ; Marcum,  1998 ; Abernethy et al.,  1989 ). 

  Enhanced   ROS level generally  induce    antioxi  dant synthesis in algal cultures, 
depending on the duration and severity of the stress applied (Okamoto et al.,  1996 ). 
Generally the type and duration of exposure to metal/metalloid ions, either acute or 
chronic, alter the level  of   antioxidants and create different oxidative status (Okamoto 
and Colepicolo,  2001 ). Therefore, higher level of cellular antioxidants could allow 
cells to combat chronic stress, whereas, sometimes a sudden generation of high 
levels of ROS over a short period can surpass the total antioxidant capacity resulting 
toxicity. Antioxidant capacities of GSH, NADPH and ascorbate are likely to occur 
fi rst in acute stress, which lowers the GSH pool and depletes NADPH levels. 

 In contrast to information pertaining to antioxidative defense in microorganisms to 
the effects of metals on bacteria, fungi, dinofl agellates and diatoms, very little is 
known  about   antioxidant  defense   system in other algae  by   arsenic stress. Pandey et al. 
( 2012 ) studied the upregulations and downregulations in antioxidant system of 
 Anabaena  sp. PCC 7120 exposed to arsenic and found that an up-regulation of CAT, 
peroxiredoxin (Prx), thioredoxin (Trx) and oxidoreductase, and also an appreciable 
induction in phytochelatin content, GST activity and transcripts of phytochelatin syn-
thase,    arsenate reductase  and   arsenite effl ux genes— asr 1102,  alr 1097 which echoed 
their role in As sequestration and shielding of the organism from As toxicity. They 
established that, up-regulation in metabolic and antioxidative defense proteins, phyto-
chelatin and GST together with the  ars  genes play a central role in detoxifi cation and 
survival of  Anabaena  under As stress.  In vitro  study was done by Zutshi et al. ( 2014 ) 
to determine the toxic effect of sodium arsenate (0–100 mM) on an aquatic  c  yanobac-
teria  Hapalosiphon fontinalis -339. At this level they found that MDA production was 
enhanced that probably resulted in decreased growth of the test organism. 

    Accumulation of enzymatic and non-enzymatic substance e.g. SOD, CAT, APX 
activities and proline, total glutathione showed an effi cient antioxidative potential 
mechanism in  Hapalosiphon fontinalis -339. Srivastava et al. ( 2009 ) provided com-
prehensive information  on   arsenic induced oxidative stress and changes in antioxi-
dative defense system of  Anabaena doliolum . They concluded that the 
cyanobacterium may survive better in As(V) than As(III) contaminated fi elds 
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because of its low toxicity and pronounced induction of antioxidative defense  sys-
tem  . The present authors already  reported   arsenic induced changes  in   stress enzymes 
and other stress related compounds in  Phormidium laminosum  (Bhattacharya and 
Pal,  2011 ). Therefore, metals and  metalloids   lead to the activation of a defense 
mechanism inside the cells in the form  of   antioxidants, which lead to the reduction 
of toxicity. Thus it is important to study the biochemical modulations of  the   antioxi-
dant defense system of cyanobacteria  in   Arsenic stress and to fully understand its 
potential as a suitable material for bioremediation process.  

19.4      Genetic   Tolerance  to   Arsenic 

 Rosen and his group (1994, 1997, 2002) did an extensive study on biochemistry of 
As detoxifi cation and its genetic  contr  ol in  E. coli . In prokaryotic system, several 
authors opined the fact that Pit and Pst are the two PO 4  −  transporters and both of 
them catalyse AsO 4  −  uptake, where the Pit system appears to be predominant 
(Willsky and Malamy,  1980 ). In the eukaryote system, like  Saccharomyces cerevi-
siae  different PO 4  −  transporters participate in AsO 4  −      acc  umulation (Yompakdee 
et al.,  1996 ). Sanders et al. ( 1997 ) recorded the glycerol facilitator of  E. coli  which 
transports both As III and Sb III—the trivalent metalloid transported as Glp F being 
a member of the aquaporin superfamily. Aqua-glyceroporins transport  neutral 
  organic solutes like glycerol  a  nd urea. The Fps 1p, the homologue of Glp F, has 
recently been discovered as the route of uptake  for   arsenite in  S. cerevisiae  (Wysocki 
et al.,  2001 ). Liu et al. ( 2002 ) have  also   shown that  ma  mmalian aqua-glyceroporin 
catalyses uptake of trivalent metalloids. The genes responsible for As transport and 
detoxifi cation have also been characterized by several authors (Liu et al.,  2002 ). 

