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Abstract. A major mining task for binary matrixes is the extraction of
approximate top-k patterns that are able to concisely describe the input
data. The top-k pattern discovery problem is commonly stated as an
optimization one, where the goal is to minimize a given cost function,
e.g., the accuracy of the data description.

In this work, we review several greedy state-of-the-art algorithms,
namely Asso, Hyper+, and PaNDa+, and propose a methodology to
compare the patterns extracted. In evaluating the set of mined patterns,
we aim at overcoming the usual assessment methodology, which only
measures the given cost function to minimize. Thus, we evaluate how
good are the models/patterns extracted in unveiling supervised knowl-
edge on the data. To this end, we test algorithms and diverse cost func-
tions on several datasets from the UCI repository. As contribution, we
show that PaNDa+ performs best in the majority of the cases, since the
classifiers built over the mined patterns used as dataset features are the
most accurate.

1 Introduction

Binary matrixes can be derived from several typologies of datasets, collected
in diverse and popular application domains. Without loss of generality, we can
think of a binary matrix as a representation of a transactional database, com-
posed of a multi-set of transactions (matrix rows), each including a set of items
(matrix columns). An approximate pattern extracted from a binary matrix thus
corresponds to a pair of sets, items and transactions, where the items of the
former set are mostly included in all the transactions of the latter set. The car-
dinality of the transaction set (matrix rows) can also be seen as the approximate
support of the corresponding set of items.

Top-k pattern mining is an alternative approach to pattern enumeration. It
aims at discovering the (small) set of k patterns that best describes, or mod-
els, the input dataset. State-of-the-art algorithms differ in the formalization of
the above concept of dataset description. For instance, in [1] the goodness of the
description is given by the number of occurrences in the dataset incorrectly mod-
eled by the extracted patterns, while shorter and concise patterns are promoted
in [2,3]. The goodness of a description is measured with some cost function,
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and the top-k mining task is casted into an optimization of such cost. In most
of such formulations, the problem is demonstrated to be NP-hard, and therefore
greedy strategies are adopted. At each iteration, the pattern that best optimizes
the given cost function is added to the solution. This is repeated until k patterns
have been found or until it is not possible to improve the cost function.

In this paper we analyze in depth three state-of-the-art algorithms for min-
ing approximate top-k pattern from binary data: Asso [1], Hyper+ [2] and
PaNDa+ [4]. Indeed, the cost functions adopted by Asso [1] and Hyper+ [2]
share important aspects that can be generalized into a unique formulation. The
PaNDa+ framework can be plugged with such generalized formulation, which
makes it possible to greedily mine approximate patterns according to several cost
functions, including the ones proposed in [3,6]. PaNDa+ also permits expressing
noise constraints [5].

Concerning the evaluation methodology, we observe that state-of-the-art
algorithms for approximate top-k mining measure the goodness of the discovered
patterns by their capability of minimizing the same cost function optimized by
the greedy algorithm. This simple assessment methodology captures the effec-
tiveness of the greedy strategy rather than the quality of the extracted patterns.
In this paper, we want to go beyond this common evaluation approach by adopt-
ing an assessment methodology aimed at measuring also how good are the concise
models extracted in unveiling some hidden supervised knowledge, in particular
the class labels associated with transactions.

We test this capability by using the algorithms for approximate top-k mining
as a sort of feature extractors. The accuracy of the classifiers built on top of
the extracted features is then considered a proxy for the quality of the mined
patterns. In this way, we are able to complement internal indices of quality (cost
function), with external ones (classification accuracy). PaNDa+, which is able
to optimize several cost function, permits to extract those patterns/features that
when used to train a classifier, produces models that are in the majority of the
cases the most accurate.

2 Problem Statement and Algorithms

In this sections we first introduce some notation and the problem statement, and
then we briefly discuss the main features and peculiarities of three state-of-the-
art algorithms solving our approximate top-k pattern mining problem.

