
Chapter 2

Neutron Scattering: Introduction

Bjørn C. Hauback and Henrik Mauroy

Abstract Neutron scattering is an important method for characterization of mate-

rials. The chapter starts with a presentation of the properties of neutrons and how

they are produced. The interaction with matter is the main part of this chapter. The

notion of scattering length and cross section are explained as well as the differences

between coherent and incoherent scattering. The chapter ends with a short overview

of elastic, inelastic and quasi-elastic neutron scattering. The goal of this chapter is

to provide to a beginner the essential background for the comprehension of the

other neutron related chapters of this book.
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2.1 Introduction

In order to determine where atoms are and what they do in materials we need a

probe with a size of the same order of magnitude as the typical distance between

atoms, i.e. around 10�10 m or 0.1 nm. Historically, the Ångstr€om has been used as a
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unit with 1 Å¼ 0.1 nm. The German physicist Wilhelm R€ontgen discovered X-rays
in 1895 and in the beginning of the twentieth century X-ray diffraction developed

rapidly based on X-rays with wavelengths in the range between 0.1 and 0.2 nm.

X-ray diffraction turned out to be a great success and was accompanied by electron

diffraction in the early 1930s. Electron diffraction utilizes the fact that electrons

behave like waves, and can therefore interfere with each other and produce a

diffraction pattern. The wavelength of the electron was determined by Louis de

Broglie, already in 1924:

λ ¼ h

p
ð2:1Þ

where λ is the wavelength, h the Planck constant, and p the momentum carried by

the electron. Today this equation is referred to as the de Broglie relation. It is very

powerful because it applies to all non-relativistic particles with a mass similar to the

mass of atoms. A quite fortunate coincidence is that the mass of the neutron is just

right to give it a de Broglie wavelength similar to X-rays used for most scattering

studies, i.e. 0.1–0.2 nm. Neutrons were first discovered by James Chadwick in

1932. The first nuclear reactor went critical at Oak Ridge National Laboratory in the

USA in late 1943, and the first neutron diffraction experiments were carried out

already in 1944. Within a few years it was clear that neutron scattering would be an

important tool for characterization of materials, including diffraction, spectroscopy,

and imaging. Based on the pioneering work in those days, Clifford Shull and

Bertram N. Brockhouse received the Nobel Prize in Physics in 1994. Each of the

three scattering techniques, based on neutrons, X-rays, and electrons, respectively,

has evolved into an array of different techniques, each specially designed to study

particular aspects of crystal structures and dynamics of materials.

X-ray and electron scattering share the same severe shortcoming: they are not

very effective to determine atomic positions of light elements, such as hydrogen,

carbon, and oxygen in compounds with both light and heavier elements. Further-

more, these probes cannot distinguish between neighboring elements in the periodic

table because of almost equal scattering power. Using neutrons the scattering from

light and heavier elements are typically comparable (see Fig. 2.1), and thus neutron

scattering can give detailed information about both at the same time. Furthermore,

neighboring elements in the periodic table can have rather different interactions

with neutrons, and in such cases neutron scattering is a unique method. The

different scattering by isotopes can also be significant, for example, by hydrogen

(protium) and deuterium, and thus isotope labelling can give specific information

on the compounds.

The key to understanding neutron scattering is the way neutrons interact with

matter. In contrast to X-rays and electrons, which interact with the electrons around

a nucleus, the neutron interacts with the nucleus itself. Since the neutrons are

neutral they are only deflected when they hit a nucleus. Neutrons are therefore

scattered equally well by light elements as the heavier ones. Thus the position of
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hydrogen atoms in crystalline materials can only be accurately determined with

neutron scattering.

This brings us over to the second advantage of neutrons: As mentioned earlier

neutron scattering has in several cases the ability to distinguish between scattering

from neighboring elements in the periodic table. The reason for this is that

neutrons are scattered by nuclei, and different types of nuclei have different

scattering power. Sometimes they are very different, such as for scandium and

titanium (see Fig. 2.1). This effect also applies to isotopes of the same element.
1H (protium) and 2H (deuterium) for example, or 58Ni and 62Ni differ greatly in

scattering power (Fig. 2.1).

The fact that neutrons are uncharged means that they can penetrate deeply into

matter, in several cases many centimeters and up to meters, before being deflected

or absorbed. X-rays from laboratory source setups are nearly not affected by

hydrogen atoms, but only a few micrometers of lead is enough to stop them

completely, although high-energy X-rays used at synchrotron facilities penetrate

more deeply into matter. Neutrons with wavelengths in the range of 0.1–0.2 nm can

on the other hand travel through more than 2 m of lead and almost 1 m of aluminium

before the intensity is reduced to 50 %. This makes it possible to study samples

being kept inside more complicated sample environments than what can easily be

used with X-rays. It is therefore possible to measure the bulk properties, for

example, in car engines or pipelines. The absence of charge also means that

neutrons do not ionize the sample, like X-ray or electron beams, and thus opens

up the possibility for studies of fragile specimens such as organic crystals or

Fig. 2.1 Coherent scattering lengths as a function of atomic weights [3, 4]

2 Neutron Scattering: Introduction 9



invaluable archeological artifacts. It should be added that some elements and

isotopes, for example, boron, gadolinium, and cadmium, absorb neutrons strongly,

but isotope labelling can reduce the absorption enormously. For example 10B

(which accounts for 20 % of natural boron) is a strong neutron absorber while
11B has a very weak absorption, and natural boron is therefore difficult to use in

neutron scattering experiments.

The neutron is uncharged because it is composed of one up quark, with a charge

of 2/3e, and two down quarks, each with charge �1/3e. Even though the total

charge is zero this arrangement leads to a tiny charge distribution that gives rise to a

magnetic moment, which in turn makes neutrons interact with the unpaired elec-

trons in magnetic atoms. The possibility to determine magnetic structures on an

atomic scale is a unique property of neutron scattering and yet another powerful

advantage compared to X-rays.

