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Abstract. We review the definition of hierarchical spline spaces and
their application to finite element methods. Then we discuss how hierar-
chical techniques can be implemented using the FEMB program package.
Subdivision algorithms play a crucial role and lead to a very simple pro-
gram structure. A numerical example illustrates the substantial gains
in accuracy for the adaptive strategy, in particular for higher degree
B-splines.
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1 Introduction

B-splines have become standard tools in approximation, computer aided design,
and graphics. A systematic application to finite element analysis is fairly recent.
Essentially two different strategies have been proposed: weighted [1] and isogeo-
metric [2] methods. The text books [3,4] give a comprehensive description of the
relevant theory for these novel approaches. Which technique is best suited for a
particular problem depends to some extent on the representation and topological
form of the simulation domain D. Isogeometric methods use parametrizations of
subsets of D over rectangles and cuboids which are often provided by NURBS
models for CAD/CAM applications. Weighted methods can handle domains well
which have a natural implicit description, e.g., domains constructed from ele-
mentary sets with Boolean operations. There are also problems for which a
combination of both methods might be appropriate [5].

Using B-splines as finite elements bridges the gap between geometry descrip-
tion and numerical simulation. Compared to conventional finite element methods
on unstructured grids, spline-based techniques have several advantages: arbitrary
choice of degree and smoothness, exact representation of boundary conditions,
and simple data structure (one parameter per grid point). As a consequence,
B-splines often yield significantly better results than classical finite element
schemes when highly accurate solutions are sought.
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Tensor product B-splines span the simplest multivariate spline spaces and can
utilize univariate algorithms very efficiently. However, unlike in one variable, knot
insertion does not provide truly local flexibility; adding knots has a global effect.
The natural remedy is hierarchical refinement. Using nested grids with uniform
B-splines of different grid width combines well with adaptive approximation
methods.

Given the crucial importance of hierarchical techniques for tensor product
spline spaces, it is not surprising that such methods have been subject of intensive
research. Building upon the classical articles [6,7], hierarchical splines have been
analyzed by a number of authors; the articles [8–11] serve as a few examples
which are most relevant to our application. Moreover, several novel concepts,
such as T-splines [12] and splines over box-partitions [13], have been introduced.

In this article we consider hierarchical finite element approximation with
B-splines, a topic of key importance if B-splines are to compete successfully
with classical mesh-based trial functions. For weighted methods, hierarchical
B-spline elements were already described in [3], but first implemented in [14]
for a special case. For isogeometric elements, adaptive B-spline approximations
were recently studied in [15–17] and in the context of T-splines in [18–22]. Our
objective is not to improve upon the by now well established theory. Instead, we
describe how hierarchical methods can be easily implemented using the FEMB
program package [23]. Clearly, incorporating existing software for uniform grids
eliminates a great deal of redundant programming effort. As an illustration of our
algorithms, we document the substantial gains in accuracy for a typical model
problem with a singular solution.

After briefly reviewing some essential components of the FEMB routines in
Sect. 2, we define hierarchical splines in Sect. 3. We follow the description in
[24,25] where a convenient notation has been suggested, covering many of the
concepts introduced so far. Section 4 discusses grid transfer operations based on
B-spline subdivision. Then we explain in Sect. 5 how to combine these tools with
our programs for assembling and solving Ritz-Galerkin systems for uniform grids.
Finally, Sect. 6 illustrates the error behavior of hierarchical B-spline elements at
a reentrant corner.

2 FEMB Program Package

The FEMB programs implement finite element algorithms with uniform B-
splines for two elliptic model problems: the scalar second order equation

− div(p grad u) + qu = f, (1)

where p > 0 and q ≥ 0 are variable coefficients, and the Lamé-Navier system in
linear elasticity

− div σ(u) = f, (2)

where σ is the stress tensor. For each problem the main steps of a finite element
simulation are
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– determination of integration parameters,
– assembly of the Ritz-Galerkin system,
– conjugate gradient iteration,
– visualization and computation of the residual.