2.1 Notation and Problem Statement

A transactional dataset of N transactions and M items can be represented by
a binary matrix D ∈ {0, 1}N×M where D(i, j) = 1 if the i−th item occurs in
the j−th transaction, and D(i, j) = 0 otherwise. An approximate pattern P
is identified by the set of items it contains and the set of transactions where
these items (partially) occur. We represent these two sets as binary vectors
P = 〈PI , PT 〉, where PI ∈ {0, 1}M and PT ∈ {0, 1}N . The outer product PT ·
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PT
I ∈ {0, 1}N×M identifies a sub-matrix of D. Being each pattern approximate,

the sub-matrix should mainly cover 1-bits in D (true positives), but it may also
cover a few 0-bits too (false positives).

Finally, let Π =
{
P1, . . . , P|Π|

}
be a set of overlapping patterns, which

approximately cover dataset D, except for some noisy item occurrences, identi-
fied by matrix N ∈ {0, 1}N×M :

N =
∨

P∈Π

(PT · PT
I ) � D. (1)

where ∨ and � are respectively the element-wise logical or and xor operators.
Note that some 1-bits in D may not be covered by any pattern in Π (false neg-
atives). Indeed, our formulation of noise (matrix N ) models both false positives
and false negatives. If an occurrence D(i, j) corresponds to either a false positive
or a false negative, we have that N (i, j) = 1.

On the basis of this notation, we can state the top-k pattern discovery problem
as an optimization one:

Problem 1 (Approximate Top-k Pattern Discovery Problem). Given a binary
dataset D ∈ {0, 1}N×M and an integer k, find the pattern set Πk, |Πk| ≤ k,
that minimizes the given cost function J(Πk,D):

Πk = argmin
Πk

J(Πk,D) (2)

In the following we review some cost functions and the algorithms that adopt
them. These algorithms try to optimize specific functions J with some greedy
strategy, since the problem belongs to the NP class. In addition, they exploit
some specific parameters, whose purpose is to make the pattern set Πk subject
to particular constraints, with the aim of (1) reducing the algorithm search
space, or (2) possibly avoiding that the greedy generation of patterns brings to
local minima. As an example of the former type of parameters, we mention the
frequency of the pattern. Whereas, for the latter type of parameters, an example
is the amount of false positives we can tolerate in each pattern.

2.2 Minimizing Noise (Asso)

Asso [1] is a greedy algorithm aimed at finding the pattern set Πk that minimizes
the amount of noise in describing the input data matrix D. This is measured as
the L1-norm ‖N‖ (or Hamming norm), which simply counts the number of 1 bits
in matrix N as defined in Eq. (1). Asso is thus a greedy algorithm minimizing
the following function:

JA(Πk,D) = ‖N‖. (3)

Indeed, Asso aims at finding a solution for the Boolean matrix decomposition
problem, thus identifying two low-dimensional factor binary matrices of rank k,
such that their Boolean product approximates D. The authors of Asso called
this matrix decomposition problem the Discrete Basis Problem (DBP). It can



Supervised Evaluation of Top-K Itemset Mining Algorithms 85

be shown that the DBP problem is equivalent to the approximate top-k pattern
mining problem when optimizing JA. The authors prove that the decision version
of the problem is NP-complete by reduction to the set basis problem, and that JA

cannot be approximated within any factor in polynomial time, unless P = NP.
Asso works as follows. First it creates a set of candidate item sets, by mea-

suring the correlation between every pair of items. The minimum confidence
parameter τ is used to determine whether two items belong to the same item
set. Then Asso iteratively selects a pattern from the candidate set by greedily
minimizing the JA.

2.3 Minimizing the Pattern Set Complexity (Hyper+)

The Hyper+ [2] algorithm works in two phases. In the first phase (corresponding
to the covering algorithm Hyper + [7]), given a collection of frequent item sets,
the algorithm greedily selects a set of patterns Π∗ by minimizing the following
cost function that models the pattern set complexity:

JH(Π∗,D) =
∑

P∈Π∗
(‖PI‖ + ‖PT ‖). (4)

During this first phase, the algorithm aims to cover in the best way all the items
occurring in D, with neither false negatives nor positives, and thus without any
noise. The rationale is to promote the simplest description of the input data D.
Note that the size of Π∗ is unknown, and depends on the amount of patterns
that suffice to cover the 1-bits in D. The minimum support parameter σ is
used by Hyper+ to select an initial set of frequent item sets for starting the
greedy selection phase, thus reducing the search space of the greedy optimization
strategy.