A final advantage is the similar magnitude of atomic excitations and the kinetic

energy of thermal neutrons. By measuring the change in kinetic energy of a neutron

when it is scattered inelastically by an atom, information about energy transitions

and interatomic forces can be extracted.

It might sound like neutron scattering would render other techniques obsolete,

but due to several disadvantages this is not the case. Firstly, the relative ease of

penetrating into matter (when there are no neutron-absorbing elements) is a

two-edged sword. Not only does it mean that neutrons are weakly scattered, but it

makes detection of them tricky. Secondly, the flux of neutrons emanating from a

nuclear reactor is low compared to X-ray sources. The ILL (Institut Laue-Langevin)

high flux reactor in Grenoble, France, is the most powerful research reactor in the

world and has a neutron flux, ϕ, near its core of around 1015 n cm�2 s�1. For thermal

neutrons with velocity v¼ 2200 m/s, this corresponds to a neutron density of

N¼ϕ/v¼ 4.5�1015 nm�3. Assuming the same density of gas molecules in air it

would produce a pressure of 10�7 mbar, which is a quite decent vacuum. To put the

58 MW ILL reactor’s flux further into perspective, to obtain a similar flux with

photons we would then only need a 1 W light bulb.

Based on the low neutron flux compared to photons, it is paramount that neutrons

should be used as efficiently as possible. One obvious way of increasing the neutron

flux is to use a neutron beam with a large cross section, and 50–100 cm2 can easily

be achieved. At the same time, however, the sample has to be large in order to make

use of all the incoming neutrons. In many cases it is impossible to synthesize huge

samples. Therefore, in the last two decades, many different concepts have been

developed to increase the neutron flux on the sample, e.g., focusing monochroma-

tors and focusing neutron guides, or making better use of the incoming and/or

scattered neutrons, e.g., by using a wide wavelength band and using large

2-dimensional detectors. There are about 40 neutron research centers worldwide

[1], most of which use a reactor as the neutron source. As the flux is a significant

limitation for reactors new powerful spallation sources have recently been

constructed in the USA (Spallation Neutron Source, SNS, Oak Ridge National

Laboratory) and Japan (J-PARC). Furthermore, a new target station was added to

the ISIS facility in the UK. The most ambitious project, the European Spallation
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Source (ESS), is supposed to deliver a neutron beam with a brightness that is

30 times higher than at existing facilities [2]. In many cases, as will be evident in

the following chapters, neutrons are complementary to X-rays, and both techniques

are needed to solve many problems. Table 2.1 lists some basic properties of the

neutron together with some useful conversions.

2.2 Production and Detection of Neutrons

2.2.1 Production of Neutrons

Neutrons can be generated by different nuclear reactions. However for scattering

experiments the neutrons have to be produced with such a high rate (~1016–1018

neutrons per second), and thus the only possibility is either with nuclear reactors or

spallation of heavy elements using high-energy particles. Research reactors usually

use uranium as the fuel and produce on average around one extra neutron per fission

reaction. Spallation sources operate completely differently. Here protons are accel-

erated to very high energies (in the range of GeV) and directed at a heavy-metal

target, such as tungsten, tantalum, or liquid mercury. The collisions generate around

20–30 neutrons per incoming proton. The produced neutrons are directed to the

different instruments with neutron guides.

A common feature to reactors and spallation sources is the production of

neutrons with energies in the range of several or even hundreds of MeV. These

energies are far too high for use in scattering experiments. Typically the energy

needs to be lowered a billion times, to a few tens of meV, in order to get a desired

wavelength around the atomic spacing in materials of around 0.1 nm. Neutrons

having these low energies are called thermal neutrons. Fortunately, lowering the

neutron energy is fairly easy to accomplish by passing the neutrons through a

moderating medium. The neutrons lose their high energy due to the interaction

Table 2.1 Basic properties of the neutron and some useful conversions

Mass m¼ 1.67492735�10�27 kg

Charge qn¼ 0

Spin s¼½

Magnetic dipole moment μn¼�9.6624�10�27 J ∙T�1

Mean life time τ¼ 888� 2 s

Half-life T1/2¼ 615� 2 s

Planck constant h¼ 6.62606957�10�34 J ∙ s
Wave vector (nm�1) k¼ 2π/λ¼ 2πmv/h

Kinetic energy (meV) E¼mv2/2¼ kBT¼ (hk/2π)2/2m

Thermal neutron velocity (m/s) v¼ √(3kBT/m)
Wavelength (nm) λ¼ 6.283/k¼ 395.6/v¼ 9.045/√E¼ 3.081/√T
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with the nuclei of the moderator material and finally reach thermal equilibrium with

the moderator. Normal (“light”) and heavy water are excellent moderators, and at

room temperature will slow neutrons down to around 2200 m/s corresponding to a

wavelength of 0.18 nm.

It is important to note that the neutrons emerging from the moderator have a

spread in energy, which can be described fairly well with the Maxwell–Boltzmann

distribution. The peak of the spectrum is at an energy equal to kBT, where kB is the
Boltzmann constant and T the absolute temperature. A simulation of the neutron

flux around a single uranium oxide fuel rod immersed in heavy water at different

distances from the fuel rod at 327 K is shown in Fig. 2.2.

The Maxwell–Boltzmann distribution superimposed as a solid line on the data

can only be used to model the flux at low energies because the function does not

contain terms that can model the tail observed in the simulated data. The disap-

pearance of the hump at MeV-energies at the end of the tail, when moving from the

surface of the fuel rod to 25 cm away, illustrates well how the spectrum is shifted to

lower energies when the neutrons are being moderated along their path outwards

from the fuel rod. This leads to an increase in the flux of thermal neutrons along the

same path since more and more fast neutrons are being moderated, which is

illustrated in Fig. 2.3. The shift of the spectrum towards lower energies can also

be seen in this figure.

The spectrum can be shifted further to longer or shorter wavelengths by using

either a cold or a hot moderator, respectively. A typical cold moderator consists of a

container filled with liquid H2 or D2 at about 20 K, while a hot moderator is usually

a graphite block kept at 2000 K. Table 2.2 lists some typical values for the energy

and wavelength of moderated neutrons.