We briefly discuss these steps for a simple special case of problem (1),
a Helmholtz equation with homogeneous Neumann boundary conditions:

− Δu + u = f in D, ∂⊥u = 0 on ∂D, (3)

where D ⊂ R
d is a bounded domain in two or three dimensions (d = 2, 3),

and ∂⊥ denotes the normal derivative. This example will be used for illustration
purposes throughout the article.

The finite element discretizations of the FEMB programs are based on d-
variate uniform tensor product B-splines bk,ξ of a fixed coordinate degree n; see
Fig. 1. The index k = (k1, . . . , kd) refers to the lower left grid position, i.e., bk,ξ

has the knots ξν,kν
, . . . , ξν,kν+n+1 in the ν-th coordinate direction and support

(ξ1,k1 , . . . , ξd,kd
) + [0, n + 1]d h,

where h = ξν,�+1 − ξν,� is the grid width.
The domain is described in implicit form,

D : w(x) > 0,

with a weight function w supplied by the user (cf. [3] and [26] for some princi-
pal construction techniques). This description allows to incorporate the geome-
try information into a B-spline discretization in very simple form, combining
the efficiency of regular grids with the flexibility of free-form boundary
representations.

Definition 1 (Uniform Splines). A uniform spline on a domain D is a linear
combination

pξ =
∑

k∼ξ

uξ
k bk,ξ,

Fig. 1. Uniform tensor product B-spline of coordinate degree n = 3 (Color figure
online)
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where ξ is a d-variate uniform knot sequence,

ξν : ξν,0, . . . , ξν,mν+n, ξν,�+1 = ξν,� + h, 1 ≤ ν ≤ d ,

with parameter hyperrectangle

Dn
ξ = [ξ1,n, ξ1,m1 ] × · · · × [ξd,n, ξd,md

] ⊃ D.

The notation (k1, . . . , kd) ∼ ξ indicates that the sum is taken over all B-splines
corresponding to ξ, i.e., kν = 0, . . . , mν − 1, with the convention that the coef-
ficients uξ

k of B-splines with no support in D (irrelevant B-splines) are set to
zero.

In Fig. 2, the B-splines bk,ξ corresponding to the knot sequence ξ are marked
at the center of their support, using dots for relevant and circles for irrelevant B-
splines. Keeping irrelevant B-splines, as described in the above definition, avoids
index lists which are necessary for approximations on unstructured grids.

While splines are adequate finite elements for natural boundary conditions,
essential or mixed boundary conditions must be incorporated into the finite ele-
ment subspace. In the FEMB package this is done by using weighted B-splines
wbk,ξ. Since the hierarchical techniques in this more general case (standard
splines correspond to the trivial choice w = 1) are completely analogous, we
have chosen to focus on the model problem (3), which allows us to explain the
algorithms in the simplest setting without any modification of the spline space.

The coefficients uξ of a finite element approximation pξ satisfy the Ritz-
Galerkin system ∑

j∼ξ

a(bk,ξ, bj,ξ)uξ
j = fξ

k , k ∼ ξ,

Fig. 2. Relevant and irrelevant cubic B-splines for a bounded domain
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where
a(ϕ,ψ) =

∫

D

(grad ϕ grad ψ + ϕψ), fξ
k =

∫

D

fbk,ξ

for Helmholtz equation (3). We abbreviate this system by

Gξu
ξ = fξ.

The matrix Gξ and the vector fξ are assembled by adding the contribu-
tions to the integrals from each grid cell using predetermined Gauß parameters
(cf. [3,25] for details). Then the coefficients uξ are computed with a precondi-
tioned conjugate gradient iteration. An important feature of the final FEMB
evaluation and visualization routine is the return of the residual. Unlike for
conventional finite element solvers, the spline approximation is continuously dif-
ferentiable for degree n > 1 and can be substituted into the partial differential
equation. This provides a very reliable error measure.