 It is known that the  ancient    environment   was not oxidizing and As(III) was the 
most dominant form, therefore, early  or  ganisms have evolved with a detoxifi cation 
mechanism of As(III),    mainly the extrusion system. According to Dey and Rosen 
( 1995 ), bacteria show two basic mechanisms  of   arsenite extrusion—one is with car-
rier protein, where energy is supplied by the membrane potential of the cell and the 
other by an AsO 3  −  translocating ATPase.  For   arsenate reduction process, three inde-
pendently evolved families of arsenate reductase enzymes have been recognized 
whose sequences also have been identifi ed as a  produc  t of  ars   operon (Mukhopadhyay 
et al.,  2002 ).  Cytosolic   arsenite is also detoxifi ed by removal process (Rosen,  1999 ). 
Cole et al. ( 1994 ) reported that members of multidrug  res  istance associated protein 
(MRP) is responsible for AsO 3  −  resistance in eukaryotic As extrusion systems. Not 
much is however known about extrusion mechanisms in algae. Some work has been 
done by the present group which is illustrated in Fig.  19.3 .

   As mentioned earlier, three  different    famili  es  of   arsenate reductase are reported 
in different organisms. The product of the  arsC  gene from the  E. coli  plasmid R773 
was reported to be the fi rst family  of   arsenate reductases. Several Gram-negative 
bacteria harbour this enzyme, which uses glutaredoxin as a source of reducing 
equivalents. The other two types of pI258 from  Staphylococcus aureus  and  Bacillus 
subtilis  differ signifi cantly from  E. coli . In these cases, instead of glutaredoxin, the 
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arsenate  reducta  se is related to low-molecular-weight protein tyrosine phosphatases 
and uses thioredoxin as the source of reducing equivalents. On the other hand 
another family  of   arsenate reductase from  Saccharomyces cerevisiae , represented 
by the Acr2p enzyme, is also similar to a protein phosphatases which contains 
CDC25a. Generally these  arsC  are responsible for reduction to the more toxic  form 
  arsenite, than exported by the carrier protein ArsB.  The    E. coli  plasmid R773 and 
 Staphylococcus aureus  pI258 bearing  arsB  gene  sho  w similar activity encoding an 
integral membrane protein that  expel   arsenite. When ArsB interacts with ArsA, an 
arsenite-stimulated ATPase, proteins can also function as an arsenite pumps. The 
ARR3 protein from  S. cerevisiae  (formerly ACR3) and the ArsB gene of the  B. sub-
tilis  of  ars  operon are  co  nsidered as second family  of   arsenite carriers. In addition, 
another protein ArsH from gene  arsH  has been found to be essential for resistance 
to arsenite  and   arsenate both in  Yersinia enterocolitica  and  Acidothiobacillus fer-
roxidans  (Lopez-Maury et al.,  2003 ). In some plasmid-determined systems of 
Gram-negative bacteria, the arsenic effl ux pump consists of a two-component 
ATPase complex. The  arsA  gene product is  a   soluble ATPase subunit (Rosen et al., 
 1999 ), which  physicall  y associates with an integral membrane protein, the product 
of the  arsB  gene (Tisa and Rosen,  1990 ; Gladysheva et al.,  1994 ). In most chromo-
somal arsenic resistance systems of Gram negative bacteria and the  pl  asmids and 
chromosomes of Gram-positive bacteria, though adjacent  arsB  and  arsC  genes are 
found, but there is no  arsA  gene (Silver et al.,  2001 ). 