Fig. 2.2 Simulated flux of neutrons (symbols) as a function of energy around a uranium oxide fuel

rod immersed in heavy water. The flux is calculated for a position close to a fuel rod and at 25 and

55 cm away from the rod, respectively. A Maxwell–Boltzmann distribution at 327 K is

superimposed over the data as a solid line
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At reactor sources the neutrons emerge from the moderator as a continuous

stream with different energies. This spread in energy is not suited in many scattering

experiments where a monochromatic beam of neutrons, i.e. neutrons with a narrow

energy band, is required. Such a condition is obtained by placing a single crystal, or

several pieces of single crystal material of a highly reflective material, such as

pyrolytic graphite, germanium, copper, or silicon, between the neutron source and

the sample. This is the so-called monochromator, and it will only transmit neutrons

with wavelengths satisfying the Bragg law (see Sect. 2.5.1) in the direction of the

sample. The wavelength is determined both by the scattering angle (monochromator

take-off angle) and the corresponding set of scattering planes. A velocity selector

with a set of choppers can also be used to create a monochromatic beam. Only

neutrons with a certain velocity can pass both the first and last chopper blade placed

along the direction of the beam. Unfortunately a severe downside to

monochromating the beam is that a majority of the neutrons (up to 99%) are wasted.

The energy spectrum from the source is handled differently at spallation sources.

The neutrons are produced in pulses several times per second, thus there is no

continuous beam, and a monochromator is not used. Instead, a technique called

Fig. 2.3 A zoomed in view of Fig. 2.2 showing the neutron flux at thermal energies increases with

the distance from the fuel rod. Additional points from a calculation at 5 cm separation from the fuel

rod are shown as triangles. A Maxwell–Boltzmann distribution at 327 K is superimposed over the

data as a solid line

Table 2.2 Typical values for neutrons passing through different moderators

Moderator Energy (meV) Temperature (K) Wavelength (nm)

Cold 1–10 20–120 0.3–0.7

Thermal 10–100 120–1000 0.1–0.3

Hot 100–500 1000–6000 0.04–0.1
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Time Of Flight (TOF) is employed. Here neutrons in a wide energy range are

utilized by measuring the time it takes for each neutron in the polychromatic

beam to travel from the moderator, via the sample, to the detector. As the distance

from source to detector is well known, it is possible to determine the neutron

velocity, and thus the neutron’s energy and wavelength. The fastest neutrons with

the shortest wavelength arrive first, while the slowest neutrons are hitting the

detector just before the fast neutrons of the next pulse arrive. Instead of measuring

a diffraction pattern as a function of scattering angle (as for monochromatic

neutrons), the TOF-instrument measures it as a function of time (or wavelength)

with a fixed scattering angle. TOF-instruments are not limited to spallation sources.

They are frequently being used at reactor sources as well.

A brief introduction to the theory of neutron scattering will be covered later in

this chapter, while diffraction techniques in general are covered in Chap. 3.

2.2.2 Detection of Neutrons

Common to all neutron scattering and imaging instruments is the need to detect the

neutrons. This is not a trivial task, because the neutron is a particle with low kinetic

energy and no charge, and the interaction with matter occurs through very weak

nuclear and magnetic forces. The only practical method of detecting a neutron is

therefore to produce charged particles in a nuclear reaction involving the neutron

and to detect the charged particles instead.

One of the main detection principles is the proportional counter. This is a gas

filled tube with a wire, kept at a high positive voltage, placed in the center of the

tube. The two traditional gases used to react with neutrons are either 3He or
10B-enriched BF3 gas, while a mix of several other filler gases such as CH4, Ar,

and CO2 serve as the ionization medium. The nuclear reactions following absorp-

tion of a neutron are:

n þ 3He ! 3H þ pþ 765 keV ð2:2Þ

for the 3He-capture and

n þ 10B ! 4Heþ þ 7Liþ 2310 keV ð2:3Þ

for the 10B-capture.

Both reactions create charged and highly energetic particles that ionize the gas.

This results in a cascade of electrons giving an electric pulse which is detected by

the positive wire. The neutron detectors are operated in an energy range where the

electric pulse is proportional to the energy of the ionizing particles, meaning that

these kinds of detectors allow an efficient discrimination of the smaller pulses

obtained from γ-rays, which are almost always present in the background. By

using fast electronics it is possible to determine the position of the discharge
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along the wire either with the so-called charge or time division methods. These

kinds of detectors are so-called position sensitive detectors (PSD) and have a

typical spatial resolution of about 1.5 mm. The extreme toxicity of BF3 makes it

challenging to use, and the availability of 3He has significantly been reduced since

around 2010, followed by an enormous increase in the price. Thus it has become

urgent to develop new efficient neutron detector technologies.

The neutron scintillator is one of the possible replacements for the 3He-detector

and has successfully been put in use at several instruments at ISIS and J-PARC. In a

scintillator the neutrons are absorbed by 6Li embedded in a conversion material,

either a plastic or a glass plate, leading to the following nuclear reaction:

n þ 6Li ! 4Heþ 3H þ 4790 keV: ð2:4Þ

The charged reaction products have high energy, and excite ZnS that is embedded

together with 6Li inside the conversion material. ZnS returns to its ground state with

the emission of 470 nm light, which is guided via fiber optics to a photomultiplier

where it is transformed into an electric signal. Each absorbed neutron produces

around 160,000 photons, making the event easy to detect with modern electronics.

Discrimination against γ-rays, which also excite ZnS, is done electronically by

analyzing the shape of the electric pulse. Numerous designs of neutron scintillators

have been developed. These comprise 2D PSD, semiconductor detectors with 6Li-

containing thin films, and 6Li-containing single crystals with the typical composi-

tions Cs2LiYCl6 or LiCaAlF6. Neutron imaging, analogous to X-ray imaging,

detects neutrons using a two-dimensional CCD-sensor with a 6Li-ZnS scintillator

screen mounted on the surface. A light-spot with a diameter of around 50–80 μm
appears on the scintillator screen where the neutrons hit. The light from this spot is

subsequently detected by the CCD-sensor and fed through a computer. This allows

for high resolution imaging of, for example, water transport in the channels of an

operating fuel cell, or hydrogen content in the walls of pipelines.