Concerning the second phase of the algorithm, pairs of patterns in Π∗ are
recursively merged as long as a new collection Π ′, with a reduced number of
patterns, can be obtained without generating an amount of false positive occur-
rences larger than a given budget β. Finally, since the pattern set Π ′ is ordered
(from most to least important), we can simply select Πk as the top-listed k pat-
terns in Π ′, as done by the algorithm authors in Sect. 7.4 of [2]. Note that this
also introduces false negatives, corresponding to all the occurrences D(i, j) = 1
in the dataset that remain uncovered after selecting the top-k patterns Πk only.

2.4 Minimizing Multiple Cost Functions (PaNDa+ Framework)

PaNDa+ is a framework recently proposed [4] that inherits the optimization
engine of PaNDa [3]. Thus it adopts a greedy strategy by exploiting a two-stage
heuristics to iteratively select each pattern: (a) discover a noise-less pattern that
covers the yet uncovered 1-bits of D, and (b) extend it to form a good approx-
imate pattern, thus allowing some false positives to occur within the pattern.
Rather than considering all the possible exponential combinations of items, these
are sorted to maximize the probability of generating large cores, and processed
one at the time without backtracking.
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Table 1. Objective functions for Top-k pattern discovery problem.

Cost Function Description

JA(Πk, D) = J+(Πk, D, γN (N ) = ‖N‖, γP (P ) = 0, ρ = 0) Minimize noise [1]

JH(Πk, D) = J+(Πk, D, γN (N ) = 0, γP (P ) = ‖PT ‖ + ‖PI‖, ρ = 1) Minimize pattern set

complexity [7]

JP (Πk, D) = J+(Πk, D, γN (N ) = ‖N‖, γP = ‖PT ‖ + ‖PI‖, ρ = 1) Minimize noise and

pattern set

complexity [3,9]

Jρ
P (Πk, D) = J+(Πk, D, γN (N ) = ‖N‖, γP (P ) = ‖PT ‖ + ‖PI‖, ρ = ρ) Extend JP to leverage

the trade-off between

noise and pattern set

complexity

JE(Π, D) = J+(Π, D, γN (N ) = enc(N ), γP (P ) = enc(P ), ρ = 1) Minimize the encoding

length [8] of the

pattern model

according to [6]

The PaNDa+ [3] original cost function JP can be replaced without harming
its greedy heuristics. Indeed, JP , which is simply the sum of JA(·) and JH(·) –
see Eqs. (3) and (4) – is generalized as follows:

J+(Πk,D, γN , γP , ρ) = γN (N ) + ρ ·
∑

P∈Πk

γP (P ) (5)

where N is the noise matrix defined by Eq. (1), γN and γP are user defined
functions measuring the cost of the noise and patterns descriptions respectively,
and ρ ≥ 0 works as a regularization factor weighting the relative importance of
the patterns cost.

Table 1 shows how the cost function defined by Eq. (5) can be instantiated
to obtain all the functions discussed above, and allows for new functions to be
introduced, by fully leveraging the trade-off between patterns description cost
and noise cost (thanks to parameter ρ). Note the Jρ

P is a generalization of the
function JP already proposed for PaNDa, with parameter ρ that determines a
different trade-off between patterns description cost and noise cost. In addition,
one instance of the generalized cost function is JE , originally proposed in [6] to
evaluate a pattern set Πk. According to the MDL principle [8], the regularities in
D, corresponding to the discovered patterns Πk, can be used to lossless compress
D: thus the best pattern set Πk is the one that induces the smallest encoding
of D. Finally, in order to avoid the greedy search strategy accepting too noisy
patterns, we introduced into PaNDa+ two maximum noise thresholds εr, εc ∈
[0, 1], inspired by [5], aimed at bounding the maximum amount of noise generated
by adding a new item or a new transaction to a pattern.