In the FEMB package it is assumed that D ⊆ (0, 1)d and, accordingly, ξν,n =
0, ξν,mν

= 1, h = 1/(mν − n). Changing the relevant program codes slightly, we
can relax this requirement. We can provide a Matlab1 function which assembles
Gξ and fξ for arbitrary uniform knot sequences ξ. In particular, the parameter
hyperrectangle Dn

ξ need not contain the simulation region D. This subroutine
will be the essential tool for implementing a hierarchical finite element solver.

3 Hierarchical Splines

Roughly speaking, a hierarchical spline is a sum of uniform splines pξ with
different knot sequences ξ. Typically, such approximations are constructed with
an adaptive process. In regions with large error, B-splines bk,ξ are subdivided by
halving the grid width and replaced by the resulting B-splines on the finer grid.
These refinement steps are repeated until a prescribed tolerance for the error is
met. Figure 3 shows an example for bilinear B-splines (n = 1).

A knot sequence ξ with grid width h = 1/4 and parameter rectangle D1
ξ =

[0, 1]2 (thick grid lines), covering a heart-shaped domain, is refined near the two
corners of the domain boundaries. The knot sequence η near the reentrant corner
is further refined leading to a knot sequence ζ with grid width h = 1/16. The
bilinear B-splines belonging to the hierarchical basis are marked with circles
at the center of their support. As mentioned before, B-splines which can be
represented on finer grids do not belong to the hierarchical basis as well as
B-splines with no support in the domain D. Nevertheless, such B-splines are
included with zero coefficients in linear combinations to facilitate programming.

The adaptive construction, leading to a hierarchical approximation, corre-
sponds to a tree structure of knot sequences. To make this more precise, some
notation is helpful. We define the extent of a d-variate knot sequence as the
smallest rectangle containing all break points:

[ξ] = [ξ1,0, ξ1,m1+n] × · · · × [ξd,0, ξd,md+n] .
1 MatlabR© is a registered trademark of The MathWorks, Inc., Natick, MA, U.S.A.
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Fig. 3. Grid refinement for bilinear hierarchical B-splines

Moreover, we say that η is the refinement of ξ if ην , ν = 1, . . . , d, is obtained from
ξν by adding midpoints in all knot intervals. Finally, we speak of a local refine-
ment, if the knot sequences ην are refinements of subsequences of consecutive
knots of ξν .

Definition 2 (Hierarchical Spline). A hierarchical spline pΞ is a sum of uni-
form splines pξ corresponding to knot sequences ξ which are nodes of a tree Ξ:

pΞ =
∑

ξ∼Ξ

pξ, pξ =
∑

k∼ξ

uξ
k bk,ξ .

It is required that the children of each node ξ are local refinements of ξ with
disjoint extents. Moreover, coefficients uξ

k of irrelevant B-splines bk,ξ or B-splines
which can be represented on refined grids are set to zero.

In Matlab, the relevant data for a hierarchical spline pΞ can be stored in
a cell vector HS of structures, corresponding to the nodes ξ of the tree Ξ, with
fields

.parent, .children, .h, .knots, .u .
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The first two fields refer to the cell vector indices of the parent and children
nodes ξ, .h is the grid width, the field .knots specifies the knot sequence using
the lower left and upper right coordinates of [ξ] divided by the grid width,

[ξ1,0 ξ1,m1+n ; . . . ; ξd,0 ξd,md+n]/h,

and .u is the d-dimensional array of coefficients with size

m1 × · · · × md .