The main drawbacks of the neutron scintillator are limited detection efficiency

due to the opaqueness of its own light which limits the thickness of the conversion

material, and the limited neutron counting rate as a result of the relatively long

afterglow after a neutron capture.

The most recent approach to a replacement technology is the boron-lined

converter, which on the other hand displays a high neutron counting rate. The

principle is similar to the BF3-counter, but instead of having 10B supplied in

gaseous form, it is provided by a solid micrometer-sized film (e.g., B4C) covering

the inside of the walls of the gas filled cylinder. When a neutron hits the film, and is

captured by 10B, the charged reaction products from Eq. 2.3 ionize the filler gas

creating the electric pulse. The drawbacks of this design are increased cost and

complexity, and lower detection efficiency than with 3He-detectors. However, still

the boron-lined converter is proposed to be implemented in the first large-area

detectors at the coming spallation source ESS when it comes online in 2022–2023.
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2.3 Interaction of Neutrons with Matter

2.3.1 Introduction

From the perspective of a neutron solid matter is quite spacious. This is because the

size of the scattering center, the nucleus, is around 100,000 times smaller than the

distance between these centers. The interaction with matter is produced by short-

range nuclear forces (~10�15 m). As a consequence, the non-charged neutron can

travel far inside solid matter before being scattered or absorbed by a nucleus.

Neutrons interact with matter mainly in three ways: elastic scattering, inelastic

scattering, and in absorption processes. The first two are interactions between the

neutron and either a nucleus or the magnetic field produced by unpaired electrons.

The absorption processes, on the other hand, lead to emission of secondary charged

or neutral particles, emission of electromagnetic radiation or fission. Here we will

not go into details about absorption interactions, but will mainly focus on the

scattering, which is the foundation of most of the neutron characterization tech-

niques. We will describe the different concepts of neutron scattering, followed by a

simplistic mathematical derivation of expressions describing neutron scattering.

Finally a brief overview of some neutron scattering techniques, relevant to hydro-

gen containing materials, will be presented.

2.3.2 Scattering Length

Since the nucleus is much smaller than the wavelength of the neutron, the nucleus

acts like a point scatterer, i.e. the scattered neutron wave is spread out as a spherical

wave (Fig. 2.4). For an incident plane wave eik∙x, consisting of neutrons travelling

Fig. 2.4 2D representation

of a neutron wave with

wave function eik∙x scattered
as spherical wave,

(�b/r)eik∙r, from a fixed

nucleus
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along x with an initial speed v¼ |v| and an incoming wave vector k, the scattered

wave can be expressed as (�b/r)eik∙r, where the outgoing wave vector k is oriented

parallel to r. k and v are related by:

hk

2π
¼ mv ð2:5Þ

where m and mv are the mass and momentum of the neutron, respectively. The

amplitude of the scattered wave is proportional to the so-called scattering length, b:

b ¼ bc þ bi ð2:6Þ

b is a measure of the strength of the neutron–nucleus interaction, measured in fm

(10�15 m) and varies in an erratic manner throughout the periodic table (Fig. 2.1). It

consists of two parts: the coherent scattering length, bc, which is plotted in Fig. 2.1

as a function of atomic weight, and the incoherent scattering length, bi, which is

discussed later in this chapter. A large absolute value of bmeans that the neutron is

scattered strongly by the nucleus (i.e., on average more of the incoming neutrons

are scattered). The neutron scattering length is analogous to the atomic form factor

used in X-ray and electron scattering. A positive b means a minus sign in the wave

function implying a repulsive interaction between the neutron and the nucleus.

Most elements and isotopes have a positive b, but some are negative. A negative

b leads to the opposite sign of the scattering amplitude compared to a positive b,
equivalent to a 180� phase difference for the outgoing scattered wave. The protium

(1H) isotope of hydrogen for example, has a negative scattering length while

deuterium (2H) has a positive one. Combinations of positive and negative b-values
can also tune the average scattering length of a compound. This is utilized in

contrast matching experiments where light and heavy water are mixed in a certain

ratio resulting in an averaged scattering length equal to certain parts of a specimen

immersed in water. For certain experiments (e.g., small angle neutron scattering or

neutron reflectometry) that rely on a scattering length density (SLD) contrast these

parts will scatter identically to the surrounding water and be masked away. Contrast

matching is explained further in Chaps. 5 and 6.

As shown in Fig. 2.1 some isotopes and neighboring elements display signifi-

cantly different scattering lengths. For example scandium exists only as one isotope

with non-zero spin and has a large positive bc of 12.1 fm, while titanium consists of

several different isotopes with both positive and negative values of bc, which results
in a final combined bc of�3.37 fm. In several cases the large variations in scattering

length between neighboring elements give rise to a significant scattering contrast,

while for X-rays and electrons the difference will be too small to be observable.

The strong variations in b arise from the strong dependence on the spin of the

nucleus. Isotopes with an even number of both protons and nucleons have nuclear

spin I equal to zero and therefore only one scattering length. However those with

I different from zero have two different scattering lengths, bþ or b�, respectively
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(not to be confused with positive and negative values of b), since the spin of the

compound nucleus (neutronþ nucleus) is either J¼ Iþ½ or J¼ I�½. 1H, for

example, has spin ½ and consequently it has two different scattering lengths:

bþ¼ 10.81 fm and b�¼�47.42 fm, respectively. 12C, on the other hand, has spin

zero and therefore only one scattering length of b¼ 6.65 fm.

The scattering lengths have to be determined experimentally because we do not

have an adequate theory of nuclear forces to predict these values from the properties

of the nucleus. In practice we are only able to measure one b-value, and thus the

separate values of bþ and b� must be calculated based on this value. The scattering

length of an element will be a mix of the scattering lengths of its different isotopes,

just as the scattering length of an isotope is a mix based on the isotope’s different
nuclear spins.