 Eukaryotes such as  Saccharomyces cerevisiae , the arsenic resistance gene cluster 
is similar to that of bacteria (Bobrowicz et al.,  1997 ). Here, three adjoining genes 
 r  emain in cluster, ARR1, ARR2 and ARR3. The fi rst gene, ARR1, appears to  pro-
duce   a yeast transcriptional regulator and its  disruption   leads to hypersensitivity  to 
  arsenite  and   arsenate. Mukhopadhyay et al. ( 2000 ) found  funct  ional yeast ARR2 
arsenate reductase gene in  E. coli.  Galperin et al. ( 1998 ) recorded Arr3p (the protein 
product of ARR3) as a member of a family of arsenite carrier effl ux bacterial and 
archaeal members and is unrelated to the larger family of ArsB proteins found in 

  Fig. 19.3    Arsenic toxicity and  def  ence mechanism in cyanobacteria Phormidium spp. (as studied 
by our group).       
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many bacterial  ars  operons (including in  E. coli  and  Staphylococcus aureus ). 
According to them they evolved as a result of convergent evolution. In addition to 
the three ARR gene products, another yeast protein, Ycf1p, which is an ABC 
ATPase, also contributes to resistance to As(III) and Sb(III), being located in the 
vacuolar membrane and by pumping glutathione adducts, As(GS) 3  and  pre  sumably 
Sb(GS) 3  from the cytoplasm into the vacuole. 

 But very little work has been  rep  orted in  cyan  obacteria and algae where the function 
and regulation of these  ars  genes are still unknown (Cervantes et al.,  2006 ). In 
 Synechocystis  PCC 6803 an arsenic and antimony resistance operon reported showing 
 arsC -encoding a  putative   arsenate reductase,  arsB -encoding a  putative   arsenite- 
antimonite carrier and  arsH -encoding a protein of unknown function (Lopez-Maury 
et al.,  2003 ). It was reported that  arsC  mutants were  se  nsitive only to arsenate, while 
 arsB  mutant strains were sensitive  to   arsenite, arsenate, and antimonite. They also 
observed that purifi ed recombinant ArsR protein bound to the  arsBHC  promoter- 
operator region and dissociated in the presence of Sb(III) or As(III) but not in the pres-
ence of As(V),  s  uggesting that  trivale  nt metalloids are the true inducers of the system. 

 Proteomics study in combination with morphological, physiological and bio-
chemical variables have been employed by Pandey et al. ( 2012 ) in arsenic treated 
cyanobacterium  Anabaena  sp. PCC7120 to unravel its survival strategies. In this 
study it was revealed that 13 were novel (hypothetical) ones out of total 45 differen-
tially expressed proteins. They also proposed hypothetical model which  expla  ins 
 the    in  teraction of metabolic proteins associated with the survival of   Anabaena    sp. 
PCC7120 under As stress.  

19.5     Model Developed for Bioremoval of Metal/Metalloids 

 Various conventional physical, chemical and biological methods have so far been 
practiced to  remove   pollutants from industrial wastewater. Sometimes these meth-
ods are costly due to large chemical requirements and excessive  sludge   production 
and are with operational diffi culties. There is, therefore, always a requirement for a 
low cost simple to operate system for treating industrial wastewaters. Use of acti-
vated algae- reac  tor is in well practice over the past few years (McGriff and 
McKinney,  1972 ; McShan et al.,  1974 ; Lee et al.,  1980 ). 

 A few models have already been proposed for metal removal process and use of 
‘algae-pond’ being a popular and widespread technology for last few decades 
(McGriff and McKinney,  1972 ; McShan et al.,  1974 ; Lee et al.,  1980 ). A continuous 
fl ow system consisting of three rectangular algae reactors, connected in series was 
designed by Aziz and Ng ( 1993 ) for removing organic and  synthetic   pollutants 
along with metals from industrial wastewater. Experimental data obtained  sug-
gested   that activated algae-reactor was successfully able to  remove       organic   pollut-
ants, colour, nutrients and toxic metals from wastewater in a cost effective manner. 
Bender et al. ( 1994 ) also used glass column packed with cyanobacterial for remov-
ing metals like zinc and manganese from contaminated water. Within 3 h retention 
time 96 % Zn and 86 % Mn could be removed by the column. Boi-fi lter, AlgaSORB- 
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scy    ( Scytonema -dimethyl-formamide slurry) over a polymer-modifi ed silica gel, 
was suitable for 100 % As(III) removal (Prasad et al.,  2006 ). The present group 
already reported 95.8 % removal of the Pb from 5 mg L −1  Pb solution using  L. 
majuscula  as  bioreag  ent (Fig.  19.4 ; Chakraborty et al.,  2011 ).
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