This natural storage model is illustrated for the example in Fig. 3 above:

HS{1}.parent = []; HS{1}.children = [2 3]; HS{1}.knots = [-1 5;-1 5];
HS{1}.h=1/4; HS{1}.u = [0 * * * 0;* * * * 0;0 * * * *;* * * * *;0 * * * *];
HS{2}.parent = 1; HS{2}.children = [4]; HS{2}.knots = [-2 4;6 10];
HS{2}.h = 1/8; HS{2}.u = [0 0 0;* * 0;* * 0;* * 0;0 0 0];
HS{3}.parent = 1; HS{3}.children = []; HS{3}.knots = [2 6;-2 2];
HS{3}.h = 1/8; HS{3}.u = [0 * *;0 * *;0 * *];
HS{4}.parent = 2; HS{4}.children = []; HS{4}.knots = [4 8;12 18];
HS{4}.h = 1/16; HS{4}.u = [* * * 0 0;* * * 0 0;* * * 0 0];

We note the forced zeros in the coefficient arrays due to irrelevant or refined B-
splines. For example, the B-spline b(4,0),ξ with center at x = (1, 0) has support
outside of D and hence HS{1}.u(5,1) = 0. The B-spline b(4,0),η with center
at x = (3/8, 7/8) is a linear combination of the B-splines bk,ζ , 0 ≤ k1, k2 ≤
2. Consequently, HS{2}.u(5,1) = 0. Note that Matlab indexing starts at 1
while 0 is more convenient for the theory. Moreover, columns in the matrices
HS{i}.u correspond to horizontal directions in the figure (analogously as for the
commands ndgrid and meshgrid in Matlab).

In addition to the assumptions on the tree Ξ made in Definition 2, the
following property, already proposed in [14], simplifies programming considerably
and also has theoretical relevance for stability and the construction of quasi-
interpolants.

Definition 3 (Nested Tree). A tree Ξ is nested if the grid widths of any
two B-splines in the hierarchical basis, which are both nonzero at some common
point x, are equal or differ by a factor two.

Requiring a tree to be nested is not a severe restriction. The knot sequences
of a tree generated via an adaptive procedure can always be refined to meet the
additional requirement. We illustrate this for the example in Fig. 3. Clearly, the
tree formed by the knot sequences ξ, η, η̃, ζ is not nested since the B-splines
b(1,3),ξ (grid width 1/4, centered at (1/4, 3/4)) and b(0,0),ζ (grid width 1/16,
centered at (5/16, 13/16)) are both nonzero for all x in (2/8, 3/8) × (6/8, 7/8).
To conform to the requirement of Definition 3, we add a layer of B-splines with
grid width 1/8 to separate the coarse- and fine-grid B-splines. We replace the
knot sequence η by η∗ with knots

η∗
1,0 = −2/8, . . . , 6/8 = η∗

1,8, η∗
2,0 = 4/8, . . . , 10/8 = η∗

2,6 .
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All B-splines bk,ξ which overlap B-splines bk,ζ from the finest grid are now
replaced by linear combinations of B-splines from η∗ with grid width 1/8. This
leads to the following changes in the Matlab structure listed above.

HS{1}.u = [0 * * 0 0;* * * 0 0;0 * * 0 0;* * * * *;0 * * * *];

HS{2}.knots = [-2 6;4 10];

HS{2}.u = [0 0 0 0 0;* * * * 0;* * * * 0;* * * * 0;* * 0 0 0;* * * * 0;* * * * 0];

The other structure variables remain unchanged.

4 Grid Transfer Operations

For approximation with hierarchical splines grid transfer operations are essen-
tial. Subdivision strategies, systematically introduced by Boehm [27] and Cohen,
Lyche, and Riesenfeld [28], provide the canonical mechanism.

Theorem 1 (Subdivision of B-Splines). A d-variate B-spline bk,ξ with grid
width h can be represented as linear combination of B-splines bk,η with grid width
h/2 (ξk = η2k):

bk,ξ =
n+1∑

ν1=0

· · ·
n+1∑

νd=0

sν b2k+ν,η, sν = 2−nd

(
n + 1

ν1

)
· · ·

(
n + 1

νd

)
; (4)

see Fig. 4. When manipulating sums it is often convenient to extend the range
of summation to all integer vectors ν = (ν1, . . . , νd). This is possible in view of
the convention that the binomial coefficient

(
n+1

α

)
vanishes if α /∈ {0, . . . , n+1}.