The sum of scattering lengths in a certain volume of a sample is defined as the

SLD, and it is usually denoted by ρ:

ρ ¼ 1

volume

X
j

bj ¼ N � b ð2:7Þ

where bj is the scattering length of atom j and N is the atomic number density

(1/m3).

2.3.3 Scattering and Absorption Cross Section

The scattering length gives information about the strength of the interaction between

the neutron and the nucleus of the studied compound. The likelihood of such

interactions is determined by the effective area of the nucleus as “seen” by a passing

neutron. This is called the total cross section, σtot, and it is simply the sum of the

scattering cross section, σs, and the absorption cross section, σa, for a given nucleus:

σtot ¼ σs þ σa ð2:8Þ

The physical cross section of a heavy nucleus is around 10�28 m2, and the unit

one barn is equal to a cross section of 10�28 m2. Because of the direct relationship

between the scattering cross section and the scattering length (Eqs. 2.10 and 2.11),

the scattering cross section also varies erratically with atomic numbers.

The probability of absorption of a neutron by a nucleus is expressed as the

absorption cross section, σa, also measured in barn. The speed, or rather the energy,

of the incoming neutron is important for the determination of σa. The values for the
scattering lengths, and the scattering and absorption cross sections, measured for

neutrons moving freely at T¼ 293 K, having a kinetic energy of

E¼ kBT¼ 25.3 meV (corresponding to a speed of v¼ 2200 m/s or a wavelength

of λ¼ 0.1798 nm), can be found at NIST’s webpage [3] or in reference [4].
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As a general rule σa decreases with increasing neutron velocity as 1/v. In
addition, the isotopic composition has a substantial influence. Natural boron for

instance has σa¼ 768 barn, which is very large compared to most other elements.

However, boron’s two isotopes, 10B and 11B, have spectacularly different absorp-

tion cross sections of 3835 barn and a miniscule 0.0055 barn, respectively. Even

though natural boron only consists of 20 % 10B the final absorption cross section

becomes huge. Gadolinium is another spectacular example. σa equals a very large

49,700 barn for naturally occurring Gd, composed of a lesser, yet still significant,

85.1 barn for 154Gd, and an astoundingly large 259,000 barn for 157Gd. By using
11B-enrichment neutron scattering experiments on boron compounds are feasible.

While neutron scattering on gadolinium compounds seems impossible, it is not as

challenging as one might think. Ryan and Cranswick [5], for instance, describe a

rather straightforward experimental setup used for neutron diffraction on

Gd-containing samples. The reason for these apparently abnormal absorption

cross sections for some isotopes is strong resonances between the neutron and the

nucleus at certain neutron energies. At these energies other events may be more

likely to occur, such as for instance the (n,γ)-reaction, where a neutron is absorbed

by the nucleus and a gamma ray plus a secondary neutron is emitted.

2.3.4 Reflection and Refraction

Analogous to reflection of light, neutrons obey Snell’s law, and at very small

scattering angles they are reflected from surfaces or can be refracted at interfaces

between two different media, such as between air and a thin film of some material,

or between two different thin films. The critical angle of total reflection is propor-

tional to the square root of the coherent SLD (see Chap. 5, Eq. 5.4). By performing

neutron reflectometry experiments (see Chap. 5 for details), it is possible to

determine the average SLD profile perpendicular to the surface and estimate the

local composition. Layered structures lead to typical interference patterns in the

reflectivity curve. By using this effect we can measure the thickness of layers, while

the amount of diffuse reflection can give information about the roughness of the

surface. Neutron reflectometry is limited to thin films and layers (<300 nm) or the

regions very close to the surface of a sample. The differences in scattering lengths

between neighboring elements of the periodic table and between isotopes, and

strong scattering from light elements, such as hydrogen, are important advantages

compared to the related X-ray reflectometry method. Chapter 5 presents neutron

reflectometry in detail and in particular how it can be utilized to study hydrogen

storage materials.
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2.4 Coherent and Incoherent Scattering

2.4.1 Coherent and Incoherent Scattering Cross Sections

The coherent and incoherent contributions to the scattering length, b, were intro-

duced earlier. In a similar manner the total scattering cross section, σs, is divided
into a coherent part, σc, and an incoherent part, σi:

σs ¼ σc þ σi; ð2:9Þ

In a neutron scattering experiment we are measuring the combined intensity

from all waves scattered by all atoms in the sample being exposed to the neutron

beam. Consequently, the measured intensities will be determined by the interplay of

the different waves with each other, leading to interference effects. Coherent

scattering describes interference between waves produced by the scattering of a

single neutron with waves coming from all nuclei in the sample. This type of

scattering varies strongly with the scattering angle. Examples of coherent processes

are so-called Bragg scattering and inelastic scattering by phonons or magnons. The

coherent scattering cross section σc is given by the square of the average value of b:

σc ¼ 4π
X
j

f jbj

 !2

¼ 4π b
� �2 ð2:10Þ

where fj is the relative percentage of a nucleus with a specific scattering length bj
inside the sample.

Incoherent scattering, on the other hand, can be considered as the remaining part

of the total scattering when the coherent scattering has been subtracted. The

incoherent scattering cross section σi is given by:

σi ¼ 4π
X
j

fjb
2
j �

X
j

fjbj

 !2
0
@

1
A ¼ 4π b2 � b

� �2� �
ð2:11Þ

In the case of incoherent scattering waves from different nuclei do not interfere with

each other, meaning that no structural information can be extracted from this type

of scattering. Particle dynamics, however, such as diffusion, is possible to extract

because the incoherent scattering gives information about correlations between the

positions of the same nucleus at different times. Equation 2.11 is basically telling us

that the cause of incoherent scattering is random deviations from the mean scatter-

ing length of an element. These variations are resulting from the random distribu-

tion of spins (I�½) and/or isotopes throughout a sample.