3 Evaluation Methodology and Experiments

We observe the lack of common real-world benchmarks, e.g., datasets for which
the most important embedded patterns are known, and that can be used as a
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Table 2. Characteristics of the datasets used for the experiments

Dataset # Classes # Items # Transactions Avg. trans. length

Abalone 3 40 4177 8.0

Anneal 5 108 898 38.0

Audiology 24 154 226 67.6

Auto 6 129 205 24.7

Congres 2 32 434 15.1

Credita 2 70 690 14.9

CylBands 2 120 540 33.2

Dermatology 6 43 366 12.0

Diabetes 2 40 768 8.0

Ecoli 8 26 336 7.0

Flare 8 30 1389 10.0

Glass 6 40 214 9.0

Heart 5 45 303 13.0

Hepatitis 2 50 155 17.9

HorseColic.D85 2 81 368 16.8

Ionosphere 2 155 351 34.0

Iris 3 16 150 4.0

Mushroom 2 88 8124 21.7

Pima 2 36 768 8.0

Sick 2 75 3772 27.4

Soybean-large 19 99 683 31.6

Vehicle 4 90 846 18.0

Wine 3 65 178 13.0

Zoo 7 35 101 16.0

ground truth to evaluate and compare algorithms. We thus propose a supervised
evaluation methodology of the extracted top-k patterns that measures and com-
pares the ability of each algorithm in discovering interesting transaction features
that we can use to train accurate classifier.

To this end we focus on 24 datasets from the UCI repository1 which have
been discretized for pattern mining2. The main characteristics of the datasets are
reported in Table 2. In all the experiments, we thus remove class labels before feed-
ing any top-k approximate item sets mining algorithm. Such patterns are used as
features to train and test an SVM classifier.

3.1 Parameter Setting of Pattern Mining Algorithms

We apply Hyper+, Asso, and PaNDa+ over the 24 UCI datasets, by requiring
the mining algorithms to extract a number of patterns equal to twice the number
1 http://archive.ics.uci.edu/ml/.
2 http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS KDD DN/.

http://archive.ics.uci.edu/ml/
http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/
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of classes present in each distinct dataset. Altough the number of classes is a
good proxy for the actual number of interesting patterns occurring in the data,
we doubled this number to deal with the presence of multiple dense subgroups
that characterize a single class, as found in [6]. Also, note that all the three
algorithms may produce less patterns than required if none is found to improve
the objective function.

Although Hyper+ allows for setting the maximum number of patterns k
to extract, unfortunately we found this option to perform poorly, resulting in
excessive noise. This is due to the covering constraint of the algorithm: false
negatives are not allowed, and the extracted k patterns must cover all the occur-
rences D(i, j) = 1 in the dataset. It is possible to achieve much better results by
tuning the algorithm noise budget β, and then accepting only the k top-listed
patterns. We fine-tuned the β parameter on every single dataset by choosing
β in the set {1%, 10%}. Moreover, we used frequent closed item sets in order
to take advantage of a lower minimum support thresholds, which is the most
sensitive parameter of Hyper+. We swept the minimum support threshold in
the interval [10%, 90%] by increments of 10%.

The Asso algorithm has a minimum correlation parameter τ which deter-
mines the initial patterns candidate set. Indeed, Asso is very sensitive to this
parameter. We fine-tuned the algorithm independently on every single dataset,
by tuning τ in the range [0.5, 1] with steps of 0.05. In our experiments we always
tested the best performing variant of the algorithm which is named Asso + iter
in the original paper.

We evaluated four variants of PaNDa+ optimizing different cost functions:
JA, JP , JE , J1.2

P . Recall that JA measures the noise cost only, JP adds the cost
of each pattern, JE measures the cost of an optimal MDL encoding, and J1.2

P

mimics JE by using a larger weight for the cost of the patters cost. In addition,
PaNDa+ uses two maximum noise thresholds εr and εc, to control the maximum
amount of noise on each pattern row or column. Also in this case, on each dataset
we swept parameters εr and εc in the range [0.0, 0.5], with steps of 0.05, and also
considering the value 1.0 which is equivalent to ignoring the thresholds.

3.2 Supervised Evaluation of Pattern Set

Each binary UCI dataset, from which the class labels is removed in advance, is
first subdivided into training and test set. Indeed, we use 10-fold cross validation,
so a training set includes 9/10 of all transactions, and the corresponding test
set the remaining 1/10 ones. We employ the three algorithms, instantiated with
a given parameter set, to extract a distinct a pattern set Πk from the training
set. Then, every transaction in the training and test sets is mapped into the
pattern space by considering a binary feature for each approximate pattern in
Πk indicating its presence/absence in the transaction. Note that the algorithms
we evaluated produce, for each pattern 〈PI , PT 〉 ∈ Πk, the set of transactions PT

in the training where PI it occurs, and this set is used for the mapping. For what
regard the test set, we say that an approximate pattern P ∈ Πk occurs in an
unseen test transaction t iff |PI∩t|/|PI | ≥ η, where η is the minimum intersection
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ratio |PI ∩ t∗|/|PI | for every training transaction t∗ ∈ PT . The rationale is to
accept a pattern P for a test transaction t if it does not generate more noise
than what it has been observed in the training set.