By linearity, the subdivision rule extends to splines as well. It can be used
for grid transfer in both directions. We consider each case in turn.

Corollary 1 (Coarse-to-Fine Extension). If the knot sequence η is the
refinement of ξ and

∑
k∼ξ uξ

k bk,ξ =
∑

j∼η vη
j bj,η, then the transformation of
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Fig. 4. Subdivision coefficients of a bilinear and biquadratic B-spline
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the coefficient vectors has the form

vη = Sη
ξ uξ : vη

j =
∑

k

sj−2k uξ
k .

In pseudo Matlab code, this extension operation can be implemented as

initialize V with zeros
for ν1, . . . , νd = 0 : n + 1

V (2K + ν) ← V (2K + ν) + sνU
end

where K denotes the relevant range of indices for the B-splines corresponding to
the knot sequence ξ.

The assertions follow from the definitions. Substituting the subdivision for-
mula (4) for B-splines and changing the summation index yields

∑

k

uξ
k bk,ξ =

∑

ν

∑

k

sν uξ
k b2k+ν,η =

∑

j

∑

k

sj−2k uξ
k bj,η .

The middle expression corresponds to the Matlab pseudo code and the right
expression to the extension operator Sη

ξ .
We now consider the reverse operation.

Corollary 2 (Fine-to-Coarse Restriction). Let the knot sequence η be the
refinement of ξ. If, for a bilinear form a(·, ·) and a function ϕ, vη

j = a(bj,η, ϕ),
j ∼ η, then uξ

k = a(bk,ξ, ϕ), k ∼ ξ, can be computed with the transformation

uξ = Sξ
ηvη : uξ

k =
∑

j

sj−2k vη
j .

In pseudo Matlab code, this restriction operation can be implemented as

initialize U with zeros
for ν1, . . . , νd = 0 : n + 1

U ← U + sνV (2K + ν)
end

where K denotes the relevant range of indices for the B-splines corresponding to
the knot sequence ξ.

Again, the assertions follow by substituting the subdivision formula (4) for
B-splines and changing the summation index:

uξ
k = a(bk,ξ, ϕ) =

∑

ν

sν a(b2k+ν,η, ϕ) =
∑

ν

sν vη
2k+ν =

∑

j

sj−2k vη
j ,

with the second to last expression corresponding to the Matlab code.
The grid transfer operations simplify the assembly and solution of the Ritz-

Galerkin system considerably. As will be described in the next section, it suffices
to compute integrals involving only B-splines on the same grid level.
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5 Solving Hierarchical Systems

We recall from Sect. 3 that a hierarchical spline has the form

uΞ =
∑

ξ∼Ξ

∑

k∼ξ

uξ
k bk,ξ .

Accordingly, the Ritz-Galerkin matrix G has block structure with entries

Gξ
η : a(bk,ξ, bj,η), k ∼ ξ, j ∼ η .

We could proceed in a standard fashion, i.e., assemble G using an appropriate
storage scheme, and solve the Ritz-Galerkin system

GU = F ⇔
∑

η∼Ξ

Gξ
η uη = fξ, ξ ∼ Ξ,

by some iterative method. However, since the standard solvers just require the
implementation of multiplication by the system matrix, we can avoid the explicit
assembly of G and use the routines of the FEMB package for the uniform case
in an elegant fashion. To this end we examine the matrix/vector multiplication

U �→ F = GU, fξ =
∑

η∼Ξ

Gξ
η uη ,

in more detail.
The equation, relating the blocks of the hierarchical vectors U and F , sim-

plifies if we require that Ξ is nested, i.e., if for B-splines in the hierarchical basis
only supports of adjacent levels overlap. Since we are also assuming that the
extents of knot sequences with the same grid width are disjoint, the matrices Gξ

η

are zero unless ξ = η, or η is the parent or a child of ξ. Hence, for implementing
the multiplication by Gξ

η, i.e., for computing

vξ = Gξ
ηuη ⇔ vξ

k =
∑

j∼η

a(bk,ξ, bj,η)uη
j , (5)

there are three cases to consider.
(i) η = ξ: Since Gξ = Gξ

ξ is a Ritz-Galerkin matrix of B-splines of the same
grid level, the FEMB routines are applicable with minor modifications (ξ corre-
sponds in general to a grid covering only a subset of the simulation domain D).