Both the coherent and incoherent cross sections (Eqs. 2.10 and 2.11) depend on

the scattering length b, which in turn is dependent on the spin state I of the nucleus.
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With b equal for all nuclei in a sample, which is the case for nuclei with zero spin,

the incoherent scattering cross section in Eq. 2.11 becomes zero and the scattering

is purely coherent. Naturally occurring helium, carbon, and oxygen are very close

to mono-isotopic. Because the most abundant isotope of each of these elements has

zero spin, the scattering from these naturally occurring elements will therefore

almost only scatter coherently.

2.4.2 The Double-Differential Scattering Cross Section

Wemeasure the total scattered intensity, I(Q,E), in a neutron scattering experiment.

This is a function of both the scattering vector Q (Eq. 2.15) and the energy of the

scattered neutrons, E. A detector measures I(Q,E) by counting the number of

neutrons scattered into an element of solid angle dΩ in the direction 2θ,φ (see

Fig. 2.5), having an energy between E and EþΔE, per the incoming particle flux,

Φ. We refer from now on to I(Q,E) as the double-differential cross section:

I Q;Eð Þ ¼ d2σ

dΩdE
¼

Number of neutrons scattered per second into

dΩ in the direction 2θ,φ, with final energy

between E and Eþ ΔE
ΦdΩdE

ð2:12Þ

Fig. 2.5 Scattering geometry for a sample mounted at the point O
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In most cases the detectors measure the whole range of energies, thereby integrating

over the energy. Then the measured quantity, called the differential cross section is:

dσ

dΩ
¼
ð1
0

d2σ

dΩdE
dE: ð2:13Þ

The total scattering cross section, σs, is defined as:

σs ¼
ð
All directions

dσ

dΩ

� �
dΩ: ð2:14Þ

The scattering vector Q is further defined by:

Q ¼ kf � ki ð2:15Þ

where ki is the incoming wave vector and kf is the scattered wave vector (see

Fig. 2.5). When kij j ¼ kfj j, the scattering is said to be elastic. If we consider

scattering at an angle 2θ, i.e. axial symmetry, it can be shown by applying a little

trigonometry to the scattering triangle in Fig. 2.6 (and using Eqs. 2.1 and 2.5), that

Q¼ (4π/λ) sin θ. θ is half the scattering angle and λ the wavelength of the incoming

neutrons.

A general expression for the scattered intensity, I(Q,E) in Eq. 2.12, was derived

by Van Hove in 1954 [6] and is presented in Eq. 2.16. The actual derivation of this

quantum mechanical equation is outside the scope of this book, but is explained in

detail in several text books, for example, by Bacon [7], Squires [8], or in Los

Alamos Science [9]. Van Hove showed that:

I Q;Eð Þ ¼ 1

2πh
kf
ki

X
j, k

bjbk

ð1
�1

eiQ�rk 0ð Þe�iQ�rj tð Þ
D E

e�iωtdt ð2:16Þ

where the double sum is over pairs of atoms labelled j and k, with scattering lengths
bj and bk, respectively, h ¼ h=2π is the reduced Planck constant, and ω is defined by

�hω¼E�E0 (i.e., the difference in energy between the initial and final quantum

states of the scattering system). The nucleus k is at position rk at time zero and the

nucleus j is located at position rj at time t. The angular brackets denote that we need
to perform an average over all thermodynamic states.

Fig. 2.6 Scattering triangle where Q ¼ kf � ki is the difference between the wave vectors of the

scattered and incoming neutrons and 2θ the scattering angle
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Equation 2.16 may seem simple, but since the position vectors rj and rk are

quantum mechanical operators, its evaluation is not straightforward. For instructive

purposes we ignore it here and treat the system in a classical manner. Then the

double sum on the right side in Eq. 2.16 can be written as:

X
j, k

bjbk eiQ�rk 0ð Þe�iQ�rj tð Þ
D E

¼
X
j, k

bjbk eiQ� rk 0ð Þ�rj tð Þð ÞD E

¼
X
j, k

bjbk

ð1
�1

δ r� rk 0ð Þ � rj tð Þ
� 	� �
 �

eiQ�rd3r

ð2:17Þ

where δ(r) is the Dirac delta function which is zero for all position vectors not equal
to r. If we now assume an ideal one-isotope sample, all scattering lengths are equal

to each other (bj¼ bk¼ b). The scattering lengths can now be moved outside of the

summation, and Eq. 2.16 becomes:

I Q;Eð Þ ¼ nb2

2πh
kf
ki

ð1
�1

ð1
�1

G r; tð ÞeiQ�re�iωtd3rdt ð2:18Þ

n is the number of nuclei in the sample and G(r, t) is the time-dependent pair
distribution function, which in this classical derivation can be defined as:

G r; tð Þ ¼ 1

n

X
j, k

δ r� rk 0ð Þ � rj tð Þ
� 	� �
 �

: ð2:19Þ

G(r, t) gives the probability to find a nucleus at the origin of a coordinate system at

time zero as well as a nucleus at position r at time t. From Eq. 2.18 we see that the

scattered intensity is proportional to the space and time Fourier transforms of G(r, t).
This is a powerful result showing that in theory the crystal structure and its

corresponding changes as a function of time is obtained by inverse Fourier transfor-

mation of the measured intensity. In reality this is not possible due to the so-called

phase problem in crystallography, i.e. the phase information is lost when only the

intensity (the scattering amplitude squared) is measured. However during the years

several efficient methods to determine crystal structures from scattering data have

been developed (see Chap. 3).

Earlier we assumed the sample to be mono-isotopic with just one value of b. In a
sample containing more than one isotope, all scattering lengths appearing in

Eq. 2.16 are not equal any longer, thus resulting in some important modifications

to this equation. If Aj,k is an abbreviation for the integral in Eq. 2.16 and we omit the

constants, we now get:

I Q;Eð Þ ¼ σc
4π

X
j, k

Aj,k þ σi
4π

X
j

Aj, j ð2:20Þ
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σc ¼ 4π b
� �2

andσi ¼ 4π b2 � b
� �2� �

are the coherent and incoherent cross sections

from Sect. 2.4, respectively. The first term in Eq. 2.20 represents the coherent

scattering leading to interference effects. From Eqs. 2.16 and 2.20 we see that it

depends on the correlation between the positions of different nuclei at different

times. On the other hand, the incoherent scattering, represented by the second term

in Eq. 2.20, is only dependent on the correlations between the positions of the same

nucleus at different times. The incoherent contribution is generally independent of

the scattering angle, resulting in a featureless addition to the background that is

mostly ignored when performing neutron diffraction experiments. Yet incoherent

scattering is very important for studies of diffusion processes using quasielastic

neutron scattering.