After mapping the transactions into such pattern space, the class labels are
restored in the transformed training and test sets. The training set is thus used
to train an SVM classifier. Finally, the classifier is evaluated on the mapped test
set. Specifically we adopt the implementation provided by [10], in which we use
a radial basis function as SVM kernel, and estimate its crucial regularization
parameter as in [11].

It is worth noting that, unlike [12], the features extracted from each trans-
action only correspond to the patterns discovered by the given algorithm: we
do not consider the singletons as a transaction feature in classifier training/test
data, unless such patterns composed of single items are actually extracted by the
mining algorithm. This is because we want to evaluate exclusively the predictive
power of the mined collection of patterns Πk.

Since the various algorithms take as input several parameters summarized in
Fig. 1(a), we exploit a parameter sweeping technique, like in [1] and [6], aimed
at understanding the full potential of the algorithms taken into consideration.

Specifically, we adopt two distinct approaches to derive the best classifier
for each dataset, and thus testing its accuracy. In the former approach – see
Fig. 1(b) – we sweep over the input parameters of the given algorithm, and
select ’ex ante’ the best parameters on the basis of the specific cost function J
used to evaluate the quality of the mined pattern sets. We thus conduct 10-fold
cross validation to evaluate the goodness of the algorithm as follows: at each fold
the top-k patterns are extracted from the training set using the best parameters
previously found, then they are exploited as features to map the data in a new
feature space, and finally, the mapped data is used to train and test an SVM
classifier. In the latter approach – see Fig. 1(c) – we use parameter sweeping to
explore the maximum accuracy achievable by a given algorithm. The classifier
resulting from every combination of the algorithm parameters is evaluated with

Alg params

Asso τ
Hyper+ σ, β

PaNDa+ r, r

(a)

Parameter 
Sweeping over

params

Data w/o  
class labels

Alg 

Πk
Data 

Mapping 

10-fold cross-validation 

Accuracy 

Alg’s 
params 
setting 

Training w/o  
class labels

SVM 
Classifier Mapped Data  

w/ class labels

Alg 

Πk
Data 

Mapping 

10-fold cross-validation 

Accuracy 

Training w/o  
class labels

SVM 
Classifier Mapped Data  

w/ class labels

Alg 

Parameter Sweeping over params

among all  
settings of  

Alg’s params  

yielding 
the best 

J 

Select the best 
Accuracy 

Accuracy 

(b)

(c)

Fig. 1. Supervised evaluation: (a) algorithms’ parameters, (b) unsupervised and (c)
supervised selection of the algorithms’ parameters.
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Fig. 2. Box-plots of the accuracy of the SVM-based classifier with pre-optimized algo-
rithm parameters across the various UCI datasets (Hyper+ did not complete on audi-
ology). Leftmost data correspond to noise-based parameter tuning and rightmost data
to MDL-based parameter tuning.

same 10-fold cross validation process, and the best accuracy is used to measure
the goodness of the algorithm.

3.3 Experimental Results

The first of our experiments compares Asso, Hyper+ and PaNDa+ when
their parameters are chosen according to their ability to optimize JA or JE ,
as illustrated in Fig. 1(b). Results reported in Fig. 2 show that the performance
of Hyper+ are better than expected. Even if Hyper+ is not able to opti-
mize well neither JA nor JE , the resulting patterns provide a reasonably good
accuracy. We observe that the JE cost function leads to poorer patterns on
average. This is quite surprising, since we expected that a purely noise-based
cost function would lead to over-fitting patterns and that the MDL-based cost
would promote patterns with a larger generalization power. The best median is
achieved by PaNDa+ JP , which looks to be a good compromise between noise
minimization and generalization power. In Table 3 we report the results of the
pairwise comparison, which confirm the good performance of PaNDa+ JP when
its parameters are determined on the basis of JA.