(ii) η is the parent of ξ: In Eq. (5) we refine the coarse grid B-splines bj,η

and obtain by Corollary 1
∑

j∼η

uη
j bj,η =

∑

�∼ζ

wζ
� b�,ζ , wζ = Sζ

η uη ,

with the knot sequence ζ being the refinement of η. This yields the desired
conversion to multiplication with a Ritz-Galerkin matrix for B-splines on the
same grid level:

vξ
k =

∑

�∼ζ

a(bk,ξ, b�,ζ)wζ
� ⇔ vξ

k =
(
Gζ wζ

)
k̃

,
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where k̃ is the index of the B-spline bk,ξ with respect to ζ (bk,ξ = bk̃,ζ). While ξν

are subsequences of ζν , the indices do, in general, not match since the labeling
starts from 0 for all knot sequences (cf. Fig. 3).

A final adjustment is necessary. Multiplying wζ by Gζ results in a larger
vector than needed. Since ξ is a local refinement of η, [ξ] ⊆ [η] = [ζ]. As a
consequence, some B-splines of the knot sequence ζ are, in general, irrelevant for
ξ. Hence, we have to extract the entries relevant for ξ:

vζ
k, k ∼ ζ �→ vξ

k, k ∼ ξ .

We denote this truncation operation, which also incorporates the index adjust-
ment, by vξ = Iξ

ζ vζ . Summarizing, we obtain the following procedure.

Theorem 2 (Coarse-to-Fine Multiplication). If the knot sequence η is the
parent of ξ, then

vξ = Gξ
η uη ⇔ vξ = Iξ

ζ Gζ Sζ
η uη

with ζ the refinement of η.

(iii) η is a child of ξ: As in the previous case, we rewrite Eq. (5) in terms
of the Ritz-Galerkin matrix Gζ , where ζ is the refinement of the coarse knot
sequence ξ. To this end let uζ = Iζ

η uη denote the extension of the coefficient
vector uη with coefficients of the B-splines bj,ζ , j ∼ ζ, which do not correspond
to the smaller knot sequence η ([η] ⊆ [ξ] = [ζ]) set to zero, and define

ϕ =
∑

j∼η

uη
j bj,η =

∑

j∼ζ

uζ
j bj,ζ .

Then, according to Corollary 2, vξ
k = a(bk,ξ, ϕ) can be computed from wζ

� =
a(b�,ζ , ϕ) with the restriction operator:

vξ = Sξ
ζ wζ , wζ = Gζu

ζ .

We summarize this procedure as follows.

Theorem 3 (Fine-to-Coarse Multiplication). If the knot sequence η is a
child of ξ, then

vξ = Gξ
η uη ⇔ vξ = Sξ

ζ Gζ Iζ
η uη

with ζ the refinement of ξ.

Summarizing, we have reduced the multiplication with the hierarchical
matrix G to multiplications with Ritz-Galerkin matrices Gξ, involving only B-
splines with the same grid width. These matrices can be precomputed using
the FEMB package before an iterative solver is started. If we employ, e.g., the
conjugate gradient method, we have to provide in addition routines for adding
hierarchical vectors, multiplication with scalars, and forming of scalar products.
This is straightforward.