A classic example of the peculiar nature of incoherent scattering is the big

difference between protium and deuterium. Protium is a strong spin-incoherent

scatterer because the triplet (total spin moment neutronþ nucleus, J¼ 1) and the

singlet states (J¼ 0) have very different scattering lengths (bþ¼ 10.81 fm,

b�¼�47.42 fm), resulting in σi¼ 80.3 and σc¼ 1.76 barn, respectively. Deuterium

has only one spin state in its ground state of I¼ 1, and bþ¼ 9.53 fm and

b�¼ 0.97 fm, and the corresponding values for deuterium are σi¼ 2.05 and

σc¼ 5.59 barn, respectively. Therefore, naturally occurring hydrogen scatters

mostly incoherently leading to a strong and featureless background in the neutron

diffraction patterns of hydrogen containing samples. This means if possible

deuterided samples should be used for diffraction experiments in order to reduce

the incoherent scattering. When performing inelastic or quasielastic neutron scat-

tering, on the other hand, the incoherent scattering is being used for studying

diffusion, hence hydrogen is preferred over deuterium due to the much larger

incoherent contribution.

By synthesizing compounds where there are specific units or groups of atoms

including hydrogen and others with deuterium, the significant difference in scat-

tering is used to mask and enhance specific parts of the compounds. See Chap. 6.

2.4.3 Magnetic Scattering

Due to the magnetic moment of neutrons, they interact with unpaired electrons in

magnetic materials. This makes neutron scattering a unique method to determine

magnetic properties in materials. The magnetic interaction experienced by the

neutron is of similar strength as the nuclear interaction, and thus magnetic scatter-

ing is of similar intensity as nuclear scattering. In ferromagnetic materials all the

magnetic moments are oriented along the same direction. The magnetic unit cell is

in this case equal to the crystallographic one, and therefore the magnetic scattering

gives additional contribution to the crystalline Bragg peaks only. However, for

other kinds of magnetic ordering, for example, antiferromagnetic materials (com-

mensurate or incommensurate with the crystal structure) or magnetic helices,

magnetic scattering gives additional peaks in the diffraction patterns. In addition
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to determination of the type of magnetic ordering, it is also possible from the data

treatment to determine both the direction and sizes of the magnetic moments.

Neutrons interact with the unpaired electrons and therefore the scattering is deter-

mined by the magnetic form factor which is a function of the scattering angle. Thus

the strongest magnetic scattering appears at low angles in the diffraction patterns.

2.5 Elastic, Inelastic, and Quasielastic Neutron Scattering

2.5.1 Elastic Scattering: Bragg Diffraction

Neutron scattering is a multifaceted discipline that has evolved into a vast array of

different techniques. The most basic is elastic neutron diffraction, often called

Bragg scattering or Bragg diffraction (similar for neutrons and X-rays). These

experiments do not require the determination of the energy of the scattered neutrons

and from the coherent term in Eq. 2.20 the intensity of the scattered beam as a

function of the scattering vector Q is given by:

I Qð Þ ¼
X
j, k

bjbke
iQ� rj�rkð Þ ¼ F Qð Þj j2 ð2:21Þ

with coherent scattering lengths bj and bk, and the structure factor F(Q) is defined as:

F Qð Þ ¼
X
j

bje
iQ�rj : ð2:22Þ

Crystalline materials are built up of identical entities, called unit cells. The unit
cell is a parallelepiped spanned by three translation vectors a, b, and c (see Fig. 2.7).

The unit cell itself is positioned by a lattice vector ruvw¼ uaþ vbþwc, where u, v,
w, are integers. The atomic position for each atom within the unit cell is given by

rj (see Eq. 2.22), and the overall position of the atom can be expressed as

rj¼ ruvwþ rj
unitcell (see Fig. 2.7).

Fig. 2.7 Unit cell of a face-centered orthorhombic lattice with lattice constants a, b, c. rj
unitcell is

the equilibrium position of atom j in the unit cell
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From this expression of rj the structure factor in Eq. 2.22 can be expressed as:

Fhkl Qð Þ ¼
Xnunitcell
j

X1
u, v,w¼�1

bje
iQ� ruvwþr unitcell

jð Þ

¼
X1

u, v,w¼�1
eiQ�ruvw

Xnunitcell
j

bje
iQ�r unitcell

j ð2:23Þ

The first sum is over all unit cells in the crystal, typically assumed to be infinite, and

the second sum is over all the nunitcell atoms in the unit cell. The infinite triple sum

can be expressed as a sum of δ-functions that describes a lattice, which leads us to the
final expression for the structure factor (often named Laue’s interference function):

Fhkl Qð Þ ¼ 1

V

Xnunitcell
j

bje
iQ�r unitcell

j

X1
h, k, l¼�1

δ Q�Qhklð Þ ð2:24Þ

where Qhkl¼ 2π(ha*þ kb*þ lc*), a*, b*, and c* are the reciprocal vectors of a, b,

and c defined by a · a*� b ·b*� c · c*� 1 and a ·b*� a · c*� b · a*� . . .� 0. h, k,
l are integers, while V is the volume of the unit cell. This implies that a crystal with

perfect translational symmetry only scatters in certain directions, namely where

Q¼Qhkl. The scattering in these directions corresponds to the Bragg scattering.

Fhkl(Q) is zero everywhere else due to the sum of δ-functions which is zero except

for Q¼Qhkl.