The above experiments, show that the approximate frequent pattern min-
ing algorithms we took into consideration provide similar performance, with a
slight preference for PaNDa variants, and they also show that optimizing JA is
preferable to optimizing JE .

We also measured the maximum accuracy that each algorithm can achieve,
as illustrated in Fig. 1(c). The results of this experiment are shown in Fig. 3
and in Table 4. Except for Hyper+, all the algorithms significantly increase
their median accuracy with 10 % improvement, the best performing being
PaNDa+ JA with a median accuracy close to 80 %. Recall that PaNDa+ JA

was not the best algorithm at optimizing JA. Again, we can state that neither
JA nor JE are good hints for the discovery of predictive patterns. Moreover,
PaNDa+ JA performs almost always better the Hyper+, and beats Asso in
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Table 3. Number of times an algorithm (column) generated better/equal/worse pat-
terns than the baseline (row) based on the corresponding SVM accuracy.

Noise-based parameters MDL-based parameters

Asso Hyper+ PaNDa+ PaNDa+ Asso Hyper+ PaNDa+ PaNDa+ PaNDa+

JP JA JP J1.2
P JE

N
o
is
e
-b

a
se

d Asso (24) 10/2/11 16/1/7 11/1/12 6/9/9 10/1/12 11/1/12 11/1/12 13/2/9
Hyper+ 11/2/10 (23) 15/1/7 14/0/9 11/2/10 7/6/10 13/1/9 13/1/9 12/2/9

PaNDa+ JP 7/1/16 7/1/15 (24) 9/2/13 7/2/15 5/1/17 5/2/17 8/2/14 7/2/15

PaNDa+ JA 12/1/11 9/0/14 13/2/9 (24) 11/1/12 9/0/14 7/1/16 9/1/14 10/1/13

M
D

L
-b

a
se

d Asso 9/9/6 10/2/11 15/2/7 12/1/11 (24) 10/1/12 12/2/10 10/2/12 12/3/9
Hyper+ 12/1/10 10/6/7 17/1/5 14/0/9 12/1/10 (23) 13/1/9 15/1/7 13/1/9

PaNDa+ JP 12/1/11 9/1/13 17/2/5 16/1/7 10/2/12 9/1/13 (24) 12/2/10 11/2/11

PaNDa+ J1.2
P 12/1/11 9/1/13 14/2/8 14/1/9 12/2/10 7/1/15 10/2/12 (24) 12/2/10

PaNDa+ JE 9/2/13 9/2/12 15/2/7 13/1/10 9/3/12 9/1/13 11/2/11 10/2/12 (24)

Fig. 3. Box-plots of the accuracy of the SVM-based classifier with parameter sweeping
across the various UCI datasets (Hyper+ did not complete on audiology).

Table 4. Number of times an algorithm (column) achieves better/equal/worse MDL
score than the baseline (row) on the test datasets. Between parentheses the number of
datasets where the algorithm succeeded in extracting the top-k patterns. In boldface
the best results.

Asso Hyper+ PaNDa+ PaNDa+ PaNDa+

JP J1.2
P JE

Asso (24) 0/0/21 13/0/11 9/0/15 12/0/12

Hyper+ 21/0/0 (21) 21/0/0 21/0/0 21/0/0

PaNDa+JP 11/0/13 0/0/21 (24) 8/0/16 15/0/9

PaNDa+J1.2
P 15/0/9 0/0/21 16/0/8 (24) 20/0/4

PaNDa+JE 12/0/12 0/0/21 9/0/15 4/0/20 (24)
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17 datasets out of 24. The difference between PaNDa+ JA and Asso is sta-
tistically significant according to the two-tailed sign test with p = 0.023, and
according to the two-tailed Wilkoxon signed-rank test with p = 0.008.

4 Related Work

We classify related works in three large categories: matrix decomposition based,
database tiling and Minimum Description Length based.

Matrix Decomposition Based. The methods in this class aim at finding
a product of matrices that describes the input data with a smallest possible
amount of error. These methods include Probabilistic latent semantic indexing
(PLSI) [13], Latent Dirichlet allocation (LDA) [14], Independent Component
Analysis (ICA) [15], Non-negative Matrix Factorization, etc. However, Asso
was shown to outperform such methods on binary datasets.