As a final comment on the programming details, we note that the hierarchical
matrix G contains zero rows and columns since we keep irrelevant B-splines
for ease of programming. This does not cause any problem though, since the
corresponding sections in the coefficient vectors are set to zero. In effect, the
iteration “sees” only the invertible part of G.
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6 Accuracy of Adaptive Approximations

As a sample problem for testing the proposed method, we chose Helmholtz equa-
tion (3) with right–hand side f(x) = sin(πx1x2) on the B–shaped domain shown
in Fig. 5. D is the intersection of the square (0, 1)2 with the union of the two
ellipses

E1 : x2
1 +

(x2 − a)2

a2
< 1 and E2 :

9x2
1

4
+

(x2 − b)2

(1 − b)2
< 1,

where a = 11
10 (2 − √

3 ) and b = 1
5 (1 +

√
7 ). The boundary of D has a reentrant

corner at x	 = (0.5, 0.55) with an interior angle of width α ≈ 1.8089π, causing
the solution u of (3) to form a singularity at this point. More precisely, u is of
asymptotic order O(rπ/α) ≈ O(r0.5528) in the region near the corner, where r
denotes the distance to x	, cf. [29]. No other singularities occur at the corners
(0, 0) and (0, 1) since, due to symmetry, u can be regarded as restriction to D of
the solution on the entire domain E1 ∪ E2, which has a smooth boundary near
these two points.

The shading in Fig. 5 illustrates the growth of | grad u| in the vicinity of
the reentrant corner, indicating that the gradient of u — yet still being square
integrable on D — becomes infinite when approaching x	.

Corner singularities strongly affect the performance of both conventional
finite element schemes and methods based on uniform tensor product B–splines,

Fig. 5. Singular solution with hierarchical grid (Color figure online)
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as they require the solution to belong to some higher order Sobolev space in
order to yield optimal rates of convergence. If, as in our example, u has no
square integrable second derivatives, the uniform bases cannot release their full
approximation power, which results in a slow convergence of numerical solutions.
Not even the use of higher spline degrees pays off, as can be seen from Fig. 6
where, regardless of the degree, all uniform spline approximations exhibit about
the same poor convergence rate of O(h3/2), or O(N−3/4) if expressed in terms
of the dimension N of the respective spline spaces.

For comparison, we computed approximate solutions to (3) in sequences of
hierarchical spline spaces, defined by nested trees with different numbers of levels.
Local grid refinement was employed (manually) in regions where the pointwise
error of a corresponding uniform approximation was large with respect to the
average error. A typical choice of the grid structure for a quadratic spline space
is depicted in Fig. 5.

The significant improvement in efficiency achieved through hierarchical
refinement near the critical corner is apparent from Fig. 6. The number of para-
meters necessary to attain similar accuracy is, on an average, smaller by a factor
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Fig. 6. Relative L2 error for uniform (dashed) and hierarchical approximations (solid)
as a function of the dimension for degrees n = 1 (�), 2 (•), 3 (�) and 4 (�)(Color
figure online)
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of more than 20, compared with approximations on uniform grids. For example,
quadratic elements meet a tolerance of 7.8 · 10−5 with 1593 B–splines on five
hierarchical levels, whereas the error for a finite element space spanned by 18900
quadratic B–splines on a uniform grid of 160 × 160 cells is still greater than
1.5 · 10−4.

7 Conclusion

We have described the implementation of hierarchical finite element methods
with B-splines using the FEMB package. B-spline subdivision plays a crucial
role and leads to a very simple program structure. The numerical results for
Helmholtz’s equation as a model problem document the substantial gains in
accuracy due to adaptive refinement.

For classical mesh-based finite element methods, adaptive techniques have
been studied intensively. Hence, for the relatively novel application to B-splines,
a number of topics remain to be investigated. An interesting question is, whether
the possibility of computing pointwise residuals of the partial differential equa-
tions (B-splines are sufficiently smooth) can be exploited. Moreover, deriving
optimal error estimates for typical singularities is a major project. These are
just two examples of a longer list of open problems to which we hope to con-
tribute in the future.
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