The condition for Bragg scattering is visualized in Fig. 2.8 and is usually

expressed as the Bragg’s law:

λ ¼ 2dhkl sin θhklð Þ ð2:25Þ

where λ is the wavelength of the incoming and outgoing neutrons, dhkl is the

distance between the family of planes that cut the unit cell vectors a, b, and c, h,
k, and l times, respectively, and θhkl is half the scattering angle between ki and kf as

Fig. 2.8 Illustration of Bragg’s law. Scattering of neutrons, with wavelength λ, regarded as

specular reflection from a set of crystallographic planes shown as horizontal lines
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seen in Fig. 2.6. The Bragg scattering is often regarded as specular reflections from

these planes (Fig. 2.8), hence the scattering in a direction 2θhkl is called a Bragg
reflection where hkl are the so-called Miller indices for this reflection.

The expression in Eq. 2.24 is only valid for purely stationary atoms. In a real

sample thermal energy makes the atoms oscillate about their equilibrium positions

and the expression becomes:

Fhkl Qð Þ ¼ 1

V

Xnunitcell
j

bje
iQ�r unitcell

j e�Q2 u2jh i=2 X1
h, k, l¼�1

δ Q�Qhklð Þ ð2:26Þ

where e�Q2 u2jh i=2is the Debye–Waller factor that is taking into account the thermal

vibrations of the atoms, and hu2j i is the average of the squared displacement of atom j.

The displacements can also come from static disorder and thus this parameter is

designated as an atomic displacement parameter. Since an atom only contributes to

the Bragg scattering when it is located at the center of its vibration ellipsoid, the

intensity of the Bragg reflection becomes weaker due to the thermal vibrations, and

the effect increases for increasing scattering angles. Chapter 3 covers powder neutron

diffraction which is one of the major techniques used in studying, for example,

hydrogen storage materials.

2.5.2 Inelastic Neutron Scattering: Phonons, Magnons

One of the advantages of using neutrons as a probe when studying condensed matter

is that they can be used to measure atomic and molecular vibrations with inelastic

coherent scattering, and thereby measuring energy transitions and energy levels in

atoms. The term inelastic means that the magnitude of the neutron’s wave vector

changes as well as the direction during the scattering process, hence the kinetic

energy of the scattered neutron is modified. Vibrations of atoms in solid materials

are correlated with each other into lattice waves, which are superpositions of waves

of different frequencies and wavelengths. These waves are called phonons, and
have quantized energies of E¼ hv, where v is the frequency of the collective motion

of all atoms linked to a given phonon.

Analogous to a phonon, a magnon is a quantized energy packet resulting from

collective oscillations of the magnetic moments in solid materials. These oscilla-

tions are called spin waves. The magnon carries an energy of E¼ hν where ν is the
frequency of the spin wave. An excitation of a magnon corresponds to the reversal

of one spin ½.

An incoming neutron can interact with a phonon or a magnon, and will either

give or take up the quantized energy before being scattered. This process is called

inelastic because it involves a change of the kinetic energy of the neutron. Since the

energy of a typical phonon or magnon is on the same order as the kinetic energy of

the incoming neutrons, the change in energy of the scattered neutron is significant
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and possible to measure quite accurately. From the change of the neutron energy the

phonon and magnon frequencies can be determined. A typical setup (Fig. 2.9) uses

either a monochromatic incoming beam, and measures the scattered neutrons with

the time of flight method to find the energy transfer (direct geometry), or it

measures the scattered neutrons using an analyzer crystal after the sample (indirect

geometry). The latter type is commonly referred to as a triple-axis spectrometer.

More on this technique can be found in Chap. 9.

2.5.3 Quasielastic Neutron Scattering

As mentioned earlier the incoherent contribution to the scattering in a typical

diffraction experiment is handled like a featureless background, which may imply

that there is no information obtainable from this. On the contrary, a fair deal of

knowledge can be extracted from this signal. In quasielastic neutron scattering

(QENS) we can make use of the incoherent contribution to the inelastic scattering

to measure diffusion processes. Since diffusion in its simplest form is one particle

jumping between lattice sites, it makes sense to analyze the incoherent scattering,

because it provides the dynamics of individual particles. On the other hand,

inelastic coherent scattering is due to correlated motions of atoms, e.g., phonons.

The big incoherent scattering cross section of hydrogen enables excellent contrast

when studying hydrogen diffusion.

Similarly to inelastic scattering, QENS measures energy transitions using similar

setups found in Fig. 2.9. The name quasielastic comes from the fact that the

measurements are probing events having energy transfers much lower than the

incoming energy, with deviations very close to the elastic scattering. Consequently,

Fig. 2.9 Geometries of

inelastic neutron scattering

setups

28 B.C. Hauback and H. Mauroy

http://dx.doi.org/10.1007/978-3-319-22792-4_9


the energy has to be measured with high resolution. The energy transitions are

generally not quantized, leading to a continuous Lorentzian broadening of the

elastic peak (where the energy transfer is zero). More on incoherent neutron

scattering and QENS can be found in Chaps. 8 and 9, respectively.

2.6 Summary

Technique Physical principle Information provided

Diffraction

(Chaps. 3 and 4)

Elastic scattering Crystal structure on atomic scale: positions of

atoms including hydrogen, lattice constants,

phase fractions, pair distribution functions

Reflectometry

(Chap. 5)

Refraction Layer thickness and scattering length density

profile (e.g., hydrogen profile) with nm resolu-

tion and absorption/desorption studies in real

time

Small angle neutron

scattering (Chap. 6)

Elastic scattering Structure on a mesoscopic scale (~1–100 nm):

macromolecules, porous and biological systems,

aggregates of particles in a matrix or scaffolds

Radiography/Neu-

tron imaging

(Chap. 7)

Absorption Structure on a macroscopic level (typical

resolution in the order of 50 microns), absorp-

tion and desorption studies in real time

Incoherent neutron

scattering (Chap. 8)

Incoherent scattering H2/D2 content and absorption/desorption studies

in real time

Inelastic scattering

(Chap. 9)

Coherent and inco-

herent inelastic

scattering

Dynamic processes: vibrational/rotational

states, binding energies

Quasielastic scatter-

ing (Chap. 9)

Incoherent inelastic

scattering

Dynamic processes: H2/D2 diffusion, molecular

vibrations and rotations, activation energy
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