Database Tiling. The maximum k-tiling problem introduced in [16] requires
to find the set of k tiles having the largest coverage of the given database D.
However, this approach is not able to handle the false positives present in the
data, similarly to Hyper [7]. According to [17], tiles can be hierarchical. Unlike
our approach, low-density regions are considered as important as high density
ones, and inclusion of tiles is preferred instead of overlapping.

Minimum Description Length Principle. In [18] a set of item sets, called
cover or code table, is used to encode all the transactions in the database, meaning
that every transaction is represented by the union of some item sets in the cover.
The MDL principle is used to choose the best code table. The proposed Krimp
algorithm selects the item sets of the cover from a pool of candidates. In their
experiments, the authors exploited the collection of all the item sets occurring
in the dataset to achieve good results. However, patterns that cover a given
transaction must be disjoint, thus increasing the size and redundancy of the
model, and noisy occurrences are not allowed.

A similar MDL-based approach is adopted in [19], but in this case, knowledge
on the data marginal distributions is assumed to be known, thus generating a
different kind of patterns. In this work, assume no knowledge on the data in
evaluating the extracted patterns. In [20] a novel framework is proposed for
the comparison of different pattern sets. From a given pattern set, a probabil-
ity distribution over D is derived according to the maximum entropy principle,
and then the Kullback-Leibler distance between these two distributions is used
to measure the dissimilarity of two pattern sets. After comparing several algo-
rithms including Asso, Hyper+, Krimp, and others, the authors conclude that
Hyper+ and Asso are the two best performing algorithms, i.e. producing the
set of patterns whose probability distribution is closer to the underlying class
label distribution. Note that Hyper+ and Asso are the algorithms analyzed in
this work.
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5 Conclusions

In this paper we have given a deep insight into the problem of mining approx-
imate top-k patterns from binary matrixes. Our analysis has explored Asso,
Hyper+, and PaNDa+. The main contribution is a methodology to assess the
various solutions at hand. In fact, the lack of standard ground truth datasets,
which we can use for evaluating and comparing the quality of pattern sets
extracted by the various algorithms – namely their greedy strategies, cost func-
tions to optimize, and parameter setting – makes very hard an objective judge-
ment. In this paper we have thus considered the accuracy of SVM classifiers,
built on top of the top-k patterns used as feature sets, as a strong signal for the
quality of the pattern set extracted. The experiments conducted on 24 datasets
from the UCI repository show that the patterns extracted by only optimizing
JA (noise) or JE (pattern set complexity) exhibit limited performance. The best
results achieved by full parameter sweeping show that PaNDa+ outperforms all
the other algorithms with a statistically significant improvement.
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16. Geerts, F., Goethals, B., Mielikäinen, T.: Tiling databases. In: Suzuki, E., Arikawa,
S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 278–289. Springer, Heidelberg
(2004)

17. Gionis, A., Mannila, H., Seppänen, J.K.: Geometric and combinatorial tiles in 0–1
data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD
2004. LNCS (LNAI), vol. 3202, pp. 173–184. Springer, Heidelberg (2004)

18. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Min. Knowl. Discov. 23(1), 169–214 (2011)

19. Kontonasios, K.N., Bie, T.D.: An information-theoretic approach to finding infor-
mative noisy tiles in binary databases. In: SDM, pp. 153–164. SIAM (2010)

20. Tatti, N., Vreeken, J.: Comparing apples and oranges. In: Gunopulos, D., Hofmann,
T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol.
6913, pp. 398–413. Springer, Heidelberg (2011)


	Supervised Evaluation of Top-k Itemset Mining Algorithms
	1 Introduction
	2 Problem Statement and Algorithms
	2.1 Notation and Problem Statement
	2.2 Minimizing Noise (Asso)
	2.3 Minimizing the Pattern Set Complexity (Hyper+)
	2.4 Minimizing Multiple Cost Functions (PaNDa+ Framework)

	3 Evaluation Methodology and Experiments
	3.1 Parameter Setting of Pattern Mining Algorithms 
	3.2 Supervised Evaluation of Pattern Set
	3.3 Experimental Results

	4 Related Work
	5 Conclusions
	References


